
Optimal classification trees
D. Bertsimas and J. Dunn (2015)

Decision trees are often built in a (suboptimal) greedy
way, unconstrained (to detect strong splits hidden be-
hind weak ones) and pruned (to account for the com-
plexity penalty).
The problem of finding the optimal tree of depth at
most D can be formulated as mixed integer program:
– Binary variables for each node, indicating if there is
a split;

– Binary variables to select the variable used for the
split;

– Binary variables indicating non-empty leaves;
– Binary variables indicating, for each observaation
and each node, whether it goes to the left or to the
right;

– Binary variables indicating the majority class in each
leaf

(and many constraints).
For the hyperparameters:
– Progressively increase the tree depth, using CART
or a shallower tree as a warm start;

– The complexity penalty can be formulated as a hard
constraint on the number of nodes: progressively in-
crease the number of nodes;

– Idem for the minimum number of observations in
each leaf.

This can be generalized to multivariate decision trees
(hyperplane splits, instead of axis-aligned ones), with
greedy (single-split-optimal-tree based) warm start (or
greedy logistic regressions).

Learning optimal and fair decision trees
for non-discriminative decision-making

S. Aghaei et al.
Another MIP formulation of the optimal decision (or
regression) tree; also allowing fairness penalties.
Implementation in ODTlearn.

Learning optimal classification trees
using a binary linear program formulation

S. Verwer and Y. Zhang
Reformulation of the optimal decision tree MIP with-
out constraints for each observation in the training set:
just sum the constrains for the rows having the same
feature values.

Optimal constraint-based decision tree
induction from itemset lattices

S. Nijssen and E. Fromont
DL8 uses frequent itemset mining to build optimal de-
cision trees on binary data (every path, o a decision
tree, can be mapped to an itemset): the best decision
tree on a subset of the data is obtained by considering
all possible ways of paritioning it in two, and recur-
sively determining the best tree for each partition.

Learning optimal decision trees
using caching branch-and-bound search

G. Aglin et al.
Implementation improvements for DL8, in PyDL8.5

Optimal policy trees
M. Amram et al.

The optimal decision tree MIP can be generalized to
build an optimal policy tree,

Minimize
τ :X→{0,1}

∑
i

Γi,τ(xi)

after estimating the counterfactuals with a doubly ro-
bust (DR) estimator

Γit =
yi − ŷit
p̂it

1zi=t + ŷit.

X

T Y

Optimal prescriptive trees
D. Bertsimas et al.

Joint (MIP) tree model for counterfactual estimation
(locally constant or piecewise linear) and optimal treat-
ment assignment.

Generalized random forests
S. Athey et al. (2016)

Generalized random forests fit a quantity θ(x) identi-
fied as the solution of local moment equations

E
[
ψθ(x)(X) |X = x

]
= 0.

The tree is built recursively, splitting a (parent) node
P into (children) C1, C2, maximizing

∆(C1, C2) =
|C1| · |C2|
|P |2

∥∥∥θ̂C1 − θ̂C2

∥∥∥2 ,
which can be approximated with a Taylor expansion

Ap = Mean
i∈P

∇ψθ̂P (xi)

ρi = −A−1P ψθ̂P (xi)

∆̃(C1, C2) =
∑

j∈{1,2}

1

|Cj |

(∑
i∈Cj

ρi

)2

.

The final estimate is not obtained byaveraging esti-
mates from each tree, but by using the ensemble to
compute similarity weights αi(x) between the new sam-
ple x and training samples i and putting them in the
empirical estimating equation

θ̂(x) = Argmin
θ

∥∥∥∥∥∑
i

αi(x)ψθ(xi)

∥∥∥∥∥
2

.

R implementation in grf.

Article and book summaries by Vincent Zoonekynd 1/1044

evtree: evolutionary learning of globally
optimal classification and regression trees in R

T. Grubinger et al. (2014)
Decision trees are usually built greedily: they are only
locally optimal – genetic algorithms can search for a
globally optimal tree.

Parties, models, mobsters:
a new implementation

of model-based recursive partitioning in R
A. Zeilleis and T. Hothorn

Model-based recursive partitioning (MOB) is a “de-
cision” tree with models (e.g., linear models) in the
leaves. They can use different variables for the models
y ∼ x1 + · · ·+ xm and the splits z1, . . . , zℓ. The tree is
built recursively:
– Fit the model to the current node;
– Test for parameter instability (SupLM fluctuation
test) to select the variable to split on;

– Use exhaustive search to select the split point;
– Split the node, and iterate until the desired depth;
– Prune the tree by looking at the AIC or BIC im-
provement.

R implementation in partykit.

Generalized M-fluctuation tests
for parameter instability

A. Zeileis and K. Hornik (2007)

Given observations Yi
indep∼ Fθi , we can test

H0 : ∀i θi = θ0

H1 : θi varies over time

using a score function ψ, i.e., a function such that

E
Y∼Fθ

[
ψθ(Y)

]
= 0,

e.g.,

ψθ(y) =
∂loss(y; θ)

∂θ

where the loss is the log-likelihood or the residual sum
of squares.

Since B̂−1/2n Wn(·, θ̂n)
d→W 0(·), where

· n is the number of observations;
· θ̂n is estimated using the whole sample:

n∑
i=1

ψθ̂n(Yi) = 0;

· Wn(t, θ) =
1√
n

⌊nt⌋∑
i=1

ψθ(Yi);

· B(θ) = Var
Y∼Fθ

[
ψθ(Y)

]
;

· B̂n =
1

n

n∑
i=1

ψθ̂n(Yi)ψθ̂n(Yi)
⊤;

· W 0(t) =W (t)− tW (1) Brownian bridge;
· W is a standard Brownian motion,

we can use

SupLM = sup
t∈Π

‖efp(t)‖22
t(1− t)

efp(t) = B̂−1/2n Wn(t, θ̂n) (empirical fluctuation process)
Π ⊂ [0, 1] interval with suspected break

as test statistic (and approximate p-values). For linear
regression,

ψB(yi, xi) = xi(yi − x⊤i β).

Approximate asymptotic p-values
for structural change tests

B.E. Hansen (1997)
P -values for the limiting distribution

sup
t∈Π

∥∥W 0(t)
∥∥2
2

t(1− t)
.

ctree: conditional inference trees
T. Hothorn et al.

Decision tree using statistical tests (adjusted for mul-
tiple testing) to select the splits (instead of heuristic,
overfitting-prone criteria).

Fast optimal leaf ordering
for hierarchical clustering

Z. Bar-Joseph et al. (2001)

Approximation trees:
statistical stability in model distillation

Y. Zhou et al.
To explain a blackbox model (e.g., a random forest),
distill it into a decision tree using pseudo observations
(real observations plus Gaussian noise, for a user-chose
bandwidth – i.e., samples from a KDE of the data).
Choose the number of pseudo observations so tha the
trees be stable – use a statistical test on the Gini index
(which is used to select the splits). Choose the tree
depth by comparing the variance of the observations
in a leaf with the variance of the blackbox model.

Constructing optimal L∞ star discrepancy sets
F. Clément et al. (2024)

The L∞ star discrepancy of a finite set P ⊂ [0, 1]d is

d∗∞(P) = sup
q∈[0,1]

∣∣∣∣ |P ∩ [0, q]|
|P |

− λ
(
[0, q]

)∣∣∣∣
where λ is the Lebesgue measure. It suffices to consider
q ∈ Γ̄(P).

Γ̄(P) = Γ̄1(P)× · · · × Γ̄d(P)

Γ̄i(P) = Γi(P) ∪ {1}
Γi(P) = {xi : x ∈ P}

Article and book summaries by Vincent Zoonekynd 2/1044

Strong laws for L and U statistics
J. Aaronson et al. (1996)

U-statistics are averages of kernels of random sam-
ples, i.e., they are of the form

Un(X1, . . . , Xn) = Mean
I⊂J1,nK
|I|=r

f(XI)

where f is a symmetric function of r variables, e.g.,
f(x1) = x1 for the mean, or f(x1, x2) = 1

2 (x1 − x2)
2

for the variance.
L-statistics are linear combinations of order statistics,
i.e., they are of the form

Ln(X1, . . . , Xn) =

n∑
i=1

µ

([
i− 1

n
,
i

n

])
Xn;i,

e.g.,

density statistic L(F) =
∫ 1

0

F−1dµ

J(u) M1(F) = E[X]

J(u) = αuα−1 Pα(F) =

∫
xdFα(x)

J(u) = 4u− 2 g1(F) = E |X −X ′| .

Relevance-basd importance: a comprehensive
measure of variable importance in prediction

M. Czasonis et al. (2024)
The adjusted fit, from a relevance grid model, defines
function

P(predictors)& −→ R

θ 7−→ Fitadj
θ,t

for each observation t; the relevance-based importance
RBIt,k is the corresponding Shapley value for predictor
k.

Learning optimal Bayesian networks:
a shortest path perspective

C. Yuan and B. Malone (2013)
One can find the causal graph minimizing

Score(G) =
∑
i

Score(xi,Pai)

with dynamic programming, adding successor nodes
(leaves) one by one (finding a path from ∅ to V in
the ”order graph” – the Hasse diagram of the nodes)

Score(V) = Min
X∈V

[
Score

(
X \ {X}

)
+ BestScore

(
X,V \ {X}

)]
BestScore(X,V) = Min

P⊂V
Score(X,P)

or with A*, with a heuristic relaxing the acyclicity con-
strain

h(U) =
∑

X∈V \U

BestScore
(
X,V \ {X}

)

(better heuristics exist).

V

V ∪ {X}

BestScore(X,V)

Learning optimal Bayesian networks
using A* search

C. Yuan et al. (2011)

FastTExt.zip:
compressing text classification models

A. Joulin et al.
Linear models for text classification with n-gram fea-
tures are easy to train, perform well, but are very large:
– Use product quantization (PQ: k-means on subsets
of the coordinates) or orthogonal product quantiza-
tion (OPQ: PQ after applying a learned rotation),
separating norm and direction of the vectors (the
norms span 3 orders of magnitude), and retrain the
layers after quantization;

– Prune the vocabulary (largest weightes, ensuring
there is at least an n-gram in each document); keep
the n-grams selected in a set (a Bloom filter de-
grades performance);

– Use Vowpal Wabbit’s hashing trick to store the
weights.

Enriching word vectors
with subword information

P. Bojanowski et al.
Represent words as bags of character n-grams (3 ⩽ n ⩽
6); use skipgram to learn the subword representations
and add them.

Bag of tricks for efficient text classification
A. Joulin et al.

fastText is a linear model for text classification, use-
ing
– Word and n-gram embeddings as features;
– A low-rank constraint

Maximize
A,B

Mean
n

yn log softmax(BAxn)

– If there are many classes, a hierarchical softmax
based on the Huffman coding tree.

Article and book summaries by Vincent Zoonekynd 3/1044

Optimized product quantization
T. Ge et al.

Product quantization (k-means on M subsets of the
coordinates, for approximate nearest neighbour (ANN)
search) after a learned orthogonal transormation:
– Alternatively estimate the cluster centers (k-means)

and the orthogonal matrix (Procrustes);
– Initialize with the following heuristic (approximation
of the exact solution for Gaussian data):
• Compute the PCA and sort the eigenvalues in de-
creasing order;

• Start with M empty buckets;
• Sequentially pick the largest eigenvalue and as-
sign it to the bucket with the minimum product
of eigenvalues (unless it is already full);

this gives kM codewords.

Diffusion forcing: next token prediction
meets full sequence diffusion

B. Chen et al.
Combine Bayesian updates

zt−2 zt−1 zt zt+1

xt−2 xt−1 xt xt+1

with diffusion
x0 xk

+noise
denoising

or conditional diffution
z

x0 xk
+noise

denoising

trying to forecast the added noise εt = xktt − x0t from
zt−1, xktt and kt.
One can sample on a grid, time×noise, with an arbi-
trary (time-dependent) noise schedule – noise can be
seen as a form of masking.

zt−1 zt

x0t xktt

observation
Bayesian update

+noise
conditional

diffusion

Classifier-free diffusion guidance
J. Ho and T. Salimans (2021)

Classifier guidance is a diffusion model whose score is
combined with the gradient of a classifier – but we can-
not use an off-the-shelf classifier: it has to be trained
on noisy data (this is reminiscent of GANs). Instead,
jointly train a conditiona and an unconditional diffu-
sion model, and combine their scores

(1 + w)εθ(z, c)− wεθ(z).

Gene regulatory network inference
in the presence of selection bias

and latent confounders
G. Luo et al.

With interventional data (Ix → X and/or IY → Y), it
is possible to distinguish between

IX IY

X Y

causality

IX IY

X Y

S
selection bias

IX IY

X Y

W

latent confounder

with conditional independence tests.

DeepSeek-R1: incentivizing reasoning
capability in LLMs via reinforcement learning
DeepSeek-R1-Zero uses RL (GRPO) on DeepSeek-V3-
Base to enhance its reasoning capabilities:
– Prompts: unspecified (math, leetcode, etc.);
– Reward: only accuracy (correct final answer) and
format, as specified by the prompt:
<think>...</think> and <answer>...</answer>.

During training, the model spends more and more time
thinking, but the <think> section becomes less and less
readable (it mixes Chinese and English).
DeepSeek-R1 uses 4 steps:
– SUpervised fine-tuning (SFT) with high-quality
data, e.g., readable answers from DeepSeek-R1-Zero;

– RL, as above;
– SFT, with 600k reasoning samples (ask the model to
generate several answers, and have DeepSeek-V3 se-
lect the best) and 200k non-reasoning samples from
(DeepSeek-V3, unspecified prompts);

– RL, for alignment (unspecified prompts and re-
wards).

DeepSeekMath: pushing the limits
of mathematical reasoning
in open language models

Z. Shao et al.
Start with a code model, and fine-tune it on a large
mathematical corpus:
– Train a FastText classifier on OpenWebMath;
– Apply it to CommonCrawl;
– Use the results to identify websites with math con-
tents;

– Add the corresponding pages to the FastText train-
ing data (adding arxiv papers does not bring any
improvement); re-train;

– To avoid benchmark contamination, exclude pages
containing a 10-gram from one of the benchmarks;

– Apply the new model to CommonCrawl.
Also evaluate on miniF2F (convert an informal proof
into a formal one, checked with Isabelle) and on
GSM8K (math with tool use: Python, SymPy).

Article and book summaries by Vincent Zoonekynd 4/1044

In PPO,

J = E
q∼queries
o∼πold(•|q)

Mean
1⩽t⩽|o|

πθ(ot|q, o<t)
πold(ot|q, o<t)

− βKL(πθ‖πref)

GRPO (group relative polici optimization) replaces the
advantage A with the average reward from πold,

Ai =
ri −mean(r)

std(r)

and uses

KL(πθ‖πref) =
πref(· · ·)
πθ(· · ·)

− log
πref(· · ·)
πθ(· · ·)

− 1.

DeepSeek-V3 technical report
DeepSeek-V3 combines:
– MoE (top-k and shared experts);
– No auxilliary loss to ensure load balancing between
experts replaced by a bias term for each expert;

– Sequence-wise auxilliary loss;
– Multi-head laent attentio (MLA): joint low-rank
compression of K and V to reduce the size of the
KV cache;

– Multi-token predictin;
– FP8 mixed precision (FP8, BF16, FP32);
– Context length extension (first 32k, then 128k);
– Many parallelism and communication improve-
ments).

Training required 2 months on 2048 GPUs ($5m).

Softmax is not enough
(for sharp out-of-distribution)

P. Veličković et al.
“Softmax” should have been called “softargmax”.
A function is sharp if it only depends on a constant
number of inputs, e.g., max. Softmax cannot approx-
imate shaprness with increasing problem size: use a
temperature-adjusted softmax instead, with the tem-
perature depending on the entropy of the initial prob-
ability distribution.

Data-driven discovery of synamical systems
in pharmacology using large language models

S. Holt et al.
LLM-based, CMA-ES-like optimization to find the
ODE (Python code) best fitting the data; the LLM
can also request more features (from a list). Iterate:

f = LLM(descriptions, past attempts)
` = Min

θ
loss
[
f(Data; θ)

]
.

Rethinking early stopping:
refine, then calibrate

E. Berta et al.
(Multiclass) classifiers minimize two quantities:
– Refinement error (whether the classes are in the cor-
rect order);

– Calibration error (whether the probabilities are cor-
rect).

They are not simultaneously minimized during train-
ing. Stop training when the refinement loss stops de-
creasing,

Min
g

Mean
(X,Y)∼Data

loss
[
g
(
f(X), Y

)]
where g is the relalibration – temperature scaling is
good enough.

Towards safe reinforcement learning
via constraining conditional value at risk

C. Ying et al.
CVaR-PPO (aka CPPO) adds a CVaR constraint to
the PPO loss, transforms it using the formulation of
CVaR as an optimization problem, and replaces the
hard constraint with its Lagrangian relaxation.

FinRL-DeepSeek: LLM-infused risk-sensitive
reinforcement learning for trading agents

M. Benhenda
RL trading agent, using technical indicators and LLM-
derived signals (trade recommendation from news, con-
fidence in this recommendation, risk assessment, each
as a numeric score in J0, 10K, trained with CVaR-PPO.

On causal discovery
in presence of deterministic relations

L. Li et al.
Deterministic relations create independence and wreak
havoc in constraint-based causal discovery algorithms:
for instance, if X → Y is deterministic, then y is con-
stant when conditioned on X, and therefore indepen-
dent from everything: ∗ ⊥⊥ Y |X. Similarly,

height weight

BMI

∗ ⊥⊥ height | MBI,weight
∗ ⊥⊥ weight | MBI, height
∗ ⊥⊥ BMI | height,weight.

GES can be modified to account for deterministic re-
lations:
– Identify deterministic variables (by looking at the
variance of the residuals of regressions) and ignore
independence relations coming from determinism;

– Use a (RKHS) ridge-adjusted BIC as score (because
the variance matrix is singular in presence of deter-
minism).

Article and book summaries by Vincent Zoonekynd 5/1044

Generalized score functions
for causal discovery

B. Huang et al. (2018)
Using linear models in GES can introduce spurious re-
lations, e.g., in

X1

X2

X3

X1 = ε1

X2 = X1 +X2
1 + ε2

X3 = X2 +X2
2 + ε3

the influence of X1 on X3 cannot be blocked by a linear
function of X2, and can miss relations, e.g.,

X1

X2

X1 = ε1

X2 = (sinX1 + ε2)
2

Use a kernel conditional independence test to rule out
potential parents of a node.
For the score function, use the (ridge-regularized) CV-
log-likelihood or marginal likelihood of an RKHS re-
gression (regression onκ(x1, x)...

κ(xn, x)

 ∈ Rn

instead of φ(x) ∈H).

Universality, characteristic kernels
and RKHS embeddings of measures

B.K. Sriperumbudur et al.
A kernel on X is a positive definite function κ :
X ×X → R. I defines a subspace

Span{κ(•, x), x ∈ X} ⊂ F (X,R).

It is universal if

H0 = Span{κ(•, x), x ∈ X0} = F ,

for some X0 ⊂ X and some Hilbert space (F , ‖·‖) of
functions on X.
It is characteristic if Borel(X) −→ H

P 7−→
∫
X

κ(•, x)dP (x)

is injective.
Examples include:
– C 0(X) and ‖·‖∞;
– C 0(X) and compact convergence;
– C0(X) (continuous functions vanishing at infinity)

and ‖·‖∞;
– L0 and ‖·‖p

DoWhy-GCM: an extension of DoWhy
for causal inference in graphical causal models

P. Blöbaum et al.
dowhy was limited to effect estimation

E
[
Y | do(T = 1)

]
;

with dowhy-gcm, it can answer causal queries: coun-
terfactuals, direct and indirect effects, causal strength,
root cause analysis, etc.

Can large language models
infer causation from correlation?

Z. Jin et al.
Can an LLM learn the PC algorithm, i.e., infer causa-
tion from correlations (independence and conditional
independence relations, expressed as text)? No. Fine-
tuning does not help much.

Causal inference using LLM-guided discovery
A. Vashishtha et al.

Do not ask the LLM to find the whole causal graph (it
would truggle to distinguish direct from indirect rela-
tions) but only the partial order it induces (the transi-
tive reduction, aka Hasse diagram it induces).
You can compare DAGs with the L1 distance betwen
their transitive reductions.
Use a triplet prompt to infer this order: provide 3 vari-
ables and ask for their causal graph.
Applications include
– Post-processing the output of the PC algorithm, to
orient the remaining unoriented edges;

– Constraints (transitive closure) for the PC or GES
algorithms.

Causal order: the key to leveraging
imperfect experts in causal inference

A. Vashishtha et al. (2024)
Building a causal graph by asking pairwise questions to
an LLM creates spurious edges – with pairwise queries
alone, the LLM cannot distinguish between direct and
indirect effects.
The not build a DAG, but just a partial order: it can
be used
– To obtain a valid adjustment set (the ancestors of a
node in a topological order);

– As constraints or prior for classical causal discovery
algorithms.

Do not use pairwise queries, but triplet queries (either
all triplets, or k = 10 triplets for each pair if the graph
is large), aggregated with a majority vote: this creates
fewer cycles.
The topological divergence between a partial order ≼
and a DAG defined by its adjacency matrix is the num-

Article and book summaries by Vincent Zoonekynd 6/1044

ber of edges incompatible with the order,

D(≼, A) =
∑
i ̸≼j

Aij .

From causal to concept-based
representation learning

G. Rajendran et al.
With no additional assumptions or data, we cannot re-
cover latent factors Z from observed data X = f(Z).
If Z is a causal representaion , and if we have interven-
tions an all latent variables Zj , it is identifiable – but
that is a lot of interventions. A concept is a projec-
tion AZ of the latent factors; concepts are identifiable
through conditioning.

CLadder: assessing causal reasoning
in language models

Z. Jin et al.
Dataset to check if LLMs already know do-calculus and
can answer queries on the three rungs of teh causal-
ity ladder (association, intervention, counterfactuals),
without resorting to commonsense.

Deep proxy causal learning and its application
to confounded bandit policy evaluation

L. Xu et al. (2024)
PCL estimates causal effects in presence of unobserved
confounders using proxies.

Z W

X Y

U

treatment outcome

unobserved
confounder

treatment-
inducing

proxy

outcome-
inducing

proxy

ATE(a) = E
U

[
E
Y
[Y |A = a, U]

]
h s.t. E

[
Y |A = a, Z = z

]
=

∫
h(a,w)ρW (w|A = a, Z = z)dw

ATE(a) = E
W

[
h(a,W)

]
The “bridge function” h can be found with 2-stage re-
gression.

Causal reasoning and large language models:
opening a new frontier for causality

E. Kıc ıman et al.
LLMs are good, but have unpredictable failures.

Shaking the foundations: delusions in
sequence models for interaction and control

P.A. Ortega et al.
In imitatation learning, the model takes its own actions
as evidence about the wolrd: this leads to self-delusin.

Actions are causal interventions: do not model P [O|A],
but P

[
O|do(A)

]
.

θ

A O
expert
actions

observations

expert
knowledge

On information transfer
in control dynamical systems

S. Sinha and U. Vaidya (2018)
The directed information is

I(X → Y) = H(Y1, . . . , YT)−
∑

1⩽t⩽T
H(Yt|Y<t, X⩽t).

The transfer entropy is

TX→Y = H(Yt|Y<t)−H(Yt|Y<t, X<t).

A dynamical system

xt+1 = f(xt, yt) + noise
yt+1 = g(xt, yt) + noise

defines a conditional probability distribution
ρ(yt+1|yt). Similarly, if we freeze x,

xt+1 = xt

yt+1 = g(xt, yt) + noise

defines ρ ̸x(yt+1|yt). The information transfer is

Tx→y|t+1
t = H

(
ρ(yt+1|yt)

)
−H

(
ρ ̸x(yt+1|yt)

)
.

Context is key: a benchmark for forecasting
with essential textual information

A.R. Williams et al.
Cik is a benchmark for multimodal probabilistic time
series forecasting models (models also provided with a
textual context for each time series), such as UniTime,
Time-LLM, LagLlama, Chronos, Moira, TimeGEN.
The CRPS (continuous ranked probability score))

CRPS(F, x) =
∫ +∞

−∞

(
F (y) = 1y⩾x

)2
dy (dim = 1)

= E
X∼F

|X − x| − 1

2
E

X,Y∼F
|X − Y |

(the energy score uses ‖·‖p2 insead of |·|) is a proper
scoring rule generalizing the MAE to assess probabilis-
tic forecasts – cross-entropy

−Mean
x

log f(x) = H(data, F)

H(p, q) = − E
X∼p

log q(x)

Article and book summaries by Vincent Zoonekynd 7/1044

is often a better choice if the forecasted density is avail-
able.
The RCRPS (region-of-interest CRPS) is a weighted
and penalized CRPS: to give more weight to some fore-
casting horizons and penalize (problem-specific) con-
straint violations.

Regions of reliability in the evaluation
of multivariate probabilistic forecasts

É. Marcotte et al. (2023)
A scoring rule is a function S measuring how unlikely
an event y ∼ Data is, wrt a forecasted distribution F ;
it is proper if

E
y∼Data

S(y, F)

is minimal for F = Data.
In practice, however, we do not have a ground truth
distribution, but only a finite sample from it: for some
combinations of

d : dimension
n : ground truth sample size
m : forecast sample size

the statistical power of most scoring rules to detect
– Differences in mean;
– Positive correlations;
– Skewness;
– Difference in marginal variance;
– etc.
is low – you need to increase n and m.

Time-MoE: billion-scale time series
foundation models with mixture of experts

X. Shi et al.
Transformer (with SwiGLU, RMSNorm, no biases,
ROPE, multi-resolution forecasting, MoE), trained on
300B data points.

Towards transparent time series forecasting
K. Kacprzyk et al.

TO make time series forecasting (from static features)
“transparent”, let the user interactively see the impact
of changing some of the inputs on:
– The shape of the forecast (a sequence of seg-
ments, labeled increasing/constant/decreasing and
convex/linear/concave);

– Some properties of the forecast (mean, slope, maxi-
mum, minimum).

Fit a model with clubic splines (piecewise polynomials)
Rk → RT .

Forecast evaluation for data scientists:
common pitfalls and best practices

H. Hewamalage et al.
Long list of error measures for time series forecasting,
with their suggested use and pitfalls.

– Use a simple baseline (naive, seasonal naive);
– Forecast plots t, ŷ ∼ time are misleading;
– Beware of non-stationarity (seasonality, trend, unit
root (stochastic trend), heteroskedasticity, struc-
tural breaks) and non-normality (symmetry, tails,
outliers, intermittency (zero-inflation));

– Beware of ddata leakage.

Chronos: learning the language of time series
A.F. Ansari et al.

T5-based foundation time series forecasting model,
processing time series that have been mean-scaled (di-
vide by the average absolute value) and quantized
(uniform binning), trained with data augmentation:
TSMixup, KernelSynth (Gaussian processes with ker-
nels from the automated statistician).

The effectiveness of discretization
in forecasting: an empirical study

on neural time series models
S. Rabanset et al.

Binning input and output data tends to improve the
performance of deep learning time series forecasting
models (MLP, CNN, RNN).

Maximum entropy bootstrap for time series:
the meboot R package

H.D. Vinod and J. López-de-Lacalle
The maximum entropy bootstrap, for potentially non-
stationary time series,
– Separates the order of the observations from their
distribution;

– Resamples the observations, using a piecewise uni-
form distribution (more precisely, a piecewise maxi-
mum entropy distribution, with a pre-specified mean
on each interval, to allow values slightly more ex-
treme than observed);

– Keep the order (sic).

Maximum entropy ensembles for time series
inference in economics

H.D. Vinod (2006)

The uncertainty of machine learning
predictions in asset pricing

Y. Liao et al. (2025)
There are many types of bootstraps:
– Classical: resampling with replacement;
– Residual: fit a model and esample the residuals;
– Wild: idem, after multiplying the residuals by
N(0, 1) (for heteroskedastic data);

– Blocks: blocks of constant sizes;
– Stationary: blocks of random length, from a geomet-
ric (exponential) distribution;

– Parametric: X ∼ Fθ̂;
– Smooth: X ∼ kde;
– etc.

Article and book summaries by Vincent Zoonekynd 8/1044

To compute prediction confidence intervals for deep
learning models on panel data, use a variant of the
wild bootstrap:

ŷit = ĝ(xi,t−1) forecast
εit = yit − ŷit residual
ηt ∼ N(0, 1) ηt, not ηit or ηi

y∗it = ŷit + ηtεit

and fine-tune the model (starting from the trained one)
for k epochs.
Applications include worst-case (uncertainty-aware)
portfolio optimization

Maximizew Min
µ∈CI

w′µ− λ

2
w′V w.

The stationary bootstrap
D.N. Politis and J.P. Romano

Resample blocks of random lengths, from a geometric
distribution.

Proceedings of the 7th annual
AI in finance conference

Wolfe, 2025
LLM applications in finance include:
– Comparison of ChatGPT-generated answers with
human ones in conference calls – differences corre-
late with abnormal volumes;

– Denoising reported earnings;
– Human-free surveys, with synthetic personas (mim-
icking human participants);

– Making discretionary investing systematic;
– Identifying (and betting against) retain investor bi-
ases (technical analysis, from StockTwits).

Regimes
A. Mulliner et al. (2025)

– Take a few macro-economic variables (S&P 500, 10y-
3m, 3m, oil, copper, VIX, stock-bond correlation);

– Compute the (Euclidean) distance between today’s
state and past states;

– Buy (sell) assets with positive (negative) average re-
turns in similar past situations.

One can also look at the most dissimilar past states,
and take the opposite actions. [It works better with
the Mahalanobis distance; a learned Mahalanobis dis-
tance gives similar results out-of-sample but overfits
in-sample.]

Dynamic asset allocation using machine
learning: seeing the forest for the trees
C. Mueller-Glissmann and A. Ferrario

A student tree is a complex model (e.g., a random for-
est) distilled into a tree (on real data + noise).

Working backwards from returns
A. Kelleher and A. Mittal

price

order flow

price target

expected KPI

KPI

consensus KPI

surprise

return

price

order flow

price target

expected KPI

KPI

Mathematical models in epidemiology
F. Brauer et al. (2019)

Automatic posterior transformation
for likelihood-free inference

D.S. Greenberg et al. (2019)
The Bayesian approach to statistics estimates the pos-
terior p(θ|x) from the prior p(θ) and the likelihood
p(x|θ).
Approximate Bayesian computation (ABC, aka
likelihood-free inference) only assumes that we know
the prior p(θ) and that we can sample from p(x|θ) –
but we do not know the likelihood.
One can model the posterior as qF (x,ϕ)(θ) ≈ p(θ|x),
where qψ is a family of tractable distributions and F is
a neural net, trained with generated pairs (θ, x),

Maximize
ϕ

∑
i

log qF (xi,ϕ)(θi).

Since we are interested in the posterior p(θ|x0) at a spe-
cific point x0, we may want to restrict the θ samples to
“informative” values (sampling θ from qF (x0,ϕn−1)(θ)
instead of p(θ) to estimate φn) – this gives a biased
posterior, but it can be fixed.

Deep symbolic regression:
recovering mathematical expressions from data

via risk-seeking policy gradients
B.K. Petersen et al.

Symbolic regression usually uses genetic programming.
Instead, use RL to train an RNN model, to generate a
symbolic expression tree in pre-order traversal (depth-
first, left-to-right). The RNN is not only fed the previ-
ous token, but also the parent and sibling nodes. The
reward is the normalized root mean square error. The
constant token is replaced with the constant maximiz-
ing the reward (using BFGS). The reinforce policy
gradient (with baseline, for variance reduction) would
maximize the expextec sum of rewards – instead, we

Article and book summaries by Vincent Zoonekynd 9/1044

want to maximize the maximum reward: this can be
achieved by maximizing the conditional expected re-
ward

E
τ∼pθ

[
R(τ) |Rτ ⩾ Rε(θ)

]
.

Why do tree-based models still outperform
deep learning on tabular data?

L. Grinsztajn et al.
Neural networks:
– Are biased towards overly smooth functions;
– Are more affected (than tree-based methods) by un-
informative features;

– Are rotation-invariant (rotating the input does not
affect training).

KwikBucks: correlation clustering with
cheap-weak and expensive-strong signals

S. Silwal et al. (2023)
Given a graph (V,E), correlation clustering finds a
clustering C minimizing∑

(i,j) ̸∈E

Cij +
∑

(i,j)∈E

(1− Cij).

KwikCluster picks a vertex at random, forms a clus-
ter by adding its neighbours, removes it, and iterates.
Alternatively, find a maximum independent set and as-
sign (in parallel) the other nodes to their first neigh-
bour in that set – these are 3-approximations.
This can be generalized to budgeted correlation clus-
tering – we have a limited number of queries to the
exact graph, and an unlimited number to an approxi-
mation of the graph.

Spectral sparsification of graphs:
theory and algorithms

J. Baston et al. (2009)
The Laplacian quadratic form of a weighted graph
(V,w) is

QG(x) =
∑

(u,v)∈E

wuv(xu − xv)2.

The cut of a subset of nodes S ⊂ V is

CutG(S) =
∑
u∈S
v ̸∈S

wuv = Q(1S).

Two weighted graphs are cut-similar, resp. spectrally
similar if

∀S σ−1 · CutG̃(S) ⩽CutG(S)⩽ σ · CutG̃(S)
∀S σ−1 ·QG̃(S) ⩽ QG(S) ⩽ σ ·QG̃(S).

The effective resistance between two nodes u, v is

Ruv =

(
Min

x: xu=1, xv=0
QG(x)

)−1

(the equivalent resistance if you replace each edge with
a resistor of resistance 1/w).
The hypercube is a spectral approximation (a spectral
sparsifier) of the complete graph on 2n vertices (set the
weights on the hypercube to n/2

√
log n).

One can obtain spectral sparsifiers:
– By sampling q edges (with replacement) with prob-
abilities pe ∝ weRe and assigning them weights
we/qpe;

– Or as a union of random spanning trees.

Spectral sparsification of graphs
D.A. Spielman and S.H. Teng (2010)

Gemma Scope: open sparse autoencoders
everywhere all at once on Gemma 2

T. Lieberum et al.
To explain an LLM, train a sparse autoencoder (SAE,
sparse and nonnegative) on its activations (after the
MLP, or the activations on the residual stream – for
all layers)

x 7→ y = σ(W1x+ b1) 7→ x̂ =W2y + b2

σ(z) = JumpReLUθ(z) = z � 1z⩾θ =

θ = 10−3

Transcoders (which reconstruct the output of an MLP
from its input, using a sparse hidden layer) do not work
that well.

Jumping ahead: improving reconstruction
fidelity with JumpReLU sparse autoencoders

S. Rajamanoharan et al.
To train an SAE, with discontinuous JumpReLU ac-
tivations and `0 sparsity penalty, use straight-through
estimation for the gradients

∂JumpReLU
∂θ

∗ kε,
∂1z⩾θ
∂θ

∗ kε

where kε is a (rectangle) kernel of bandwidth ε; for the
`0 penalty, use the pre-activations:

‖y‖0 = 1W1x+b1⩾0.

Scaling and evaluating sparse auto-encoders
L. Gao et al.

The SAE with top-k activations (k = 32) does not re-
quire an `0 or `1 penalty, but may suffer from a large
number of dead neurons: add an auxiliary loss, the re-
construction error from the top kaux (512). You can
use several values of k, e.g., `(k)+ `(4k)/8, and change
k at test time.

y = σ
(
W1(x− b2) + b1

)
x̂ =W2y + b2

Article and book summaries by Vincent Zoonekynd 10/1044

Improving dictionary learning
with gated sparse autoencoders

S. Rajamanoharan et al.
The L1 penalty in SAE

x = x− b2
y = ReLU(W1x+ b1)

x̂ =W2y + b2

causes shrinkage. Instead, gated SAEs use

x = x− b2
g =W0x+ b0

y = 1g⩾0 � ReLU(W1x+ b1)

x̂ =W2y + b2

(W1)ij = eri · (W0)ij .

Transcoders find
interpretable LLM feature circuits

J. Dunefsky et al.
Circuit analysis looks for sparse subgraphs correspond-
ing to specific behaviours. Transcoders approximate a
densely activating MLP layer with a wider, sparsely
activating layer.

z = ReLU(W1x+ b1)

ŷ =W2z + b2.

Train with a faithfulness loss ‖ŷ − y‖2 and a sparsity
penalty ‖z‖1.
To find interpretable circuits, pick the top k activa-
tions; among their children, pick the top k activations;
among the resulting k2 graphs, pick the top k ones;
and continue.

Sparse feature circuits: discovering and editing
interpretable causal graphs in language models

S. Marks et al.
Neurons or attention heads are polysemantic. Instead,
use sparse autoencoders and look for sparse feature cir-
cuits. After interpreting them, you may decide to re-
move some of them (e.g., gender, for fairness).

Scaling monosemanticity: extracting
interpretable features from Claude 3 Sonnet

A. Templeton et al.
Applications of sparse autoencoders (SAE) to interpret
LLMs include identifying features activated when
– The model gives instructions to build chemical, bio-
logical or nuclear weapons;

– The user probes the model’s goals and values, or tries
to jailbreak it;

– The model is trained to be a sleeper agent;
– etc.

Sparse cross-coders
for cross-layer features and model diffing

J. Lindsey et al.
Adjacent layers are almost parallel: apply dictionary
learning to them jointly (a cross-coder is a multi-layer
transcoder).

+

+

=
+

++

=

+ +

=

+

Tokenizarion is NP-complete
P. Whittington et al.

The problem of compressing a dataset to at most δ
symbols is NP-complete.

Neural relational inference
for interacting systems

T. Kipf et al. (2018)
GNN over a latent graph, to discover and model parti-
cle interactions (e.g., basketball players).

Can a transformer represent a Kalman filter?
G. Goel and P. Bartlett

Yes, explicitly, up to a small additive error.

ZipIt! Merging models
from different tasks without training

G. Stoica et al.
To merge models (same architecture but different
training data and/or tasks), permutation-based meth-
ods assume they have exactly the same features, up to
permutation, and try to recover that permutation, for
each layer:

Maximize
σ∈Sn

∑
i

Cor(z1i , z
2
σ(i))

where z2i are the features, for neuron i, in layer `, which
contains n neurons.

W ∗ℓ = 1
2W

1
ℓ + 1

2PℓW
2
ℓ P
⊤
ℓ−1

Instead, concatenate the features, z1i ‖z2i , and average
highly correlated ones: this accounts for redundancy
in each model, and features unique to each model.

LongNet:
scaling transformers to 1,000,000,000 tokens

J. Ding et al.
Dilated attention is exponentially sparser as distance
grows.

= + +

Article and book summaries by Vincent Zoonekynd 11/1044

Consistency models
Y. Song et al.

The diffusion SDE

dxt = µ(xt, t)dt+ σ(t)dWt

defines a probability flow ODE

ẋt = µ(xt, t) +
1
2σ(t)

2∇ log pt(xt);

the score function sθ(x, t) ≈ ∇ log pt(x) is learned
from data. Diffusion models solve this ODE, mapping
(xt+1, t+1) to xt. Consistency models instead directly
map (xt, t) to x0 (or, rather, xε); they are trained from
trajectories, and try to enforce the constraints

f(xt, t) = f(xs, s)

f(xε, ε) = xε.

Diffusion models as masked autoencoders
C. Wei et al.

Diffusion model conditioned on masked input for image
inpainting.

Hyena hierarchy:
towards larger convolutional language models

M. Poli et al.
Convolutions can be efficiently computed with the FFT

(h ∗ u)t =
L−1∑
n=1

ht−nun

(h ∗ u) =

h0 h−1 h−L+1

h1 h0 h−L+2

hL−1 hL−2 h0

u1
u1
...

uL−1

 .
The filter h can be implicit, ht = γθ(t), where γθ is
described by a neural net (with sine activations to cap-
ture frequency information, and possibly multiplied by
a “shaping factor”, e.g., exponential decay) or comes
from a state space model (SSM)

xt+1 = Axt +But

yt = Cxt +Dut

i.e.,

yt =

t∑
n=0

(CAt−nB +D1t=n)un

ht =

{
XAtB +D1t=0 if t ⩾ 0

0 otherwise

where A, B, C, D are learned (the memory extent is
determined by the spectral radius of A).
Hyena is a subquadratic replacement for self-attention:
it first computes projections of the input (v, x1, . . . , xN)

(to mimick transformers, use 3, and call them value,
key and query) and iterates

z1t = vt

zn+1
t = xnt (h

n ∗ zn)t
yt = zN+1

t

Hungry hungry Hippos: towards language
modeling with state space models

T. Dao et al.
The H3 state space model outputs

Q� SSMdiag(SSMshift(k)� V)

where the shift SSL uses

A =

0 0

1

0 1 0

and the diagonal SSM uses a diagonal A.

Designing losses for data-free training of
normalizing flows on Blotzman distributions

L. Felardos et al.
Normalizing flows approximate a target distribution by
learning a bijective transformation from some reference
distribution (e.g., Gaussian).

qN pG

qF pB

Gaussian Generated
Target

One can minimize KL(pG‖pB): this only requires the
unnormalized target density, but leads to mode col-
lapse. Minimizing KL(qF ‖qN) requires data, which can
be sparse.
Instead of data, one can use samples from the gener-
ated distribution, with importance sampling. For bet-
ter convergence, the importance weights pB/pG should
be close to 1.
As loss function, use

Var
x∼generated

log
pB(x)

pG(x)

or, more precisely,

Mean
i

(
r(x‡G,i)− k

‡
)2
+

where

r(x) = log
pB(x)

pG(x)

k = Mean r(xG,i)

‡ = stop-gradient.

Article and book summaries by Vincent Zoonekynd 12/1044

Action matching:
learning stochastic dynamics from samples

K. Neklyudov et al.
If particles are described by the ODE ẋt = vt(xt), their
density satisfies q̇t = −∇ · (qtvt). Under mild condi-
tions, vt = ∇st for some “action” st. It can be recov-
ered by minimizing

LAM(s) = E
x∼q0

[
s0(x)

]
+ E
x∼q1

[
s1(x)

]
+

∫ 1

0

E
x∼qt

[
1
2 ‖∇st(x)‖

2
+
∂st
∂t

]
dt

This can be generalized to SDEs (entropic action
matching)

dxt = vt(x)dt+ σtdWt

and unbalanced action matching (creation or destruc-
tion of probability mass).

The training process of many deep networks
explores the same low-dimension manifold

J. Mao et al.
The intensive PCA (InPCA) of a distance matrix D =(
d(yi, yj)

)
ij

is the eigendecomposition of the centered
distance.

L = I − 1

n
1

W = − 1
2LDL

W = UΛU⊤

X = U
√
|Λ|

Coordinates corresponding to negative (resp. positive)
eigenvalues have a negative (positive) contribution to
distances.

ZipLoRA: any subject in any style
by effectively merging LoRAs

V. Shah et al
LoRA update matrices are sparse, but aligned LoRA
matrices interfere when naively merged,

∆W = λ∆Wcontext + (1− λ)∆Wstyle.

Instead, learn which column of which LoRA to keep,
(m′1 ⊗ 1)�∆W1 + (m′2 ⊗ 1)�∆W2.

Riemannian residual neural networks
I. Katsman et al. (2023)

Residual networks
xi+1 = xi + `i+1(xi)

can be generalized to Riemannian manifolds
xi+1 = expxi `i+1(xi)

where the vector field `i is defined with a standard
neural net

ni : R
D −→ RD

after embedding M into a higher-dimensional vector
space M ↪→ RD,

`i(x) = projTxMni(x).

RMT:
retentive networks meet vision transformers

Q. Fan et al.
A retentive block is an attention block with exponen-
tial decay

Ret(X) = (QK⊤ �D)V

Q = (XWQ)�Θ

K = (XWQ)� Θ̄

V = XWV

Θn = einθ

Dnm = γn−m1n⩾m

It can be generalized to 2-dimensional data (Manhat-
tan self-attention, MaSA).

Transformers from an optimization perspective
Y. Yang et al. (2022)

Unfolded optimization aims to replace the feed-forward
layers of a neural network y = f(x) with a gradient step
from an optimization problem

Minimize
y

g(y;x),

one layer at a time.

Tokenformer: rethinking transformer scaling
with tokenized model parameters

H. Wang et al.
Alternate standard attention

X 7−→ Att(XWQ, XWK , XWV)

with token-parameter attention

X 7−→ Att(XWQ,WK ,WV).

Were RNNs all we needed?
L. Feng et al.

GRU and LSTM can be simplified, by removing the
influence of the hidden state ht−1 on the gates.

ht−1 ht

zt rt h̃t

xt

GRU and minGRU

Article and book summaries by Vincent Zoonekynd 13/1044

ht−1 ot ht

ct−1 ct

ft it c̃t

xt

LSTM and minLSTM

The gradients can be computed with the parallel prefix
scan algorithm.

hk = ak � hk−1 + bk

a∗ = cumsum(log a)

c = log cumsumexp
(
logb− a∗

)
h = a∗ + c

Efficient parallelization
of a ubiquitous sequential computation

F.A. Heinsen
The recurrence xt = atxt−1+ bt can be computed with
two cummulated sums (which can be computed in par-
allel),

x =

(cum∏
at

)
�

x0 + cum∑ bt
cum∏

at

 ,

i.e.

log xt = a∗t + log(x0 + b∗t)

a∗t =

cum∑
t

log at

b∗t =

cum∑
t

exp(log bt − a∗t)

For numeric stability, prefer

xt = exp
[
a∗t + tail(LCSE(cat(log x0, log bt − a∗t)))

]
.

Prefix sums and their applications
G.E. Blelloch

Cumsum, cummax, cummin can be computed in par-
allel.
The recurrence xi = (xi−1 ⊗ ai)⊕ bi can be computed
in parallel.

(a, b) • (a′, b′) = (a⊗ a′, b⊗ a′ ⊕ b′)

x = pr2
(cum

• (a,b)
)

This can be generalized to higher order recurrences (re-
place xi with (xi, xi−1, . . . , xi−k)); applications include
xi = ai + bi/xi−1, Fibonacci numbers, etc.

Byte latent transformer:
patches scale better than tokens

A. Pagnoni et al.
Train a small transformer to forecast the next byte,
from the current and previous bytes, with hash n-gram
embeddings, 3 ⩽ n ⩽ 8. Use it to split the input
into variable-length patches (whenever the entropy of
the next byte is above some threshold or increases too
much). Feed those patches to a large transformer, to
forecast the next patch. Decode the patches into bytes,
with a small transformer, still using the entropy to de-
cide when patches end.
The model scales better than tokenizer-based trans-
formers, and excells at character-level tasks.

Switch transformers:
scaling to trillion parameter models

with simple and efficient sparsity
W. Fedus et al.

MoE (mixture of experts) selecing just one expert, with
a load-balancing loss to use all experts.

Train short, test long: attention with linear
biases enables input length extrapolation

O. Press et al.
Position encoding (PE) adds a sine (or learned) po-
sitional encoding to the first layer. RoPE multiplies
keys and queries with a sine encoding, at each layer;
the values are left untouched. T5 bias adds a learned,
distance-dependent bias to the pre-softmax attention,
at each layer (the values are left as is). ALiBi

adds a penalty proportional to the distance to the pre-
softmax attention.

softmax

qiK⊤:i −m

i− 1
...
2
1
0

RoFormer: enhanced transformer
with rotary position embedding

J. Su et al.

xLSTM: extended long short-term memory
M. Beck et al.

In the LSTM, replace

ct = σ(ft)ct−1 + σ(it)zt

ht = otψ(ct)

Article and book summaries by Vincent Zoonekynd 14/1044

with

ct = exp(ft)ct−1 + exp(it)zt

ht = ot
ct
nt

nt = exp(ft)nt−1 + exp(it).

To make it more transformer-like, replace the scalar
c with a matrix, and use matrix products. (To avoid
numeric overflow, keep track of m = log nt, and divide
everything by em.)

A Wigner-Eckart theorem
for group equivariant convolution kernels

L. Lang and M. Weiler (2021)
The Peter-Weyl theorem states that if G is a compact
group and X a homogeneous space, then L2(X,K)
(K = R or C) is a direct sum of unitary irreducible
representations, each with multiplicity at most its di-
mension; for X = G and K = C, the multiplicity is
the dimension.

Coordinate-independent
convolutional networks

M. Weiler et al.

Nomic Embed: training a reproducible
long context text embedder

Z. Nussbaum et al.
Open-source 8192-context-length embedding model,
with task-specific prefixes, to break the symmetry of
the encoder (we want a different model for questions
and answers, such that the embeddings match). Tricks
include: RoPE, SwiGLU, Flash Attention, AdamW,
gradient accumulation, etc.

Self-guiding exploration
for combinatorial problems

Z. Iklassov et al.
To solve combinaorial problems (e.g., TSP) with an
LLM:
– “List all possible methods to solve this problem. Re-
turn them separated by newlines”;

– For each method, “list all the steps to use this
method”;

– For each step, “Is the problem easily solvable? Re-
turn ‘yes’ or ‘no‘”; if not, go to the previous step;

– “Give feedback on the proposed solution“;
– “Integrate all previous findings and provide the final
answer”.

Stealing part of a production language model
N. Carlini et al.

With access to the logits of an LLM, one can recover
the dimension of the last weight matrix. The final layer
is a projection from the hidden latent dimension to a
higher dimensional logit vector: the dimension of the

span of the logit vectors is the dimension of the last
layer; estimate it by looking at the singular value of
the matrix Q of logits. The SVD, Q = UΣV ⊤ also
gives the weight matrix, W = UΣ (up to symmetries).
The attack still works without direct access to the log-
its, but is more expensive.

Let’s do a thought experiment: using
counterfactuals to improve moral reasoning

X. Ma et al. (2023)
To help LLMs to better in moral reasoning tasks:
– Ask for moral counterfactual questions for each sce-
nario;

– Answer; discuss moral implications; highlight moral
conflicts;

– Summarize and conclude.

Tree of thoughts: deliberate problem solving
with large language models

S. Yao et al.
Don’t ask for the next step, as in CoT (chain of
thoughts), but for several possible next steps; explore
the tree with BFS (ask the LLM to pick the best k chil-
dren among those generated; some tasks (e.g., creative
writing) are fine with k = 1).

ChatDB: augmenting LLMs
with databases as their symbolic memory

C. Hu et al.
Give your LLM access to an SQL database, where it
can store (and later retrieve) information.

Learning to tokenize for general retrieval
W. Sun et al.

Sparse retrieval relies on inverted indices (TF-IDF,
BM25, etc.). Dense retrieval compares queries and doc-
ument embeddings. Generative retrieval replaces the
dense embeddings with discrete ones – lists of “tokens”.

Retrieval augmented generation
for large language models: a survey

Y. Gao et al. (2023)
RAG can suffer from low precision, low recall, irrele-
vance, hallucinations:
– Preprocess the chunks: remove irrelevant or dupli-
cate information (e.g., boilerplate text, special char-
acters); rewrite to eliminate ambiguity; adjust chunk
size;

– Align query and documents: given a document, ask
for corresponding queries and use them to compute
the embedding; conversely, given a query, ask for
(hallicinated) documents answering it, and query the
vector database with them;

– Add metadata to the retrieved documents;
– Use a customized (domain-specific) embedding;
– Re-rank;

Article and book summaries by Vincent Zoonekynd 15/1044

– Reduce noise in the retrieved documents and com-
press them (reduce the context length): remove ir-
relevant context, highlight pivotal paragraphs; ask
the LLM to rewrite the context;

– Hybrid search (vector + keywords);
– Recursive retrieval: first retrieve small chunks, to
capture key information, then larger blocks for more
context;

– Ask the LLM to “step back and reason about the
general underlying concepts or principles”;

– Let the LLM populate its own database;
– Ask the LLM to assess the relevance of the retrieved
documents;

– Rewrite the query; try several formulations;
– Compute the embeddings on small chunks, but re-
trieve larger chunks (e.g., abstracts vs full papers);

– etc.

Time is encoded in the weights
of finetuned language models

K. Nylund et al.
The time vectors are Wt−W , where W are the model
weights and Wt the weights after finetuning on data
from period t. Use them to shift the model’s attention
to another period, e.g., W + (Wt1 −Wt0).

“Do anything now”: characterizing and
evaluating in-the-wild jailbreak prompts

on large language models
X. Shen et al. et al. (2023)

Get your jailbreak prompts from Reddit and Discord.

Patch n’ Pack: NaBiT, a vision transformer
for any aspect ratio and resolution

M. Dehghani et al.
Instead of resizing images before giving them to a ViT,
pack patches from several images, and have the net-
work output a sequence of labels, one for each input
image.

Domain adaptation for time series
under feature and label shifts

H. He et al.
Align the two domains (feature shift: time and fre-
quency features, Sinkhorn divergence), then correct
(label shift).

Baldur: whole-proof generation and repair
with large language models

E. First et al.
LLM to generate formal proofs (software verification
with Isabelle) and fix them in case of errors.

Prompt programming for large language
models: beyond the few-shot paradigm

L. Reynolds and K. McDonell

Few shot prompts help locate already learnt tasks:
well-crafted 0-shot prompts can do better.

Safety alignment should be made
more than just a few tokens deep

X. Qi et al.
Safety alignment of LLMs with RLHF is shallow: it
just trains the model to identify harmful requests and
to start the answer with a refusal (“I cannot”, etc.).
Those models are suceptible to prefilling attacks (pro-
vide the begining of the answers, e.g., “Sure, here is”
and let the model complete it).

JaxPruner:
a concise library for sparsity research

J.H. Lee et al. (2024)
Implementation of pruning and sparse training algo-
rithms.

A* search without expansions: learning
heurisic functions with deep Q-networks

F. Agostinelli et al.
Deep Q nework as heuristic for A∗ search (aka best-
first search).

Dynamic clustering
of contextual multi-armed bandits

T.T. Nguyen and H.W. Lauw (2014)
DynUCB:
– Fits a LinUCB model for each user;
– Clusters the coefficients of those models (k-means);
– Selects the action using the average model in each
cluster.

Nonparametric bandits with covariates
P. Rigolet and A. Zeevi (2018)

For the (non-contextual) 2-arm bandit, UCB is asymp-
totically optimal and its regret is O(log n). For a con-
textual 2-arm bandit, bin the context vectors (using
a grid) and use UCB on each cell; the regret is poly-
nomial – there exist bandits for which this cannot be
improved.

Nonparametric stochastic contextual bandits
M.Y. Guan and H. Jiang (2018)

(Under reasonable assumptions), k-NN-UCB has sub-
linear regret.

A practical method for solving contextual
bandit problems using decision trees

A.N. Elmachtoub et al.
For each possible action, fit a decision tree on a boot-
strap sample, and use it as a Thompson sample: pre-
dict the reward, and pick the action with the highest
reward.

Article and book summaries by Vincent Zoonekynd 16/1044

The epoch-greedy algorithm
for contextual multi-armed bandits

J. Langford and T. Zhang
Iterate:
– One exploration step (random arm);
– dεne exploitation steps, where εn is an average re-
gret bound for each exploration step, for the policy
optimal (from a finite set H of candidate policies)
on the exploration data only.

Gambling in a rigged casino:
the adversarial multi-armed bandit problem

P Auer et al. (1998)
Exp3 solves the fixed-horizon multi-arm bandit (MAB)
problem with k arms as

pi(t) ∝ exp η
∑
τ<t

r̂iτ

r̂it =

rit
p̂it

if arm i was chosen at time t

0 otherwise

p̂it = (1− ε)pit +
ε

k

Exp4 uses the same idea to choose between experts
(each providing a probability distribution on arms).

Approximate planning in large POMDPs
via reusable trajectories

M. Kearns et al.
Given a POMDP you can sample from, with a finite
action space, build trajectory trees:
– Nodes: state, observation pairs
– Children for all actions, with the edge labeled by the
corresponding reward;

– Depth H (there is an exponential number of nodes
in each tree).

Use those trees to evaluate policies: a deterministic
(resp. stochastic) policy defines a (distribution on)
path(s).

Sequential testing
R. Nowak (2011)

Consider the null and alternative hypotheses

H0 : Xi
iid∼ p0

H1 : Xi ∼ p1
(they have to be simple); choose α and β, the desired
type I and type II error rates; compute the thresholds

a = log
β

1− α
< 0

b = log
1− β
α

> 0

and the cummulated sums

Λk =

k∑
i=1

log
p1(xi)

p0(xi)
.

The sequential probability ratio test (SRPT) accepts
Hp (resp H0) as soon as Λk > b (resp Λk < a).

Doubly robust policy evaluation
and optimization

M. Dudík et al. (2014)
The direct method (DM, aka controlling for con-
founders, backdoor adjustment) estimates the value of
a (MAB) policy from an estimate r̂(s, a) of the reward
conditioned on the state (state = context = exogenous
variables) s and action a

V = Mean
t

∑
a

π(a, st)r̂(st, a);

it has low variance but potentially high bias.
Importance sampling (IS) uses the (known) data col-
lection policy π0

V = Mean
t

π(at, st)

π0(at, st)
rt

(there is no bias, but the variance is high if π and π0
are very different).
The inverse propensity score (IPS, or inverse propen-
sity weighting, IPW) method uses some estimator π̂0
of the collection policy,

V = Mean
t

π(at, st)

π̂0(at, st)
rt.

The doubly robust (DR) estimator uses r̂ (DM) as a
baseline, and corrects it with the propensity score

V = Mean
t

∑
a

π(a, st)r̂(st, a)+
π(at, st)

π̂0(at, st)
(rt−r̂t(st, at)).

Open bandit dataset and pipeline: towards
realistic and reproducible off-policy valuation

Y. Saito et al. (2021)
Besides DM, IPW, DR, off-policy evaluation (OPE) of
contextual MAB policies include
– Self-normalized IPW

V =
Meant w(at, sr)rt
Meant w(at, sr)

, w(a, s) =
π(a, s)

π̂0(a, s)

– Switch estimator: DR when w ⩽ τ , DM when the
importance weights are too large;

– DR with optimistic shrinkage

V = Mean
t

r̂(st, π) + ŵ(at, st, λ)
[
rt − r̂(at, st)

]
ŵ(a, s, λ) =

λ

w(a, s)+λ
w(a, s)

– Cross-fitting.

Article and book summaries by Vincent Zoonekynd 17/1044

TimesNet: temporal 2D-variation modeling
for general time series analysis

H. Xu et al.
To account for inter- and intra-period variations, and
multi-periodicity, stack (with residual connection) sev-
eral TimesBlocks:
– Compute the FFT of the 1D input (if there are sev-
eral channels, average the amplitudes of each fre-
quency) to identify the top k frequencies

– For eah of those frequencies, reshape the 1D input
to 2D (i.e., stack them), with 0-padding if needed;

– Apply an inception block;
– Reshape to 1D.

Generative probabilistic forecasting
with applications in market operations

X. Wang and L. Tong.
A weak autoencoder only recovers its input in distribu-
tion.

discriminatorx
x̂

discriminatorz
Unif(0, 1)d

Generative time series modeling
with Fourier flows

A.M. Alaa et al.
Normalizing flows in the frequency domain

Predict, refine, synthesize:
self-guiding diffusion models

for probabilistic time series forecasting
M. Kollovieh et al.

TSDiff is an unconditional diffusion model for time se-
ries with S4 layers. To make it conditional, diffusion
guidance uses Bayes rule

∇xt log p(xt|c) = ∇xt log p(xt) +∇xt log p(c|xt)

which only requires an auxiliary classifier (for forecast-
ing, c = xobs).
The continuous ranked probability score (CRPS) is the
quantile (pinball) loss integrated from 0 to 1; it can be
used to evaluate probabilistic forecasts.

Score matching through the roof:
linear, nonlinear, and latent variables

causal discovery
F. Montagna et al.

The score function ∇ log p can be used to test for con-
ditional independence:

X ⊥⊥ Y |Z ⇐⇒ ∇2

∇X∇Y
log p(X,Y, Z) = 0.

This leads to a generalization of the PC and PCI algo-
rithms: AdaScore.

Sensitivity analyses
for unmeasured confounders

L. D’Agostino McGowan (2022)
Sensitivity analysis answers the question “how strong
should a missing confounder be to change the sign of
E
[
Y |do(T = 1)

]
?”

R implementation in tipr.

Learning domain-specific
causal discovery from time series

X. Wang and K. Kording
Supervised learning for causal discovery (for time se-
ries, with a transformer).

Granger causality detection with
Kolmogorov-Arnold networks

H. Lin et al.
Granger causality testing with KAN (stacked GAMs),
with a sparsity penalty for the first layer, fitted with
proximal gradient descent to ensure sparsity.

KAN: Kolmogorov-Arnold networks
Z. Liu et al.

Stacked GAMs.

KAN: Kolmorogov-Arnold networks
Z. Liu et al.

A KAN is a neural net with GAM layers: the weights
are replaced by learnable nonlinearities (splines of or-
der 3 on G intervals).

NeuralFactors: a novel factor learning
approach to generative modeling of equities

A. Gopal
Train a VAE to forecast future stock returns from cur-
rent stock characteristics

stockit 7−→ αit, βit, σit, νit

zt+1 ∼ T (µz, σz, νz)
ri,t+1 ∼ T (αit + β⊤it zt+1, σit, νit)

and use it for synthetic data, covariance estimation,
risk analysis, portfolio construction.
A T-SNE embedding of the βi reveals industrial sec-
tors.

Improving investment strategies with GNNs
G. Farmanfarmaian

Gated GCNs use GRU in the depth dimension.
GraphGPS alternates MPNN layers with global atten-
tion layers.
The turbulence index (of the market, at a given data) is
the Mahalanobis distance to the average return vector.

Article and book summaries by Vincent Zoonekynd 18/1044

The structure of the supply chain graph is not useful
in forecasting future (monthly) returns, but global in-
formation (e.g., from a virtual node) is.

A geometric approach
to asset allocation with investor views

A.V. Antonov et al. (2024)
Given a prior on the distribution of asset returns

x ∼ pprior = N(µ0, V0)

and investor views x ∼ pviews = N(µ1, V1), compute a
posterior distribution

Argmin
p=N(µ,V)

d(p, pprior) such that d(p, pview) ⩽ d0

or
Argmin
p=N(µ,V)

d(p, pprior) + λd(p, pview) ⩽ d0.

This readily generalizes to degenerate views.

Markowitz portfolio construction at seventy
S. Boyd et al. (2024)

Long list of constraints and penalties you may want
to add to your portfolio optimization (turnover, risk
budget, costs, etc.).
Replace the hard constraints with penalties to ensure
the problem is always feasible (but report constraint
violations); fine-tune the scale of the penalties on his-
torical data.
Use robust optimization to account for the uncertainty
in µ and Σ.
Some constraints are not convex:
– Integral number of shares (lot shares);
– Maximum number of assets;
– Minimum position size;
Do not write the target volatility constraint as w′Σw ⩽
σ2, but

∥∥L⊤w∥∥
2
⩽ σ, where Σ = L⊤L is the Choleski

decomposition. If Σ comes from a factor model, Σ =
FvF⊤ +∆, use

w′Σw =
∥∥`⊤w∥∥2

2
+
∥∥∥∆1/2w

∥∥∥2
2

=
∥∥∥(`⊤w,∆1/2w)

∥∥∥2
2

where v = `⊤`.

Constrained max drawdown: a fast and robust
portfolio optimization approach

A. Dorador
The Markowitz portfolio optimization problem (mini-
mizing risk with a minimum return constraint) can be
linearized: replace the risk with

∑
t

∣∣∣∣∣∑
i

(rit − r̄i)wi

∣∣∣∣∣

or
Min
t

∑
i

ritwi

(add 0 ⩽ w ⩽ 1
2 to avoid the 1-asset portfolio). To limit

the number of assets (e.g., ∀i wi 6= 0 =⇒ wi ⩽ 0.05),
use the big-M transform (with M = 0.5).

Can GANs learn the stylized facts
of financial time series

S. Kwon and Y. Lee
GANs struggle to reproduce simple statistical models
(Heston, Ornstein-Uhlenbeck, jump diffusion, etc.)

Time-series foundation model for value-at-risk
A. Goel et al. (2024)

Fine-tuned foundation time series models (e.g.
TimeFM) are competitive with conventional economet-
ric models (GARCH, GAS).

Automated regime detection
in multidimensional time series data

using sliced Wasserstein k-means clustering
Q. Luan and J. Hamp (2023)

Sliced Wasserstein k-means clustering on (the delay
emneddings of) time series.

Risk parity portfolios with skewness risk:
an application to factor investing

and alternative risk premia
B. Bruder et al. (2016)

Define risk parity portfolios using skewness as a risk
measure, and assuming asset returns follow a Gaussian
mixture distribution.

A tale of tail covariances (and diversified tails)
J. Rosensweig (2023)

The tail covariances are E[XY 2k−1] and E[X2k−1Y]
(higher moments depend more on the tail of the distri-
butions than their centers).

Multistage stochastic programs
with the entropic risk measure

O. Dowson et al.

Entγ [X] = γ−1 log E[eγX]

Industry classification based on supply chain
network information using GNNs

D. Wu et al.
Infer the industry of unlisted firms from the supply
chain network.

Article and book summaries by Vincent Zoonekynd 19/1044

The corporate chronicles
Wolfe research

How markets react to corporate events (40+ types:
earnings, clients, products, corporate structure, list-
ing, dividends, buybacks, legal, bankruptcy, regula-
tions, shareholde activism, etc.)

Factor crowding, tail dependence,
and dynamic allocation

Wolfe research (2021)
Define crowding as

Utilization(short leg)−Utilization(long leg).

More generally, regress utilization against factor quan-
tile, size quantile and volatility quantile; use the co-
efficients of the factor quantiles as crowding for each
quantile.

Measuring stock-level exposure to bitcoin
Wolfe research (2021)

Use the grayscale bitcoin trust (GBTC) instead of bit-
coin, to have market-like closing prices. Find stocks
exposed to bitcoin in two ways:
– Exposure: return ∼ market + industry + BTC, with
Huber loss, and elastic net penalty

– NLP: cryptocurrency related words in management
presentations and conference calls.

Text-based network industries
and endogenous product differentiation

G. Hoberg and G. Phillips (2009)
Take the product description from the 10K filings, only
keep nouns and proper nouns (they are capitalized 90%
of the time), discard geographic words, and words ap-
pearing in more than 25% of the documents; compute
pairwise cosine similarity to get each company’s neigh-
bours.
Either use this weighted graph to compute a fixed in-
dustry classification (apply some clustering algorithm
on data from 1997) or truncate the graph (to have the
same number of connected pairs as in the SIC-3 classi-
fication).

Deep generators on commodity markets;
application to deep hedging

N. Bourson et al.
Synthetic time series: TSGAN, CTOGAN, SIGGAN,
CEGEN.

Higher-order graph attention network
for stock selection with joint analysis

Y. Qiao et al.
Stack LSTM (stock characteristics), motif-based GAT
(from a graph built from sector, industry, Wiki data,
etc.), MLP.

Simple formulas for standard errors
that cluster by both firm and time

S.B. Thompson (2009)
In a panel regression yit = x′itβ + εit, if there is corre-
lation among i, t and (i, t) (up to lag L)

E[εitεis|xitxis] 6= 0

E[εitεjt|xitxjt] 6= 0

E[εitεjs|xitxjs] 6= 0 if |t− s| < L

then

Var β̂ = V̂I+V̂T,0−V̂W,0+
∑

1⩽ℓ⩽L
(VT,ℓ+V

′
T,ℓ)−

∑
1⩽ℓ⩽L

(V̂w,ℓ+V̂
′
w,ℓ)

where

V̂I = H−1
∑
i

ĉiĉ
′
iH
−1

V̂T,ℓ = H−1
∑
t

ŝtŝ
′
t+ℓH

−1

V̂w,ℓ +H−1
∑
it

ûitû
′
i,t+ℓH

−1

ûit = xitε̂it

ĉi =
∑
t

ûit

ŝt =
∑
i

ûit

ε̂it = yit − xitβ̂

H =
∑
it

xitx
′
it

Estimating standard errors in finance
panel data sets: comparing approaches

M.A. Petersen (2006)
Commonly used estimators of the standard error in
panel regressions are biased:
– Newey-West has a small bias;
– Fama-MacBeth only accounts for correlation be-
tween firms;

– Clustered standard errors only account for correla-
tion over time.

The square-and-add Markov chain
P. Diaconis et al.

Adding ±1 mod p is a random walk on Fp, which
converges (slowly) to a uniform distribution; Xn+1 =
2Xn ± 1 (mod p) converges faster; Xn+1 = X2

n ± 1 (in
Fq) looks trickier.

Article and book summaries by Vincent Zoonekynd 20/1044

Quantitative portfolio optimization:
advanced techniques and applications

M. Noguer i Alonso et al. (2025)
2. Classical portfolio optimization methods include
Markowitz, risk parity, and hierarchical risk parity.
3. The first chapters cover classical topics:
– Mean-variance optimization with or without a risk-
free asset; tangent portfolio;

– 2-fund separation theorem;
– CAPM;
– Mulifactor model (APT);
– Shrinkage or random matrix theory (RMT) to esti-
mate the varaince matrix;

– Returns estimation: historical, Black-Litterman,
Jackknife (bias correction), penalized regression,
bootstrap (for confidence intervals);

– Portfolio optimization with CVaR constraint
and Bayesian methods
– Black-Litterman;
– gfBm (geometric fractional Brownian motion): geo-
metric Brownian motion with the Wiener process re-
placed with a fractional Brownian motion WH , with
Hurst exponent H, defined as a Gaussian process
(GP) with covariance function

E[WH
t W

H
s] = 1

2

(
|t|2H + |s|2H − |t− s|2H

)
,

with a beta prior on the Hurst exponent H
– Metropolis-Hastings
– Kalman filter, particle filter
– Hierarchical Bayesian models
– Bayesian optimization, GP regression, GP classifica-
tion

5. Besides VaR and CVaR (technically, tail conditional
expectation, espected shortfall and conditional value at
risk are different, but they coincide if the distribution
of X is smooth and E[X−] <∞),

TCEα = E
[
Y |Y ⩾ VaRα(Y)

]
ESα =

1

1− α

∫ 1

α

VaRu(Y)du

CVaRα = inf
a∈R

a+
E
[
(Y − a)+

]
1− α

also consider
– Gini shortfall

ρ(Y) = E[Yα] + β E
[
|Y ′α − Y ′′α |

]
, β < 1

2

where Yα = Y |Y ⩽ VaRα and Y ′α and Y ′′α are iid
copies of Yα;

– Spectral risk measures,

−
∫ 1

0

qX(u)φ(u)du,

with φ ⩾ 0, φ−→ ,
∫
|φ| = 1, e.g., the exponential

spectral risk measure, with

φ(u) =
ke−ku

1− e−k
.

6. Factor models can be:
– Statistical (PCA-like);
– Macroeconomic (time series);
– cross-sectional (à la Fama-French).
This chapter also contains a proof of a (rigorous version
of) the fundamental law of portfolio management.
8. The optimal control problem

Find u

To maximize
∫ T

0

F (xt, ut, t)dt+ g(xT)

Such that ẋ = f(xt, ut, t), x(0) = x0

leads to the Hamilton-Jacobi-Bellman (HJB) equation

−∂V
∂t

= Max
u

F (x, u, t) +∇xV · f(x, u, t)

where V (xt, t) =
∫ T
t
Fdt+ g.

A viscosity solution V of F
(
x, V (x),∇V (x)

)
= 0,

x ∈ Ω is a function V satisfying
(i) For all φ ∈ C 1(Ω), if V − φ has a local maximum

at x0, then F
(
x0, V (x0),∇φ(x0)

)
⩽ 0;

(ii) For all φ ∈ C 1(Ω), if V − φ has a local minimum
at x0, then F

(
x0, V (x0),∇φ(x0)

)
⩾ 0.

The Merton problem looks for the proportion π of
wealth to invest in a risky asset (assuming a geomet-
ric Brownian motion, with drift, volatility and risk-free
rate known) to maximize expected CRRA utility

U(x) =
x1−γ

1− γ
dX = rXdt+ (µ− r)πXdt+ σπXdW ;

it is constant (it does not depend on time and wealth):

π∗ =
µ− r
γσ2

.

One can add transaction costs, or change the utility
function.
9. Applications of Markov decision processes (MDP)
include
– Multi-period portfolio optimization, with transac-
tion costs or regime switching;

– Option hedging.
To make MDPs aware of risk, one could alter the re-
ward; alternatively, one could direcly alter the Bellman
equation, either replacing the expected reward with
the expected utility of reward, or by adding a variance
penalty (risk-sensitive MDPs).
10. Optimal control and reinforcement learning (RL)
study the same problem (OC tends to use continuous
state and time, while RL prefers discrete time).

· · · st
agent−−−→ at

environment−−−−−−−−→ st+1, rt+1
agent−−−→ at+1 · · ·

A RL model keeps estimates of one or more of the fol-
lowing:

Article and book summaries by Vincent Zoonekynd 21/1044

– Policy π(a|s);
– Value function V (s);
– Action value function Q(s, a);
– Model p̂(s′|s, a), r̂(s, a, s′).
11. Physics-informed neural nets can fit a PDE Dfθ =
0 (Black-Scholes or, more generally, the Fokker-Planck
PDE of some SDE – the shape of the PDE is known,
but some of its parameters are not) to data:

Minimize
θ

Mean
i
‖fθ(xi, ti)−ui‖2+Mean

j
‖Dfθ(xj , tj)‖2 .

They can also be used for SDEs, dX = µdt+ σdW , by
minimizing(

dX

dt
− µ

)2

and
[
(Xt+∆t −Xt)

2 − σ2∆t
]2
;

one can also add jumps.
12. Build the MST or TMFG of the correlation matrix
of the asset returns, and invest in low-centrality assets
(on average), while avoiding investing in nearly assets.
13. Hierarchical risk parity can be applied to other
matrices, e.g.:
– Compute the sensitivity B of asset returns r to risk

factors f : r = Bf + ε (with a linear model, or a
sparse neural net – use automatic differentiation to
compute B);

– Compute the distances between the assets in sensi-
tivity space;

– Use that distance matrix to build a hierarchical risk
parity portfolio.

Portfolio optimization based on neural
network sensitivities from assets dynamics

respect common drivers
A.R. Dominguez

Relevance
M. Czasonis et al.

The OLS forecast can be written as a “relevance-
weighted” average of past observations,

ŷ = ȳ +
1

N − 1

N∑
i=1

rit(yi − ȳ)

where the relevance between observations is

rij = similarityij +
1
2 (informativenessi + informativenessj)

similarityij = − 1
2 (xi − xj)

′V −1(xi − xj)
informativenessi = (x1 − x̄)′V −1(xi − x̄).

If you only use the subset I ⊂ J1, NK of most relevant
observations, use

ŷ = ȳ +
λ2

|I| − 1

∑
i∈I

rit(yi − ȳ)

λ2 =
1

N + 1

N∑
i−1

r2it

/
1

|I|+ 1

∑
i∈I

r2it.

Relevance-based prediction: a transparent and
adaptive alternative to machine learning

M. Czasonis et al.
Relevance-based prediction

ŷ = x′newβ̂

= ȳ +
1

N − 1

∑
ri(yi − ȳ)

=
∑

wiyi

expresses OLS forecasts as (data-dependent) linear
combinations of observations

ri = sim(xnew, xi) +
1
2

[
info(xnew) + info(xi)

]
sim(x1, x2) = − 1

2 (x1 − x2)
′V −1(x1 − x2)

info(x) = (x− x̄)′V −1(x− x̄).

We can also recover R2 as

R2 =
1

N − 1

∑
info(xi)fiti

fiti = Cor(w, y)2

The virtue of transparency: how to maximize
the utility of data without overfitting

M. Czasonis et al. (2024)
Use partial sample regression (relevance-based predic-
tion on a subset of high-relevance observations) on a
grid, with various relevance thresholds r∗ (deciles) and
all possible subsets of variables; use the adjusted fit as
weights to combine the forecasts (as in BMA, Bayesian
model averaging)

ŷ =
∑

wiyi

fit = Cor(w, y)

asymmetry = 1
2

[
Cor(w+, y)− Cor(w−, y)

]2
adjusted fit = #variables× (fit+ asymmetry)

where w+ and w− are the weights if we use the obser-
vations with i ⩾ r∗ and ri < r∗ (so that w+ = w).

A transparent alternative to neural networks
with an application to predicting volatility

M. Czasonis et al. (2024)
Relevance grid numeric example: predicting volatility
from 14 variables (do not use all the subsets of predic-
tors, just 100 random ones).

Any deep ReLU network is shallow
M.J. Villani and N. Schoots

A ReLU network is a locally linear function on a par-
tition into polytopes. Any such function can be rep-
resented by a ReLU network, and 3 hidden layers are
enough. This transformation can be automated, and
the resulting network may be easier to interpret (Shap-
ley, etc.)

Article and book summaries by Vincent Zoonekynd 22/1044

Provably faster gradient descent via long steps
B. Grimmer

Gradient descent, with periodic long steps (which may
increase the loss function), speeds up convergence
(from 1/2T to 1/5T)

Can large language models
infer causation from correlation

Z. Jin et al.
Ask an LLM to discover and run the PC algorithm,
i.e., discover and use
– A ⊥⊥ B |C =⇒ no A–B edge;
– A ⊥⊥ B and A 6⊥⊥ B |C =⇒ A

B
C;

– All colliders can be found in that way.
(given all the relevant conditional independence state-
ments, with no noise). The performance is bad.

Full parameter fine-tuning for
large language models with limited resources

K. Lv et al.
To reduce memory usage when training large models,
replace the traditional
– Forward pass, keeping all the activations;
– Backward pass, keeping all the gradients;
– Parameter update
with
– Forward pass
– For each layer, starting from the last:
· Compute the gradients;
· Update the parameters;
· Free all the layers after the current one (they are
no longer needed).

Language models can solve computer tasks
G. Kim et al. (2023)

When asking an LLM to generate keyboard and mouse
actions, iterate:
– “Review your previous answer and find problems
with it”;

– “Based on the problems found, improve your an-
swer”.

[This is similar to LLM-based optimization.]

Deep symbolic regression for physics
guided by unit constraints: towards

the automated discovery of physical laws
W. Tenach et al. (2023)

Physical-unit-aware symbolic regression, with deep re-
inforcement learning, for low-noise data (0.1% to 10%):
dimensional analysis drastically reduces the search
space.

Language model cross-over:
variation through few-shot prompting

E. Leyerson et al.
CMA-ES on sentences, with an LLM to do the sam-
pling. For instance,
– For symbolic regression, try “here are 10 expressions
that approximate the dataset”, followed by 9 lines of
Python code;

– Stable diffusion prompts, to generate images (the ob-
jective function could be the dominating colour, or
anything that can be computed automatically);

– Modifing the sentiment of a sentence (without
changing its meaning);

– Reinforcement learning (generate Python code to
control a robot).

Inference-time intervention: eliciting
truthful answers from a language model

K. Li et al. (2023)
Find a “truthfulness” direction, for some attention
heads (with a probe, i.e., a classifier trained on the
network activations), and shift activations in that di-
rection at inference time.

System 2 attention
(is something you might need too)

J. Weston and S. Sukhbaatar
Instead of giving all the context to an LLM, proceed
in two steps:
– Ask the LLM to remove irrelevant parts of the con-
text;

– Answer the query.

Graph neural prompting
with large language models

Y Tian et al.
Combine knowledge graph and LLMs with soft
prompts.

KG

Text

GNN

emb
soft prompt

LLaMA-adapter: efficient fine-tuning of
language models with zero-init attention

R. Zhang et al.
Fine-tune LLMs by learning a prompt prefix, not as
tokens, but directly in the latent space, not in the first
layer, but in higher layers, with zero-initialized atten-
tion (multiply the attention to the added prefix with a
gating factor, initialized at zero).

Article and book summaries by Vincent Zoonekynd 23/1044

GPT is becoming a Turing machine:
here are some ways to program it

A. Jojic et al.
Simulate iterative behaviour (loops) by providing a
repetitive execution path as example.

Faithful chain-of-thought reasoning
Q. Lyu et al.

CoT is not faithful: the explanations need not en-
tail the conclusion. Instead, ask the LLM to gen-
erate the reasoning and the answer in a formal lan-
guage (Python, Datalog, PDDL, depending on the
task: math, relational inference, robot planning) and
verify it.

Scaling down to scale up:
a guide to parameter-efficient fine-tuning

V. Lialin et al.
There are many parameter efficient fine-tuning
(PEFT) methods:
– Adapters are small fully-connected layers (or MoE

layers), added (for instance) after transformers;
– Soft prompts are prompt prefixes added, not as input
tokens, but in latent space (either only for the input
layer, or for all layers);

– Selective methods only fine-tune some of the param-
eters, e.g., only the last layers, or only the biases, or
a sparse subset of parameters (subset of important
rows and columns, learned mask);

– Reparametrization methods alter the weights W ,
e.g., W ← W + AB′ (LoRA), W = W + A ⊗ B
or W =W + fastfood(A).

Those can be combined.

Fastfood – approximating kernel expansions
in loglinear time

Q. Le et al. (2013)
The fastfood transform

V =
1

σ
√
d
DHdGΠHdB

where
– Π ∈ {0, 1}d×d is a permutation matrix;

– H2 =

[
1 1
1 −1

]
, H2ℓ =

[
Hℓ Hℓ

Hℓ −Hℓ

]
;

– B is diagonal with ±1 entries;
– G is diagonal, Gaussian;
– D is diagonal;
approximates Gaussian matrices Z ∼ N(0n×d, σ

2).

Abusing images and sounds for indirect
instruction injection in multi-modal LLMs

E. Bagdasaryan et al.
With multimodal LLMs, prompt injection is no longer
limited to text: you can alter images or sounds to mod-
ify the LLM’s behaviour, as if you were altering the
prompt.

HuggingGPT: solving AI tasks with ChatGPT
and its friends in Hugging Face

Y. Shen et al.
Provide HuggingFace models as tools to ChatGPT.

WizardLM: empowering large language models
to follow complex instructions

C. Xu et al.
To generate instruction data, start with an initial set
of instructions (e.g., “1+1=?”) and ask the LLM to
generate new ones, in several directions: adding con-
straints, deepening, concretizing, increasing the reason-
ing steps, complicating the input, etc.

Removing RLHF protections in GPT-4
via fine-tuning
Q. Zhan et al.

Fine-tune with prompts violating the OpenAI ToS and
responses from an uncensored Llama2 70B.

Measurable Taylor’s theorem:
an elementary proof

G. Viggiano
In the Taylor expansion

f(x) =

k∑
j=0

f (j)(c)

j!
(x− c)j + fk+1(ξ)

(k + 1)!
(x− c)k+1

for f ∈ C k+1, ξ can be chosen to be a measurable
function of x continuous at c.

Machine learning
for partial differential equations

S.L. Brunton and J.N. Kutz (2023)
1. To learn a PDE from observational data, PDE-
FIND uses

ut = Θ(u, ux, uxx, uux, · · ·)ξ

where Θ is a library of candidate terms, e.g.,

divergence ∇ · u
vorticity ∇xu
shearing ux + vy
stretching ux − vy

and ξ is a sparse vector.
2. The Koopman operator of a discrete, nonlinear
finite-dimensional dynamical system

xt+1 = F (xt) xt ∈X

is the linear, infinite-dimensional transformation

K :

{
RX −→ RX

g 7−→ Kg = g ◦ F.

Article and book summaries by Vincent Zoonekynd 24/1044

It satisfies

(Kg)(xt) = g
(
F (xt)

)
= g(xt+1).

Learn K satisfying those constraints; diagonalize it,

Kφk = λkφk

(“intrinsinc measurement coordinates”) and reduce the
dimension. The non-linear system has become linear –
it is easy to solve.
3. If u is a solution of the linear PDE Lu = f , then it
can be computed from the Green’s function of the
PDE, i.e., the solution G of L†G(•, ξ) = δξ, where L†
is the adjoint of L and δξ is the Dirac delta, as follows:

u(x) = 〈δx, u〉
= 〈L†G(•, x), u〉
= 〈G(•, x), Lu〉
= 〈G(•, x), f〉

=

∫
G(ξ, x)f(ξ)dξ.

The PDE can also be solved by looking for an eigen-
decomposition of L:

Lφn = λnφn.

If a solution u can be represented as a sum of eigen-
functions (Sturm-Liouville theory), then

u =
∑ 〈φn, f〉

λn
φn.

Neural operators generalize that to nonlinear PDEs.

Numerically stable parallel
computation of (co)variance

R. Schubert and M. Gertz
Do not compute the variance of VarX = E[X2] −
E[X]2, but (Welford)

µk+1 =
k

k + 1
µk +

1

k + 1
xk+1

Sk+1 = Sk +
k

k + 1
(xk+1 − µk)2.

Fundamentals of causal inference with R
B.A. Brumback (2022)

Effect measures include:

p0 = E[Y (0)]

p1 = E[Y (1)]
p1

1− p1
,

p0
1− p0

odds

RD = p1 − p0 risk difference
RR = p1/p0 relative risk

RR∗ = 1− p0
1− p1

relative risk

OR =
p1

1− p1

/
p0

1− p0
odds ratio

NNT = 1/RD number needed to treat
AF = 1− 1/RR attributable fraction

CP =
p1 − p0
1− p0

= 1− 1/RR∗ causal power

Check the R packages: AER, boot, car, faraway, gee,
geepack, Matching, resample.

H

T Y

6. There are several ways of adjusting for a sufficient
confounder H.
– Outcome modeling (aka backdoor adjustment), us-
ing a model Y ∼ T +H,

E
[
Y (t)

]
=
∑
h

E
[
Y |T = t,H = h]P [H = h];

– Exposure modeling (aka inverse propensity score
weighting), using a model e : E[T |H] ∼ H,

E
[
Y (1)

]
= E

[
TY

e(H)

]
E
[
Y (0)

]
= E

[
(1− T)
1− e(H)

Y

]

– Doubly robust standardization

E
[
Y (1)

]
= E

[
T

e(H)
Y − T − e(H)

e(H)
Ŷ (H, 1)

]
E
[
Y (0)

]
= E

[
(1− T)
1− e(H)

Y +
T − e(H)

1− e(H)
Ŷ (H, 0)

]

– Matching;
– Difference-in-differences (DiD), under the “additive
equi-confounding” assumption

E
[
Y1(0)|A = 1

]
− E

[
Y1(0)|A = 0

]
=

E
[
Y0|A = 1

]
− E

[
Y0|A = 0

]
(the difference between the treated and the non-
treated, if we had not treated them, is the same as

Article and book summaries by Vincent Zoonekynd 25/1044

the difference between those two groups before treat-
ment),

ATT = E
[
Y1(1)− Y1(0)|A=1

]
= E

[
Y1(1)|A=1

]
− E

[
Y1(0)|A=1

]
= E[Y1|A=1]−(
E[Y0|A=1]− E[Y0|A=0] + E[Y1(0)|A=0]

)
= E[Y1 − Y0|A=1]− E[Y1 − Y0|A=0]

(T is time, A is the treatment).
– Front-door adjustment, given a surrogate marker of
the effect of T on Y (a mediator)

T YM

U

E
[
Y (t)

]
=
∑
m

P [M=m|T = t]
∑
t′

E[Y |M=m,T = t′]P [T = t′]

– Instrumental variables

TI Y

U

with principal stratification

I: treatment assignment
T : treatment
C: compliance
T (0) = T (1) = 1 always taker
T (0) = T (1) = 0 never taker
∀t A(t) = t complier
∀t A(t) = 1− t defier

assuming there are no defiers (monotonicity assump-
tion), we can compute the complier average causal
effect

CACE = E
[
Y (1)− Y (0)|C = 1]

=
E[Y |T = 1]− E[Y |T = 0]

P [A = 1|T = 1]− P [A = 1|T = 0]

– Instrumental variables with structural nested mean
models: assuming Y − Y (0) ⊥⊥ I|T , we can compute
the ATT (with the same formula).

The propensity score has many uses:
– Inverse propensity weighting;
– Backdoor adjustment: the propensity score is a suf-
ficient confounder,

∀t Y (t) ⊥⊥ T |H =⇒ ∀t Y (t) ⊥⊥ T | e(H);

– Stratification: computing the ATE in each quartile;
– Matching: easier to do on the propensity score e(H)

than on the original confounders H.
Adding precision variables reduces variance.

T Y

V
or

T

V

Y

U

Mediation analysis measures the importance of a me-
diator.

T YM

H3 H2

H1

Denote the potential outcome T (t,m).

TE = T (1,M(1))− Y (0,M(0)) total effect
CDE(m) = Y (1,m)− Y (0,m) controlled direct effect
CIE(m) = TE− CDE(m) controlled indirect effect
NDE = Y (1,M(0))− Y (0,M(0)) natural direct effect
NIE = Y (1,M(1))− Y (1,M(0)) natural indirect effect
TE = CDE+ CIE = NDE+NIE

PE =
CIE(m)

TE
PM =

NIE
TE

We can also have time-dependent confounders:

H YT1 T2

U

we want to know the optimal value of T1 and, given T1
and H, the optimal value of T2.

Conformal predictive portfolio selection
M. Kato (2024)

Consider a model forecasting future returns Yt from
asset features Xt:

Ŷt+1 = f̂t(Xt+1)

where f̂t is trained on (X1, Y1), (X2, Y), . . . , (Xt, Yt).
The returns of a portfolio with weights w are w′Yt;
the forecasted returns are w′Ŷt+1. Apply conformal
prediction (CP) to those portfolio return predictions:
for each w, we have a prediction interval

Ĉwt (Xt+1 = [rwt+1, r̄
w
t+1].

Find the portfolio weights minimizing some loss func-
tion of those intervals

w∗ = Argmin
w

`
(
Ĉwt (Xt+1)

)
.

For instance:
– Start with a finite set of portfolios E ;
– Compute their prediction intervals at level α:

[rw, r̄w];
– Consider a proportion β of portfolios, Ẽ ⊂ E , with
the highest rw (low risk, measured with the VaR);

– Among those, pick the porfolio with the highest r̄w.
To account for the time series lack of exchangeability,
use full conformal prediction, i.e., fit the model on aug-
mented datasets (add (Xt+1, y) for all possible values
of y) and on all permuted datasets

(Xσ(1), yσ(1)), . . . , (Xσ(t), yσ(t)), (Xσ(t+1), y)

Article and book summaries by Vincent Zoonekynd 26/1044

for all σ ∈ Sn. It is actually sufficient to consider only
shifts, i.e., permutations of the form

∃j ∈ J0, t− 1K ∀i ∈ J1, tK σ(i) ≡ i+ j (mod t)

Exact and robust conformal inference methods
for predictive machine learning

with dependent data
V. Chernozhukov et al.

Conformal prediction for time series: use full conformal
prediction and all shifts of the data.

Applied causal inference
powered by ML and AI

V. Chernozhukov et al. (2024)
1. To estimate β1 in Y = β1D + β2W + ε, we can use
“partialing out”, i.e.,
– Compute the residuals Ỹ and D̃ of Y ∼ W and
S ∼W ;

– Fit a linear model Ỹ = β1D̃ + η.

β1 = Argmin
b1

E(Ỹ − b1D̃)2

= E[D̃2]−1 E[D̃Ỹ]

2. The average treatment effect and the average pre-
dictive effect are usually distinct, because of selection
bias,

ATE = E
[
Y (1)− Y (0)

]
APE = E[Y |T = 1]− E[Y |T = 0]

but, for randomized control trials, they are equal.
Including covariates can help denoise the ATE estima-
tor.
RCTs are not always possible, for instance because of
externalities (positive, as for herd immunity after vac-
cination, or negative, e.g., the drop in college wage
premium as more people go to college).
3. The lasso assumes approximate sparsity

|βj | ⩽ Aj−a for a > 1/2.

Ridge regression assumes the coefficients are dense
(small, approximately of the same magnitude). Elas-
ticNet assumes the true model is sparse+dense.
The L1 penalty is λ

∑
|βi| only if the predictors are

normalized, E[X2
j] = 1 (if not, multiply λ by σ̂j).

Choose the penalty scale as

λ = 2 · c · σ̂
√
nz1−a/(2p) x = 1.1, a = 0.05

z1−a/(2p) ≈
√

2 log(2p/a).

The lasso sets β̂j to zero if the marginal benefit of mov-
ing it away from zero is smaller than the marginal in-
crease in penalty.

β̂j = 0 if
∣∣∣∣∣ ∂∂β̂j

∑
i

(
Yi − β̂′iXi

)2∣∣∣∣∣ < λ

The post-lasso uses the lasso to select the predictors,
and them fits and OLS regression (unbiased) on those
predictors. Cross-validate the whole post-lasso process,
not just the variable selection.
The lava method splits the predictors into sparse and
dense ones, with L1 and L2 penalties respectively.

Minimize
b=δ+ξ

∑
(Yi − b′Xi)

2 + λ1
∑

δ2i + λ2
∑
|ξi|

4. The double lasso uses partialing out to infer the
effect of T on Y , with high-dimensional confounders
W .

T

W

Y

– Compute the residuals T̃ , Ỹ of lasso (or post lasso,
or any lasso variant) models for T ∼W , Y ∼W ;

– Use a least squares regression Ỹ ∼ T̃ .
Using the lasso just once (on Y ∼ T + W , to select
the variables) is invalid – the double lasso may select
different variables for Y ∼W and T ∼W .
5. If we have all the confounders (unconfounded-
ness, aka conditional ignorability) CAPE = CATE and
E[CAPE] = E[CATE].
Conditioning requires you to model Y |T,X;

δ(x) = E
[
Y (1)− Y (0)|X = x

]
= E

[
Y |T = 1, X = x

]
−
[
Y |T = 0, X = x

]
δ = E

[
δ(X)

]
while propensity score weighting only requires you to
model T |X.

H =
1(T = 1)

P[Y = 1|X]
− 1(T = 0)

P[Y = 0|X]

δ(X) = E
[
Y H|X

]
In stratified RCT, the propensity score is known.
Propensity score weighting gives unbiased estimators,
but they may have high variance: also accounting for
the link between the onfounders X amd the outcome
Y can “denoise” the estimator.
The ATE can be computed by regressing Y ∼ H (clever
covariate).

φ(t, x) =
(−1)t

P
[
T = t|X = x

]
H = φ(T,X)

Y = βH + ε

ATE = E
[
β
(
φ(1, X)− φ(0, X)

)]
6. Do not condition on colliders.
7. The do operation can be represented graphically in
two ways, either by removing incoming edges

T

X

Y

do(T=t)⇝
t

X

Y

Article and book summaries by Vincent Zoonekynd 27/1044

or by splitting the node in two (SWIG, single world
intervention graph, of fix intervention).

T

X

Y

do(T=t)⇝
T t

X

Y

D-separation implies conditional independence, but the
converse requires faithfulness. While the model is al-
most surely faithful, the neighbourhood of unfaithful
models can be large, all the more so in high dimensions.
8. There are many valid adjustment strategies:
– Parents of the treatment T ;
– Propensity score;
– Parents of the outcome Y (excluding the descendants
of T);

– Parents(T) ∪ Parents(Y) \ Descendants(T) (robust
against perturbations o the DAG);

– Causes(T) ∩ Causes(Y)
– Backdoor creterion: a set S blocking all backdoor
(i.e., non-causal) paths, and containing no descen-
dant of T ;

– More generally, any set S such that Y ⊥⊥ T |S in the
SWIG.

T

X

Y
decreases variance

T

X

Y
increases variance

T

X

Y

U
increases bias

T Y

X

U1 U2

M bias

T Y

X

U1 U2

M bias, correlated factors

T Y

X

U1 U2

M bias, confounding

T Y

X

U1 U2

butterfly bias

T

X

YM
may decrease variance

T

Z

Y
collider bias

T

X

Y

U

collider stratification bias

T ZY recall bias

10. We want to compute
d

dt
E
[
Y |T = t,X = x

]

or
d

dt
E
[
Y |do(T = t), X = x

]
(which reduces to the first expression if X is a sufficient
conditioning set).
The partially linear regression model (PLM) is

Y = βT + g(X) + ε E[ε|T,X] = 0;

the confounders X have an additive, but nonlinear ef-
fect.
If Ỹ and T̃ are the residualized Y and T wrt X, then β
is the coefficient of the linear model Ỹ ∼ T̃ ; it is given
by the first order condition E

[
(Ỹ − βT̃)T̃

]
= 0.

β = E[T̃ 2]−1 E[T̃ Ỹ]

To precent overfitting, Double ML (DML) uses cross-
fitted residuals: for observations in fold k, Ỹ and T̃ are
estimated from models fitted without fold k
To reduce bias, if you have several models to predict T
and Y , use the best ones by looking at the CVMSE.

gun
ownership

country
characteristics

murders

suicides

X

T
Y

proxy for T

In the interactive regression model (IRM)

T

X

Y

T = m(X) + T̃ E[T̃ |X] = 0

Y = g(T,X) + ε E[ε|T,X] = 0

the treatment is not additively separable, but it is bi-
nary. To estimate the averate treatment effect

θ = E
[
g(1, X)− g(0, X)

]
.

combine regression adjustment

θ̂ = E
[
g(1, X)− g(0, X)

]
and propensity score reweighting

θ̂ = E[Y H]

H =
1(T = 1)

m(X)
− 1(T = 0)

1−m(X)

(Horvitz-Thompson transformation): this is the doubly
robust parametrization

θ̂ = E
[
g(1, X)− g(0, X) +

(
Y − g(T,X)

)
H
]
.

Propensity scores close to 0 or 1 are problematic: they
lead to very large values of H.

Firm
characteristics

Worker
characteristics

401k eligibility Financial
assets

hiring
applying

Article and book summaries by Vincent Zoonekynd 28/1044

More generally, double machine learning (DML)
uses a score function

M(θ, η) = E
[
ψ(W ; θ, η)

]
score

function

data

parameters
of interest

nuisance
parameters

M(θ, η0) = 0 ⇐⇒ θ = θ0

satisfying the Neyman orthogonality condition

∂M(θ0, η)

∂η

∣∣∣∣
η=η0

= 0

i.e., θ̂ is insensitive to small perturbations of η around
η0: we can use η̂ instead (from a good machine learn-
ing model: lasso, post-lasso, `1-penalized neural net,
random forest, or ensemble of these). For instance, for
the partially linear model (PLM)

ψ = (Ỹ − θT̃)T̃
=
[
Y − `(X)− θ

(
T −m(X)

)](
T −m(x)

)
η = (`,m) nuisance parameters;

to estimate the ATE in the IRM

ψ =
[
g(1, X)− g(0, X)

]
+H

[
Y − g(T,X)

]
− θ

H =
T

m(X)
− 1− T

1−m(X)

η = (g,m)

(and similar score functions for the GATE or the
ATET).
Use sample splitting: estimate η̂k on data without the
kth fold, then estimate θ̂ using η̂k for for observations
in the kth fold; you can also get an estimator of Var θ̂
and confidence intervals.
12a. We can measure the impact of a non-observed
confounder:

X A

T Y ;

γ
δ

α

first, remove the effect of the observed confounders X

Ã

T̃ Ỹ

γ δ

α

then, project Ỹ on T̃ to get

β = E[Ỹ D̃]/E[D̃2] = α+ φ

φ =
δγ

γ2 +Var[εT]
= omitted confounder bias.

Assumptions on the size of δ and γ give bounds on φ
(alternatively, you can make assumptions on the R2 of
those models).

12b. In presence of an instrumental variable (IV)

A

T YZ

X

β α

the effect α of the treatment T on the outcome Y is
identifiable

Ã

T̃ ỸZ̃ β α

e.g., with the score ψ = (Ỹ − αT̃)Z̃, leading to

α =
E[Ỹ Z̃]

E[T̃ Z̃]

(double machine learning is applicable) or directly, by
estimating βα and β:

βα =
E[Ỹ Z̃]

E[Z̃2]

β =
E[T̃ Z̃]

E[Z̃2]

βα =
βα

β
=

E[Ỹ Z̃]

E[T̃ Z̃]
.

(Some of this can be generalized to non-linear IV mod-
els.)
12c. Proxies of unobserved confounders can also help.

AQ S

T Y

X

ÃQ̃ S̃

T̃ Ỹ

13. With weak instruments

Z̃ T̃ Ỹ
α

α̂ =
E[Z̃Ỹ]

E[Z̃T̃]
, E[Z̃T̃] ≈ 0,

use Neyman’s statistic

C(α) =
E
[
(Ỹ − αT̃)Z̃

]2
Var
[
(Ỹ − αT̃)Z̃

] ∼ N(0, 1)2 = χ2(1)

to test for H0 : α = α0 and derive confidence inter-
vals. This generalizes to other score functions ψ; in
dimension m:

M(θ) = E
[
ψ(W, θ, η̂)

]
Ω(θ) = Var

[
ψ(W, θ, η̂)

]
C(θ) =M(θ)′Ω(θ)−1M(θ) ∼ χ2(m)

14. “Heterogeneous treatment effects” refers to the
CATE, as opposed to the ATE.

ATE = E[Y (1) − Y (0)]

CATE = E[Y (1) − Y (0)|X = x]

DML works out of the box:

Article and book summaries by Vincent Zoonekynd 29/1044

– For models µ̂ and ĝ to estimate

µ(Z) = P [T = 1|Z]
g(Y, Z) = E[Y |T,Z]

– Set

Ŷi = H1

(
Y1 − ĝk(Ti, Zi)

)
+ ĝk(1, Zi)− ĝk(0, Zi)

Hi =
T1

µ̂k(Zi)
− 1− Ti

1− µ̂k(Zi)

where ĝk, µ̂k are estimated without the fold contain-
ing i;

– Regress (linearly, if you want confidence intervals)
Ŷ ∼ X.

To get valid confidence intervals with random forests,
use honest forests:
– Use a separate sample to build the tree and to com-
pute the leaf estimates;

– Use smaller subsamples, without replacement, in-
stead of boostrap samples.

Alternatively, one can look for a policy π : X 7→ π(X) ∈
[0, 1] indicating who to treat, maximizing

V (π) = E
[
π(X)

(
Y (1) − Y (0)

]
.

This does not give a full picture of treatment hetero-
geneity: if the effects are all negative, π = 0. Instead,
one can look for a quantile-constrained optimal policy

Maximize
π

E
[
π(X)

(
Y (1) − Y (0)

]
st E

[
π(X)

]
= q.

15. Meta learning decomposes the CATE estimation
into a sequence of regression problems.
– S (single) learner

ĝ(T,Z) ≈ E[Y |T,Z]
τ̂(X) ≈ E

[
ĝ(1, Z)− ĝ(0, Z)|X

]
– T (two) learner

ĝ1(Z) ≈ E[Y |Z, T = 1]

ĝ0(Z) ≈ E[Y |Z, T = 0]

τ̂(X) ≈ E
[
ĝ1(Z)− ĝ0(Z)|X]

– DR (double robust)

ĝ1(Z) ≈ E[Y |Z, T = 1]

ĝ0(Z) ≈ E[Y |Z, T = 0]

µ̂(Z) ≈ E[T |Z]
ĝ(T,Z) = ĝ1(Z)T + ĝ0(Z)(1− T)

H =
T

µ̂(Z)
− 1− T

1− µ̂(Z)
Ŷ = H

(
Y − ĝ(T, Z)

)
+ ĝ1(Z)− ĝ0(Z)

τ̂(X) ≈ E[Ŷ |X]

– R-learner

ĥ(Z) ≈ E[Y |Z]
µ̂(Z) ≈ E[T |Z]

Y̌ = Y − ĥ(Z)
Ť = T − µ̂(Z)

τ̂(X) =
E[Ť 2 · Y̌/Ť |X]

E[Ť 2|X]

(τ̂ is a regression Y̌/Ť ∼ X, with weights Ť 2);
– X-learner

ĝ1(Z) ≈ E[Y |Z, T = 1]

ĝ0(Z) ≈ E[Y |Z, T = 0]

µ̂(Z) ≈ E[T |Z]

δ̂0(Z) ≈ E[g1(Z)− Y |Z, T = 0]

δ̂1(Z) ≈ E[g0(Z)− Y |Z, T = 1]

δ̂(Z) = δ1(Z)
(
1− µ̂(Z)

)
+ δ0(Z)µ̂(Z)

τ̂(X) ≈ E[δ̂(Z)|X].

Which model is best depends on the data (imbal-
ance, how complicated ĝ and µ̂ are, etc.) – try cross-
validation and ensembling.
The optimal (unconstrained) policy only looks at the
sign of the CATE

π∗(X) = 1τ(X)⩾0

but the misclassification cost is sample-dependent: it is
a cost-sensitive classification problem. You may need
to penalize the variance of the policy.
16. With longitudinal data, under the conditional
parallel trends assumption (parallel trends for T =
0 and T = 1, once we condition on Z), DML
(double/debiased machine learning) can compute the
ATET (DiD, difference in differences).
17. If the treatment is assigned (deterministically) by
some score T = 1X⩾c (as in regression discontinuity
design, RDD), observations close to the threshold are
comparable.

τRD = E
[
Y (1)− Y (0)|X = c]

= lim
x→c+

E[Y |X = x]− lim
x→c−

E[Y |X = x]

DAG-GNN: DAG structure learning
with graph neural networks

Y. Yu et al. (2019)
One can sample from the linear structural causal model
X = AX + Z, Z ∼ N(0, I) as

X = (I −A)−1Z, Z ∼ N(0, I).

This can be made nonlinear

X = f2
[
(I −A)−1f1(Z)

]
, Z ∼ N(o, I)

Article and book summaries by Vincent Zoonekynd 30/1044

and f1, f2 can be learned as an autoencoder

X = f2
[
(I −A)−1f1(Z)

]
decoder

Z = f4
[
(I −A)f2(Z)

]
encoder.

The paper uses a VAE.

Gradient-based neural DAG learning
S. Lachapelle et al.

NOTEARS solves the optimization problem

Minimize
U

Mean
U
‖X −XU‖2F +λ ‖U‖1 st Tr eU⊙U = d.

GraNDAG replaces the linear transformation X 7→
XU with a neural network, and uses the neural net-
work connectivity matrix

C =
∣∣∣W (L)

∣∣∣ ∣∣∣W (L−1)
∣∣∣ · · · ∣∣∣W (1)

∣∣∣
(where |W | is the element-wise absolute value) for the
constraint.

CAM: Causal additive models,
high-dimensional order search

and penalized regression
P. Pühlmann et al. (2014)

CAM is a nonlinear score-based causal discovery algo-
rithm which first looks for a topological order, and only
then, the causal graph:
– If there are too many variables (>30), select 10 can-
didate parents for each node with GAM boosting
(preliminary neighbourhood selection);

– Build a complete DAG with unpenalized GES,
adding the edge improving the sum of squared resid-
uals (of a GAM) the most;

– Prune the DAG by looking at the p-values of the
GAM terms (keep those with p < 10−3).

A* Lasso for learning a sparse Bayesian
network structure for continuous variables

J. Xiang and S. Kim
GES is a greedy algorithm to find the DAG with the
best score. Exhaustive search is unreasonable: there
are too many DAGs. But the score is decomposable:
the search can be formulated as a shortest path prob-
lem in the subset lattice (the value of a subset is the
best score attainable with the variables in that subset)
which can be solved with dynamic programming. The
lasso loss gives a consistent A* heuristic.

A graph autoencoder approach
to causal structure learning

I. Ng et al. (2019)
NOTEARS is linear:

Minimize
A

Mean
i
‖Xi −AXi‖2+λ ‖A‖1 st Tr eA⊙A = d;

cGAN generalizes it to nonlinear relations

Find A

To minimize Meani
∥∥Xi − g2

(
Ag1(Xi)

)∥∥2 + λ ‖A‖1
Such that Tr eA⊙A = d

where g1 and g2 are pointwise.

Masked gradient-based
causal structure learning

I. Ng et al. (2022)
MCSL combines NOTEARS and the Gumbel softmax
approach to learn the binary adjacency matrix of a
nonlinear structural model

Xi = gi(A•i �X) + ε1

Ordering-based causal discovery
with reinforcement learning

X. Wang et al.
Use reinforcement learning to find, not directly the
DAG, but just a topological order compatible with it
(there are much fewer orders than DAGs):
– State: embedding of the latest variable selected;
– Action: variable to add;
– Reward: BIC improvement;
– Encoder: Rn×d → Rn×d (self-attention);
– Decoder: LSTM;
– Optimization: policy gradient, actor critic.
Pretrain on simulated data; fine-tune on the data of
interest.

BIC =
∑
jk

log p
(
xjk|Pa(xjk); θj

)
− |θj |

2
logm

Causal discovery with reinforcement learning
S. Zhu et al.

Score-based causal discovery algorithms, such as GES,
are greedy – finding the best DAG is NP-hard. Rein-
forcement learning is an alternative to greedy, exhaus-
tive or random walk search:
– State: solution;
– Action: new (nearby) solution;
– Reward: score improvement.
(You may need to tweak the reward to help the sys-
tem learn, and you may want to look into variants of
reinforcement learning optimizing MaxtRt instead of∑
t δ
tRt – risk-seeking reinforcement learning.) Here,

the approach is slightly different:
– State: bootstrap sample;
– Action: DAG;
– Reward: score+ λ11DAG + λ2NOTEARS.

Article and book summaries by Vincent Zoonekynd 31/1044

Estimation of a structural vector
autoregression model using non-Gaussianity

A. Hyvärinen et al.
The VAR model is

Xt =

m∑
k=1

BkXt−k + εt.

The VAR-LiNGAM model also allows for contempo-
raneous effects, B0, provided they are acyclic and the
noise εt is non-Gaussian.

Xt =

m∑
k=0

BkXt−k + εt

The evolving causal structure
of equity risk factors

G. D’Acunto et al. (2021)
VAR-LiNGAM, on a moving window, on 11 equity risk
factors, with the lingam Python package.

Causal inference in R workshop
To estimate causation from observational data with a
known causal graph (no unmeasured confounders, and
∀x P [T = 1|X = x] 6= 0, 1), one can:
– Adjust for confounders;
– Fit a propensity model T ∼ X, and use inverse
propensity weights (IPW), e.g.,

wATE =
Ti
pi
− 1− Ti

1− pi

(there are other similar formulas for ATT, ATC,
ATM, ATO, etc.);

– Use the propensity score to match treated and con-
trol samples (MatchIt).

These are estimators of the same quantity. Use the
bootstrap for the confidence intervals (after reweight-
ing or matching, the observations are no longer inde-
pendent).
Correlation is sometimes causation (RCT, A/B test-
ing), but even in these cases, you may want to adjust
for the confounders or use IPW: the resulting estima-
tors are more efficient.

T

X

Y

To graphically assess the propensity scores:
– Histogram of the propensity scores for T = 0 and
T = 1, before and after reweighting;

– “Love plot”, i ∼ smdi, before and after reweight-
ing, where the standardized mean difference (smd)
for variable i is

smd =
x̄T=1 − x̄T=0√
s2T=1 + s2T=0

2

– ecdf, and weighted acdf.
G-computation (G-formula),
– Fits a model y ∼ T +X;
– Computes ÂTE = ŷ|T=1 − ŷ|T=0 (using the model

on copies of the data with T := 0, resp, T := 1, for
all the observations)

For continuous exposures, one can:
– Fit a linear model T ∼ X and convert the residuals
into probabilities

p = φ

(
T − T̂
σ̂

)
– or bin T into quantiles and use IPW.
Tipping point sensitivity analysis (tipr) quantifies un-
measured confoundedness.
To address selection bias, fit a probability of censoring
model, and use inverse probabilities as weights (multi-
ply the probabilities, if you have several such models).

New HIV drug

Symptoms

Underlying
HIV severity CD4 count

loss to followup

relation of interest

we condition
on a descendant of
a collider

Smoking

Reckless
behaviour

Broken
bones

Hospitalization

Glioma

we condition
on a collider

relation of interest

Causality-inspired models
for financial time series forecasting

D.C. Oliveira et al.
Use causal discovery algorithms such as
– SeqICP (invariant causal prediction for sequential
data): conditional on its parents X, the distribution
of Y does not depend on the environment or period,
Y ⊥⊥ time |X or

Yt|Xt, t ∈ Ii
d
= Yt|Xt, t ∈ I2

(but it is overly conservative and tends to return
PaY = ∅);

– Granger causality;
– VAR-LiNGAM;
– Dynotears;
– PCMCI (too slow – their small example would re-
quire two weeks of computations).

Article and book summaries by Vincent Zoonekynd 32/1044

LiNGAM and Dynotears work better at forecasting
monthly S&P 500 returns from macroeconomic vari-
ables (FRED-MD, a dataset of 107 macroeconomic
variables, with intages, and recommended transforma-
tions to make them stationary, updated monthly).

FRED-MD: a monthly database
for macroeconomic research

M.W. McCracken and S. Ng (2015)
Bry-Boschan on cumsum(PCi), for i = 1, 2, 3, 4, to de-
tect regime changes.

Enhancing causal discovery in financial
networks with piecewise quantile regression

C. Cornell et al.
VAR model, with pinball loss, to forecast the 10%,
50%, 90% quantiles, using piecewise linear transfor-
mations of the predictors, with knots at the 10% and
90% quantiles to detect tail interactions.

semopy: a Python package
for structural equation modeling

G. Meschcheryakov and A.A. Igolkina (2019)
A structural equation model (SEM) is a model of
the form

η = Bη + ε latent
y = Λη + δ observed

where the sparsity structure of B and Λ (and of Var ε,
Var δ) is known, e.g.,

y1

y2

y3

y4

y5

y6

η1

η2

η3

η4

x1

x2

x3 x4 x5

It can be estimated by comparing the sample variance
matrix of the observed variables, S = Var y, with that
of the model, Σθ, e.g.,

`(θ) = ‖Σθ − S‖2F
`(θ) =

∥∥I − ΣθS
−1∥∥2

F

`(θ) = tr(SΣ−1θ) + log detΣθ (Wishart).

semopy 2: a structural equation modeling
package with random effects in Python

G. Mosccheryakov et al. (2021)
A structural equation model (SEM) is a linear model

x = Ax+ ε

where some of the variables are not observed (latent)
and the sparsity structure of A and Var ε is known.
There are special cases:
– A path analysis (PA) model only has observed vari-
ables

x1 x2 x3

x4

x5

x6

x7

– A confirmatory factor analysis (CFA) model has no
relations between the latent variables and between
observed variables, just relations from latent to ob-
served variables, and covariance between latent vari-
ables

y1 y2 y3 y4 y5 y6 y7

η1 η2

Historically, SEMs distinguished between:
– Observed variables (non-leaves: xi);
– Indicators (leaves: yi).
Exploratory factor analysis (EFA) looks for a latent
structure explaining the observed variables. A heuris-
tic approach could be:
– Compute the correlations (ρij)1⩽i,j⩽m and the cor-
responding distances Dij = 1− |ρij |;

– Run the OPTICS clustering algorithm, with
min_cluster_size=2, to estimate the number k of
latent factors;

– Compute a sparse PCA (SPCA) and keep the first k
components;

– Refine the CFA by fitting the SEM and dropping the
coefficients with a large p-value.

Random forests for change point detection
M. Londschien et al. (2023)

To find a breakpoint, compare the performance of clas-
sification models predicting, from xt, if t ∈ [t0, τ] or
t ∈ [τ, t1]: the best performance is obtained if τ is
a breakpoint. This can be generalized to several (an
unknown number of) breakpoints, and efficiently ap-
proximated.
Alternatives include:
– E-divisive (ECP), which finds breakpoints minimiz-
ing the energy distance between segments; the en-
ergy distance between two random variables can be
computed from their characteristic functions:

Ea(X,Y) =

∫
Rd

|φX(t)− φY (t)|w(t)dt

w(t) ∝ |t|−d−α

α = 2.

Article and book summaries by Vincent Zoonekynd 33/1044

A kernel multiple change-point algorithm
via model selection

S. Arlot et al. (2012)
Kernel change point methods (KCP) minimize (with
dynamic programming) the kernel least squares crite-
rion

R(τ) =
1

n

n∑
i=1

k(xi, xi)

− 1

n

∑
ℓ

1

τℓ − τℓ−1

∑
i,j∈Jτℓ−1+1,τℓK

k(xi, xj)

with a penalty for the number D of segments

1

n

[
c1 log

(
n− 1

D − 1

)
+ c2D

]
.

The loss can also be written

R(τ) =
1

n
‖Φ(x)−ΠτΦ(x)‖2

where

k(x, y) =
〈
Φ(x),Φ(y)

〉
Φ :

{
X −→ H
x 7−→ k(x, •)

RKHS

x = (x1, . . . , xn)

Φ(x) =
(
Φ(x1), . . . ,Φ(xn)

)
Fτ is the subset of H n of locally constant sequences
with locally constant pattern (coarser than) τ ; Πτ is
the orthogonal projection in Fτ .
For the d-dimensional simplex (e.g., if xi is a histogram
– histogram features are often used for image or audio
data), use the χ2 kernel

k(x, y) = exp− 1

h · d

d∑
i=1

(xi − xj)2

xi + xj

(for some bandwidth h > 0).

Recommendation with generative models
Y. Deldjoo et al. (2024)

Classical RecSys data contains user, item, timestamp,
feedback (explicit (rating) or implicit (click)).
Matrix factorization models the feedback as

Rui = γu · γi;

one can add offset and bias

Rui = α+ βu + βi + γu · γi

or include the previous item j

Ruij = γuγi + βnext
i βprevious

j .

User-free models only look at the similarity with items
in the user’s history

Rui = Mean
j∈u\{i}

γi · γhistory
j .

Generative models produce a probabilistic forecast:
there is not a single output, but a probability distribu-
tion of outputs, from which we can sample.
A user’s history is a sequence of tokens: we can use
LLM-like models to forecast the next token.
RecSys can generate sets (or sequences) of items in-
stead of isolated items: the items should be comple-
mentary or substitutable (ex: outfits).
GANs can improve traditional RecSys training by pro-
viding hard negatives (instead of uniformly sampled
ones). But GANs can also be used to model normal
users, and create hard-to-detect fake profiles.
Generative models also provide data augmentation.
Traditional RecSys, when followed by LLM-based
reranking, can be seen as the retrieval part of a RAG
system.
The data can also contain text (user profiles, item re-
views) and metadata.
Conversational RecSys provide textual explanations
(personalized reviews), and allow for interactive query
refinement – but also personalized content and adver-
tising.

A contextual bandit approach to personalized
news article recommendation

L. Li et al. (2010)
The UCB algorithm, for multi-arm bandits (MAB),
chooses the arm i maximizing

UCBi = µ̂i +

√
2 log t

ni
.

For contextual bandits, use

LinUCBi = x′iθ̂i + α

√
x′iA

−1
i xi

Ai = X ′iXi + I

θ̂i = (X ′iXi + I)−1X ′ibi (ridge)
xi: feature vector
Xi: design matrix
bi: response vector

This can be generalized to hybrid models (some pa-
rameters are shared among the arms).

Thompson sampling
for contextual bandits with linear payoffs

S. Agrawal and N. Goyal (2013)
Thompson sampling can be generalized to contextual
MABs:
– Compute the posterior distribution of θi, for each i:
N(θ̂i, α

2A−1);
– Sample from them;
– Choose the arm i maximizing x′iθi.
LinTS is similar to LinUCB: the former picks the arm
maximizing a random sample, the latter an arm max-
imizing an upper bound.

Article and book summaries by Vincent Zoonekynd 34/1044

Value-difference based exploration: adaptive
control between epsilon-greedy and softmax

M. Tokic and G. Palm
The softmax MAB algorithm is a modification of ε-
greedy paying attention to the difference in rewards:
it picks the arm i with probability pi ∝ exp(µ̂i/τ).

Algorithms for the multi-armed bandit problem
V. Kuleshov and D. Precup (2009)

The pursuit MAB algorithm is

p(t+ 1) = p(t) + β
[
ei − p(t)

]
where ei is the basis vector for

i = Argmax
i

µ̂i(t).

The Boltzman (softmax) algorithm uses

pi(t+ 1) ∝ exp µ̂i(t)/τ.

The reinforcement comparison method uses “prefer-
ences” π instead of average rewards µ̂:

pi(t+ 1) ∝ expπi(t)

where πi(t+1) = πi(t)+β
[
r(t)− r̄(t)

]
if arm i is chosen

at time t and gives reward r(t).
There are many variants of UCB:

j(t) = Argmax
i

µ̂i +

√
2 log t

ni

j(t) = Argmax
i

µ̂i +

√
log t

ni
Min

{
1

4
, Vi

}

Vi(t) = σ̂i(t) +

√
2 log t

ni(t)

Introduction
to conformal prediction with Python

C. Molnar (2023)
6. Conformal prediction (CP) works as follows:
– Split the data into training and calibration (and test,
and validation) sets;

– Train the model on the training set
– Compute a non-conformity score for all observations
in the calibration set (any measure of how unusual
y is, given x), e.g., 1 − p̂(y|x), for a classification
model;

– Compute its 1 − α quantile q̂ (with a finite-sample
adjustment);

– Given new data, x, return all the y’s whose non-
conformity score is below q̂ as prediction set.

(This is inductive CP; transductive CP uses the whole
dataset, but needs to refit the model many times). For
the splits, you can use a single split, cross-validation
(CV) or leave-out-one (LOO).
7. For classification:

– The score method uses the probabilities of the true
classes to compute the conformity scores: si =
1 − p̂(xi)yi (where p̂(xi) is the vector of predicted
probabilities); it is not adaptive: it only guarantees
marginal coverage, not class-conditional coverage –
the coverage is 1− α only on average, but it can be
much higher/lower for easier/harder classes.

– Adaptive prediction sets (APS) use cummulated
probabilities, from the largest down to the true class;
at test time, compute the cummulated sorted prob-
abilities, and return the classes until the threshold
(you can include the label just above the threshold,
or not (but this can lead to empty prediction sets),
or (better) decide at random);

– Top-k uses the rank of the true class; the prediction
sets all have the same size;

– Regularized APS (RAPS) penalizes the inclusion of
too many classes;

– Group-balanced conformal prediction applies confor-
mal prediction separately for each group;

– Class-conditional APS uses group-balanced CP for
the classes to predict: since they are not known at
test time, it computes the CP for all classes, and
returns the union of the forecasts.

8. For regression:
– s(y, x) =

∣∣y − f̂(x)∣∣ gives prediction intervals all of
the same size (this is fine if the data is homoskedas-
tic);

– Locally adaptive CP

s(y, x) =

∣∣y − f̂(x)∣∣
σ̂(x)

accounts for heteroskedasticity (but can output ex-
cessively large intervals if the data is homoskedastic).

Instead of conformalizing (mean) regression, we can
conformalize quantile regression

s(y, x) = Max
{
f̂low(x)− y, y − f̂up(x)

}
(the distance to the nearest interval boundary, with a
negative sign if inside).
9. Conformal prediction can be generalized to time
series (EnbPI, in spite of non-exchangeability), multi-
label classification, outlier detection (CP provides ac-
curate control of the false positive rate).
Implementation: mapie; also check crepes, nixtla.

Recipe for a general, powerful,
scalable graph transformer

L. Rampášek et al.
GraphGPS combines (adds) MPNN layers (GIN with
edge features, gated GCN, GRU in the depth direction,
PNA) and global attention (transformer, performer,
big bird). Input features are preprocessed by an MLP
or some variable-input-size network (DeepNet, Sign-
Net).

Article and book summaries by Vincent Zoonekynd 35/1044

Design space for graph neural networks
J. You et al.

GraphGym is (was?) a descriptive Python library for
GNNs, built on top of PyG, to explore the design space
of GNNs:
– BatchNorm (yes/no);
– Dropout (0, 0.3, 0.6);
– Activaion (ReLU, PReLU, Swish);
– Aggregation (mean, max, sum);
– Connectivity (stack, skip-sum, skip-cat);
– Pre-processig (number of MLP layers);
– Post-processing;
– Message passing (number of layers);
– Batch size;
– Learning rate;
– Optimizer (SGD, Adam);
– Training epochs.

The curse of recursion: training on
generated data makes models forget

O. Shumailov et al.
Training on generated data causes model collapse:
– At each generation, since the data is finite, there is
a nonzero probability that some of the data distri-
bution will be lost; the tails will disappear, and the
distribution will progressively drift;

– Since the model is only an approximation (it does
not perfectly reproduce the target distribution), the
generated data will follow a slightly different distri-
bution, for instance, assigning a nonzero probability
outside the support of the target distribution.

Differentiable Euler characteristic transforms
for shape classification
E. Röell and B. Rieck

The Euler characteristic of a simplicial complex K is

χ(K) =
∑
n⩾0

(−1)k |Kn|

where |Kn| is the number of n-simplices. If the 0-
simplices σ ∈ K0 have coordinates xσ ∈ Rn, a function
f : Rn → R defines a function f : K → R by

f̃(σ) = xσ for 0-simplices
f̃(σ) = Max

τ⊂σ
f̃(τ) for higher-dimensional simplices

and a filtration Kr = f̃−1
(
(−∞, r]

)
.

The Euler characteristic transform (ECT) of K is the
function{

Sn−1 ×R −→ Z

(ξ, h) 7−→ χ
(
f̃−1ξ

(
(−∞, r]

))
where fξ = 〈•, ξ〉.
It can be written as a sum of step functions

ECT(ξ, h) =
∑
k

(−1)k
∑
σk

1[
f̃ξ(σk),∞

)(h).

To make it differentiable, replace the step functions
with sigmoids.

Beyond word frequency: bursts, lulls, and
scaling in the empirical distribution of words

E. G. Altmann et al.
Words have different recurrence time distributions;
they can be modeled with a “stretched exponential”
(aka Weibul)

Fβ(τ) = exp(−aτβ).

This can be explained with a renewal process: the prob-
ability of using a word decays as a power law since the
last use of that word.

Retrieve, merge, predict:
augmenting tables with data lakes

(experiment, analysis and benchmark paper)
R. Cappuzzo et al.

Given a table and a data lake (a large set of database
tables), identify joinable tables, and join them, greed-
ily, for best performance in some downstream task.

Neural factors: a novel factor learning
approach to generative modeling of equities

A. Gopal
An autoencoder-based factor model can generate syn-
thetic data:
– A neural network converts stock characteristics (fi-
nancial statements, a few reference indices) into fac-
tor exposures βijt and the parameters of a Student
distribution αit, σit, νit;

– The factors follow a Gaussian distribution zt+1 ∼
N(0, I);

– The stock returns are then

ri,t+1 ∼ Tνit(αit + β⊤i•tzt+1, σit).

A new measure of risk using Fourier analysis
M. Grabinski and G. Klinkova (2024)

Use the Fourier transform (on detrended log-prices) to
decompose price changes into contributions of different
frequencies: if they mostly come from high frequencies,
this is speculation.

Modeling arterial and venous flows in
Japanese supply chain: a network-based

approach to the circular economy
H. Goto

The supply chain has a bow-tie structure (the largest
strongly connected component, its upstream, its down-
stream, the rest of the giant weakly connected compo-
nent, and the rest). Take an industry classification,
assume it is ordered (sic), and label flows as “arterial”
or “venous”, depending on their direction. [Instead, I
would take the order maximizing arterial flow.]

Article and book summaries by Vincent Zoonekynd 36/1044

Analysis of cross-shareholding network
Japanese listed companies
S. Tanabe and T. Ohnishi

Evolution of the bow-tie structure.

Dynamical analysis of financial stock network:
improving forecasting using network properties

I. Achitouv
Forecast hourly or daily returns of S&P 500 stocks from
node or graph features:
– Centralities (degree, closeness, betweenness, eigen-
value);

– Clustering coefficient;
– Modularity;
– Largest component;
– Resilience (size of the largest component after re-
moving a fraction of the nodes).

Build the graph by thresholding the correlation matrix;
choose the smallest threshold that makes the degree
follow a power law distribution (increase the threshold
until the degree istribution becomes conves: ρ = 0.9).

Regime-aware factor allocation
with optimal feature selection

T. Bosancic et al.
The discrete jump model is

Minimize
θ1,...,θK∈RD

s∈J1,KKT
∑
t

`(yt, θst) + λ
∑

1st−1=st .

The continuous jump model replaces states s ∈ J1,KK
with probabilities s ∈ ∆K .

Minimize
θ1,...,θK∈RD

s1,...,sT∈∆K

∑
t

L(yt,Θ, st) +
λ

4

∑
t

‖st−1 − st‖21

where L(yt,Θ, st) =
∑
k

stk`(yy, θk)

Graph learning
(ICML 2024 Tutorial)

Early graph learning methods relied on node embed-
dings: DeepWalk, Node2Vec (a biased random walk,
between depth-first search and breadth-first search).
The first graph neural nets relied on message passing
(MPNN), which can be written with matrix multipli-
cations (GCN), and augmented with a gating mecha-
nism (GAT, graph attention); if there are high-degree
nodes, use sampling (GraphSAGE samples the 2-hop
neighbourhoods)
Spectral graph theory studies the graph Laplacian. The
first eigenvectors (“eigenfunctions”) minimize the vari-
ability of the signal. The Cheeger constant is the min-
imum (normalized) cut (NP hard)

hG = Min
S⊂V

|∂S|
Min

{
vol(S), vol(S̄)

}

(the volume is the sum of the degrees); it is related to
the second eigenvalue

λ2
2
⩽ hG ⩽

√
2λ2.

The commute time CT (of a node u) is the expected
number of steps needed for a random walk starting at
u to come back to u. The effective resistance is

Ruv =
CTuv
vol(G) .

A graph transformer is a transformer (not a GNN)
whose positional encoding comes from a graph:
– Laplacian eigenvectors (which generalize sines and
cosines);

– Learned positional embeddings (LPE), i.e., learned
transformations of λ1 φij

...
...

λm φmj

– Centrality encoding hi = xi + z−

deg−(vi)
+ z+

deg+(vi)
;

– Spacial encoding.
The attention matrix can be sparse: exphormer
uses the original graph, an expander graph, and
a global sink (not unlike BigBird). GraphGPS
combines MPNN layers, attention layers, and posi-
tional/structural encodings.
The expressivity of GNNs is limited by the WL iso-
morphism test – but 1-WL cannot distinguish d-regular
graphs... To enhance expressivity, one can:
– Add features: random features, substructures, affin-
ity measures (effective resistance, hitting time, etc.);

– Modulate message passing (e.g., with gating, in
GAT);

– Modify the graph, e.g., higher-order GNNs for mes-
sage passing on k-tuples of nodes instead of nodes.

The Dirichlet energy measures oversmoothing

E(H) = tr(H ′LH) =
1

2

∑
(u,v)∈E

∥∥∥∥ hu√
du
− hv√

dv

∥∥∥∥2

(the Rayleigh coefficient, used to define the eigenval-
ues, is a normalized Dirichlet energy). The rate of con-
vergence of a random walk xt = P tx0, resp. the heat
kernel, xt = e−tL to the stationary (resp. uniform)
distribution is λ2: convergence is faster if the total ef-
fective resistance is low. To limit oversmoothing:
– Normalize the node embeddings;
– Sparsify the graph (this reduces the spectral gap);
– Regularize the weight matrix;
– Add skip connections;
– Change the GNN dynamics (GraphSAGE, GAT,
PIGNN, AdaptiveGNN).

Article and book summaries by Vincent Zoonekynd 37/1044

Oversquashing (the exponential growth of the percep-
tive field) can be measured by the Cheeger constant,
the effective resistance, the curvature, the Hessian.

sensitivity(u→ v) =

∥∥∥∥∥∂h(r)v∂h
(0)
u

∥∥∥∥∥
The symmetric Jacobian obstruction(

1

dv

∂h
(m)
v

∂h
(k)
v

− 1√
dudv

∂h
(m)
v

∂h
(k)
u

)
+(

1

du

∂h
(m)
u

∂h
(k)
u

− 1√
dvdu

∂h
(m)
u

∂h
(k)
v

)

is related to the (total) effective resistance.
Solutions include:
– Graph rewiring: spacial (SDRF, curvature) or spec-
tral (DiffWire);

– Virtual nodes;
– Advanced architectures: AdaptiveGNN.
There is a trade-off between oversmoothing (OSM) and
oversquashing (OSQ): high R, low λ2 gives more OSQ,
low R, high λ2 gives more OSM.

Data-efficient machine learning
(ICML 2024 Tutorial)

Data-efficient ML looks for a small subset of the train-
ing data, such that a model trained on that subset has
a generalization error similar to that of a model trained
on the whole data.

Maximize
S⊂V

F (S) st |S| ⩽ k

1. For supervised learning, look for a subset with sim-
ilar gradients. For a single point w ∈ W , take the
medoids of {∇fi(w), i ∈ V }, weighted with the clus-
ter sizes. It is a submodular problem (diminishing re-
turns): it can be solved (approximately) with a greedy
algorithm

F (D∗) =
∑
i∈V

Min
j∈S∗

‖∇fi(w)−∇fj(w)‖ .

This depends on w, but we can take the worst case:

F (S∗) ⩽
∑
i∈V

Min
j∈S∗

Max
w∈W

‖∇fi(w)−∇fj(w)‖︸ ︷︷ ︸
dij

.

If f is convex,

dij ⩽ const · ‖xi − xj‖

where x are the feature vectors: it suffices to cluster
the features. If f is not convex (e.g., a neural net), we
still expect that

dij ⩽ const ·
∥∥∥∇z(L)

i
fi(w)−∇z(L)

j
fj(w)

∥∥∥ .

(gradients wrt the last layer): for classification, we
would cluster the log-probabilities; since they depend
on w, we need to update the clusters from time to time.
To decide when to update the coresets, model the loss
as a piecewise convex function, and change the core-
set when the model moves to a different convex re-
gion: check if the current convex approximation re-
mains valid.

˜̀(δ) = `(w) + gsδ +
1
2δ
⊤Hsδ∣∣˜̀(δ)− `(w + δ)

∣∣
`(w + δ)

⩽ τ

To ensure SGD gets unbiased gradient estimates, select
multiple random subsets of size r � 1, and form a core-
set (minibatch) of size m for each of them; check the
convex approximation on the union of the minibatches.
As training progresses, this selects increasingly difficult
examples.
There are simple heuristics, looking for difficult-to-
learn examples, but they are affected by noisy labels:
– Drop unforgettable samples (a “forgetting event” oc-
curs when a sample, which was correctly classified
earlier in training, becomes incorrectly classified);

– Train several models, for only 20 epochs, and keep
samples with the largest dLoss/dLastLayer;

– Cartography the dataset into:
· High confidence, low variability: easy – discard;
· Low confidence, low variability: potentially misla-
beled – discard;
· High variability (ambiguous), i.e., the true class
probability fluctuates during training – keep.

Those heuristics allow the removal of up to 30% of the
data; if you want to remove more, keep the easy exam-
ples instead of the hard ones. Those heuristics do not
take similarity into account; submodular optimization
does, and yields a curriculum: it starts with easy exam-
ples (but not the easiest), and progressively increases
the difficulty (measured by “forgettability”).
2. For self-supervised contrastive learning, this is trick-
ier: the loss

`ij = − log
exp sim(zi, zj)/τ∑

k ̸=i
exp sim(zi, zk)/τ

(and its gradient) for an observation depends on all the
observations – it tries to
– Align augmentations of the same example (“align-
ment”);

– Push apart augmentations of different examples (or
examples from different classes) (“divergence”).

The coreset should preserve alignment and divergence.
Define the expected alignment distance as

dij = E
x∈A(xi)
x′∈A(xj)

‖x− x′‖

from a cheap proxy model.

Article and book summaries by Vincent Zoonekynd 38/1044

To preserve alignment, ensure that, for each discarded
example, there is another with similar augmentations

∀u ∈ Vk \ Sk Min
j∈Sk

dij ⩽ δ,

i.e., we select a diverse set of examples in each latent
class.
The latent classes are, for instance, k-means clusters on
a cheap proxy model, or a foundational model (CLIP).
To preserve divergence, find a subset preserving the
centers of the latent classes (i.e., select the most cen-
tral examples in each latent class)

Minimize
S⊂V
|S|⩽r

∑
i∈Vk\Sk

∑
j∈Sk

dij .

(This is a submodular optimization problem.) Con-
trary to supervised learning, where we were discarding
easy examples and keeping those near decision bound-
aries, for SLL, we train on easy examples (cluster cen-
ters).
3a. Multimodal foundational models (CLIP, con-
trastive language-image pretraining)

text

image

enc

enc

are similar: they pull together matching image-caption
pairs, and push apart other pairs, but they are even
more data-hungry (400 times what supervised learning
requires, versus 10 times).
For diversity (alignment of modalities), find a subset
preserving the cross-covariance in each latent class

C =
1

|V |
∑
i∈V

(xivision − µvision)(x
i
language − µlanguage).

For centrality, preserve the latent class centers. De-
fine the latent classes with the cross-modality similar-
ity (from a proxy model)

sim(caption1, image2) + sim(caption2, image1).

The corresponding coresets can be

Maximize
Sk⊂Vk

∑
i∈Sk

csim(i
text

, i
image

)

Maximize
Sk⊂Vk

∑
j∈Sk

∑
i∈Vk

csim(i, j)

Maximize
Sk⊂Vk

∑
i∈Vk
j∈Sk

csim(i, j) +
∑
i∈Sk

csim(i, i)

(these are non-monotone submodular optimization
problems).
Heuristics include:

– Deduplication: cluster the CLIP embeddings, dis-
card samples when the similarity is above 1− ε;

– Focus on examples that are learnable but not easy
to learn

CLIPfully
trained

(i, i)− CLIPpartially
trained

(i, i)

(on a clean dataset, those heuristics do not improve on
a random subset).
3b. For LLMs, we cannot match the gradients: they
are too high-dimensional, even for the last layer, even
for LoRA (for fine-tuning). If the curvature is small
(during fine-tuning, it is), examples with similar loss
trajectories (similar values for a few points – with a
smaller model) have similar gradients: can can sample
from loss-trajectory clusters.
If you want to actually match the gradients:
– Use the V projection (from the transformer’s Q, K,
V matrices) at the last layer;

– Use zeroth order gradients (gradients as an expecta-
tion)

– Sparsify (keep 1000 or 2000 dimensions with the
largest magnitude).

Heuristics include:
– Perplexity (prefer examples with average perplex-
ity);

– Memorization ranking;
– Deduplication;
– Data selection with another LLM;
– Centroids of hidden states;
– Influence functions (if there is a target class);
– Data models.

Neural operator learning
(ICML 2024 tutorial)

The first layer of a neural net can be written

bi = σ

 1

n

∑
j

kijai

or v(yi) = σ

(∑
κ(yi, xi)a(xj)∆xj

)
i.e., v(y) = σ

(∫
κ(y, x)a(x)dx

)
;

it is a linear integral operator. We can add bias and
skip connection

v(y) = σ

(∫
κ(y, x)a(x)dx+Wa(y) + b(y)

)
.

The output function can be evaluated at any point,
and the input can be provided at any discretization.
The graph neural operator (GNO) implements κ as a
neural net.
The Fourier neural operator uses basis functions

a F κ F−1 v

Article and book summaries by Vincent Zoonekynd 39/1044

(on a regular grid, use the FFT).
The model can be trained on a coarse grid and evalu-
ated on a finer one.
The integral can also be computed with:
– Gaussian quadrature;
– The multipole method (UNO: U-shaped NO, similar
to UNet).

This also works for other network architectures:
– Transformers (just replace

∑
with

∫
);

– CNNs (e.g., derivatives).
Physics-informed neural operators (PINO) use both
data and a PDE (the PDE can have a higher reso-
lution).

Mixtures of experts in the era of LLMs
(ICML 2024 tutorial)

(Sparse-gated) mixtures of experts (MoE) can suffer
from:
– Imbalanced routing (some experts are used too of-
ten, or too rarely);

– Redundant experts.
Many design choices are possible:
– Top-2 or fine-grained;
– Shared expert (an expert that is always used);
– Experts after each layer, with more experts in the
last layers;

– Loss function.
To convert a dense LLM into a MoE, you can:
– Copy the feed-forward part to form experts (this in-
creases the number of parameters);

– Split the feed-forward part (using k-means on the
neuron activations).

Distribution-free
predictive uncertainty quantification:

strength and limits of conformal prediction
(ICML 2024 tutorial)

Given observations (X1, Y1), . . . , (Xn, Yn), conformal
prediction aims to find Cα such that

P
[
Yn+1 ∈ Cα(Xn+1)

]
⩾ 1− α.

Split conformal prediction (SCP) proceeds as fol-
lows:
– Split the data into training (75% to 90%), calibration
and test (Xn+1);

– Fit a model µ̂ on the training set;
– Compute “conformity scores” on the calibration set

SCal =
{
|residuals| on Cal

}
∪ {∞}

– Use the corresponding quantiles

Ĉα(Xn+1) =
[
µ̂(Xn+1)± q1−α(SCal)

]
.

If the data is exchangeable, we have marginal validity

1−α ⩽ E
Xn+1

P
[
Yn+1 ∈ Ĉα(Xn+1)

]
⩽ 1−α+ 1

#Cal+ 1

but SCP is not adaptive (it does not recognize het-
eroskedasticity).
Conformalized quantile regrssion (CQR) fits two
quantile models, e.g., 10% and 90%, and uses the
signed distance to the closest quantile (negative if in-
side, positive if outside).

Ĉα(Xn+1) =
[
Q̂Rℓ(Xn+1)−q1−α(SCal), Q̂Ru(Xn+1)+q1−α(SCal)

]
More generally, if S =

{
s(xi, yi), i ∈ Cal

}
∪ {∞},

Ĉα(Xn+1) =
{
y : s(Xn+1, y) ⩽1−α (S)

}
.

Locally weighted SCP uses

s(X,Y) =
|µ̂(X)− Y |

ρ̂(X)

Ĉα(X) =
[
µ̂(X)± q1−α(S)ρ̂(S)

]
Full conformal prediction avoids data splitting it
fit models Ây on all the data plus (Xn+1, y), for all
possible values of y, and uses

Sy =
{
s(Xi, Yi, Ây)

}
∪ {s(Xn+1, y, Ây)

}
Ĉα(Xn+1) =

{
y : s(Xn+1, y, Ây) ⩽ q1−α(Sy)

}
The jackknife uses the leave-out-one residuals (but as-
sumes the algorithm is “stable”).

S =
{∣∣Â−i(Xi)− Yi

∣∣} ∪ {∞}
Ĉ =

[
Â(Xn+1)± q1−α(S)

]
The Jackknife+ does not make that assumption

si = |Yi − µ̂−i(Xi)|
ui = µ̂−i(Xi) + si

`i = µ̂−i(Xi)− si
U = {ui} ∪ {∞}
L = {`i} ∪ {∞}
C =

[
qα(L), q1−α(U)

]
(the coverage is ⩾ 1 − 2α, not 1 − α, unless the algo-
rithm is stable).
Cross-Validation+ is between SCP and Jackknife+.
In a covariate shift, LX changes but not LY |X . In
a label shift, LY changes, but not LX|Y . To deal
with covariate shift, give more importance to calibra-
tion points closer to the test point.

(X1, Y1), . . . , (Xn, Yn)
iid∼ PX × PY |X

(Xn+1, Yn+1) ∼ P̃X × PY |X

wi ∝
dP̃X(xi)

dPX(x)

Cα =
{
y : s(Xn+1, y, Â) ⩽ q1−α

(∑
wiδsi + wn+1δ∞

)}
Article and book summaries by Vincent Zoonekynd 40/1044

Use a similar idea for label shift.
For time series data, ACI (adaptive conformal infer-
ence) keeps track of the miscoverage ate (with an
EWMA) and adjusts the quantile accordingly; AgACI
uses several half-lives, combined with dynamic weights,
and processes the upper and lower bounds seperately.

Convex analysis at infinity:
introduction to astral space

(ICML 2024 tutorial)
The astral space is a compactification of Rn for convex
analysis.
We would like convex functions on Rn to always have a
minimum: to this end, we can add “points at infinity”.
In dimension 1, we can just set R̄ = [−∞,∞] – the
exponential function now has a minimum.
In dimension 2, we would like

f(x1, x2) = e−x1 + (x2 − x1)2

to have a minimum: we can add “points at infinity”
for each direction and offset. But this is not sufficient:
we also want

f(x1, x2) = e−x1 + e−x2+x1/2

to have a minimum, but the sequence xt = (t, t2) does
not correspond to a straight ray...
The astral space Rn is obtained by adding to Rn the
sequences (xt)t such that

∀u ∈ Rn lim(xt · u) exists (in R̄)

and identifying two sequences, xt ∼ x′t if ∀u lim(xt ·
u) = lim(x′t · u). This is a compact (but not metric)
topological space.
For x̄ ∈ Rn, the coupling function is

x̄ · u = lim(xt · u).

It does not have all the properties of a scalar product,
but

x̄ = x̄′ iff ∀u x̄ · u = x̄′ · u
x̄ ∈ Rn iff ∀u x̄ · u ∈ R

x̄t → x̄ iff ∀u x̄t · u→ x̄ · u

An astron is an element of the form xt = tv, for v ∈ Rn

(a straight ray); it will be written ωv = lim tv. The el-
ements of R2 are of the form

xt = t2v1 + tv2 + q, v1, v2 ∈ R2

and are written x̄ = ωv1 •+ ωv2 •+ q where •+ is the
leftward addition. On R̄:

(+∞) •+ (−∞) = +∞
(−∞) •+ (+∞) = −∞

x •+ y = x+ y otherwise.

On Rn: (x̄ •+ ȳ) · u = (x̄ · u) + (ȳ · u).
In dimension n, every astral point can be written

x̄ = ωv1 •+ · · · •+ ωvk︸ ︷︷ ︸
astrons

•+ q︸︷︷︸
finite part

where v1, . . . , vk, q are orthogonal; k is the astral rank
of x̄.
A C 0 function f : Rn → R̄ can be extended to
f̄ : Rn → R as

f̄(x̄) = Min
xt→x̄

lim f(xt).

For linear functions, f(x) = x · u, the limit does not
depend on the choice of the sequence, and f̄(x̄) = x̄ ·u,
but, in general, f̄ is not continuous: for instance, with

f(x1, x2) = e−x1 + e−x2+x
2/2

f̄ is minimized at x̄ = ωe2 •+ ωe1, but f̄ is not contin-
uous at x̄: xt = (t, 12 t

2)→ x̄, but f(xt)→ 1 6= 0.
A convex function f : Rn → R̄ has a minimum at x iff
0 ∈ ∂f(x). This generalizes the subgradient at infinity:

u ∈ ∂f̄(x) iff ∃b ∀ȳ ∈ Rn f̄(ȳ) ⩾ ȳ · u+ b

∃xt → x̄ f(xt)− f(xt · u+ b)→ 0

For constrained optimization

Minimize
u∈Rn

g(u) st a · u = b

a sufficient condition is a ·u = b, ∇g(u) = λa. We want
to allow vertical tangents, as with

g(u) = entropy(u1, u2, 1− u1,−u2)

(it is finite on the triangle, including its boundary, but
it is not differentiable on the boundary – it is infinite
outside the boundary). For x̄ ∈ Rn, the dual linear
function is φ(u) = x̄ · u. The dual subgradient of a
convex function g : Rn → R̄ is

x̄ ∈ ∂̄g(u) iff g(u) ∈ R

∀v ∈ Rn g(v) ⩾ x̄ · (v − u) + g(u)

+∞

∂̄ = {−∞}
−∞

+∞

∂̄ = {+∞}
−∞

“Conjugacy inverts the subgradient map”: if f is
closed, proper, convex,

u ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(u).

More generally:

u ∈ ∂f̄(x̄) ⇐⇒ x̄ ∈ ∂̄f∗(u).

On Rn, if f is convex, ∇fx = 0 ⇒ x is a minimizer.
On Rn, if f is convex, xt → x̄, and f̄ is continuous at

Article and book summaries by Vincent Zoonekynd 41/1044

x̄ (this is not always the case, but most loss functions
have a continuous extension), then

∇f(xt)→ 0 =⇒ f(xt)→ inf f.

If f is convex and f̄ continuous, if the progress condi-
tion is satisfied

f(xt+1) ⩽ f(xt)− αth(‖ut‖)
αt ⩾ 0,

∑
αt =∞

ut ∈ ∂f(xt)
h non-decreasing, h(0) = 0, h(s) > 0

then f(xt)→ inf f .

Strategic ML: learning with data that behaves
(ICML 2024 Tutorial)

Strategic machine learning is a generalization of adver-
sarial learning, in which subjects can change their fea-
tures, to some extent. Assuming they know the model,
it is a nested min-argmax problem (adversarial learning
is a minimax problem).

Find h, x′

To minimize E1y ̸=h(x′)

Where x′ = Argmax
x′

h(x′)
utility

− c(x, x′)
cost

It is a Stackelberg game: the solution is an equilibrium.
Adversarial learning assumes an (exogenous) distribu-
tion shift

7−→

while strategic learning uses a strategic shift.

7−→

If the subject is close to the decision boundary, it will
move to be exactly on it, but if it is too far away , it
will not move.
Replace the hinge loss with a strategic hinge

which penalizes points, not where they are, but where
they could be.
Strategic ML is not necessarily adversarial: for in-
stance, in a recommendation system, both users and
the system want the user to be correctly classified.

If the users do not know the model exactly, their re-
sponse is smooth.

x′ − x

distance to
the boundary

7−→

The induced distribution is also smooth.

7−→

The price of opacity, POP = err(h, ĥ)−err(h, h) where
ĥ is the users’ approximation if h, which can be arbi-
trarily bad.
Previously correctly classified subjects may need to
change their features because the decision boundary
shifted to limit gaming – but you may want to add a
penalty for this cost (“social burden”).

Data attribution at scale
(ICML 2024 tutorial)

1. There are several types of data attribution:
– Corroborative attribution (evidence finding) looks
for evidence (citation, copyrighted work, etc.) in a
corpus (reference data, which may not be part of
the training set), for a given output: for instance,
information retrieval;

– Game-theoretic attribution aims to understand why
the model behaved in a given way, to assign fair
credit or blame (liability) to different sources for the
outcome (utility): for instance, “data Shapley”;

– Predictive attribution (data modeling) predicts the
model output if we change the training data, esti-
mating

θ∗(w) = Argmin
θ

∑
i

wi`i(θ) for w 6= 1n.

2. Leave-out-one (LOO) has a closed form solution for
linear regression; for logistic regression, we can use a
quadratic approximation of L−j(θ) around θ∗(1n). For
nonlinear, but still convex, models, we can use a linear
approximation

LOO(j) = θ∗ − θ∗−j ≈ −
dθ

dwj
.

3. The influence function
f̂
(
S \ {zj}

)
= f(S)−∇`(θ)⊤H−1gj

is too sensitive to hyperparameter choices. Instead,
learn a mapping f̂ : S 7→ f̂(S) maximizing

LDS = Cor
[
f(S(i))1⩽i⩽m, f̂(S(i))1⩽i⩽m

]
,

e.g.,
f̂(S′) = f(S)−

∑
i∈S\S′

LOO(i)

Article and book summaries by Vincent Zoonekynd 42/1044

or
f(S) =

∑
i∈S

βi = β⊤1S .

4. Do not use older attribution methods: they have
LDS ≈ 0. Better influence function and Hessian ap-
proximations exist, e.g., Gauss-Newton

H̃ + λI

H̃ = (∇θh)⊤∇2
h`(∇θh) ≈ ∇2

θ`

` = `
(
h(x, θ), y

)
or Kronecker-based approximations (EK-FAC). One
can keep track of the training dynamics, estimating
the impact of observation i at epoch t. One can also
compute the attribution on a surrogate model

Differentiable
model

High-
dimensional
linear model

Low-
dimensional
linear model

f̂
NTK random

projection
IF

Interpretable and explainable machine
learning: a methods-centric overview

with concrete examples
R. Marcinkevičs and J.E. Vogt (2023)

Explainable AI refers to methods to interpret (rational-
ize the decisions of) already trained black-box models:
feature importance, Shapley values, saliency maps, in-
tegrated gradients, global surrogate models, local sur-
rogate models (LIME), counterfactuals, etc.
Interpretable AI refers to models interpretable by con-
struction – interpretability is provided by their “induc-
tive bias”:
– Falling rule lists (with monotonic output as we move
along the list);

– Supersparse linear integer models (SLIM): linear re-
gression, with integer coefficients (possibly with a
sign constraint) and binary inputs – the objective
function uses a 0-1 loss, an `0 penalty, and a very
small `1 penalty (for the ties from the `0 penalty);
it is a MIP (after big-M transformation); you can
approximate it with an integer-constrained lasso re-
gression;

– GAM, GA2M (GAM with interactions), neural
GAM, [GAM boosting];

– Sparse input neural nets (group lasso penalty for the
first layer weights, to select which features to use);

– Knockoff features (replace xi with random data sam-
pled from the distribution of xi|x\i (ignoring y) to
see how much value it adds to the model of interest);

– Varying coefficient models, self-explaining neural
networks

f(x) = θ(x)⊤x (or f(x) = θ(x)⊤h(x))

there θ is almost constant

∇xf(x) ≈ θ(x0) if x is close to x0

(and θ may depend on only a subset of the inputs)

– Mixture of experts

hj(x): latent representation from expert j
cj(x): output from expert j
uj = σ

(
Wj · [h1, c1, . . . , hp, cp] + bj

)
aj ∝ exp〈uj , θj〉 attention weights

f(x) =
∑
j

ajcj(x)

with an auxiliary loss to minimize the discrepancy
between the prediction error if we remove j and the
corresponding attention weight aj ;

– Symbolic regression;
– Interpretable representation learning.

Designing inherently interpretable
machine learning models

A. Sudjianto and A. Zhang (2021)
Checklist of qualitative characteristics an interpretable
model should have: additivity, sparsity, linearity,
smoothness, monotonicity, visualizability, projection
(sparse or near-orthogonal projections are more inter-
pretable), segmentation (models with few “segments”
are more interpretable).

GAMI-Net: an explainable neural network
based on generalized additive models

with structured interactions
Z. Yang et al.

GA2M,
y ≈

∑
i

gi(x) +
∑
ij

gij(xi, xj)

with neural networks, sparsity penalty, and “marginal
clarity” penalty (gi ⊥⊥ gij).

Granger-causal attentive mixtures of experts:
learning important features with neural nets

P. Schwab et al. (2019)
Define a GAM-VCM (variable coefficient model)

f(x) =
∑
i

wi(x)hi(x)

as follows:
– Transform each input feature xi in a nonlinear way
into a forecast (“contribution”) ci, with an MLP,
with activations (latent representation) hi

xi
(scalar)

7−→ hi 7−→ ci
(scalar)

– Concatenate all the latent representations hi and
forecasts ci into a vector h;

– For each “expert” i, compute a context vector ui
from h, and compare it with a learned reference con-
text uref

i , with a scalar product, 〈ui, uref
i 〉

– Compute the corresponding weights with a softmax,

wi ∝ 〈ui, uref
i 〉

(the paper has a different formula).

Article and book summaries by Vincent Zoonekynd 43/1044

To force those “attention” weights to reflect feature
importance, add a penalty, computed as follows:
– Train auxiliary predictors, using h and h\i: p(h),
pi(h\i);

– Compute their error

ε = loss
(
y, p(h)

)
εi = loss

(
y, pi(h\i)

)
∆εi = εi − ε ⩾ 0;

– Compare those errors with the attention weights

ωi =
∆εi∑
j ∆εj

KL(ω‖w) =
∑

ωi log
ωi
wi

(wi depends on the sample, ωi does not: average
over all samples).

There is no penalty to make w slow-moving.

Self-explaining neural networks
D. Alvarez-Melis and T.S. Jaakola

Variable coefficient models (VCM) are of the form

f(x) =
∑
i

θi(x)xi

where the θi’s are slow-moving functions (often, of a
subset of the xi’s). They can be generalized to

f(x) =
∑
i

θi(x)hi(x)

where h is a (low-dimensional) representation of the
data (e.g., from an auto-encoder). If θ is almost con-
stant,

∇xf = θ(x)⊤∇xh+∇xθ⊤h(x)
≈ θ(x)⊤∇xh;

the model can be trained by adding a penalty∥∥∇xf − θ(x)⊤∇xh∥∥.
Towards robust interpretability

with self-explaining neural networks
D. Alvarez-Melis and T.S. Jaakola

PiML toolbox for interpretable machine
learning model development and diagnostics

A. Sudjianto et al. (2023)
Closed-source; check imodels instead.

Varying coefficient models
T. Hastie and R. Tibschirani (1993)

Variable coefficient models are locally linear:

y ≈
∑
j

βj(x)xj .

Often, the coefficients βj only depend on a subset Rj
of the predictors: y ≈

∑
j βj(Rj)xjj. They can be

estimated as

βj(Rj) =

E

X2
j

Y −
∑
k ̸=j

βk(Rk)Xk

Xj

∣∣∣∣∣∣∣Rj

E[X2
j |Rj]

with tensor product splines, minimizing[∑
i

yi −
∑
j

xijβj(rij)

]2
+
∑
j

λj

∫
β′′j (rj)drj

Sparse-input neural networks
for high-dimensional nonparametric

regression and classification
J. Feng and N. Simon (2019)

Add a sparse group lasso penalty on the first layer
weights W1.

loss = error+ λ0
∑
a⩾2

‖Wa‖22 + λ12 ‖W1‖12 + λ1 ‖W1‖1

Gradient descent (or other standard gradient-based op-
timizers) will not give a sparse solution: use proximal
gradient.

W ← w − γ∇losssmooth

W1 ← S(w1, γλ1)

W1•i ←
(
1− γλ12
‖W1•i‖2

)
+

W1•i

Supersparse linear integer models
for interpretable classification

B. Ustun et al. (2014)
For interpretable linear models, SLIM uses:
– Binary predictors,
– 0-1 loss;
– `0 penalty,
– Very small `1 penalty to avoid the ties created by
the `0 penalty;

– Integer coefficients (or number with just one signifi-
cant digit, possibly with a sign constraint).

This can be solved as a mixed integer linear program
(with a big-M transformation), and approximated with
an integer-constrained lasso regression.

Supersparse linear integer models
for optimized medical scoring systems

B. Ustun and C. Rudin

Article and book summaries by Vincent Zoonekynd 44/1044

Interpretable machine learning
based on functional Anova framework:

algorithms and comparison
L. Hu et al. (2023)

There are many generalizations of GAM:

GAM g(x) = g1(x1) + · · ·+ gn(xn)

AIM g(x) = g1(β
′
1x) + · · ·+ gn(β

′
nx)

GA2M g(x) =
∑

gi(xi) +
∑

gij(xi, xj)

(GA2M is also known as fANOVA).
Explainable boosting machines (EBM) are similar to
GA2M, but the gi’s and gij ’s are decision trees: one
first fits the first order effects gi, and only then the
second order effects gij on the residuals, but only for
the top k interactions, identified by comparing 4 quad-
rants.
GAMI-Lin-T (GAM with interactions and linear trees)
are similar to EBM, but:
– The leaves contain linear functions;
– For the interactions, one variable is used only for
splitting, and the other one is only used in the linear
models, so we have two different terms gij and gji;

– The top-k interactions are selected by comparing
the predictive power (on the residuals) of the model
trees;

– There is an additional “purifying” step, to ensure
orthogonality.

〈
gij(xi, xj), gi(xi)

〉
= 0〈

gij(xi, xj), gj(xj)
〉
= 0

GAMINet is similar but uses neural nets for gi and gij ,
with a “clarity” penalty to ensure orthogonality

Ωjk =

∣∣∣∣∣ 1N ∑
i∈Observations

gj(xij)gjk(xij , xik)

∣∣∣∣∣
(and a monotonicity penalty if desired).

Using model-based trees with boosting
to fit low-order functional Anova models

L. Hu et al.
Details of the boosting algorithm and the interaction
filtering method.

Explainable neural networks
based on additive index models

J. Vaughan et al. (2018)
AIMs can be estimated with back-fitting or end-to-end
(xNN): projection followed by univariate transforma-
tions (neural nets)

Adaptive explainable neural networks (AxNNs)
J. Chen et al. (2020)

Ensemble (boosting) of GAM and AIM, both imple-
mented as neural nets.

GAM: g(x) =
∑
i

gi(xi)

AIM: g(x) =
∑
i

gi(β
′
ix)

Linear iterative feature embedding:
an ensemble framework for interpretable model

A. Sudjianto et al.
A wide, single-layer neural net can be seen as an en-
semble of narrow single-layer nets:
– Take k random neural nets{

Rd −→ R
x 7−→ ŷ

– Use them to define samples of the data {i : ŷ > a}
(or ŷ < a); discard samples too large or too small;

– Train new neural nets on those samples (to learn
features);

– Iterate a few times
– Combine the features thus learned (elastic net).

An optimization approach
to learning falling rule lists

C. Chen and C. Rudin (2018)
Monte Carlo search on frequent itemsets.

Counterexample guided learning
of monotonic neural networks

A. Sivaraman et al.
For each input sample x, find (with an SMT solver) the
worst monotonicity counterexamples in each direction:

xℓ ⩾ x with f(xℓ) ⩽ f(x)
xu ⩽ x with f(xu) ⩾ f(x)

These define the lower and upper envelopes of f .
Use them during training: (every other iteration)
replace each sample (xi, yi) with (xi, ŷi), (xiℓ, ŷi),
(xiu, ŷi), where ŷi = 1

2

[
f(xiℓ) + f(xiu)

]
.

Interpretable machine learning
with PySR and SymbolicRegression.jl

M. Cranmer (2023)

Evaluating the visualization
of what a deep neural network has learned

W. Samek et al.
Layerwise relevance propagation (LRP) gives, for each
layer, a decomposition of the network output (e.g., the

Article and book summaries by Vincent Zoonekynd 45/1044

log-odds, for a classification problem) into contribu-
tions of the individual neurons of that layer; in partic-
ular, the sum of the contributions is the same for all
layers: ∑

i

R
(ℓ)
i =

∑
j

R
(ℓ+1)
j .

The contributions in layer ` can be computed from
those in layer `+ 1, for instance as

R
(ℓ)
i =

∑
j

α z+ij∑
i′
z+i′j

+ β
z−ij∑
i′
z−i′j

+

R
(ℓ+1)
j

zij = w
(ℓ→ℓ+1)
ij a

(ℓ)
i

zij = z+ij + z−ij

α+ β = 1.

Layerwise relevance propagation: an overview
G. Montavon et al.

There are other propagation rules.

On pixelwise explanations
for nonlinear classifier decisions

by layer-wise relevance propagation
S. Bach et al. (2015)

Original paper on LRP.

On inductive biases for machine learning
in data-constrained settings

G. Mialon (2022)
To approximate a kernel K, use

K(x, x′) ≈
〈
ψ(x), ψ(x′)

〉
ψ(x) = K(Z,Z)−1/2K(Z, x)

where Z is a set of “anchoring points”.

A trainable optimal transport embedding
for feature aggregation and
its relationship to attention

G. Mialon et al. (2021)
To get a representation of (varying length) sequences x,
encoded as sets of k-mers with positional embeddings,
compute the optimal transport P (wrt some kernel) to
a learned fixed-length sequence z, and use the optimal
transport as weights: (xi)i 7→ (

∑
i Pijzj)j .

You could use several reference sequences. This is a
pooling operation.

GraphiT:
encoding graph structure in transformers

G. Mialon et al. (2021)
To use transformers with graphs:
– Use a masked transformer (so that each node only
attends to its k-hop neighbours) – or not;

– Use the eigenvectors of the Laplacian as positional
encoding, L =

∑
λiuiu

′
i;

– Use a graph kernel to compute the positional encod-
ing;

kr =
∑

r(λ)uiu
′
i

r(λ) = e−βλ diffusion
r(λ) = (1− γλ)p p-step random walk

– Rescale the attention weights: exp(QQ′/
√
d)� kr.

Screening data points
in empirical risk minimization

via ellipsoidal regions and safe loss functions
G. Mialon et al. (2020)

f∗(y) = Max
t
〈t, y〉 − f(t) Fenchel conjugate

f∗∗(t) = Max
y
〈y, t〉 − f∗(y) biconjugate

fµ(t) = Max
y
〈y, t〉 − f∗(y)− µΩ(y)

= Min
z
f(z) + µΩ∗

(
t− z
µ

)
= t□µ Ω∗ infimum convolution

safeaipackage: a Python package
for AI risk measurement

G. Babaei
Given a (nonnegative) random variable Y :
– The Lorenz curve is (ts, cumsum(Y[i])), where
ts=linspace(0,1,len(Y)), i=argsort(Y);

– The dual Lorenz curve uses i=argsort(-Y);
– The concordance curve uses i=argsort(y′) where y′

is another variable.
The area under the concordance curve is

1

2

Cov
[
Y [i′], F (Y [i])

]
Cov

[
Y [i], F (Y [i])

] − 1

2
∈ [0, 1]

Different choices of (Y, Y ′) give different measures:
– Accuracy (“RGA”): (y, ŷ) (for binary data, this is
the AUC);

– Robustness: (ŷ, ŷp), where ŷp are forecasts after
some perturbation;

– Explainability: (ŷ, ŷ−k), where ŷ−k is the forecast of
a model fitted without variable k;

– Fairness: (ŷ, ŷ−k), where k is some protected at-
tribute;

– Privacy: (ŷ, ŷ−m), where ŷ−k are forecasts of a
model fitted without observation m.

RGA: a unified measure of predictive accuracy
P. Giudici and E. Raffinetti (2022)

A rank graduation accuracy measure
to mitigate artificial intelligence risks

E. Raffinetti (2023)

Article and book summaries by Vincent Zoonekynd 46/1044

Pretaining and the lasso
E. Craig et al.

Pretrain the lasso on a large dataset
y = Cβ′1 + ε β1 sparse

then, fine-tune it on the subset of interest (stratifica-
tion) or on a different, smaller dataset

y −Xβ′1 = Xβ′2 + η β2 sparse
where the lhs, the residuals of the first model, can be
replaced by y − (1− α)Xβ′1.

Estimation and inference of heterogeneous
treatment effects using random forests

S. Wager and S. Athey (2017)

Under unconfoundedness {Y (0)
i , Y

(1)
i } ⊥⊥ Ti |Xi, i.e.,

X are the only confounders
X

T Y

the treatment effect τ(X) = E[Y
(1)
i −Y (0)

i |Xi = x] can
be computed as

τ(x) = E

[
Yi

(
Ti
e(x)

− 1− Ti
1− e(x)

)∣∣∣∣Xi = x

]
where e(x) = E[Ti|Xi = x] is the propensity of receiv-
ing the treatment.
Causal forests directly estimate τ without estimating e
first, by noticing that if the leaves of an (honest) tree
are small enough, they look like randomized experi-
ments and the treatment effect can be estimated with
unweighted averages

τ̂(x) = Mean
i∈L
Ti=1

Yi −Mean
i∈L
Ti=0

Yi

where L is the leaf containing x.
There are two ways of building honest trees:
– A propensity tree is built without using the outcome
Y , to predict the treatment T , ensuring that each
leaf contains at least k observations for each treat-
ment;

– A double sample tree is built using half the data, to
forecast the outcome Y , but the responses are com-
puted using the other half.

HEBO: Heteroskedastic evolutionary
Bayesian optimization

A.I. Cowen-Rivers et al.
For Bayesian optimization on heteroskedastic non-
stationary data:
– Use an input-warped Ψ(x) = 1 − (1 − xa)b−1 GP
(linear + Matérn 3/2, from GPy)

– Power-transform (Box-Cox or Yeo-Johnson, in sk-
learn) the output;

– Add noise to the posterior mean;
– Use multiple acquisition functions (NSGA-II, from
pymoo).

Unsupervised learning of visual features
by contrasting cluster assignments

M. Caron et al.
SwAV computes image features by minimizing
`(zt, qs) + `(zs, qt), where
– xt and xs are augmentations of the same image;
– z = fθ(x)/ ‖fθ(x)‖ are the corresponding features;
– c1, . . . , ck are (trainable) prototype vectors;
– q = Argmax

c∈{c1,...,ck}
〈c, z〉;

The three types of backtests
J. Joubert et al. (2024)

Historical, cross-validation, Monte Carlo (if you have
one (or several) data generation process(es) for all the
data used).

Gene regulatory network inference
in the presence of dropouts: a causal view

H. Dai et al. (2024)
scRENseq data contains biological zeroes (no gene
expression) an technical zeroes (“dropouts”). Since
Zi ⊥⊥ Zj ⇐⇒ Xi ⊥⊥ Xj |R = 0, we can just drop the
zeroes (dropouts and biological zeroes) and recover the
correct conditional independence relations.

R X

Z D Z : True expression
D : 1dropout

X : observed expression
R : observed zero

Robust agents learn causal world models
J. Richens and T. Everitt (2024)

If an RL agent is robust to distributional shifts, we can
extract a causal graph from it.

Predictive auxiliary objectives in deep RL
mimic learning in the brain

C. Fang and K. Stachenfeld (2024)
Auxiliary objectives in RL systems, for (long-horizon)
latent state forecast (contrastive prediction), help rep-
resentation learning (prevents representation collapse).

ASID: active exploration
for system identification in robotic

manipulation
M. Memmel et al. (2024)

Model-free RL is sample-inefficient, but model-based
RL requires an accurate world simulator:
– Start with an inaccurate simulator (correct model,
with approximate parameters);

Article and book summaries by Vincent Zoonekynd 47/1044

– Train an exploring agent, maximizing Fisher infor-
mation

Minimize
π

trace I
(
pθ∗(·|π)

)
(where p is the distribution on trajectories);

– Collect real-world data;
– Use it to refine the simulator;
– Train the (exploiting) agent.

Learning interactive real-world simulators
M. Yang et al. (2024)

UniSim is a UNet diffusion model trained on a vari-
ety of labeled video datasets, to forecast future frames
from past frames and (natural language) “actions”, for
reinforcement learning.

Semantic compression
with large language models

H. Gilbert et al. (2024)
Ask an LLM to compress text; the result does not
have to be human readable, but another GPT-4 model
should be able to uncompress it.

LoftQ: LoRA-fine-tuning-aware quantization
for large language models

Y. Li et al. (2023)
When fine-tuning with LoRA after quantization, do
not initialize the LoRA weights with zeroes, but have
them approximate the unquantized model.

LongLoRA: efficient fine-tuning
of long-context large language models

Y. Chen et al.
Shifted sparse attention increases the context size of
a transformer by using full attention on overlapping
blocks.

+ =

Do not only use LoRA for the attention weights, also
fine-tune the embeddings and the normalization.

Batched low-rank adaptation
of foundation models

Y. Wen and S. Chaudhuri (2024)
Input-specific LoRA weights, for personalized, task-
specific adaptation, by replacing W + BA′ with W �
(BA′)

Models tell you what to discard:
adaptive KV cache compression for LLMs

S. Ge et al. (2024)
The KV cache mechanism stores previous key-value
vectors to avoid recomputing them each time. Rec-
ognize the (head-specific) attention patterns:
– Local context; special tokens (punctuation, etc.);
– Column-sparse;
– Dense.
and discard unneeded tokens.

Vision transformers need registers
T. Darcet et al.

Attention maps of ViT are not informative: tokens in
low-information regions (e.g., sky) appear important –
they are used for internal computations. Provide addi-
tional tokens (“registers”), neither in the input nor in
the output (contrary to the cls token): the attention
maps become interpretable.

Beyond Weisfeiler-Lehman: a quantitative
framework for GNN expressiveness

B. Zhang et al. (2024)
Given a GNN model M , computing graph representa-
tions G 7→M (G), and a substructure (a graph) F , M
can count F under homomorphism if

∀G,H M (G) = M (H)⇔
∣∣hom(F,G)

∣∣ = ∣∣hom(F,H)
∣∣.

The homomorphism expressivity of M is the set
F (M) of all substructures it can count. For instance:

F (MPNN) = {forests}
F (subgraph GNN) = {F : F has an end-point-shared NED}
F (local 2-GNN) = {F : F has a strong NED}
F (local 2-FGNN) = {F : F has an almost strong NED}
F (2-FGNN) = {F : F has a NED}

A nested ear decomposition (NED) is:

1

2 3

4
5

6

7

A subgraph GNN applies a MPNN to all marked sub-
graphs {{Gu : u ∈ VG}}.

GNNCert: deterministic certification
of graph neural networks

against adversarial perturbations
Z. Xia et al.

Divide the graph (the set of edges and/or features) into
(non-overlapping) subgraphs; use a graph classifier on

Article and book summaries by Vincent Zoonekynd 48/1044

each of them, and take the majority vote: this is robust
to a bounded number of edge or feature perturbations.

Graph neural networks for learning
equivariant representations of neural networks

M. Kofinas et al.
Neural networks are computation graphs: they can be
processed with GNNs or transformers, which automat-
ically account for their permutation symetries.
Applications:
– Implicit neural representation (INR) classification;
– Predicting the generalization performance of a CNN
classifier (example: models from the small CNN
zoo – same architecture (not required), different
weights);

– Improving the weights of a neural net (learning to
optimize), given weights, gradients, and momentum,
at several scales.

Self-RAG: learning to retrieve, generate,
and critique through self-reflection

A. Asai et al.
Ask the LLM if they need RAG, if the retrieved docu-
ments are relevant, if the generated answer is consistent
with these documents. Use special tokens, Retrieve,
IsRelevant, Supported, etc. (ask an LLM to add
those tokens to the data).

Knowledge card: filling LLM’s knowledge gaps
with plugin specialized language models

S. Feng et al. (2024)
Train several small, domain-specific LLMs, and use the
text they generate instead of RAG:
– Bottom-up: generate text from the query for all of
them, refine those texts, and ask an LLM to use them
to answer the query;

– Top-down: first, ask the LLM if it needs more data,
and which specialized LLMs to use.

The documents generated by those specialized LLMs
are preprocessed for relevance, brevity and factuality:
– Check relevance with the cosine similarity with the
query, only keeping the top k;

– Ensure brevity by summarizing the documents
– Check the sumary is consistent with the original text;
– Check that it is factually correct using RAG.

Self-alignment
with instruction back-translation

X. Li et al.
To generate instructions to fine-tune an LLM, start
with the answers (good quality web pages) and ask the
LLM to produce instructions that would lead to those
answers; also ask the LLM to select high-quality exam-
ples.

Amortizing intractable inference
in large language models

E.J. Hu et al.
Given an LLM, we may want to sample from related
distributions, e.g.:
– Infilling: q(B|A,C) ∝ pLM(ABC);
– Tempered sampling: q(B|A) ∝ pLM(AB)1/T ;
– Constrained generation: q(A) ∝ pLM(A)c(A).
This can be done with GFlowNets, a diversity-seeking
reinforcement learning algorithm, training a policy to
sample tokens from an unnormalized density.

Improved techniques
for training consistency models

Y. Song and P. Dhariwal (2024)
Diffusion models learn a denoising function

(xσ+∆σ, σ +∆σ) 7→ xσ.

Consistency models directly learn

fθ : (xσ, σ) 7→ x0

by minimizing (a weighted expectation of)

d
[
fθ(xσi+1), fθ−(x̆σi)

]
where θ− = EWMA(θ), x̆ = x−σ·∆σ·∇x log pσ(x) and
the score function ∇x log pσ(x) comes from a diffusion
model (consistency distillation). Instead, consistency
training uses x̆ = x+ σz, z ∼ N(0, I).

Würstchen: an efficient architecture
for large-scale text-to-image diffusion models

P. Pertinas et al. (2024)
3-stage latent diffusion model (LDM):
– A first LDM computes a very low-dimensional la-
tent representation of the image, conditioned on the
input text;

– A second LDM computes a low-dimensional latent
representation of the image, conditioned on the out-
put of the previous stage;

– Finally, a VQGAN decoder generates the full-
resolution image.

Lipschitz singularities in diffusion models
Z. Yang et al.

Diffusion models are not Lipschitz at σ = 0. E-TSDM
replaces f : (xt, t) 7→ xt−∆t with

f̃ : (xt, t) 7−→

{
f(xt, t) if t > t̃

f(xt, t̃) if t ⩽ t̃

Article and book summaries by Vincent Zoonekynd 49/1044

Generalization in diffusion models arises from
geometry-adaptive harmonic representations

Z. Kadkhodaie et al.
Diffusion models trained on sufficiently large (105) non-
overlapping datasets learn the same score function and
generate similar images: they do not memorize their
training data.
They have a GAHB bias. A (bias-free) denoiser is lo-
cally linear: f(y) ≈ ∇f · y; its Jacobian is approxi-
mately symmetric (and psd), so it has an eigen decom-
position f(y) ≈

∑
k λk(y)〈y, ek(y)〉ek(y). The denoiser

performs some shrinkage in that (data-dependent) ba-
sis; this basis shows oscillating patterns.

Improving convergence and generalization
using parameter symmetries

B. Zhao et al.
In the optimization problem

Minimize
g∈Rd

`(w),

if the loss ` is invariant under the action of some group
G,

∀g ∈ G ∀w ∈ Rd `(g · w) = `(w),

symmetry teleportation is a variant of gradient descent
looking for the point with the steepest gradient in the
current orbit,

w ← g · w
g = Argmax

g
|∇`(g · w)|

Teleporting towards larger curvatures may improve
generalization.

Symmetry teleportation
for accelerated optimization

B. Zhao et al.

Gradient Newton Teleportation

Linear neural nets are invariant under an action of
GLdm :

g ·Wm =Wmg
−1

g ·Wm−1 = gWm−1

g ·Wk =Wk if k 6∈ {m,m− 1}.

This can be generalized to neural nets with invertible
nonlinearities (e.g., leaky ReLU),

g ·Wm−1 = σ−1
[
gσ(Wm−1hm−2)

]
h−1m−2

hm−1 7→Wmhm−1 7→ σ(Wmhm−1)

(if hm−2 is square and invertible); note that the action
depends on the data.

Symmetries, flat minima,
and the conserved quantities of gradient flow

B. Zhao et al.
Given a 2-layer neural net

x V σ U F (x)
Rn Rh Rm

(for which ∀z σ(z) 6= 0, e.g., σ = sigmoid), there is a
(data-dependent) action of GLh on Param×Rn

g · (U, V, x) = (URσ(V x)R
−1
σ(gV x), gV, x)

where

(Rz)ij =

zi cos(αj−1)

(∏
k<j sinαk

)
if j ⩽ i

−r sinαi if j = i+ 1

0 otherwise

and (r, α1, . . . , αh−1) are the spherical coordinates of z

zi = r cosαi
∏
k<i

sinαi.

InfoBatch: lossless training speed up
by unbiased dynamic data pruning

Z. Qin et al.
Data pruning (filtering out samples contributing little
to training) leads to biased gradients. Use dynamic
data pruning instead: keep track of the loss of each
sample, randomly drop some proportion of the low-loss
samples (anew for each epoch) and rescale the gradi-
ents of the remaining low-loss samples; for the last few
epochs, use the whole dataset.

Towards a statistical theory of data selection
under weak supervision

G. Kolossov et al.
To select on which data to train:

πi = Min{c · (Var Ŷi)α; 1}
wi = 1 or 1/πi

where
– Fit a model on a small subset of the data and com-
pute Ŷi from this surrogate model (better surrogates
need not be useful);

– α < 0 prefers easy samples (better if you want a
small number of samples);

– α > 0 prefers hard samples;
– c is chosen to have the desired number of samples;
– wi = 1/π1 leads to unbiased (but possibly worse)

results.
Use cross-validation to choose the surrogate model, α
and w – it will depend on the dimensionality of the
problem, on the model, and on the proportion of the
data you want to keep.

Article and book summaries by Vincent Zoonekynd 50/1044

Meta continual learning revisited:
implicitly enhancing

online Hessian approximation
via variance reduction

Y. Wu et al.
Regularization-based continual learning uses updates
of the form

θ ← θ − α(H1 + · · ·+Hk−1)−1∇θL k(θ)

where Hi is the Hessian of the loss at the end of raining
for task i (e.g., the diagonal Fisher information matrix)
to keep the weights that mattered for task i.

Topological data analysis
on noisy quantum computers

I.Y. Akhalwaya et al.
Quantum computers do linear algebra in exponentially
large vector spaces. This is what TDA needs (comput-
ing the rank of an exponentially large matrix).

Cameras as rays:
pose estimation via ray diffusion

J.Y. Zhang et al.
A camera is typically parametrized as (R, t, k) ∈
SO(3)×R3 ×R3×3{

World −→ Pixels
x 7−→ u = k[R|T]x.

Instead, model a camera as a collection of
rays (r1, . . . , rm) associated to pixel coordinates
(u1, . . . , um) (patches). The ray in direction d ∈ R3

through point p ∈ R3 can be represented with Plücker
coordinates

(d,m = p× d) ∈ R3 ×R3

(actually P(R6): the Plücker embedding is GrkV ↪→
P(ΛkV), here with k = 2, dimV = 4 – lines in 3-
dimensional projective space are 2-dimensional linear
subspaces in 4-dimensional space). To convert from
cameras to rays:

d = R′K−1u

m = (−R′t)× d

To convert from rays to cameras: first, find the camera
center, c = Argminp

∑
‖p× d−m‖2, then the camera

transformation P = Argmin∥H∥=1

∑
‖Hd× u‖. Train

a transformer (with positional encoding) to predict
rays from patch features or, better if there is ambi-
guity because the data is too sparse, a diffusion model.

Accelerating distributed stochastic
optimization via self-repellent random walks

J. Hu et al.
Given a time-reversible Markov chain with transi-
tion kernel P and stationary distribution µ, the self-
repellent random walk (SRRW)

Kij(x) ∝ Pij
(
xi
µj

)−α
,

where xj is the number of visits to state j, has a smaller
asymptotic variance and converges faster.
The token algorithm is a decentralized SGD, imple-
mented using a random walk (e.g., SRRW) on a graph,
each node updating θ using its local gradient and send-
ing the new value to one of its neighbours.

Self-repellent random walks on general graphs:
achieving minimal sampling variance

via nonlinear Markov chains
V. Doshi et al. (2023)

Stochastic heavy ball
S. Gadat et al. (2016)

To find the minimum of a function f , the (determinis-
tic) heavy ball method (HBF, heavy ball with friction)
considers a ball, moving on the graph of f , subject to
both damping γ and acceleration

ẍt + γtẋt +∇f(xt) = 0.

It converges towards a minimum of f if∫ ∞
0

γsds =∞∫ ∞
0

exp

(
−
∫ t

0

γsds

)
dt <∞,

e.g., if γt = r/t (r > 1) or γt = γ > 0.
It can be discretized

yt+1 = (1− γt)yt −∇f(xt)
xt+1 = xt + yt+1

and one can replace the gradient ∇f(xt) with an ap-
proximation (computated on a different minibatch each
time).

Understanding in-context learning
in transformers and LLMs

by learning to learn discrete functions
S. Bhattamishra et al.

In-context learning (ICL) is the task of forecasting y
from x after seeing a handful of examples.

(x1, y1, x2, y2, . . . , xn, yn, xn+1) 7→ yn+1

ReLU strikes back: exploiting activation
sparsity in large language models

I. Mirazadeh et al.
ReLU (contrary to the trendier GELU or SiLU) acti-
vation functions lead to sparse activations, and a sig-
nificant reduction of CPU-GPU data transfers, with
a negligible impact on convergence and performance.
For pretrained models, replace their activation func-
tions with ReLU and fine-tune them.

Article and book summaries by Vincent Zoonekynd 51/1044

Unprocessing seven years
of algorithmic fairness

A.F. Cruz and M. Hardt
Experimental evidence suggests that processing a
model to equalize the error rates in different de-
mographic groups is Pareto-optimal: varying the
group-specific acceptance threshold yields the fairness-
accuracy frontier.

On the joint interaction
of models, data and features

Y. Jiang et al. (2024)
According to the GDE (generalization disagreement
equality), the (expected) agreement in a deep ensem-
ble (an ensemble of randonly initialized networks, on
unlabeled data) equals its (expected) test accuracy –
but this only holds for calibrated ensembles.
The agreement can be modeled by a tensor

Ω ∈ {0, 1}#models×#samples×#features

built as follows:
– Fit M classification models;
– For each of them, define “features” as the principal
components of its penultimate layer;

– Cluster the features (greedy algorithm for k-partite
matching) attemping to put in the same cluster prin-
cipal components whose correlation is above some
threshold;

– Match features to observations.
Experiments suggest that the agreement, computed
from that tensor, is very close to the test accuracy,
even for non-calibrated ensembles.

Assessing generalization via disagreement
Y. Jiang et al.

Given a well-calibrated ensemble of classification mod-
els (same model, trained with a stochastic algorithm
and different random seeds), the disagreement rate (on
unseen, unlabeled data) equals the test error (in expec-
tation).

Statistically optimal k-means clustering
via nonnegative low-rank
semidefinite programming

Y. Zhuang et al.
The k-means problem

Minimize
β1,...,βk∈Rp

n∑
i=1

Min
k∈J1,kK ‖Xi − βk‖22

is NP-complete and often solved with heuristics or
relaxations: Lloyd’s algorithm, spectral clustering,
NMF, SDP. The problem can be reformulated as

Maximize
G1⊔···⊔Gk=J1,nK

∑
k

1

|Gk|
∑
i,j∈Gk

〈Xi, Xj〉

or
Minimize
H∈{0,1}n×k

H1k=1n

〈A,HBH⊤〉

where

A = −X ′X

B = diag
(
|G1|−1 , . . . , |Gk|−1

)
The SDP relaxation looks for Z = HBH⊤ instead:

Minimize
Z≽0

〈A,Z〉 st trZ = k, Z1n = 1n, Z ⩾ 0.

Further relax it by assuming Z is low-rank, Z = UU ′

(and replacing UU⊤ ⩾ 0 with the stronger U ⩾ 0)

Minimize
U∈Rn×r

〈A,UU⊤〉 st ‖U‖2F =k, UU⊤1n=1n, U ⩾ 0

(this keeps most of the theoretical properties of the
SDP relaxation). The NMF relaxation did not have
those equality constraints:

Minimize
U∈Rn×r

∥∥A+ UU⊤
∥∥2
F

st U ⩾ 0.

Mixed-type tabular data synthesis
with score-based diffusion in latent space

H. Zhang et al.

Table Tokens

Table Tokens

Latent Representation Noise
enc

dec
VAE

diffusion

denoising

On the humanity of conversational AI:
evaluating the psychological portrayal of LLMs

J.T. Huang et al.
Comparison of the results of psychological tests for hu-
mans and LLMs: LLMs lie more, and are more self-
confident.

What data benefits my classifier?
Enhancing model performance and

interpretability through influence-based
data selection

A. Chhabra et al.
The influence of a sample (xj , yj) on some quantity of
interest f (loss, fairness, robustness, etc.) is

I(xj) = ∇θf(θ̂)⊤H−1θ̂ ∇θ`(xj , yj ; θ̂)

where

Hθ̂ =
1

n

∑
i

∇2
θ`(xi, yi; θ̂)

θ̂ = Argmin
θ

1

n

∑
i

`(xi, yi; θ).

Article and book summaries by Vincent Zoonekynd 52/1044

To interpret it, train a decision tree

(xj , yj) 7−→ I(xj).

Use hierarchical shrinkage on the resulting tree.

Hierarchical shrinkage:
improving the accuracy and

interpretability of tree-based methods
A. Agarwal et al. (2022)

Consider a decision tree h:

q: input
t0: root
tn: leaf containing q
tn ⊂ tn−1 ⊂ · · · ⊂ t0: leaf-to-root path
φ(t): number of sampled in node t
ξ(q, t): output for q in node t.

Its output

h(q) = ξ(q, t0) +
∑
j⩾1

ξ(q, tj)− ξ(q, tj−1)

can be shrunk to

ĥ(q) = ξ(q, t0) +
∑
j⩾1

ξ(q, tj)− ξ(q, tj−1)
1 + λ/φ(tj−1)

.

This alternative to pruning also applies to random
forests: it often improves accuracy and simplifies the
decision boundaries.
Code in imodels.

Never train from scratch: fair comparison
of long-sequence models

requires data-driven priors
I. Amos et al.

Do not train your models from a random initializa-
tion: pretrain them, on the downstream data (self-
pretraining), with some denoising objective.

Flow matching on general geometries
R.T.Q. Chen and Y. Lipman

Stochastic interpolants:
a unifying framework for flows and diffusions

M.S. Albergo et al.
Given two probability distributions p0 and p1, we want
to progressively transform samples from p0 into sam-
ples from p1 (or the opposite).
Score-based diffusion models consider an OU process
transforming p0 into an (approximate) Gaussian p0, we
sample x1 from p1 (a Gaussian) and use the backward
SDE (its drift involves the score function ∇!x log pt(x),
which has to be learned) to get a corresponding x0.
The path (xt)t is stochastic, but one can use an ODE
instead, and get a deterministic path.

Many paths give rise to the same intermediate distri-
bution pt: deterministic, with straight lines (optimal
transport) or not (normalizing flows, in discrete “time”,
or neural ODE, in continuous time), or stochastic.
A stochastic interpolant between p0 and p1 is a stochas-
tic process x of the form

xt = I(t, x0, x1) + γ(t)z, t ∈ [0, 1]

where

I(0, x0, x1) = x0

I(1, x0, x1) = x1

γ(0) = γ(1) = 1

γ ⩾ 0

(x0, x1) ∼ ν
pr1#ν = p0, pr2#ν = p1

z ∼ N(0, I).

For instance,

xt = (1− t)x0 + tx1 +
√
1t(1− t)z

or (pure noise for t = 1
2)

xt = cos2(πt)
(
1
t<

1
2
x0 + 1

t>
1
2
x1) +

√
2t(1− t)z.

The density (pt)t satisfies the transport equation

∂tp+∇ · (bp) = 0

where the velocity is

b(t, x) = E[ẋt|xt = x]

b = Argmin
b

E
(x0,x1)∼ν
z∼N(0,I)
t∼Unif(0,1)

[
1
2 |b(t, xt)|

2
= ẋt · b(t, xt)

]

b = v − γ̇γs

Its score is

s = ∇x log pt(x) = γ−1 E[z|xt = x]

= Argmin E
x0,x1,z,t

[
1
2 |s(t, xt)|

2
+ γ(t)−1z · s(t, xt)

]
= ArgminE[|s|2 + e∇ · s].

The denoiser is

η(t, x) = E[z|xt|x]

η = Argmin E
x0,x1,z,t

[
1
2 |η(t, xt)|

2
= z · η(t, xt)

]
The velocity field is

v(t, x) = E
[
∂tI(t, x0, x1)|xt = x

]
v = ArgminE

[
1
2 |v|

2 −∇tY · v
]
.

The forward and backward Fokker-Plank equations are

∂tp+∇ · (bF p) = ε∆p p(0) = p0

∂tp+∇ · (bBp) = −ε∆p p(1) = p1

Article and book summaries by Vincent Zoonekynd 53/1044

where ε is a non-negative (or positive semi-definite)
function, and the forward and backward drifts are

bF (t, x) = b(t, x) + ε(t)s(t, x)

bB(t, x) = b(t, x)− ε(t)s(t, x).

They are more robust than the transport equation to
errors in the velocity and scores.
The following processes have the same law as the
stochastic interpolant xt.

d

dt
Xt = b(t,Xt) X0 ∼ p0

dXF
t = bF (t,X

F
t)dt+

√
2ε(t)dWt XF

0 ∼ p0
dXB

t = bB(t,X
B
t)dt+

√
2ε(t)dWB

t XB
1 ∼ p1

WB
t =W1−t

The density pt can be computed from solutions of the
ODE

pt(x) = exp

(
−
∫ t

0

∇ · b
(
τ,Xt,τ (x)

)
dτ

)
p0
(
Xt,0(x)

)
= exp

(∫ 1

t

∇ · b
(
τ,Xt,τ (x)

)
dτ

)
p1
(
Xt,1(x)

)
where

d

dt
Xst(x) = b

(
t,Xst(x)

)
Xss(s) = x.

For the SDEs:

pF1 (x) = E

[
exp

(
−
∫ 1

0

∇ · bF (t, Y Bt)dt

)
p0(Y

B
0)

∣∣∣∣Y B1 = x

]
pB1 (x) = E

[
exp

(
−
∫ 1

0

∇ · bB(t, Y Ft)dt

)
p1(Y

F
1)

∣∣∣∣Y F0 = x

]
Other interpolants include:
– Diffusive interpolant

xt = I(t, x0, x1) +
√
2a(t)Bt

B: Brownian bridge

– One-sided interpolant

xt = α(t)x0 + J(t, x1)

α : 0⇝ 1

J : 0⇝ x1

– Mirror interpolant (cf denoisers)

xt = k(t, x1) + γ(t)z

k : x1 ⇝ x1

– Linear interpolant

xt = α(t)x0 + β(t)x1 + γ(t)z

α(0) = β(1) = 1

α(1) = β(0) = γ(0) = γ(1) = 0

∀t α2 + β2 + γ2 = 1

The Schrödinger bridge problem is

Find u, p

To minimize
∫∫

t∈[0,1]
x∈Rn

|u|2 p

Such that ∂tp+∇ · (up) = ε∆p
p(0) = p0, p(1) = p1

Its solution is p,∇λ, where

∂tp+∇ · (∇λp) = ε∆p

∂tλ+ 1
2 |∇λ|

2
= ε∆λ.

How to avoid machine learning pitfalls:
a guide for academic researchers

M.A. Jones

Flow matching for generative modeling
Y. Lipman et al.

A time-dependent vector field v : [0, 1] × Rd → Rd

defines a flow φ : [0, 1]×Rd → Rd

φ̇t(x) = vt
(
φt(x)

)
φ0(x) = x

and a probability density path

pt = (φt)∗(p0)

or, equivalently (continuity equation)

ṗ+ div(pv) = 0.

For each observation x1 ∈ Data, the optimal trans-
port from N(0, I) to N(x1, σ

2
min) defines the condi-

tional probability path

xt ∼ N
(
tx1,

[
1− σmin

]2)
= pt(·|x1)

and the corresponding conditional vector field

ut =
x1 − (1− σmin)x

1− (1− σmin)t

(the deterministic probability flow of denoising diffu-
sion models is more complex and can overshoot).
Find a vector field vt (a deep neural network) vt mini-
mizing the conditional flow matching (CFM) objective

E
t∼Unif(0,1)
x1∼Data
x∼pt(·|x1)

‖vt(x)− ut(x|x1)‖2

(easier to train than score matching).

Article and book summaries by Vincent Zoonekynd 54/1044

Improving and generalizing
flow-based generative models

with minibatch optimal transport
A. Tong et al.

The flow-matching objective

L (θ) = E
t∼Unif(0,1)
x1∼Data
x∼pt(·|x0)

‖vθ(t, x)− ut(x|x1)‖2

where

pt = N
(
tx1, (tσ − t+ 1)2

)
ut(x|x1) =

x1 − (1− σ)x
1− (1− σ)t

can be generalized to

E
t∼Unif(0,1)
x0,x1∼q

x∼pt(x0,x1)

‖vθ(t, x)− ut(x|x0, x1)‖2

where

q(x0, x1) = q(x0)q(x1) (independent coupling)
ut(x|x0, x1) = x1 − x0
pt(·|x0, x1) = N

(
tx1 + (1− t)x0, σ2

)
or q = optimal transport from q0 to q1, or the entropy-
regularized optimal transport.

q = Argmin
(pr0)#π=q0
(pr1)#π=q1

KL(π‖πref)

pt = N
(
tx1 + (1− t)x0, t(1− t)σ2

)
ut =

1− 2t

2t(1− t)
[
x−

(
tx1 + (1− t)x0

)]
+ (x1 − x0)

Implementation in torchcfm.

Minibatch optimal transport distances;
analysis and applications

K. Fatras et al.
Computing the optimal distance on minibatches and
averaging is efficient and biased (and it is no longer a
distance); it can be debiased.

Poisson flow generative models
Y. Xu et al.

Given a probability distribution on Rn, put electric
charges in [z = 0] ⊂ Rn × R according to it, and
consider the motion of a particle (of the same charge)
starting at (x, ε) ∈ Rn×R, ε > 0: after a while, those
particles will be uniformly distributed on a hemisphere.
To generate data from this distribution, start with uni-
form data on a large hemisphere, and let it evolve along
the reverse process.

Learn the Poisson field from data.

∆φ = −ρ Poisson equation
ρ : Rn+1 → R Source function
φ : Rn+1 → R Potential function
E = −∇φ Poisson field
∂p

∂t
= −∇ · (pE) Gradient flow

φ(x) =

∫
G(x, y)ρ(y)dy

G(x, y) ∝ ‖x− y‖(n+1)−2

PFGM++: unlocking the potential
of physics-inspired generative models

Y. Xu et al.
PFGM adds one dimension; instead, add D dimen-
sions. The limit D →∞ corresponds to diffusion mod-
els, but smaller values give more robust models.

Elucidating the design space
of diffusion-based generative models

T. Karras et al.
Diffusion models consider a process in which we pro-
gressively add noise to a sample from the data distri-
bution

x0 ∼ p0 (data)
xk+1 = xk + εk+1, εk+1 ∼ N(0, σ2

k+1I).

For k � 1, xk is approximately Gaussian

xk ∼ pk ≈ N(0, σ2I).

Diffusion models try to reverse that process, starting
with xk ∼ N(0, σ2I), and trying to find x0 ∼ p0.
Instead of looking at samples xk, we can look at the
corresponding distributions

pk+1 = pk ∗N(0, σ2
k+1I).

In the continuous limit, we have a probability flow

x(0) ∼ p0
ẋ = −σ̇σ∇x log pt.

Deterministic diffusion models sample from p0 as fol-
lows:
– Learn the score function s = ∇x log pt from data;
– Sample from x(1) ∼ N(0, σ2I) ≈ p1;
– Solve the ODE using x(1) as final condition;
– x0 is then distributed as p0.
The ODE ẏ = f(t, y) can be solved with Euler’s
method

yi+1 = yi + hf(ti, yi)

or Heun’s method (aka improved Euler, trapezoidal)

ỹi+1 = yi + hf(ti, yi)

yi+1 = y1 + h
f(ti, y1) + f(ti+1, ỹi+1)

2
.

Article and book summaries by Vincent Zoonekynd 55/1044

If we keep the stochasticity, the ODE becomes an SDE

dx± = −σ̇σsdt± βσ2sdt+
√
2βσdW

where β = σ̇/σ (other choices are possible), i.e.

dx+ =
√

2βσdW adding noise
dx− = −2σ̇σsdt+

√
2βσdW̄ denoising.

This is Anderson’s time reversal formula

dX = µdt+ σdW

dX̄ = (µ− σ2s)dt+ σdW̄

s = ∇x log p

(valid if σ = σt does not depend on t). As in the deter-
ministic case, stochastic diffusion models sample from
p0:
– Learn the score function from data;
– Sample x(1) ∼ N(0, σ2I) ≈ p1;
– Solve (i.e., sample from) the backward SDE;
– x(0) is then distributed as p0.
To solve (i.e., sample from) an SDE dX = µdt+σdW ,
Euler-Maruyama performs an ODE step and then adds
noise;

Euler ∆X = µ∆t+ σ∆W

Milstein ∆X = µ∆y + σ∆W + 1
2σσ

′[(∆W)2 −∆y
]

RK ŷn = yn + µ(yn)∆t+ σ(yn)(∆t)
1/2

yn1 = yn + µ(yn)∆t+ σ(yn)∆W +

σ(ŷn)− σ(yn)
2

(∆W)2 −∆t√
∆t

reversing those operations (pay attention to the step
size: it has to remain the same SDE).

x̃i+1 = x1 + µ(xi, ti)h

xi+1 = x̃i+1 + σ(xi, ti)(Wi+1 −Wi)

The score can be computed from a denoiser

D(·, σ) = Argmin
D

E
y∼Data

E
ε∼N(0,σ2I)

‖D(y + ε, σ)− y‖2

∇x log p(x, σ) =
D(x, σ)− x

σ2

Do not learn D directly (the magnitudes of the inputs
and outputs depend on σ) but F

D(x, σ) = x− σF (x)

or, better

D(x, σ) = c1(σ) + c2(σ)F
(
c3(σ)x, c4(σ)

)

σ2
data

σ2 + σ2
data

σ · σdata√
σ2 + σ2

data 1√
σ2 + σ2

data

log σ

In the loss, use 1/c22 as weights.

Use data augmentation but, to prevent the augmenta-
tions from leaking into the generated images, use the
augmentation parameters as conditioning inputs fo F ,
and set them to zero during inference.

The unreasonable effectiveness
of deep features as a perceptual metric

R. Zhang et al.
The average distance between latent representations
is more consistent with human evaluations than tra-
ditional metrics. Add a linear layer after the latent
representation, or fine-tune the whole network, if you
have data (LPIPS, learned perceptual image patch sim-
ilarity).

Tackling decision processes
with non-cummulative objectives

using reinforcement learning
M. Nägele et al.

Non-cummulative MDPs (NCMDP) maximize an ar-
bitrary function of the rewards, rather than their dis-
counted sum: Sharpe ratio, weakest link (maximize the
minimum reward), optimization (find the state with
the maximum reward). To apply classical RL algo-
rithms, turn the NCMDP into an MDP:
– Replace the rewards with f(r⩽t) - f(r<t);
– Augment the state space to make the decision pro-
cess Markov (sufficient statistics).

Text embeddings reveal
(almost) as much as text

J.X. Morris et al.
To invert vector embeddings of text, one could learn a
mapping{

embeddings −→ distributions on text
e 7−→ p(t|e).

Instead, train an error-correcting model (e, ε) 7−→
p(t|e, ε) and apply it iteratively

e 7−→ t 7−→
(
e, emb(t)− e

)
7−→ t 7−→ · · ·

(4 times is enough).

Lag-Llama: towards foundation models
for probabilistic time series forecasting

K. Rasul et al.
Pretrain a transformer on 8000 time series (with strat-
ified sampling), using lag features and time features,
and Freq-Mix, Freq-Mask data augmentation, for uni-
variate probabilistic forecasts (output the parameters
of a Student T distribution). Also check: AutoArima,
AutoETS, CrostonSBA, DynOptTheta, NPTS; Au-
toGluon (DeepAR, PatchTST, TFT); N-BEATS, In-
former, Autoformer, ETSFormer; OneFitsAll.

Article and book summaries by Vincent Zoonekynd 56/1044

MOMENT: A family of open
time-series foundation models

M. Goswami et al.
The time series pile is a large collection of time series
from various domains. Train a simple transformer (3
sizes) for masked prediction (divide the time series into
patches, mask some of them, project to a d-dimensional
embedding, apply a transformer, and reconstruct the
patches); use for forecasting, prediction, anomaly de-
tection, imputation.
Non-transformer approaches may work better:
ARIMA (short-horizon forecasting), N-BEATS (long-
horizon), k-NN (anomaly detection).
Also check: Time-LLM, GPT4TS (OneFitsAll),
TimesNet, PatchTST, FedFormer, DLinear, Station-
ary, LightTS, SeasonalNaive, AnomalyTransformer

One Fits All: power general time series
analysis by pretrainined LM

T. Zhou et al.
LLMs are of the form

input encoder transformers decoder output.

Freeze the transformers (the “intelligence” of the
model) and retrain just the encoder (patch embedding)
and decoder, for time series tasks (imputation, classifi-
cation, anomaly detection, long-term/short-term/few-
shot/zero-shot forecasting).

A time series is worth 64 words:
long-term forecasting with transformers

Y. Nie et al.
PatchTST (time series transformer):
– Does not use pointwise attention, but segments the
time series into patches;

– Independently processes the components of a multi-
variate time series, with shared weights for the em-
bedding and transformers.

Informer: beyond efficient transformer
for long sequence time series forecasting

H. Zhou et al.
The sparsity of a query qi is

KL
(
Unif ‖ p(kj |qi)

)
;

up to a constant

log
∑
j

exp
qik
⊤
j√
d
−Mean

j

qik
⊤
j√
d
.

ProbSparse attention is

(Q,K, V) 7−→ Softmax
(
Q̄K⊤√

d

)
V

where Q̄ only contains the top-u entries of Q (the oth-
ers are uninformative).

Self-attention distillation reduces the time dimen-
sion (1-dimensional convolution, width=3, maxpool-
ing, stride=2).

Autoformer: decomposition transformers
with autocorrelation

for long-term series forecasting
H. Wu et al.

Autocorrelation self-attention uses a convolution be-
tween keys and values instead of a product.

Q

K

V

F

F
F−1×

×

top-k

FEDFormer: frequency enhanced decomposed
transformer for long-term series forecasting

T. Zhou et al.
Use a seasonal-trend decomposition, and apply the
transformer in the frequency domain.

ITransformer: inverted transformers
are effective for time series forecasting

Y. Liu et al.
(For multivariate time series), instead of attention be-
tween timestamps, use attention between time series.

Anomaly transformer: time series anomaly
detection with association discrepancy

J. Xu et al.
Anomalies, in a time series, may be similar to their im-
mediate neighbourhood, but not the whole series. The
anomaly transformer measures this by the discrepancy
(symmetrized KL divergence) between the “prior asso-
ciation”

Pi = φ

(
−|j − i|

σi

)
1⩽j⩽N

and the “series association”

Si = Softmax
(
QiK

⊤
√
d

)
.

The prior association is trained to minimize discrep-
ancy. The series association is trained to maximize
discrepancy and reconstruct the input.

Mamba: linear time sequence modeling
with selective state spaces

A. Gu and T. Dao
The S4 model is a continuous model

ḣ = Ah+Bx

y = Ch,

Article and book summaries by Vincent Zoonekynd 57/1044

discretized

ht = Āht−1 + B̄xt

yt = Cht
ht−1 ht

xt

yt

B
A

C

The discretization can be naive

Ā = I + hA

B̄ = hB

or not

Ā = exp(∆A)

B̄ = (∆A)−1(Ā− I)(∆B).

The matrix A is structured, e.g., diagonal. The state
space model (SSM) is applied independently to each
channel. Since the model’s dynamics are constant over
time (linear time invariant (LTI) model), it can be com-
puted efficiently.
In the S6 model, B, C, ∆ depend on the input x (lin-
early, with a softplus for ∆). It can still be imple-
mented efficiently.

A decoder-only foundation model
for time series forecasting

A. Das et al.
Yet another time series foundational model, which
breaks down the time series into patches (with larger
patches in the output than in the input, for long-term
forecasts).

Time-LLM: time series forecasting
by reprogramming large language models

M. Jin et al.
Use a pretrained LLM for time series forecasting: as in-
puts, provide an embedding (pre-trained, frozen) of a
textual description of the time series (metadata in the
prompt) and a sequence of patch embeddings (trained
transformer); process with a pretrained, frozen LLM;
and decode the output into a time series (trained trans-
former).

textual
description

time series
patches

LLM Transformer

embedding embedding

LLM

Transformer

output time series
Frozen
Trained

Learning programs by learning from failures
A. Cropper and R. Morel

Popper is an inductive logic programming (ILP) sys-
tem (learning from failures, LFF):
– Start with a set of hypotheses;
– Pick one of them, check if it fits the data;
– Prune the set of hypotheses if it does not (remove its
generalizations if the hypothesis entails a negative
example (too general), remove its specializations if
it does not entail all the positive examples (too spe-
cific).

Also check: Aleph, Metagol (Prolog), ILASP3 (answer
set programming), ∂ILP (neural nets).

Direct least squares fitting of ellipses
A. Fitzgibbon et al. (1999)

To fit an ellipse (not an arbitrary conic) to a cloud of
points

Find a = (a b c d e f)′

To minimize
∑
i F (a · xi)2

Subject to b2 − 4ac = −1
Where x = (x2 xy y2 x y 1)′

(the constraint can be written a′Ca = 1).
Using Lagrange multipliers, this reduces to a general-
ized eigenvalue problem

D′Da = λCA

a′Ca = 1

where the design matrix is D = [x1, . . . , xn]
′. The so-

lution is given by the unique positive eigenvalue.

Topological time series analysis
J.A. Perea

The maximum persistence (length of the longest in-
terval in the 1-dimensional barcode) is a useful fea-
ture, e.g., for periodicity quantification (gene expres-
sion, video) and regime (changepoint) detection.

Sliding windows and persistence:
an application of topological methods

to signal analysis
J.A. Perea and J. Harer (2013)

Maximum persistence can be used to quantify period-
icity (deciding whether a time series is periodic). Also
check: jtk_cycle, Lomb-Scargle.

Jtk_cycle: an efficient non-parametric
algorithm for detecting rhythmic components

in genome-scale datasets
M.E. Hughes et al. (2010)

To test if a signal is periodic:

Argmax
ϕ,T

τ
(
x[i], sϕ,T [i]

)
Article and book summaries by Vincent Zoonekynd 58/1044

where x is the data, i = argsort(x), τ is Kendall’s tau,
and sϕ,T is a signal with phase φ and period T – but the
objective function oscillates a lot. R implementation in
MetaCycle.

MetaCycle: an integrated R package
to evaluate periodicity in large scale data

G. Wu et al.

Universal differential equations
for scientific machine learning

C. Rackaukas et al. (2021)
UDEs model physical systems as x′′ = fθ(x) + ε(x),
where
– fθ is a known function corresponding to a known
approximation of the phenomenon (or 0);

– θ are unknown parameters (mass of an object, charge
of a particle, etc.);

– ε is a free-form unknown function (e.g., a neural net);
– The ODE can be replaced with a PDE.

Down with determinants
S. Axler (1995)

Most of linear algebra (eigenvalues, minimal polyno-
mial, characteristic polynomial, Jordan form, etc.) can
be done without determinants – they are still needed
for the change-of-variable formula in multiple integrals,
but they can be defined as the product of the eigenval-
ues, with multiplicity. More details in his book, Linear
algebra done right.

A survey of the Schrödinger problem and some
of its connections with optimal transport

C. Léonard (2014)
The dynamic Schrödinger problem (Schrödinger
bridge) is

Minimize
P

KL(P‖R) such that P0 = µ0, P1 = µ1

where
– P is a probability measure on C 0

(
[0, 1],Rn

)
;

– R is the law of Brownian motion on Rn (unbounded
measure);

– µ0, µ1 are probability measures on Rn (prescribed
marginals).

The static Schrödinger problem is

Minimize
π

KL
(
π‖R01

)
such that π0 = µ0, π1 = µ1

where
– R01 is the joint law of the initial and final positions
of R;

– π is a probability measure on (Rn)2.
The two are linked by

P (·) =
∫
(Rn)2

Rxy(·)π(dx dy)

where Rxy is the Brownian bridge from x to y

Rxy(·) = R(·|X0 = x,X1 = y)

(the Schrödinger bridge is a mixture of Brownian
bridges, governed by π).
These are eerily similar to the (Monge-Kantorovich)
dynamical and static optimal transport problems.

An introduction to Otto’s calculus
L. Ambrosio et al. (2021)

The Wasserstein distance on Pa
2 (R

2), the space of ab-
solutely continuous measures µ = ρdx, comes from the
scalar product on TρPa

2 (R
n)

〈s, s′〉 =
∫
〈∇φ,∇φ′〉ρdx

where
• s, s′ ∈ TρPa

2 (R
n), i.e., they are functions with zero

mean,
∫
sρdx = 0;

• − div
[
(∇φ)ρ] = s;

• − div
[
(∇φ′)ρ] = s′.

The gradient flow ρt for the vector field ∇φt is the
solution of the continuity equation

d

dt
ρt + div

[
(∇φt)ρt

]
= 0.

Comment: causal inference competitions:
where should we aim?

E. Karavani et al.
Because of the “fundamental problem of causal infer-
ence” (we cannot observe counterfactuals), we have to
limit ourselves to simulation studies. But they rely on
strong/arbitrary assumptions, which may not hold in
real setups: vary the parameters of the DGP, and score
them separately (only aggregate the scores if you need
to select a single winner). It is possible to use real ob-
servational data, when there is a soon-to-be published
experimental trial.

Adjustment identification distance:
a gadjid for causal structure learning

L. Henckel et al.
To define a causal distance between two DAGs, gtrue
and gguess

– For each pair of nodes (TmY), compute a valid ad-
justment set in gguess;

– Check if it is a valid adjustment set in gtrue;
– Count the discrepancies.
There are many possible choices for the valid adjust-
ment set:
– The parents of T (this gives the SID, structural in-
tervention “distance” – note that d(gtrue, gguess) = 0
iff gtrue ⊂ gguess);

– All the nodes before T in a topological order;
– The “optimal adjustment set”.

Article and book summaries by Vincent Zoonekynd 59/1044

This can be generalized to other (non-adjustment-
based) identification strategies, provided you can check
if it is valid.
Implementation (Rust/Python) for DAGs and
CPDAGs in gadjid.

Graphical criteria
for efficient total effect estimation

via adjustment in causal linear models
L. Henkel et al. (2020)

Parent adjustment is not optimal, in terms of asymp-
totic variance. Instead, use pa(cn) \ forb, where
– cn are the “causal nodes” of X → Y , i.e., nodes on

a directed path X → · · · → Y , excluding X but
including Y (mediators);

– pa are the parents;
– forb = de(cn) ∪ {X}: forbidden nodes;
– dec(cn) are the descendants of cn, including cn.
The adjustment set prefers variables explaining less of
X and more of Y . For instance, if the DAG is

A B

X Y

do not condition on A, but on B.

Measuring causality with the
variability of the largest eigenvalue

A.R. Dominguez and O.H. Yadav (2024)
λ1/(λ1 + λ2) where {λ1, λ2} is the spectrum of
Var[Yt, Xt−k].

Efficient causal graph discovery
using large language models

T. Jiralerspong et al.
To learn causality from metadata, using an LLM, do
not feed the pairs of variables one by one (“which is
more likely? 1. A → B 2. B → A 3. A ← · → B 4.
A ⊥⊥ B) but progressively
– Which are the variables not caused by any other?
– Which are the variables caused directly by X? (Give

all the conclusions so far to the LLM; you can also
provide more information, e.g., Cor(X, ·).)

– Continue, depth-first, until you have exhausted all
the variables.

A survey on causal discovery:
theory and practice

A. Zanga and F. Stella (2023)
Conditional independence relations cannot distinguish
between all DAGs: they can only recover the Markov
equivalence class (MEC) of the causal model, which
can be described by its CPDAG (completed partial di-
rected acyclic graph), a PDAG where
– All undirected edges are reversible (you can choose
either direction, that will not change the MEC);

– All directed edges are compelled (if you flip them,
the graph moves to another MEC).

If we want to account for missing confounders, things
get more complicated, and the graphs (partial ances-
tral graphs, PAG) have 4 types of edges:
– X Y cause
– X Y unobserved confounder
– X Y cause or missing confounder
– X Y any of the above
Allowing for cycles (feedback) complicates things fur-
ther (σ-separation and directed mixed graphs).
Here are some causal discovery algorithms.
– The PC algorithm starts with a complete graph, uses
conditional independence tests to remove edges and
identify colliders, and finally orients some of the re-
maining edges, assuming we have found all the col-
liders.

– The FCI algorithm generalizes this to account for
unobserved confounders.

– The GES algorithm (greedy equivalence search)
adds the edges one by one, to increase a score (BIC,
AIC, BDeu, BDs).

– FGES is an efficient implementation of GES, avoid-
ing recomputations.

– Greedy FCI (GFCI), is FCI on the GES skeleton.
– LinGAM assumes the SCM is linear with non-
Gaussian independent noise x = Ax+ ε (with A tri-
angular), i.e., ε = (I−A)x, and uses ICA to find the
linear transformation of x whose coordinates maxi-
mize non-Gaussianity.

– NOTEARS looks for a matrix A such that x ≈ Ax,
with the constraint that it be acyclic – this can be
formulated as tr exp |A| = n, where A is the elemen-
twise absolute value and n the number of variables.

– Interventional algorithms include GIES, IGSP, FCI-
JCI, Ψ-FCI, DCDI, etc.

Methods and tools
for causal discovery and causal inference

A.R. Nogueira et al. (2022)
Another causal discovery review paper.

Stochastic causal programming
for bounding treatment effects

K. Padh et al.
In presence of unobserved confounders, auxilliary vari-
ables can help identify causal effects.

instrumental variable mediator proxy
X Y

I Z

X YM

Z

X Y

UZ

Stochastic causal programming (SCP) does not model
the distribution of the unobserved confounders but, for
each variable V

PaV V

Z

Article and book summaries by Vincent Zoonekynd 60/1044

the distribution over function fz,V

V = fz,V (PaV)

with basis functions, and constraints (smoothness,
maximum number of inflection points, etc.). We
can then compute the maximum and minimum of
E
[
Y | do(X = x)

]
over all plausible models.

A versatile causal discovery framework
to allow causally related hidden variables

X. Dong et al.
D-separation can be inferred by conditional indepen-
dence tests. T-separation can be inferred by the rank
of the (cross)covariance matrix

rankΣA,B = Min
{
|CA|+ |CB | : A ⊥⊥tB |CA, CB

}
.

It subsumes d-separation, and is more informative in
presence of latent variables.

A ⊥⊥dB |C iff rankΣA∪C,B∪C = |C|

A trek X (P1,P2)−→ Y is a pair of paths with the same
source, and X and Y as respective sinks. A and B are
t-separated given (CA, CB) if, for every trek (P1, P2)
from a node in A to a node in B, either P1 ∩ CA 6= ∅
or P2 ∩ CB 6= ∅.

Causal inference for time series analysis:
problems, methods and evaluation

R. Moraffah et al.
Causal discovery for time series often relies on (gen-
eralizations of) Granger causality, the PC algorithm
(PCMCI) or structural equation models (LiNGAM on
VAR residuals).

Review of causal discovery methods
based on graphical models

C. Glymour et al.
Clear explanation of the PC, FCI and LiNGAM algo-
rithms.

Introduction to the foundations
of causal discovery

F. Eberhardt (2016)
Use a MaxSAT solver to combine background knowl-
edge with the output of a causal discovery algorithm.
A random variable (X1, . . . , Xn) is Markov wrt a graph
G if ∀X X⊥⊥NonDesc(X) |Pa(X); this implies

X ⊥⊥dY |C =⇒ X ⊥⊥ Y |C.

It is faithful to the graph if the converse holds:

X ⊥⊥ Y |C =⇒ X ⊥⊥dY |C

(i.e., the graph has no extra edges, and there are no
cancellations).

Causal discovery on high-dimensional data
Z. Hao et al. (2014)

To find a causal graph in high dimension:
– For each variable y, find its potential neighbours by

using the max relevance min redundancy criterion

Maximize
S

∑
x∈S

I(y;x)− 1

|X|
∑
x,x′∈S

I(x;x′);

greedily:

xk+1 = Argmax
x∈X\Sk

I(y;x)− 1

k

∑
x′∈Sk

I(x;x′)

Sk+1 = Sk ∪ {xk+1}.

– Use conditional independence tests (χ2, G or kernel-
based) to prune S and only keep direct causes and
consequences of y;

– Orient the edges with entropy-based IGCI: if x is
more random than y, i.e., if H(x) > H(y), then
choose the direction x→ y.

A causal feature selection algorithm
for stock prediction modeling

Z. Zhang et al. (2013)
Replace feature selection (lasso, etc.) with causal fea-
ture selection:
– Greedily add variables x with large I(x; y), unless
they are independent of x conditionally on the vari-
ables already selected;

– Identify the causes of y by noticing that y is a collider
for them.

CausalTime: realistically generated time
series for benchmarking of causal discovery

Y. Cgeng et al.
– Fit a non-linear VAR (NAR) (with noise modeled
with a normalizing flow);

– Define the parents of a variable Xi as the variables
with the largest feature importance (DeepShap);

– Split the NAR into 3 terms: causal (from the iden-
tified parents), residual and noise

xi = fi(x�H) +
[
fi(x)− fi(x�H)

]
+ εi

where H is the adjacency matrix of the discovered
parents;

– Use the model to generate new data, of dimension
2N , keeping (separately) both the causal and resid-
ual terms, with adjacency matrix[

H 1
I 0

]
.

Article and book summaries by Vincent Zoonekynd 61/1044

Beware of the simulated DAG! Causal
discovery benchmarks may be easy to game

A.G. Reisach et al.
Sorting the variables by increasing variance can recover
a topological order of the causal graphs; use the lasso
(regressing each variable on its potential parents) to
recover the graph.
If the data has been normalized, correlations tend to
increase (decrease) in the causal (anti-causal) direction:

i→ j → k Cor(Xi, Xj) ⩽ Cor(Xj , Xk).

Approximate kernel-based
conditional independence tests

for fast nonparametric causal discovery
E.V. Strobl et al.

The kernel conditional independence test (KCIT) can
be approximated with random features (randomized
conditional independence test, RCIT):

H0 : X ⊥⊥ Y |Z
Ẍ = (X,Z)

Ä =
[
f1(Ẍ), . . . , fm(Ẍ)

]
B̈ =

[
h1(Y), . . . , hq(Y)

]
C̈ =

[
g1(Z), . . . , gd(Z)

]
g1(Z) =

√
2 cos(W⊤Z +B)

W ∼ N(0, I)

B ∼ Unif(0, 2π)
idem for the fi’s and hi’s

Σ̂ÄB·C = Σ̂ÄB − Σ̂AC
(
Σ̂CC + γI

)−1
Σ̂CB

= Cov
[
res(Ä ∼ C), res(B ∼ C)

]
(using ridge regression).
The randomized conditional correlation test (RCoT)
uses X instead of Ẍ.

test statistic = n
∥∥∥Σ̂ÄB·C∥∥∥2

F

(the distribution of the test statistic under H0 is com-
plicated: linear combination of χ2 variables, with
weights given by the eigenvalues of some covariance
matrix).

Conditional independence testing
based on a nearest neighbour estimator

of conditional mutual information
J. Runge

Conditional mutual information

I(X;Y |Z) = H(X,Z)+H(Y, Z)−H(Z)−H(X,Y, Z)

can be estimated with the KL (Kozachenko-Leonenko)
entropy estimator. To estimate its (finite-sample) dis-
tribution under

H0 : X ⊥⊥ Y |Z

use random permutations, taking care to only destroy
the relation between X and Y , while preserving that
between X and Z.
Python implementation in tigramite.

Better simulations
for validating causal discovery

with the DAG-adaptation of the onion method
B. Andrews and E. Kummerfeld

The onion method samples from the space of correla-
tion matrices by building correlation matrices one di-
mension at a time.

Ri+1 =

(
R1 ri+1

r′i+1 1

)
1− r′i+1R

−1
i ri+1 < 1

It can be modified to sample from correlation matrices
compatible with a given DAG.

Causal discovery
from heterogeneous/nonstationary data

B. Huang et al.
CD-NOD is a PC-like causal discovery algorithm,
which deals with heterogeneous and/or nonstation-
ary data by adding a “domain” and/or “time” vari-
able; variables connected to them have changing causal
mechanisms. Assuming that the distribution shifts are
due to a small number of variables also helps identify
some edge directions: in the situation

X

C

Y,

if we see changes in P (X|Y) and P (Y) and (P (X) xor
P (Y |X)), we conclude that X → Y .

Amortized causal discovery: learning
to infer causal graphs from time series data

S. Löwe et al.
Neurons (in different patients s) have the same dynam-
ics, but different connectivity (causal graphs) Gs

xt+1
s = g(x⩽ts , Gs).

Model them, jointly, as

Ĝs = fϕ(xs)

xt+1
s ≈ fθ(x⩽ts , Ĝs).

Baselines:
– Linear Granger causality;
– Neural Granger causality, with MLP, LSTM, or
eSRU (economy statistical recurrent unit);

– MPIR (minimum predictive information regulariza-
tion);

– Transfer entropy;
– Mutual information.
Data: particles; phase-coupled oscillators; simulated
fMRI (netsim).

Article and book summaries by Vincent Zoonekynd 62/1044

Neural Granger causality
A. Tank et al.

Nonlinear Granger causality, with a sparse-input MLP
or an LSTM.

Economy statistical recurrent units
for inferring nonlinear Granger causality

S. Khanna and V.Y.F. Tan
The statistical recurrent unit (SRU) is yet another
RNN/GRU/LSTM variant, with feedback. Use it,
componentwise, for nonlinear Granger causality test-
ing: the causal relations can be extracted from the
model parameters. Reduce the number of parame-
ters by reducing the dimension of (some of) the latent
space(s) with sketching (fixed random projections),
and add sparsifying penalties.

Discovering nonlinear relations with minimum
predictive information regularization

T. Wu et al.
To test for Granger causality with neural nets, there
is no need to try the variables one by one: allow each
Xj,t−1 to have learnable corruption X̃j,t−1, as much as
possible (measure it with the mutual information be-
tween X̃j,t−1 and Xj,t−1) while maintaining good pre-
diction of Xit.

Causal structure learning
supervised by large language model

T. Ban et al.
Use some (data-based) causal learning algorithm; then
ask an LLM if the edges are correct, and add a con-
straint to remove the incorrect edges; iterate until con-
vergence.

The DeCAMFounder: nonlinear causal
discovery in the presence of hidden variables

R. Agrawal et al.
To estimate a causal graph in presence of pervasive con-
founding (unobserved confounders affecting many ob-
served variables), use PCA to recover (sufficient statis-
tics) of the unobserved variables.

ABIDES-Economist: agent-based simulation
of economic systems with learning agents

K. Dwarakanath et al.
Multi-agent system, with households (labour, con-
sumption, saving), firms (wages, prices, production, in-
ventory), central bank (interest rate) and government
(tax rate, tax credits).

RiskMiner: discovering formulaic alphas
via risk-seeking Monte Carlo tree search

T. Ren et al.
Alpha mining, not with a genetic algorithm (gplearn),
but with reinforcement learning (MCTS), with

– Cor(α, returns)−Meanα′ Cor(α, α′) as intermediate
rewards, to ensure diversity;

– Cor(α, returns) = IC as final reward.
Do not optimize the expected cummulated reward, but
some quantile of it.

DiffsFormer: a diffusion transformer
on stock factor augmentation

Y. Gao et al.
Diffusion models (DDPM) progressively add noise to
their input

xt =
√
1− βtxt−1 +

√
βtεt, εt ∼ N(0, I),

equivalently,

xt =
√
ᾱtx0 +

√
1− ᾱtε, ε ∼ (, I),

and try to reverse the process

Minimize
θ

E
x0∼data
ε∼N(0,I)
t∼Uniform

‖ε− εθ(xt, t)‖2 .

Do not denoise pure noise, but noisy inputs (diffusion-
based augmentation).

ABCs (and Ds) of understanding VARs
J. Fernández-Villaverde et al.

In a state space model

xt+1 = Axt +Bwt+1

yt+1 = Cxt +Dwt+1

where x is hidden and w are stocks, when can we re-
cover the shocks wt+1 by comparing yt+1 and Et[yt]?

DSGE SSM VAR

DSGE models
A. Mikusheva (2007)

A DSGE model considers agents (firms, households,
banks, state, etc.), each maximizing its utility, sub-
ject to a few balance equations. Writing the first or-
der equations and linearizing everything gives a linear
SSM, amenable to the Kalman filter (or a particle filter,
if you do not linearize).

Properties of the entropic risk measure EVaR
in relation to selected distributions

Y. Mishura et al.
Explicit computation of the entropic value at risk

EVaRαX = inf
t>0

1

t
log

mX(t)

1− α
mX(t) = E[etX] moment generating function

for a few distributions (using the LambertW function,
W (x)eW (x) = x).

Article and book summaries by Vincent Zoonekynd 63/1044

Ploutos: towards interpretable stock movement
prediction with financial large language model

H. Tong et al.
Have several models (technical analysis, sentiment, fi-
nancial ratios, etc.) output their forecasts as text, with
an explanation, and use another LLM to aggregate
them, with an explanation.

Optimal text-based time series indices
D. Ardia and K. Bluteau (2024)

To convert text (news) into macroeconomic time series,
one typically uses some (trained) sentiment indicator,
computed from heuristically selected documents (based
on the presence of keywords) – instead, the selection
process should be part of the optimization process.
Application to EPU (economic policy uncertainty).

Modeling financial time series
with generative adversarial networks

S. Takahashi et al. (2019)
Stylized facts of financial time series include:
– Linear unpredictability (no correlation);
– Fat tails, 3 < α < 5;
– Volatility clustering Cor

(
|rt| , |rt+k|

)
∝ k−β ;

– Leverage: Cor(rt, σt+k) < 0;
– Coarse-fine volatility correlation

coarset =

∣∣∣∣∣∣
∑

1⩽i⩽τ
rt−i

∣∣∣∣∣∣
finet =

∑
|rt−i|

ρ(k) = Cor(coarset+k, finet)
∆ρ(k) = ρ(k)− ρ(−k) < 0

– Gain-loss asymmetry: the waiting time for a +10%
price change is larger than that for a −10% change
(prices drop faster than they rise).

Macroeconomic regimes
L. Baele et al. (2014)

Model inflation, output and interest rate as

πt = δπ̂t + (1− δ)πt−1 + λyt + noise
yt = µŷt + (1− µ)yt−1 − φ(it − π̂t) + noise
it = pı̂t + (1− ρ)(βπ̂t + γyt) + noise

with regime switching for (β, γ), Var επ, Var εy, Var εi.

Modeling the term structure
of interest rates: an introduction

M. Fisher (2003)

Pricing the term structure
with linear regressions

T. Adrian et al. (2013)

Alternative risk premia timing:
a point-in-time macro, sentiment,

valuation analysis
O. Blin et al. (2018)

List of (multi-asset) long-short strategies.

Probabilistic machine learning
K.P. Murphy (2022)

1. A machine learning problem combines a task, train-
ing data, and a performance measure. Epistemic un-
certainty (model uncertainty) reflects our ignorance of
the model. Aleatoric uncertainty (data uncertainty)
reflects the noise in the model.

model complexity

loss

generalization gap

test (or population)

training

Unsupervised learning can be seen as (interpretable)
data compression.
2. Summary statistics have limitations (Anscombe
quartet, datasaurus dozen).
In medicine, to compute P [infected|test] with Bayes’s
rule, we need sensitivity, specificity and prevalence.

sensitivity× prevalence
sensitivity× prevalence + (1− specificity)× (1− prevalence)

y ∼ Bernoulli
(
σ(w′x+ b)

)
logistic regression

y ∼ Cat
(
softmax(Wx+ b)

)
multinomial logistic regression

The log-sum-exp trick is

log
∑

eai = m+ log
∑

eai−m;

with m = Max ai, the ai − m are negative, and the
exponential does not overflow.
Common distributions include Gaussian, Student,
Laplace, Cauchy, beta, gamma, exponential, chi
squared, inverse gamma.

Exp(λ) = Gamma(1, λ)

χ2(ν) = Gamma
(
ν

2
,
1

2

)

If X ∼ pX and Y = f(X), then Y ∼ pY , where the
change-of-variable formula is

pY (y) = pX
(
f−1(y)

) ∣∣∣∣detdf−1(y)dy

∣∣∣∣ .
If X ⊥⊥ Y , then pX+Y = pX ∗ pY .
3. Simpson’s paradox says that a statistical trend that
appears in different groups can disappear or reverse
sign when those groups are combined.

Article and book summaries by Vincent Zoonekynd 64/1044

The conditional Gaussian distribution is(
Y1
Y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Y1 |Y2 = y1 ∼ N(µ1|2,Σ1|2)

µ1|2 = µ1 +Σ12Σ
−1
22 (y2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 = Λ−111

Λ = Σ−1 =

(
Λ11 Λ12

Λ21 Λ22

)
.

The Bayes rule for Gaussians is: if

z ∼ N(µz,Σz)

y|z ∼ N(Wz + b,Σy)

then z|y ∼ N(µz|y,Σz|y), where

µz|y = Σz|y
[
W ′Σ−1y (y − b) + Σ−1z µz

]
Σ−1z|y = Σ−1z +W ′Σ−1y W

(the Gaussian distribution is conjugate prior for the
Gaussian likelihood).
The “completing the square” trick is not limited to
scalars:

f(x) = x′Ax+ x′b+ x

= (x− h)′A(x− h) + k

h = −1

2
A−1b

k = c− 1

4
b′A−1b

The exponential family density is

p(y) = h(y(· exp
[
η′T (y)−A(η)

]
h: scale, e.g., 1
η: natural parameters, t
T : sufficient statistic, e.g., id
A: log-partition function (convex).

These are maximum entropy distributions, solutions of

Find p
To maximize H(p) (or −KL(p‖h))
Such that E

y∼p

[
T (y)

]
= t.

The log-partition function A is the cummulant gener-
ating function

K(t) = log E[etX]

κn = K(n)(0).

In particular,

∇A(η) = E
[
T (y)

]
∇2A(η) = Cov

[
T (y)

]
≽ 0

and A is convex.

4. The maximum likelihood estimator (MLE) is

θ̂MLE = ArgmaxKL(data‖pθ)
= ArgmaxH(data, pθ) (cross-entropy)
= ArgminNNL(θ) (negative log-likelihood).

For binary classification, use a surrogate loss function
(convex, decreasing, and above 1[z⩽0]) such as

hinge : ReLU(1−m)

log : log(1 + e−m)

exp : exp(−m)

where m = ŷy, y ∈ {±1}, ŷ ∈ R.
The method of moments is an alternative to MLE; it
may give invalid results.
Regularization with logprior is an equivalent to MAP
(maximum a posteriori). Estimate the strength of the
regularization with cross-validation.
The “one standard error rule” suggests to take the sim-
plest model whose risk is no more than one standard
deviation above that of the best model.
The Bayesian approach views probability in terms of
information, rather than repeated trials.
Mixtures of conjugate distributions are still conjugate.
“Uninformative” priors are informative: call them “dif-
fuse” instead.
To estimate the parameters and hyperparameters, one
can use MLE, MAP, or a Bayesian approach – there
is a hierarchy of increasingly Bayesian approaches:
Method Parameters Hyper-parameters
ML ML none
MAP MAP fixed
ML-II (empirical Bayes) Bayes ML
MAP-II Bayes MAP
Full Bayes Bayes Bayes

To summarize the posterior distribution, provide a
(centered) credible interval or the highest posterior den-
sity (HPD) region (highest density interval, HDI).
If exact posterior inference is not possible, use approx-
imations such as
– Laplace approximation∫

f(θ)dθ ≈ (2π)n/2√
detH

f(θMax)

θMax = Argmax f

H = − ∇2 log f
∣∣
θ=θMax

obtained by approximating f with a Gaussian, i.e.,
using a Taylor expansion of f at its mode; use a
change of variable to make f more symmetric and
closer to a Gaussian;

– Variational inference;
– MCMC (HMC).

Article and book summaries by Vincent Zoonekynd 65/1044

In frequentist statistics (the data is a random variable,
the parameters are fixed), the MLE is asymptotically
Gaussian

θ̂MLE
d−→ N

(
θ∗, (NF (θ∗))−1

)
where the Fisher information matrix is

F (θ) = E
X∈pθ

[(
∇ log pθ(X)

)(
∇ log pθ(X)

)⊤]
= − E

X∼pθ

[
∇2 log pθ(X)

]
= Hessian of the NNL.

There is a trade-off between bias and variance.

bias = E[θ̂]− θ∗

V[θ̂] = E[θ̂2]− E[θ̂]2

E[·] = E
D∼pD

[·]

5. The loss function we minimize should include the
cost of incorrect output (and the reward of correct
ones). For instance, classification problems could have
a reject option (the algorithm is allowed to output “I
do not know”).

(p1, . . . , pn) ∼ Dirichlet(1, . . . , 1)
j ∼ Cat

(
[1, . . . , n], [p1, . . . , pn]

)
i = Argmax

i
pi

i = pi > λ ? i : 0

cost =

0 if i = j

λreject if i = 0

λerror otherwise

The threshold λ minimizing E[cost] is

1− λreject
λerror

.

In case of class imbalance, prefer the precision-recall
curve to the ROC curve.
The interpolated precision for a given recall level α is
the maximim precision of a recall level at least α (the
precision is not necessarily decreassing with α). The
average precision is the average of the interpolaated
precisions.
The Fβ score is the weighted harmonic mean of pre-
cision and recall, with weights 1 and β2; if recall
(resp. precision) is more important, try β = 2 (resp.
β = 1/2).
To choose between two models, in a Bayesian way, one
can look at the Bayesian factor (for Bayesian hypoth-
esis testing):

P (M1|D)

P (M2|D)
=
P (M1, D)/P (D)

P (M2, D)/P (D)

=
P (D|M1)P (M1)

P (D|M2)P (M2)

B =
P (D|M1)

P (D|M2)
if P (M1) = P (M2) =

1
2 .

These are marginal likkelihoods (or “evidence”): the
parameters have been integrated out,

p(D|M) =

∫
p(D|M, θ)p(θ|M)dθ.

The marginal likelihood can be difficult to compute: by
approximating the posterior with a Gaussian (Laplace
approximation)

log p(D|M) ≈ log p(D|θ̂) + log p(θ̂)− 1
2 log |H|

H = −∇2 log p(D, θ)|
θ=θ̂

,

choosing a uniform prior p(θ) ∝ 1, and approximating
the Occam factor

H =
∑
i

∇2 log p(Di|θ)

=
∑
i

Hi

≈ N · Ĥ

log |H| ≈ log
∣∣∣NĤ∣∣∣

= D logN + log
∣∣∣Ĥ∣∣∣

≈ D logN

(because log
∣∣∣Ĥ∣∣∣ is constant and becomes negligible

when D logN →∞), we get the Bayesian information
criterion (BIC)

log p(d|m) ≈ log p(D, θ̂,m)− Dm

2
logN

(it is sometimes multiplied by −2 to get a loss). Alter-
natives to the BIC include:

AIC = −2 log p(D|θ̂,m) + 2D

MDL = − log p(D|θ̂,m) = log p(m)

where p(m) is the number of bits needed to specify
which model m it is.
Point null hypotheses, H0 : µ = 0, are irrelevant:
eeplace 0 with a region of practical equivalence (ROPE)
H0 : µ ∈ [−ε, ε]; we can then compute P (H0|Data)
(Bayesian T test).

The (frequentist) risk of an estimator θ̂ is

Risk(θ, θ̂) = E
X∼pθ

[
`
(
θ, θ̂(X)

)]
.

The Bayesian risk integrates out the (unknown) true
parameter θ with a prior.
In supervised learning, the population risk is

Risk(f, p∗) = E
x,y∼p∗

[
`
(
y, f(x)

)]
where (x, y) are sampled from the true (unknown) joint
distribution p∗. The empirical risk replaces p∗ with the
empirical distribution of the observed data

Risk(f,Data) = E
x,y∼Data

[
`
(
y, f(x)

)]
.

The empirical risk can be decomposed into

Article and book summaries by Vincent Zoonekynd 66/1044

– The approximation error (risk of the best model in
the class considered);

– The estimation error (generalization gap), stemming
from the difference between the population distribu-
tion and the empirical distribution.

Add a regularization to the risk

Risk(f,Data) + λC(f)

and choose λ to minimize the LOO-CV risk.
Frequentist hypothesis testing is based on a fallacy:

If H0 were true, this statistic would proba-
bly not occur.
This statistic did occur.
Therefore, H0 is probably false.

If a person is American, he is probably not
a member of congress.
This person is a member of congress.
Therefore, he is probably not American.

6. Joint entropy, mutual information, conditional en-
tropy behave like set union, intersection and difference.

H(p) = E
X∼p
− log2 p(x) entropy

Hce(p, q) = E
X∼p
− log2 q(x) cross-entropy

H(X,Y) = −
∑
x,y

p(x, y) log2 p(x, y) joint entropy

H(Y |X) = E
x∼pX

H(Y |X = x) conditional entropy

= H(X,Y)−H(X)

H(X1, · · · , Xn) =
∑

H(Xi|X1, . . . , Xi−1) chain rule

perplexity(p) = 2H(p) average branching factor

KL(p‖q) = E
X∼p

[
log

p(x)

q(x)

]
relative entropy

= −H(p) +Hce(p, q)

I(X;Y) = KL
(
p(x, y)‖p(x)p(y)

)
mutual information

= H(X)−H(X|Y)

= H(X,Y)−H(X|Y)−H(Y |X)

= H(X) +H(Y)−H(X,Y)

X Y

H(X)

X Y

H(X,Y)

X Y

I(X;Y)

X Y

H(X|Y)

I(X;Y |Z) = E
z∼pZ

[
I(X;Y)|Z = z

]
= I(Y ;X,Z)− I(Y ;Z)

I(Z1, . . . , Zn|X) =
∑

I(Zi;X|Z1, . . . , Zi−1)

NMI(X,Y) =
I(X;Y)

Min
(
H(X),H(Y)

) ⩽ 1

X → Y → Z Markov =⇒ X ⊥⊥ Z |Y
=⇒ I(X;Y) ⩾ I(X;Z)

7. The induced norm of a matrix A ∈ Rm×n is

‖A‖p = Max
∥x∥=1

‖Ax‖p ;

in particular,

‖A‖2 =
√
λmax(A⊤A) = Max

i
σi

is the largest singular value.
The nuclear norm (or trace norm) is

‖A‖∗ = tr
√
A⊤A =

∑
i

σi =
∑
i

|σi| = ‖σ‖1 ;

as an L1 norm, it has a sparsifying effect on the singular
values: it encourages low-rank matrices. The Shatten
norm generalizes it:

‖A‖p =
(∑

σpi
)1/p

.

The Frobenius norm is the L2 norm of the entries of a
matrix,

‖A‖2F = ‖vecA‖22 = tr(R⊤A) = E
v∼N(0,I)

‖Av‖22 .

To invert (or compute the determinant) of a parti-

tioned matrix
(
∗ ∗
∗ ∗

)
, pre-multiply it by

(
I ∗
0 I

)
to

get
(
∗ 0
∗ ∗

)
, and post-multiply the result with

(
I 0
∗ I

)
to get to get

(
∗ 0
0 ∗

)
, which is easier to invert; the re-

sult contains Schur complements E − FH−1G.[
I −FH−1

0 I

] [
E F
G H

] [
I 0

−H−1G I

]
=
[
E − FH−1G 0

0 H

]
Using instead

(
I 0
∗ I

)
and

(
I ∗
0 I

)
and equating the

resulting formulas gives the Woodbury formula (inverse
of a Schur complement)

(E−FH−1G)−1 = E−1+E−1F (H−GE−1F)−1GE−1

(the matrix to invert on the rhs can have a different,
smaller dimension).
Applications include

(Σ +XX ′)
N×N

−1
= Σ−1 − Σ−1X(I +X ′Σ−1X)

D×D

−1
X ′Σ−1,

Article and book summaries by Vincent Zoonekynd 67/1044

the rank-1 update

(A+ uv′)−1 = A−1 − A−1uv′A−1

1 + v′A′u

and the distribution of a conditional Gaussian

X1|X2 ∼ N(µ̄, Σ̄)

µ̄ = µ1 +Σ12Σ
−1
22 (x2 − µ2)

Σ̄ = Σ11 − Σ12Σ
−1
22 Σ21.

PCA whitening

Σ =
1

N
X ′X = EDE′ (eigendecomposition)

X = USV ′ (SVD)
Wpca = D−1/2E′

Y = X
N×D

Wpca
D×D

ensures Cov Y = I, but we can add any rotation
matrix; Mahalanobis whitening keeps the transformed
data as close as possible to the original

Wzca = ED−1/2E′ = Σ−1/2 = V S−1V ′.

The Schur complement of E in
G H

E F
is

E = H − G E

−1

F

Ē = H −GE−1F.

Similarly,

H = E − F H

−1

G

H̄ = E − FH−1G.

8. Gradient descent, with learning rate η < 2/L, where
L is the Lipschitz constant of the gradient, is guaran-
teed to converge,

θt+1 = θt − η∇L (θt).

The Armijo-Goldstein condition, for the stepsize ensure
sufficient reduction of the objective function without
performing an exact line search,

`(θt + ηdt) ⩽ L (θt) + cηd⊤t ∇L ((θt),

where dt is the descent direction, e.g., −∇L (θy), and
c = 10−4.
Momentum methods (heavy ball, Nesterov) modify the
descent direction using past (or extrapolated) gradi-
ents.
Second order methods approximate Newton’s method

θt+1 = θt − η
(
∇2L (θt)

)−1∇L (θt)

by using approximations of the Hessian (BFGS) or
adding constraints (trust region, if the Hessian is not
positive semi-definite, if the objective function is not
convex).
To choose the learning rate, check the loss after a few
epochs, for several learning rates (e.g., in [10−5, 101]).
Common learning rate schedules include
– Exponential decay;
– Polynomial decay;
– One cycle (linear warm-up, followed by cosine cool-
down);

– Cyclical learning rate.

epochs

learning rate

Stochastic variance reduced gradient (SVRG) uses a
control variate: a baseline value of the gradient, com-
puted on the whole dataset, updated once in a while.

gt = ∇L (θt)−∇Lt(θ̃) +∇L (θ̃)

SAGA is similar, but keeps track of the latest gradient
of each minibatch to progressively update the gradient.
Preconditioned SGD

θt+1 = θn − ηM−1t gt

includes AdaGrad, RMSProp, AdaDelta, Adam; non-
diagonal preconditioners include full-matrix AdaGrad

Mt =
[
(GtG

⊤
t)

1/2 + εT
]−1

Gt = [g1, . . . , g1]

and Shampoo (a block-diagonal, Kronecker approxima-
tion).
The constrained optimization problem

Maximize
θ

L (θ) such that g(θ) ⩽ 0, h(θ) = 0

can be written

Minimize
θ

Max
µ⩾0, λ

L (θ) + µ⊤g(θ) + λ⊤h(θ).︸ ︷︷ ︸
L(θ,µ,ν): generalized Lagragian

If L and g are convex, the critical points satisfy the
Karush-Kuhn-Tucker (KKT) conditions

g(θ) ⩽ 0, h(θ) = 0 feasibility

∇L (θ) +
∑

µi∇gi(θ) +
∑

λj∇hj(θ) = 0

µ ⩾ 0 dual feasibility
µ� g = 0

To optimize objective functions of the form

L (θ) = Lsmooth(θ) + Lrough(θ),

Article and book summaries by Vincent Zoonekynd 68/1044

the proximal gradient method uses

θt+1 = proxηLrough

[
θt − η∇Lsmooth(θt)

]
where the proximal operator is

proxηL (θ) = Argmin
z

(
L (z) +

1

2η
‖z − θ‖22

)
= Argmin

z
L (z) such that ‖z − θ‖2 ⩽ ρ

(where ρ depends on η). Examples include
– Projected gradient (hard constraint θ ∈ C, i.e.,

Lrough = IC);
– L1 regularization (soft thresholding)

proxλ∥·∥1(θ) = Argmin
x

‖z‖+ 1

2λ
(z − θ)2

=

θ − λ if θ ⩾ λ
0 if |θ| ⩽ λ
θ + λ if θ ⩽ −λ

– Quantization

Lrough(θ) = inf
θ0∈C

‖θ − θ0‖1 ,

where C = {±1}D (the proximal operator is a gen-
eralization of soft-thresholding: ProxQuant).

The MM algorithm (minorize-maximize) maximizes a
function `(·) by using a surrogate function G(·, ·) such
that

Q(θ, θ′) ⩽ `(θ)
Q(θ, θ) = `(θ)

by iterating θt+1 = Argmax
θ

Q(θ, θt).

The EM algorithm maximizes the likelihood of the ob-
served data y by marginalizing the unobserved (latent,
missing) data z

`(θ) =
∑
n

log p(yn|θ) =
∑
n

log
∑
z

p(yn, z|θ)

by using Jensen’s inequality

`(θ) =
∑
n

log
∑
z

qn(z)
p(yn, z|θ)
qn(z)

⩾
∑
n

∑
z

qn(z) log
p(yn, z|θ)
qn(z)

= ELBO(θ, q1:N)

Q(θ, θ′) = ELBO
(
θ, p(zn|yn, θ)n∈J1,NK)

It can be used to compute the MLE or MAP estimator
of a Gaussian mixture model.
9. A generative classifier is a model of the form

p(y|x) ∝ p(x|y)p(y)

(as opposed to a discriminative classifier, which models
p(y|x) directly). For instance, Gaussian discriminant
analysis uses

X |Y = y ∼ N(µy,Σy);

if the covariance matrices Σy do not depend on y, this
is linear discriminant analysis (LDA); if not, this is
quadratic disriminant analysis (QDA).
Fisher linear discriminant analysis (FLDA) first re-
duces the dimension, choosing the projection giving the
best classification possible.
The naive Bayes classifier assumes that the features are
independent when conditioned on the class label

p(x|y) =
∏
d

p(xd|y).

10. (Binary) logistic regression is a discriminative clas-
sification model

Y |X = x ∼ Bernoulli
(
σ(w′x+ b)

)
.

The gradient and the Hessian of the log-likelihood
can be computed explicitly; Newton’s method can be
formulated as an iteratively-reweighted least squares
(IRLS) problem; Fisher scoring replaces the Hessian
with its expectation, the Fisher information matrix.
(Multinomial) logistic regression can be fitted with
bound optimization (aka the MM algorithm)

`(θ) = Q(θ, θ′)

Q(θ, θ′) = `(θ′) + (θ − θ′)⊤∇`(θ′) + 1
2 (θ − θ

′)⊤B(θ − θ′)
θt+1 = θt −B−1∇`(θt)

where ∀θ H(θ) ≽ B. For binary logistic regression,
B = − 1

4X
⊤X works.

Multinomial logistic regression p(y|x) ∝ exp(w⊤y x) can
be generalized to maximum entropy classifiers

p(y|x) ∝ exp
[
w⊤φy(x)

]
(they are often used in NLP).
For consistent hierarchical classification (taxonomy),
add mutual exclusion constraints between sibling label
nodes.
If there is a large number of classes, try a hierarchi-
cal softmax, i.e., a tree of binary classifiers structured,
e.g., with Huffman coding.
To deal with class imbalance, try:
– Logit adjustment;
– Resampling, to make the data more balanced;

py ∝ Nq
y q ∈ [0, 1]

– Nearest mean classifier

f(x) = Argmin
y

∥∥∥∥φ(x)−Mean
i:yi=y

φ(xi)

∥∥∥∥2
2

where φ are learned features, from a DNN, trained
on the original, unbalanced data.

Article and book summaries by Vincent Zoonekynd 69/1044

To make logistic regression robust, bitempered logistic
regression
– Uses tempered cross-entropy as loss function, to re-
duce the influence of mislabeled points far away from
the decision boundary;

– Uses a tempered softmax to reduce the influence of
mislabeled points close to the decision boundary.

For Bayesian logistic regression, use a Laplace approx-
imation
11. Least squares regression can be fitted with:
– ŵ = (X ′X)−1X ′y;
– SVD (more numerically stable);
– QR (faster if X is tall);
– Conjugate gradient (if X ≽ 0);
– GMRES (if X is sparse);
The gradient and Hessian of the residual sum of squares
are

∇wRSS(w) = X ′Xw −X ′y
∇2
wRSS(w) = X ′X.

Modeling (X,Y) as a joint Gaussian and conditioning
on X is equivalent to linear regression (only for Gaus-
sian models).
Ridge regression linear regression MAP) can be fitted
with standard OLS regression by adding virtual data
to account for the prior; use empirical Bayes

λ = Argmax
λ

log p(D|λ)

to choose the regularization parameter λ.
The lasso is a MAP estimator with a Laplace prior;
it can lead to unstable results if some predictors are
highly correlated (sometimes including one, sometimes
the other) – the elasticnet addresses that problem (if
there is a group of highly correlated predictors, it tends
to include either none or all of them, with comparable
weights: soft grouping).
The lasso can be solved with:
– Coordinate descent (soft-thresholding, one coordi-
nate at a time);

– Projected gradient descent (after writing the lasso
loss as a quadratic program, by splititng w = w+ −
w−;

– Proximal gradient descent (ISTA);
– LARS (a continuation method, aka homotopy
method) to get the whole regularization path: start
with a large value of λ, so that the model only uses
one predictor, progressively decrease λ (it is possible
to find, analytically, the value of λ when the set of
predictors used changes);

– LAR (a greedy simplification of LARS: it only adds
predictors, but never removes them).

For spline regression, check patsy.bs. B-splines use a
fixed number of knots. Smoothing splines use N knots
if there are N data points and add an `2 regularization.

Generalized additive models (GAM) can be estimated
with backfitting.
A Student (SGD, EM) or Laplace (LP) likelihood leads
to robust regression. The Huber loss is faster.
RANSAC makes regression robust by fitting a model
to a small subset of points, using it to remove outliers,
and refitting the model on the inliers (with multiple
restarts).
Bayesian linear regression generalizes ridge regression
(which is just a MAP estimator).
MAP with an empirical Bayes prior on the regression
coefficients results in a sparse estimate ŵ (automatic
relevancy determination, ARD, sparse Bayesian learn-
ing).
12. A GLM is a conditional exponential family

p(y|x,w, σ) ∝ h(y, σ2) exp
〈y, w′x〉
σ2

= h(y, σ2) exp
〈y, η〉 −A(η)

σ2

η = w′x (natural parameter)
E[y|x,w, σ2] = A′(η) = `−1(η)

Var[y|x,w, σ2] = A′′(η)σ2

`: link function

13. The perceptron used a (non-differentiable) Heavi-
side activation function.
MLPs can be used for
– Heteroskedastic regression;

x

y

µ

σ
loss

– Classification (tabular/image/text data);
– etc.
Activation functions include: ReLU, leaky ReLU, ELU,
SELU, Swish (aka SiLU), GELU, etc.
Initialization schemes include Xavier (logistic), He
(ReLU), LeCun, LSUV (layer sequential unit variance:
start with orthogonal weight matrices, and rescale
them so that the activations have unit variance on the
first minibatch).
Rrgularization includes early stopping, weight de-
cay, sparsity (but prefer block-sparse matrices: GPUs
are optimized for dense matrix operations), dropout,
Bayesian neural nets, (stochastic) gradient descent (im-
plicit regularization).
Other feed-forward networks include:
– RBF networks:

y|x ∼ N(w′φµ(x), σ
2
y)

φµ(x) =
[
k(x, µ1), . . . , k(x, µm)

]
k(x, µ) = exp− 1

2σ2
x

‖x− µ‖2

(if the µi’s are fixed, this is a linear regression);

Article and book summaries by Vincent Zoonekynd 70/1044

– Mixtures of experts (for multi-modal output distri-
butions, one-to-many functions)

z ∼ Cat
(
Softmax f(x)

)
y ∼ N

(
µz(x), σ

2
z(x)

)
16. Distance-based methods, such as k-nearest neigh-
bours, suffer from the curse of dimensionality: in high
dimension, the nearest point is far away, and all pair-
wise distances tend to be the same. Efficient imple-
mentations can use k-d trees or LSH (in Python, check
faiss).
Metric learning searches for a Mahalanobis matrix M
such that the distance

d(x, x′) =
√

(x− x′)⊤M(x− x′)

works well when used for k-nn classification (or such
that samples in the same class are close and samples
in different classes are far apart).
This can be solved with semidefinite programming. Al-
ternatively, parametrize M as M = w′w.
The probability that j is the nearest neighbour of i is

pij ∝ exp−‖Wxi −Wxj‖22 .

We can choose W such that it maximizes the ex-
pected number of samples correctly classified with 1-
nn (neighbourhood component analysis, NCA). Latent
coincidence analysis (LCA) estimates the model

Z ∼ N(Wx, σ2I)

Z ′ ∼ N(Wx′, σ2I)

P [y = y′] = exp−‖z − z′‖2

Deep metric learning (DML) also learns an embedding
and computes the distances in embedding space (you
can then remove M).
Losses for DML include
– Pairwise contrastive loss (hinge loss);
– Triplet loss (may require hard negative mining);
– n-pairs loss (InfoNCE).
The word “kernel” has several (sometimes overlapp-
ping) meanings in statistics:
– A density kernel is a function Rn × Rn → R with
non-negative values, used for smoothing (kernel den-
sity estimation (KDE), kernel regression)

– A positive definite kernel is a function κ : Rn×Rn →
R, such that

∀l ∀x1, . . . , xm ∈ Rn
(
κ(xi, xj)

)
i⩽i,j⩽m ≽ 0

is positive definite; it is used for the “kernel trick”;
– The transition kernel of a Markov chain;
– A convolution kernel;
– etc.
17. Positive definite kernels (aka Mercer kernels)
correspond to feature maps: for structured objects

(graphs, text, etc.), it may be easier to define kernels
than features (string kernel, random walk kernel).
Random features can approximate the RBF kernel.
18. Classification and regression trees (CART) are fit-
ted greedily, splitting the nodes by looking at:
– The Gini index (a generalized entropy – the Herfind-
ahl index);

– The entropy (aka deviance).
Bagging uses random subsets of the data. Random
forests also use random subsets of the variables. Boost-
ing successively fits models on data weighted by the er-
rors made by the best linear combination of the models
so far. Bagging and random forests reduce the vari-
ance; boosting reduces the bias.
19. Empirical risk minimization (ERM) minimizes the
expected loss wrt the empirical distribution – but a
sum of Dirac masses is unlikely to be a good approxi-
mation of the population distribution. Data augmen-
tation attempts to address this problem (vicinal risk
minimization).
Transfer learning adapts a pretrained model
– By fine-tuning it;
– By replacing its last layers;
– By adding adjustment layers (“adapters”) inside.
Self-supervised learning (SSL) often uses
– Imputation tasks (fill-in-the-blank);
– Proxy tasks, in particular contrastive tasks: attempt-
ing to tell if two samples are related (e.g., augmen-
tations of the same sample, or in the same class) or
not (SimCLR).

In transfer learning, the input is similar, but the out-
put is different. In domain adaptation, the inputs are
different, but the output labels are the same. For in-
stance, domain adversarial learning trains a classifier
whose latent representation is unable to distinguish be-
tween the source and target domains.
Self-training with pseudo-labels (using predictions as
labels for unlabeled data) suffers from confirmation
bias: only keep pseudo-labels the model is confident
in. Co-training and tri-training estimate that confi-
dence by training several models, either on (indepen-
dent) sets of features, or on subsets of the data.
Entropy minimization is another for of semi-supervised
learning, which implements the cluster assumption:
the decision boundary should be in a low-density re-
gion of the data manifold.
Label propagation is another semi-supervised learning
technique: build a similarity graph of samples, and
propagate the labels from the labeled samples.
Data augmentation can also be applied to unlabeled
data; perturbations of a data point should not cause a
large change in the output (consistency regularization).
Deep generative models, such as VAEs, can also be

Article and book summaries by Vincent Zoonekynd 71/1044

leveraged for semi-supervised learning.

x z x

y

q(z|x) p(x|z)

You can also train the discriminant of a GAN to output
“fake” or the class label (instead of “fake”/“real”).
20. To select the number of principal components
to retain, some suggest to look at the maximum of
the profile likelihood: the likelihood of a Gaussian
N(µ1, σ

2) on λ1 ⩾ · · · ⩾ λL and N(µ2, σ
2) on λL+1 ⩾

· · · ⩾ λn (the two Gaussian have the same variance).
Factor analysis (FA)

z ∼ N(µ0,Σ0)

x =Wz + µ+ ε

ε ∼ N(0,Ψ)

can be computed with the EM algorithm.
Probabilistic PCA (PPCA) is the special case Ψ = σ2I.
FA can be generalized: non-linear FA, mixture FA, ex-
ponential family FA, etc.
For paired data, check
– Supervised PCA

z ∼ N(0, I)

x =W1z + ε ε ∼ N(0, σ2
1I)

y =W2z + ε η ∼ N(0, σ2
2I)

– Partial least squares
z0 ∼ N(0, I)

z1 ∼ N(0, I)

x =W1z0 +Bz1 + ε ε ∼ N(0, σ2
1I)

y =W2z0 + ε η ∼ N(0, σ2
2I)

– Canonical correlation analysis
z0 ∼ N(0, I)

z1 ∼ N(0, I)

z2 ∼ N(0, I)

x =W1z0 +B1z1 + ε ε ∼ N(0, σ2
1I)

y =W2z0 +B2z2 + ε η ∼ N(0, σ2
2I)

Auto-encoders are non-linear generalizations of PCA;
the latent representation is usually a narrow bottleneck
layer

input latent output

but one could use a larger layer, if it is regularized
(noise, sparsity, etc.)

input latent output

There are many manifold learning algorithms:
– Multidimensional scaling (MDS – actually PCA)

Minimize
z

∑(
〈x̃i, x̃j〉 − 〈z̃i, z̃j〉

)2
where the x̃i’s are the centered data points;

– Metric MDS

Minimize
z

∑(
‖xi − xj‖ − ‖zi − zj‖

)2
– Non-metric MDS

Minimize
fmonotonic, z

∑[
f
(
‖xi − xj‖)− ‖zi − zj‖

]2∑
‖zi − zj‖2

– Sammon (metric MDS with more weight on shorter
distances)

Minimize
z

∑ (
‖xi − xj‖ − ‖zi − zj‖

)2
‖xi − xj‖

– Isomap is MDS on the k-nearest neighbour graph of
the datapoints

– Kernel PCA (kPCA) is PCA on the Gram matrix
for some kernel

– Maximum variance unfolding (MVU)

Find z

To maximize
∑
‖zi − zj‖2

Such that ∀(i, j) ∈ G ‖zi − zj‖ = ‖xi − xj‖

where G is the k-NN graph (this can be formulated
as a semidefinite program)

– Local linear embedding (LLE)

Minimize
z

∑
i

∥∥∥∥∥∥zi −
∑
j

wijzj

∥∥∥∥∥∥
2

where the wij are the barycentric coordinates of xi
in the k-nn graph (W is sparse)

W = Argmin
w

∑∥∥∥∥∥∥xi −
∑
i∼j

wijxj

∥∥∥∥∥∥
2

st ∀i
∑

wij = 1

– Laplacian eigenmaps

Minimize
z

∑
Wij ‖zi − zj‖2 st W⊤DZ = I

where

Wij = exp−‖xi − xj‖
2

2σ2

if i ∼ j is in the k-nn graph (this is equivalent to
the generalized eigenvalue problem Lzi = λiDzi,
where L = D − W , and D is the degree matrix
Dii =

∑
ijWij .

Article and book summaries by Vincent Zoonekynd 72/1044

Stochastic neighbour embedding (SNE) replaces dis-
tances with probability distributions

pj|i ∝ exp−‖xi − xj‖
2

2σ2
i

(the probability that j is a neighbour of i) and looks
for points zi with similar probability distributions

qj|i ∝ exp−‖zi − zj‖2

(the variance is fixed) as measured by the KL diver-
gence

Minimize
z

∑
i

KL(pi‖pj) =
∑
ij

pj|i log
pj|i

qj|i
.

Symmetric SNE uses

Minimize
z

KL(p‖q)

where
pij ∝ exp−‖xi − xj‖

2

σ2
.

T-distributed SNE (t-SNE) uses a Cauchy distribution
(Student T with 1 degree of freedom) instead of a Gaus-
sian to limit over-crowding

qij ∝
1

1 + ‖zi − zj‖2
.

The scales σi are chosen so that the pi’s have a user-
specified perplexity (i.e., entropy), which can be inter-
preted as the effective number of neighbours.
UMAP is faster than t-SNE and tends to preserve the
global structure better.
Latent semantic indexing (LSI) is a low-rank factoriza-
tion of the term-document (or tf-idf) matrix.
Latent semantic analysis (LSA) is the SVD of the word
co-occurrence matrix, or the PMI (pointwise mutual
information) matrix

PMIij = log
p(i, j)

p(i)p(j)
or Max(PMIij , 0).

GloVe is a simplified , faster alternative to word2vec’s
skipgram.
21. There is no satisfactory way of assessing the qual-
ity of a clustering:

– Purity =
∑
i

Ni
N
pi, where Ni is the size of cluster i

and pi its purity, i.e., the proportion of items belong-
ing to the majority class (but this does not penalize
the number of clusters);

– Rand index: accuracy of the classifier of pairs, using
“are in the same cluster” as a predictor of “are in the
same class”;

– Adjusted Rand index, which compares the Rand in-
dex with its expected value;

– Mutual information (but this does not penalize the
number of clusters);

– Normalized mutual information

NMI(U, V) =
I(U ;V)

1
2

[
H(U) +H(V)

] .
To estimate the number of clusters, one could look at
the distortion, the silhouette, or (better) the BIC (from
the log marginal likelihood) of a probabilistic model,
e.g., a GMM (Gaussian mixture model).
The eigenspace, for the eigenvalue 0, of the (weighted)
Laplacian of a graph is spanned by the indicator vec-
tors of its connected component. Spectral cluster-
ing is k-means in the span of the eigenvectors of the
Laplacian of the similarity matrix with the smallest
eigenvalues (prefer the normalized Lapalcian, Lsym =
D−1/2LD−1/2. It is a relaxation of the normalized cut
problem.
22. Recommender systems can use:
– Matrix factorization (fitted with alternating least
squares, ALS, or SGD, which handles missing val-
ues);

– Auto-encoders Ŷ =W⊤φ(V Y);
– Factorization machines

x = [one-hot(u), one-hot(i)]

f(x) = µ+
∑

wixi +
∑
i<j

(v⊤i vj)xixj

– Neural matrix factorization

Pu•, Uu•: user embeddings
Qi•, Vi•: item embeddings
z1ui = Pu• �Qi•
z2ui = MLP

(
[Uu•, Vi•]

)
Ŷui = σ

(
w⊤[z1ui, z

2
ui]
)

They can also leverage implicit feedback (if a user did
not rate an item, they were not really interested in it).
23. To compute node embeddings, try to reconstruct
the graph, using:
– A dot-product decoder, ŵ = zz⊤;
– A distance decoder, ŵij = d(zi, zj), possibly with a
Poincaré (hyperbolic) distance,

d(zi, zj) = arccosh

[
1 +

2 ‖zi − zj‖2

(1− ‖zi‖2)(1− ‖zj‖2)

]
.

For directed graphs, learn two embeddings per node: a
source and a target embedding.
DeepWalk, Node2Vec use a skipgram method on ran-
dom walks to compute node embeddings.

Getting more for less:
better A/B testing via causal regularization

K. Webster (2022)
Price changes can be decomposed into market impact
(caused by your trade) and alpha (everything else).

Article and book summaries by Vincent Zoonekynd 73/1044

You cannot estimate trade impact from actual trades:
they have alpha. You can estimate them from random
(alpha-less) trades but, since they are costly, you have
very few of them. Instead, estimate trade impact on
actual trades, but with a regularized model (e.g., ridge
regression), and use random trades to select the regu-
larization parameter

Investment decisions
under almost complete causal ignorance

J. Simonian (2022)
The probability distance between two DAGs is the num-
ber of conditional independencies entailed by one and
not by the other (normalized by the number of pos-
sible independencies). The counterfactual distance is
the number of causes (pairs of nodes (X,Y), such that
there exists a causal path X → · · · → Y) present in
one but not in the other (normalized by the number of
possible causes). Take the sum of those two distances.
If you hesitate between several causal graphs, you could
pick that minimizing λi =

∑
j ̸=i d(Gi, Gj). Alterna-

tively, you could build a strategy for each of them,
investing wik in asset k, and build a portfolio, with
weights

∑
i wikxk, maximizing

∑
ik λiwikxk (and sub-

ject to constraints of your choice).

Addendum on how many times
cointelated pairs cross paths

B. Mahdavi-Damghani and S. Roberts (2020)
The cointelation (sic) model allows for arbitrary short-
term correlation (even ρ = −1) and mean reversion
(ρ = 1) in the long term.

dX

X
= µdt+ σdW1 leading

dY = θ(X − Y)dy + σY dW2 lagging
d〈W1,W2〉 = ρdt

Performance analysis
of matrix completion optimization

with applications to block causal inference
A. Capponi and M. Stojnic (2023)

Low-rank matrix completion (nuclear norm minimiza-
tion) assumes the data is missing completely at ran-
dom. If the missing data shows a block pattern (e.g.,
corresponding to a counterfactual treatment), recovery
is still possible if

k

n
< 1− 2

√
η − η2, η = `1/n.

A new entropic measure
for the causality of the financial time series

Granger causality asssumes numeric (univariate) time
series. For more complex data, such as ETF transac-
tion imbalance,

– Convert the data to images (2-dimensional finger-
prints, transaction rate vs imbalance dollar value);

– Train a (convolutional) GAN to genetate similar
data;

– Measure if the data was easy to reproduce.

Mean log2
cos(train, fake)
cos(test, fake) or KL(test‖fake)

KL(train‖fake)

Forking paths in financial economics
G. Coqueret (2023)

Replace bootstrap samples by “forking paths”, i.e.,
(hundreds of) samples, obtained by varying the pre-
processing options and the hyperparameters. To check
for p-hacking, look at the histogram of p-values (on a
linear scale): it should be (approximately) decreasing
and convex. There are several forms of p-hacking:
– Simple p-hacking looks for a “path” (preprocessing
pipeline) with a good p-value;

– Robust p-hacking looks for a path whose neigh-
bourhood has good p-values, to provide robustness
checks;

– Vicious p-hacking is a variant also requiring robust-
ness to p-hacking tests.

Estimating categorical counterfactuals
via deep twin networks

A. Vlontzos et al. (2021)
Causal inference is not limited to the study of inter-
ventions

E
[
Y | do(T = 1)

]
;

we can also look at counterfactuals

E
[
Y |Y = 0, do(T = 1)

]
.

They can be estimated with Bayesian inference on the
twin network: duplicate T and Y ; observe T1 and Y1;
intervene on T2; compute the effect on Y2.

T Y

Z U

T Y

T ∗ Y ∗

Z U

Unfortunately, the counterfactual is not always identi-
fiable, e.g.,

U : unobserved, 4-valued
T : binary
Y = X, 0, 1 or ¬X, depending on U

where U has distribution (12 ,
1
6 ,

1
6 ,

1
6) or (13 ,

1
3 ,

1
3 , 0).

However, if T → Y is monotonic, counterfactuals are
identifiable.
Train a neural network, whose architecture mimicks
the twin network, with a monotonicity constraint
(penalty, counter-example-guided learning, lattice net-
work), using domain-knowledge (or average treatment
effect, ATE) to order the values of T .

Article and book summaries by Vincent Zoonekynd 74/1044

Metastable financial markets
D. Marcondes and A. Simonis

The market can be modeled as a hidden Markov model
(HMM), e.g., with state space

{momentum up,momentum down}×{low vol, high vol}.

It is metastable: there are clusters of states in which
the market remains a very long time (there are low-
probability connections between those clusters).

A changing stock-bond correlation:
explaining short-term fluctuations

G. Flannery
Forecast the short-term (3-month) correlation between
stocks and bonds using:
– Whether individual investors’ forecasts of stock and
bond markets have the same sign;

– Prospective inflation volatility;
– Whether the signs of the 21-day changes in the 2-year
and 10-year government yield have been the same in
the past 3 months.

Linear and non-linear causality
in financial markets

H. Ma et al.
Nonlinear generalizations of Granger causality include:
– Transfer entropy

TEX→Y = H(Yt+1, Yt) +H(Yt, Xt)+

−H(Yt+1, Yt, Xt)−H(Yt)

(divide by
√
H(Yt+1, Yt)H(Xt+1, Xt) to normalize

to [0, 1]);
– Convergent cross-mapping
To separate linear and nonlinear dependence, use
Fourier transform surrogates: start with a univariate
series x, compute its Fourier transform randomize the
phases, and compute the inverse Fourier transform x̃ –
this destroys the nonlinearities:

ρlinear(x, y) = ρ(x̃, ỹ)

(average over several surrogates).
Some systems exhibit spans of positive and negative
correlations, e.g.,

xt+1 = xt ·
(
rx − rxxt − βy→xyt

)
yt+1 = yt ·

(
ry − ryyt − βx→yxt

)
with rx = 3.8, ry = 3.5, βy→x = 0.02, βx→y = 0.1.

Modeling systemic risk: a time-varying
nonparametric causal inference framework

J. Etesami et al.
To measure the causal relations between financial in-
stitutions, from time series data, try the “directed in-
formation graph”, which generalizes Granger causality

by looking at the regret (difference between a model
with X and one without),

DIX→Y = E
t
log

P[Yt = yt|X<t, Y<t, Zt]

P[Yt = yt|Y<t, Zt]

where Z are all the other variables. It is the conditional
mutual information

EtI(Yt;X<t|Z<t, Y<t)

(use a k-nn estimator).

Analyzing stock-bond correlation:
a dynamic causal system perspective

S. Du and Z. Zhang (2023)
The convergent cross mapping method generalizes
Granger causality X → Y as cot(Y, Ŷ), where Ŷ is the
forecast from a k-nn model (with Gaussian weights)
on a delay embedding. Use CCMBonds→Equities and
CCMEquities→Bonds to forecast Cor(Equities,Bonds).

Causal network representations
in factor investing

C. Howard et al. (2024)
Use DyNoTears on the constituents of the S&P 500.
Applications include:
– Clustering (Node2Vec + k-means), for peer group
neutralization;

– Long-short low centrality strategy;
– Market timing with the network density average ec-
centricity): lower eccentricity heralds left skewed
and leptokurtic returns (and sometimes market
crashes).

Towards automating causal discovery
in financial markets and beyond

A. Sokolov et al. (2023)
Finance is not a closed, stationary system: the causal
graph changes over time. LLMs can help – they only
need a textual description of the variables, no actual
data – the domain knowledge provided by LLMs can
be used as prior for (score-based) causal discovery al-
gorithms, but they do not scale beyond 30 nodes.
To remedy this, ask an LLM to:
– Cluster the features;
– Provide a label and a textual description for each
cluster;

– Provide a causal DAG between the clusters;
– Provide a causal DAG (separately) within each clus-
ter;

– Review those DAGs and fix any mistake made.
Then, one can take the product of the between-cluster
DAG and the within-cluster DAGs.
Use do-calculus to assess the strength of eacg edge:
– Separately inside each cluster

Article and book summaries by Vincent Zoonekynd 75/1044

– For the between-cluster DAG, replace the features
insode each cluster with their first principal compo-
nent.

On the three demons in causality in finance:
time resolution, nonstationarity

and latent factors
X. Dong et al.

Financial data pose a few problems for causal discov-
ery:
– The observed data has a lower frequency than the
causal data, and is often aggregated

– The data is not stationary – adding a new variable,
time, can help;

– There are unobserved confounders; algorithms like
FCI tend to output the most general graph (a clique
for each latent variable), even when rank deficientcy
suggests a simpler structure.

X1 X2 X3 X4

Cov

[(
X1

X2

)
,

(
X3

X4

)]
is singular

X1 X2 X3 X4

FCI output

gCastle: a Python toolbox for causal discovery
N. Zhang et al. (2021)

Causal discovery in financial markets:
a framework for nonstationary time series data

A. Sadeghi et al. (2024)
Adapt the PC algorithm, for causal discovery with non-
stationary time series by:
– Adding a “time” variable;
– Considering several lags;
– Computing conditional independence tests: KCIT,
RCoT, CMIknn, ParCorr

– Orienting edges with known directions (Timet → Xt,
Xt−k → Yt);

– Orienting the other edges, whenever possible (as in
the original PC algorithm).

Discovering causal models with optimization:
confounders, cycles and instrument validity

F. Eberhardt et al.
Build a causal graph from causal independence rela-
tions by reducing the problem to a MIP (mixed integer
program).

Find x ∈ {0, 1}Ẽ

y ∈ {0, 1}P (Ẽ,ζ)

z

Where Ẽ is a set of candidate edges
P (Ẽ, ζ) is the set of simple paths

or extended paths

Such that x and y are consistent
y recognizes d-separation:

i ⊥⊥ j|C with error zijC
y recognizes d-connection:

i 6⊥⊥ j|C with error zijC
To minimize

∑
ijC zijC

The set of candidate edges Ẽ is grown progressively,
by adding the smallest number of edges to account for
all potential colliders () and non-colliders (
or) not yet explained; only include one edge for
each such triple.

Structural intervention distance (SID)
for evaluating causal graphs
J. Peters and P. Bühlmann

Given a ground-truth causal graph g, and an estimated
graph ĝ, the SID is the number of pairs of nodes (X,Y)
for which the parents of X in ĝ are not a sufficient con-
ditioning set for X → Y in g.
This is not a distance: it is not symmetric, and
SID(g, ĝ) = 0 6=⇒ g = ĝ.
The structural Hamming distance (SHD) between
DAGs is the L1 distance between their adjacency ma-
trices.

Canonical portfolios:
optimal asset and signal combination

N. Firoozye et al. (2022)
Look for an easy-to-forecast portfolio, with CCA
(canonical correlation analysis)

Maximize
a,b

Cor(a′X, b′R)

where

Xit: signal
Rit: return
i: asset
t: time.

Article and book summaries by Vincent Zoonekynd 76/1044

Disciplined saddle programming
P. Schiele et al. (2023)

A convex-concave saddle function f : X × Y → R is
convex in x (for y fixed) and concave in y (for x fixed).
A saddle point (x∗∗, y∗) satisfies

∀x∀y f(x∗, y) ⩽ f(x∗∗, y∗∗) ⩽ f(x, y∗),

i.e.,

x∗ = Argmin
x

f(x, y∗)

y∗ = Argmax
y

f(x∗, y).

The saddle extremum functions are

G(x) = sup
y∈Y

f(x, y)

H(y) = inf
x∈X

f(x, y).

Problems with saddle point extremum constraints

Minimize
x

φ(x) st G(x) ⩽ 0

are “semi-infinite constraint” problems: there is an in-
finite number of constraints

Minimize
x

φ(x) st ∀y f(x, y) ⩽ 0.

Robust optimization problems are saddlepoint prob-
lems.
To solve the minimax problem

Minimize
x

Max
y

f(x, y)

replace Maxy f(x, y) with its dual to have a minimin
(convex optimization) problem. This can be auto-
mated for “conically representable saddle functions”;
Python implementation in dsp.

f(x, y) = x′y

f(x, y) = convex(x)′concave(y)

f(x, y) =
(∑

yix
2
i

)1/2
f(x, y) = log

∑
yi expxi

f(x, y) =

(
x
y

)′(
P ∗
∗ −Q

)(
x
y

)
P,Q psd

f(x, Y) = x′Y x Y psd

Synthetic data applications in finance
V.K. Potluru et al.

To generate synthetic tabular datasets, try SDV; also
look at the t-SNE scatterplot of the synthetic and real
data.
Synthetic data generation is often unsupervised (agnos-
tic to the downstream task), but it can be supervised:
– Bayesian optimization to select the model hyperpa-
rameters;

– Weights of a mixture of several data generation pro-
cesses.

For event data, try Hawkes processes and their gen-
eralizations (Cox processes), and automated planning
(agents have a state (accounts, balance, rent, taxes,
utility bills) and a (random) goal).
For time series, try parametric models (SDE),
non-parametric models (TimeGAN, QuantGAN,
TimeVAE, neural SDE, implicit neural representations
(hypernetworks) and agent-based models (Abides))

Architectures of topological deep learning:
a survey on topological neural networks

M. Papillon et al.
Introduction to topological deep learning (generaliza-
tions of GNNs to sets, graphs, simplicial complexes,
cellular complexes, hypergraphs, combinatorial com-
plexes), with nice diagrams.

giotto-tda: a topological data analysis toolkit
for machine learning and data exploration

G. Tauzinb et al.
Persistent homology, Mapper algorithm, to generate
features for sklearn models (with plots). Also check
scikit-tda (easy to use), gudhi (rather complete),
dionysus.

Topological tail dependence:
evidence from forecasting realized volatility

H.G. Souto (2023)
Compute the (birth-death) persistence diagram (PD)
for one month of daily log-returns for stocks in a given
basket (e.g., sector) (T days for n stocks gives T points
inRn); then use the Wasserstein distance between con-
secutive PDs as a predictor of realized volatility.
It is an alternative to the change in average absolute
correlation.

Path problems in networks
J.S. Baras and G. Theodorakopoulos (2010)

The algebraic path problem aggregates edges along a
path, and then aggregates the results across paths:
– For the shortest path problem, we sum the edge
weights along a path, and then take the path with
the minimum weight;

– For the maximum reliability problem, we multiply
the edge weights (probability of non-failure) along a
path, and then take the path with the largest weight.

The shortest path can be computed with:
– Dijkstra (for non-negative weights);
– Bellman-Ford (if there are no negative cycles): iter-
ate

dv ← Min
u
du + w(u, v)

until convergence (the updates can be asyn-
chronous);

Article and book summaries by Vincent Zoonekynd 77/1044

– Floyd-Warshall (dynamic programming, to compute
the all-pairs shortest paths, by progressively increas-
ing the set of vertices used)

D0 ← A

Dk
ij ← Min{Dk−1

ij , Dk−1
ik +Dk−1

kj }.

The algebraic path problem on a semiring
(S,⊕,⊗, 0, 1), e.g., (R ∪ {∞},min,+,∞, 0) or
([0, 1],max,×, 0, 1), computes

dst =
⊕
p∈Pst

w(p)

w(p) = w(v1, v2)⊗ · · · ⊗ w(vk−1, vk).

If S is a semiring, then so are
– Sn×n (matrices);
– S[[x]] (formal power series);
– S[[x]]/(x2) ' S × S;
– EndS;
– Sf (fixed points of f : S → S, if f is a “reduction”).
In matrix form, the problem is d′ = d′A⊕ 1′s, where

d′: row vector
A: weighted adjacency matrix
1s: vector of 0’s, except for a 1 in position s.

Bellman-Ford iterates d′ ← d′A ⊕ 1′s. The all-pairs
shortest path problem solves D = DA⊕ I (and Floyd-
Warshall iterates D ← DA ⊕ I). Under reasonable
assumptions, the limit A∗ = I ⊕ A ⊕ A2 ⊕ · · · exists;
the solution is not unique but (under further reason-
able assumptions) A∗ is the smallest.
Applications include
– Path enumeration: algebraic path problem on Sf ,
where

S = P(V ∪ V 2 ∪ · · · ∪ V n)
⊕: union
⊗: path concatenation

f(W) = {w ∈W : w elementary}

– Expectations, from a Markov chain (expected num-
ber of visits of a given node, expected value of a path
s–t);

– Minimum spanning tree;
– Shortest path;
– Widest path;
– Most reliable path;
– k shortest paths;
– etc.
Non-semiring path problems (aka non-Markovian path
problems), e.g., the sortest path with discounting, can
often be converted to semiring problems, by enlarging
the carrier set S and selecting an approproate reduc-
tion function f .

Neural Bellman-Ford networks:
a general graph neural network framework

for link prediction
Z. Zhu et al. (2021)

Compute the representation of a pair of nodes (a poten-
tial edge) g(s, t) from the representation of the edges
on the path from s to t, with the generalized Bellman-
Ford algorithm

f(s, t) =
⊕
p:s→t

p=(s=v0,v1,...,vk=t)

f(v0, v1)⊗ · · · ⊗ f(vk−1, vk)

where ⊕, ⊗, 0 are learned. Distance, Katz index, per-
sonalized page rank, etc., are special cases.

Direct preference optimization:
your language model is secretely

a reward model
R. Rafailov et al. (2023)

RLHF (reinforcement learning with human feedback)
can be reformulated without reinforcement learning.
RLHF first learns a reward function, with a Bradley-
Terry model

P (y1 > y2) =
er(x,y1)

er(x,y1) + er(x,y2)

loss(φ) = − E
x,y1,y2∼Data

log σ
(
rϕ(x, y1)− rϕ(x, y2)

)
and uses it for RL

Maximize
π

E
x∼Data
y∼π

[
rϕ(x, y)

]
− β ·KL(π‖πref)

π(y|x) = πref(y|x)erϕ(x,y)/β

Z(x)
.

But the reward can be expressed with the policy

rϕ(x, y) = β · log π(y|x)
πref(y|x)

+ β logZ(x)

and the Bradley-Terry model only uses the difference
between the rewards: the partition function disap-
pears,

P (y1 > y2|x) = σ

[
β log

π(y1|x)
πref(y1|x)

− β log π(y)2|x)
πref(y2|x)

]
The DPO loss is

loss(π) = − E
x,y1,y1

log σ

[
β log

π(y1|x)
πref(y1|x)

− β log π(y)2|x)
πref(y2|x)

]
.

BERTopic: neural topic modeling
with a class-based TF-IDF procedure

M. Grootendorst (2022)
BERTopic is a topic modeling pipeline:
– Document embedding (sentence transformer,
SBERT);

– Dimension reduction (UMAP);

Article and book summaries by Vincent Zoonekynd 78/1044

– Clustering (HDBScan);
– Keyword extraction (cTF-IDF);
– Topic representation fine-tuning (either None (just
use the list of keywords) or an LLM to which you
provide the keywords and the documents).

For visualization, check DataMapPlot.

PreTraining is a hot topic: contextualized
document embeddings improve topic coherence

F. Bianchi et al. (2020)
ProdLDA is a VAE-based topic model.

BoW topics BoW

CTM (Combined Topic Model) adds contextualized
word embeddings to the input.

BoW +
embeddings

dim=|V |

topics
dim=k

BoW
dim=|V |

Fine-grained human feedback gives better
rewards for language model training

Z. Wu et al.
In RLHF, do not ask for a single reward for the whole
answer, but one after each sentence, and decompose it
into relevance, factuality and (only at the end), com-
pleteness.

Extending context window of large language
models via position interpolation

S. Chen et al.
To extend the context size, do not extrapolate

−→

but interpolate the positional embedding

−→

Textbooks are all you need
S. Gunasekar et al.

Data quality matters and impacts the scaling laws
(textbook quality web data, GPT-generated textbooks
about Python coding).

Emergence of autopoietic vesicles
able to grow, repair and reproduce

in a minimalist particle system
T. Cabaret

Life-like particle system, with 4 types of particles: pre-
cursor, catalyst, intermediary, surfactant.

Portfolio construction
when regimes are ambiguous

M. Kritzman et al.
Do not define all-or-nothing regimes

rt = 1xt⩾threshold

but

rt = −
(
xt − x0
σ

)2

︸ ︷︷ ︸
similarity

+

(
xt − x̄
σ

)2

+

(
x0 − x̄
σ

)2

︸ ︷︷ ︸
informativeness

(use the Mahalanobis distance, (x−y)′Σ−1(x−y), if the
indicator x is multivariate). Use the relevance rt (trun-
cated, to discard less relevant observations) as weights
to compute regime-specific expected returns and asset
covariances.

Robust statistics
for portfolio construction and analysis

R.D. Martin et al.
Replace winsorization with adaptive winsorization:
clip observations k ·MAD away from the median; upper
and lower MAD for skewed data.
M-estimators minimize

∑
i

ρ

(
ε1(θ)

ŝ

)

where
– ρ is a replacement for the square loss;
– εi(θ) are the model residuals;
– ŝ is a robust scale, computed before the optimiza-
tion.

Rho functions include:
– Huber (quadratic for small values, linear for large
values);

– mOpt (constant for large values).
For linear regression, εi(θ) = yi − x⊤i θ and the first
order condition is

xiρ
′
(
εi(θ)

ŝ

)
= 0.

For mOpt, ρ′ is

ψ(x) =

x if |x| ⩽ 1
φ(1)

φ(1)− a

(
x− sign(x) a

φ(x)

)
if 1 ⩽ |x| ⩽ c

0 if |x| ⩾ c,

with a = 0.0132, c = 3.00. It can be implemented with
IRLS, with weights w(x) = ψ(x)/x.

Article and book summaries by Vincent Zoonekynd 79/1044

The MM estimator computes a robust covariance by
iterating∑

wi(xi − µ) = 0 weighted mean
1

N

∑
wi(xi − µ)(xi − µ)′ = C weighted covariance

and

d = (xi − µ)T⊤C−1(xi − µ) =
∥∥∥C−1/2(xi − µ)∥∥∥2

wi =W (di/cs)

where

W (x) =

1 if x ⩽ 4

q(x) if 4 ⩽ x ⩽ 9

0 if x > 9

q(x) = polynomial of degree 3
s: robust scale
c: tuning parameter.

In R, check RobStatTM, PCRA (risk analysis) and
facmodCS (cross-sectional factor models).

Monotone operator equilibrium network
E. Winston adn J.Z. Kolter

An operator is a subset F ⊂ Rn × Rn, seen as a
multi-valued function. Operator splitting refers to ways
of finding zeroes of a sum of operators, i.e., solving
0 ∈ (F + G)(x). For a maximal monotone sum, use
forward-backward spliting

xk+1 = RG
[
xk − αF (xk)

]
or Peaceman-Rachford splitting

uk+1 = CFCG(uk)

xk = RG(uk).

The resolvent and Cayley operators are

RF = (I + αF)−1

CF = 2RF − I.

If F (x) = Gx+ h is linear, then

RF (x) = (I + αG)−1(x− αh).

If F = ∂f (with f convex, closed, proper (CCP)), then

RF (x) = proxαf (x) = Argmin
z

1

2
‖x− z‖22 + αf(z).

A deep equilibrium network (DEQ) model is a weight-
tied, input-injected network

zi+1 = g(zi, x).

A fixed point z∗ = σ(Wz∗ + Ux + b) is a zero of the
operator splitting problem 0 ∈ (F +G)(z∗)

F (z) = (I −W)z − (Ux+ b)

G = ∂f

σ = prox1f

f CCP.

If I −W ≽ mI for some m > 0, i.e., if

W = (1−m)I −A′A+B −B′

then, there is a unique solution.
Common non-linearities (ReLU, sigmoid, tanh, soft-
plus) are proximal operators.
The DEQ iteration z ← σ(Wz + Ux + b) may not
converge, but the forward-backward (for small α) and
the Peaceman-Rachford updates (for all α – it is also
faster) do.

Monotone deep Boltzmann machines
Z. Feng et al. (2023)

A (non-restricted) Boltzman machine defines a joint
probability distribution

p(x) ∝ exp

∑
ij

x′iΦijxj +
∑
i

b′ixi

 .

Parametrize Φ as a block-hollow matrix

Φij =

{
−Â′iÂj if i 6= j

0 if i = j

Âi = Ai ·Min

{√
1−m
‖Ai‖2

, 1

}
;

this ensures I − Φ ≽ mI. Then, the mean-field fixed
point

qh = softmax(Φhhqh +Φhoxo + bh)

is the fixed point of a monotone deep equilibrium (mon-
DEQ) model.

A non-parametric k-nearest neighbour
entropy estimator

D. Lombardi and S. Pant (2015)
To estimate the entropy from samples,

Ĥ − 1

N

∑
i

log
1

p̂(xi)
,

the KL estimator assumes that p̂ is constant in
B(xi, εi), where εi is the distance to the nearest neigh-
bour

Ĥ = ψ(N)− ψ(k) + log cd +
d

N

N∑
i=1

log εi

ψ : digamma function

cd =

2d for ‖·‖∞
πd/2

Γ(1 + d/2)
for ‖·‖2

Article and book summaries by Vincent Zoonekynd 80/1044

In particular, this assumes the distribution is isotropic
in the ball B(xi, εi). Instead, the KpN estimator as-
sumes it is a (truncated) Gaussian N(µi,Σi), where
µi,Σi are the sample mean and variance of the p ⩾ k
nearest neighbours of xi:

gi(x) = exp−1

2
(x− µi)′Σ−1i (x− µi)

Gi =

∫
B(xi,εi)

gi(x)dx

Ĥ = ψ(N)− ψ(k)− 1

N

∑
log

gi(xi)

Gi
.

Computing the Gaussian integral Gi is tricky, but can
be done, for the L∞ ball, with expectation propagation
multivariate Gaussian probability.

Gaussian probabilities
and expectation propagation

J.P. Cunningham et al. (2011)
How to compute a Gaussian integral

P
X∼N(µ,Σ)

[
X ∈

∏
i

[`i, ui]

]
approximately, with expectation propagation.

Flow annealed importance sampling bootstrap
L.I. Midgley et al.

Importance sampling (IS) samples from a distribution
p0 and reweights the samples to match a distribution
p1.

x ∼ p0

w(x) =
p1(x)

p0(x)

Annealed importance sampling (AIS) uses a chain of
distributions,

log pi = βi log p0 + (1− βi) log pM ,

progressively moving from p0 to pM ,
X1∼ p0

X2

...

XM

MCMC with stationary distribution p1

MCMC with stationary distribution p2

w(xM) =
p1(x1)

p0(x1)

p2(x2)

p1(x2)
· · · pM (xM)

pM−1(xM)

Application to normalizing flows and the α-divergence,
for α = 2 (to limit mode collapse)

Dα(p‖q) =
1

α(1− α)

∫
p(x)αq(x)1−αdx

D0(p‖q) = KL(q‖p)
D1(p‖q) = KL(p‖q)

Conditional random fields: an introduction
H.M. Wallach (2004)

A conditional random field (CRF) is a conditional
probability distribution on sequences of labels, often
used to tag text (e.g., POS tagging, NER, etc.), of the
form

P (Y |X) =
1

Z(X)

∑
j

λj
∑
i

fj(yi−1, yi, x, i)︸ ︷︷ ︸
Fj(y,x)

where the fj are binary features of yi, or yi and yi−1,
possibly involving x. It is a log-linear probabilistic
graphical model.
The log-likelihood is

`(λ) =
∑

(x,y)∼data

− logZ(x) +
∑
j

λjFj(y, x).

Its gradient is

∂`

∂λj
= E

(x,y)∼data
Fj(y, x)−

∑
x∼data

E
y∼p(y|x,λ)

Fj(y, x).

The normalization factor can be computed with a ma-
trix product

Z(x) =
[∏

Mi(x)
]

start,end

where

Mi(x)y′,y = exp
∑
j

λj(y
′, y, x, i)

after adding labels y0 = start, yn+1 = end.
The second term in the gradient can be computed with
dynamic programming (forward-backward algorithm)

E
y∼p(y|x,λ)

Fj(y, x)

=
∑
y

p(y|x, λ)Fj(y, x)

=
∑
i

∑
y,y′

p(Yi−1 = y′, Yi = u|x, λ)fj(y′, y, x)

α0(y|x) = 1y=start αi(x) =Mi(x)
′αi−1(x)

βn+1(y|x) = 1y=end βi(x) =Mi+1(x)βi+1(x)

P (Yi−1 = y′, Yi = y|x, λ) = αi−1(y
′|x)Mi(y

′, y|x)βi(y|x)
Z(x)

Article and book summaries by Vincent Zoonekynd 81/1044

Implicit MLE: backpropagating through
discrete exponential family distributions

M. Niepert (2021)
To train a model involving sampling from discrete ran-
dom variables

x θ z ∼ pθ(z) y
hV fU

loss(u, v) = E
z∼phv (x)

[
`
(
fu(z), y

)]
implicit MLE uses

forward: ε ∼ ρ
ẑ = MAP(θ + ε)

backward: θ′ = θ − λ∇z`
∇̂θ` = ẑ −MAP(θ′ + ε).

DIGRAC: Digraph clustering
based on flow imbalance

Y. He et al.
DMPA finds clusters in a directed graph, assuming that
the directionality contains relevant information: iden-
tify the clusters from the imbalance between them.

transient cluster

sink cluster

n : number of nodes
K : number of clusters
P ∈ Rn×k : cluster membership

Wkℓ = P
′
•kAP•ℓ : probabilistic cut

|Wkℓ −Wℓk| : imbalance flow
Vk =

(
1′(A+A′)P

)
k
: volume

Ckℓ = 2
|Wkℓ −Wℓk|
Vk + Vℓ

∈ [0, 1]

loss = Mean
k<ℓ

Ckℓ

or loss = Top-βMean
k<ℓ

Ckℓ (with β = 1 or 3)

Use a GNN to compute P .

MagNet: a neural network for directed graphs
X. Zhang et al.

Graph convolution assumes the graph is undirected.
For directed graphs, consider the magnetic Laplacian
instead (a complex Hermitian matrix, which depends

on a parameter q).
As =

1
2 (A+A′)

Ds = diag(As1)
Θ(q) = 2πq(A−A′)
H(q) = As � exp(iΘ(q)) (element-wise)
L(q) = Ds −H(q)

L̃(q) = I − (D−1/2s AsD
−1/2
s)� exp(iΘ(q))

Statistical inference
on random dot product graphs: a survey

A. Athreya et al. (2017)
The adjacency matrix of an independent-edge random
graph is

Aij ∼ Bernoulli(Pij)
where P ∈ [0, 1]n×n.
For a latent position random graph, pij = κ(xi, xj),
xi ∈ Rd, κ : Rd ×Rd → [0, 1].
For a random dot product graph, κ(x, y) = x′y, i.e.,
P = XX ′.
For a stochastic block model (SBM), X has repeated
rows.
The Erdös-Rényi graph is even simpler: pij = p is con-
stant.
The latent positions can be recovered by clustering the
adjacency spectral embedding.

X̂ = UAS
1/2
A

|A| = (A′A)1/2

|A| ≈ UASAU ′A truncated spectral decompositions
or the Laplacian spectral embedding

X̆ = ULS
1/2
L

|L| ≈ ULSLU ′L.

Digraph inception convolutional networks
Z. Tong et al. (2020)

Spectral graph convolution (GCN) assumes the graph
is undirected.

X 7−→ ÂXΘ

Ã = A+ I

D̃ = diag(Ã1)
Â = D̃−1/2ÃD̃−1/2

For a directed graph, the page-rank Laplacian is dense,
because of the teleportaiton to arbitrary nodes.
Prw = D−1A

Ppr = (1− α)Prw +
α

n
1n×n

πpr: stationary distribution for Ppr (unique if α∈(0, 1))
Πpr = diag(πpr)

Ppr = I − 1

2

[
Π1/2PΠ−1/2 +Π−1/2P ′Π1/2

]
Article and book summaries by Vincent Zoonekynd 82/1044

Instead, add a node, connected to all other nodes, and
only teleport to it (i.e., consider its personalized page
rank)

Pppr =

(
(1− α)D̃−1Ã α1

1

n
1′ 0

)
.

Multiscale directed graph convolution uses the kth or-
der proximity matrix

P0 = I

P1 = D̃−1Ã

Pk+1 = (P1)
k(P ′1)

k ∩ (P ′′1)
k(P1)

k.

Stability of China’s stock market: measure
and forecast by Ricci curvature on network

X. Wang et al. (2022)
The average curvature (Ollivier, Forman, Menget or
Haantjes – compute all 4) of the truncated graph
(ρ = 0.75) of the correlation matrix of daily stock re-
turns (on a 1-month window) is a measure of market
stability.

Graph neural networks
are dynamic programmers

A. Dudzik and P. Veličković (2022)
Dynamic programming, i.e., algorithms of the form

d[x]← Aggregate
y∈Expand(x)

[
score

(
d[y], d[x]

)]
are very similar to GNNs. This similarity can be for-
malized.

X

W

Y

Z

i

p

o

[X,R]

[W,R]

[Y,R]

[Z,R]

[Y, list(R)]

[Z, bag(R)]i∗

p⊗ ⊗

o⊕

⊕

(R,⊗,⊕)

Exact combinatorial optimization
with graph convolutional neural networks

M. Gasse et al. (2019)
Imitation learning of branch-and-bound selection poli-
cies, with a GCN on the variable-constraint bipartite
graph.

Neural combinatorial optimization
with reinforcement learning

I. Bello et al. (2017)
A pointer network can generate a permutation σ ∈ Sn

of a set of points x1, . . . , xn:
– First, an encoder processes the points in sequence,
with an LSTM;

– Then, a decoder generates the σ(i)’s, one at a time:
at each step, it generates a distribution on the xi’s
(attention), picks a point from that distribution, and
gives it to the next step.

Solve the TSP with RL (A3C, with policy gradient, and
reinforce to compute the gradient), with a pointer
network for the policy (actor).

Graph neural networks
inspired by classical algorithms

Y. Yang et al.
The energy

`(Y) = ‖Y − fw(X)‖2 + λ tr(Y ′LY)

where Y are candicate node embeddings, X are node
features, and L = D−A is the Laplacian, is minimized
by

Y ∗(w) = (I + λL)−1fw(X);

it is an approximation of fw(X) smoothed by the graph
structure.
It can be used for node classification

loss(θ, w) =
∑
i

D
[
gθ
(
y∗i (w)

)
, ti
]
.

Instead of inverting I +λL, do a few gradient steps on
`; they can be interpreted as GNN layers.
The penalty tr(Y ′LY) =

∑
ij∈E ‖yi − yj‖

2 can be gen-
eralized to

∑
ij∈E ρ(‖yi − yj‖

2
) to increase robustness

(to adversarial edges).

On the ability of graph neural networks
to model interactions between vertices

N. Razin et al.
The walk index of a graph (V,E) wrt a partition
V = I ∪ Ic is the number of length-L walks starting
on the boundary of the partition. The walk index edge
sparsification algorithm
– Starts with a set of partitions across which we want
to keep interactions

– Computes the walk indices wrt each of those parti-
tions if we remove one edge, for each edge;

– Removes the edge with the maximum walk indices
(aggregated with max, min or mean).

The disruption index is biased
by citation inflation
A.M. Petersen et al.

A disruptive node, in a citation network, looks like

(widely cited, but the papers it cites are no longer
widely cited).

Article and book summaries by Vincent Zoonekynd 83/1044

Training spiking neural networks
using lessons from deep learning

J.K. Eshraghian et al.
The leaky integrate-and-fire (LIF) neuron takes as in-
put a spike train , smooths it into a “potential’,
e.g., with exponential decay, , and, each time
it exceeds a prescribed threshold, emits a spike, each
emission resetting the potential.

Xt : input
Ut = βUt−1 +Wxt − θSt−1 latent state
St = 1Ut⩾0 output

The input needs to be converted into a spike train, e.g.,
as the firing rate (rate coding), or the time to the first
spike (latency coding).
Spiking neural nets (SSN) can be trained with
– Shadow training (SSN in the forward pass, ANN in
the backward pass);

– Back-propagation through time (BPTT);
– Local learning rules.

SpykeTorch: Efficient simulation
of convolutional spiking neural networks

with at most one spike per neuron
M. Mozafari et al. (2019)

In unsupervised learning with STDP (spike timing de-
pendent plasticity), increase wj→i if j fires before i.
For supervised learning, use STDP or anti-STDP de-
pending on whether the output is correct.

StyleGAN-NADA: CLIP-guided
domain adaptation of image generators

R. Gal et al.

Gfrozen

G

CLIP loss
text (e.g., “photo”)

text (e.g., “oil painting”)

Brax: a differentiable physics engine
for large scale rigid body simulation

C.D. Freeman et al.
JAX alternative to MuJoCo.

Gotta go fast when generating data
with score-based models

A. Jolicoeur-Martineau et al.
Better SDE solver for denoising diffusions

Agent57:
outperforming the Atari human benchmark

A.P. Badia et al.
NGU (never give up) provides intrinsic motivation
by augmenting the reward to promote novelty, both
within and between episodes.

Agent57 does not learn a single policy, but a family of
policies, from very exploratory to purely exploitative.

STaR: self-taught reasoner
Bootstrapping reasoning with reasoning

A. Zelikman et al.
To turn few-shot learning into many-shot learning, give
a few examples to the LLM, ask it to generate more,
prune those leading to incorrect answers, and use the
rest for fine-tuning.

Towards mental time travel: a hierarchical
memory for reinforcement learning agents

A.K. Lampinen et al. (2021)
To help RL agents remember, store the past in chunks,
perform attention on chunk summaries, them attention
on relevant chunks (hierarchical attention).

no attention

Training data-efficient image transformers
and distilation through attention

H. Touvron et al.
Vision transformers add a (learned) class token to the
patch tokens (not unlike the [cls] token for language)
and use it to forecast the true label.
“Distillation through attention” adds another “distil-
lation” token, and uses it to forecast the teacher’s hard
label (rather than the teacher’s softmax).

An optimal control perspective
on diffusion based generative modeling

J. Berner et al. (2022)
The marginals of a time-reversed Itō process can be
represented as the marginals of another Itō process. If

Y0 ∼ D

dY = f(Y, s)ds+ σ(s)dBs

X0 ∼ YT
dX = µ(X, s)ds+ σ(s)dBs

µ = σσ′∇x log pY − f
f : Rd × [0, T] −→ Rd

σ : [0, T] −→ Rd×d,

then XT ∼ D . More generally, pT = ~pX a.e., i.e.,
YT−t

d
= Xt a.e.

Language models
(mostly) know what they know

S. Kadavath et al.
Their self-evaluation is better calibrated if they are pro-
vided with several of their own samples.

Article and book summaries by Vincent Zoonekynd 84/1044

Non-adversarial training of neural SDEs
with signature kernel scores

Z. Issa et al.
Find θ such that the SDE

dXt = µθ(Xt, t)dt+ σθ(Xt, t)dWt

minimizes

L (θ) = E
Y∼data

[
E

x,x′∼pθ
k(x, x′)− 2 E

x∼pθ
k(x, y)

]
where the signature kernel is defined by a PDE

k(x, y) =
〈
S(x), S(y)

〉
= f(T, T)

f(s, t) =

∫ t

0

∫ s

0

f(u, v)
〈
dxu.dxb

〉
.

Higher order kernel mean embeddings
to capture filtrations of stochastic processes

C. Salvi et al.
The signature kernel is

k(x, y) =
〈
S(x), S(y)

〉
where x, y are paths [0, T]→ Rd and S is the signature
transform. It can be computes as k(x, y) = u(T, T),
where u is the solution of

∂2u

∂s∂t
=
〈
ẋ(s), ẏ(t)

〉
u

u(0, •) = u(•, 0) = 1

Deep into the domain shift: transfer learning
through dependence regularization

S. Ma et al.
Domain adaptation learns domain-invariant features.
Separately penalize differences in the dependence
structure (copula) and in the marginals.

Sophia: a scalable stochastic second-order
optimizer for language model pretraining

H. Liu et al.
Use the diagonal Hessian as preconditioner; only up-
date it every few iterations; clip the updates.
Estimate the diagonal Hessian as (Hutchinson, unbi-
ased)

H ≈ u�∇〈loss, u〉
u ∼ N(0, I)

or (Gauss-Newton-Bartlett, biased)

ĝ = ∇ 1

B

∑
b

loss
(
fθ(xb), ŷb

)
ŷb ∼ softmax fθ(xb).

Transformers can do Bayesian inference
S. Müller et al.

A Prior data fitted network (PFN) forecasts the (pos-
terior) distribution

qθ : yn+1 | (x1, y1), . . . , (xn, yn), xn+1.

The distribution qθ is modeled as a “Riemann distribu-
tion”: a discretized continuous distribution with equal
(prior) probability bins (if the marginal distribution of
y is not bounded, use a half-Gaussian for the tails).
Use a transformer encoder (with no positional encod-
ing): it is Sn-invariant.
Applications include sampling from Gaussian processes
(with a hyper-prior), tabular data, Bayesian neural
nets.

Guided generation of cause and effect
Z. Li et al.

Train a model which, given a sentence, generates pos-
sible causes and consequences; to ensure diversity, con-
strain them to contain words from the CEG.
Datasets:
– Causal bank: cause-effect pairs, obtained from Com-
mon Crawl by pattern matching;

– Cause-effect graph (CEG): directed graph, with
words as nodes, and links when they appear on either
side of a causal statement.

Span-based joint entity and relation extraction
with transformer pretraining

M. Eberts and A. Ulges (2021)
SpERT uses fine-tuned BERT embeddings to filter ans
classify spans (NER) and relations

Ji, i+ kK 7−→ f(ei, . . . , ei+k) t wk+1 t c

where Ji, i + kK is the candidate span, ei, . . . , ei+k are
the token embeddings, k + 1 is the span length, wk+1

is a learned embedding of the span length, c is the em-
bedding of the cls token (of the whole sentence), t is
concatenation.
For relations, use the max-pooling of the spans and of
the context.

SpanBERT: improving pre-training
by representing and predicting spans

M. Joshi et al.
BERT variant which masks spans rather than isolated
tokens.

Causal inference using invariant prediction:
identification and confidence intervals

J. Peters et al. (2015)
Causal models are robust against interventions: in par-
ticular, a causal model has the same predictive accu-
racy under different experimental settings or regimes

Article and book summaries by Vincent Zoonekynd 85/1044

(i.e., various interventions – we do not need to know
what those interventions are).

gCastle: a Python toolbox for causal discovery
K. Zhang et al.

GRAPE for fast and scalable graph processing
and random-walk-based embedding

L. Cappelletti et al. (2021)
Python library for graph features (like networkx,
igraph, networkkit, graph_tool), random-walk-
based node embeddings, and edge prediction.

An empirical evaluation
of time series feature sets

T. Henderson and B.D. Fulcher
In Python, check catch22, tsfresh (raw Fourier coef-
ficients: real and imaginary parts, angle), kats, tsfel.
In R, check catch22, feats, tsfeatures. Compare
them on the “1000 empirical time series” dataset.

Multilevel nested simulation
for efficient risk estimation

M.B. Giles et al.
To compute E[H(E[X|Y])], where H is the Heaviside
function, we can use a coarse Monte Carlo approxima-
tion of E[X|Y] if it is far away from zero, and a finer
one it it is closer.

Portfolio optimization rules
beyond the mean-variance approach

M. Markov and V. Markov (2023)
The asymmetric Laplace distribution is

pµ,σ+,σ−(x) ∝ exp− |x− µ|
σsign(x−µ)

.

Linear time GPs for inferring latent
trajectories from neural spike trains

M. Dowling et al. (2023)
The Hida-Matérn kernel is

κ(τ) = cos(bτ)κMatérn(τ, ν +
1
2).

Large non-stationary noisy covariance
matrices: a cross-validation approach

V.W.C. Tan and S. Zohren (2020)
The sample covariance matrix with exponential

weights

Ê =

T−1∑
t=0

βtxτ−tx
′
τ−t∑

βt

=
1

T
C ′BX

B = Tdiag
(

βt∑
βs

)
t

= T
1− β
1− βT

diag(βt)t

Ê = Cov X̃

X̃ = XB1/2

N/T −→ q

N(1− β) −→ qe

can account for non-stationarity, but its limiting
spectral distribution is slightly different from the
Marchenko-Pastur one: the eigenvalues of Ê are biased
estimators of the true eigenvalues. Keep the eigenvec-
tors, but use cross-validation (on X̃) to remove the bias
of the eigenvalues.
Let ρ be the asymptotic distribution of the eigenvalues
of a random matrix; its Stieltjes transform is

G(z) =

∫
R

ρ(t)

z − t
dt = lim

N→∞

1

N
E tr

[
(X − zI)−1

]
.

The R-transform is defined by

R
(
G(z)

)
+

1

G(z)
= z

and satisfies RA+B = RA+RB (assuming the eigenvec-
tors are in “general position”). To compute the spec-
trum of A+B:
– Compute GA, GB , RA, RB ;
– Compute RA+B = RA +RB ;
– Compute GA+B ;
– Compute ρA+B

Data-driven distributionally robust
risk parity portfolio optimization
G. Costa and R.H. Kwon (2021)

To estimate expected returns and variance matrix
from weighted historical data, with weights in a user-
specified ambiguity set, alternate between:
– Gradient ascent, to find adversarial weights;
– Risk parity minimization.

Portfolio optimization using predictive
auxiliary classifier generative adversarial

networks with measuring uncertainty
J. Kim and M. Lee

GANs can be used as predictive models: they do not
output a single value, but (samples from) a distribu-
tion, accounting for prediction uncertainty.

Article and book summaries by Vincent Zoonekynd 86/1044

Multi-modal deep learning
for credit rating prediction

using text and numerical data streams
M. Tavakoli et al.

Cross-attention for multimodal learning, viz, predict-
ing credit ratings from structured (financial ratios) and
unstructured (earnings calls transcripts) data.

The virtue of complexity in return prediction
B. Kelly et al. (2022)

Simple models understate return predictability: do not
shy away from complex ML models.

Embedding and correlation tensor for XRP
transaction networks

A. Chakraborty et al. (2022)
Take XRP transactions:
– For each week, compute a network, with wallets as
nodes and transactions as edges;

– Compute node embeddings (deepwalk or node2vec);
– Only keep nodes present each week;
– Compute the correlations

Mαβ
ij = Cor

[t−∆T,t+∆T]
[V αi , V

β
j]

where i, j are nodes, and α, β coordinates.
– Compute a double SVD

Mαβ
ij = Uik∆

αβ
k Vkj

∆αβ
k = LαγDγ

kR
γβ

i.e., Mαβ
ij = Dγ

k(UikVkj)(L
αγRγβ)

M

α β

i j

= D

L R

U V

α β

i j

γ

k

Generative AI in active management:
QesGFT

Wolfe Research
Model trained on a point-in-time corpus (Wikipedia,
books, news, policy documents (UN, OECD, etc.),
preprints, regularoty filings, conference calls, corporate
websites), from GPT-3, with self-instruct, flash atten-
tion (GPU tiling), 8-bit quantization, RoPE.

A graph theory approach
to portfolio optimization

D. Cajas (2023)
From the correlation matrix, build the MST or the
TMFG; add a constraint to the optimization problem,
to invest (on average) in low-centrality assets

w′ · centrality = c.

To increase diversity further, do not invest in nearby
assets: this can be formulated as a MIP, or relaxed to
a SDP: B� (ww′) = 0, where Bij indicates if there is a
path of length at most ` between i and j, is a quadratic
non-convex constraint, but ww′ can be replaced by a
positive semidefinite approximation X

ww′ = Argmin

X:

X w
w′ 1

≽0

trX

by adding a λ trX penalty to the objecctive.

Post-covid inflation and the monetary policy
dilemma: an agent-based scenario analysis

M.S. Knicket et al.
The Mark-0 agent-based model is a macro-economic
model accounting for savings, wages, energy sec-
tor, interest, inflation expectation, consumption, non-
matched demand and production, several goods, sev-
eral firms, price, target production.

Maximally machine-learnable portfolios
P.G. Coulombe et al. (2022)

ACE (alternating conditional expectation) finds and
easy-to-forecast transformation of the target variable

g(Y) = f(X) + ε

(iteratively estimate g fixing f , and f fixing g, with
backfitting polynomials). With time series, this be-
comes

g(Yt+h) = f(Xt) + εt+h.

This can be generalized to portfolios (MACE, multi-
variate ACE): find a portfolio w whose returns

g(Yt+h) = w′Yt+h

are easy to forecast with a random forest (from market
variables, macro variables, or the characteristics (re-
turns, earnings yield, etc.) of the portfolio itself).

Minimize
w,f

∑
t

[
w′rt+h − f(Xt)

]
+ λ ‖w‖2

such that w ⩾ 0, w′1 = 1.

The model can be estimated by alternatingly fitting a
random forest to get f , and a ridge regression to get w.

Comparing deep learning models for volatility
prediction using multivariate data

W. Ge et al.
Temporal fusion transformers (TFT) and temporal
convolution networks (TCN) outperform GARCH-like
models.

Article and book summaries by Vincent Zoonekynd 87/1044

Temporal fusion transformers for interpretable
multi-horizon time series forecasting

B. Lim et al.
Stack:
– LSTM
– GRN (gated residual network)

GLU = σ((W1x+ b1)� (W2x+ b2)

– Multi-head attention;
– GRN
to forecast several quantities, at several horizons.

GFlowNet Foundations
Y. Bengio et al.

Contrary to MCMC, GFlowNets can efficiently sam-
ple from multimodal distributions, on discrete objects
that can be contructed incrementally, e.g., set, graphs
or molecules. They can be trained, not from data, but
from an unnormalized probability distribution (the re-
ward).
A flow network is a DAG, with a single source and a
single sink, with a non-negative function F : T → R+

on the set of complete trajectories. This defines:

– State flow: F (s) =
∑

τ : s∈T

F (τ);

– Edge flow: F (s→ s′) =
∑

τ : (s→s′)∈T

F (τ);

– Total flow: Z =
∑
τ

F (τ);

– Forward transition probability:

PF (s
′|s) = F (s→ s′)

F (s)
;

– Backward transition probability:

PB(s|s′) =
F (s→ s′)

F (s′)
.

State and edge flows define a flow if the satisfy the flow
matching conditions

F̂ (s′) =
∑
s→s′

F̂ (s→ s′)

F̂ (s′) =
∑
s′→s′′

F̂ (s′ → s′′).

State flow and forward and backward transition proba-
bilities correspond to a flow if they satisfy the detailed
balance conditions

F̂ (s)P̂G(s
′|s) = F̂ (s′)P̂B(s|s′).

A flow is Markovian if

P (s→ s′|s0 → · · · → s) = P (s→ s′|x) = PF (s
′|s).

Each flow function (on paths) is equivalent to (has the
same edge flow as) a unique Markovian flow. The edge
flows determine a unique Markovian flow.

A GFlowNet parametrized by edge flows F̂ (s→ s′) can
be trained with the flow matching loss

∑
s′

log
δ +

∑
s∈Par(s′)

F̂ (s→ s′)

δ +R(s′) +
∑

s′′∈Child(s′)
s′′ ̸=final

F̂ (s′ → s′′)

2

A GFlowNet parametrized by vertex flows F̂ (s) and
transition probabilities P̂F (s

′|s), P̂B(s|s′) can be
trained with the detailed balance loss

∑
s→s′

[
log

δ + F̂ (s)P̂F (s
′|s)

δ + F̂ (s′)P̂B(s|s′)

]2
(replace the denominator with δ +R(s) if s′ = final).
A GFlowNet parametrized by total flow Ẑ and tran-
sition probabilities P̂F (s′|s), P̂B(s|s′) can be trained
with the trajectory balance loss (preferred)

∑
τ

log
Ẑ
∏
t

P̂F (st|st−1)

R(sT)
∏
t

P̂B(st−1|st)

2

.

Flow network based generative models
for non-iterative diverse candidate generation

E. Beggio et al.
Original GFlowNet paper, with applications to
molecule synthesis, and a comparison with MCMC and
PPO.

Trajectory balance:
improved credit assignment in GFlowNets

N. Malkin et al.

GFlowOut:
dropout with generative flow networks

D. Liu et al. (2023)
Learn the distribution of the dropout binary masks, in
a sample-dependent or sample-independent way, with
a GFlowNet.
Deep neural networks with dropout perform approxi-
mate Bayesian inference and approximate the posterior
of a deep Gaussian network.

Direct parametrization
of Lipschitz-bounded deep networks

R. Wang and I.R. Manchester (2023)
γ-Lipschitz neural nets

z0 = x

zk+1 = σ(Wkzk + bk)

y =WLzL + bL

Article and book summaries by Vincent Zoonekynd 88/1044

can be parametrized as

bk ∈ Rnk+1

dj ∈ Rnj

Xk ∈ Rnk+1×nk+1

Yk ∈ Rnk×nk+1

Ψk = diag(edk)[
A′k
Bk

]
= Cayley

[
Xk

Yk

]
A−1 = I

Ψ−1 =

√
γ

2
I

Wk = 2Ψ−1k−1BkA
′
k−1Ψk−1

where the Cayley transform is

Cayley
[
X
Y

]
=

[
(I + Z)−1(I − Z)
−2Y (I − Z)−1

]
Z = X −X ′ + Y ′Y

Equivalently, the model can be written with Lipschitz
sandwich layers

h0 =
√
γx

hk+1 =
√
2A′kΨkσ(

√
2Ψ−1k Bkhk + bk)

y =
√
γBLhL + bL,

Recurrent equilibrium networks:
flexible dynamic models

with guaranteed stability and robustness
M. Revay et al.

A recurrent equilibrium network (REN) is a state space
model

xt+1 = Axt +B1wt +B2ut + bx

yt = C2xt +D21wt +D22ut + by

whose weights are given by an equilibrium network

wt = σ(D11wt + C1xt +D12ut + bv).

Sufficient conditions for the model to be Lipschitz can
be translated into direct parametrizations.

A cookbook of self-supervised learning
R. Balestriero et al.

There are 4 families of self-supervised learning (SSL)
models:
– Contrastive loss (SimCLR);
– Self-distillation (BYOL, SimSiam, DINO);
– Canonical correlation (VICReg, Barlow Twins);
– Maxed image modeling.
The projection introduced in SimCLR is needed be-
cause the training task is different from the down-
stream task.

On the representation and learning
of monotone triangular transport maps

R. Baptista et al.
A Triangular transport map S between two probability
distributions µ and ν on Rd is a map of the form

S :

Rd−→ Rd

x 7−→

S1(x1)

S2(x1, x2)
...

Sd(x1, · · · , xd)

such that X ∼ µ ⇒ Z = S(X) ∼ ν, i.e., µ = S#ν
(this is an alternative to normalizing flows).
If the xk 7→ Sk(x<k, xk) are increasing, then S is in-
vertible.
If µ� Lebesgue and ν = N(0, I), then S is essentially
unique.
The rectification operator Rk transforms a smooth
function into a monotonic one

Rk(fk)(x<k, xk) = fk(x<k, 0) +

∫ xk

0

g
[
∂kfk(x<k, t)

]
dt

for some g : R→ R>0, e.g., softplus.
To find the Sk’s from data sampled from µ (for the
reference distribution ν = N(0, I)), minimize

Ĵk(S) =
1

n

∑
i

1

2
S(xi⩽k)

2 − log
∣∣∂kS(xi⩽k)∣∣

(the KL divergence, up to a constant), under the con-
straint ∂kS(x⩽k) > 0 (use the rectification operator
to remove the constraint). Under reasonable assump-
tions, there are no spurious local minima: they are all
global.
Look for Sk of the form

Sk(x⩽k) =
∑
α∈Λ

cαψα(x⩽k) α multi-index

ψα(x⩽k) =
k∏
j=1

ψαj (xj)

where the ψα are:
– Hermite polynomials (orthogonal wrt the Gaussian
density)

φα(x) = (−1)αex
2/2 d

α

dxα
e−x

2/2,

modified to be linear outside some compact interval
[a, b]

– or wavelets

ψℓ,q(x) = 2ℓ/2ψ(2ℓx− q)

ψ(x) = (1− x2)e−x
2/2 (Mexican hat).

Article and book summaries by Vincent Zoonekynd 89/1044

Greedily build the multi-index set Λ by adding the
multi-index α giving the best improvement to Ĵk

Λt+1 = Λt ∪ {α∗t }

ensuring that (Λt)t⩾0 remains downward closed

∀α ∈ Λt ∀α′ ⩽ α α′ ∈ Λt,

i.e., α∗t is in the reduced margin of Λt

α∗t = Argmin
α∈ΛRM

t

∣∣∣∇αĴk

∣∣∣ .
The sparsity structure of Λ defines a graphical model.
The triangular structure of the transport map

S(x1, x2) =

[
S1(x1)

S2(x1, x2)

]
gives the conditional distribution

X2|X1=x1 ∼ S2(x1, •)
#ν2.

Implementation: MParT.

Categorical reparametrization
with Gumbel softmax

E. Jang et al.
Sampling from a categorical distribution

z ∼ Categorical(π1, . . . , πk)

is equivalent to (Gumbel max trick)

g1
iid∼ Gumbel(0, 1)

z = one-hotArgmax
i

(gi + log πi)

where the Gumbel distribution can be sampled as

u ∼ Unif(0, 1)
g = − log− log u.

The Gumbel softmax replaces argmax with softmax.

g1
iid∼ Gumbel(0, 1)

z = softmaxτ (g + log π) ∈ ∆

It is a reparametrization trick for an approximate cat-
egorical distribution.
In practice:
– Slowly decrease the temperature τ to approach 1-hot

vectors;
– If you need a discrete output (e.g., discrete actions in
reinforcement learning), use argmax in the forward
pass and the Gumbel softmax in the backward pass.

The concrete distribution: a continuous
relaxation of discrete random variables

C.J. Maddison et al.
Earlier paper on the Gumbel softmax (initially called
“concrete”).

Learning with
differentiable perturbed optimizers

Q. Berthet et al. (2020)
The optimization problem

y∗(θ) = Argmax
y∈ConvY

〈y, θ〉,

for a finite set Y , can be perturbed into

y∗ε (θ) = E
z∼µ

[
y∗(θ + εZ)

]
;

the Jacobian is

Jθy
∗
ε (θ) = E

z∼µ

[
y∗(θ + εZ)∇Zν(Z)′/ε

]
where dµ(z) = e−ν(z)dz.
This generalizes the Gumbel softmax:

µ = Gumbel(0, 1)
Y = {1-hot vectors}

ConvY = ∆

Many problems can be put in this form (maximizing a
linear quantity over a polytope):
– Ranking: Y = {σ · v : σ ∈ Sn}, for some vector v;
ConvY is then the permutahedron;

– Shortest path, etc.
The perturbed solution y∗ε minimizes the Fenchel-
Young loss

Lε(θ; y) = Fε(θ) + εΩ(y)− 〈θ, y〉
Fε(θ) = E

Z∼µ
Max

y∈ConvY
〈y, θ + εZ〉

Ω = F ∗1 (Fenchel dual).

Differentiation
of blackbox combinatorial solvers

M. Vlastelica et al.
To back-propagate through a combinatorial solver

y(w) = Argmin
y∈Y

〈w, y〉

(linear objective, arbitrary constraints), use the actual
(discrete) solution in the forward pass and a continu-
ous interpolation of (a linearization of) the loss in the
backward pass.

ŷ = solver(ŵ)
dL

dy
(ŷ) : gradient to back-propagate

w′ = ŵ + λ
dL

dy
(ŷ)

yλ = solver(w′)

∇wfλ(ŵ) = −
1

λ
(ŷ − yλ)

Article and book summaries by Vincent Zoonekynd 90/1044

Optimizing rank-based metrics
with blackbox differentiation

M. Rolínet et al.
Application of blackbox differentiation to ranking
problems, maximizing
– Recall: proportion of relevant items (y∗i = 1) among

the top k (for a fixed value of k);
– Average precision: average of recallk, as k varies;
– Mean average precision: average of the average pre-
cision, as the class varies.

y ∈ Rn scores
y∗ ∈ {0, 1}n ground truth

Backpropagation through combinatorial
algorithms: identity with projection works

S.S. Sahoo et al.
To back-propagate through a blackbox solver w 7→
t(w) = Argminy∈Y 〈w, y〉, use −I, apply a projection
P accounting for invariances ∀w y∗(w) = y∗

(
P (w)

)
,

d`/dy 7→ −P ′(w)d`/dy and add noise to w before feed-
ing it to the solver.

Fenchel-Young losses with skewed entropies
for class-posterior probability estimation

H. Bao and M. Sugiyama (2021)
The optimization problem ŷ(θ) = Argmaxy∈Y θy can
be regularized into

ŷΩ(θ) = Argmax
y

θy − Ω(y).

The corresponding Fenchel-Young loss is

`Ω(θ, y) = Ω∗(θ) + Ω(y)− θy
Ω∗(θ) = sup

η
θη − Ω(y).

Under reasonable assumptions (Ω strictly convex), `
is convex, smooth, and reaches its minimum 0 at
y = ŷΩ(θ).
A cdf F defines a Fenchel-Young loss

`F (θ, y) = Ω∗F +ΩF (y)− yθ

ΩF (y) =

∫ y

0

F−1(q)dq

Ω∗F (θ) =

∫ θ

−∞
F (s)ds.

Because of the symmetry of the logit link, logistic re-
gression tends to underestimate the probability of rare
events. Skewed links address that problem but, with
maximum likelihood estimation (MLE), they lead to
non-convex optimization problems. Instead, use the
generalized eigenvalue distribution (GEV) link and the
corresponding (convex) Fenchel-Young loss

Fξ(θ) = exp−(1 + ξθ)
−1/ξ
+ .

Learning with Fenchel-Young losses
M. Blondel et al.

The optimization problem

Maximize
y∈Y

〈θ, y〉

can be relaxed to

ŷΩ(θ) = Argmax
y∈ConvY

〈θ, y〉 − Ω(y).

Examples include

Argmax Ω = I∆
Softmax Ω = −H + I∆
Sparsemax Ω = 1

2 ‖·‖
2
+ I∆

Sigmoid

The Fenchel-Young loss

LΩ(θ, y) = Ω∗(θ) + Ω(y)− 〈θ, y〉
= fθ(y)− fθ

(
ŷΩ(θ)

)
,

where fθ(y) = Ω(y)− 〈θ, y〉, is convex, and reaches its
minimum at y = ŷΩ(θ).
A generalized entropy is a function H : ∆n → R,
strictly concave, Sn-symmetric, zero on the corners of
∆n; it is maximal for the uniform distribution.

Shannon −
∑

pi log pi

Tsallis 1

α(α− 1)

(
1−

∑
pαi

)
Rényi 1

1− β
log
∑

pβi

Norm 1− ‖p‖q
Squared norm 1

2

(
1− ‖p‖2q)

Differentiable clustering and partial
Fenchel-Young losses

L. Stewart et al. (2023)
Given a similarity matrix Σ ∈ Rn×n, the adjacency
matrix of the k-spanning forest with maximum simi-
larity is the solution of a linear program

Maximize
A∈Ck

〈A,Σ〉

where Ck is the set of adjacency matrices of forests
with k connected components; it corresponds to single
linkage clustering.

Distributions for compositionally
differentiating parametric discontinuities

J. Michel et al. (2023)
Integral primitive for differentiable programming lan-
guages, to differentiate integrals with discontinuous in-
tegrands.

Article and book summaries by Vincent Zoonekynd 91/1044

Cold analysis of
Rao-Blackwellized straight-through
Gumbel-softmax gradient estimator

A. Shekhovtsov (2023)

There are many estimators of J =
d

dη
E

x∼pη

[
`
(
φ(x)

)]
.

JRF = `
(
φ(x)

)
· d
dη

log pη(x)

JST =
d

dη
`
(
φ(x)

)
· d
dη
φ̄, φ̄ = E

[
φ(x)

]
JDARN =

d

dη
`
(
φ(x)

)
·
(
φ(x)− φ̄) · d

dη
log pη(x)

φ̄ = your choice

JGS =
d

dφ
`(φ̃) · dφ̃

dη

Gk ∼ Gumbel(0, 1)
φ̃ = softmaxt(log pη +G)

JGS-ST =
d

dφ
`
(
φ(x)

)
· dφ̃
dη

JGR =
d

dφ
`
(
φ(x)

)
· E
G∼Gumbel

[
dφ̃

dη

]

Automatic differentiation of programs
with discrete randomness

G. Arya et al.
Given a family of discrete random variablesX(p) : Ω→
E for p ∈ I = [a, b] ⊂ R, we want another one, X̃(p),
such that

E
[
X̃(p)

]
=

d

dp
E
[
X(p)

]
.

We cannot use the reparametrization trick

dE
[
X(p)

]
dp

?
= E

[
dX(p)

xp

]
because dX(p)/dp = 0 a.s. Instead, let

δ = lim
ε→0

X(p+ ε)−X(p)

ε
=
dX(p)

dp

B > |δ|

AB(ε) =

{
ω ∈ Ω :

∣∣∣∣X(p+ ε)−X(p)

ε

∣∣∣∣ > B

}
= {large jumps}

w =
dP [AB(ε)]

dε

∣∣∣∣
ε=0

=
dP [large jump]

dε

∣∣∣∣
ε=0

Yε
d
= X(p+ ε)−X(p)|AB(ε), X(p)

Y = lim
ε→0

Yε.

Then,

dE
[
X(p)

]
dp

= E
[
δ + w

(
Y −X(p)

)]
.

Concretely, with dual numbers, this gives results like

X ∼ Bernoulli(0.6 + ε)
0 + 1 with probability 2.5ε

More generally, for random variables with jumps, sam-
pling returns stochastic triples (a, b, c, d)

a+ bε+ (c with probability dε).

This is amenable to automatic differentiation. Imple-
mentation in StochasticAD.jl.

SurCo: learning linear surrogates for
combinatorial nonlinear optimization problems

A. Ferber et al. (2023)
Solve nonlinear optimization problems

Minimize
x∈Ω

f(x, y)

by reducing them to linear problems, by training a neu-
ral net to find the closest linear program.

y

c(y)

linear solver

x = Argmin
x∈Ω

c(y)′x

loss = f(x, y)

(The linear solver can be an MIP solver.)

MIPaaL: Mixed integer program as a layer
A. Ferber et al.

To compute surrogate gradients for an MIP solver,
solve the problems by relaxing the integral constrains
and progressively adding cutting planes, and use the
final (continuous, convex) optimization problem KKT
conditions.

Differentiation of
blackbox combinatorial solvers

M. Vlastelica et al.
We want to backprop through a blackbox (combinato-
rial) optimizer with a linear objective.

w 7−→ ŷ = Argmin
y∈Y

w · φ(y) 7−→ L(ŷ)

Consider the first order approximation of the loss

L(y) ≈ L(ŷ) + dL

dy
(y − ŷ) = f(y).

Define a relaxation of f

yλ(w) = Argmin
y∈Y

w · φ(y) + λf(y)

fλ(w) = f
(
yλ(w)

)
− 1

λ

[
w · φ

(
y(w)

)
− w · φ

(
yλ(w)

)]
.

Article and book summaries by Vincent Zoonekynd 92/1044

The surrogate gradient can be computed as

w′ = ŵ + λ · dL
dy

(ŷ)

yλ = solver(y′)

∇wfλ(ŵ) = −
1

λ
(ŷ − yλ).

Try λ ≈ 〈w〉〈
dL

dy

〉 where 〈·〉 = avg.

Differentiable Monte Carlo samplers with
piecewise deterministic Markov processes

R. Seyer
The ergodic theorem states

E
X∼µ

[
f(X)

]
= lim
T→∞

1

T

∫ T

0

f(Zt)dt

but, in general, we do not have

d

dθ
E

X∼µθ

[
f(X)

] ?
= lim
T→∞

d

dθ

1

T

∫ T

0

f(Zθt)dt.

To differentiate E
X∼µθ

[
f(X)

]
, there are several ap-

proaches:
– The reparametrization trick (aka pathwise deriva-
tive) to get a coupling between µθ and µθ+ε,
but it only gives an unbiased estimator if the
reparametrization is Lippschitz – this excludes dis-
crete variables or jumps;

– Stratified derivatives, which handle the discontinu-
ities separately (e.g., the “stochastic triples”);

– The score method (Reinforce).
A piecewise deterministic Markov process has 3 com-
ponents:
– Betweem jumps, it follows a deterministic flow,

dz

dt
= ξ(z)

for some drift ξ : E → E;
– The timing of the jumps follow an inhomogeneous
Poisson process with rate λt = λ(zt) for some λ :
E → R+;

– The jumps are given by a transition kernel Q(z, dz).
The main examples are the zigzag sampler on R

state space E = R× {±1}
drift ξ(x, v) = (v, 0)
event rate λ(x, v) = Max {0, c∇x − log π(x)}
transition kernel deterministically flip sign(v)

and its generalization, the bouncy particle sampler

E = Rd ×Rd

ξ(x, v) = (v, 0)

λ(x, v) = Max{0, v′∇x − log π(x)}
Q: elastic reflection of v tangentially

to the potential ∇x − log π

(there is also a “refreshment rate” in λ, corresponding
to resetting the velocity to v ∼ N(0, I).)
Those continuous-time non-invertible Markov chains
tend to mix faster than the classic discrete-time re-
versible ones.
To couple the zig-zag processes Zθt and Zθ+εt on [0, Tθ]
and [0, Tθ+ε], use the unter-arrival times

τ ′i = Λ←t
(
Λi(τi, θ), θ + ε

)
where

Λ(t) =

∫ t

0

λ(r)dr

Λ←(ω) = inf{t ⩾ 0 : Λ(t) ⩾ ω} pseudo-inverse

(they have the same number of events). Under reason-
able assumptions (Λ invertible, with smooth inverse),
we can swap d/dθ and limT→∞.

Reformer: the efficient transformer
N. Kitaev et al.

The attention matrix is quadratic in the context
length, but its rows are softmaxes and tend to be
sparse: instead of computing the whole matrix, only
compute, for each row (query), the k largest entries,
corresponding to the k closest keys, with an approx-
imate nearest neighbour (ANN) algorithm, e.g., LSH
(locality sensitive hashing).
The Reformer also uses reversible layers.

Linformer: self-attention
with linear complexity

S. Wang et al.
The attention matrix has low rank: reduce the dimen-
sion of the key and value matrices before using them.

Q

EK

FV

×

×

L× d

ℓ× d

ℓ×D

L× ℓ

L×D

Random feature attention
H. Peng et al.

The attention Att(q,K, V) = softmax(qK ′/
√
d)V is

the expectation of a quantity whose computation is
linear in time and space; estimating it with a single
sample is good enough.
The Gaussian kernel can be estimated as

exp−‖x− y‖
2

2σ2
= E
wi

iid∼N(0,σ2I)

[
φ(x) · φ(y)

]
Article and book summaries by Vincent Zoonekynd 93/1044

where

φ :

Rd −→ R2D

x 7−→

sin(w1 · x)
...

sin(wD · x)
cos(w1 · x)

...
cos(wD · x)

The softmax appearing in the attention formula can be
approximated as

exp
(x · y
σ2

)
= exp

‖x‖2 + ny2 − nx− y2

2σ2

= exp
‖x‖2

2σ2
exp
‖y‖2

2σ2
exp
‖x− y‖2

2σ2

= exp

(
1

σ2

)
E
w

[
φ(x) · φ(y)

]
if ‖x‖=‖y‖=1

≈ exp

(
1

σ2

)
φ(x) · φ(y)

The attention operator can therefore be approximated
without large intermediate matrices,

Att(q,K, V) =
∑
i

exp(q · ki/σ2)∑
j exp(q · kj/σ2)

v′i

≈
∑
i

φ(q) · φ(ki)∑
j φ(q) · φ(kj)

v′i

=
∑
i

φ(q)′φ(ki)v
′
i∑

j φ(q)
′φ(kj)

=
φ(q)′

∑
i φ(ki)v

′
i

φ(q)′
∑
i φ(ki)

where σ2 is the softmax temperature.

Rethinking attention with performers
K. Choromanski et al.

Attention is defined as

Att(Q,K, V) = D−1AV

A = κ(Q,K) = exp(QK ′/
√
d)

D = diag(A1).

The kernel can be written

κ(x, y) = E
ϕ

[
φ(x)′φ(y)

]
and the attention can be approximated as

Âtt(A,K, V) = D̂−1Q̂K̂ ′V

D̂ = diag(Q̂K̂ ′1)
Q̂ = φ(Q) (φ(q′i)

′ as rows)
K̂ = φ(K)

For the random features φ, do not use the trigonomet-
ric random features (they have negative values, which
increases the variance), but positive random features.

φ(x) =
h(x)√
m

[
f1(ω

′
1x), . . . , f1(ω

′
mx),

. . . ,

fℓ(ω
′
1x), . . . , fℓ(ω

′
mx)

]
h(x) = exp−‖x‖

2

2
, ` = 1, f1 = exp

h(x) =
1√
2
exp−‖x‖

2

2
, ` = 2, f1 = exp, f2 = 1/f1

exp(x′y) = E
ω∼N(0,I)

[
φ(x)′φ(y)

]
Use orthogonal random features (apply Gram-Schmidt
to ω1, . . . , ωn) to further reduce variance.

A survey of transformers
T. Lin et al. (2022)

Efficient transformers: a survey
Y. Tay et al. (2022)

List of transformer variants.

Efficient and robust
approximate nearest neighbor search

using hierarchical navigable small world graphs
Y.A. Malkov and D.A. Yashunin

NSW (navigable small world) adds the points, in a ran-
dom order, linking each one to its M closest (approxi-
mate) neighbours (greedy search with multiple random
entry nodes). The construction can be parallelized.
The first nodes are better connected than later ones.
HNSW (hierarchical NSW) uses n subgraphs, contain-
ing an increasing fraction of the nodes:
– Start the search at the top (smallest) one, at a high
degree node;

– Greedily find the node closest to the query;
– Start a new search in the next graph, from this node;
– Continue down the stack of graphs.
This is similar to the probability skip list (a stack of
sorted linked lists).

Implementation in faiss.

Double descent demystified:
identifying, interpreting and ablating
the sources of a deep learning puzzle

R. Schaeffer et al.
Double decent for linear regression suggests the phe-
nomenon requires:

Article and book summaries by Vincent Zoonekynd 94/1044

– Small but nonzero singular values in the training
data features;

– The test data varies in different directions from the
training data (it is not in the span of the first singu-
lar values);

– The best model possible makes errors on the training
data (the training data is noisy).

Multiple descent:
design your own generalization curve

L. Chen et al.

Lost in the middle:
how language models use long contexts

N.F. Liu et al.
LLMs struggle to use information in the middle of their
context: performance is higher when relevant informa-
tion is at the begining or end – models with a smaller
context perform better.

Path neural networks:
expressive and accurate graph neural networks

G. Micher et al. (2023)
Do not aggregate just neighbours, but paths:
– Single shortest paths;
– All shortest paths;
– All single paths of length up to k.
Use recurrent layers to encode paths into vectors.

Leveraging label non-uniformity for node
classification in graph neural networks

F. Ji et al. (2023)
Train a GNN for node classification and compute, for
each node v, its label non-uniformity

w(v) =
∥∥µv − 1

n1
∥∥
1
,

where µv is the label distribution for v from the model.
Nodes with low w are close to class boundaries. To im-
prove model performance,
– Add nodes with low w to the training set, with their
predicted labels, and retrain;

– Pick a proportion η1 of nodes with the smallest w;
build a spanning tree on them; drop a proportion η2
of edges (between those nodes) not in that tree (to
preserve connectivity) and re-train.

Graph positional encoding
via random feature propagation

M. Eliasof et al. (2023)
Adding node features from the first power iterations
combines the advantages of random features (before
the first iteration) and spectral positional encoding
(limit of the power iterations).

Towards deep attention in graph neural
networks: problems and remedies

S.Y. Lee et al. (2023)
GATv2 learns edge attention α(k)

ij ∈ (0, 1), and suffers
from over-smoothing; DAGCN leanrs α(k)

ij ∈ (−1, 1)
and does not.

Understanding convolutions
on graphs via energies

F. Di Giovanno et al.
The Dirichlet energy is

E (F) =
1

2

∑
ij∈E
‖(∇F)ij‖2

(∇F)ij =
fj√
dj
− fi√

di
.

It can be generalized to

Eθ(F) =
∑
i

〈fi,Ωfi〉 −
∑
ij

Aij〈fiWfj〉+ φ
(
F, F (0)

)
=
∑
i

〈fi, (Ω−W)fi〉+

1

2

∑
ij

‖Θ+(∇F)ij‖2 −
1

2

∑
ij

‖Θ−(∇F)ij‖2 +

φ
(
F, F (0)

)
W = Θ′+Θ+ −Θ′−Θ−.

Graph convolutions do not necessarily oversmooth the
data: the negative eigenvalues of W can provide over-
sharpening.

Node embedding from neural Hamiltonian
orbits in graph neural networks

Q. Kang et al. (2023)
Graphs are not flat: embedding them in hyperbolic
space preserves more information. Their Gromov δ-
hyperbolicity distributions show they do not have con-
stant curvature. Do not embed the nodes in a con-
stant negative curvature space: embed them in (Rd, g),
where the metric g is learned.
The Hamiltonian GNN
– Learns an embedding (q

(0)
n , p

(0)
n) ∈ R2d for each

node n;
– Learns a metric gij on Rd (with inverse gij);
– Moves those embeddings along the Hamiltonian flow

H(p, q) =
1

2
gij(q)pipj

q̇i = gijpj

ṗi = −
1

2
∂ig

jkpjpk(
q(0)n (0), p(0)n (0)

)
⇝
(
q(0)n (T), p(0)n (T)

)
– Aggregates the resulting embeddings

q(1)n = q(0)n (T) + Mean
m∈N (n)

q(0)m (T)

Article and book summaries by Vincent Zoonekynd 95/1044

(the momentum of the next layer, p(1)n is learned –
it does not come from p

(0)
n (T));

The Gromov δ-hyperbolicity of a graph G is

Max
a,b,c,d∈V

d(a,b)+d(c,b)⩾
d(a,c)+d(b,d)⩾
d(a,d)+d(b,c)

[
d(a, b) + d(d, c)

]
−
[
d(a, c) + d(b, d)

]

Implementation (slightly more efficient than the naive
O(n4)) in sage.graphs.hyperbolicity.*.

Can large language models
reason about program invariants

K. Pei et al. (2023)
Alternative to dynamic analysis tools (e.g., Daikon, for
Java, which needs access to several program traces).

Data representations’ study
of latent image manifolds

I. Kaufman and O. Azencot (2023)
To assess the geometry of latent representations
learned by a neural net:
– Compute its intrinsic dimension;
– Augment the data around one of the training sam-
ples, to have a dense neighbourhood: for image data,
consider the image as a width×height matrix (sepa-
rately for each channel), compute its SVD, and re-
move some of the 10 smallest singular values – this
produces 210 points;

– Compute the mean absolute principal curvature
(MAPC).

The curvature increases sharply in the first few lay-
ers, then plateaus, and (only in well-trained networks)
increases again in the last layers.

Intrinsic dimension of data represetations
in deep neural networks

A. Ansuini et al.
To measure the intrinsic dimension (ID) of a cloud
of points, fit a Pareto distribution to the ratios µi =
r
(2)
i /r

(1)
i , where r(1)i and r(2)i are the distances between

a point i and its first and second nearest neighbours.

p(µi) = d · µ−(d+1)
i

p(µ) = dN
∏

1⩽i⩽N
µ
−(d+1)
i

It is robust, even if the points are not really sampled
uniformly, provided d ⩽ 20 – otherwise it underesti-
mates the dimension. Measure it at different scales (by
decimating the data) to check if it is scale-invariant.
The ID of the latent representations in trained neural
nets are much lower (10 to 100 times) than the number
of neurons; it increases sharply in the first layers, then
decreases slowly (“hunchback” shape). The ID of the
last layer is a good predictor of performance (lower is
better).

The data manifolds are not flat: they cannot be recov-
ered by linear projections.

Estimating the intrinsic dimension of datasets
by a minimal neighbourhood information

E. Facco et al.
Since FPareto(µ) = (1 − µ−d)1[µ⩾1], the intrinsic di-
mension can also be estimated with an (intercept-free)
linear regression

log
[
1− F (u)

]
log µ

= d.

Curvature-aware manifold learning
Y. Li (2017)

To estimate the curvature of a set of points:
– Compute its intrinsic dimension;
– Take a neighbourhood of the point of interest (100
times as many points as the dimension);

– Use PCA to find local coordinates;
– Compute a quadratic approximation of the chart of
the manifold in those coordinates;

– The eigenvaues of the Hessian of that quadratic ap-
proximation are the principal curvatures;

– The mean absolute principal curvature (MAPC) is
the average of their absolute values (this is an ex-
trinsic notion of curvature, for submanifolds of a Rie-
mannian manifold).

LLE (local linear embedding) can be generalized to ac-
count for (intrinsic) curvature.

Dink-Net: Neural clustering on large graphs
Y. Liu et al. (2023)

Learn node embeddings with a contrastive loss, and
cluster the nodes, with a “shrinking” loss bringing the
node representations close to the cluster centers, and a
“dilation” loss keeping the centers apart, end-to-end.

Dirichlet diffusion score model
for biological sequence generation

P. Avdeyev (2023)
Diffusion process on the probability simplex to generate
discrete sequences (sudoku puzzles, sudoku solutions,
DNA sequences). Jacobi diffusion

dx =
s

2

[
a(1− x)− bx

]
dt+

√
sx(1− x)dW

has Beta(a, b) as stationary distribution. This can be
generalized to a diffusion with a Dirichlet stationary
distribution (stick-breaking construction with k−1 Ja-
cobi diffusions).

Article and book summaries by Vincent Zoonekynd 96/1044

Conformal inference is (almost) free for
neural networks trained with early stopping

Z. Liang et al. (2023)
Conformal inference for models selected by early stop-
ping requires a 3-way split of the data:
– To train the models;
– To decide when to stop;
– For conformal inference.
It is possible to use only two subsets, by storing all
(or 100) the models, delaying the model selection, and
chosing one, anew, for each new observation.

Why random pruning is all we need
to start sparse

A. Gadhikar et a. (2023)
Randomly pruned (Erdös-Rényi) neural networks con-
tain a lottery ticket.

Synthetic data for model selection
A. Shishan et al.

Synthetic data is often used for data augmentation
(StyleGAN, GAN-GP). You can also use it instead
of the validation set, for model selection (early stop-
ping, random seed choice, hyperparameter optimiza-
tion). Reweight the synthetic dataset using a holdout
set of classifiers.

Large language models as optimizers
C. Yang et al.

Ask an LLM to generate a prompt template for the
problem you want to solve – not just once, but itera-
tively, each time providing the previous prompts and
their performance, to progressively improve it.
Ask for several prompts, each time, for more explo-
ration. Change the LLM sampling temperature to tune
the exploration-exploitation tradeoff.
Applications include linear regression, traveling sales-
man problem, reasoning (GSM8k, BigBenchHard:
arithmetic, commonsense).

Scaling transformer to 1M tokens
and beyond with RMT

A. Bulatov et al.
To increase the context length of a transformer, split
the input into segments, and concatenate the latent
representation of segment i− 1 to segment i.

segment 1 segment 2 segment 3

transformer transformer transformer

Recurrent memory transformer
A. Bulatov et al.

RWKV: reinventing RNNs
for the transformer era

A. Albalak et al.
Time mixing

rt =W
[
µxt + (1− µ)xt−1

]
kt =W

[
µxt + (1− µ)xt−1

]
vt =W

[
µxt + (1− µ)xt−1

]
wt =

∑
i<t

e−(t−1−i)w+kivi + eu+ktvt∑
i<t

e−(t−1−i)w+ki + eu+kt

ot =W
[
σ(rt)� wt

]
followed by channel mixing

rt =W
[
µxt + (1− µ)xt−1

]
kt =W

[
µxt + (1− µ)xt−1

]
ot = σ(rt)�

[
W Max(kt, 0)

2
]
.

Precise zero-shot dense retrieval
without relevance labels

L. Gao et al.
Instead of computing the similarity between a query
and the documents in the database, HyDE (hypothet-
ical document embeddings) asks an LLM to produce a
hypothetical (potentially hallucinated) document an-
swering the query, and retrieve the (actual) documents
most similar to the hypothetical document.

Pysentimiento: a Python toolkit
for sentiment analysis and social NLP tasks

J.M. Pérez et al.
Transformer-based models (RoBERTa) for sentiment
and emotion detection, for en, es, it, pt.

Visualizing graph neural networks
with CorGIE: corresponding a graph

to its embedding
Z. Liu et al.

To assess the quality of the node embeddings learned
by a GNN, compare the distance matrices of:
– The latent representations (node embeddings), using
the cosine distance;

– The graph, with the inverse Jaccard index of the k-
hop neighbours;

– The node features, with the Euclidean distance.

Supervised probabilistic
principal component analysis

Probabilistic PCA (PPCA) estimates the parameters
of the data generation process

z ∼ N(0, I) latent
ε ∼ N(0, σ2I)

x =Wz + ε observed

Article and book summaries by Vincent Zoonekynd 97/1044

Supervised probabilistic PCA (SPPCA) adds another
observed variable.

z ∼ N(0, I) latent
ε ∼ N(0, σ2

1I)

η ∼ N(0, σ2
2I)

x =W1z + ε observedy =W2z + η observed

It can be estimated with EM.

A new approach to decomposition of economic
time series into permanent and transitory

components with particular attention
to measurement of the business cycle

S. Beveridge and C.R. Nelson

SAITS: self-attention-based
imputation for time series

W. Du et al. (2023)
Impute missing values in time series with diagonally
masked self-attention, and two losses, for:
– Reconstruction of artifically masked values;
– Reconstruction of observed values (which may be dif-
ferent from the original ones, as the network also
tries to “denoise”’ the data).

Also check: GRUI-GAN, E2GAN, M-RNN, BRITS,
GP-VAE.

BRITS: bidirectional recurrent
imputation for time series

W. Cao et al.
Bidirectional RNN for the imputation of missing val-
ues in time series, with a consistency loss (the recon-
structed values in the forward and backward directions
should be close).

Learning representations
for incomplete time series clustering

Q. Ma et al. (2021)
CRLI combines:
– (Bidirectional) RNN to impute misisng values and
compute a latent representation of the time series
(concatenation of the last hidden states of the for-
ward and backward RNNs);

– Discriminator, predicting which values were im-
puted;

– Decoder of the latent representation, attempting to
reconstruct the original time series;

– Soft-k-means loss on the latent representation H:

`(H) = Min
F ′F=I

tr(H ′H)− tr(F ′H ′HF)

(F is the truncated SVD of H).

Graph-guided network for
irregularly sampled multivariate time series

X. Zhang et al.
To classify irregularly sampled multivariate time series
(or perform some other downstream task), compute la-
tent representions of each time series at each time step:
– With a (feature-specific) nonlinear transformation,
if it is observed;

– As a combination of its neighbours’ features (cross-
attention) otherwise.

The graph structure used to define the neighbours is
initialized as a complete graph; the edge weights are
updated using the cummulated attention weight for
each edge; the least important edges (bottom k%) are
pruned.

Estimating missing data in temporal streams
using multi-directional

recurrent neural networks
J. Yoon et al. (2017)

M-RNN first interpolates the missing values with a
bidirectional RNN, separately for each time series, then
refines the imputed values with a cross-sectional fully-
connected network.

◦ ◦××◦
×◦×◦×
◦×◦×◦

data interpolation imputation

Powerful p-value combination methods
to detect incomplete association

S. Yoon et al. (2021)
To combine p-values,
– The Fisher method converts them to χ2:

pi
iid∼ U(0, 1)

T = −2
∑

log pi ∼ χ2(2n);

– The Lancaster method uses the sample sizes si as
weights

L =
∑

F−1χ2(si)
(pi) ∼ χ2(

∑
si)

but the excessive degrees of freedom decrease the
power;

– The weighted Fisher method rescales the sample
sizes to keep the same degrees of freedom, using
χ2(df = 2n) = Γ(k = n, θ = 2);

– The roP method uses the r-th ordered (smallest) p-
value

p(r) ∼ Beta(r, n− r + 1)

but it is very sensitive to the choice of r;
– OrdMeta uses x = Minr F(r)(p(r)) as statistic

p = 1− n!
∫ 1

F−1
(n)

· · ·
∫ t3

F−1
(2)

∫ t2

F−1
(1)

dt1 . . . dtn.

R implementation in metapro, with SymPy for the in-
tegral.

Article and book summaries by Vincent Zoonekynd 98/1044

Combining dependent p-values with an
empirical adaptation of Brown’s method

W. Poole et al. (2016)
To combine p-values, the Fisher method uses

pi
iid∼ U(0, 1)

Ψ =
∑
−2 log pi ∼ χ2(2k).

If the p-values are not independent, the Brown (Kost)
method posits Ψ ∼ c · χ2(2f), estimates c and f by
matching the first two moments

f =
E[Ψ]2

Var[Ψ]

c =
Var[Ψ]

2E[Ψ]

E[Ψ] = 2k

Var[Ψ] = 4k + 2
∑
i<j

Cov[−2 log pi,−2 log pj]

and approximates the covariance as

Cov[−2 log pi,−2 log pj] = aρij + bρ2ij + cρ3ij

a = 3.263 b = −.719 c = 0.027

ρij = Cor(Xi, Xj)

Xi = Φ−1(pi)

(in particular, this also assumes a Gaussian copula).
Instead, approximate the covariance with the ecdf.

How good are convex hull algorithms?
D. Avis et al. (1996)

There are several convex hull algorithm, each library
implementing only one of them:
– Double description: cddlib, porta,
– Reverse search: lrslib,
– Quick hull: qhull.
Each of them has trouble dealing with some type of
polytopes:
– Fat lattice: #facets� size;
– Intricate: #triangles� size;
– Dwarfed: P = Q∩H,#facetsP < #facetsQ, sizeQ �

sizeP , where the size is the space required to store
both representations of the polytope (set of vertices,
set of half-spaces) and� means “super-polynomial”.

Quasi-stable coloring for graph compression
M. Kayali and D. Suciu

The Weisfeler-Leman (WL) algorithm (aka colour re-
finement) produces a stable colouring, which can be
used for graph reduction (merge all the nodes with
the same colour), but the reduction is rather modest.
Quasi-stable colourings allow two nodes to have the
same colour if the number of neighbours they have in
each colour is at most q. Applying the WL algorithm
until there are n colours is a good heuristic.

Applications include betweenness centrality, maximum
flow.

Adaptive hierarchical regular
binning of data point features

D. Floros et al.
Efficient construction of a k-d-tree from the dyadic en-
coding of the point coordinates.

QUBO.jl: a Julia ecosystem for quadratic
unconstrained binary optimization

P.M. Xavier et al.
Many optimization problems can be converted (auto-
matically) to QUBO form (quadratic unconstrained bi-
nary optimization), which can be solved by many quan-
tum computers.

Learning QUBO models for quantum
annealing: a constraint-based approach

F. Richoux et al.
To convert a combinatorial optimization problem to
QUBO form, we need to convert the constraints into
quadratic terms in the objective function.
– For the 1-hot constraint, since

∑
xi = 1⇔ (

∑
xi −

1)2 = 0, we can add (
∑
xi − 1)2;

– Permutation constraints are handled similarly.

∀σ ∈ {0, 1}n×n σ ∈ Sn ⇔ σ1 = 1 ∧ σ′1 = 1

Multi-fidelity covariance estimation
in the log-Euclidean geometry

A. Maurais et al. (2023)
The Euclidean multi-fidelity covariance estimator

Σ̂(0)
n +

∑
ℓ

αℓ
(
Σ̂(ℓ)
nℓ
− Σ̂(ℓ)

nℓ−1

)
is not guaranteed to be positive definite. Replace the
Euclidean geometry with the log-Euclidean one (i.e.,
use LogΣ instead of Σ, and Fréchet average); the
Bures-Wasserstein geometry, or the log-Cholesky ge-
ometry are alternative choices. (One can compute the
optimal sizes n∗ and the optimal weights α∗ to maxi-
mize the MSE with a constraint on the total cost.)
The generalized variance and correlation are

σ2
X = trCov[XX ′]

ρXY =
trCov[XX ′, Y Y ′]

σXσY
.

Article and book summaries by Vincent Zoonekynd 99/1044

Correlation matrix clustering
for statistical arbitrage portfolios

A. Cartea et al. (2023)
– Take daily returns, for 600 stocks, over 4 years;
– Remove the market (adjusting for the CAPM beta);
– Compute the correlation matrix C;
– View it as a weighted graph, with potentially nega-
tive weights; compute the Laplacians

Āij = |Aij |

D̄ii =
∑
j

|Aij |

Dii =
∑
j

Aij

L = D̄ − Ā
L̄rw = I − D̄−1A
L̄sym = I − D̄−1/2AD̄−1/2

A = A+ −A−

D+
ii =

∑
j

A+
ij , D−ii =

∑
j

Āij

L± = D± −A±

L±sym = (D±)−1/2L±(D±)−1/2

(L1, L2) = (L+ + τD−, L− + τD+), τ > 0

(L1,sym, L2,sym) = (L+
sym + τI, L−sym + τI)

– Reduce the dimension using the k smallest (general-
ized) eigenvalues of L̄ or L̄rw or L̄sym or (L1, L2) or
(L1,sym, L2,sym);

– Cluster the resulting points using k-means (with the
same k);

– Choose k using random matrix theory (RMT), as
the number of eigenvalues of C beyond λ+ = (1 +√
N/T)2, or the proportion of variance explained by

the top eigenvalues of C.

Is there a replication crisis in finance?
T. Engerslev et al. (2022)

Apparently, no:
– Do not use returns, but risk-adjusted returns
(CAPM alpha);

– Adjust for multiple testing, either with BY or, bet-
ter, a Bayesian model, to account for correlation
between factors (set the prior expected alpha to
zero, and select the other with emprical Bayes, using
only out-of-sample data to overcome the puplication
bias);

– Use that Bayesian model to compute the FDR.

Constrained monotonic neural networks
D. Runje amd S.M. Shankaranarayana (2023)

Neural networks with positive weights and 3 activation
functions (in different channels) can ap-
proximate any monotonic function (with ReLU alone,

we only get convex functions, and with alone, the
network is difficult to train).
Previous solutions used complicated architectures (lat-
tice networks), or a gradient penalty followed a search
for non-monotonicity (MILP, SMT).

How to address monotonicity
for model risk management

D. Chen and W. Ye
There are several notions of monotonicity between fea-
tures (e.g., past and present values of the same feature)

∀c ⩾ 0 f(x) ⩽ f(x+ c)

∀c ⩾ 0 f(x, x+ c) ⩽ f(x+ c, x)

∀c ⩾ 0 f(x, y + c) ⩽ f(x+ c, y)

(for instance, the probability of recidivism is strongly
monotonic wrt felonies and dismeanors). For individ-
ual or weak monotonicity, used a GAM with f ′i ⩾ 0
or f ′i ⩾ f ′j . For strong pairwise monotonicity, use a
GAM or a NAM (neural additive model), with univari-
ate and bivariate features (groves of NAMs, GNAM)
and penalties to ensure the required monotonicities.

LinSATNet:
the positive linear satisfiability neural networks

R. Wang et al. (2023)
The Sinkhorn algorithm converts a positive matrix
S ∈ Rm×n

⩾0 to a doubly stochastic one by alternatively
normalizing its rows and columns to match marginal
distributions u ∈ Rm

⩾0, v ∈ Rn
⩾0. It can be general-

ized to multiple sets of marginal distributions (it still
converges).
To enforce constraints Ax ⩽ B, Cx ⩾ D, Ex = F ,
where A, B, C, D, E, F have nonnegative entries, to
some input y, apply the generalized Sinkhorn algorithm
to S

S = exp(W/τ)

W =

[
y′ β
β1′ β

]
=

[
y1 · · · yℓ β
β · · ·β β

]
with marginals encoding the constraints

a′x ⩽ b u = [a′ b] v =

[
b
a′1

]
c′x ⩾ d u = [c′ γd] v =

[
(γ + 1)d
c′1− d

]
γ =

⌊
c′1

d

⌋
e′x = f u = [e′ 0] v =

[
f

e′1− f

]

Autocoreset: an automatic practical
coreset construction framework

A. Maalouf et al.
A coreset is a (weighted) subset of the training data on
which the loss function takes similar values. Given a
matrix M ∈ Rn×m, a vector summarization ε-coreset

Article and book summaries by Vincent Zoonekynd 100/1044

is a subset J ⊂ [n] and a weight function w : J → R+

such that ∥∥∥∥∥∥
∑
i∈[n]

Mi• −
∑
j∈J

w(j)Mj·

∥∥∥∥∥∥
2

2

⩽ ε.

Given

θ1, . . . , θm

Data = {x1, . . . , xn},
Mij = `(xi, θj)

iterate

(I, w) = Coresetm(M)

θ∗ = Argmin
θ

∑
i∈I

w(i)f(xi, θ)

Mi,m+1 = `(xi, θ
∗).

Lowering the pre-training tax
for gradient-based subset training:

a lightweight distributed pre-training toolkit
Y. Ro et al. (2023)

Pretrain using all the data, in a distributed fashion, as
a model soup, with each model trained independently
on a subset of the data (to limit communication); then,
find a subset of the data with the same gradient distri-
bution as the whole data, and finish training on that.

Compositional exemplars
for in-context learning

Y. Ye et al. (2023)
Determinantal point process (DPP) to select (with
maximum a posteriori (MAP) estimators) examples for
few-shot learning.

P (S) =
detLS
det(LI)

Lij = k(ai, aj)

modified to include a relevance term:

ai : examplar
x : task
ri = g(ai, x) relevance of ai to x
L̃ = diag(r)Ldiag(r)

log det L̃S =
∑
i∈S

log r2i + log detLS

DPPy: DPP sampling with Python
G. Gautier et al. (2019)

Data-driven subgroup identification
for linear regression
Z. Izzo et al. (2023)

To find a region where the relation x 7→ y is almost
linear,
– Fit a linear model on the k nearest neighbours of
each point;

– Pick the model with the lowest training error
– Enlarge the neighbourhood to include all points with
a low error for that model

– Pick the largest ball (or polytope) containing only
points in that subset.

XTab: cross-table pretraining
for tabular transformers

B. Zhu et al. (2023)
Self-supervised learning for tabular data can use the
following losses:
– Reconstruction: reconstruct a corrupted row (60%
of the entries have been replaced by resampling from
the corresponding column)

– Contrastive loss: the postive pairs are (x, x̃), where x
is a row and x̃ a corrupted version of it; the negative
pairs are different rows.

– Supervised loss: predict the value of a column.
You can pretrain a single model and fine-tune it on
different tables and tasks:
– Featurize a row into a sequence of “tokens” (em-
beddings), ending with cls: for qualitative columns,
learn an embedding, for quantitative columns, learn
an affine transformation R→ Rd;

– Feed it to an FT-transformer (or some other trans-
former variant);

– Finish with a projection head.
The transformer is shared across tasks and frozen after
pretraining; the featurizers and projection heads are
task-specific and have to be re-trained.

TransTab: learning transferable tabular
transformers across tables

Z. Wang and J. Sun
Earlier paper with a similar idea and a gated trans-
former, i.e., a transformer followed by a gated feedfor-
ward layer: x 7−→W1(W2 � x⊕W3x).

Revisiting deep learning models
for tabular data

Y. Gorishniy et al.
The FT-Transformer tokenizes the rows (i.e., converts
them to sequences of embeddings) before feeding them
to the transformer:
– For qualitative columns, learn an embedding of the
possible values;

– For quantitative columns, learn an affine transform
R→ Rd;

– Append a cls token,

Article and book summaries by Vincent Zoonekynd 101/1044

Also try a ResNet.

Fastformer:
additive attention can be all you need

C. Wu et al.
Efficient transformer variants use:
– Hashing (Reformer)
– Low-rank factorizations (Linformer)
– A mixture of local and global attention (Longformer,
BigBird)

The FastFormer reduces the dimension of the attention
matrix.

Q

K

V

×

×

by adding linear transformations.

Q

K

V

q
k

R

•

• +

α

β

u

Big Bird: transformers for longer sequences
M. Zaheer et al.

BigBird makes transformers more scalable by combin-
ing:
– Moving window attention;
– Sparse (random) attention – random graphs are
good approximations of complete graphs;

– Global attention, either allowing a few random to-
kens to attend to all other tokens, or by adding a
few cls tokens.

Big Bird

=

Window

+

Global

+

Random

BigBird is still a Turing-complete universal approxima-
tor.

SAINT: improved neural networks
for tabular data via row attention

and contrastive pre-training
G. Somepalli et al.

Transformer on tabular data, alternating between:
– Within-row attention,
– Between-row attention, concatenating the embed-
dings of all the columns (limited to rows in the cur-
rent batch).

Pre-train in a self-supervised way (contrastive learning
with the InfoNCE loss and/or denoising).

CoDi: co-evolving contrastive diffusion models
for mixed type tabular synthesis

C. Lee et al. (2023)
The diffusion probabilistic model can be defined for
continuous

q(xt|xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
or discrete variables

q(xt|xt−1) = (1− βt)1xt=xt−1
+ βtUnif(xt)

pθ(xt−1|xt) =
∑
x0

q(xt−1|xt, x0)pθ(x0, xt)

q(xt−1|xt, x0) = (Bayes).

Both minimize

KL
(
q(xt−1|xt, x0) ‖ pθ(xt−1|xt)

)
.

For tabular data, use two models, one continuous, one
discrete, each conditioned on the other one at each
step.

TabDDPM: modeling tabular data
with diffusion models

A. Kotelnikov
Similar idea, with a quantile transformation of quanti-
tative columns.

Compressing tabular data
via latent variable estimation

A. Montanari and E. Weiner (2023)
To compress tabular data, first cluster the rows and
columns (k-means on the SVD).

Tromp: towards a better
deep neural network for tabular data

K.Y. Chen et al. (2023)
Use task- (prompt-) specific feature importances.

columns

prompt
feature

embedding

×

features

feature
importance

•

Learning deep time-index models
for time series forecasting

G. Woo et al. (2023)
Learn a “time-index” model, i.e., a 1-dimensional im-
plicit neural representation (INR, NeRF – these gen-
eralize the classical structural time series models de-
composing a time series into trend, cycle and holiday
components)

ŷt = fθ,ϕ
(
τ(t)

)
Article and book summaries by Vincent Zoonekynd 102/1044

where τ are random Fourier features and the param-
eters are separated into curve-fitting θ and forecast-
ing/extrapolating (inductive bias) φ:

θ ← Argmin
θ

fitting error(θ, φ) on [t− h, t]

φ← Argmin
ϕ

forecasting error(θ, φ) on [t, t+ h].

Non-autoregressive conditional diffusion
models for time series prediction

L. Shen and J.T. Kwok (2023)
TimeDiff forecasts a time series using a diffusion model
using, as conditioners:
– An AR model of the past, computed as∑

wi � xt−i + b;

– A mixture of the past, x⩽t, transformed with a conv-
net, and the future, x>t (a kind of teacher forcing).

The sigmoid-weighted linear unit is

SiLU(z) = σ(z)� z.

Also check: CSDI, SSSD, FedFormer, NBeats.

CSDI: conditional score-based diffusion models
for probabilistic time series imputation

Y. Tashiro et al. (2021)
Diffusion model to impute the missing values in a time
series, conditioning on the observed values, trained
with self-supervised learning.

Efficiently modeling long sequences
with structured state spaces

A. Gu et al.
The three ways of representing a state space model
(SSM), continuous time, recurrent, and convolutional,
are related.

x′ = Ax+Bu

y = Cx

xk = Āxk−1 + B̄uk

yk = Cxk

Ā = (I − 1
2hA)

−1(I + 1
2hA)

B̄ = (I − 1
2hA)

−1hB

y = K ∗ u
K = (CĀ0B̄, CĀ1B̄, . . . , CĀn−1B̄, CĀnB̄)

With the HiPPO matrix

Ank = −

(2n+ 1)1/2(2k + 1)1/2 if n > k

n if n = k

0 otherwise

the SSM (S4) memorizes its input u.

It is possible to efficiently compute the convolution
with K if A is normal (AA∗ = A∗A; equivalently,
A = UDU∗, D diagonal, UU∗ = I). The HiPPO ma-
trix is the sum of a normal and a low-rank matrix; it
is still possible to efficiently compute the convolution
with K. With a change of basis, we can replace the
normal matrix with a diagonal one.

HiPPO: recurrent memory
with optimal polynomial projections

A. Gu et al. (2020)
To compress the information contained in a function
f |[0,t], online (i.e., progressively, updating the com-
pressed information as t increases), project it on a
finite-dimensional subspace, e.g., that of polynomials
of degree less than N , for some measure µt on [0, t],

gt = Argmin
g∈R[X]
deg g<N

∥∥∥f⩽t − g∥∥∥
L2(µt)

.

The measure µt defines orthogonal polynomials
(gn)n<N ; the coefficients of gt in this basis are

ck(t) =
〈
f⩽t, gk

〉
µt
.

They are solution of an ODE.

dc(t)

dt
= Atc(t) +Btf(t)

For instance:
– Legendre (LMU, Legendre memory unit)

µt =
1

θ
1t−θ,t

Ank =
1

θ

{
(−1)n−k(2n+ 1) if n ⩾ k
(2n+ 1) if n ⩽ k

Bn =
1

θ
(2n+ 1)(−1)n

– Laguerre

µt(x) = e−(t−x)1x⩽t
Ank = 1n⩾k
Bn = 1

– Scaled Legendre

µt =
1

t
1[0,t]

Ank =

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

Bn = (2n+ 1)1/2

– Fourier recurrent unit (FRU): orthogonal polynomi-
als on the unit circle {z : |z| = 1}.

This can be used inside an RNN, to increase memory.

Article and book summaries by Vincent Zoonekynd 103/1044

It’s raw!
Audio generation with state space models

K. Goel et al.
UNet with S4 blocks for audio generation; can be bidi-
rectional.
S4 is a state-space model, not computed iteratively, but
all at once, with a convolution – this can be done effi-
ciently if the matrix is diagonal-plus-low-rank (1 or 3);
it is initialized with a HiPPO matrix. Parametrizing
the matrix as Λ− pp∗, Λ diagonal, p ∈ RN×r, instead
of Λ + pq∗, ensures it is Hurwitz (its eigenvalues have
a negative part), i.e., the corresponding SSM is stable.

Diffusion-based time series imputation and
forecasting with structured state space models

J.M. Lopez and N. Strodthoff
SSSD is a diffusion model with S4 blocks for missing
value imputation in time series.

Deep latent state space models
for time series generation

L. Zhou et al.
Variant of S4 with an extra latent variable.

Simple hardware-efficient long convolutions
for sequence modeling
D.Y. Fu et al. (2023)

The butterfly decomposition decomposes the FFT on
n = n1n2 values into FFTs on n1 and n2 values (by
reshaping the input as an n1 × n2 matrix and apply-
ing the FFT on the rows and columns – you can also
fine-tune the FFT coefficients, keeping the same spar-
sity patterns, to get an FFT-like transformation). To
improve the performance of the long convolution (S4),
tweak the kernel: dropout, smoothing (moving aver-
age), quashing of small values.

Neural continuous-discrete state space models
for irregularly-sampled time series

A.F. Ansari et al.
If the observations, in a state space model (SSM) (ob-
served at irregular intervals) are high-dimensional, use
lower-dimensional auxilliary variables.

zt0 zt1 zt2 zt3 · · ·

a0 a1 a2 a3 · · ·

y0 y1 y2 y3 · · ·

Use linear of locally linear dynamics, which interpolate

between SSMs.

dz = f(z, t)dt+G(z, t)dB

f(z, t) = F (z)z

G(z, t) = I

F (z) =
∑

αj(z)Fj

α(z) = softmax
(
g(z)

)
g: neural net
Fj : basis matrices

Feature programming
for multivariate time series prediction

A. Reneau et al. (2023)
Automatically generate features for multivariate time
series by combining operators Diff(xi, xj) = xi − xj ,
Lag, ∆, ∆2, MA.
The Ising model

P (σ) ∝ exp−β

 ∑
(i,j)∈E

Jijσiσj +
∑
i∈V

hiσi

σi ∈ {±1}

can be turned into a dynamic process (Glauber dynam-
ics).

P (σi,t+1) ∝ exp(σi,t+1γit)

γit =
∑
j

Jijσj + hi

Learning perturbations
to explain time series predictions

J. Enguehard (2023)
To explain a model f , one can use: a local linear ap-
proximation, the gradient of the output wrt the fea-
tures, or a perturbation: modify the input on a mask,
as small/large as possible, to decrease/preserve the per-
formance as much as possible. Instead of a fixed pertur-
bation (average, moving average, Gaussian blur, etc.)
use a neural network:

Find m,NN
To minimize d

[
f(x), f

(
Φ(x,m)

)]
+ ‖m‖1 + ‖NN(x)‖1

Such that 0 ⩽ m ⩽ 1
Where Φ(x,m) = m� x+ (1−m)�NN(x)

FaDIn: fast discretized inference for Hawkes
processes with general parametric kernels

G. Staerman et al. (2023)
To speed up the estimation of multivariate Hawkes
processes with parametric (non-exponential) kernels
(which is quadratic in general), assume the kernel has
bounded support (limit on the influence of a past event)
and discretize the temporal point process.

Article and book summaries by Vincent Zoonekynd 104/1044

FEDformer: frequency-enhanced decomposed
transformer for long-term series forecasting

T. Zhou et al.
Use a transformer in Fourier (or wavelet) space, but
only keep a random subset of the Fourier components.
For the wavelets, process the different scales separately.

x lin F

select
attention
or linear

pad

F−1

To extract the trend, use average filters of different
sizes, and combine them.

x

trends

linear

×

softmax

Self-interpretable time series prediction with
counterfactual explanations

J. Yan and H. Wang
CountTS is a variational Bayes model for time series
tasks (classification, regression, etc.).

Data generation:
u ∼ N(0, I)

z ∼ N
(
µ(u, x), σ2(u, x)

)
y ∼ N

(
µ(u, z), σ2(u, z)

)
Inference:

y ∼ x
u ∼ x, y
z ∼ x, y

Feasible counterfactual explanations only change non-
constant parts of the input (e.g., they do not suggest
to change the age of the patient).

Sequential multi-dimensional self-suppervised
learning for clinical time series

A. Raghu et al. (2023)
Use both a global and a cross-sectional self-supervised
learning (SSL) loss, e.g, NX-Xent (SimCLR)

Meani− log
exp(simij/γ)∑
k ̸=i exp(simik/γ)

or VICReg.

Modeling temporal data as continuous
functions with stochastic process diffusion

M. Biloš et al. (2023)
DDPM (denoising diffusion probabilistic model) for
time series in function space, with noise given by

– A Gaussian process (GP) with RBF kernel κ(τ) =
exp(−γτ2);

– An OR diffusion

dεt = −γεtdt+ dWt,

sampled as a time-changed, scaled Wiener process
exp(−γt)Wexp(2γt), i.e., a GP with a Matérn kernel,
ν = 1/2, κ(τ) = exp−γ |t|.

Applications: forecasting and imputation, for irregular
time series.

Probabilistic imputation for time series
classification with missing data

VAE-like model for multiple imputation in time series,
in the MNAR setup.

Sequential Monte Carlo learning
for time series structure discovery

F.A. Saad et al. (2023)
Particle filter (SMC) to select a GP kernel, from a prob-
abilistic context-free grammar (PCFG)

B = Linear |Periodic |Gamma | · · ·
⊕ = +| × |ChangePoint
K = B|(K1 ⊕K2)

to model a univariate time series.

I 2SB: Image-to-image Schrödinger bridge
G.H. Liu et al.

The Schrödinger bridge generalizes diffusion models.

Provably convergent Schrödinger bridge
with applications to probabilistic

time series imputation
Y. Chen et al.

The Schrödinger bridge from measure µ to measure ν
wrt the prior stochastic process q is the stochastic pro-
cess

p = Argmin
p0=µ
p1=ν

KL(p‖q).

It generalizes diffusions.

dxt = f(xt, t)dt+ g(t)dWt

dxt =
[
f(xt, t)− g(t)2∇ log pt(xt)

]
dt+ g(t)dW̄t

dxt =
[
f(xt, t)− g(t)2∇ log ~ψ(xt)

]
dt+ g(t)dWt

dxt =
[
f(xt, t) + g(t)2∇ log ~ψ(xt)

]
dt+ g(t)dW̄t

Article and book summaries by Vincent Zoonekynd 105/1044

Regions of reliability in the evaluation
of multivariate probabilistic forecasts

É. Marcotte et al.
A scoring rule measures if an observation y ∼ D is con-
sistent with a forecasted distribution D̂ ; for instance,

NLL(y, D̂) = − log pD̂(y)

ES(y, D̂) = E
x∼D̂
‖y − x‖2 − 1

2
E

x,x′∼D̂
‖x− x′‖2

CRPS(y, D̂) =

∫ +∞

−∞

(
ΦD̂(x)− 1x⩾y

)2
dx

VG(y, D̂) =
∑
a,b

(
|ya − yb|p − E

x∼D̂
|xa − xb|p

)2

DS(y, D̂) = log
∣∣detΣD̂

∣∣+ (y − µD̂)′Σ−1
D̂

(y − µD̂).

A scoring rule S is proper if

∀D̂ E
y∼D

S(y,D) ⩽ E
y∼D

S(y, D̂).

With small samples, they may fail to spot forecasts
with significant imperfections.

Learning the dynamics
of sparsely observed interacting systems

L. Bleistein et al. (2023)
Given a controlled differential equation (CDE) dyt =
G(yt, xt)dt, its solution map Ψ : (x[0,t], t) 7−→ yt is lin-
ear in signature space: Ψ(x[0,t], t) = SN (x[0,t])

′θ. The
signature transform allows x and y to be irregularly
observed time series; y can be sparser.

Sequential predictive
conformal inference for time series

C. Xu and Y. Xie (2023)
Conformal inference assumes the data is exchangeable:
this assumption does not hold for time series. One
could adjust the significance level α to recover the de-
sired coverage (AdaptCI), or leverage the serial depen-
dence of the non-conformity scores with (random for-
est) quantile regressions (SPCI).

Resurecting recurrent neural networks
for long sequences

A. Orvieto et al. (2023)
Stacking linear recurrent units (LRU – no non-
linearity)

xt = diag(λ)xt−1 + γ � ut
λj = exp

(
−eνj + ieθj

)
γj =

√
1− λ2j

u = input

and non-linear MLP blocks recovers the long-range
performance of S4.

Generalized teacher forcing
for learning chaotic dynamics

F. Hess et al. (2023)
To model (chaotic) dynamical systems and avoid ex-
ploding gradients, use:
– Generalized teacher forcing, z̃t = (1 − α)zt + αẑt,

where zt is from the model and ẑt is observed;
– A 1-layer RNN, with skip-connection, and clipped
ReLU

zt−1

W2 W1φ

A

+ zt

D-CODE: discovering closed form ODEs
from observed trajectories

Z. Qian et al.
To find an ODE ẋ = f(x) from trajectories x, when
the data is noisy and/or infrequently sampled (so that
we cannot reliably estimate ẋ and use symbolic re-
gression, gplearn), use the variational formulation of
ẋ = f(x) (multiply by a test function g such that
g(0) = g(T) = 0, integrate between 0 and T , integrate
by parts to remove ẋ):

C =

∫ T

0

x(t)ġ(t)dt+

∫ T

0

f
(
x(t)

)
g(t)dr.

Understanding over-squashing and bottlenecks
on graphs via curvature

J. Topping et al.
The balanced Forman curvature of an edge i–j counts:
– The number of triangles containing that edge (posi-
tive curvature);

– The number of 4-cycles with no diagonal, containing
that edge (zero curvature);

– The number of remaining outgoing edges (negative
curvature).

Oversquashing is caused by negatively curved edges
(bottlenecks).

clique (> 0) grid (= 0) tree (< 0)

To limit it, rewire the graph using the stochastic dis-
crete Ricci flow (SDRF):
– Pick the edge i–j with the minimum curvature;
– Add the edge k–` increasing the curvature the most,

where k and ` are neighbours of i and j (or i and j
themselves);

– Remove edges with curvature above some threshold.
The Ollivier curvature of an edge i–j is

κ(i, j) = lim
α→1

1−W1(µ
α
i , µ

α
j)

1− α
where

Article and book summaries by Vincent Zoonekynd 106/1044

– µαi is the measure on B1(i) (the ball of radius 1
centered on i, i.e., i and its immediate neighbours)
putting weight α on i and (1 − α)/di on its neigh-
bours;

– W1 is the Wasserstein distance (for the geodesic dis-
tance on the graph)

W1(µi, µj) = inf∑
k

Mkw=µj(w)∑
w
Mkw=µi(k)

∑
k,w

Mkwd(k,w)

The augmented Forman curvature only considers tri-
angles.

F (i, j) = 4− di − dj + 3#ij
∆

Rewiring networks for graph neural network
training using discrete geometry

J. Bober et al.
Same algorithm, but the edge added is picked at ran-
dom, using the softmax of the curvature improvement.
The Ricci flow on a manifold

∂g

∂t
= −2Ric(g)

“smooths” a manifold:

−→

In dimension 2, Ric(g) = kg, where k is the Gauss
curvature.

Diffusion improves graph learning
J. Gasteiger et al. (2019)

The generalized diffusion matrix is

S =
∑
k⩾0

θkT
k,

for instance PPR (personalized page rank), T = AD−1,
θk = α(1 − α)k, or heat diffusion, T = AD−1, θk =
e−ttk/k! (add weighted self-loops to the adjacency ma-
trix A; you can also use the symmetric transition ma-
trix Tsym = D−1/2AD−1/2 instead of the random walk
one Trw = AD−1).
Truncate it (keeping the top k entries in each column,
or the entries above some threshold) and use the result-
ing (weighted) graph instead of the original one (graph
diffusion convolution, GDC, DIGL).

DRew: dynamically rewired
message passing with delay
B. Gutteridge et al. (2023)

To limit oversquashing in GNNs, have each node at
layer k directly receive input from nodes k hops away
(instead of via its immediate neighbours) either their
current (DRew) or initial (νDRew) state.

Expander graph propagation
A. Deac et al. (2022)

The Cheeger constant of a connected graph G = (V,E)
is

h(G) = Min
A⊂V

0<|A|< 1
2 |V |

|∂A|
|A|

.

Let 0 = λ0 < λ1 < λ2 < · · · be the eigenvalues of the
Laplacian of a graph G.
An expander family is a family of graphs (Gi)i∈I such
that ∀i λ1(Gi) ⩾ c, for some c > 0; equivalently,
∀i h(Gi) ⩾ ε, for some ε > 0. In an expander fam-
ily with bounded degree,

diam(Gi) = O
(
log |Vi|

)
.

The Cayley graph of a group G wrt a generating set S
has the elements of G as nodes, and edges g → gs for
g ∈ G, s ∈ S.

Gn = Cayley
(
SL2(Z/n),

{(
1 1
0 1

)
,

(
1 0
1 1

)})
is an expander family with O(n3) nodes. Gn is locally
tree-like, up to distance O(log n).
All the edges have negative curvature, but not enough
to produce oversquashing – in any case, expansion,
sparsity and non-negative curvature are incompatible:
if there is a bound on the degree and the Cheeger con-
stant, there are only finitely many such graphs.
To address oversquashing, interleave a GNN on the in-
put graph with a GNN on the Cayley graph (build it
breadth-first, and only keep the first |V | nodes – it is
connected.
Other ways of addressing oversquashing include:
– Adding a master node;
– Feature augmentation;
– Graph rewiring (personalized page-rank, stochastic
discrete Ricci flow).

Relevant walk search
for explaining graph neural networks

P. Xiong et al. (2023)
With the max-product algorithm, layerwise relevance
propagation (LRP) can return the top-k most relevant
walks in polynomial time.

Brauer’s group equivariant neural network
E. Pearce-Crump (2023)

Description of a generating set of

homG

(
(Rn)⊗k, (Rn)⊗ℓ

)
for G = O(n), SO(n) or Sp(n), where the action of G
on (Rn)⊗k is

g · (x1 ⊗ · · · ⊗ xk) = (gx1)⊗ · · · ⊗ (gxk).

Article and book summaries by Vincent Zoonekynd 107/1044

In an equivariant neural net, the layers are representa-
tions (rather than just vector spaces) and the maps
between them are equivatiant (represenattion mor-
phisms).

Neural execution of graph algorithms
P. Veličković et al.

Train a graph neural net to learn, simultaneously, sev-
eral graph algorithms (e.g., breadth-first search and
Bellman-Ford shortest paths) with a shared “proces-
sor” and task-specific encoders and decoders; reuse this
processor for other graph tasks.

input

input

enc1

enc2

processor

dec1

dec2

output

output

(task1)

(task2)

The Prüfer sequence of a tree with nodes labeled 1 to
n is obtained as follows: in step i, remove the leaf with
the smallest label and store the label of its neighbour
in position i.

Neural priority queues
for graph neural networks

R. Jain et al. (2023)
Differentiable priority queue.

Recursive algorithmic reasoning
D. Jayalath et al.

Augment GNNs with a stack, for recursive tasks, e.g.,
depth-first search.

Learning to boost training by periodic
nowcasting near future weights

J. Jang et al. (2023)
The weight nowcaster network forecasts future (short-
term) weights and allows to intermittently skip a few
epochs.

A unifying causal framework for analyzing
dataset shift-stable learning algorithms

A. Subbaswamy et al. (2022)
When using a causal graph, pay attention to “unstable
edges” – edges whose conditional probability distribu-
tion may change.

Breaking the curse of depth
in graph convolutional networks
via refined initialization strategy

S. Wang et al. (2023)
To check if the initialization of a (graph) neural net is
satisfactory, look at forward signal propagation, back-
ward signal propagation, and diversity propagation,

E
∥∥H(L)

∥∥2
F

E ‖X‖2F
E

∥∥∥∥ ∂L

∂W (1)

∥∥∥∥ E
DirH(L)∥∥H(L)

∥∥2
F

where the Dirichlet energy is DirH = tr(H ′LH) and
L is the normalized Laplacian.
We do not want those quantities to vanish or explode as
L→∞; with traditional initialization schemes (Kaim-
ing, Xavier), they do.
MetaInit and SPoGInit scale the weights, layerwise,
to improve propagation (make the signal propagations
close to 1, and the diversity propagation large).
Additing residual connections, initialized at (0,1), also
helps (ReZero, ReZeroGCN)

Model soups: averaging weights of multiple
fine-tuned models improves accuracy

without increasing inference time
M. Wortsman et al. (2022)

When fine-tuning, instead of selecting the best model
after hyperparameter search, or averaging the pre-
dictions of all the models (ensembling), average the
weights, either of all the models (uniform soup), or by
adding the models to the soup only if they improve the
test set accuracy (greedy soup).

Robust fine-tuning of zero-shot models
M. Wortsman et al.

Fine-tuning improves accuracy on the target distribu-
tion, but reduces robustness to distribution shifts. In-
stead, ensemble the weights of the zero-shot (not fine-
tuned) and fine-tuned models (WiSE-FT).

Categorizing variants of Goodhart’s law
D. Manheim and S. Garrabrant (2019)

There are several categories of Goodhart’s law:
– The metric is a noisy version of the intended goal –
the optimization may be misled by the noise;

– The metric is a good approximation of the intended
goal, but only in a small region of the search space
– the optimizer may leave that region;

– The causal relation between the metric and the in-
tended goal is not direct, and someone (the regula-
tor, or the agent – in particular if his own goal is
different (cobra effect)) manipulates X.

X

metric goal
X

metric

goal

Article and book summaries by Vincent Zoonekynd 108/1044

TRAK: Attributing model behaviour at scale
S.M. Park et al. (2023)

Data attribution decomposes the output of a model
z 7→ f(z, θ) into a sum of contributions of the training
samples S.

f
(
x, θ∗(S′)

)
≈ τ(z, S) · 1S′ for S′ ⊂ S

This can be done with a lasso linear regression (data-
model)

τ(z, S) = Argmin
β∈Rn

∑
i

[
β′1Si − f

(
z, θ∗(Si)

)]2
+ λ ‖β‖1

for random subsets S1, . . . , Sn ⊂ S of sizes α |S|, α ∈ S,
but this requires fitting n models (thousands).
Instead:
– Linearize the model;
– Reduce the dimension (random projection)

φ(zi) = P ′∇θf
(
zi, θ

∗(S)
)
;

– The model has become a logistic regression: we can
directly compute the approximate leave-out-one in-
fluence;

– Ensemble (over random subsets Si ⊂ S);
– Soft-threshold.

Eigen memory trees
M. Rucker et al. (2022)

High-dimensional variant of quad-trees:
– The data is stored in the leaves of a binary tree;
– Routing is done by testing if

〈x, node.router〉 ⩾ node.boundary;

– When a leaf has become too large, it is split using the
first principal component of the points it contains.

Application: memory for episodic replay in reinforce-
ment learning (contextual bandits).

Automated search for conjectures
on mathematical constants

using analysis of integer sequences
O. Razon et al.

Continued fractions can be written

c = a0 +
b1

a1 +
b2

a2 +
b3

a3 + · · ·

= a0 +
∞
K
i=1

bi
ai

= a0 +
b1
a1+

b2
a2+

b3
a3+

· · ·

In a sign-interlaced continued fraction, (bi)i⩾1 is peri-
odic and ∀i bi ∈ {±1}.

The non-terminating Euclidean algorithm for (α, 1)
computes the simple (∀i bi = 1) continued fraction
of α. It can be extended to allow for sign variation
(∀i bi ∈ {±1}), i.e., negative remainders.
The Berlekamp-Massey algorithm finds the minimal
linear recurrence sequence with integer coefficients pro-
ducing a given integer sequence.
Given a constant α (e.g., tan 1), generate its sign-
interlaced continued fractions (for all sign patterns up
to period T) and look for a linear recurrence for the
ai’s.

Refining generative process with discriminator
guidance in score-based diffusion models

D. Kim et al. (2023)
Given a pre-trained diffusion model, train a discrimi-
nator dϕ(x, t) to distinguish between real images and
generated ones, at all noise levels t. Adjust the learned
score function by adding

∇ log
dϕ(xt, t)

1− dϕ(xt, t)
.

Understanding deep generative models
with generalized empirical likelihoods

S. Ravuri et al.
Given n independent samples x1, . . . , xn ∼ p, the em-
pirical likelihood method checks if their mean is c ∈ Rd

E
x∼p

[x]
?
= c

using the weighted empirical distribution p̂π =
∑
πiδxi

maximizing KL(p̂n‖p) with the prescribed mean, where
p̂n =

∑
i
1
nδxi .

Find π ∈ Rn

To maximize
∑
i log πi

Such that ∀i πi ⩾ 0∑
πi = 1∑
πixi = c

The generalized empirical likelihood uses a moment
condition instead,

E
x∼pπ

[
m(x, c)

]
= 0

and a Cressie-Read divergence instead of the KL diver-
gence.
Such divergences include

KL(p̂n‖pπ) Maximize
∏

πi

KL(pπ‖p̂n) Maximize−
∑

πi log πi

1

2

∑(
πi −

1

n

)2

Minimize

(
πi −

1

n

)2

.

Moments include
x− c mean
∇θ log pθ(x) score function[
φ(x), φ(x)φ(x)′

]
− c Fréchet inception distance

k(x, ti)− k(y, ti) mean embedding.

Article and book summaries by Vincent Zoonekynd 109/1044

The mean embedding, which minimizes∑
i

[
E
x∼p

k(x, ti)− E
x∼q

k(x, ti)

]2
for “witness points” ti ∼ r, for some distribution r, is
related to the maximum mean discrepancy (MMD)

E
x1,x2∼p

[
k(x1, x2)

]
+ E
y1,y2∼q

[
k(y1, y2)

]
− 2 E

x∼p
y∼q

[
k(x, y)

]
.

Try the mean embedding, with the exponential kernel
k(x, y) = exp(x′y/d) and the reverse KL divergence
(exponential tilting).
With inception, VGG16 or BYOL features φ, you can
compare images from a generative model with those
from the training data, and highlight those unlikely in
the other set (e.g., missing modes).

DreamFusion: text-to-3D using 2D diffusion
B. Poole et al.

Generate a 3D object as a NeRF (neural radiance field)
from text using a pretrained text-to-image diffusion
model (CLIP); the model is optimized anew for each
new text.

camera,
lights w

NeRF

render

image noise

noisy
image

CLIPtext

clean
image

reconstructed
noise

− loss

OCD: learning to overfit
with conditional diffusion models

S. Lutati and L. Wolf (2023)
Diffusion process to generate the weights of another
network (hytpernetwork); ensemble several of the re-
sulting models.

Evaluating self-supervised learning
via risk decomposition

Y. Dubois et al. (2023)
For a supervised learning model, the error can be de-
composed into that coming from the limited model
class and that coming from the finiteness of the train-
ing data:

test error = training error+(test error−training error).

For self-supervised learning, there are two models, the
representation and the probe; the decomposition is
finer, accounting for:
– The representation model class, the probe model
class;

– Whether the representation can be used by the probe
(e.g., linear separability);

– The finiteness of the training data, for the represen-
tation and/or the probe.

Efficient self-supervised learning
with contextualized target representations

for vision, speech and language
A. Baevski et al. (2023)

Datavec2.0 is a SimSiam-based multimodal self-
supervised learning model.

Unsupervised embedding quality evaluation
A. Tsitsulin et al. (2023)

To assess the quality of an unsupervised embedding
M ∈ Rn1×n2 :
– α-ReQ: exponent of a power law fit of the singular
values, λi ∝ i−α (linear regresion on a log-log scale);
α = 1 suggests good generalizarion;

– RankMe: effective rank, i.e., entropy of the normal-
ized singular values;

– NESum: flatness of the eigenspectrum of the covari-
ance matrix,

∑
λi/λ0; we want the representation

to be “whitened”, i.e., ∀i λ ≈ λ0;
– Incoherence: alignement of the singular vectors with
teh standard basis: Maxi ‖U ′ei‖, Maxi ‖V ′ej‖;

– Pseudo-condition number κ2 = σ1/σn;
– Numerical rank: ‖M‖F / ‖M‖

2
2;

– Clustering (compared with a random distribution on
a sphere), from the norm of the pairwise dot product
matrix ‖WW ′‖F .

Self-cluster and coherence give more consistent results.

DataComp: in search of the next generation
of multimodal datasets

S.Y. Gadre et al.
Multimodal dataset (13b text-image pairs from Com-
monCrawl, more than ImageNet (1m), CLIP (400m),
or StableDiffusion’s LAION-2B (2b)) for data-centric
ML: how to best filter/preprocess the training data, for
a fixed model, training code, and compute budget, for
40 evaluation tasks. The data was sanitized:
– NSFW text filtering: detoxidy (multilingual XML-
Roberta, threshold 0.1);

– NSFW image filtering (LAION-5B’s CLIP-based
NSFW binary classifier, threshold 0.1);

– Deduplication (Yokoo);
– Face blurring (SCRFD face detector)

Article and book summaries by Vincent Zoonekynd 110/1044

Neural algorithmic reasoning
with causal regularization

B. Bevilacqua et al. (2023)
Data augmentation for neural algorithmic reasoning:
different inputs leading to the same intermediate com-
putations.
Recall feeds the input back into the model at each step,
as a constant reminder of the problem to solve.

Interventional and counterfactual inference
with diffusion models

P. Chao et al.
Estimate a structural causal model (with known
DAG)) using a diffusion (DDIM) for each node. Ex-
periment using simulated data (e.g.,

10-node random DAG, additive noise, non-additive
noise) or real data (2-node graph).

Causality inspired representation learning
for domain generalization

F. Lv et al.
Define augmentations of an image in Fourier space, by
keeping the phase, and mixing the amplitude with that
of another image.

F (x) = A(x)e−iP (x)

A(xaug) = (1− λ)A(x) + λA(x′).

Learn latent features r such that Cor(r, raug) ≈ I.
Lean a mask m = GumbelSoftmax(w) to distinguish
between relevant (“causal”) and irrelevant features:
the classifiers try to have good performance on both
m � r and (1 − m) � r, while the mask tries to have
good performance on m � r and bad performance on
(1−m)� r.

x

x

g

g

r

raug

C = Cor(r, raug)

m� r

(1−m)� r

m� r

(1−m)� r

h1

h2

h1

h2

ŷ1

ŷ2

ŷaug
1

ŷaug
2

Lc = ‖C − I‖2

Lsup = `(ŷ1, y) + `(ŷavg
1 , y)

Linf = `(ŷ2, y) + `(ŷavg
2 , y)

Minimize
g,f1,f2

Lc + Lsup + Linf

Maximize
w

Lsup −Linf

The Gumbel softmax is an approximate, differentiable
k-hot vector of size N ; it can be computed as follows.

τ = 0.5

N : size of the vector
k : desired number of 1’s
p ∈ ∆N probability vector (to be learned)
Uij ∼ Unif(0, 1)
ξij = − log(− logUij) Gumbel

mj = Max
i

exp
log pj + ξij

τ∑
j′ exp

log pj′ + ξij′

τ

On unimodal feature learning
in supervised multimodal learning

C. Du et al. (2023)
To fit a model on multimodal data (e.g., image and
text), compare
– Distillation of pretrained unimodal models

x1

x2

fpre
1

f1

f2

fpre
2

ŷ

y

loss

loss
loss

– Average of unimodal models

x1

x2

f1

f2

y1

y2
avg ŷ

Fast Poisson disk sampling
in arbitrary dimensions

R. Bridson
Poisson disk distributions (samples are at least at dis-
tance r from one another) are an example of blue noise.
To generate such samples:
– Keep track of the localtions of the points in a grid,
with cell size r/

√
n, where n is the dimension, so

that there is at most one point per cell;
– Add a first point, at random, to the active list (and
to the grid);

– Pick a point at random in the active list, and gen-
erate 30 random points in the spherical annulus of
radii r and 2r around it; if one of those points is at
distance at least r from all the other points (you only
need to check adjacent cells), add it to the active list
(and to the grid), if not, remove the point from the
active list.

[The centroidal Voronoi tessellation computed from
uniformly distributed points also gives blue noise.]

Article and book summaries by Vincent Zoonekynd 111/1044

Scientific visualization: Python and Matplotlib
N. Rougier (2021)

How to do everything you thought was impossible with
Matplotlib.

A survey of graphical languages
for monoidal categories

P. Selinger (2009)
String diagrams (objects and morphisms represented as
wires and boxes) for many monoidal categories.

f

A

B
C means A⊗B C

f

Expectile risk quadrangle and applications
V. Kuzmenko et al. (2023)

A quadrangle associated to a statistic is a set of 4 func-
tionals, e.g.,

Statistic S(x) = VaRα(X)

Risk R(X) = CVaRα(S)
Deviation D(X) = CVaRα[X − EX]

Regret V (X) = (1− α)−1 E[X+]

Error E(X) = E

[
α

1− α
X+ +X−

]
.

Risk R Deviation D

Regret R Error E

Statistic S

One can define quadrangles (they are not unique) for
the expectile

eq(X) = Argmin
c∈R

E
q
[X − c]

where the asymmetric quadratic error is

E
q
[X] = qE

[
(X+)2

]
+ (1− q) E

[
(X−)2

]
.

It is the solution of (first order condition)

qE
[
(X − c)+

]
= (1− q) E

[
(X − c)−

]
.

This leads to estimators of expectile as solutions of lin-
ear programs.

The fundamental risk quadrangle
in risk management, optimization

and statistical estimation
R.T. Rockafellar and S. Uryasev (2013)

More examples (e.g., S = mean, D = standard devia-
tion, or S = mean, D = variance).

Constructing time-series momentum portfolios
with deep multi-task learning

J. Ong and D. Herremans (2023)
Train a neural network fo forecast:
– 21-day forward volatility (5 estimators) using nega-
tive correlation as loss (auxiliary tasks);

– Portfolio weights, to maximize the Sharpe ratio
using, as inputs, past log-returns (15, 21, 63, 126, 252),
past realized volatility, past vol-of-vol.

returns

RV

vol of vol

LSTM

FC

FC
FC

σ1

σ5

w

Latent factor analysis in short panels
A.P. Fortin et al. (2023)

Test for the number of factors using the norm and
eigenvalues of Ŝ,

Ŝ = Σ−1/2M(V − Σ)M ′Σ−1/2

V =
1

n
Y Y ′ (Y centered)

Σ =
1

n
εε′

where the factor model is

yi = µ+ Fβi + εi.

It can be estimated using
– diag V = diag(FF ′ +Σ);
– F contains the first k eigenvectors of V Σ−1, with
eigenvalues 1 + γ̂j , normalized so that F ′Σ−1F =
diag(γ̂1, . . . , γ̂k).

A simple method for predicting
covariance matrices of financial returns

K. Johansson et al. (2023)
The iterated EWMA estimator of the covariance ma-
trix combines an EWMA for the volatilities and one
for the correlation matrix, with a smaller half-life for
the former. Combine (the Choleski factors of the pre-
cision matrices of) several such estimators for differ-
ent pairs of half-lives (or other estimators) to max-
imize the log-likelihood – the weights are the solu-
tion of a convex optimization problem (implementa-
tion: cvxgrp/cov_pred_finance).
Use the regret (difference in log-likelihood with the
best (in-sample) constant variance matrix) or the per-
formance of some portfolio (minimum variance, max-
imum diversity, risk parity, etc.) to compare estima-
tors.

Article and book summaries by Vincent Zoonekynd 112/1044

Prediction when factors are weak
S. Giglio et al. (2023)

Supervised PCA (SPCA) selects a subset of predictors,
correlated with the target, before computing PCA. A
variant proceeds one principal component at a time,
projecting predictors and target along it each time.

Mining the factor zoo: estimation of latent
factor models with sufficient proxies

R. Wan et al. (2022)
Estimate a time series factor model from a large num-
ber of proxy time series

yt = Aft + εt

ft = B′xt + ut

as (I have left out the scaling factor NK−1)

Â, B̂ = Argmin
A,B
A′A=I

‖Y −XBA′‖2 + λ ‖B‖2

f̂ = Â′yt.

Non-parametric online market regime
detection and regime clustering

for multidimensional and
path-dependent data structures
B. Horvath and Z. Issa (2023)

The maximum mean discrepancy (MMD) between
probability distributions p, q on a topological space
X is

d(p, q) = sup
f∈F

E
x∼p

[
f(x)

]
− E
y∼q

[
f(y)

]
d̂(p, q) = sup

f∈F

1

n

∑
i

f(xi)−
1

m

∑
j

f(yj)

where F is a set of functions X → R, for instance, the
unit ball of a RKHS – this is then a distance, and

d̂(p, q) =
1

n(n− 1)

∑
i ̸=j

κ(xi, xj)−
2

mn

∑
i,j

κ(xi, yj) +

+
1

m(m− 1)

∑
i ̸=j

κ(yi, yj).

A RKHS on a set X is the datum of:
– A vector space H of function X → R;
– A scalar product 〈·, ·〉 on H ;
– A positive definite function κ : X × X → R such

that:
•
(
H , 〈·, ·〉

)
is a Hilbert space;

• ∀x ∈ X κ(·, x) ∈H
• ∀x ∈ X ∀f ∈H

〈
f, κ(·, x)

〉
= f(x).

The signature kernel is

κ(x, y) =
〈
S(x), S(y)

〉

where S(x) ∈ T ((V)) is the signature transform of
x : [0, 1] → V . It is the solution κ(x, y) = f(1, 1)
of the hyperbolic PDE

f(s, t) = 1 +

∫ s

0

∫ t

0

f(u, v)〈dxu, dyv〉V

(there is no need to truncate the signature).
The kernel scoring rule compares an observation y with
a probability distribution

s(p, y) = E
x,x′∼p

κ(x, x′)− 2 E
x∼p

κ(x, y)

ŝ(p, y) =
1

n(n− 1)

∑
i ̸=j

κ(xi, xj)−
2

n

∑
i

κ(xi, y)

Apply to changepoint detection, with time-augmented
subpaths (normalize the subpaths if needed).

1 xi xi+1 · · · xi+h2−1

2
...

...
...

...
...

...
...

h1 xi+h1−1 xi+h1
· · · xi+h1+h2−2

Risk bounds on aleatoric uncertainty recovery
Y. Zhang et al. (2023)

To estimate the variance in heteroskedastic regression

Y = µ(X) + ε(X)

µ(X) = E[Y |X = x]

σ2(x) = Var[Y |X = x]

use the Gaussian negative log-likelihood

∑
i

log σ2(xi) +

(
yi − µ(xi)

)2
σ2
i (xi)

or the generalized method of moments (GMM)∑[
σ2(xi)−

(
y − µ(xi)

)2]2
or a Gaussian process

g ∼ GP (prior)
σ2(x) = exp g(x).

Never mind the metrics –
what about the uncertainty? Visualizing

confusion matrix metric distributions
D. Lovell et al.

Exhaustive list of performance metrics; in particular,
you should also report balanced accuracy (BA) and the

Article and book summaries by Vincent Zoonekynd 113/1044

Matthews correlation coefficient (MCC).

BA =
TPR+ TNR

2

φ = MCC =
TP · TN− FP · FN√

p̂pnn̂

p = TP+ FN
n = FP+ TN
p̂ = TP+ FP
n̂ = FN+ TN

TPR = TP/p
TNR = TN/n

Plot both the ROC and precision-recall curves. Show,
in the background, all possible confusion matrices (as
a grid) with the same size N and prevalence P/N (pro-
portion of positives), coloured with MCC or BA (you
can also add the MCC level curves).

Fisher-Rao distance
between multivariate normal distributions:

special cases, bounds and applications
J. Pinele et al. (2020)

There is no known closed formula for the Fisher-Rao
distance between Gaussians in general, but there is one
in many special cases. For instance, when the mean is
the same:

d
(
(µ,Σ1), (µ,Σ2)

)
=
√

1
2

∑
(log λi)2

where the λi are the eigenvalues of Σ−1/21 Σ2Σ
−1/2
1 , i.e.,

the generalized eigenvalues of (Σ1,Σ2).

Trust region methods
on Riemannian manifolds

P.A. Absil et al.
Trust region methods, to minimize f : Rn → R, itera-
tively solve (e.g., with truncated conjugate gradient)

Minimize
η∈Rn, ∥η∥⩽∆

f(x) + f ′(x)η + 1
2η
′f ′′(x)η︸ ︷︷ ︸

m(η)

,

updating the radius ∆ by looking at the quality of the
approximation

ρ =
f(x)− f(x+ η)

m(0)−m(η)
,

e.g.,

ρ� 1 discard the update and decrease ∆
ρ < 1 decrease ∆
ρ ≈ 1 increase ∆.

It still works if f ′′(x) is replaced by an approximation
of the Hessian.
This generalizes to functions on a Riemannian man-
ifold f : M → R, by using the exponential map

expx : TxM → M or (since the exponential may be
expensive to compute), a retraction

Rx : TxM →M

Rx(0) = x

DRx(0) = Id

(no condition on the second derivative).
Examples include:
– MinimizeQ∈On trace(Q′AQN), where N = diag(1, 2,
. . . , n) (this gives the eigenvectors of A, sorted) and
we can replace expΩ with a product of Givens rota-
tions;

– The extreme eigenspace of (A,B) (the span of the p
generalized eigenvectors with the lowest eigenvalues)
in Grass(p, n) = Rn×p

∗ /GLp, which is not naturally
a submanifold of RN .

Pymanopt: a Python toolbox for optimization
on manifolds using automatic differentiation

J. Townsend et al. (2016)
Example: find the best rank-k positive semidefinite
approximation of a matrix for the pseudo-Huber loss
H(x) =

√
x2 + δ2 − δ (which is quadratic for small x

and L1 for large x) using a Riemannian trust region
solver.

Understanding deep learning
S.J.D. Prince (2023)

3. There is a zoo of activation functions:

σ(z) = (1 + e−z)−1

tanh z

PReLUa(z) =
{
z if z ⩾ 0

az if z ⩽ 0

LReLU = PReLUa
Softplpus(z) = log(1 + ez)

GeLU(z) = z · Φ(z)
SiLU(z) = z · σ(z)

ELUα(z) =
{
z if z ⩾ 0

α(ez − 1) if z ⩽ 0

SELU(z) = λELUα(z)
Swishβ(z) = z · σ(βz)

4. Deep neural networks are easier to train and gener-
alize better than shallow ones.
5. The cross-entropy loss is equal, up to an additive

Article and book summaries by Vincent Zoonekynd 114/1044

constant, to the negative log-likelihood.

KL(q ‖ p) = E
z∼q

[
log

q(z)

p(z)

]
θ̂ = Argmin

θ
KL(data‖modelθ)

= Argmin
θ

E
z∼qdata

[
log

qdata(z)

pθ(z)

]
= Argmin

θ
E

z∼data

[
− log pθ(z)

]
Many other losses can be used, e.g.,
– Negative log-likelihood from other models;
– Pinball loss (quantile regression);
– Focal loss (downweight well-calssified examples);
– Hinge loss (SVM);
– Exponential loss (AdaBoost);
– Learning-to-rank;
– etc.
6. Adam combines momentum and RMSProp
(parameter-specific learning rates); it often makes
rapid initial progress, but you may want to switch
to SGD after a while. Learning rate warm-up may be
needed.
7. To avoid vanishing or exploding gradients, initialize
the weights so that the activations have mean 0 and
variance 1, e.g., with He initialization

σ2 =
4

din + dout

(initially derived for linear layers) or Glorot initializa-
tion (multiply by 2, to account for ReLU activation
functions).
8. There are three sources of error:
– Noise: the data generation process is stochastic;
– Bias: the data generation process is not in the family
of models considered;

– Variance: the model is estimated from a finite sam-
ple.

The double descent phenomenon depends on the loss,
the initialization, the optimization algorithm (which
provides implicit regularization); it is more visible with
noisy training data.
Adding more data can have a negative impact on per-
formance – the model is less over-parametrized.

loss

parameters

−→

loss

parameters

Data drift can manifest itself as:
– Change in x: covariate shift;
– Change in y: prior shift;
– Change in y|x: concept shift.

9. The discreteness of the time steps in gradient de-
scent are equivalent to an implicit regularization:

lossGD(φ) = loss(φ) + α

4

∥∥∥∥∂L∂φ
∥∥∥∥2

φt+1 = φt − α
∂loss
∂φ

,

i.e., the trajectory avoids places with a steep gradient
(and the regularization becomes stronger with larger
step sizes α).
The minibatches in SGD introduce another implicit
regularization

α

4B

B∑
b=1

∥∥∥∥∂lossb∂φ
− ∂loss

∂φ

∥∥∥∥2
i.e., the trajectory prefers places where gradients do
not differ too much between batches.
To improve performance, try early stopping, ensem-
bling, dropout, noise (in the inputs (adversarial train-
ing), the weights, or the labels (label smoothing)), pre-
training, augmentation, self-supervised learning.
11. Very deep networks suffer from shattered gradients:
small changes in the input can lead to large changes in
the gradient of the loss. Residual (skip) connections
address that problem. A ResNet can be seen as an
ensemble of smaller networks:

x

f1(x)

f2
(
x+ f1(x)

)
f3
(
· · ·
)

f4
(
· · ·
)

Batch normalization helps with exploding/vanishing
gradients.
Variations of ResNets include:
– UNet;
– Stacked hourglass networks (stacked UNets);
– DenseNet (concatenates the outputs of all previous
layers to feed the current layer).

13. An inductive model sees labeled data at training
time and unlabeled data at test time. A transductive
model sees both labeled and unlabeled data at train-
ing time (semi-supervised learning) – node classifica-
tion models are often transductive.
Graph attention

Smn = a

[
φ′
(
hm
hn

)]
H ← a

[
H ′ · Softmask(S,A+ I)

]
differs from traditional attention:
– Q = K = V = H;
– There is a mask, A+ I;
– S 6= K ′Q.

Article and book summaries by Vincent Zoonekynd 115/1044

For large graphs, minibatch training is tricky: try
adding a subset of the nodes in the receptive field at
each stage, or sample a subgraph with random walks.
14. Unsupervised learning includes
– GANs;
– VAEs;
– Normalizing flows;
– Diffusion models.
The inception score (of an image generation model) is
the Fréchet distance between the latent representations
(penultimate activations of an inception model) of real
and generated data, after Gaussian approximation.

‖µX − µY ‖2 + tr
[
ΣX +ΣY − 2(ΣXΣY)

1/2
]

15. GANs are difficult to train and suffer from mode
dropping, or even mode collapse. Minibatch discrimi-
nation adds a penalty to ensure diversity in each mini-
batch.
If the discriminator is too good (in particular, if it
recognizes that real and generated data are disjoint),
the gradients are uninformative and the generator can-
not improve. The Wasserstein loss does not have that
problem: the gradients remain informative.
GAN variants include:
– Conditional GAN: generator and discriminator are
given the class of the input;

– Classifier GAN: the generator is given the class, and
the discriminator tries to recover it;

– InfoGAN: the discriminator tries to recover part of
the noise given to the generator (this helps disentan-
gle the latent space);

c

z
generator x∗

x
discriminator

P [real]

ĉ
generated

real
latent

– Superresolution GAN;
– CycleGAN;
– StyleGAN: add the latent variable (and the noise) at
several points in the network, i.e., at different scales;

– MADGAN: several generators, and the discrimina-
tor tries to guess which one was used.

16. Normalizing flows are invertible layers (or net-
works) whose Jacobians have an easy-to-compute de-
terminant. For linear layers, this is easy to obtain with

the LU decomposition

f(h) = β +Ωh

Ω = PL(U +D)

P ∈ Sn

L =

 ∗ 0

∗ ∗

U =

 0 ∗

0 0

D =

 ∗ 0

0 ∗

They can be combined with an invertible elementwise
nonlinearity, e.g., LeakyReLU.
Coupling flows generalize the linear invertible transfor-
mation (

h1
h2

)
7−→

(
1 0
∗ 1

)(
h1
h2

)
to (

h1
h2

)
7−→

(
h1

gϕ(h1)h2

)
with inverse(

h1
g−1ϕ(h1)h2

)
←− [(h1

h2

)

h2 g h′2

h1 h′1

forward

h2 g−1 h′2

h1 h′1

inverse

Autoregressive flows generalize this to more blocks.

h4

h3

h2

h1

h′4

h′3

h′2

h′1

Residual flows use a similar idea.(
h1
h2

)
7−→

(
h′1
h′2

)
=

(
h1 + f1(h2)
h2 + f2(h

′
1)

)
(
h′1 − f1(h2)
h′2 − f2(h′1)

)
←− [(h1

h2

)

h2

h1

h′2

h′1+

+

f1 f2

forward

h2

h1

h′2

h′1−

−
f1 f2

backward

Article and book summaries by Vincent Zoonekynd 116/1044

Multiscale flows generalize them to more than two
blocks.
17. To model p(x), latent variable models model
p(x, z), often as p(x, z) = p(x|z)p(z), and marginal-
ize z: p(x) = Ez p(x, z). Examples include:
– Gaussian mixture;

z ∼ Discrete
x|z ∼ N(µz, σ

2
z)

– Nonlinear Gaussian mixtures

z ∼ N(0, I)

x|z ∼ N
(
fϕ(z), σ

2I)

The expectation Ez p(x, z) is intractable, but amenable
to variational inference.

log p(x) = log

∫
p(x, z)dz

= log

∫
q(z)

p(x, z)

q(z)
dz (q arbitrary)

⩾
∫
q(z) log

p(x, z)

q(z)
dz (Jensen)

= ELBO(q, p)

ELBO(q, p) =

∫
q(z) log

p(x, z)

q(z)
dz

=

∫
q(z) log

p(z|x)p(x)
q(z)

dz

=

∫
q(z) log p(x)dz +

∫
q(z) log

p(z|x)
q(z)

dz

= log p(x) +KL
(
q(z) ‖ p(z|x)

)
ELBO(q, p) =

∫
q(z) log

p(x, z)

q(z)
dz

=

∫
q(z) log

p(x|z)p(z)
q(z)

dz

=

∫
q(z) log p(x|z)dz +

∫
q(z)

p(z)

q(z)
dz

=

∫
q(z) log p(x|z)dz +KL

(
q(z) ‖ p(z)

)
= reconstruction loss+ distance to prior

This is the loss used by VAEs.
For the distributions, use

pϕ(x|z) = Normx

(
f(z, φ), σ2I)

qθ,x(z) = Normz

(
gµ(x, θ), gΣ(x, θ)

)
p(z) = Normz(0, I).

The first term is intractable, but can be approximated
with Monte Carlo, by sampling z ∼ qθ,x (one sample
may be good enough). The second term is the KL di-
vergence between two Gaussians,

KL
(
N(µ,Σ)‖N(0, I)

)
= 1

2

(
trΣ + µ′µ− n− log detΣ

)
.

The β-VAE rescales the second term (KL penalty)

loss = log pϕ(x, z
∗)− β ·KL

(
qθ,x(z)‖p(z)

)
where z∗ is a single sample.
18. Diffusion models progressively add noise to an
image

z0 = x

zt =
√

1− βtzt−1 +
√
βtεt

and try to reverse this process. If we knew x, we could
compute q(zt−1|zt, x) – it is Gaussian. Approximate
q(zt−1|zt) with Gaussian distributions

zt−1|zt ∼ N
(
ft(zt, φt), σ

2
t I
)

and use variational inference.
StableDiffision does this in a latent space (smaller than
pixel space).
20. It is not clear why deep learning works:
– It is not because the dataset is easy to learn: one
can fit random data almost as easily;

– It is not because of (explicit or implicit) regulariza-
tion;

– It is not because SGD, with small batches, moves
easily between valleys – large batches work equally
well;

– Activation functions are important: they should pro-
vide informative gradients;

– Initialization is only important for deep networks;
– Inductive bias (CNNs for grid data, transformers for
Sn-invariance) is important;

– Overparametrization and depth are important (lot-
tery ticket hypothesis: a large network can be
seen as an ensemble of smaller subnetworks, one
of which may have been initialized near a mini-
mum); overparametrization also allows the model to
be smoother between data points;

– Regularization can explain double descent and
grokking (sudden improvement in generalizarion long
after the training error reached zero)

The loss surface has interesting properties:
– There are many global minima; they seem to be con-
nected by low-loss regions;

– The optimization path lies in a low-dimensional sub-
space;

– There are few or no bad local minima (but there are
many saddle points).

A simple explanation of partial least squares
K.S. Ng (2013)

The principal components of X (assuming the data is
centered) can be computed from the eigen decomposi-
tion of X ′X.

X ′X = PDP ′ eigen decomposition
P principal components
T = XP scores
X = TP ′ (because P−1 = P ′)

Article and book summaries by Vincent Zoonekynd 117/1044

Often, we only keep the first k principal components
P⩽k.

T⩽k = XP⩽k

The principal components can also be computed from
the singular value decomposition (SVD).

X = (UΣ)P ′ = TP ′

The Nipals algorithm uses power iterations to find the
principal components one by one,

Repeat
t = random
Repeat

p ∝ X ′t
t = Xp

X ← X − tp′

Given two datasets, X and Y , consider the Nipals al-
gorithms for them, but swap the scores of X and Y ,
and interleave the updates.

PCA PLS
Repeat Repeat

t = random t = random
u = random u = random
Repeat Repeat

p ∝ X ′t p ∝ X ′u
t = Xp t = Xp
q ∝ U ′u q ∝ U ′t
y = Y q y = Y q

X ← X − tp′ X ← X − tp′
X ← Y − uq′ X ← Y − uq′

This gives decompositions

X = TP ′

Y = UQ′.

PLS regression estimates a regression between the
scores (latent) U ∼ T , giving U ≈ Tβ, and uses it
to express Y from X:

Y = UQ′

≈ TβQ′

= XPβQ′

= XBPLS.

For p, this is the power iteration

p ∝ X ′u ∝ X ′Y q ∝ X ′Y Y ′t ∝ X ′Y Y ′Xp

to compute the largest eigenvalue of X ′Y Y ′X, i.e.,

p = Argmax
∥p∥=1

p′X ′Y Y ′Xp

= Argmax
∥p∥=1

(Y ′Xp)Y ′Xp

= Argmax
∥p∥=1

Cov(Y,Xp)′ Cov(Y,Xp)

= Argmax
∥p∥=1

‖Cov(Y,Xp)‖ .

Note that p and q are the right and left singular vectors
of X ′Y :

p, q = Argmax
∥p∥=∥q∥=1

Cov(Xp,Xq).

A survey of partial least squares (PLS)
methods, with emphasis on the 2-block case

J.A. Wegelin (2000)
There are (at least) 3 variants of the PLS algorithm.
They all use a rank-1 approximation of A = X ′Y (from
the SVD)

A ≈ dpq′

t = Xp

u = Y q

but differ on how X and Y (or A) are updated:

PLS-W2A X ← X − t(t′t)−1t′X
Y ← Y − u(u′u)−1u′Y

PLS-SVD A← A− dpq′

PLS2 X ← X − t(t′t)−1t′X
Y ← Y − (t′t)−1(t′u)tu′

PLS1 is the special case of PLS2 where Y only has one
variable.
CCA (canonical correlation analysis) replaces the co-
variance with the correlation:

p, q = Argmax
∥p∥∥q∥=1

Cor(Xp,Xq).

This requires inverting X ′X and Y ′Y , which can lead
to numeric instabilities.
PLS can be generalized to more than two blocks (PLS-
SEM – not recommended) if we posit the relations be-
tween the latent variables (path diagram).

observed variable
latent variable

Partial least squares methods:
partial least squares correlation

and partial least squares regression
H. Abdi and L.J. Williams (2013)

Confusingly, PLS can refer to two things:
– PLS correlation, finding latent factors common to
two datasets;

– PLS regression, predicting one dataset from another.

Article and book summaries by Vincent Zoonekynd 118/1044

Given two data matrices X ∈ RI×J , Y ∈ RI×K (with
centered and normalized columns), PLSC finds the unit
vectors u1 ∈ RK , v1 ∈ RJ maximizing the covariance
(Xv1)

′(Y u1), then the unit vectors, orthogonal to u1
and v1, maximizing (Xv2)

′(Y u2), and so on. Those
vectors can be computed in one go from the SVD

Y ′X = U∆V ′

U : loadings of Y
V : loadings of X

XV : factor scores
Y U : factor scores

To assess significance, compute the sum of the (re-
tained) singular values (inertia) and compare with that
obtained after shuffling the rows of X (bootstrap dis-
tribution of the inertia).
PLS regression computes latent factors an X, and re-
gresses Y on those factors:

X = TP ′

Ŷ = Y BC ′ = (P ′)†BC ′.

It can be computed iteratively:

X ′Y =W∆C ′ (SVD)
≈ wδc′ (rank 1)
t = Xw X latent
p = X ′t X loadings
u = Y c

X̂ = tp′

Ŷ = uc′

= tt′uc′

= tbc′

b = t′u slope
X ← X − X̂
Y ← Y − Ŷ.

After L = rankX iterations:

X = TP ′

Ŷ = TBC ′

= X(P ′)†BC ′

This solves the optimization problem

Find w

To maximize ‖Cov(Xw, Y)‖2
Such that ‖w‖ = 1.

Supervised linear dimension reduction
methods: review, extensions and comparisons

S. Xu et al.
Supervised dimension reduction methods include:

– PCA on the ` variables most correlated with y
(choose ` to get the best performance when predict-
ing y from the top k principal components, k fixed);

– Idem, but iteratively, extracting one principal com-
ponent at a time;

– k principal components most correlated with y (in-
stead of the top k);

– PLS-W2A

u = Argmax
∥u∥=1

u′Xyy′Xu

z = Xu

X ← X − zu′

y ← y − 〈y, z〉
‖z‖2

z;

– Extended PLS-W2A, i.e., with a PCA penalty,

Maximize
∥u∥=1

u′Xyy′Xu− λ ‖X −Xuu′‖2

– PLS-SVD

Maximize
U ′U=I

‖Cov(XU, y)‖

– Extended PLS-SVD

Maximize
U ′U=I

‖Cov(XU, y)‖ − λ ‖X −XUU ′‖2

– LSPCA (least-squares PCA, no closed-form solu-
tion)

Minimize
β, U ′U=I

‖y −XUβ‖2 − λ ‖X −XUU ′‖2

– Supervised probabilistic PCA (EM algorithm)

x = Uz + ε

y = v′z + η

Prefer PLS-W2A and LSPCA.

Supervised dimension reduction for big data
J.T.Vogelstein et al.

PCA can be adapted to include a target qualitative
variable. In the case of two classes:
– Compute the mean of each class;
– The difference between the means is the first com-
ponent;

– Subtract the mean;
– Perform PCA from the covariance matrix of the cen-
tered data.

This can be generalized to more than 2 classes, and to
robust alternatives of the mean and variance.

SLISEMAP: supervised dimensionality
reduction through local explanations

A. Björklund et al. (2022)

Article and book summaries by Vincent Zoonekynd 119/1044

Dimension reduction (supervised UMAP), not on the
features, but on LIME explanations.

zi : embedding of observation i (unknown)
dij = d(z1, zj)

wij ∝ edij
∑
j

wij = 1

Lij = loss
(
gi(xj), yj

)
where Lij is the loss of the local model gi for observa-
tion i, applied to observation j. The latent embeddings
are

Minimize
z

∑
ij

wijLij s.t.
〈
‖zi‖2

〉
= r2.

Supervised discriminative PCA with adaptive
neighbours for dimensionality reduction

Z. Shi et al.
PCA can be written

Maximize
W

tr(X ′X ′XW) s.t. W ′W = Ik

or

Minimize
W

‖X −XWW ′‖2 s.t. W ′W = Ik.

The variant

Maximize
Q

tr(Q′XX ′Q) s.t. Q′Q = Ik

Minimize
Q

‖X −XX ′X‖2 s.t. W ′W = Ik

is equivalent if the data has been standardized (the pro-
jections are respectively WPCA = V1:k and WvPCA =
V1:kΣ1:k, where X = UΣV ′ is the SVD).
SDSPCA adds a target variable,

Minimize
W,G,Q
Q′Q=Ik

‖X −QW ′‖2 + α ‖Y −QG‖2 + β ‖Q‖2

(it can be computed from the eigenvectors of −XX ′ −
αY Y ′ + βD).
PCAN is a PCA variant preserving neighbourhood in-
formation

Find W,F, S

To minimize
∑
ij

‖W ′xi −W ′xj‖
2
Sij + γiS

2
ij +

+ λ ‖fi − fj‖2 Sij
Such that S1 = 1

W ′X ′XW = Ik
F ′F = Ic

One can combine SDSPCA and PCAN.

Financial and macroeconomic data through
the lens of a nonlinear dynamic factor model

P.A. Guerrón et al.
The dynamic factor model

Yt = ΛFt + εt

Ft = Ψ(L)Ft−1 + ηt

can be made non-linear
yt = G (ft) + εt

ft = H (ft−1) + ηt.

The pruned second order state space model
yt = Gft + εt

ft = x+ at + bt

at = αa− t− 1 + ηt

bt = βbt−1 + γa2t−1

can be estimated with a particle filter (you may need
hundreds of thousands of particles).

Predicting trends in the quality
of state-of-the-art neural networks

without access to training or testing data
C.H. Martin et al.

For each weight matrix W, compute (with weight-
watcher): the eigenvalues of W ′W (they tend to look
like the eigenvalues of a random matrix, or the eigen-
values of a random matrix with a few outliers, or a
heavy-tail distribution), their power law exponent α,
and

log
∑

λi

log λmax

α log λmax

log
∑

λαi

and aggregate those quantities across layers∑
ℓ

log
∑

λiℓ∑
ℓ

log λmax,ℓ

1

L

∑
ℓ

αℓ log λmax,ℓ∑
ℓ

log
∑

λαℓiℓ

1

L

∑
ℓ

αℓ.

Trained networks with good accruracy tend to have
lower values of those metrics.

Tree-ring watermarks: fingerprints for
diffusion images that are invisible and robust

Y. Wen et al.
Embed the watermark into the initial noise vector, in
Fourier space, as rings of constant value.

Article and book summaries by Vincent Zoonekynd 120/1044

Neural set function extensions: learning
with discrete functions in high dimensions

N. Karalias et al. (2022)
A set function f : {0, 1}[n] → R can be extended to

f̃ :

[0, 1]n −→ R

x 7−→ f̃(x) =
∑
S⊂[n]

px(S)f(S)

where px satisfies∑
S⊂[n]

px(S)1S = x

∑
S⊂[n]

px(S) = 1

∀S ⊂ [n] px(S) ⩾ 0.

It can further be extended to positive semidefinite ma-
trices, Sn+, e.g.,

f̃(X) =
∑

S,T⊂[n]

∑
i

λi pxi(S) pxi(T) f(S ∩ T)

where X =
∑
λixis

′
i is the eigen decomposition of X

and px is as above. More generally,

f̃(X) =
∑

S,T⊂[n]

pX(S, T)f(S ∩ T)

where pX satisfies

X ≼ 1
2pX(S, T)(1S1

′
T + 1T1

′
S)∑

S,T

pX(S, T) = 1

∀S, T pX(S, T) ⩾ 0.

Lifting opimization problems to higher dimensions can
make them better-behaved (can help overcome the low-
dimensional bottleneck).

The big data paradox in clinical practice
P. Msaouel (2022)

The more data you have, the less likely your confidence
intervals are to contain the true value: more data re-
duces variance (and confidence intervals), but the bias
remains. Try to:
– Improve data quality;
– Model subject heterogeneity (missing counfounders,
e.g., in the linear regressions to analyze RCT re-
sults);

– Include the bias in the confidence intervals.

Fine-tuning language models
with just forward passes

S. Malladi et al.
Backpropagation of large models requires an inordinate
amount of memory (with an 80GB GPU, you can use a

30B model, but only train a 3B one). Use a stochastic
gradient estimator (SPSA, ZO-SGD).

z ∼ N(0, I)

∇̂`(θ) = `(θ + εz)− `(θ − εz)
2ε

z

≈ zz′∇θ`(θ)

To reduce memory further, do not store z, but only its
random seed, and re-generate it each time it is needed
(MeZO).
Keeping gradient history does not require much addi-
tional memory (∆` and the seed for z for each times-
tamp). For more precision, use several vectors z.
Also try variance reduction, or layerwise gradients (if
the layer gradients have different scales).

ChatGPT informed graph neural network
for stock movement prediction

Z. Chen
ChatGPT for named entity recognition (NER) and sen-
timent extraction. (Also add stock embeddings from a
co-mention graph, and finish with an LSTM.)

FinGPT:
open-source financial large language models

H.B. Yang et al.
LoRA over LLaMA, with daily updated financial text
data (news (Yahoo finance), social media (Twitter),
SEC filings, blogs, etc.).

Temporal data meets LLM: explainable
financial time series forecasting

X. Yu et la.
Ask ChatGPT to:
– Describe the business of a company;
– List its risk, growth, etc. factors;
– Summarize recent (time-stamped) news about it;
– Summarize recent macro-economic news related to
the keywords;

– Use all of the above to forecast the future stock price,
reasoning step by step.

Bloated disclosures: can ChatGPT help
investors process financial information?

A.G. Kim et al.
Ask ChatGPT to summarize corporate disclosures:
– Bloated disclosures (smaller summaries) herald bad
market events;

– The sentiment is easier to extract from the sum-
maries.

Improved financial forecasting
via quantum machine learning

S. Thakkar et al.

Article and book summaries by Vincent Zoonekynd 121/1044

Sampling from a determinantal point process (DPP)
(which increases diversity) gives an unbiased least
squares estimator

E
S∼d-DPP(XX′)

[X−1S yS] = Argmin
w

‖Xw − y‖2

Apply this to random forests, sampling both observa-
tions and features.

Quantum computer based
feature selection in machine learning

G. Hellstern et al.
Let ρij be the dependency between predictors i and j,
and ρiY the dependency between predictor i and target
Y . The feature selection problem can be formulated as
a QUBO problem:

Find z ∈ {0, 1}n

To maximize
∑
i

zi |ρiY | − λ
∑
i ̸=y

zizj |ρij |

This can be solved with gate-based quantum comput-
ers (QAOA).

A unified framework
for fast large-scale portfolio optimization

W. Deng et al. (2023)
IPCA (instrumental PCA) is a factor model whose
loadings β are linear functions of (time-varying) asset
characteristics.
Add `1 and `2 penalties to your portfolio optimization
problem.
Implementation in PyPortOpt.

Enhanced Bayesian neural network
for macroeconomics and finance

N. Hauzenberger et al. (2023)
Nowcast a time series using a Bayesian neural net (sep-
arating linear and nonlinear effects, allowing for het-
eroskedasticity)

yt = γ′xt + f(xt) + εt

εt ∼ N(0, σ2
t)

log σt ∼ AR(1)

f : xt linear linear yt
κ

h β

where h is a convex combination of ReLU, LeakyReLU,
sigmoid and tanh, with priors
– β ∼ MGP (multivariate Gamma process)

ρr ∼ Gamma(a, 1)

φq =
∏

1⩽r⩽q
ρr

βq ∼ N(0, φ−1q)

so that the neurons’ activations are progressively
shrunk to zero (φq � 1 for q � 1): you can have
a large number of neurons, only those useful will be
kept.

– κ ∼ Horseshoe

j: predictor
q: neuron

φjq ∼ HalfCauchy
λq ∼ HalfCauchy
κjq ∼ N(0, λ2qφ

2
jq)

The Horseshoe prior generalizes the (sparsifying)
Laplace prior:

Laplace prior Student t prior
λ2 ∼ Exp(2) λ2 ∼ IG(a, b)

β ∼ N(0, λ2) β ∼ N(0, λ2).

– β ∼ Horseshoe.

Successive one-sided Hodrick-Prescott filter
with incremental filtering algorithm
for nonlinear economic time series

Y. Liu et al.
The HP filter is

F =

 1 −2 1 0

0 1 −2 1

S = I + ηF ′F

trend = Argmin
u

‖y − u‖2 + η ‖Fu‖2

= S−1y

cycle = (I − S−1)y.

It can be computed efficiently on an expanding window
(Woodbury formula). It can be iterated, to remove any
trend remaining in the cycle:

cycle = (I − S−1)ny
trend =

[
I − (I − S−1)n

]
y

Generating synergistic formulaic alpha
collections via reinforcement learning

S. Yu et al.
RL-based formulaic alpha mining to maximize the per-
formance, not of each alpha, but of their combination.

Efficient solution
of portfolio optimization problems

via dimension reduction and sparsification
C.K. Buhler et al.

To solve large (Markowitz) portfolio optimization prob-
lems approximately and efficiently, try:
– LSTM to forecast if a stock is never (0) or sometimes
(1) in the optimal portfolio, for no/some value of the
risk aversion λ;

Article and book summaries by Vincent Zoonekynd 122/1044

– Change the risk measure from

w′V w = w′(X − X̄)′(X − X̄)w =
∥∥(X − X̄)w

∥∥2
2

to
∥∥(X − X̄)w

∥∥
1
, to get a linear program;

– Sparsify the covariance matrix by truncating small
vaues and adding back those in a row or column with
a non-zero off-diagonal element (the result is block-
diagonal and positive semi-definite).

Deep attentive survival analysis in
limit order books: estimating fill probabilities

with convolutional-transformers
Á. Arroyo et al.

Use a neural network

x (features)

Dilated causal convolutions

Transformer

Monotonically restricted
neural net

(survival function) S(t;x)

(event time) t

for survival analysis, maximizing the right-censored
log-likelihood

loglik =
∑

k observed
log fθ(tk;xk) +

∑
k censored

logS(tk;xk)

tk: event time
xk: features

S(t) = P [T ⩾ t] = exp−
∫ t

0

h survival function

F (t) = 1− S(t) cdf

f(t) = −dS
dt

pdf

h(t) =
f(t)

1− F (t)
hazard rate

Neural likelihoods
via cummulative distribution functions

P. Chilinski and R. Silva
To model probability distributions (cdf and pdf), use
a neural network, with positive weights and tanh acti-
vations; automatic differentiation gives f and F . This
can be generalized to higher dimensions. Applications
include the tail dependence coefficient (TDC).

x t

· · ·

σ

F

AD

f

Agent market orders representation
through a contrastive learning approach

R. Ruan et al.
To cluster traders, i.e., identify trading behaviours,
consider sequences of 50 market orders by several
traders, and use an LSTM with contrastive learning
(triplet loss, with positive/negative pairs if the se-
quences come / do not come from the same trader)
to learn a latent representations, and use k-means on
it. Plot with t-SNE, or hour ∼ date | cluster.

Causal feature engineering
of price directions of cryptocurrencies

using dynamic Bayesian networks
R. Amirzadeh et al.

DBN (dynamic Bayesian network) to predict the price
direction of 5 altcoins from 23 features (technical anal-
ysis, gold, MSCI, S&P, USD, oil, number of tweets).

Random matrix theory and nested clustered
portfolios on Mexican markets

A. Garcia and B. Rodríguez
Nested clustered optimization (NCO) for n = 28:
– Start with the variance matrix (sample, shrinkage,
or cleaned with RMT);

– Compute the corresponding minimum spanning tree,
its normalized Laplacian L, and the spectrum of L;

– Only keep the eigenvectors before the maximum
spectral gap, Maxk |λk − λk−1|;

– Apply k-means on the top eigenvectors;
– Compute the optimal portfolio inside each cluster;
– Compute the optimal portfolio of clusters.

Model-free market risk hedging
using crowding networks

V. Zlotnikov et al. (2023)
Crowding measures whether active managers are over-
weight a stock (other measures include: proportion of

Article and book summaries by Vincent Zoonekynd 123/1044

buy ratings, institutional trade persistence, momen-
tum, high but achievable expectations). It can be es-
timated with the centrality in the overweight (resp.
underweight) graph built from holdings data.

Causality between sentiment
and cryptocurrency prices

L. Mondal et al.
Fit a topic model on crypto-related tweets (a vari-
ant of LDA targetted at shorter texts, only allowing
one topic per text) and compute topic-level sentiment
(BERTweet and Pysentimiento).

Coloring in R’s blind spot
A. Zeileis and P. Murrell

R 4.0.0 provides qualitative palettes in palette.
colors and sequential and diverging ones in
hcl.colors.

The little book of deep learning
F. Fleuret (2023)

Non-technical (but broad) introduction to deep learn-
ing with clear diagrams for the most common architec-
tures (ResNet, UNet, Transformer, etc.).

Descent steps of a relation-aware energy
produce heterogeneous graph neural networks

H. Ahn et al. (2022)
One can learn a latent representation Y of the nodes
of a graph as

Yw(X) = Argmin
Y

‖Y − fw(X)‖2 + λ tr(Y ′LY),

i.e., nodes with similar features X have a similar repre-
sentation (first term), and nodes linked by an edge have
a similar representation (second term). The weights w
of the neural network fw are chosen wrt some classifi-
cation or prediction task

θ, w = Argmin
θ,w

∑
i

loss
(
gθ
(
Yw(xi)

)
, yi
)
.

For heterogeneous graphs, consider

Yw(X) = Argmin
Y

∑
s

[
‖Ys − fws(Xs)‖2

+ λ
∑
s′

∑
t

∑
ij∈Et

‖YiHt − Yj‖2
]

where s is the node type, t the edge type, Ht compat-
ibility matrices (to allow heterophily).

Temporal and heterogeneous graph neural
network for financial time series prediction

S. Xiang et al. (2022)

price history

Transformer

node features

GAT

node features t· · · node features t− 1

heterogeneous GAT

price direction

thresholded correlation
graph (positive and
negative edges)

Limitations of deep learning for inverse
problems on digital hardware

H. Boche et al.
There are only countably many computable real num-
bers (because there are only countably many Turing
machines).
There is no computable mapping

(A, y) 7−→ Argmin
x∈CN

‖x‖1 such that ‖Ax− y‖2 ⩽ ε.

There are algorithms to solve that problem, but they
come without explicit error bounds: they do not have
an effective stopping criterion.
The result generalilzes to oracle Turing machines: Tur-
ing machines dealing with arbitrary real numbers via
rational Cauchy sequences provided by an oracle.

Inverse problems are solvable
on real number signal processing hardware

H. Boche et al.
Blum-Shub-Smale (BSS) machines (Turing machine
operating on real numbers) are more powerful than or-
acle Turing machines.

All you need is good init
D. Mishkin and J. Matas

LSUV (layer sequential unit variance) first initializes
weights with orthogonal matrices, and then adjusts
them (via optimization) to ensure the activations have
unit variance.

Fixup initialization:
residual learning without normalization

H. Zhang et al.
Resnet output variance grows exponentially with
depth: fixup (fixed update) initialization
– Initializes the layers with a classical method;
– Rescales the layers in the residual branches (those in
the shortest path are left untouched);

– Sets the last layer of each residual branch to 0;

Article and book summaries by Vincent Zoonekynd 124/1044

– Adds learnable scalar multiplier (initialized at 1) and
bias (0) before each layer (convolution, linear, ele-
mentwise nonlinearity).

Improving transformer optimization
through better initialization

X.S. Huang et al. (2020)
With T-Fixup initialization, deep transformer net-
works no longer require learning rate warmup and Lay-
erNorm.

How does batch normalization
help optimization

S.Santurkar et al. (2018)
The success of BatchNorm is not so much due to the
reduction of the “internal covariate shift” but to the
smoothing of the loss landscape.

Identity mappings in deep residual networks
K. He et al. (2016)

Change the order of the layers in ResNet.

Linear

BatchNorm

ReLU

Linear

BatchNorm

+

ReLU

BatchNorm

ReLU

Linear

Linear

ReLU

BatchNorm

+

TrivialAugment: tuning-free yet
state-of-the-art data augmnentation

S.G. Müller and F. Hutter
For each image, pick one (instead of several) augmen-
tation, uniformly at random (instead of from a learned
distribution), and apply it with a random (instead of
learned) strength.

A study on the evaluation of generative models
E. Betzalel et al.

Do not use the inception score and ImageNet to assess
generative models:
– Use NotImageNet32 instead of ImageNet;
– Use CLIP instead of the inception model
– Use several metrics: FID∞ (unbiased FID), KID,

ClearFID.

Elucidating the design space
of diffusion-based generative models

T. Karras et al. (2022)
A denoising diffusion model can be written as an ODE

ẋ = −σ̇tσt∇x log p(x, σt)

(we have many trajectories (xt)t from which we want
to learn the score function ∇ log p). To sample,
use higher-order methods (Euler-Heun, Runge-Kutta).
Stochastic samplimg (Langevin diffusion) gives better
results.

MaskGIT:
masked generative image transformer

H. Chang et al.
Vision transformers (ViT) generate image patches se-
quentially, in raster scan order. Instead, learn to pre-
dict randomly masked patches (à la BERT), generate
the image all at once, and progressively refine it.

On the importance of noise scheduling
for diffusion models

T. Chen
The optimal noise schedule depends on the image size:
there is more redundancy in large images.

Texture generation
with neural cellular automata

A. Mordvintsev et al.
Train a neural cellular automaton (NCA) (all cells
have the same differentiable update rule) to produce a
(tilable) pattern given an example, using a style trans-
fer loss (Gram matrix of the latent representation of a
classifier) or the inception distance.

Ensemble deep learning: a review
M.A. Ganaie

Ensemble learning is not limited to equal weighted av-
erages of a few models:
– Bagging;
– Boosting;
– Stacking;
– Negative correlation learning, i.e., adding a penalty
to make the base learners more diverse (they should
not all make the same errors);

– Implicit ensembles (dropout, drop-connect, stochas-
tic depth)

– Homogeneous ensembles (same models, but dif-
ferent training datasets, augmentations, initializa-
tions, regularizations, hyperparameters), heteroge-
neous ensembles;

– Weighted average, with learned weights (mixture of
experts), or weights chosen by cross-validation (Su-
perLearner)

– Voting rules (Condorcet, etc.)

Article and book summaries by Vincent Zoonekynd 125/1044

Loss surfaces, mode connectivity,
and fast ensembling of DNNs

T. Garipov et al. (2018)
The optima of loss functions are connected by simple
curves over which training and test accuracy are nearly
constant: learn those curves (e.g., Bézier) φθ by mini-
mizing

E
t∼U(0,1)

[
loss
(
φθ(t)

)]
.

Fast geometric ensembling (FGE) starts with a single
solution and looks for a nearby solution (sufficiently
away from it) with a similar loss – this can be done
using a sawtooth learning rate schedule.

A convergent ADMM framework
for efficient neural network training

J. Wang et al. (2015)
The neural network training problem can be written in
ADMM form

Find w1, . . . , wL weights
a1, . . . , aL activations

To minimize loss(aL, y) +
∑
ℓ rℓ(wℓ)

Such that ∀` ∈ J1, LK aℓ = gℓ(wℓ, aℓ−1)

or, by replacing the non-linear constraints with a
penalty, minimizing

loss(aL, y) +
∑
ℓ

rℓ(wℓ) + β
∑
ℓ

‖aℓ − gℓ(wℓ, aℓ−1)‖22 .

Update the parameters first backwards

aL → wL → aL−1 → wL−1 → · · · → a1 → w1

then forwards

w1 → a1 → w2 → a2 → · · · → wL → aL.

Fast and flexible ADMM algorithms
for trend filtering

A. Ramdas and R.J. Tibshirani
Trend filtering solves the problem

Minimize
β

1
2 ‖y − β‖

2
2 + λ

∥∥∥D(k+1)β
∥∥∥
1
.

The standard ADMM approach rewrites the problem
as

Find β, α

To minimize 1
2 ‖y − β‖

2
2 + λ ‖α‖1

Such that α = D(k+1)β.

Instead, rewrite it as

Find β, α

To minimize 1
2 ‖y − β‖

2
2 + λ

∥∥D(1)α
∥∥
1

Such that α = D(k)β.

The 0th order trend filtering problem, k + 1 = 1, can
be solved in linear time, with dynamic programming,
or the taut string principle.

The Gromov-Wasserstein distance between
networks and stable network invariants

S. Chowdhury and F. Mémoli
Given two metric measure spaces (X, dX , pX),
(Y, dY , pY), their Gromov-Wasserstein distance is the
minimum distorsion of a coupling between pX and pY .

inf
π1#p=pX
π2#p=pY

∫∫
X×Y×X×Y

|dX(x, x′)− dY (x, y′)|
q
p(dx, dy)p(dx′, dy′)

It can be generalized to networks (X,ωX , pX), whereX
is a Polish space, ωX a measurable function on X ×X
(it need not satisfy the triangle inequality, be sym-
metrix, or have zeros on the diagonal).

Weisfeiler-Lehman meets Gromov-Wasserstein
S. Chen et al.

A labeled measure Markov chain (LMMC) is the datum
of:
– X, a finite set (states);
– m : X →P(X) (Markov kernel, i.e., transition ma-

trix, where P(X) is the set of probability distribu-
tions on X);

– µ ∈P(X) a stationary distribution for m;
– ` : X → Z (label, for some metrix space Z.
A labeled graph, and q ∈ [0, 1), defines an LMMC on
the set of nodes, with transition probabilities

m(u, v) =

1 if u = v and Nu = ∅
q if u = v and Nu 6= ∅
1− q
deg u

if v ∈ Nu

0 otherwise

and stationary distribution µ(v) ∝ Max{1, deg v}.
The multiset labels in the WL test can be interpreted
as probability distributions L 1,L 2, . . . ,L k on P(Z),
PP(Z), . . . ,P · · ·P(Z) = P◦k(Z). The WL dis-
tance between X and Y is

dk(X,Y) = dW (L k
X ,L

k
Y)

(Wasserstein distance on P◦k(Z)).

The open algebraic path problem
J. Master

The shortest path problem on a graph computes the
transitve closure of the weight matrix with coefficients
in the rig ([0,∞],Min,+). The algebraic shortest path
generalizes this to an arbitrary rig or even a commuta-
tive quantale (monoidal closed poset with all joins).

[0,∞] ⩾ inf +
[0,∞] ⩽ sup inf
[0, 1] ⩽ sup ×
{T,F} or and
P(Σ∗) ⊂ ∪ concat

Article and book summaries by Vincent Zoonekynd 126/1044

Uncertainty in deep learning
Y. Gal (2016)

To get a probabilistic forecast (as opposed to a point
forecast) from a neural net trained with droupout (or
some other stochastic regularization techniaue), use
the network at test time as you did during training, to
sample from the distribution of y∗ and estimate E[y∗]
and Var[y∗].

Fourier neural operator
for parametric partial differential equations

Z. Li et al. (2021)
Neural PDE solver, in Fourier space: repeat 4 times,
after increasing the dimension with a linear layer.

F

low-pass

linear

F−1

linear

+

σ

Clifford neural layers for PDE modeling
J. Brandsetter et al. (2023)

To solve PDEs involving “correlated fields” (e.g., a
scalar field and a vector field: temperature and wind
speed), model them jointly, as a multivector, and use
Clifford convolutions and Clifford layers.

Deep learning for solving and estimating
dynamic macro-finance models

B. Fan et al.
To solve a PDE{

fθ(x, u,Du) = 0 x ∈ Ω
B(x, u) = 0 x ∈ ∂Ω

train a neural net to minimize∑
x∈Tf

‖fθ‖2 +
∑
z∈Tb

‖B‖2

(PINN: physically-informed neural net). One can add
other conditions

I(u, x) = 0 c ∈ I ⊂ Ω

and learn the PDE parameters θ as well.
Application to dynamic equilibrium models of the fi-
nancial sector. Implementation with DeepXDE.

Nowcasting with signature methods
S.N. Cohen et al. (2023)

The Kalman filter can be expressed as a regression on
signature transform features (involving only linear fea-
tures).
Use the signature transform features ψ (on a moving
window), which allow for irregular sampling, for now-
casting.

yt =
∑
k

(αk + βkyt−)ψk,t + εt

where yt− is the previous value. Add an elasticnet
penalty, and standardize the features (otherwise, they
decrease factorially fast).
Implementation in SigNow; also check esig,
iisignature, signatory.

A new approach to decomposition of economic
time series into permanent and transitory

components with particular attention to
measurement of the ‘business cycle’

S. Beveridge and C.R. Nelson
A stochastic process X, with stationary MA(∞) incre-
ments∆X = ψ(L)ε, can be decomposed into a stochas-
tic trend (a random walk: its increments are indepen-
dent)

Trendt = lim
s→∞

E[Xt+1|Ft]

= ψ(1)
∑
s⩽t

εs

and a cycle component.

(1− L)X = ψ(L)ε

= ψ(1)ε+
[
ψ(L)− ψ(1)

]
ε

A unified approach for jointly estimating
the business and financial cycle
and the role of financial factors

T. Berger et al. (2022)
The Beveridge-Nelson decomposition of a VAR(1) pro-
cess ∆Xt = A∆Xt−1 + εt is

Trendy = lim
s→∞

E[Xt+1|Ft]

= Xt +A(I −A)−1∆Xt.

Trend-cycle decompositions
E. Zivot (2005)

In the MA(∞) representation of an ARIMA(p, 1, q)
process

φ(L)∆X = θ(L)ε ARMA
∆X = ψ(L)ε MA(∞)

ψ(1) is the permanent effect of a shock εt on the level
of Xt.

Article and book summaries by Vincent Zoonekynd 127/1044

The Beveridge-Nelson trend is

Trendt = Trend0 + ψ(1)

t∑
s=1

εs.

The unobserved component model (UC-ARMA) is

Xt = Trendt + Cyclet
Trendt = µ+ Trendt−1 + εt εt ∼ N(0,Σ)

φ(L)Cycle = θ(L)η ηt ∼ N(0, S).

If the cycle is a stationary AR process, i.e., θ(L) = 1,
and the roots of φ are outside the uinit circle (and
ε ⊥⊥ η), it can be written as a state space model

ct

ct−p+1

 =

φ1 φp
1 0 0

0

0 0 1 0

ct−1

ct−p

+

ηt
0

0

∆Xt = µ− 1′

ct−1...
ct−p

+ εt

and estimated with a Kalman filter.
The variance ratio statistic

Rk = Vk/V1

Vk =
1

k
Var[Xt+k −Xt − kµ]

µ = E[∆Xt]

measures the fraction of variation due to permanent
shocks.

Bayesian vector autoregressions
T. Woźniak

A VAR(p) model

tt = µ+A1yt−1 + · · ·+Akyt−k + ut ut ∼ N(0,Σ)

can be written, by transposing the equation and verti-
cally stacking the resulting row vectors,

Y = XA+ U U ∼ MN(0,Σ, I).

With a normal-Widhart prior

Σ ∼ IW(S, ν)

A|Σ ∼ MN(A,Σ, V),

the posterior is also normal-Wishart

Σ ∼ IW(S, ν)

A|Σ ∼ MN(A,Σ, V),

where

V = (V −1 +X ′X)−1

A = V (V −1A+X ′Y)

ν = ν + T

S = S + Y ′Y +A′V −1A−A′V −1A.

The Minnesota prior is

A =

0 0

1

1

0

0

0

0

V = diag
(
λ0,

λ1
12σ̂2

1

, . . . ,
λ1

12σ̂2
n

,
λ1
22σ̂2

2

, . . . ,

)
where σ̂2

i is the error term variance of a univariate
AR(k) model on variable i. For the other hyperpa-
rameters, try

S = (Y −XA)′(Y −XA)
ν = T −K −N − 1.

Nowcasting
with large Bayesian vector autoregressions

J. Cimadomo (2020)
A state space BVAR is a VAR written in state space
form. To sample from it, iterate:
– Sample the missing values given A and Σ, using a

Kalman simulation smoother;
– Sample the Minnesota hyperparameters given the
data;

– Sample the parameters A, Σ given the data and the
hyperparameters.

A stacking BVAR deals with mixed frequency data by
adding the lags of the high-frequency variables.
The cube root BVAR deals with monthly and quarterly
data by fitting a VAR(p) on quarterly data, writing it
in companion form, Yt = AYt−1 + εt and converting it
to a monthly VAR, Yt = BYt−1 + ηt, wnere B3 = A.
There are many cubic roots of A: for the real eigen-
values, take the real cubic root; for the complex one,
take that with the lowest argument (i.e., that leading
to the least oscillatory behaviour).

Large Bayesian vector autoregressions
M. Bańbura et al. (2007)

The FAVAR model is a VAR model with a small num-
ber of variables, augmented with a few principal com-
ponents from a larger number of variables.

Article and book summaries by Vincent Zoonekynd 128/1044

Estimating and accounting for the output gap
with large Bayesian vector autoregressions

J. Morley and B. Wong (2019)
To choose the variables to include in a BVAR (reduce
their number from 138 to 7), look at the contribution of
each to the Beveridge-Nelson cycle (adding (removing)
irrelevant (relevant) variables does not (does) change
the cycle) and remove the variables one by one, starting
with those whose contribution has the lowest variance.
Use a Minnesota prior

E[φikk] = 0

Var[φijk] =
λ2

k2
if i = j

Var[φijk] =
λ2

k2
σ2
i

σ2
j

if i 6= j

where λ is selected to minimize the 1-step ahead RMSE
on an expanding window.
The contributions can be computed from

(∆Xt − µ) = F (∆Xt−1 − µ) +Het

Cyclet = −F (I − F)−1(∆Xt − µ)
= · · ·

= −
∑
I⩾0

F i+1(I − F)−1Het−i.

Vector autoregressions: forecasting and reality
J.C. Robertson and E.W. Tallman (1999)

The VAR(1) model (e.g., a BVAR with a Minnesota
prior) Xt = AXt−1 + εt, εt ∼ N(0,Σ) can be written
Xt ∼ N(AXt−1,Σ). If some of the coordinates are not
observed, their distribution given the observed coordi-
nates is known (conditional forecasting) (from the usual
formula for the conditional Gaussian distribution).

E[Xmis
t |Xobs

t] =

(AXt−1)
mis +Σmis,obsΣ

−1
obs,obs

[
Xobs
t − (AXt)

obs]

Large Bayesian vector autoregression
J.C.C. Chan

The BVAR with errors U ∼ MN(0,Σ,Ω) can be non-
Gaussian and/or have autocorrelated errors:
– Gaussian: Ω = I;
– Common stochastic volatility:

Ω = diag(eh1 , . . . , ehT)

ht = ρht−1 + εt

– Fat tails (Student T):

Ω = diag(λ1, . . . , λT)
λt ∼ InverseGamma

– Serially dependent errors, e.g., ut ∼ MA(2), i.e.,

Ω =

0

0

Industry classification using a novel financial

time series case representation
R. Dolphin et al.

Compute an embedding of stocks from pricing data:
– Sij = similarity between the delay embeddings (τ =
5) of the daily return time series

– Cij = number of times stock i is among the k nearest
neighbours of stock j (k = 1);

– C ≈ EE′, low-rank factorization, ignoring the diag-
onal (after log-transforming the entries of C).

Visualize the truncated graph with t-SNE.

Hedonic prices and
quality-adjusted price indices powered by AI

P. Bajari et al. (2023)
Forecast product prices from (time-stamped) unstruc-
tured product data (text, image: BERT and ResNet50)
and use this model to measure inflation.

Priceit = ht(featuresit) + εit

or Pricei,• = h(featuresi) + εi,•

Precision versus shrinkage:
a comparative analysis of covariance

estimation methods for portfolio allocation
S. Dutta and J. Jain (2023)

To estimate the variance matrix, for portfolio optimiza-
tion, prefer Gaussian graphical models:
– Graphical lasso

Minimize
Θ≽0

log detΘ− tr(Σ̂Θ)− λ ‖Θ‖1

– Nodewise regression;
– Clime

Minimize
Θ≽0

‖Θ‖1 such that
∥∥∥Σ̂Θ− I∥∥∥

∞
⩽ λ

– Greedy prune: find the neighbours of i by adding the
variable Xj minimizing Var[X1|XN (i), Xj], T times,
and then pruning those contributing to a proportion
less than ν to the variance;

– Hybrid MB: nodewise regression with no L1 penalty
on the nearest neighbour, followed by pruning.

Alternatives include
– Linear shrinkage (for various choices of the tar-
get and the shrinkage constant: Ledoit-Wolf, Rao-
Blackwell-Ledoit-Wolf, Bodnar, oracle);

Article and book summaries by Vincent Zoonekynd 129/1044

– Non-linear shrinkage (shrink the eigenvalues of Σ̂
separately, to minimize some loss function);

– Thresholding (of the covariances): hard, soft, or
adaptive;

– Random matrix theory (rotationally invariant esti-
mators).

Non-parametric cumulants approach for
outlier detection of multivariate financial data

F. Cesarone et al. (2023)
The CGF-PCA (cumulant generating function) direc-
tion is the solution θ of

Maximize
θ : ∥θ∥=1

log E[erθ
′X]

for a fixed r > 0. We are maximizing (not minimizing)
a convex function on the sphere (a non-convex set) –
but we can replace ‖θ‖ = 1 with ‖θ‖ ⩽ 1 and solve
with multistart and projected gradient.
Identify outliers by looking at the projection onto
Span θ.

Multivariate range value-at-risk and
covariance risk measures for elliptical and

log-elliptical distributions
B. Zuo et al.

The multivariate range VaR is

E[X | ∀i VaRpiXi ⩽ Xi ⩽ VaRqiXi].

The multivariate range covariance is

E
[
(X −MRVaRpq)(X −MRVaRpq)′ |

VaRpX ⩽ X ⩽ VaRqX
]
.

Market making with deep reinforcement
learning from limit order books

H. Guo et al.
The state space contains the current LOB (limit order
book: price, volume, ask, bid, several levels), order im-
balance (several windows), realized volatility, technical
indicators, inventory, remaining time. Try to forecast
the price direction [t − k, t] vs [t, t + k]. The reward
includes a damped PnL

(1− λ)(∆PnL)+ − (∆PnL)−

and an inventory penalty. Train with Dueling DQN or
PPO.

Trending fast and slow
E. Cheng et al.

Trend following strategies with a volatility dependent
lookback (1m vs 12m): slow momentum in low volatil-
ity and fast momentum in high volatility work better.

LLaMa: open and efficient
foundation language models

H. Touvron et al. (2023)
LLaMa is a family of large language models (LLM),
from 13B to 5B parameters, designed to be inexpensive
at inference time, trained using only publically avail-
able data:
– CommonCrawl/C4, preprocessed in different ways
(deduplication, quality filtering, identification of
Wikipedia references);

– Github (BigQuery, filtered for free licences, dedupli-
cated, with boilerplate removal);

– Wikipedia (20 languages, boilerplate removed);
– Arxiv (LATEX files, staring at the first section and

ending before the references, with macros removed;
– StackExchange (without HTML, with answers
sorted by score);

– Gutenberg and Books3 (deduplicated);
using
– Byte pair encoding (BPE, SentencePiece);
– Prenormaliztion (normalize the input of the trans-
formers, instead of the output, as GPT3);

– SwiGLU (as PaLM);

GLU(a, b) = a� σ(b)
Swishβ(x) = x� σ(βx) = (β learnable)

SwiGLU(x) = Swishβ(xW + b)� (xV + c)

– Rotary positional embedding (RoPE);
– AdamW (decoupled weight decay regularization),
with a cosine learning rate schedule, weight decay,
gradient clipping, warmup;

Weight decay (Adam) g = ∇f(θ) + wθ

Decoupled weight decay θ ← θ − η
(

m√
v + ε

+ wθ

)
– xformers (efficient implementation of the causal
transformer);

– 20488 80GB GPUs, over 21 days.
Briefly fine-tuning on instructions data leads to rapid
improvements.

Self-instruct: aligning language model
with self-generated instructions

Y. Wang et al.
To fine-tune a large language model (LLM) on instruc-
tion data, you do not need a lot of data:
– Start with a small seed set of manually written in-
structions (175 instruction-input-output triplets);

– Ask the model itself to generate new instructions;
prune low-quality or duplicated ones;

– Fine-tune the model using those instructions.
Alpaca applies self-instruct to llama.

Article and book summaries by Vincent Zoonekynd 130/1044

Training compute-optimal
large language models

J. Hoffmann et al. (2022)
For compute-optimal training, model size and training
tokens should be scaled equally.

#parameters ∝ FLOP1/2

#tokens ∝ FLOP1/2

#tokens/#parameters = 20

Scaling laws for neural language models
J. Kaplan et al. (2020)

Larger language models make more effective use of
training data; the number of parameters should in-
crease faster than the number of tokens.

#tokens ∝ FLOP1/4

#parameters ∝ FLOP1/3

BloombergGPT:
a large language model for finance

S. Wu et al. (2023)
Bloom-like model, trained on 50% public (non-
financial) data, and 50% Bloomberg data.

LayerNorm

Multi-head self-attention

+

LayerNorm

FC

+

– 50B parameters, for 700B tokens, in line with the
Chinchila scaling laws

#parameters = FLOP1/2/10

#tokens = FLOP1/2

– L MSA layers with hidden dimension D = e5+0.06L;
– GELU activations, x 7→ xΦ(x);
– ALiBi positional encodings;
– Embedding layer normalization;
– AdamW
– Model sharding over 128 GPUs (ZeRO);
– Hierarchical communication and 2-hop gradient up-
dates to reduce communication (MiCS);

– Checkpointing (recompute the activations in the
backward pass to reduce memory consumption);

– Mixed precision: FP32 and BF16 (FP32 with trun-
cated mantissa – FP16 truncates both mantissa and
exponent);

– Tweak batch size, learning rate, dropout as needed.

BLOOM: a 176B-parameter openaccess
multilingual language model

T. Le Scao et al.
Publically available model, trained on 500 multilingual
Huggingface datasets (ROOTS corpus), with:
– ALiBi positional encoding (instead of learned or ro-
tary embeddings);

– LayerNorm after the embeddings;
– bfloat16 instead of float16 (which is responsible for
some LLM training instabilities);

– Learned multilingual subword tokenizer (BPE) with
250k tokens;

– Distributed learning.
Several models are available, finetuned (BLOOMZ) or
not (BLOOM), with 560M, 1.1B, 1.7B, 3B, 7.1B, 176B
parameters.

Pythia: a suite for analyzing large language
models across training and scaling

S. Biderman et al.
Family of LLMs, with the same structure as GPT-Neo
or OPT, from 70m to 12b parameters, each with 154
checkpoints, to study scaling laws.

LoRa: low-rank adaptation
of large language models

E. Hu et al.
To efficiently fine-tune large models, replace big weight
matrices W with W + B′A, freezing W and only fine-
tuning the low-rank matrix B′A (initialize them as
A ∼ N(0, σ2), B = 0).

OPT: open pre-trained
transformer language models

S. Zhang et al.
GPT3-like model, with 175B parameters (only smaller
variants are avaiblable, 125B to 66B).

OPT-IML: scaling language
model instruction meta learning

through the lens of generalization
S. Iyer et al.

Instruction fine-tuning of OPT on 2000 NLP tasks
(30B and 175B parameters).

GLM: general language model pretraining
with autoregressive blank infilling

Z. Du et al.
LLMs tend to fall in one of three categories: encoder-
only (BERT), encoder-decoder (T5), autoregressive
(GPT). They can be combined:
– Start with a sentence, x1x2x3x4x5x6;
– Mask a few spans (hide the sizes): x1x2[M]x3[M];
– Ask the model to recover them, in an autoregressive
way x1x2[M]x4[M][S]x5x6[S]x3.

Article and book summaries by Vincent Zoonekynd 131/1044

Models available for English and Chinese, with a re-
strictive license (do not offend the Chinese govern-
ment).

Causal reasoning and large language models:
opening a new frontier for causality

E. Kıcıman et al. (2023)
Causal inference addresses different questions (exis-
tence and direction of a causal relation; strength of that
relation; full causal graph; attribution: sufficient cause,
necessary cause, social norm violation; counterfactual
reasoning). On several (small) benchmarks, LLMs per-
form those tasks better than data-based approaches:
knowledge-based causal inference answers those ques-
tions, by looking, not at the data, but at the metadata
(the column names).
To check if the model has seen and memorized the
benchmark dataset, provide it with half the column
names, or half the questions, and ask for the other
half.
To measure the importance of each word in the prompt,
remove a few words, and check if the output changes.

A comprehensive survey
on pretrained foundation models:

a history from BERT to ChatGPT
C. Zhou et al.

List of models for text, images, or graphs.

Community detection via semi-synchronous
label propagation algorithms
G. Cordasco and L. gargano

Label propagation (LPA) computes communities on a
graph, by starting to put each node in its own commu-
nity and then assigning each node to the majority com-
munity of its neighbours (breaking ties at random), un-
til convergence. The synchronous version of the algo-
rithm can exhibit cyclic oscillations; the asynchronous
version can wrongly produce a giant community.
For bipartite graphs, alternatingly updating all the
nodes of one of the partitions is more stable. This
semi-asynchronous algorithm can be generalized to ar-
bitrary graphs, by choosing a node colouring such that
adjacent nodes have different colours.

Peirce’s tutorial on existential graphs
J.F. Sowa

In MS514, Peirce presents a graphical language for first
order logic (FOL).
A line of identity represents an existential classifier.

∃x

It can be connected to one or several predicates.
A ∃x A(x)

A B ∃x A(x) ∧B(x)

C

A B ∃x A(x) ∧B(x) ∧ C(x)

S V O ∃x, y S(x) ∧O(y) ∧ V (x, y)

Conjunction is implicit.
A B ∃x∃y A(x) ∧B(y)

Shaded ellipses represent negations.

A ¬∃x A(x)

A ∃x ¬A(x)

A ∀x A(x)

A B ∀x A(x)⇒ B(x)

p q p ∧ q

p q p ∨ q

p q p⇒ q

A

B ∀x A(x)⇒ B(x), i.e., A ⊂ B

p q r s p =⇒ (q ∧ r ∧ s)

Lines can be replaced with explicit equalities
∃x

is ∃x∃y x = y

is ∃x∃y x 6= y

∃x∃y x 6= y

A A ∃x∃y x 6= y ∧A(x) ∧A(y)

A A at most one A

A A exactly one A

at least 3

at most 3

exactly 3

There are 3 rules of inference:
1. You can erase anyting in the unshaded areas (e.g.,
cut lines); you can add anything in the shaded areas

Article and book summaries by Vincent Zoonekynd 132/1044

2. Lines can be extended into any enclosed area; lines
can be retracted from any enclosed areas; anything
can be copied inwards; anything can be deleted out-
wards;

3. You can add or remove vacant ring-shaped areas
(double negations).

Deep learning on graphs
Y. Ma and J. Tang

4. Graph embedding models look for (graph or node)
representations preserving some information about the
graph or node,

graph embedding

information information

reconstruction error

extractor reconstructor

e.g., random-walk-based co-occurrence (DeepWalk is
word2vec on random walks) or structural similarity
(struc2vec)

g0(v1, v2) = 0

gk(v1, v2) = gk−1(v1, v2) + d
(
sNk(v1), sNk(v2)

)
where

v1, v2 are nodes
Nk(v) is the set of k-hop neighbours of v
s(N) is the degree distribution of the nodes in N
d is the DTW distance

or neighbourhood similarity

sij =
AiA

′
j

‖Ai‖ ‖Aj‖

or community membership, or the adjacency matrix

Aij ∼ Bernoulli
(
σ(u′iuj)

)
.

5. GNNs combine filtering layers (which change the
features but not the graph structure) and pooling lay-
ers (which coarsen the graph).
Filtering layers include
– Spectral filters f 7−→ Uγ(Λ)U ′f, where

L = D −A or D−1/2(D −A)D−1/2

L = UΛU ′

γ(λ) = (1 + cλ)−1 (low pass filter)

or γ is a (learned) Chebychev polynomial;
– Aggregation of the neighbouring values (mean, sum,
max, or even LSTM for some (possibly arbitrary)
order of the neighbours);

– Attention, i.e., weighted average of the neighbouring
values, with data-dependent weights;

– Mixture models (MoNet) are a type of attention
where the weights are computed from the degrees

cij =

[√
di√
dj

]
αij = exp− 1

2 ‖cij‖
2
(µ,Σ)

‖c‖2(µ,Σ) = (c− µ)′Σ−1(c− µ)

µ,Σ: learnable parameters

– GRU and LSTM cells (considering that the aggre-
gated current value of the neighbours is the previous
state).

Flat graph pooling contracts the graph to a single node,
by aggregating the node features with mean or max, or
with a gating mechanism.

node features

node weights

node features

multiply

Hierarchical pooling progressively shrinks the graph,
– by selecting the most “important” nodes, where the
importance is computed from the node features, di-
rectly (gPool) or with a GCN (SAGPool),

– or by collapsing nodes into “supernodes”, computed
with spectral clustering (EigenPool) or with a GCN
to get cluster membership probabilities (diffpool)

A← S′AS

F ← S′F

6. GNNs can be the target of attacks (credit scor-
ing, spam, etc.). Evasion attacks target a trained net-
work; poisoning attacks corrupt the training data. The
goal can be targeted (change the classification of a few
nodes) or not (reduce the model performance). The at-
tacker may alter the node features, add or delete nodes
or edges; the attacker may have access to the model
weights, or to the training data (greybox attack: they
train a surrogate model and attack it), or just a black
box.
White box attacks often use min-max (or bilevel) opti-
mization, or meta-learning; black-box attacks can use
reinforcement learning.
To defend against those attacks:
– Use adversarial samples during training;
– Clean the graph (“purification”), removing edges
whose ends have low feature similarity, or reducing
the rank of the adjacency matrix;

– Downweight suspicious nodes (replace the hidden
representations with Gaussian distributions, and the
the variance as a suspiciousness gauge) or penalize
suspicious edges (with attention weights, trained on
a clean graph to which you apply an adversarial at-
tack, so that you know which edges are adversarial);

– Jointly learn the purification (a new adjacency ma-
trix, S, close to the original one A, low rank, with
smooth features), and train a GNN.

Article and book summaries by Vincent Zoonekynd 133/1044

7. To train GNNs on large networks, GraphSAGE
samples the neighbours. Instead of sampling the neigh-
bours for each node separately, sample a set of nodes
N (you need to define the probability distribution) and
use Ni ∩N instead of Ni, for a whole layer (or for all
layers).
Edge-based node samplers sample pairs of nodes with
high influence on one another.
Random-walk-based samplers improve the connectiv-
ity.
9. LSTMs can be generalized to trees or arbitrary
graphs (Tree-LSTM, Graph-LSTM): just aggregate the
inputs before feeding them to the LSTM cell.
To generate graphs (AE, VAE, GAN), simply generate
the adjacency matrix.
10. For many NLP tasks, first process the sentence
with a BiLSTM; then use a GNN on the parse treee.
Node embeddings of knowledge graphs help various
downstream tasks, and knowledge graph completion.
14. To limit oversmoothing, add jump-layer connec-
tions,

randomly drop edges, or add regularization terms to
force the representations of distant nodes to be dis-
tinct.
Self-supervised learning on graphs can predict:
– Node properties (degree, centrality, clustering coef-
ficient, features);

– Pairwise similarity or ranking of node properties;
– Edge presence (if some were removed before train-
ing);

– Pairwise distances;
– Context (word2vec).

A fast and high quality multilevel scheme
for partitioning irregular graphs

G. Karypis and V. Kumar (1998)
Multilevel partitioning (Metis):
– First reduces the size of the graph (coarsening) by
collapsing some edges;

– Then partitions (clusters) it, using an algorithm of
your choice;

– Finally refines the solution back to the original graph
(Kernigham-Lin).

A fast kernel-based multilevel algorithm
for graph clustering

I. Dhillon et al. (2005)
To cluster the nodes of a graph, use (weighted) k-
means with kernel matrix σI + A, σI − D + A or
σD−1 +D−1AD−1 (and w = 1 or w = degree).
To coarsen a graph (prior to clustering), visit the ver-
tices in a random order:

– If x is marked, continue;
– If x is unmarked and all its neighbours are marked,
mark it and continue;

– Otherwise, merge x with the vertex y maximizing
exy
wx

+
exy
wy

and mark both x and y.
This can also be used to order the nodes, when plotting
the adjacency matrix.

Weighted graph cuts without eigenvectors:
a multilevel approach

I.S. Shillon et al. (2007)
More details on the graclus algorithm.

Simplifying graph convolutional networks
F. Wu et al. (2019)

Remove the nonlinearities and collapse the weight ma-
trices between consecutive layers:

Y = softmax(SkXW)

S = D−1/2(A+ I)D−1/2

Knowledge graphs: a guided tour
A. Hogan

General E(2)-equivariant steerable CNNs
M. Weiler and G. Cesa (2019)

Consider a Euclidean graph G ⩽ E(2) = (R,+)oO(2).
A steerable feature field is defined by a feature field and
its type

f : R2 → Rc feature field
ρ : G→ GL(Rc) representation.

For instance, for scalar fields, or RGB fields, ρ = 1
(trivial representation), but for vector fields, ρ(t, g) = g
is another meaningful choice.
Equivariant maps are convolutions with a steerable ker-
nel k : R2 → Rcout×cin

∀g ∈ G ∀x ∈ R2 k(gx) = ρout(g)k(x)ρin(g
−1).

(To solve those constraints, first decompose ρout and
ρin into irreducible components.)
You cannot use arbitrary nonlinearities (they have to
be equivariant as well):
– For unitary representations, nonlinearities acting
only on the norm x 7→ σ(x) · x/ ‖x‖ are equivari-
ant:
· NormReLU, σ(u) = ReLU(u− b)
· Squashing, σ(u) = u2/(u2 + 1)
· Gating σ(u) = u/(1 + e−s(x)), where s is a scalar
field;

Article and book summaries by Vincent Zoonekynd 134/1044

– For regular representations (representations onR|G|,
permuting the axes), or quotient representations
(regular representations of G/H), coordinatewise
nonlinearities are equivariant.

Implementation in e2cnn.

Overcoming oversmoothness
in graph convolutional networks
via hybrid scattering networks

F. Wenkel et al.
The lazy random walk matrix (the random walk matrix
is WD−1) P = 1

2 (I +WD−1)

(PX)i =
1

2
Xi +

∑
j∼i

Xj

dj

defines wavelets

Ψ0 = I = P

Ψk = P 2k−1

− P 2k

and the geometric scattering transform

U : x 7→ (Ψkm ◦ σ ◦ · · · ◦Ψk2 ◦ σ ◦Ψk1)(x).

Combine low-pass layers X 7→ σ(AXΘ+B), band-pass
layers X 7→ σ

(
U(XΘ) + B

)
, aggregation (or concate-

nation, or attention) and graph residual convolution

X 7→
[
(1− λ)I + λWD−1

]
XΘ+B

to limit oversmooting and underreaching in GNNs.

Scattering GCN: overcoming oversmoothness
in graph convolution networks

Y. Min et al. (2020)

Can hybrid geometric scattering networks help
solve the maximum clique problem?

Y. Min et al. (2022)
Use a scattering GCN to predict which nodes are in
the maximum clique, using eccentricity, clustering co-
efficient, and logarithm of degree as node features, and

L(p) = −p′Wp+ βp′W̄p

as loss, where W̄ is the adjacency matrix of the com-
plement of G (same node, non-edges as edges).

Neural processes
M. Garnelo et al. (2018)

Neural networks can replace Gaussian processes.

(x1, y1) · · · (xn, yn)

r1 rn

r̄

µ σ

z ∼ N(µ, σ2)x

y

Conditional neural processes
M. Garnelo et al.

Neural process without sampling (a form of meta learn-
ing), with applications to image completion.

(x1, y1)

(xn, yn)

r1

rn

r̄

x

y...
...

Attention neural processes
H. Kim et al.

Neural processes underfit the training data, because
the average of the latent, representations gives the
same weight to all context points. Try with multihead
attention blocks.

x1, y1, . . . , xn, yn x

Att Att

r1, . . . , rn x1, . . . , xn

r̄ Att

MLP MLP

µ σ

z ∼ N(µ, σ2)

MLP

y

Article and book summaries by Vincent Zoonekynd 135/1044

Causal inference using invariant prediction:
identification and confidence intervals

J. Peters et al.
To distinguish between causal and non-causal models
(to explain a variable Y), remember that causal mod-
els are robust to interventions: they should remain the
same when estimated in different settings (interven-
tions, regimes); we do not need to know which variables
are intervened on.

environment 1

X5

X2 X4

Y

X3

environment 2

X5

X2 X4

Y

X3

environment 3

X5

X2 X4

Y

X3

An introduction to g methods
A.I. Naimi et al. (2016)

G methods (G-formula, marginal structural models,
and structural nested models) compute

E[Y | do(A0 = A1 = 1)]− E[Y | do(A0 = A1 = 0)]

in the following situation

A0 Z1 A1 Y

U
unobserved confounder

treatment treatment outcome
HIV drug viral load HIV drug CD4 count

If we only wanted do(A1), we would condition on the
confounder Z1, but if we also want do(A0), we cannot
condition on Z1 because it is a collider. The G-formula
is obtained by writing down the joint probability.

P (y,a1,z1,a0)=P (y|a1,z1,z0)P (a1|z1,a0)P (z1|a0)P (a0)

E[Y] =
∑

a1,z1,a0

E[Y |a1, z1, a0]P (a1|z1, a0)P (z1|a0)P (a0)

E[Y |do(a0, a1)] =
∑
z1

E[Y |a1, z1, a0]P (z1|a0)

Marginal structural models use inverse probability
weighting to fit the regression y ∼ a1 + a2.

P [a0, a1|z1] = P [a0|a1, z1]P [a1|z1]
= P [a0]P [a1|z1]
= 1

2P [a1|z1]
P [a1, a2] =

1
2P [a1]

wa0,a1,z1 =
P [a0, a1]

P [a1, a1|z1]

Estimation of the causal effects
of time-varying exposures

K.M. Robins and M.A. Hernán
More details on G-methods.

A causal analysis of market contagion:
a double machine learning approach

J. Simonian
Double machine learning

W

T U

lm
(
res(Y ∼W) ∼ res(T ∼W)

)
(do the inner and outer regressions on different
datasets) for
– Treatment: S&P 500 weekly returns
– Outcome: some non-US market weekly returns (for
the same or next week)

– Confounders: weekly returns of other non-US mar-
kets.

Unsuitability of NOTEARS
for causal graph discovery

M. Kaiser and M. Sipos (2021)
Notears h(w) = trace(eW⊙W) − d is not scale-
invariant (for weighted adjacency matrices). Golem
has the same problem.

DAGMA: learning DAGs via M-matrices
and a log-determinant acyclic characterization

K. Bello et al. (2022)
The notears condition, Tr(eW ·W) = d, for an adja-
cency matrix W to be that of a DAG, or

Tr
(
I +

1

d
W �W

)d
= d,

can be replaced with h(W) = 0 or, equivalently,
∇h(W) = 0, where

h(W) = − log det(sI −W �W) + d log s,

for s > 0. In addition, h(W) ⩾ 0,

∇h(W) = 2(sI −W �W)−⊤ �W.

Contrary to notears (where the contribution of large
cycles vanishes quickly), it can detect large cycles.

On the role of sparsity and DAG constraints
for learning linear DAGs

I. Ng et al. (2020)
The notears hard constraint h(B) = tr(eB⊙B)−d = 0
can be replaced with a soft constraint (golem)

Minimize
B

L (B, x) + λ1 ‖B‖1 + λ2h(B)

Article and book summaries by Vincent Zoonekynd 136/1044

where the log-likelihood is

L (B, x) =
1

2

∑
i

log
∑
k

(xki−B′ixk)2− log
∣∣det(I−B)

∣∣
(but it is not an exact characterization).

DAG-GNN: DAG structure learning
with graph neural networks

Y. Yu et al. (2019)
Given the adjacency matrix of a DAG, a SEM (struc-
tural equation model) is of the form X = A′X + Z,
Z ∼ noise, i.e., X = (I − A′)−1Z. It can be made
non-linear, and the model can be extended to a VAE.

Z · · X
f1

f4

(I −A′)−1

(I −A′)

f2

f3

X = f2
[
(I −A′)−1f1(Z)

]
Z = f4

[
(I −A′)−1f3(X)

]
To ensure acyclicity: tr(I + αA�A)d = d.

Learning optimal Bayesian networks:
a shortest path perspective

C. Yuan and B. Malone (2013)
To find the best Bayesian network for a given dataset,
it suffices to find the best leaf (childless variable) and
use dynamic programming. The resulting order is a
path in the Hasse diagram of subsets of variables. Use
A∗ to restrict the search to promising paths

∅

X1 X2 X3 X4

X1X2 X1X3 X2X3 X1X4 X2X4 X3X4

X1X2X3 X1X2X4 X1X3X4 X2X3X4

X1X2X3X4

Improving causal discovery
by optimal Bayesian network learning

N.Y. Lu et al. (2021)
Triplet A∗ speeds up A∗-based causal discovery by re-
stricting the search for Pa(x) to subsets of neighbours
of y—x—z (given a PC-based initial guess of parents
and children of each node).

Domain-knowledge
in A∗-based causal discovery

S. Kleinegesse et al.
Add domain knowledge (x ∈ Pa(y) or x 6∈ Pa(y)) to
A∗ score-based causal discovery.

Reliable causal discovery
with improved exact search

and weaker assumptions
I. Ng et al. (2021)

Speed up A∗-based causal discovery by limiting the
size of the parent graphs (A∗ superstructure) and/or
limiting the seach to the 2-hop neighbourhood of each
variable in its graphical lasso graph (local A∗).

A neural network based model
for multi-dimensional nonlinear

Hawkes processes
S. Joseph and S. Jain

Neural network to estimate (MLE) the kernel of a
Hawkes process.

Feature selection with annealing
for computer vision and big data learning

A. Barbu et al.
Recursive feature elimination (RFE) alternates be-
tween
– Training an SVM model;
– Discarding the features with the smallest coefficients.
Feature selection with annealing (FSA) alternates be-
tween
– Gradient descent step;
– Discarding the features with the smallest coefficients.
Also check Boruta.

Quantile-parametrized distributions
T.W. Keelin and B.W. Powley (2011)

A quantile-parametrized distribution (QPD) is defined
by

F−1(y) =

n∑
i=1

aigi(y), y ∈ (0, 1).

For instance, with n = 4 and (Q-normal)

g1(y) = 1

g2(y) = Φ−1(y)

g3(y) = yΦ−1(y)

g4(y) = y.

Then, f(x) =
(∑

aig
′
i(y)

)−1 where x = F−1(y).
Find a from n probability-value pairs (xi, yi)1⩽i⩽n as
a = Y −1x, Yij = gj(yi), provided Y is invertible and
∀y ∈ (0, 1)

∑
aig
′
i(y) > 0.

Article and book summaries by Vincent Zoonekynd 137/1044

Ontology development 101:
a guide to creating your first ontology

N.F. Noy and D.L. McGuinness
An ontology is a formal specification of the terms used
in a domain, their relations, and properties. It consists
of:
– Classes (concepts),
– Hierarchical relations between those classes,
– Instances of those classes,
– Properties (slots) of those classes, or of the instances,
each with a set of allowable values (facets: class, in-
stance, symbol, free text, list, etc.).

Axiomatic characterization
of pointwise Shapley decompositions

M.C. Christansen (2023)
The Shapley values decompose a function F :
{0, 1}d → R into a sum of contributions of each input
variable. It can be generalized to functions with real ar-
guments (average sequential decomposition, aka poin-
wise Shapley values) by writing (assuming F (0) = 0)

F (x) = F (x)− F (0)
= F (x1, . . . , xd)− F (x1, . . . , xd−1, 0) +
F (x1, . . . , xd−1, 0)− F (x1, . . . , xd−2, 0, 0) +
· · ·

and averaging over all permutations of (x1, . . . , xd).

Perceptually uniform color space
for image signals including

high dynamic range and wide gamut
M. Safdar et al. (2017)

JzAzBz is more perceptually uniform that CIELAB
(for reflective colours), CIELUV (self-illuminant
colours), IPT, CAM16-UCS, ICTCP ; all have 3 coor-
dinates: lightness, red-green, yellow-blue.

Nonparametric Bayesian deep networks
with local competition

K.P. Panousis et al. (2019)
To automatically prune a neural network, use a
Bayesian neural net, with latent Bernoulli variables in-
dicating which weights should be kept, following an
Indian buffet process (IBP)

uk ∼ Beta(α, 1)

πk ∼
∏

1⩽i⩽k
ui

zik ∼ Bernoulli(πk)

Efficient few-shot learningh without prompts
L. Tunstall et al.

Before training a classifier head, fine-tune the model
(in a siamese manner, with a triplet loss). Use with
MPNet (a sentence transformer, trained with a para-
phrase dataset, to recognize semantic similarity).

Wasserstein-Kelly portfolios:
a robust data-driven solution
to optimize portfolio growth

J.Y.M. Li (2023)
The Kelly portfolio

Find w
To maximize ER log(1 + w′R)
Such that w ⩾ 0, w′1 = 1

where R are the asset simple returns, can be made dis-
tributionally robust by considering the Wasserstein ball
of log-returns centered on the empirical log-return dis-
tribution (with the simple return ball, the optimization
problem is unbounded).

Find w
To maximize inf

F∈B
E
r∼R

logw′er

Such that w ⩾ 0, w′1 = 1
Where B = {F : Wp(F, Fr) ⩽ ε}

This can be solved with cvxpy, after reformulation.

Probabilistic forecasting with factor quantile
regression: application to electricity trading

L. Maciejowska et al. (2023)
Given several forecasts ŷ1, . . . , ŷd (different models,
or the same model estimated on different windows),
forecast quantiles of y with a linear regression ŷα ∼
ŷ1 + · · ·+ ŷd or a principal component regression.

An adaptive volatility method for probability
forecasting and its application to the M6

financial forecasting competition
J. de Vilmarest and N. Werge (2023)

The adaptive volatility model (AdaVol) is a non-
stationary GARCH-like model.

εt : log-returns
γt : sample volatility of ε
σt : target volatility of ε (unobserved)
ηt ∼ N(0, 1)

εt = σtηt

σ2
t − γ2t−1 =

p∑
i=1

αi(ε
2
t−i − γ2t−1) +

q∑
j=1

βj(σ
2
t−j − γ2t−1)

Article and book summaries by Vincent Zoonekynd 138/1044

Performance attribution of machine learning
methods for stock return prediction

S. Daul et al. (2021)
Decompose the forecasts (and the performance) of a
forward-return predicting model (and the correspond-
ing long-short decile portfolio) into:
– Linear marginal,
– Nonlinear marginal,
– Interactions.
The nonlinear marginal part has little predictive power.

Addendum on how many times
cointelated pairs cross paths

B. Mahdavi-Damghani and S. Roberts (2020)
The cointelation model allows for arbitrary short-term
correlation (even ρ = −1) and mean reversion (ρ = +1
in the long term).

dX

X
= µdt+ σdW1 leading

dY = θ(X − Y)dt+ σY dW2 lagging
d〈Wi,W2〉 = ρdt

Exploring the advantages of transformers
for high-frequency trading

F. Barez et al. (2023)
Forecast the future (100ms) log-returns with a trans-
former encoder, linear decoder, spiking activation

S(x) =

{
x if x ⩾ threshold
0 otherwise

with pytorch-spiking (and PReLU) and quantile
loss.

Reinforcement learning
for trading systems and portfolios

J. Moody and M. Saffell (1998)
Train your trading/investment strategy end-to-end,
maximizing the Sharpe ratio, instead of minimizing the
sum of squared residuals.

Macroeconomic forecasting and sovereign risk
assessment using deep learning techniques

A. Petropoulos et al.
Predict 9 monthly macroeconomic variables from their
1-year lags and 3 contemporaneous variables, with
– Bayesian model averaging (BMA);
– MLP (5 layers, ReLU, dropout);
– Bayesian neural net;
– Bayesian LWTA (local winner takes all) neural net.

Deep adaptive input normalization
for time series forecasting

N. Passalis et al.
Before processing a time series with a neural net, DAIN
normalizes it, adaptively.

a← LSTM(x)

x← x−Wa

b← LSTM(x)

x← x�Wb

c, d← LSTM(x)

x← x� sigm(Wc+ d)

Expectile hidden Markov regression models
for analyzing cryptocurrency returns

B. Foroni et al. (2023)
Expectile regression replaces the squares in the loss
function with

ωτ (u) =

{
τu2 if u ⩾ 0

(1− τ)u2 if u < 0,

where τ ∈ (0, 1).

Minimize
β

E
[
ωτ (y −X ′β)

]
It is often estimated with IRLS (iteratively reweighted
least squares).
The asymmetric normal distribution has density

f(y) ∝ exp−ωτ
(
y − µ
σ

)
.

The asymmetric normal hidden Markov model (HMM)
can be estimated with the expectation-maximization
(EM) algorithm.

Frog in the pan:
continuous information and momentum

Z. Da et al. (2014)
Investors are inattentive to information arriving con-
tinuously in small amounts: combine/replace momen-
tum with/by the “information discreteness”,

ID = sign(momentum)× (%neg−%pos).

Quantum computing: lecture notes
R. de Wolf (2022)

Quantum computing is linear algebra on the Hilbert
space H = (C2)⊗n. The standard basis of C2 is de-
noted

|0〉 = e1 =

(
1
0

)
|1〉 = e2 =

(
0
1

)
.

The coordinates in that basis are called amplitudes (but
these are complex numbers). The corresponding row

Article and book summaries by Vincent Zoonekynd 139/1044

vectors (conjugate transpose) are denoted 〈0|, 〈1|. An-
other basis is

|+〉 =
(
|0〉+ |1〉

)
/
√
2

|−〉 =
(
|0〉 − |1〉

)
/
√
2.

A classical state is an element of the standard basis.
A pure quantum state is a vector of norm 1, up to a
scalar multiple; alternatively, it is a 1-dimensional sub-
space, or a projection onto a 1-dimensional subspace.
A quantum state is a superposition of classical states,
i.e., a linear combination of basis vectors. A mixed
quantum state is a probability distribution over pure
quantum states, ρ =

∑
pi |φi〉 〈φi|. An entangled state

in C2 ⊗ C2 is a state which is not of the form u ⊗ v
(elements of C2 ⊗ C2 are linear combinations of such
product states), e.g., the EPR pair

|00〉+ |11〉√
2

.

A measurement of a quantum state |φ〉 =∑
αi |i〉 in the standard (or “computational”) basis

(|0〉 , |1〉 , . . . , |N − 1〉) replaces |φ〉 with the classical
state |i〉 with probability ‖αi‖2. A projective mea-
surement of |φ〉 wrt projections P1, . . . , Pm such that∑
Pi = I replaces |φ〉 with (a state proportional

to) Pi |φ〉 with probability 〈φ|Pi |φ〉 = trPi |φ〉 〈φ|.
A POVM (positive operator-valued measurement)
wrt positive semi-definite matrices E1, . . . , Em such
that

∑
Ei = I replaces |φ〉 with a post-measurement

state associated with Ei (not defined) with probability
trEi |φ〉 〈φ|.
States can be transformed with unitary matrices U , or
gates, |φ〉 7−→ U |φ〉 (or ρ 7−→ UρU †), for instance

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
bitflip (NOT)

Y =

(
1 0
0 −1

)
Z =

(
0 −i
i 0

)
phase flip

H =
1√
2

(
1 0
1 −1

)
Haramard

Rϕ =

(
1 0
0 eiϕ

)
phase gate

T = Rπ/4

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

The CNOT (controlled NOT) gate applies a bitflip X
(NOT) to the second qubit if the first is |1〉; the Toffoli
gate (CCNOT) is similar, but has two control qubits:
if they are both 1, the third qubit is flipped. The com-
position of those gates is often depicted as a quantum
circuit.

|0〉
|1〉

H

Z+

|00〉+ |11〉√
2

Alice |ψ〉 H

X Z |ψ〉 Bob
|00〉+ |11〉√

2

The query for x ∈ {0, 1}N is the unitary map (a per-
mutation matrix)

Ox :

{
(C2)⊗n ⊗C2 −→ (C2)⊗n ⊗C2

|i, b〉 7−→ |i, b⊕ xi〉

where n = dlog2Ne. The phase query Ox,± uses
|i,−〉 7→ (−1)xi |i,−〉 instead.
The Deutsch-Josza algorithm tells if x ∈ {0, 1}N is con-
stant or half 1’s and half 0’s.

|0〉
|0〉
...
|0〉

H

H

H

H

H

H

Ox,±

Given x ∈ {0, 1}N such that xi ≡ ia (mod 2), the
Bernstein-Vazirani algorithm finds a.
Given x ∈ {0, 1}N such that xi = xj iff i = j or
i = j ⊕ s, for some s ∈ {0, 1}n, the Simon algorthm
finds s.
The Fourier transform

(FN)jk =
1√
N
e2πijk/N

generalizes the Hadamard transformH = F2. The Fast
Fourier transform (FFT) computes FNv efficiently by
recursively separating even and odd terms. The Quan-
tum Fourier transform only requiresO

(
(logN)2

)
gates,

instead of O(N logN).

FN |k〉 =
n⊗
ℓ=1

1√
2

(
|0〉+ e2πik/2ℓ

)
|k1〉
|k2〉
|k3〉

H

H

H

R2 R3

R2

Shor’s period finding algorithm isO
(
(logN)2(log logN)2

log log logN
)
.

Grover’s search algorithm provides a quadratic speed-
up.

|0〉
|0〉
...
|0〉

H

H

H

G G G

. . .

. . .

. . .

Article and book summaries by Vincent Zoonekynd 140/1044

G = H⊗nR0H
⊗nOx,±

Unitary operators appearing in quantum mechanics
are often of the form U = e−iHt, form some Hermi-
tian operator H (the Hamiltonian). If H =

∑
Hj

(where, for instance, the Hj ’s only act on a small
number of qubits), we would like to decompose U as
a product of simpler (smaller) unitary operators, but
e−iHt 6=

∏
e−iHjt in general (if the Hj ’s do not com-

mute). The Lie-Trotter formula approximates U as

e−i
∑
Hjt ≈

(∏
j

eiHjt/r
)r
.

There are other Hamiltonian approximations (linear
combination of unitaries (LCU), block-encoded matri-
ces).
The HHL algorithm solves a quantum linear system
Ax = b, i.e., finds a n-qubit state close to

|x〉 = 1

‖x‖

N−1∑
i=0

xi |i〉 ,

Similarly, quantum machine learning learns from data
encoded as quantum states (the model is a quantum
circuit, and the parameters are the gate parameters,
e.g., θ for Rθ).
Error correction is more necessary than with classical
computing, but possible.

Quantum mechanics for mathematicians
A. Alekseev (2019)

1. A finite-dimensional quantum system is defined
by (H,H):
A1 A Hilbert space over C, H;
A2 The set of observables,

A = {A ∈ EndH : A∗ = A}

(note that A is a Lie algebra);
A3 The set of states

S = {M ∈ EndH : M∗ =M, trM = 1, M ⩾ 0};

a pure state is a projection in a 1-dimensional
subspace; pure spaces form the projective space
P(H);

A4 A measurement map{
A ×S −→ {probability measures on R}
(A,M) 7−→ µMA

defined by

µMA (E) = tr
(
PPA(E)

)
=

∑
i :λi∈E

tr(MPi)

A =
∑

λiPi

Pi : projections on the eigenspaces

PA(E) =
∑

i :λi∈E

Pi

PA : projection-valued measure

For a pure state M = Pu, ‖u‖ = 1, and 1-
dimensional eigenspaces

µMA =
∑
i

tr(MPi)δλi

=
∑
i

|〈ei, u〉|2 δλi

=
∑
i

piδλi ;

the 〈ei, u〉 are called probability amplitudes (with-
out the modulus). The mean and variable of an
observable A are

Ā =

∫
R

λdµMA =
∑

λipi

Var[A] =

∫
R

(λ− Ā)2dµMA =
∑

(λi − Ā)2pi.

More generally (“functional calculus”), for a
function f : R → R, f(A) =

∑
f(λi)Pi is still

self-adjoint and

f(A) =

∫
R

f(λ)dµMA =
∑

f(λi)pi.

A5 H ∈ A , the Hamiltonian of the system; its eigen-
values are denoted E1, . . . , En; the evolution of
the system is then defined by

dM(t)

dt
= − i

~
[H,M].

It is often written for pure states Pu, i.e., projec-
tions on 1-dimensional subspaces,

du(t)

dt
= − i

~
Hu(t).

It can be solved with the (unitary) evolution op-
erator U(t) = exp(− i

~Ht) as u(t) = U(t)u0 (for
general states, Mt = UtM0U

−1
t). In the Heisen-

berg picture, the state is constant and the ob-
servables change

dA(t)

dt
= +

i

~
[H,A].

The Heisenberg uncertainty principle states

σ2
A1
σ2
A2
⩾ 1

2

∣∣trM([A1, A2]
)∣∣2 .

An observable A ∈ A is a conserved quantity, or a
quantum integral if [H,A] = 0.
The Lie algebra of symmetries is

symH = {G ∈ iA : [B,H] = 0} ⊂ iA .

The group of symmetries is

SymH = {g ∈ U(H) : gHg−1 = H}

Article and book summaries by Vincent Zoonekynd 141/1044

A set of observables (H,A1, . . . , Am) is a quantum in-
tegrable system if they commute and their symmetry
group Sym(H,A1, . . . , Am) is as small as possible, i.e.,
U(1) × · · · × U(1), i.e., the joint eigenspaces are of
dimension 1. Given a basis of common eigenvectors
(ea)1 ⩽ a ⩽ n,

Hea = Eaea

Aiea = αiaea

there is a bijection between the set of quantum num-
bers {(Ea, α1

a, . . . , α)a
m) : 1 ⩽ a ⩽ m} and the basis.

Examples include:
– The spin 1

2 particle, H = C2, with the Pauli matri-
ces σ1, σ2, σ3 as an R-basis of A and, for instance,
H =

(
α 0
0 −α

)
;

– The Heisenberg magnetic chain, H = (C2)⊗N ,

H = J

N∑
i=1

3∑
a=1

σiaσ
i+1
a

where σia = 1 ⊗ · · · ⊗ 1 ⊗ σa ⊗ 1 · · · ⊗ 1. Note that
La =

∑
i σ

i
a are conserved quantities, but there are

many more.
2. Given a (possibly unbounded) operator on a Hilbert
space H

A : H ⊃ D(A) −→ H

with dense domain D(A), its adjoint is A∗ : D(A∗)→
H where

D(A∗) = {v ∈ H : u 7→ 〈u,Au〉 is bounded on D(A)}

and A∗ is given by the Riesz representation theorem
〈v,Au〉 = 〈A∗v, u〉. The domain D(A∗) need not be
dense.
An operator is closed if its graph is closed; it is clos-
able if it admits a closed extension; it is symmetric if
∀u, v 〈Au, v〉 = 〈u,Av〉. For a symmetric closable op-
erator, A ⊂ Ā ⊂ A∗. An operator is self-adjoint if
A∗ = A (in particular, D(A) = D(A∗)); it is essen-
tially self-adjoint if Ā = A∗.
If A is symmetric,

A∗ = A iff Im(A+ i) = Im(A− i) = H.

If A is symmetric and closed, it admits a self-adjoint
extension iff n+(A) = n−(A); its self-adjoint extensions
are in bijection with unitary operators

U : ker(A∗ − i)→ ker(A∗ + i).

Given two self-adjoint operators A, B, with D(A) ⊂
D(B), if ∀u ∈ D(A) ‖Bu‖ ⩽ α ‖Au‖+β ‖u‖, for some
α < 1, then A + B : D(A) → H is self-adjoint (Kato-
Rellich).
In `2, the operator Aei = aiei, on

D(A) = {sequences eventually zero}

is symmetric if the ai’s are real; its adjoint is defined
on

D(A∗) = {v :
∑

a1i ‖vi‖
2
<∞};

it is essentially self-adjoint: Ā = A∗.
On L2([0, 1]), the momentum operator

A = −i~ d
dx
,

defined on C 1
0 ([0, 1],C) (continuously differentiable

functions u with u(0) = u(1) = 0) is symmet-
ric but not essentially self-adjoint: Ā (A∗, since
C 1([0, 1]) ⊂ D(A∗). Replacing the boundary condi-
tions with u(0) = u(1) (i.e., replacing [0, 1] with S1)
fixes the problem.
In L2(Rn), multiplication by a measurable function
V = V (x1, . . . , xn) is a self-adjoint operator V̂ on
D(V̂) = {u ∈ 2(Rn) :

∫
Rn V

2 |u|2 dnx <∞}.
Using the Fourier transform and the Schwartz func-
tions S = {u ∈ C∞ : ∀ij supx

∣∣xi∂ju∣∣ <∞} one can
build self-adjoint extensions of −i∂i.
In L1(R3) (not L2(Rn) for n ⩾ 4) A = −∆+ V̂1 + V̂2,
where V1 ∈ L2, V2 ∈ L∞, is self-adjoint on D(−∆) and
bounded below (∀u 〈u,Au〉 ⩾ C ‖u‖2).
3. The spectrum σ(A) of A : D(A)→ H is

{x ∈ C : A− z is not invertible};

it is closed. For instance,

A = −i d
dx

D(A) = C 1(S1)

σ(A) = Z

A = x̂

D(A) =

{
u ∈ L2(R) :

∫
R

x2 |u(x)|2 dx <∞
}

σ(A) = R

If A : D(A) → H is self-adjoint, there is a unique
projection-valued measure E 7→ PA(E) on R such that

D(A) = {u ∈ H :

∫
R

λ2f〈u, PA(λ)〉 <∞}

Au =

∫
R

λd
(
PA(λ)u

)
(Riemann integral)

〈u,Au〉 =
∫
R

λd〈u, PA(λ)u〉

where PA(λ) = PA
(
(−∞, λ)

)
.

For f ∈ C (R,C), we can define (functional calculus)
f(A) as

D
(
f(A)

)
=

{
u ∈ H :∈ |f(λ)|2 d〈u, PA(λ)u〉 <∞

}
f(A)(u) =

∫
R

f(λ)d
(
P (λ)u

)
.

Article and book summaries by Vincent Zoonekynd 142/1044

In particular, for the Hamiltinian H : D(H) → H, we
can define the 1-parameter subgroup of unitary evolu-
tion operators

U(t) = exp

(
− i
~
Ht

)
.

5. Given two self-adjoint operators A, B, with D(A)∩
D(B) dense, such that A+B be self-adjoint,

∀ψ ei(A+B)ψ − (eiA/neiB/n)nψ −→ 0.

If, in addition, A and B are bounded below,
∀ψ e−(A+B)ψ − (e−A/ne−B/n)nψ −→ 0.

The Feynman path integral applies this to H = A +
B, A = −(~2/2m)∆, B = V (x), and conjectures
(wrongly) that the resulting limit can be expressed as
an integral on a space of paths.
If A : Rn → Rn is self-adjoint with positive eigenval-
ues, then the Gaussian integral is∫

Rn

dnxe−
1
2 〈x,Ax〉+ 〈x, y〉 = (2π)n/2

(detA)1/2
e
1
2 〈y,A

−1y〉

(there is a similar formula for complex exponential).
There are several generalizations of the determinant to
infinite dimensions. The Fredholm determinant is

detF (I − λA−1) =
∏(

1− λ

λk

)
if
∑ 1

|λk|
<∞

(it is a holomorphic function with zeroes at λ = λk. If
the eigenvalues of A are positive, its zeta function is

ζA(s) =
∑ 1

λsk
.

In finite dimension, ζ(0) = n and ζ ′(0) = log detA; in
infinite dimension, if ζ admits an analytic continuation
to a neighbourhood of 0, we can define the ζ-regularized
determinant

detζ(A) = exp−ζ ′A(0)

and the ζ-regularized dimension δA = ζA(0). In par-
ticular, detζ(cA) = cδA detζ(A). Those two notions are
related:

detζ(A− λ) = detζ(A) detF (I − λA−1).

SDDP.jl: a Julia package
for stochastic dual dynamic programming

O. Dowson and L. Kapelevich
A multistage stochastic optimization problem is of the
form
Find u
To maximize E

ω1

[
V1(x1, ω1)

]
Where x1 = 0 state

xt+1 = f(xt, ωt, ut)
ωt ∼ pt noise
Vt(xt, ωt) = Max

u
g(xt, ωt, u)+

E
ωt+1

[
Vt+1(xt+1, ωt+1)

]
h(x⩽t, u⩽t, ω⩽t) = 0 constraints

Dynamic low-rank approximation
O. Koch and C. Lubich (2007)

One can compute a low-rank approximation of a
smooth path A : [0, 1]→ Rm×n as

X(t) = Argmin
X:rankX=k

‖X −A(t)‖22 .

Alternatively, try

Ŷ (t) = Argmin
X:rankX=k

∥∥∥X − Ȧt∥∥∥2
2
;

this gives a smooth low-rank approximation.

Sheaf neural networks
J. Hansen and T. Gebhart (2020)

A cellular sheaf F on a graph G = (V,E) is the datum
of
– A vector space F (v) for each node v ∈ V ;
– A vector space F (e) for each edge e ∈ E;
– A linear map FvPe : Fv → Fe for each incident
vertex-edge pair v P e.

A 0-cochain, resp. 1-cochain, is an element of

C0(G,F) =
∏
v∈V

F (v)

resp. C1(G,F) =
∏
e∈E

F (e).

The coboundary map is

δ :

{
C0(G,F) −→ C1(G,F)
(xv)v∈V 7−→

(
FvPexv −FuPexu)e∈E

(for an arbitrary orientation of the edges).
The sheaf Laplacian is LF = δ⊤δ. For the constant
sheaf Fv = R, Fe = R, FvPe = Id, it is the standard
Laplacian. With different signs for FvPe, it can model
signed graphs and heterophily. The normalized Lapla-
cian is L̃F = D−1/2LFD

−1/2, where D = diagLF .
The corresponding diffusion operator is H̃F = I− L̃F .
A sheaf convolution layer is

X 7−→ ρ
[
H̃F

(
(I|V | ⊗B)XA

)]
where ρ is an elementwise nonlinearity.

Article and book summaries by Vincent Zoonekynd 143/1044

Sheaf neural networks
with connection Laplacians

F. Barbero et al. (2022)
GNNs work poorly on heterophilic data (homophily is
an inductive bias) and suffer from oversmoothing. Re-
placing the Laplacian with a sheaf Laplacian can ad-
dress those problems. Instead of choosing the sheaf
manually using domain knowledge, or learning it end-
to-end,

FvP(v,u) = Φ(xv, xu) ∈ Rd×d,

compute it at preprocessing time, using local PCA:

i, j : nodes
X̂i : features of the neighbours of i
X̂i = UiΣiV

′
i (SVD)

Oi = Ui[:, : d]

O′iOj = UΣV ′ (SVD)
Oij = UV ′

Oij = F⊤jPeFiPe.
This is the parallel transport: it gives the entries of
LF , up to sign for the off-diagonal blocks.

Neural sheaf diffusion:
a topological perspective on heterophily

and oversmoothing in GNNs
C. Bodnar et al. (2022)

A discrete O(d)-bundle is a cellular sheaf with orthog-
onal maps FvPe ∈ O(d). If the transports

Pγ:v1→···→vn = (F⊤vn−1PeFvnPe) · · · (F⊤v1PeFv2Pe)
are path-independent, then there is a nontrivial global
section: H0 6= 0 (in fact, dimH0 = d). Diffusion, if
run long enough, yields a signal constant on each con-
nected component. Diffusion on a well-chosen O(d)-
bundle can linearly separate classes, even in presence
of heterophily.
Learn the sheaf to use in neural sheaf diffusion layers

Xt+1 = Xt − σ
[
∆F(t)(I ⊗W t

1)XtW
t
2

]
as

FvP(v,u) = Φ(xv, xu) = σ
(
V [xv‖xu]

)
.

Parametrize orthogonal matrices with Householder re-
flections.
The sheaf Laplacian is a positive semi-definite block
matrix; the diagonal blocks are

(LF)vv =
∑
vPeF⊤vPeFvPe

and the off-diagonal blocks are

(LF)uv = −F⊤vPeFuPe.

Efficient orthogonal parametrization
of recurrent neural networks
using Householder reflections

Z. Mhammedi et al. (2017)
All orthogonal matrices in O(n) can be written as
Hn(un)Hn−1(un−1) · · ·H1(u1) where uk ∈ Rk \ {0},
u1 ∈ {±1},

Hk(u) =

In−1 0

0 Ik − 2
uu′

‖u‖

 , H1(u) =

(
I 0
0 u

)
.

Use in RNNs to prevent vanishing or exploding gradi-
ents.

Knowledge sheaves: a sheaf-theoretic
framework for knowledge graph embedding

T. Gebhart and J. Hansen
A knowledge graph schema is a directed multigraph
with entity types as nodes and relation types as edges.
A knowledge graph (KG) is a graph morphism to a
KG schema k : G→ S. A knowledge sheaf is a cellular
sheaf F on a KG schema; it induces a sheaf k∗F on the
KG. A sheaf embedding of a KG G is a global section
x ∈ H0(G, k∗F) ⊂ C0(G, k∗F). It can be learned,
together with the sheaf F , as

Minimize
x∈C0(G,k∗F)

x′Lk∗Fx

with a penalty (negative examples) to avoid the zero
solution (in practice, a marging ranking loss works bet-
ter). Translational embeddings (TransE) are a special
case.

A brief note for sheaf structures on posets
C.S. Hu (2020)

A cellular sheaf on a poset (P,⩽) is a functor (P,⩽)→
Set. In the Alexandrov topology on a poset (P,⩽), the
open sets are the U ⊂ P such that

∀x ∈ U ∀y ∈ P x ⩽ y =⇒ y ∈ U.

The open stars Ux = {y ∈ P : x ⩽ y}, x ∈ P , form an
open basis. The closure of x ∈ P is x̄ = {y ∈ P : y ⩽
x}. A cellular sheaf F on (P,⩽) induces a sheaf on P
with the Alexandrov topology with F (Ux) = F (x).

Towards a spectral theory of cellular sheaves
J. Hansen and R. Ghrist

A cellular sheaf on a regular cell complex is the da-
tum of a vector space F (σ) for each cell σ of X, to-
gether with a linear transformation (restriction map)
FσPτ : F (σ)→ F (τ) for each incident cell pair, such
that FσPσ = Id and FσPτ ◦FρPσ = FρPτ . The space
of cochains is

Ck(X,F) =
⊕

dimσ=k

F (σ)

Article and book summaries by Vincent Zoonekynd 144/1044

and the coboundary δk : Ck → Ck+1 is

δk+1
∣∣
F(σ)

=
∑

dim τ=k+1

[σ : τ]FσPτ
where the signed incidence relation satisfies
– σ P τ =⇒

∑
γ [σ : γ][γ : τ] = 0;

– [σ : τ] 6= 0 only if σ P τ and there are no cells
between σ and τ .

The Hodge Laplacian is ∆ = (δ + δ∗) = δ∗δ + δδ∗.
∆k can be decomposed as ∆k = ∆k

+ + ∆k
− with

∆k
+ = (δk)∗(δk) and ∆k

− = (δk−1)(δk−1)∗. The co-
homology is then

Hk :=
ker δk

Im δk−1
= ker∆k.

The degree-zero Laplacian generalizes the graph Lapla-
cian; its diagonal and off-diagonal blocks are

∆0
vv =

∑
vPeF ∗vPeFvPe

∆0
uv = −F ∗uPeFvPe.

The Laplacian of a normalized sheaf

∀x, y ∈ F (σ) ∩ (ker δ)⊥ 〈δx, δy〉 = 〈x, y〉

generalizes the normalized graph Laplacian.

Path homologies of deep forward networks
S. Chowdhury et al.

An elementary p-path in a graph (V,E) is a se-
quence of p + 1 nodes (x0, . . . , xp); it is allowed if
∀i (xi, xi+1) ∈ E. Let Λp(V) and Ap(V) be the free
vector spaces generated by elementary and allowed
paths. The boundary of a path is ∂p[x0, . . . , xp] =∑

(−1)i[x0, . . . , x̂i, . . . , xp] ∈ Λp(V). The ∂-invariant
paths Ωp = {c ∈ Ap : ∂p ∈ Ap−1} form a chain com-
plex

Ω2 Ω1 Ω0 k 0
∂3 ∂2 ∂1 ∂0

defining the path homology HΞ
p (G) = ker ∂p/ Im ∂p.

The directed flag complex (DFC) is defined from se-
quences (x0, . . . , xp) satisfying ∀i < j (xi, xj) ∈ E.

Discovering governing equations from data
by sparse identification

of nonlinear dynamical systems
S.L. Brunton et al.

To learn a differential equation, i.e., find f in ẋ(t) =
f(x(t)) from trajectories x, SINDy:
– Estimates ẋ, with total variation regularization to
denoise it;

– Builds a library of nonlinear transformations of the
columns of x;

– Uses a sparse regression.

Learning ODE models with qualitative
structure using Gaussian processes

S. Ridderbusch et al.
To learn a differential equation ẋ(t) = f(x(t)), model
(x, ẋ) with a Gaussian process (this gives a less noisy
estimate of ẋ, with a matrix kernel (uncoupled separa-
ble matrix (USM) kernel); to account for symmetries,
use group integration matrix (GIM) kernels.

Statistical inference
on random dot product graphs: a survey

A. Athreya et al. (2017)
A random dot product graph (RDPG) is an Erdös-Rényi
graph with probabilities pij = 〈xi, xj〉, where xi ∈ Rd

is the latent position of node i (try a spectral embed-
ding of the adjacency or Laplacian matrix).

ptype: probabilistic type inference
T. Ceritli et al. (2019)

Infer data types in CSV files with probabilistic gram-
mars or probabilistic finite state machines (one per
type, allowing for missing values, disguised missing val-
ues (e.g., −1 or 999) and errors), with their transition
probabilities estimated from data.

WarpedGANSpace:
finding non-linear RBF paths

in GAN latent space
C. Tzelepis et al.

To find interpretable paths in the latent space of a
GAN, without supervision, use the gradient of several
sums of RBFs, trained to be easily distinguishable by
a discriminator (a non-linear generalization of PCA).

Do vision transformers
see like convolutional neural networks?

M. Raghu et al. (2021)
To compare the information contained in two layers (of
the same network, or not), compute the Gram matri-
ces of the activations, K = XX ′, L = Y Y ′ (they mea-
sure the similarity of a pair of data points according to
the layer) and compute the centered kernel alignment
(CKA)

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
,

where HSIC is the scalar product of the centered Gram
matrices

HSIC(K,L) = vec K̃ · vec L̃/(m− 1)2

K̃ = HKH

L̃ = HLH

H = I + n− 1
n11

′.

Compare the first and last layer of a ViT or of a CNN,
the subset of activations of heads focusing on local

Article and book summaries by Vincent Zoonekynd 145/1044

(resp. global) information (defined by the average dis-
tance between the query patch and the patch attended
to): ViTs have more comparable layers.
To measure the importance of skip connections zi 7→
zi+ f(zi), look at ‖zi‖ / ‖f(zi)‖: ViTs propagate more
information through skip connections than CNNs.

Evolution through large models
J. Lehman et al. (2022)

Use a large language model, not to generate programs,
but diffs; use those diffs as mutation operators, for ge-
netic programming.

Training data-efficient image transformers
and distillation through attention

H. Touvron et al.
More efficient ViT.

Hyperbolic neural networks++
R. Shimizu et al.

Split, concatenation, convolution, attention can be
generalized to hyperbolic networks.

Graph-regularized tensor regression:
a domain-aware framework for interpretable

multi-way financial modelling
Y.L. Xu et al.

Tensor regression is a generalization of linear regres-
sion y = 〈W,X〉+ b, for instance

yt = wijτx
t
ijτ + b

i : stock
j : feature
τ : lag
t : time

where xtijτ is the value of feature j for stock i at time
t−τ . We can make the model more parsimonious with
a CP decomposition

wijτ =
∑
c

u1icu
2
jcu

3
τc.

Given a graph on one of the dimensions, e.g., sector
membership for the stocks (or a chain graph for
the lags, or some a priori relation between the features),
with Laplacian L, one can add a penalty tr(u1i•

′Lu1i•) to
make the signal smooth.

Quasi-Monte Carlo methods for computing
derivatives sensitivities on the GPU

P. Bilokon et al. (2022)
The pathwise method computes

∂

∂S0
E

S∼rw(µ,σ2)

[
f(ST)

]
,

with Monte Carlo simulations, as

E

[
∂f(ST)

∂ST

∂ST
∂S0

]

where ∂ST
∂S0

=
ST
S0

.

Multilevel Monte Carlo and its applications
in financial engineering

D. Sinha and S.P. Chakrabarty
Multilevel Monte Carlo (MLMC) uses different resolu-
tions as control variates

E[Y3] = E[Y1] + E[Y2 − Y1] + E[Y3 − Y2]

where Y1 and Y2 are coarse, fast-to-compute approxi-
mations of Y3.
Combine with importance sampling.

The pursuit of balance:
an overview of covariate-adaptive

randomization techniques in clinical trials
Y. Lin et al. (2015)

Simple randomization can lead to accidental bias. Try:
– Block randomization;
– Stratified randomization
– Minimization: allocate the new subject (with high
probability, e.g., p = 0.8) to produce the smallest to-
tal imbalance (variance, standard deviation, range,
etc.) over its baseline characteristics;

– Dynamic hierarchical randomization: idem, after
putting the baseline characteristics in a tree.

Modifications to a classic BFGS library
for use with SIMD-equipped hardware

and an AAD linrary
E. Goncharov and A. Rodrigues

Even if the objective is not parallelizable, some steps
in the algorithm are:
– Line search (naive, or with a polynomial regression);
– Partial derivatives.

Liquidity stress testing in asset management
T.Roncalli et al. (2020)

Stress testing includes:
– Redemptions (liability liquidity);
– Market impact (asset liquidity);
– The relation between the two (asset-liability liquid-
ity matching).

Machine learning time series regression
with an application to nowcasting

A. Babii et al. (2021)
MIDAS with a sparse group lasso penalty

α ‖β‖1 + (1− α) ‖β‖2,1

Article and book summaries by Vincent Zoonekynd 146/1044

(i.e., lasso and group lasso), promoting sparsity be-
tween and within groups.

Moment sum-of-squares approach for fast
risk estimation in uncertain environments

A.M. Jasour et al.
Given x ∈ Rn (e.g., robot position), we want to know
if x ∈ χ, where χ ⊂ Rn is a semi-algebraic set. Both x
and χ are only known approximately, but we know the
moments of their distributions (for χ, the moments of
the distributions of the coefficients of the polynomials
defining it). The resulting semi-definite program be-
comes intractable as the size of the problem increases,
but one can efficiently compute bounds of the mo-
ments.

Randomized geometric tools
for anomaly detection in stock markets

C. Bachelard et al.
Uniformly sampling long-only fully-invested portfolios
with a prescribed volatility is equivalent to sampling
from K = Sn−1 ∩ ∆ for some simplex ∆. It is not
connected, but one can:
– Identify the connected components by looking at
how the 1-simplex ∆ intersects the sphere Sn−1;

– Compute the volume of each component.
We can sample, uniformly, from a component Ki, with
Monte Carlo, starting from a point p:
– Great cycle walk:
· Pick a geodesic (great circle) ` going through p;
· Compute the intersection ` ∩Ki;
· Pick a point at random on ` ∩Ki;

– Reflective great circle walk:
· Pick a geodesic;
· Pick a length, L = −τ log η, η ∼ U(0, 1);
· Follow the geodesic for a length L, reflecting on
∂∆ whenever we reach it.

Interpretable selective learning in credit risk
D. Chen et al.

Fit a logistic regression (for credit scoring); train a
neural network for the same task; train another neu-
ral network to predict when the neural net is correct
and the logistic regression is not [that is a mixture of
experts].

Neural variance reduction
for stochastic differential equations

P.D. Hinds and M.V. Tretyakov (2022)
Use a neural network to compute control variates to
reduce variance when solving SDEs (i.e., computing
EX [f(XT)]).

New financial ratios based
on the compositional data methodology

S. Linares-Mustarós et al.

Replace financial ratios of the form a/b, a/(b+ c), etc.,
which are asymmetric, with log(a/b), log(a/

√
bc), etc.

Monte Carlo estimation of CoVaR
W. Huang et al.

The CoVaR is defined by

P [Y ⩽ CoVaRα,β |X = VaRαX] = β.

Its naive Monte Carlo estimation converges in
O(n−1/3) (we are conditioning on X = VaRαX, which
has zero probability, and not on X ⩽ VaRαX), but
it can be brought down to O(n−1/2), with importance
sampling and a Taylor expansion.

A multimodal embedding-based approach
to industry classification in financial markets

R. Dolphin et al. (2022)
Word2Ve-like model, to compute company embed-
dings, by modeling P [target|context], where the con-
text comes from past prices and financial news; turn
into a graph by adding an edge whenever cosine simi-
larity is above 0.6.

FinRL-Meta: market environments
and benchmarks for data-driven
financial reinforcement learning

X.Y. Liu et al. (2022)
Gym-compatible financial market environments for re-
inforcement learning.

Applying separative non-negative matrix
factorization to extra-financial data

P. Fogel et al. (2022)
Nonnegative matrix factorization (NMF) is asymmet-
ric: it pays more attention to high values than low
values. Instead, decompose the data as X = X0 +
X+ − X−, X+ ⩾ 0, X− ⩾ 0, for some baseline X0

(e.g., the column-wise medians) and use a nonnegative
tensor factorization for the order-3 tensor [X+|X−].
Python implementation in nmtf; appliction to ESG
scores.

Deep differentialble reinforcement learning
and optimal trading

T. Jaisson (2022)
Differentiable reinforcement learning (RL), for a single
asset (n = 1), on simulated data with a 2-scale alpha

αt = αslow
t + αfast

t

αslow
t = ρslowαslow

t−1 + noise
αfast
t = ρfastαfast

t−1 + noise
ρfast = 0, ρslow > 0

Article and book summaries by Vincent Zoonekynd 147/1044

Distributionally robust
end-to-end portfolio construction

G. Costa and G.NB. Iyengar (2022)
In the portfolio optimization

Minimize
w⩾0

w′11=1

Risk(w)− γw′y,

use, as risk, the worst deviation risk measure

Risk(w) = Max
p⩾0
p′1=1

Dϕ(p,Unif)⩽δ

fε(w, p)

fε(w, p) = Min
c

∑
pjR(w

′εj − c)

Dϕ: φ-divergence
ε: past prediction errors
R: even function

The minimax problem can be reformulated with con-
vex duality, and solved end-to-end (to maximize the
Sharpe ratio), for 20 assets, 15 years, weekly returns,
17 predcitors (code available).

Supervised portfolios
G. Chevalier et al. (2022)

Instead of forecasting returns (or uniformized returns,
residual returns, volatility-adjusted returns, etc.) fore-
cast the weights of the optimal portfolio (using real-
ized returns as alpha). This adjusts for: factor ex-
posures, volatility, investor preferences (utility, con-
straints). Example with 25 assets, 14 features.

Alternatives to deep neural networks in finance
A.V. Antonov and V.V. Piterbarg (2022)

To approximate functions f : Rk → R, try

f̃(x) =
∑

αns(x− zn).

For the Fourier transform, the zn’s are on a grid, and
αn = f̂(zn) – but we could use quasi-random points for
the zn’s, estimate the αn’s with a linear regression, and
fine-tune the position of the zn’s (stochastic sampling).
For image rendering, s is sinc or its Lanczos general-
ization

s(x) =
sin(πx)

πx
or s(x) =

sin(πx)

πx

sin(πx/a)

πx/a
1x∈[−a,a].

Generalized stochastic sampling uses

f̃(x) =
∑
n

αn
∏
d

φ
(
(xd − znd)βd

)
for a fixed activation function φ (e.g., sinc), quasi-
random zn’s, and

– βd = λd · η, λ2d = E
(
∇df(x)

)2, η optimized;
– or βd optimized;
– or βd,n optimized.

The tensor train decomposition

Ai1,...,iD = G1
i1k1G

2
k1i2k2 · · ·G

D−1
kD−2iD−1kD−1

GDkD−1iD

A(i1, . . . , iD) = g1(i1)
row

vector

g2(i2) · · · gD−1(iD−1)
matrices

gD(iD)

column
vector

can be made functional (fTT)

f̃(x) = g1(x1)
row

vector

g2(x2) · · · gD−1(xD−1)
matrices

gD(xD)

column
vector

where the gd’s are learned (with alternating least
squares, from basis functions – note that this depends
on the order of the xd’s).
Classical approaches include:
– Fourier decomposition;
– Chebychev decomposition (up to dimension 7: 77 <
106);

– Natural neighbour interpolation (in dimension 2 or
3) or other linear interpolations (barycenters).

Cryptocurrency bubble detection:
a new stock market dataset, financial task

and hyperbolic models
R. Sawhney et al.

Identify bubbles in cryptocurrencies (9 exchanges ×
50 currencies, 5 years of daily OHLC prices) with the
psy model, and train a hyperbolic GRU on both text
(tweets with currency tickers, e.g., $DOGE) and prices,
to predict the probability that a bubble starts or ends
at time t.
In the Poincaré ball:

gx =
2

1− ‖x‖2
gEuclidean

x⊕ y =

(
1 + 2〈x, y〉+ ‖y‖2

)
x+

(
1− ‖x‖2

)
y

1 + 2〈x, y〉+ ‖x‖2 ‖y‖2

expx(v) = x⊕
(
tanh

(
‖v‖

1− ‖x‖2

)
v

‖v‖

)
logx(y) =

(
1− ‖x‖2

)
tanh−1

(
‖−x⊕ y‖

) −x⊕ y
‖−x⊕ y‖

W ⊗ x = exp0
(
W log0(x)

)
Testing for multiple bubbles:

historical episodes of exuberance
and collapse in the S&P 500
P.C.B. Phillips et al. (2015)

To detect a (single) price bubble, try the following test
statistics:

PYW: SADF(r0) = sup
r0⩽r2⩽1

ADF[0,r2]

PSY: GSADF(r0) = sup
r0⩽r2⩽1

0⩽r1⩽r2−r0

ADF[r1,r2].

They can be adapted to the detection of multiple bub-
bles.

Article and book summaries by Vincent Zoonekynd 148/1044

Deep multiple instance learning for forecasting
stock trends using financial news

Y. Deng and S.M. Yiu
In multiple instance learning. training instances are
arranged in bags, and only bags are labeled, not in-
stances.
Forecast the sign of the next day’s returns from news:
– Word embedding, pretrained with Glove;
– BiLSTM;
– Instance-level classifiers;
– Aggregation;
– Final classifier.

The RIFT (representation of inter-related
time series) model and its applications

A. Sokolov et al. (2022)
Compute a neural representation of financial time se-
ries by applying
– A TCN on stock returns;
– A transformer on industry and market returns;
– An industry embedding
in a Siamese network to forecast future correlations.
[Instead, forecast reversion or divergence of pairs, or
cointegration, or mutual information.]

Decomposing cross-sectional volatility
J. Menchero and A. Morozov (2010)

Given a risk model

Xi =
∑
k

βikFk + ui,

the cross-sectional volatility can be decomposed as

σ(X•) =
∑
k

Fkσ(β•k)ρ(β•k, X•) + σ(u•)ρ(u•, X•).

AdaptSPEC: adaptive spectral estimation
for nonstationary time series

O. Rosen et al. (2012)
Model (oscillating) non-stationary time series by re-
cursively splitting them and estimating their spectrum
on each segment, with reversible jump Markov chain
Monte Carlo (RJMCMC).

Statistical indetence of lead-lag at various
timescales between asynchronous time series

from p-values of transfer entropy
C. Bongiorno and D. Challet (2022)

Asymptotic distribution of the test statistic

H0 : TE(B → A) = TE(C → B)

H1 : TE(B → A) > TE(C → B)

where the transfer entropy

TE(B → A) = H(A+|A)−H(A+|A,B)

(A+ denoted the future of A) is a generalization of
Granger causality, often approximated by discretizing
the data. (If you are patient, you can also compute
bootstrap p-values.)

Advances in domain independent
linear text segmentation

F.Y.Y. Choi
To segment a text:
– Split it into sentences;
– Remove stopwords, step the words, count the words;
– Compute the matrix of similarities between sen-
tences;

– Replace each value with its rank in a local region;
– Compute sij , the sum of the values of simJi,jK×Ji,jK

(start along the diagonal and move outwards);
– Recursively split J1, NK, maximizing the density∑

sk/
∑
ak, where ak if the area of k× k, k = Ji, jK;

– To decide when to stop, compute the differences
δDn − Dn − Dn−1, smooth them, compute their
mean µ and standard deviation σ; stop when δD >
µ+ 1.2σ.

Self-attention between datapoints:
going beyond individual input-output pairs

in deep learning
J. Kossen et al. (2021)

Do not use attention only between attributes, but also
between datapoints (samples – this assumes you put
the whole dataset in each minibatch or, at least, a rep-
resentative part of it). Try on tabular data.

Decision transformer:
reinforcement learning via sequence modeling

L. Chen et al.
To learn, offine, from suboptimal trajectories, train a
GPT model to predict the next token in a sequence of
return-to-go, state, action. For instance, one can find
shortest paths on a graph by training on random walks.

t = embed_t(t) # Positional embedding
s = embed_s(s)
a = enbed_a(a)
R = embed_R(R)
return transformer(s+t, a+t, R+t).action

CrossViT: cross-attention multi-scale vision
transformer for image classification

C.F. Chen et al.
Process both small and large image patches with a ViT;
to combine them, use cross-attention, i.e., attention
between the cls token for one patch size and the im-
age patch tokens for the other size – the cls tokens
can be seen as “inducing points” (or tokens): the com-
putations only require linear time.

Article and book summaries by Vincent Zoonekynd 149/1044

Efficient and modular implicit differentiation
M. Blondel et al. (2022)

Implicit differentiation (computing the gradient of the
solution of an optimization problem) in JAX (for op-
timization layers, or bilevel problems: hyperparameter
optimization, meta-learning): separately specify the
optimality conditions and implement the optimization.

Evaluating robustness of neural networks
with mixed integer programming

V. Tjeng et al. (2019)
Neural networks can be verified (their robustness to
adversarial examples can be measured) efficiently, up
to 100,000 ReLU, with mixed integer programming
(MIPVerify.jp).

Random dot product graph models
for social networks

S.J. Young and E.R. Scheinerman
The dot product random graph model generates graphs
by sampling a vector Xu (from some probability dis-
tribution) and adding an edge u−v with probability
〈Xu, Xv〉. For directed graphs, use two distributions
p(u−v) = 〈Xu, Yv〉. Other random graph models in-
clude:
– Configuration model (prescribed degree distribu-
tion);

– Prefered attachment (Barabási-Albert);
– Copying model.

Duplication models for biological networks
F. Chung et al. (2003)

The degree distribution of biological graphs follows a
power law with exponent β ∈ (1, 2), in contrast with
non-biological networks, for which β ∈ (2, 4). This can
be modeled by a duplication process:
– Start with a graph G0;
– Pick a node at random;
– Duplicate it, keeping each edge with probability p;
– Iterate.
Asymptotically, the power law exponent β satisfies
p(β − 1) = 1 − pβ−1; in particular, if p ∈ (12 , 1), then
β < 2.

Modernizing PHCpack through phcpy
J. Verschelde (2014)

PHCpack is an (old, file and menu-based) package
to solve systems of polynomial equations (over Cn)
f(x) = 0 using a system with known solutions g(x) = 0
by keeping track of the solutions of ht(x) = 0 where

ht(x) = γ(1− t)g(x) + tf(x), t ∈ (0, 1)

and γ ∈ C is random.

Multivariate backtests and copulas
for risk evaluation

B. David and G. Zumbach (2022)
Fit a bivariate Student copula to LM-GARCH innova-
tions (to remove heteroskedasticity), in-sample; then
apply the Rosenblatt transform to out-of-sample{

Student copula −→ Uniform copula
(u1, u2) 7−→

(
u1, P [U2 ⩽ u2 | U1 = u1]

)
and test if the result is indeed uniform.

Polynomial voting rules
W. Tang and D.D. Yao (2022)

In a proof of stake (PoS) system, agents have a voting
power proportional to
– Their stake;
– The square root of their stake;
– Their randomly fluctuating stake: each bidder re-
ceives a new stake with probability proportional to
some power of its current stake.

On finding the community
with maximum persistence probability

A. Avellone et al.
The persistence probability of a subgraph C ⊂ V of a
graph G = (V,E) is

α =

∑
i,j∈C

aij∑
i∈C,j∈V

aij
.

For small graphs, it can be computed with a mixed in-
teger program (MIP); for arger graphs, heuristics are
available.

Compromise-free Bayesian neural networks
K. Javid et al.

The Bayesian evidence (aka marginal likelihood) is the
average of the likelihood function over the parameter
space, weighted by the prior distribution. It is often a
proxy for the out-of-sample performance.

Randomized Nyström preconditioning
Z. Frangella et al.

To solve (A+ µI)x = b, with A positive semi-definite,
µ ⩾ 0, consider a randomized Nyström approximation

Ω ∼ N(0n×ℓI)

Â = (AΩ)(Ω′AΩ)†(AΩ)′,

compute its eigendecomposition Â = UΛU ′ and use
the preconditioner

P =
U(Λ + µI)U ′

λℓ + µ
+ (I − UU ′)

i.e., replace (A + µI) with P−1(A + µI) (it is easy to
solve Py = 0).

Article and book summaries by Vincent Zoonekynd 150/1044

Binarsity: a penalization for one-hot encoded
features in linear supervised learning

M.Z. Alaya et al. (2019)
Discretize (binarize) continuous variables into b bins
and fit a linear model with a fused lasso (total varia-
tion) penalty to make the transformation locally con-
stant, and a constraint to have the sum of the weights
sum to zero for each preductor.
To total variation proximal operator can be computed
efficiently, and applied separately from the constraint.

Quantifying the impact of ecological memory
on the dynamics of interacting communities

M. Khalighi et al. (2021)
To add memory to the Lotka-Volterra model, replace
d/dt with the fractional derivative Dµ, where µ ∈ (0, 1)
measures the memory.

Dµg(t) =
1

Γ(1− µ)

∫ t

t0

g′(τ)dτ

(t− τ)µ

Three-species Lotka-Volterra model
with respect to Caputo and

Caputo-Fabrizio fractional operators
M. Khalighi et al. (2021)

The fractional derivative is not unique; popular defini-
tions include (Caputo, Caputo-Fabrizio)

Dαf(t) =
1

Γ(1− α)

∫ t

0

f ′(τ)dτ

(t− τ)α

Dαf(t) =
1

1− α

∫ t

0

exp

[
−α(t− τ)

1− α

]
f ′(τ)dτ.

Conic optimization via operator splitting
and homogeneous self-dual embedding

B. O’Donoghue et al. (2016)
The pair of primal and dual problems

Find x, s
To minimize c′x
Such that Ax+ s = b

x ∈ Rn

s ∈ K

Find y, r
To maximize −b′y
Such that −A′y + r = c

r = 0
y ∈ K∗

can be converted into a feasibility problemrs
s

 =

 0 A′

−A 0
c′ b′

(x
y

)
+

cb
0

 dual constraint
primal constraint
duality gap

or, after introducing scaling factors τ, κ ⩾ 0 to detect
primal or dual infeasibility (homogeneous self-dual em-
bedding) rs

κ

 =

 0 A′ c
−A 0 b
−c′ −b′ 0

xy
τ

 .

This problem is self-dual:

Find u, v
Such that v = Qu

(u, v) ∈ C × C∗.

It can be solved with the ADMM algorithm.

Find u, v, ũ, ṽ
To minimize IC×C∗(u, v) + IQu=v(ũ, ṽ)
Such that (u, v) = (ũ, ṽ)

An agent-based model
with realistic financial time series:

a method for agent-based models validation
L.G. de Faria

Long list of stylized facts, for log-returns
– Fat tails, which disappear at lower frequencies;
– Heavy tails (tail index), even after correction for
volatility (GARCH);

– Equity premium: E[r] > E[rrf];
– Excess volatility: σ(returns) > σ(fundamentals);
– Leverage: Cor(rpast, σfuture) < 0;
– No autocorrelation;
– Long memory: Cor(|rt| , |rs|);
– Power law of returns (”inverse cubic law”) and of
volatility;

– Volatility clustering: Cor(σt, σt+ 1);
– Cor(σ, volume) > 0

volume:
– Power law;
– Long memory
inter-trade duration:
– Clustering;
– Long memory;
– Over-dispersion
transaction size:
– Power law
spreads:
– Cor(spread, σ) > 0;
– Cor(spread, volume) < 0.

Improving graph neural network expressivity
via subgraph isomorphism counting

G. Bouritsas et al.
Graph neural nets (GNN) are blind to structural prop-
erties, such as triangles and larger cycles. Add node
and edge features counting small subgraphs containing
a given node or edge.

Article and book summaries by Vincent Zoonekynd 151/1044

Weisfeiler and Leman go sparse:
towards scalable higher-order graph embeddings

C. Morris et al. (2020)
Generalize the Weisleiler-Lehman (WL) graph isomor-
phism algorithm by considering k-tuples of nodes, two
tuples being neighbours if they differ by only one node,
and if those nodes are neighbours.

A theoretical comparison
of graph neural network extensions

P.A. Papp and R. Wattenhofer (2022)
To increase the expressiveness of GNNs:
– Add node features, e.g., the number of cycles of
length k (or some other motif) containing that node;

– Add, as node features, the isomorphism class of the
k-hop neighbourhoods;

– Drop k nodes at random, and consider the resulting
collection of graphs;

– Mark k nodes at random, and consider the resulting
collection of graphs.

SpeqNets: sparsity-aware
permutation-equivariant graph networks

C. Morris et al. (2022)
The k-dimensional Weisfeiler-Lehman algorithm (k-
WL) generalizes the WL algorithm (1-WL) by con-
sidering all k-tuples of nodes (there are exponentially
many). The (k, s)-LWL algorithm considers a subset
of all k-tuples, viz those whose induced graph has at
most s components.

Spectre: spectral conditioning
helps to overcome the expressivity limits

of one-shot graph generators
K. Martinkus et al. (2022)

Generate graphs, with a GAN, by conditioning on the
first eigenvalues and eigenvectors of the Laplacian ma-
trix (which encode global properties):
– First, generate eigenvalues;
– Then, generate the eigenvectors, conditioned on the
eigenvalues, starting with a bank of orthogonal ma-
trices, and multiplying them, on both sides, by or-
thogonal matrices (exponentials of skew-symmetric
matrices, computed by a PointNetST); note that
not all eigenvalues and eigenvectors come from valid
Laplacians;

– Use a PPGN (provably powerful graph network) to
refine the appoximate Laplacian, L = Udiag(Λ)U ′,
and convert it to an adjacency matrix;

– Use a discriminator for each step; the last one en-
sures the adjacency matrix is consistent with the
eigenvalues and eigenvectors.

Provably powerful graph networks
H. Maron et al. (2019)

Adding a matrix multiplication layer to GNNs in-
creases their expressiveness to 3-WL.

X

MLP

MLP
MLP

×

X ∈ Rh×n×n

M1 = MLP1(X) ∈ Rh×n×n

M2 = MLP2(X)

M i =M i
1M

i
2 ∈ Rn×n

M ∈ Rn×n

Y = MLP3(X‖M) ∈ Rh×n×n

repeat n times, with skip-connections

Local augmentation for graph neural networks
S. Liu et al. (2022)

To augment data, find similar nodes and look at their
neighbourhoods.

Janossy pooling:
learning deep permutation-invariant

functions for variable-size inputs
R.L. Murphy et al. (2019)

Arbitrary permutation-invariant functions can be de-
fined as averages (of permutation-sensitive functions f)
over all orderings.

Mean
σ∈Sn

f(xσ)

They can be approximated using:
– Canonical orderings;
– Functions f using only their first k arguments,
f(x1, . . . , xn) = f(x1, . . . , xk), k � n, i.e., account-
ing for order-k interactions at most;

– Random orderings (and stochastic optimization).
The permutation-sensitive function f could be an
LSTM.

G-Mixup: graph data augmentation
for graph classification

X. Han et al.
To apply Mixup to graphs, estimate a graphon for each
class, and sample from a convex combination of them.
To estimate a graph from a set of graphs, first align
them by sorting their nodes by degree, estimate a step
function graphon for each graph, and average them –
this assumes the marginal

∫
W (x, y)dx =W (y) is very

different from a constant function.

Article and book summaries by Vincent Zoonekynd 152/1044

GenLabel: Mixup relabeling
using generative models
J.Y. Sohn et al. (2022)

Mixup can suffer from manifold intrusion: mixing two
classes may intrude into the manifold of another one.

class 1 class 2 class 3

Additionally, the linear labeling is suboptimal for soft-
max regression. Replacing

ymix = λe1 + (1− λ)e2
with

ygen ∝
∑
i

p̂i(xmix)ei,

where p̂ = p(x|y) is a generative model, addresses both
issues.

Large-scale representation learning on graph
via bootstrapping
S. Thakoor et al.

For self-supervised training on graph data, consider
two augmentations, g1, g2 of a graph, and train two
encoders, e1 such that e1(g1) ≈ e2(g2), and set e2 =
EMA(e1).

Structure-aware transformer
for graph representation learning

D. Chen et al. (2022)
Transformers augment the data with a positional em-
bedding. For graphs, node distances are not enough:
also add structural information.

Interpretatble and generalizable graph learning
via stochastic attention mechanism

S. Miao et al. (2022)
Add noise inside the network (in the attention mecha-
nism); this also helps identify task-relevant subgraphs.

Mention memory: incorporating textual
knowledge into transformers

through entity mention attention
M. de Jong (2022)

Combine language model and knowledge base (entity
mention embeddings) with an attention mechanism.

Logical rule induction and theory learning
using neural theorem proving

A. Campero et al.
Use a dense representation of facts as (V ,S,O,belief)
and rules as

(V0S0O0
conclusion

V1S1O1 V2S2O2
premise

)

and define the belief of a conclusion as

〈v, V0〉〈s, S0〉〈o,O0〉〈v1, V1〉〈s1, S1〉〈o1, O1〉〈v2, V2〉〈s2, S2〉〈o2, O2〉

and use forward chaining for derive new facts.

Learning hierarchy-aware knowledge graph
embeddings for link prediction

Z. Zhang et al. (2020)
Use polar coordinates to find an embedding of entities
(head, taill) and relations accounting for hierarchy.

score = −‖hm � rm − tm‖2 − λ ‖sin(hp + rp − tp)‖1

There are many other score functions: TransE, RotatE,
ComplEx, etc.

Translating embeddings
for modeling multi-relational data

A. Bordes et al.
TransE embeds entities as vectors and relations as
translations (as in the semantic interpretation of
word2vec: king−man+woman).

RotatE: knowledge graph embedding
by relational rotation in complex space

Z. Sun et al.

3D Infomax improves GNNs
for molecular property prediction

H. Stärk et al. (2022)

2D data
plentiful

latent representation molecule
properties

3D data latent representation
maximize MI

E(n) equivariant graph neural network
V.G. Satorras et al. (2021)

Replace the GNN layer with

mij = φ2(h
ℓ
i , h

ℓ
j , aij)

mi =
∑

j∈N(i)

mij

hℓ+1
i = φh(h

ℓ
i ,mi)

with

mij = φ2(h
ℓ
i , h

ℓ
j ,
∥∥xℓi − xℓj∥∥2 , aij)

xℓ+1
i = xℓi +Mean

j ̸=i
(xℓi − xℓj)φx(mij)

mi = unchanged
hℓ+1
i = unchanged

Article and book summaries by Vincent Zoonekynd 153/1044

Vector neurons: a general framework
for SO(3)-equivariant networks

C. Deng et al.
Replace 1-dimensional (scalar) neurons with 3-
dimensional ones: linear transformations

fW :

{
Rc×3−→Rc′×3

V 7−→WV

are natually equivariant, fW (V)R = (WV)R =
W (V R) = fW (V R), but the non-linearities have to
be changed, e.g., to V 7→ V ′, where

V = (v1, . . . , vc) ∈ Rc×3

Wc, Uc ∈ R1×C for each c ∈ J1, CK
qc =WcV, kc = UcV ∈ R1×3

v′ =

qc if 〈qc, kc〉 = 0

qc −
〈
qc,

kc
‖kc‖

〉
kc
‖kc‖

otherwise.

(The normalization layers are easy to make equivari-
ant.)

On the equivalence between temporal and static
equivariant graph representations

J. Gao et B. Ribeiro (2022)
Instead of time-and-graph representations (compute
node embeddings for each graph Gt in the sequence,
and then model the evolution of those embeddings),
try time-then-graph: compute representations of the
time series of node features (e.g., with an LSTM), and
then embed them.

Inductive representation learning
on temporal graphs
D. Xu et al. (2020)

Dynamic graphs can be seen as graphs with another
type of edge, for the time evolution; temporal graph
attention (TGAT) layers use the attention mechanism
in the time dimension (in the space dimension, use a
GCN, GAT, etc.)

Temporal graph networks
for deep learning on dynamic graphs

E. Rossi et al.
To process dynamic graphs (in discrete or continuous
time, i.e., sequences of graphs, or time-stamped lists of
graph events), replace the node (or edge) features with
time series (LSTM, attention, etc.).

Cycle representation learning
for inductive relation prediction

Z. Yan et al. (2022)

Given a graph (V,E), its incidence matrix ∂ ∈ F
|V |×|E|
2

defines a map ∂ : F
|E|
2 → F

|V |
2 ; its kernel is the set of

cycles, Z.

To get a basis of Z, pick a node p and build its shortest
path tree Tp: the edges not in Tp define cycles, which
form a basis of Z, with β1 = |E| − |V |+ 1 elements.
(To have shorter cycles, repeat for several points, e.g.,
the cluster centers from spectral clustering.)
The cycle incidence matrix of this basis is CTp ∈
F
|E|×β1

2 .
Use a bidirectional LSTM to compute cycle features.
Build a new graph, with cycles as nodes, and edge
weights equal to the number of edges the cycles have
in common.
To test if an edge should be in the graph, add it to the
graph, and use a GNN on the cycle graph to compute
its “confidence”.

GNNRank: learning global rankings
from pairwise comparisons

via directed graph neural networks
Y. He et al. (2022)

Given a set of pairwise comparisons between n ele-
ments as the (weighted) adjacency matrix A of a di-
rected graph, serial rank computes the binary compar-
ison matrix Cij = sign(Aij − Aji), then the similarity
matrix S = 1

2 (n11
′ +CC ′), and finally its Fiedler vec-

tor (eigenvector for the second largest eigenvalue – the
first one is 1), whose coordinate define the desired or-
der.
GNNRank replaces the computation of the similarity
matrix A 7→ S with a GNN, and the computation of
the Fiedler vector with a few proximal gradient steps
for the constrained optimization problem

Find x
To minimize x′Sx
Such that ‖x‖2 = 1

x′1 = 1

G2CN: graph Gaussian convolution networks
with concentrated graph filters

M. Li et al.
The action of a GNN on node features can be written
as x 7→ g(L)x, where L is the normalized Laplacian.
Look at the maximum response, the center, and the
bandwidth.

R = Max
λ∈[0,2]

g(λ)

b = Argmax
λ∈[0,2]

g(λ)

bw =

∫ 2

0

1
(
g(λ) ⩾ R/

√
2
)
dλ

Try g(λ) = e−T (λ−b)2 .

Article and book summaries by Vincent Zoonekynd 154/1044

Molecular representation learning
via heterogeneous motif graph neural networks

Z. Yu and H. Gao (2022)
Molecules and motifs (, C–C, C–OH, etc.) for a bi-
partite graph, similar to the document-word bipartite
graph in NLP: TF-IDF features can complement graph
neural nets.

Topology-aware network pruning
using multi-stage graph embedding

and reinforcement learning
S. Yu et al. (2022)

Use reinforcement learning (RL) to find a good prun-
ing strategy, with a reward function defined from ac-
curacy and pruning ratio, after encoding the neural
network (graph embedding) with a multi-stage GNN
(to account for its hierarchical structure).

Parametrized explainer
for graph neural network

D. Luo et al.
GNNExplainer gives an explanation (a subgraph) for
the output of a single instance – but this has to be done
anew for each sample. PGExplainer trains a GNN to
output those explanations

GNNExplainer: generating explanations
for graph neural networks

R. Ying et al. (2019)
To explain the output of a GNN, for a given input,
look for a small subgraph, and a subset of features,
such that altering those features on that subgraph sig-
nificantly changes the output – mutual information
H(Y)−H(Y |S) measures that.

PGMExplainer: probabilistic graphical model
explanations for graph neural networks

M.N. Vu and M.T. Thai (2020)
Explain the (node prediction) output of a GNN, lo-
cally, with a simple Bayesian network (built on a small
subgraph (motif) containing the target node).

The CLRS algorithmic reasoning benchmark
P. Veličković et al. (2022)

Benchmarks (30 algorithms from CLRS: sort, search,
dynamic programming, graphs, strings, geometry) to
test whether neural networks can learn to reproduce
them.

Diffusion-LM
improves controllable text generation

X.L. Li et al.
Diffusion models can also generate text with a pre-
scribed semantic contents (or length, or sentence struc-
ture, etc.)

XT
noise
→ XT−1 → · · · → X0

word
vectors

→ text

Photorealistic text-to-image diffusion models
with deep language understanding

C. Saharia et al. (2022)
Contrary to Dall-E, Imagen uses a very large language
model (T5-XXL), trained on text only, frozen; it fine-
tunes the result with two efficient U-Net steps. It uses
dynamic thresholding to avoid fully-saturated pixels.
Drawbench is a benchmark for text-to-imge generation
(list of prompts, challenging for various reasons).

GLIDE: Towards photorealistic
image generation and editing

with text-guided diffusion models
A. Nichol et al.

Diffusion models are trained by progressively adding
noise to an image x0

x0 ∼ Data
xt|xt−1 ∼ N

(√
αtxt−1, (1− αt)I

)
and trying to undo that process

xT ∼ N(0, I)

xt−1|xt ∼ N
(
µθ(xt),Σθ(xt)

)
(with Σθ diagonal). If xt = x0 + ε, the loss tries to
recover ε

Loss = E
t∼UnifJ1,T K
x0∼Data
ε∼N(0,1)

‖ε− εθ(xt, t)‖2 .

Guided diffusion increases the likelihood of a given
class y

µ̂θ(xt|y) = µθ(xt|y) + s · Σθ(xt|y)∇xt log pϕ(y|xt).

Classifier-free guidance also moves the model away
from a “null label” ∅ (e.g., an empty prompt)

ε̂(xt|y) = εt(xt|∅) + s
(
εθ(xt|y)− εθ(xt|∅)

)
.

CLIP-guidance uses a joint representation of images f
and text g, encouraging large fot products f(x) · g(c)
for matching pairs (contrastive cross-entropy), instead
of a classifier

µ̂θ(xt|y) = µθ(xt|y) + s · Σθ(xt|y)∇xtf(xt) · g(c).

Denoising diffusion probabilistic models
J. Ho et al.

Initial paper on (unconditional) diffusion models for
image generation.

µθ =
1√
α

(
x− β√

1− α
εθ

)

Article and book summaries by Vincent Zoonekynd 155/1044

Reverse-time stochastic differential equation
for generative modeling

L. Winkler (2021)
Given an SDE

dXt = µ(Xt, t)dt+ σ(Xt, t)dW,

use the Kolmogorov forward equation (KFE)

∂tp(xt) = −∂xt
[
µ(xt)p(xt)

]
+

1

2
∂2xt
[
σ2(xt)p(xt)

]
and the Kolmogorov backward equation (t ⩽ s)

−∂tp(xs|xt) = µ(xt)∂xtp(xs|xt) +
1

2
σ2(xt)∂

2
xtp(xs|xt)

to derive a PDE for p(xs, xt) = p(xs|xt)p(xt):

−∂tp(xs, xt) =

∂xt

[
p(xs, xt)

(
µ(xt)−

∂xt
[
σ2(xt)p(xt)

]
p(xt)

)]

+
1

2
∂2xt
[
p(xs, xt)σ

2(xt)
]
.

It is the KFE of a SDE. If the noise σ is independent of
the input, we can move it outside of the partial deriva-
tive,and we recognize the log-derivative of p, the score.
The final SDE is

dx̄t =
[
µ(xt)− σ2

t ∂xt log p(xt)
]
dt+ σtdW̄t.

Reverse-time diffusion equation models
B.D.O. Anderson (1980)

A primer on monotone operator methods
A.K. Ryu and S. Boyd (2016)

2. A relation (or operator, or correspondance, or set-
valued function) on Rn is a subset F ⊂ Rn ×Rn. Its
subdifferential is

∂f = {(x, g(: ∀z f(z) ⩾ f(x) + gT (z − x)}

(v, u) ∈ ∂f ⇐⇒ (u, v) ∈ (∂f)−1

⇐⇒ v ∈ Argmin
x

f(x)− uTx

⇐⇒ f(v) + f∗(u) = vTu

where f∗(y) =
∑
x y

Tx− f(x).
A function f : Rn → R ∪ {∞} is closed if its epigraph

epi f = {(x, t) : x ∈ dom f, f(x) ⩽ t};

it is proper if its domain is non-empty. If f is CCP
(convex, closed, proper), f∗∗ = f , and (∂f)−1 = ∂f∗.
3. A Lipschitz relation with constant L is a function;
if L < 1, it is a contraction; if L = 1, it is non-
expansive. The set of fixed points of a non-expansive
function, (I−F)−1(0), is closed and convex (but possi-
bly empty); for a contraction, it has exactly one point.

An averaged operator is of the form F = (1−θ)I+θG,
θ ∈ (0, 1), G non-expansive; F is still non-expansive,
and has the same fixed points as G.
Projections, and overprojections (on a compact set C)
are non-expansive.

ΠC(x) = Argmin
z∈C

‖z − x‖

QC = 2ΠC − I
x

ΠC(x)

QC(x)

4. A relation f is monotone if

∀x, y (fx− fy)T (x− y) ⩾ 0;

it is maximal if there is no larger monotone relation
(for the inclusion, on Rn × Rn); it is strongly mono-
tone if ∀x, y (fx− fy)T (x− y) ⩾ m ‖x− y‖2 (m > 0).
For a strongly monotone Lipschitz relation,

∀x, y m ‖x− y‖2 ⩽ (fx− fy)T (x− y)
CS
⩽ L ‖x− y‖2 ,

the condition number is κ = L/m.
If F is maximal monotone, then so if F−1.
If F is strongly monotone with parameter m, the F−1
is Lipschitz with constant 1/m (but if F is Lipschitz,
F−1 need not be strongly monotone).
If f is CCP, then ∂f is maximal monotone.
A CCP f is strongly convex if f(x) − m ‖x‖2 is con-
vex or, equivalently, if ∂f is strongly monotone with
parameter m. A CPP f is strongly convex with pa-
rameter m iff f∗ is strongly smooth with parameter
L = 1/m.

not monotone monotone
not maximal

maximal
monotone

maximal
monotone

(not a function)

Continuous monotone functions are maximal.
An affine functrion f(x) = Ax+b is maximal monotone
iff A + AT ≽ 0; it is strongly monotone with parame-
ter λmin(A+ AT)/2; it is the subdifferential of a CCP
iff A = AT and A ≽ 0. This generalizes to differen-
tiable functions F : Rn → Rn and their derivative
A = DF (x).
Projections are monotone. If C ⊂ Rn is closed convex,
its normal cone operator NC = ∂IC is

NC(x) =

{
{y : ∀z ∈ C yT (z − x) ⩽ 0} if x ∈ C
∅ otherwise

x2

x1

NC(x2)

NC(x1)

Article and book summaries by Vincent Zoonekynd 156/1044

The saddle subdifferential of f : Rm ×Rn → R∪ {∞}
is

F (x, y) =

(
∂xf(x, y)
−∂yf(x, y)

)
;

if f is convex in x and concave in y, F is often maximal.
For the optimization problem

Find x
To minimize f0(x)
Such that ∀i fi(x) ⩽ 0 CCP

∀j hj(x) = 0 affine

the KKT operator is

T (x, λ, ν) =

 ∂xL(x, λ)
−F (x) +Nλ⩾0

−H(x)

where F = (f1, . . . , fm), H = (h1, . . . , hp),

L(x, λ, ν) =

{
f0(x) +

∑
λifi(x) +

∑
νjhj(x) if λ ⩾ 0

−∞ otherwise;

it is monotone, and its zero set is the set of optimal
primal-dual pairs.
5a. Fixed point iterations of a contraction converge, at
least geometrically. If f is strongly convex and strongly
smppth with parameters m and L, gradient descent

xk+1 = xk − α∇f(xk) α ∈ (0, 2L)

converges to a minimizer of f . If F is strongly mono-
tone and Lipschitz with parameters m and L, (I−αF)
is a contraction for α ∈ (0, 2m/L2), and the forward
step method converges

xk+1 = xk − αF (xk).

5b. Iterations of averaged operators converge to a solu-
tion, if one exists (for non-expansive, but non-averaged
operators, they need not converge). If f is convex (not
strongly) and Lipschitz, I −α∇f is averaged, and gra-
dient descent converges.
5c. The dual ascent for

Minimize
x

f(x) such that Ax = b

is gradient ascent on the dual, Minimizey g(y) where
g(y) = −

(
f∗(−A′y)− y′b

)
,

xk+1 = Argmin
x

L(x, yk)

yk+1 = yk + α(Axk+1 − b)

The convex feasibility problem looks for x ∈ C ∩ D,
where C and D are non-empty, closed, convex.

Minimize
x

θd2(x,C) + (1− θ)d2(x,D)

The gradient method gives

xCk+1 = ΠC(xk)

xDk+1 = ΠD(xk)

xk+1 = θxCk+1 + (1− θ)xDk+1

6a. The resolvent and Cayley operator of a relation
on Rn are

R = (I + αA)−1

C = 2R− I.

If A is monotone, R and C are non-expansive. If A
is maximal monotone, domR = domC = Rn (fixed
point iterations are always defined); 0 ∈ A(x) iff
x = RA(x) iff x = CA(x). If A is strongly mono-
tone, then R is Lipschitz with L = 1/(1+αm). If A is
strongly monotone and Lipschitz, then C is a contrac-
tion with

L =

(
1− 4αm

(1 + αL)2

)1/2

.

If A is maximal and single-valued, C = (I − αA)(I +
αA)−1.
If A is a symmetric matrix with positive eigenvalues,
R has eigenvalues in (0, 1], C in (−1, 1].
The resolvent of the subdifferential of a convex func-
tion f is the proximal operator

R(x) = (I+α∂f)−1(x) = Argmin
u

f(u)+
1

2α
‖u− x‖2 .

For the normal cone operator NC(x) = ∂IC(x),

R = (I + αNC)
−1 = ΠC projection

C = 2ΠC − I −QC overprojection.

To solve 0 ∈ A(x), where A is maximal monotone, the
Cayley and proximal point methods iterate

xk+1 = C(xk) (may not converge)
xk+1 = R(xk) (converges: R is averaged).

6b. To solve Minimizex f(x) s.t. Ax = b, where f is
CCP, themethod of multipliers looks for a dual variable
y such that 0 ∈ −∇g with the proximal point method,
y ← R−∇g(y).

xk+1 = Argmin
x

Lα(x, yk)

yk+1 = yk + α(Axk+1 − b).

The proximal method of multipliers uses the KKT op-
erator T instead, (x, y)← RT (x, y):

xk+1 = Argmin
x

Lα1
(x, yk) +

α2

2
‖x− xk‖2

yk+1 = yk + α1(Axk+1 − b).

To find a zero of F (x) = Ax − b, where A + AT ≽ 0,
so that F is maximal monotone, the proximal point
method with RF = (I + ε−1F)−1 gives the iterative
refinement

rk = Axk − b
xk+1 = xk − (A+ εI)−1rk

Article and book summaries by Vincent Zoonekynd 157/1044

(A+ εI is often better conditioned than A).
If F is maximal monotone, then so is L−TFL−1; the
corresponding prximal point method (generalized prox-
imal point method) is xk+1 = (A + αF)−1Axk, where
A = LTL � 0.
7a. To solve 0 ∈ (A + B)(x), where A and B are
maximal monotone, forward-backward operator split-
ting uses the fixed point iteration x = (I + αB)−1(I −
αA)(x), i.e.xk+1 = RB(xk − αAxk); for α ∈ (0, 2/L)
(if A is L-Lipshitz) or α ∈ (0, 2m/L2); it is averaged.
The proximal gradient method solves Minimizex f(x)+
g(x), f , g CCP, by applying forward-backward split-
ting to 0 ∈ (∂f + ∂g)(x), assuming f is differentiable,

xk+1 = Argmin
x

f(xk)+∇f(xk)T (x−xk)+g(x)+
1

2α
‖x− xk‖2 .

Forward-backward-forward splitting writes 0 ∈ (A +
B)(x) as

x =
(
(I −αA)RB(I −αA)+αA

)
(x), α ∈ (0, 1/L),

which gives

xk+ 1
2
= RB(xk − αAxk)

xk+1 = xk+ 1
2
− α(Axk+ 1

2
−Axk)

For B = 0, this is the extra gradient method

xk+ 1
2
= xk − αAxk

xk+1 = xk − αAxk+ 1
2
.

The Combettes-Pesquet method solves 0 ∈ (A +
B+C)(x) with forward-backward-forward splitting by
writing it as

0 ∈
(

Ax
B−1u

)
+

(
u+ Cx
−x

)
.

Peaceman-Rachford splitting solves 0 ∈ (A+B)(x) us-
ing CACB(z) = z, x = RB(z).

xk+ 1
2
= RBzk

zk+ 1
2
= 2xk+ 1

2
− zk

xk+1 = RA(zk+ 1
2
)

zk+1 = 2zk+1 − zk+ 1
2

Douglas-Rachford splitting uses (12I +
1
2CAcB)(z) = z,

x = RB(z), i.e.,

xk+ 1
2
= RB(xk)

zk+ 1
2
= 2xk+ 1

2
− zk

xk+1 = RA(zk+ 1
2
)

zk+1 = zk + xk+1 − xk+ 1
2
.

For instance, to solve Minimizex
∑
fi(x), rewrite it as

Minimize
x1,...,xn

∑
fi(xi) s.t. x1 = x2 = · · · = xn,

then, as

0 ∈

∂f1(x1)...
∂fn(xn)

+N[x1=···=xn](x1, . . . , xn),

which gives

xi ← Argmin
x

fi(x) +
1

2α
‖x− zi‖2

z1 ← zi + 2x̄− z̄ − xi.

Davis-Yin 3-operator splitting solves 0 ∈ (A + B +
C)(x), where A, B, C are maximal monotone, by writ-
ing it as Tz = z, x = RB(z), where T = CA(CB −
αCRB)− αCRB ; the iteration is

xk+ 1
2
= RB(zk)

zk+ 1
2
= 2xk+ 1

2
− zk

xk+1 = RA(zk+ 1
2
− αCxk+ 1

2
)

zk+1 = zk + xk+1 − xk+ 1
2

7b. The proximal gradient solves Minimizex f(x) +
λ ‖x‖1, where f is CCP, as (iterative shrinkage thresh-
olding algorithm, ISTA)

x← Sαλ(x− α∇f(x))
Sk(x)i = sign(xi)

(
|xi| − κ

)
+
.

The proximal gradient solves Minimizex∈C f(x), f
CCP, C convex, as (projected gradient)

x← ΠC
(
x− α∇f(x)

)
.

The proximal gradient solves the convex feasibility
problem x ∈ C ∩D, i.e., Minimizex∈C d(x,D)2, as (al-
ternating projections

x← ΠCΠDx.

Douglas-Rachford splitting solves it as 0 ∈ (NC +
ND)(x)

xk+ 1
2
= ΠD(zk)

xk+1 = ΠC(2xk+ 1
2
− zk)

zk+1 = zk + xk+1 − xk+ 1
2
.

Chambolle-Pock solves Minimizex f(x) + g(Mx) by
rewriting it as

0 ∈
(
∂f(x)
∂g∗(u)

)
+

(
0 MT

−M 0

)(
x
u

)
and applying the generalized proximal point method
with A =

(
I −αMT

−αM I

)
xk+1 = R∂f (xk − αMTuk)

uk+ = R∂g∗
(
uk + αM(2xk+1 − xk)

)
Article and book summaries by Vincent Zoonekynd 158/1044

(if Rg∗ is easier to compute than RPMT∂gM).
The linear program Minimizex⩾0 c

Tx s.t. Ax = b can
be written as 0 ∈ (T1 + T2)(x, ν, λ), where

T1(x, ν, λ) =

x+AT ν − λ
−(Ax− b)

x

 T2(x, ν, λ) =

 0
0

N[λ⩾0]

and solved with forward-backward-forward splitting.
The convex-concave gameMaximizeyMinimizex f(x, y)
can be written 0 ∈ F (x, y), where

F (x, y) =

(
∂xf(x, y)
∂y − f(x, y)

)
and solved with forward-backward-forward splitting
(extra gradient)

xk+ 1
2
= xk − α∇xf(xk, yk)

yk+ 1
2
= yk + α∇yf(xk, yk)

xk+1 = xk − α∇xf(xk+ 1
2
, yk+ 1

2
)

yk+1 = yk + α∇yf(xk+ 1
2
, yk+ 1

2
)

The complementarity problem

Find x ∈ K
Such that F (x) ∈ K∗

x ⊥ F (x)

(with F maximal monotone and Lipschitz) can be writ-
ten as 0 ∈ (F + NK)(x) and solved with forward-
backward-forward splitting

xk+ 1
2
= ΠK(xk − αFxk)

xk = xk+ 1
2
− α(Fxk+ 1

2
− Fxk).

Quasidefinite systems

Kx = b, K =

(
−A C
CT B

)
, A,B � 0

can be written as

F (x) = 0, F (x) = J(Kx− b), J =

(
−I 0
0 I

)
,

split using

K1 =

(
−A 0
0 B

)
, K2 =

(
0 C
CT 0

)
,

and solved with Peaceman-Rachford.
ADMM solves

Find x, z
To minimize f(x) + g(z)
Such that Ax+Bz = c

by applying Douglas-Rachford to the dual problem

Maximize
ν

−f∗(−AT ν)− g∗(−BT ν) + cT ν

(there are other derivations of ADMM).

Parameter selection and pre-conditioning
for a graph form solver

C. Fougner and S. Boyd (2015)
The graph form optimization problem

Find x, y
To minimize f(y) + g(x)
Such that y = Ax

can be solved with ADMM

(x′, y′) = proxg(x− x̃), proxf (y − ỹ)
(x, y) = Π(x′ + x̃, y′ + ỹ)

(x̃, ỹ) =
(
x̃− (x− x′), ỹ − (y − y′)

)
.

This can be sped up with
– Over-relaxation: replace x′ with αx′ + (1 − α)x,
α ∈ (1.5, 1.8);

– Approximate projection
– Preconditioning: replace y, x and A with Dy, E−1x
and DAE respectively, such that the singular values
of DAE be close to 1

cond(DAE) ≈ 1, ‖DAE‖2 ≈ 1;

– Adaptive proximal penalty ρ,

proxf v = Argmin
z

f(z) +
ρ

2
‖x− v‖22

(start with a large |rho, which encourages primal fea-
sibility, then, when the primal variables (x, y) con-
verge, decrease it; when the dual variables (x̃, ỹ) con-
verge, increase it again).

Applications include portfolio optimization: w′µ −
λw′(FF ′ +D)w becomes

g(x) = x′µ− λx′Dx+ I(x ⩾ 0)

f(y) = λy′y + I(ym+1 = 1)

y =

(
F ′

1′

)
x.

C++ implementation: pogs.

Pretrained transformers for text ranking:
BERT and beyond

J. Lin at al. (2021)
Information retrieval is often done in two steps: first
identify a set of documents “close” to the query, with
a bag-of-words approach such as BM25 (lucene)

BM25(q, d) =
∑
t∈q∩d

log
N − dft + .5

dft + .5
· dfd,t(k + 1)

tfd,t + k · (1− n+ b`d/L)

(where `d is the length of document d and L the av-
erage document length), second, rerank those docu-
ments, e.g., using
– Cosine similarity between query and document em-
beddings

Article and book summaries by Vincent Zoonekynd 159/1044

– An interaction model, i.e., a neural network ex-
ploiting the histogram of similarities between query
terms and document terms

d1 d2 dm· · ·

q1

q2

q3 · · ·

· · ·

· · ·

(You can stack several rerankers.)
3. BERT is a transformer-based encoder-only network
(GPT is decoder-only; the original transformer is a
sequence-to-sequence model) providing contextual em-
beddings.
MonoBERT uses BERT to predict if a document is rel-
evant to a query

P
[
relevant | [CLS]q[SEP]d[SEP]

]
from the contextual embedding of the [CLS] token.
To overcome the input length limit:
– Birch trains BERT on short passages (e.g., tweets),
and uses aggregated sentence scores;

– VERT-MaxP trans BERT on overlapping passages,
assuming that they are all relevant (or irrelevant) if
the document is, and uses aggregated (max) passage
relevance at inference time;

– CEDR feeds BERT embeddings to an interaction
model;

– Parade uses BERT to compute a vector representa-
tion of each sentence, then another BERT to turn
that sequence of sentence embeddings into a docu-
ment embedding.

The Reformer (LSH attention) and the Longformer
(sparse attention) also deal with long documents,
DuoBERT compares the relevance of two documents.
4. The vocabulary used in a query may not match that
in the document (e.g., “car”, vs “automobile”):
– The query can be expanded:
· First, retrieve documents with the query words;
· Assume the first results are relevant;
· Add words from those socuments to the query;
· Retrieve more documents;
Those words can be chose by training a model

P [term|query, document]

measuring how relevant a term is (CEQE);

– The query can be reformulated to make it more
human-like (BERT works better with those);

– The document themselves can be turned into queries
(doc2query, trained on MS MARCO);

– The query terms can be re-weighted, by modeling

representation
of document d

term t
7−→ # queries relevant for d with t

queries relevant for d

– Expansion and reweighting can be combined.
5. Document retrieval, with approximate neighbour
(ANN) search, from pretrained dense representations,
is worse than retrieval from average pooling of GloVe
embeddings – fine-tuning is necessary, and careful se-
lection of negative samples improves performance.

InPars: data augmentation for intormation
retrieval using large language models

L. Bonifacio et al.
Given a (small) set of (query, document) pairs, gener-
ate plausible queries for all the documents (few chot
learning, with GPT3 and the MS MARCO dataset,
providing triplets text / good question / bad question);
keep the highest probability pairs, and use them for
reranking (T5, after pyserini).

Pyserini: a Python toolkit for reproducible
information retrieval research with sparse and

dense representations
J. Lin et al.

ToxiGen: a large-scale machine-generated
dataset for adversarial and implicit hate

speech detection
T. Hartvigsen et al.

Toxic language detection syste,s often incorrectly flag
texts merely because they mention some minority
group (often targeted by online hate): use a language
to generate subtly toxic and benign text about those
minorities.

Zero-shot neural passage retrieval via
domain-targeted synthetic question generation

J. Ma et al.
Synthetic question generation, to compute question
embeddings (instead of document embeddings), for
first stage information retrieval (nearest neighbour).

SwinIR: image restoration using Swin
transformer

J. Liang et al.
Transformers for image restoration (upscaling, denois-
ing, artefact removal):
– Start with a 3 × 3 convolution, to extract shallow
features;

– Apply 6 residual swin transformer blocks (RSTB),
followed by a convolution;

Article and book summaries by Vincent Zoonekynd 160/1044

– Each RSTB has 6 swin transformer layers (STL),
followed by a convolution;

– Each STL has a LayerNorm, a multihead self-
attention (MSA) on non-overlapping M × M win-
dows, another LayerNorm, an MLP;

– The network ends with a convolution, to reconstruct
the image from the shallow and deep features (there
are skip-connections everywhere).

Generalized cross-entropy loss for training
deep neural networks with noisy labels

Z. Zhang and M.R. Sabuncu
To increase robustness to noisy labels, try the nega-
tive Box-Cox transformation loss(j, p) = (1 − pqj)/q,
q ∈ (0, 1), where j is the label (y) and p the prob-
abilities output by the model (ŷ). The cross-entropy
` = log pj and the MAE ` = ‖ej − p‖1 = 2 − 2pj are
limiting cases, for q → 0 or 1. Truncate by replacing
pj with Min(pj , k).

Modeling tabular data using conditional GAN
L. Xu et al. (2019)

To account for multimodal continuous columns, esti-
mate the number of modes with a variational Gaussian
mixture (VGM) and fit a Gaussian mixture; then, sep-
arately sample the mixture component and the value
within that component. To account for the imbalance
in discrete columns,
– Learn conditional generators, conditioned on the
value of one of the discrete columns,

– Sample the discrete values according to the log-
frewquency of each category.

Opacus: user-friendly differential privacy
library in pytorch

A. Yousefpour et al. (2021)
DP-SGD (differentially private stochastic gradient de-
scent) makes SGD differnetially private (intuitively, re-
moving one sample from the batch does not change the
update) by computing the per-sample gradients, clip-
ping them, aggregating them, and adding noise.

Supervised contrastive learning
P. Khosla et al. (2020)

The triplet loss uses one positive sample (augmenta-
tion) and one negative sample, but requires negative
mining. Contrastive learning uses one positive sample
and many negative samples

loss =
∑
i

− log
exp(zi · zj(i)/τ)∑

a∈N(i)

exp(zi · za/τ)

i : samples
j(i) : positive sample
N(i) : negative samples

zi ∈ Sd−1 : features.

Supervised contrastive learning uses many positives
(augmentations and samples from the same class) and
many negative samples

loss =
∑
i

−Mean
p∈P (i)

log
exp(zi · zp/τ)∑

a∈N(i) exp(zi · za/τ)

(putting the mean outside the log rather than inside
works better).
Generate features in 2048 dimensions, normalize them,
reduce the dimension to 128 (MLP), and normalize
again; use scalar products instead of Euclidean dis-
tance.

Energy-latency attacks via sponge poisoning
A.E. Cinà (2022)

Mount a DoS attack on a deep learning model, running
on sparsity-based ASIC accelerators adopting zero-
skipping strategies to avoid multiplications when the
input is zero, by adding a penalty (`0 relaxation)

ˆ̀
0(x) =

∑ x2i
x2i + ε

for non-zero activations.

A new correlation coefficient between
categorical, ordinal and interval variables with

Pearson characteristics
M. Baak et al. (2019)

The φk correlation coefficient (implementation in
phik) is the correlation for which a Gaussian variable
would have the same χ2 (after binning the quantitative
variables into 10 bins).
The global correlation coefficient is the highest possible
correlation between variable k and a linear combination
of the other variables.

gk =

√
1−

[
Vkk · (V −1)kk

]−1
Decision tree learning with spatial modal logics

G. Pagliarini and G. Sciavicco
Modal logic extends propositional logic with

□P possibly P
□P necessarily P.

It is less expressive than first order logic (FOL, which
allows quantifiers, ∀, ∃).
Allen’s interval algebra

can be generalized to hyperrectangles, or replaced with
the region connection calculus (RCC8)

Article and book summaries by Vincent Zoonekynd 161/1044

Modal decision trees, for temporal or spatial data, al-
lows rules like

∃[a, b] T[a,b] ⩾ 39
∃[c, d] HR[c,d] ⩾ 140
[a, b] ∩ [c, d] 6= ∅

or
∃R1 Red(R1) ⩾ a
∃R2 Green(R2) ⩽ b
R2 ⊂ R1.

They are more expressive (and sparser) than decision
trees, but more interpretable than ILP models (induc-
tive logic programming, i.e., FOL rules).

Bayesian streaming
sparse Tucker decomposition

S. Fang et al. (2021)
The CP decomposition is a Tucker decomposition with
a diagonal core – instead, add a sparsifying penalty
(with a Bayesian spike-and-slab prior).

CoSTCo: a neural tensor completion model
for sparse tensors

H. Liu et al. (2019)
The Tucker decomposition

Ti1,...,iN =
∑

j1,...,jN

Gj1,...,jNU
1
j1i1U

2
j2i2 · · ·U

N
jN iN

can be made nonlinear Ti1,...,iN = fθ(i1, . . . , iN):
– Use the 1-hot encoding e ∈ R

∑
di of the index tuple

(i1, . . . , iN);
– Compute an embeddingU

1 0
. . .

0 UN

 e ∈ Rr×N ;

– Apply CNNs with filter sizes (r, 1) and (1, N);
– Finish with a fully-connected layer.

How many bins should be put
in a regular histogram

L. Birgé and Y. Rozenholc (2005)
Choose the number of binsD to partition [0, 1] by max-
imizing

L(D) =
∑

1⩽j⩽D
Nj log

DNj
n
− pen(D)

pen(D) = D − 1 + (logD)2.5.

Test with N(0, 1), 1
4N(0, 1) + 3

4N(2, 1
16),

3
4N(0, 1) +

1
4N(3, 19), Exp(1), T(3), U(0, 1).

Cone-constrained monotone mean-variance
portfolio selection under diffusion models

Y. Shen and B. Zou (2022)
The mean-variance preference

J(X) = E
P
[X]− λVarP[X]

is not monotonic: we can have X ⩾ X ′ a.s., but
J(X) < J(X ′) (for instance X = , X ′ = ,
λ = 1)
Replace it with the monotone mean variance preference

J(X) = inf
Q≪P

E
Q

[
X + λ−1

(
dQ

dP
− 1

)]
.

Portfolio selection with monotone
mean-variance preferences

F. Maccheroni et al. (2009)
The MMV preference coincides with the mean-variance
preference on its domain of monotonicity (the sub-
set of L2 where the Gâteaux derivative of U(f) =
E[f]− 1

2λVar[f] is positive), and is the best monotone
approximation outside.
The unconstrained optimal portfolio is still of the form
α∗ = λ−1V −1µ, but V and µ are now lower moments
of X (for some threshold).

Persistence images: a stable vector
representation of persistent homology

H. Adams et al. (2017)
Persistence diagrams can be fed directly to distance-
based machine learning algorithms (with the bottle-
neck distance, or the Wasserstein distance), but not to
arbitrary machine learning algorithms (which often re-
quire coordinates). The persistence image is a vector
representation for a persistence diagram (PD) obtained
by:
– Rotating the (birth, death) PD into (birth, persis-
tence), where persistence = death− birth;

– Replacing each point with a Gaussian distribution
(you need to choose its variance);

– Considering a weighted sum of those distributions,
with weights increasing with persistence (it should
be zero on the diagonal)

– Rasterising the data (for H0, the birth coordinate is
always zero: it is a 1-dimensional image).

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Data

0.0 0.1 0.2 0.3

Birth

0.0

0.1

0.2

0.3

D
ea

th

Persistence diagram

0.0 0.1 0.2 0.3

Birth and death

0

20

40

60

80

100

120

Persistence barcode

0.10 0.15 0.20 0.25

0.00

0.01

0.02

0.03

0.04

0.05

Persistence landscape, degree = 1

0.00 0.05 0.10 0.15 0.20

Birth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
er

si
st

en
ce

(Tilted) persistence diagram

Birth

P
er

si
st

en
ce

Persistence image, H1

Birth

P
er

si
st

en
ce

Persistence image, H1

Birth

P
er

si
st

en
ce

Persistence image, H1

Persistence diagrams
with linear machine learning models

I. Obayashi and Y. Hiraoka
Linear models built on the persistence image are inter-
pretable: large positive or negative coefficients corre-
spond to desired or undesirable regions of the persis-
tence diagram.

Article and book summaries by Vincent Zoonekynd 162/1044

Add a regularization term to smooth the weights for
higher resolution persistence images.

Persistence weighted Gaussian kernel
for topological data analysis

G. Kusano et al.
Map persistence diagrams D to functions

D 7→
∑
x∈D

w(x)k(x, ·)

where k is a kernel and w a weight function decreasing
with persistence.

Persistent entropy for separating topological
features from noise in Vietoris-Rips complexes

N. Atienza et al. (2017)
Given a persistence diagram (bi, di)i, the persistent en-
tropy is the entropy H of the persistences pi ∝ di − bi;
it can help prune non-signficant barcodes (intuitively,
expH is the number of significant barcodes).

Tropical coordinates
on the space of persistence barcodes

S. Kališnik
The tropical semiring is (R̄,Min,+,∞, 0); the arc-
tic semiring is (R ∪ {−∞},Max,+,−∞, 0). Max-
plus polynomials up to functional equivalence (iden-
tify polynomials if they always take the same val-
ues) form a semiring MaxPlus[x1, . . . , xn]. Similarly,
Min-plus polynomials, and rationals tropical functions,
form semirings.
Symmetric tropical rational functions can be used as
coordinates on the barcode space.

The ring of algebraic functions
on persistence barcodes
A. Adcock et al. (2013)

We could use symmetric polynomials as coordinates
on the space of barcodes: k[x1, y1, . . . , xn, yn]

Sn

is complicated (there are non-trivial relations be-
tween the symmetric polynomilas – syzygies), but
lim k[x1, y1, . . . , xn, yn]

Sn is freely generated. How-
ever, we do not only want (x1, y1, . . . , xn, yn) ∼
(x1, y1, . . . , xn, yn, 0, 0), but (x1, y1, . . . , xn, yn) ∼
(x1, y1, . . . , xn, yn, xn+1, xn+1): the corresponding sub-
ring of k[x1, y1, . . . , xn, yn]Sn is that of polynomials f
such that (

∂

∂xi
+

∂

∂yi

)
f ∈ (yi − xi)

and the limit of those subrings is freely generated by
the ∑

i

xa+1
i ybi − xai yb+1

i .

(Those coordinates are not Lipschitz wrt the bottleneck
or Wasserstein distance.)

Stable topological signatures
for points on 3D shapes

M. Carrière et al.
To identify a point on a surface, consider their persis-
tence diagram, i.e., the 1-holes of the geodesic balls
centered on this point.
To get a vector embedding, compute the pairwise dis-
tances between the points in the persistence diagram,
sort them, and pad them with zeroes,

m(x, y) = Min
{
d(x, y), d(x, diag), d(y, diag)

}
.

A stable multi-scale kernel
for topological machine learning

J. Reininghaus et al.
Define a feature map Φσ : PD → L2 on the space of
persistence diagrams by replacing each point p with a
Gaussian density and subtracting another Gaussian p̄
on the other side of the diagonal.

Φσ(D) : x 7−→
∑
p∈D

φσ
(
‖x− p‖

)
− φσ

(
‖x− p̄‖

)
φσ(t) = e−t

2/σ2

The corresponding kernel is

kσ(F,G) =
∑
p∈F
q∈G

φσ
(
‖p− q‖

)
− φσ

(
‖p− q̄‖

)
.

Statistical analysis
of persistence intensity functions

Y.C. Chen et al.
Replace persistence diagrams with weighted sums of
Gaussians, one for each point, with weights propor-
tional to the persistence, w = death − birth: you can
then easily average them, cluster them, etc.

A topology layer for machine learning
R. Brüel-Gabrielsson et al. (2020)

Persistence diagrams as a layer: you can use

ξ(p, q, i0,PDk) =
∑
i⩾i0
|di − bi|p

(
bi + di

2

)q

in the loss, i.e., increase or decrease β0, β1, (β0 − 1)+,
(β1 − 1)+, etc.
Use as a regularizer (image reconstruction) or a prior
(generative models).

Article and book summaries by Vincent Zoonekynd 163/1044

The Bayesian learning rule
M.E. Khan and H. Rue

Empirical risk minimization

Minimize
θ

∑
i

`
(
yi, fθ(xi)

)
+R(θ)

can be generalized to probability distributions

Minimize
q

E
θ∼q

[∑
i

`
(
yi, fθ(xi)

)]
+KL

(
q(θ)

∥∥ p(θ))
p(θ) ∝ exp−R(θ).

The Bayesian learning rule looks for a probability dis-
tribution in an exponential family

q(θ) = h(θ) exp
[
〈λ, T (θ)〉 −A(λ)

]
λ : natural parameters
A : log-partition (cummulant) function

T (θ) : sufficient statistics
h : base measure
µ = E

θ∼q

[
T (θ)

]
expectation parameters

by iterating

λt+1 ← λt − ρt∇̃t
[

E
θ∼qt

¯̀(θ)−H(qt)

]
where

¯̀(θ) =
∑
i

`
(
yi, fθ(xi)

)
H(qt) = E

θ∼qt

[
− log qt(θ)

]
entropy

∇̃t E
θ∼qt

[•] = F (λt)
−1∇t E

θ∼qt
[•] natural gradient

= ∇µ E
θ∼qt

[•]

∣∣∣∣
µ=∇λA(λt)

F (λ) = ∇2
λ A(λ) Fisher information matrix.

For instance, the exponential families N(m, I) (un-
known mean, known variance) and N(m,S−1) (un-
known mean and variance) give gradient descent and
Newton’s method.

Do t-statistic hurdles need to be raised?
A.Y. Chen (2022)

Calls to lower the 5% significance rate for publications
account for false positives but ignores (unobserved)
false negatives.

MDD aggregated two-sample test
A. Schrab et al. (2021)

To test if two samples come from the same distribution
(non-parametrically, not only in dimension 1, contrary
to the Kolmogorov-Smirnov test) use the maximum
mean discrepancy (MMD) test (an integral probabil-
ity metric)

MMDk(p, q) = sup
f∈H
∥f∥Hk

⩽1

∣∣∣∣ E
X∼p

f(X)− E
Y∼q

f(Y)

∣∣∣∣

where Hk is the RKHS associated to a kernel k

M̂MDa = Mean
i,i′

k(xi, xi′) +Mean
j,j′

k(xj , xj′)

− 2Mean
ij

k(xi, yj)

or

M̂MDb = Mean
i,j

h(Xi, Xj , YiYj)

h(x, x′, y, y′) = k(x, x′) + k(y, y′)− k(x, y′)− k(x′, y)

JKONet: proximal optimal transport modeling
of population dynamics
C. Bunne et al. (2021)

The JKO flow is an analogue of proximal descent for
probability distributions

ρt+1 = Argmin
ρ

J(ρ) + λW 2(ρt, ρ)

where ρt is a probability distribution and W the 2-
Wasserstein distance.
The optimal transport map is the gradient of a con-
vex function (if ρt has a density – Brenier’s theorem),
which can be modeled with an input-convex neural net
(ICNN).

T = ∇ψθ
ρt+1 = (∇ψθ∗)#ρt

θ∗ = Argmin
θ

J
(
(∇ψθ)#ρt

)
+λ

∫
‖x−∇ψθ(x)‖2dρt(x)

We want to find J such that the JKO flow describes
the evolution of a cloud of points

Jξ(ρ) =

∫
E
ξ
(x)dρ(x).

Implementation in jax, with ott.

Fully parallel hyperparameter search:
reshaped space-filling

M.L. Cauwet et al.
Transform low disccrepancy sequences in [0, 1]d as x 7→
Φ
(
λ · Φ−1(x)

)
or x 7→ Φ

(
λ · Φ−1Cauchy(x)

)
(remove the

outer Φ if the parameters are unbounded).

Original

x

y

Gaussian recentering

f(x)

f(
y)

Cauchy recentering

g(x)

g(
y)

The Hammersley sequence is the same as the Halton
sequence, except for the first dimension, in which the
points are equidistant (the Halton and Hammersley se-
quences have a “scrambled” version, with better dis-
crepancy guarantees).

Article and book summaries by Vincent Zoonekynd 164/1044

Evolution under strong noise: a self-adaptive
evolution strategy can reach the lower
performance bound – the pcCMSA-ES

M. Hellwig and H.G. Beyer
Adaptively change the population size in CMSA-ES,
increasing it if the optimization stalls because of noise.

Covariance matrix adaptation revisited:
the CMSA evolution strategy
H.G. Beyer and B. Sendhoff

CMSA-ES is a simplification of the CMA-ES optimiza-
tion algorithm with fewer hyperparameters, scaling to
larger populations.

Parametric estimate of intensity
inhomogeneoties applied to MRI

M. Styner et al. (2000)
In “(1+1) evolution strategy”, both the population size
and the number of children are equal to 1.

Portfolio performance attribution
via Shapley value

N. Moehle et al. (2021)
The Shapley attribution can be defined as

a =
1

n!

∑
π∈Sn

aπ

where

aπ,i = f(eπ(1) + · · ·+ eπ(i))− f(eπ(1) + · · ·+ eπ(i−1))

and approximated by sampling permutations π ∈ Sn

(with replacement) but we end up evaluating the same
f(x) many times. Instead, use

ai =
∑

x : xi=0

(1′x)!(n− 1′x− 1)

n!

(
f(x+ ei)− f(x)

)
(where we assume, wlg, f(0) = 0) and approximate it

ai = E
x∼p

[
f(x+ ei)− f(x)

]
p(x) =

(1′x)!(n− 1′x− 1)

n!

by sampling the number of active features 1′x from a
multinomial distribution

pk =
k!(n− k − 1)!

n!

and then sampling 1′x features at random.

Does non-linear factorization of financial
returns help build better and stabler portfolios?

B. Spilak and W.K. Härdle (2022)
Statistical factor portfolios can be computed with a low
rank factorization

X ≈WF

X : asset returns
F : factor returns.

Convex non-negative matrix factorization adds con-
straints

W ⩾ 0, F = H ′X, H ⩾ 0

(the assets are non-negative linear combinations of the
factors, and conversely).
Non-linear statistical factors can be computed with an
autoencoder

x 7→ z = Hx+ b 7→Wσ(z) + ε

with constraints H ⩾ 0, W ⩾ 0 and penalties
‖W ′W − I‖22 and ‖Σz � (1− I)‖2.
Use risk parity, hierarchical risk parity, etc. to com-
bine the factor portfolios.

Fast high-dimensional integration
using tensor networks

S. Cassel
The tensor train decomposition generalizes the approx-
imation

f(x, y) ≈ f(x, ȳ)f(x̄, y)

f(x̄, ȳ)
;

it interpolates a function from its restrictions on a few
1-dimensional axis-aligned subspaces

f(x, y) ≈
∑
ij

f(x, bj)(Q
−1)ijf(aij , y)

Qkℓ = f(ak, bℓ)

In dimension n:

f(x1, . . . , xq) = F (x1)Q
−1
12 F2(x2) · · ·Q−1d−1,dFd(xd).

Appplication include high-dimensional integration; it
can be combined with Aitken extrapolation.
Given a sequence (ψn)n, Aitken extrapolation writes it
as a telescopic series.

ψn = ψ0 +

n−1∑
i=0

(ψi+1 − ψi) telescopic series

= ψ0 +

n−1∑
i=0

(
g(ψi)− ψi

)
g(ψ∞) = ψ∞ fixed point
g(ψi)

ψi − ψ∞
≈ g′(ψi) secant method

ψ∞ ≈ ψi −
g(ψi)

g′(ψi)

Reciprocity in machine learning
M. Sundararajan and W. Krichene (2022)

Compare the average over i and the average over j of
the influence of observation i on prediction j (the latter
is Cook’s distance): they tend to be similar.

Article and book summaries by Vincent Zoonekynd 165/1044

Bridging level-k to Nash equilibrium
D. Levin and L. Zhang (2022)

Nash equilibrium assumes that each player is equally
sophisticated. A level 0 player plays at random; a level
n + 1 player plays the best strategy assuming the op-
ponent is level n. An NLK1 player plays the optimal
strategy assuming the opponent is level 0 with proba-
bility λ and NLK1 with probability 1− λ.

Generative art using neural visual grammars
and dual encoders

C. Fernando et al. (2021)
Given a text prompt, generate an image with a hier-
archical neural L-system and evaluate them with an
image/text dual encoder.

Planting undetectable backdoors
in machine learning models

S. Goldwasser et al.
Given a natural training algorithm

train : data 7−→ classifier,

a backdoor is a pair of algorithms

Backdoor : data 7−→ classifier, key
Activate : input, key 7−→ new input

such that
– The classifier is indistinguishable from the natural
one

– The new input is close to the old, but ends up in the
other class.

Undetectable backdoors exist, for dimension reasons
(the same arguments proves the existence of adversar-
ial examples) and can easily be built, e.g., for models
using random Fourier features.

Manipulating SGD with data ordering attacks
I. Shumailov et al. (2021)

You can poison a model by tampering with the order
of the samples used to train it (rank the samples with
a surrogate loss).

A generalist agent
S. Reed et al. (2022)

Compress (behaviour cloning) 600 reinforcement learn-
ing, language and image models into a single model,
with a transformer: convert all the data into discrete
sentences (break down images into 16×16 patches, in
raster order; mu-law encode

F (x) = sign(x)
log
(
1 + µ |x|

)
log
(
1 + µM)

continuous values into [−1, 1], and discretize them into
24 bins).

Model cards for model reporting
M. Mitchell et al.

The model card should include: data, model type,
model architecture, training algorithm, loss, intended
use, out-of-scope use, performance metrics, perfor-
mance across different factors or subpopulations.

Deep signature models
for financial equity time series prediction

M. Noguer i Alonso et al. (2022)
Forecast time series (daily returns, for 10 US stocks,
from 14 days of data), by stacking signets.

x

FC64,8

BatchNorm

Signature transform

LSTM

Leaky ReLU

y

×3

Deep signature transforms
P. Bonnier et al. (2019)

Prior to the truncated signature transform, augment
the time series to keep the information that would oth-
erwise be discarded by the truncation

x 7−→
(

x
φ(x)

)
7−→ SigN

(
x

φ(x)

)
.

This may be very similar to wavelet or Fourier features.

Nonstationary temporal matrix factorization
for multivariate time series forecasting

X. Chen et al.
Temporal matrix factorization reconstructs a multi-
variate time series from (contemporaneous) latent fac-
tors, with a penalty to make them close to VAR.

Find W,X,A1, . . . , Ad

To minimize 1
2 ‖PΩ(Y −W ′X)‖2F
+ 1

2ρ
(
‖W‖2F + ‖X‖2F)

+ 1
2λ
∑
t ‖xt −

∑
k Akxt−k‖

2
2

If the time series are not stationary, differentiate them
first.

Article and book summaries by Vincent Zoonekynd 166/1044

LDE-Net: Lévy induced
stochastic differential equation
equipped with neural network

for time series forecasting
L. Yang et al.

Model time series as

Xk+1 = Xk + f(Xk)∆t+ g(Xk)(∆t)
1/αLk

Lk ∼ Stable(α)
f, g : neutal nets.

Combine with an embedding and an attention layer.

data⩽t embedding

LDENet
LDENet
LDENet
LDENet

Attention
Attention
Attention
Attention

datat+1

On Hawkes processes
with infinite mean intensity

C. Aubrun et al. (2022)
The linear Hawkes process has intensity

λt = λ∞ +

∫ t

−∞
φ(t− u)dNu.

It can be generalized to

λt = λ∞ +

∫ t

−∞
φ(t− u)dNu+∫ t

−∞

∫ t

−∞
Q(t− s, t− u)εuεsdNudNs

(with εt = ±1). For instance, the ZHawkes model uses

Q(s, u) = φ(s)δ(s− u) + z(s)z(u).

Distributionally robust risk evaluation with
causality constraint and structural information

B. Han (2022)
Optimal transport (OT) computes the Wasserstein dis-
tance

W (µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy).

For distributions on time series, causal optimal trans-
port (COT) only considers causal transport plans:
π(yt|x1:T) = π(yt|x1:t) (it can be formulated as a linear
constraint). A risk measure ρ can be made distrbution-
ally robust by taking the worst case in a Wasserstein
ball around the empitical distribution

Max
W (µ,µ̂)⩽ε

ρ(µ).

What affects the relationship
between oil prices and the US stock market?

A mixed-data sampling copula approach
The copula-Midas-X model models a high-frequency
(daily) bivariate time series (u, v) using low frequency
(monthly) time series Xs.

(ut, vt) ∼ C(λt) copula
λt = λτ + αΦ−1(ut)Φ

−1(vt) + βλt−1 daily

λτ =
∑
s

γs
∑
k

φk(ws)Xs,τ−k monthly

γs : weight of predictor s
φk(ws) : weight decay of predictor s

φk(w) ∝
(
1− k

K

)w−1
, φk(w) = 1

Try with the symmetrized Joe-Clayton (SJC) copula.

Structural clustering of volatility regimes
for dynamic trading strategies

A. Prakash et al. (2021)
To determine the number of volatility regimes (in a
return time series):
– Partition the time series into stationary segments
(Mood test, in R’s cpm package to detect changes
in variance)

– Compute the Wasserstein distance matrix

Dij =Wp(Fi, Fj) =
(∫
|F1 − Fj |p

)1/p
– Use spectral clustering, with affinity matrix

Aij = exp−
D2
ij

σiσj
,

where σi is the distance between i and its d
√
m eth

nearest neighbour, where m is the number of seg-
ments.

The resulting strategy could be: buy the S&P when
volatility is low, switch to gold when it is high.
To compare (xi, . . . , xs) and (x1, . . . , xt), replace the
observations by their ranks and compare 〈(xi− x̄)2〉 in
each segment.

High-frequency-based volatility model
with network structure

H. Yuan et al.
The heavy volatility model combines high and low fre-
quency data.

rt : daily returns
RMy : daily realized volatility
ht = Vart−1[rt]

µt = Et−1[RMt]

ht ∼ ht−1 + RMt−1

µt ∼ µt−1 + RMt−1

Article and book summaries by Vincent Zoonekynd 167/1044

It can be generalized to N assets (N = 18, in the ex-
ample), linked through an adjacency matrix A (e.g.,
industry membership).

hi,t ∼ hi,t−1 + RMi,t−1 +
1

di

∑
j

aijRMj,t−1

µi,t ∼ µi,t−1 + RMi,t−1 +
1

di

∑
j

aijRMj,t−1

Learning probability distributions
in macroeconomics and finance

J. Baruník and L. Hanus (2022)
Forecast the h-period ahead distribution of GDP
growth, inflation, unemployment from 60 years of 200
macroeconomic variables (FREQ-QD), with a multi-
output neural net (MLP, RNN, LSTM) forecasting the
binary variables [yt+h ⩾ qαt], where qαt is the α-quantile
of y on [0, t], for 20 values of α (0.01 to 0.99), with a
penalty to ensure the quantiles are in the correct order.
Implementation in Julia (Flux.jl): DistrNN.jl.

Complexity and persistence of price time
series of the European electricity spot market

C. Han et al.
To look at the tails of a distribution, plot its (kernel)
density with a logarithmic vertical scale and fit a sym-
metric Lévy α-stable distribution

L(x) =
1

2π

∫ ∞
−∞

φ(t)e−ixtdt

φ(t) = exp
[
itµ− |ct|α

]
α < 2

or a q-Gaussian distribution

G(x) ∝ eq
(
−c(x− µ)2

)
eq(x) =

[
1− (1− q)

]1/(1−q)
q > 1

using KL(data‖p).
To show multifractality, plot the return variance ver-
sus the window size: if the Hurst exponent is constant,
it is a straight line.

Machine learning forecast disagreement
and equity returns

T.G. Bali et al. (2022)
Dispersion between ML models trained on the same
inputs have some predictive power on future returns.

Gamma and vega hedging using
deep distributional reinforcement learning

J. Cao et al. (2022)
Assuming that ∆-hedging (of an option portfolio) can
be done without cost, use D3PG to learn a gamma and
vega hedging strategy using options, where the state is

(asset price, portfolio gamma, portfolio vega), the ac-
tion is the number of options to hold, and the reward
is

change in portfolio value− option cost.

Always safe: reinforcement learning without
safety constraint violations during training

T.D. Simão et al. (2021)
Factored constrained Markov decision processes
(CMDP) use a small subset of the features to describe
the dynamics relevant to the safety constraints: the
safety dynamics are easier to learn, and the model can
be deployed, safely, to continue learning.

Constrained optimal stopping time
under a regime-switching model

T. Arai and M. Takenaka (2022)
The optimal stopping time

Argmax
τ

E
[
e−rτπ(Xτ)

∣∣ X0 = x
]

π(x) = E
[∫ ∞
t

e−r(t−s)Xsds− I
∣∣∣ Xt = x

]
is sometimes of threshold type

τ∗ = inf{t > 0 : Xt ⩾ x∗}

(Xt is a regime switching geometric Brownian motion,
and the stopping time is constrained to exogenous ran-
dom times (Poisson) and regime 1).

textnets: a Python package
for text analysis with networks

J.D. Boy
Community detection, on a term-document bipartite
graph, is an alternative to LDA topic models.

Combining natural language processing
and network analysis to examine

how advocacy organizations stimulate
conversation on social media

C.A. Bail
To get more reactions, on social media, blend unrelated
topics (e.g., autism and vaccines): advocacy organiza-
tion with a high betweenness centrality (in a graph built
from term co-occurrences), i.e., “cultural bridges”, lead
to more reactions.

Landscape of academic finance
with the structural topic model

D. Ardia et al. (2022)
The structural topic model (STM) extends the latent
Dirichlet allocation (LDA) and correlated topic mod-
els (CTM) by allowing for document covariates (e.g.,

Article and book summaries by Vincent Zoonekynd 168/1044

time).

d: document
k: topic
n: word

Xd: covariates
θd: distribution of topics in document d

θd|Xd ∼ LogisticNormal
βk: distribution of words in topic k
βk ∝ exp(m+ κk)

zd,n|θd ∼ Multinomial topic of word n
wd,n|βzd,n ∼ Multinomial word n

Do word embeddings really understand
Loughran-McDonald polarities?

M. Li and C.A. Lehalle (2021)
Word embeddings are bad at sentiment extraction:
antonyms tend to be used in the same context (“this
was a good film”, “this was a bad film”) – they are
frequentist synonyms.

Heterogeneous
information network based default analysis

on banking micro and small enterprise users
Z. Zhang et al.

Build a network of industries, small enterprises and
persons accounting for:
– Fund transfer between companies
– Person/company controlling/investing in a company
– Industry memnership; up/down-stream industries

Stock embeddings: learning distributed
representations for financial assets

R. Dolphin et al.
Use word2vec to compute stock embeddings, linking a
stock to a context (the k stocks with the closest returns
on a random n-day window, k = 3, n = 1)

Understanding the quintile portfolio
R. Zhou and D.P. Palomar (2020)

The long-only quintile portfolio (more generally, the
top k% portfolio) is the solution of the robust opti-
mization problem

Find w
To maximize Min

µ : ∥µ−µ0∥1⩽ε
w′µ

Such that w ⩾ 0
w′1 = 1

(for some value of ε); for larger values of ε, it is the
1/N portfolio.
For the long-short quintile portfolio, replace the con-
straints with ‖w‖1 − 1, w′1 = 0.

For inverse-volatility weights, replace the uncertainty
set with {µ0 + e : ‖e� σ‖1 ⩽ ε} where � is the ele-
mentwise division.
The results generalize to market exposure w′β = 0 or
sector exposures.

QuantNet: transferring learning
across trading strategies

A. Koshiyama et al.
Train 60 country-specific models, with a shared central
layer, to output a trading signal in [−1, 1] (weights),
maximizing the Sharpe ratio; encoder and decoder are
LSTMs.

input Encm T Decm output
specific to market m

shared across all markets

The virtue of complexity
in machine learning portfolios

B. Kelly et al. (2021)
Financial models exhibit the double descent phe-
nomenon.

Dynamic portfolio optimization
with inverse covariance clustering

Y. Wang and T. Aste (2022)
Define market states by clustering stock returns, using:
– The Euclidean distance;
– Or the Gaussian or Student log-likelihood, computed
using a sparse estimate of the inverse covariance ma-
trix.

A factor model for option returns
M. Büchner and B. Kelly

Instrumented PCA allows the loadings to depend on ex-
ogenous variables (e.g., moneyness, time to maturity,
implied volatility, embedded leverage, Greeks).

rit : asset returns
zit : exogenous variables
βit = z′itΓ + noise

ri,t+1 = βitft+1 + noise
ft : factor returns

For options on the S&P 500 (monthly holding period,
delta-hedged daily), 3 factors are needed; they can be
interpreted as volatility surface level, term structure
slope of the volatility surface, moneyness skew of the
volatility surface.

Article and book summaries by Vincent Zoonekynd 169/1044

Drawdown beta and portfolio optimization
R. Ding and S. Uryasev (2021)

The drawdown at risk (DaR) is the α quantile of the
distribution of drawdowns, The conditional drawdown
at risk (CDaR) is the average of the drawdowns beyond
the DaR. The expected regret of drawdown (ERoD)
is the average of the drawdowns beyond some fixed
threshold (instead of a quantile). The CDaR beta
(resp., ERoD beta) is the average asset return, divided
by the market CDaR (resp. ERoD), with the averages
in the numerator and denominator are computed over
matching periods.
You want to invest in stocks with β ≈ 0 but βCDaR < 0.

Capital asset pricing model (CAPM)
with drawdown measure

M. Zabarankin et al. (2013)
In the CAPM, replace the 1-period returns with re-
turns over market drawdown periods.

Sensitivity to large losses and ρ-arbitrage
for convex risk measures

M. Herdegen and N. Khan (2022)
A risk measure ρ is suceptible to ρ-arbitrage if it is
possible to have arbitrary high returns with arbitrarily
low risk. If ρ is
– Monotone: X ⩽ Y a.s. =⇒ ρ(X) ⩾ ρ(Y),
– Normalized: ρ(0) = 0,
– Star-shaped: ∀X ∀λ ⩾ 1 ρ(λX) ⩾ λρ(X),
– Sensitive to large losses:

P [X < 0] > 0 =⇒ ∃λ > 0 ρ(λX) > 0,

there is no ρ-arbitrage.

Universal approximation of credit portfolio
losses using restricted Boltzmann machines

G. Genovese et al. (2022)

Probability equivalent level of value at risk
and higher order expected shortfalls

M. Barczy et al.
The probability equivalent level of VaR and ES,
PELVEαX is the c ⩾ 1 such that VaR1−αX =
ES1−cαX. It is motivated by the Basel move from
VaR.99 to ES.975 (c=2.5). The PELVE can be gen-
eralized from (VaR,ES) to (ρ, ρ̃), for families of risk
measures (ρp)p and

ρ̃p =
1

1− p

∫ 1

p

ρs(X)ds.

The nth order expected shortfall is

ESp,n =
n

1− p

∫ 1

p

(
s− p
1− p

)n−1
VaRs(X)ds.

A simple method for measuring inequality
T. Sitthiyot and K. Holasut (2020)

Instead of using only the Gini index, look at several
measures:
– Gini index;
– Income share held by the top 10%: T10;
– Income share held by the bottom 10%: B10 (or their

ratio, B10/T10);
– Entropy H of the income distribution.
Combine those measures as

√
Gini2 +H2

2
or

√√√√√Gini2 +
√
1− B10

T10
2

since H ≈ (1−B10/T10)
1/4.

Missing financial data
S. Bryzgalova et al.

To fill in missing data in panel data Ciℓt

i : asset
` : feature
t : time

estimate a cross-sectional factor model (PCA with
missing values, for each t, but with Λt = Λ constant)

Ct
I×L

= Ft
I×K

Λ
K×L

+ noise

and use it in a time series model

Cit ← coalesce
(
Cit, f(Ci,t−1, Fit)

)
(or f(Ci,t−1, Ci,t+1, Fit) if you are willing to use future
data) where f is linear.

Vulnerability-CoVaR:
investigating the crypto market

M. Waltz et al. (2022)
There are many generalizations of value at risk (VaR)
to several assets:
– CoVaRj|i: α quantile of Xj conditioned on Xi being
below its α quantile;

– MCoVaRj : α quantile of Xj conditioned on all the
Xi being below their α quantile;

– VCoVaRj : α quantile of Xj conditioned on at least
one Xi being below its α quantile;

– SCoVaRj|i: α quantile ofXj conditioned on
∑
i ̸=j Xi

being below its α quantile;
– Vulnerability index (VI): probability that Xj is be-
low its α quantile given that at least one Xi is below
its α quantile;

– ∆CoVaR: difference between CoVaRj|i and the α
quantile of Xi being at its 50% quantile.

Article and book summaries by Vincent Zoonekynd 170/1044

Evolutionary correlation, regime switching,
spectral dynamics and optimal trading

strategies for cryptocurrencies and equities
N. James (2022)

Compute the correlation matrix between 45 cryptocur-
rencies, between 100 equities, and within each sec-
tor (for cryptocurrencies, use the coinmarketcap.com
classification: centralized exchanges, collectibles
(NFT), decentralized finance, platform, smart con-
tracts, store of value, wallet – some are in several cat-
egories), apply random matrix theory, and plot, over
time:
– The number of non-random eigenvalues;
– The largest eigenvalue;
– The proportion of variance explained by the first
eigenvalue.

Common risk factors in cryptocurrency
Y. Liu et al. (2019)

Among Fama-French-like factors for crypto currencies
(capitalization, age, volume, β, β2, volatility, idiosyn-
cratic volatility, skewness, maximum return in the pre-
vious week, momentum for various lookback periods,
Amihud), market, size and momentum explain cross-
sectional returns.

Sequence-based target coin prediction
for cryptocurrency pump-and-dump

S. Hu et al.
Detect pump and dump announcements from 1000
Telegram channels (start on PumpOlymp and follow
the invitation links; use tf-idf vectors) and try to pre-
dict the target coin.

A word is worth a thousand dollars:
adversarial attacks

on Tweet fools stock prediction
Y. Xie et al.

Retweet semantically similar adversarial tweets (re-
place a single word) to attack Stocknet, FinGRU and
FinLSTM.

NFT appraisal prediction: utilizing search
trends, public market data, linear regression

and recurrent neural networks
S. Jain et al.

Forecast NFT prices using:
– The degree and PageRank centrality of buyers and
sellers; user activity on Twitter and OpenSea;

– The first 5 principal components of AlexNet embed-
dings of the NFT;

– Price history (in the NFT collection, using the
covalent API); gas (ETH transaction fee);

– BTC, ETH, Gold, S&P 500, Nasdaq 100, FAANG;
– Google search volume (pytrends); news sentiment.

Constructing and NFT index and applications
H. Schnoering and H. Inzirillo

Build an NFT index from 60 collections:

log(priceijt)∼collectionj+scarcityij+log(indext)+noiseit

where scarcityij measures the scarcity of the traits of
NFT i in collection j.

Algorithms for optimization
M.J. Kochenderfer and T.A. Wheeler (2019)

3. Given a univariate function f , three points a <
b < c are said to bracket a minimum if f(b) < f(a)
and f(b) < f(c). Fibonacci search splits an interval in
an optimal way (to obtain the smallest bracket after
n iterations); it is often approximated with a golden
section search. Quadratic fit search (often faster) im-
proves a bracket by approximating the function with a
quadratic and taking its minimum.
For a Lipschitz continuous function, the Schubert-
Piyavskii method keeps track of a lower bound on the
function and progressively improves it.

xs

f(
xs

)

If the derivative of the objective f is known, the bis-
section method can solve f ′(x) = 0.
4. Line search starts with a point x, a direction d, and
solves the 1-dimensional problem

Minimize
α

f(x+ αd).

Approximate line search looks for a step size providing
a “sufficient decrease” (Armijo condition)

f(x+ αd) ⩽ f(x) + βα∇df(x) β = 10−4.

The Wolfe conditions also include

∇df(x+ αd) ⩾ σ∇df(x).

Trust region methods forbid excessively large step sizes

Minimize
x

f̂(x) such that ‖x− x0‖ ⩽ δ;

the radius δ can be adjusted by looking at the local
model performance

η =
actual improvement

predicted improvement =
f(x)− f(x0)
f̂(x)− f(x0)

.

5. Gradient descent can perform poorly in narrow val-
leys. Conjugate gradient minimizes a quadratic func-
tion f(x) = 1

2x
′Ax + b′x + c in n mutually conjugate

Article and book summaries by Vincent Zoonekynd 171/1044

steps ∀i 6= j d′iAdj = 0.

dk = −gk + βkdk−1

βk =
g′kAdk−1
d′k−1Adk−1

We do not know A, but we can use approximations.

βk =
g′kgk

g′k−1gk−1
or βk =

g′k(gk − gk−1)
g′k−1gk−1

Gradient descent can be improved with:
– Momentum
– Nesterov momentum (momentum at the next point)
– An adaptive learning rate for each coordinate, us-
ing

∑
k g

2
ki (AdaGrad, but the learning rate de-

creases too much) or an exponential moving average
of the g2ki (RMSProp, which has inconsistent units,
or AdaDelta);

– Adam, which combines momentum and adaptive
learning rate.

Hypergradient descent also optimizes the learning rate.
6. Newton’s method approximates the objective func-
tion with a quadratic function, x ← x −H−1g; it can
fail (oscillations, overshoot, or f ′′ < 0). The secant
method uses an approximation of the second derivative
with the first (in dimension 1). Quasi-Newton meth-
ods use an approximation of the Hessian (DFP, BFGS,
L-BLFGS).
7. Coordinate descent (aka cyclic coordinate search)
optimizes one coordinate at a time. Powel’s method
is similar, but progressively changes the directions, re-
placing the last one with xn+1 − x1 (occasionally reset
the search direction lest they become colinear).
The Hooke-Jeeves method evaluates f(x) and f(x ±
αei). Generalized pattern search is similar but evalu-
ates f(x) and f(x+ αd), d ∈ D , where D is a positive
spanning set, which can have as few as n+1 elements.
The Nelder-Mead method uses a simplex to explore the
space.
The divided rectangle (direct) method uses Lipschitz
bounds, but without specifying the Lipschitz constant
(it considers all possible values), and dividing the
search space recursively, into rectangles (otherwise, the
Lipschitz lower bound is a (rather complex) intersec-
tion of cones); rectangles for which there is a Lipschitz
constant for which their lower bound would be a mini-
mum are split into thirds along their largest dimension.
8. To avoid plateaus and saddle points, try noisy de-
scent (adding Gaussian noise to the gradient), mesh
adaptive direct search (random positive spanning di-
rections)

or, even, simulated annealing.

The cross-entropy method does not follow a point but
a distribution; at each step, it samples from that dis-
tribution, and fits a distribution to the best samples.
Natural evolution strategies also solve

Minimize
θ

E
x∼pθ

[
f(x)

]
but uses gradient descent and the log-derivative trick.
CMA-ES differs from CEM:
– After estimating µ, σ, it samples from N(µ, σ2Σ);
– Instead of selecting the best samples, it weighs them
(some weights are negative)

wi = log
m+ 1

2
− log i i ∈ J1,mK;

– The step size is updated (in a complicated way).
9. Initialize population methods with a uniform, Gaus-
sian or Cauchy: genetic algorithms (cross-over and mu-
tations), differential evolution

x = xi + w(xj − xk),

particle swarm optimization (momentum), firefly algo-
rithm (the attractive power of each particle depends
on its fitness), etc. – there is an excessive proliferation
of nature-inspired methods.
Hybrid methods combine population search with local
search.
10. Transforming a constrained optimization problem
can sometimes help remove constraints.

Lagrange multipliers deal with equality constraints

Minimize
x

f(x) such that h(x) = 0.

The first-order conditions

h(x) = 0

∇f(x) = λ∇h(x)

can be written with the Lagrangian

L (x, λ) = f(x)− λh(x)
∇xL = 0

∇λL = 0.

With inequality constraints,
Find x
To minimize f(x)
Such that g(x) ⩽ 0

h(x) = 0

Article and book summaries by Vincent Zoonekynd 172/1044

things are more complicated. The KKT conditions are

g ⩽ 0

h = 0

µ ⩾ 0

µ� g = 0

∇f + µ′∇g + λ′h(x) = 0.

With the generalized Lagragian

L (x, µ, λ) = f(x) + µ′g(x) + λ′h(x),

the primal and dual problems are

primal Minimize
x

Max
µ⩾0
λ

L (x, µ, λ)

dual Maximize
µ⩾0
λ

Min
x

L (x, µ, λ).

The max-min inequality is

Max
a

Min
b
f(a, b) ⩽ Min

b
Max(a)f(a, b).

To solve constrained optimization problems, try adding
a quadratic penalty∑

i

Max
(
gi(x), 0)

2 +
∑
j

hj(x)
2.

For equality-constrained problems, the augmented La-
grange method uses both a quadratic and a linear
penalty

p(x) = 1
2ρ ‖h(x)‖

2 − λ′h(x)
λk+1 = λk − ρh(x).

Interior point methods use a barrier penalty (infinite
for infeasible points), e.g.,

p(x) = −
∑ 1

gi(x)
or p(x) = −

∑
log
(
−gi(x)

)
1gi(x)⩾−1

(to find a feasible point, use a quadratic penalty).
11. The simplex algorithm moves from vertex to vertex
of the feasible set.
To find a feasible solution of

Minimize
x

c′x such that Ax = b, x ⩾ 0,

add extra variables z and try to zero them out

Find x, z

To minimize
(
0
1

)′(
x
z

)
Such that

(
A Z

)(x
z

)
= b

x, z ⩾ 0

where Z = diag
(
sign(b)

)
.

12. To solve multiobjective optimization problems:

– Constrain all but one of the objectives;
– Rank the objectives, and maximize them one by one,
adding constraints to fix the previous ones;

or combine the objectives:
– w′f(x)
– ‖f(x)− ygoal‖p (goal programming)
–
∑
wi
(
fi(x)− ygoal

i)p

– Maxwi
(
fi(x)− ygoal

i)p

–
∑

(epwi − 1)epfi(x).
NSGA-II is a population method keeping track of the
level of the individuals (level-1 are non-dominated,
level k + 1 are non-dominated after removing levels 1
to k). To preserve diversity, reinject good points into
the population, or penalize points with the density of
their neighbourhood.
To choose w in the weighted model w′f(x), ask experts
if they prefer a or b, and pick w such that w′a < w′b;
repeat with other pairs; prefer the w that best sepa-
rates w′a and w′b. Choose a and b to cut the feasible
space W into two equal parts (Q-eval).
Robust optimization does not choose one w ∈ W :

Minimize
x

Max
w∈W

w′f(x).

The minimax regret approach solves
Minimize

x
Max
w∈W

Max
y

w′f(x)− w′f(y).

13. Grid search (full factorial design) does not scale
to high dimensions: try random sampling. A uniform
projection plan is a sampling plan over a grid with uni-
form margins (latin hypercube sampling).

To measure how space-filling a sampling plan is, look
at

discrepancy(X) = sup
H hyperrectangle

∣∣∣∣#X ∩H#X
− vol(H)

∣∣∣∣
d(X) = Min

i ̸=j
d(xi, xj)

Φq(X) =

(∑
i ̸=j

d(xi, xj)
−q
)1/q

Φ(X) = Max
q∈{1,2,5,10,20,50,100}

Φq(X)

Quasi-Monte Carlo (with quasi-random sequences,
such as additive recurrences, Halton or Sobol se-
quences) has an error O(1/m) instead of O(1/

√
m).

14. One can build a surrogate model with basis func-
tions (sines, polynomials, radial basis functions) and
assess it with cross-validation or 0.632 bootstrap (linear
combination of leave-out-one bootstrap and bootstrap,
to avoid bias).
15. Gaussian processes (GP) are probabilistic surro-
gate models.

Article and book summaries by Vincent Zoonekynd 173/1044

16. To choose where next to evaluate the objective
function, look at the uncertainty σ̂(x), a lower confi-
dence bound µ̂(x)−ασ̂(x), the probability of improve-
ment, or the expected improvement.
To ensure safe exploration, add a “safety score” to the
GP model.
17. To deal with noise, e.g., f(x, z) = f(x) + z or
f(x, z) = f(x + z), with an uncertainty set, use the
minimax

Minimize
x

Max
∥z∥⩽ε

f(x, z)

or the information gap

Find x, ε
To maximize ε
Such that ∀z ‖z‖ ⩽ ε ⇒ (x, z) feasible
and f(x, z) ⩽ ymax.

Probabilistic uncertainty uses distributions over
the noize z: look at Ez f(x, z), Varz f(x, z),
VaR1−α

z f(x, z), CVaR1−α
z f(x, z).

18. Given a distribution z ∼ p, we can estimate the
distribution of f(z) (in particular E f(z) and Var f(z))
using:
– A Taylor expansion of f ;
– Monte Carlo samples;
– Polynomial chaos: if f is a polynomial (product
of orthogonal polynomials), we can easily compute
E f(z) and Var f(z);

– Gaussian processes: Ez f(z) ≈ Ef̂ Ez f̂(z) =

Ez Ef̂ f̂(z) = Ez µ(z) (it is a little more complicated
for Var f(z)).

19. For an integer program

Minimize
x

c′x such that Ax = b, x ⩾ 0

with a totally unimodular matrix A (the determinant of
all submatrices is 0, +1 or −1), the simplex algorithm
returns an integer solution.
The cutting plane method solves the problem without
the integrality constraint, and adds constraints to re-
move the non-integral parts of the solution. Branch
and bound recursively splits the problem by adding
constraints: xi ⩽ bx∗i c and xi ⩾ dx∗i e.
20. To explore a search space described by a grammar,
try genetic programming (cross-over swaps two random
subtrees). A probabilistic grammar, with probabilities
progressively updated to focus on derivation rules im-
proving the objective, may help.
21. Multi-disciplinary optimization studies problems
of the form

Find x
To minimize f(x)
Such that ∀i Fi(x) = x

where Fi only modifies coordinate i of x. Try (cf pro-

jected gradient)

x← mda(x)
x← improve(x)

where mda returns a compatible assignment.

Algorithms for decision making
M.J. Kochenderfer et al. (2022)

1. Decision making algorithms can rely on:
– Explicit programming (hard-coded policies);
– Supervised learning (behavioural cloning);
– Optimization (search in policy space);
– Planning (reduction of the problem to dynamic pro-
gramming);

– Reinforcement learning (if the model of the environ-
ment is not known).

2. Probability distributions on a large number of vari-
ables can be represented by Bayesian networks

Battery
failure

Solar panel
failure

No electricity

Trajectory
deviation

Communication
loss

explaining away: B 6⊥⊥ S |E

3. Inference on Bayesian networks can use:
– Sum-product variable elimination (marginalizing out
variables as early as possible);

– Junction tree algorithm (belief propagation on a tree
of subsets of variables);

– Loopy belief propagation.
Exact inference is NP-hard: a 3-SAT problem can be
converted to a Bayesian network.

X1 X2 X3 X4

C1 C2 C3

Y

Xi ∼ Unif(T,F)

clauses

cummulated
clauses

1 2 3
−1 −2 3
2 −3 4

C1 C1∧C2 C1∧C2∧C3

Approximate inference can also be done via:
– Direct sampling (use a topological order on the
nodes);

– Likelihood-weighted sampling;
– Gibbs sampling.
4. The parameters of a Bayesian network can be
learned via
– Maximum likelihood;
– Bayesian methods (with beta or Dirichlet priors);
– Expectation maximization (EM), if some of the data
is missing.

Article and book summaries by Vincent Zoonekynd 174/1044

5. To learn the structure of a Bayesian network, com-
pute the score (penalized log-likelihood) of candidates,
using local search or K2 search (iterate over the nodes
in a prespecified order, adding parents if this increases
the score, with a limit on the number of parents). It
may be more efficient to search the space of essential
graphs (CPDAG) instead of all DAGs.
6. Under some reasonable assumptions on an agent’s
preferences, rational decisions are those maximizing
the expected utility, for some utility function.
A decision network (influence diagram) has
– Chance, decision and utility nodes;
– Conditional, informational and functional nodes
(ending in chance, decision, and utility nodes).

T

D U

O1 O2 O3

treatment

disease?

diagnostic tests

The value of information is

VOI(O2|O1) = E
O2

[
EU(O1, O2)

]
− EU(O1)

where EU(O) is the expected utility of an optimal de-
cision given observation O.
7. Many problems require a sequence of decisions;
with a Markov assumption, they can be modeled as
an MDP.

A1 A2 A3

R1 R2 R3

S1 S2 S3

MDP

At

Rt

St St+1

Stationary MDP

Policy evaluation computes the value (expected return)
of a state (if we follow the policy π) by iterating

U(s)← R+ γ E
s′

[
U(s)

]
.

Policy iteration computes an optimal policy by iterat-
ing between policy ecaluation and policy improvement
(replacing the current policy with the greedy policy wrt
the value function).
Value iteration computes an optimal policy by iterat-
ing Bellman’s equation

U(s)← Max
a

(
R(s, a) + γ E

s′
[U(s′)]

)
;

the updates can be done asynchronously.

The optimal policy is also solution of the linear pro-
gram
Find U
To minimize

∑
s U(s)

Such that ∀s U(s) ⩾ Maxa
(
R(s, a) + γ Es′ [U(s′)]

)
(the minimization turns the inequalities into equali-
ties).
8. If the state space is large (or continuous), approx-
imate the value function: k-nearest neighbour, kernel
smoothing, linear interpolation, simplex interpolation
(only uses d + 1 neighbours in dimension d, instead
of 2d for linear interpolation), linear regression, neural
networks. Many of those can be written Uθ(s) = θ′β(s)
for some basis functions (βi)1⩽i⩽m.
9. The reachable state space is often smaller than the
full state space: receding horizon planning solves a sub-
set of the full MDP by only looking d steps ahead.
– Expand the whole search tree (forward search);
– It may be possible to prune the search tree using a
lower bound on the state value function

¯
U(s) and

an upper bound on the state action value function
Q̄(s, a);

– Sample the next states using a rollout policy and
average;

– Monte Carlo tree search (MCTS) not only samples
but also updates estimates of the state action value
function Q(s, a), often using the UCB1 exploration
heuristic

UCB1 = Q(s, a) + c

√
logN(s)

N(s, a)
;

limit (but progressively increase) the number of
actions considered in a state, and the number of
states reachable after an action, to θ1N(s)θ2 and
θ3N(s, a)θ4 ;

– Heuristic search samples from a greedy policy for
value function U , initialized to an upper bound, and
progressively refined.

Openloop planning (committing to the next d actions,
i.e., not revising the plan when new observations ar-
rive), reduces to an optimization problem; there are
robust variants.

Observe Act
closed loop

Observe Act
open loop

10. Policy search directly searches the space of poli-
cies to maximize the expected discounted return U(θ),
often approximated using m strategy rollouts.
The Hooke-Jeeves method is a local search taking steps
of size ±α in each coordinate direction.
Genetic search keeps track of a population of policies,
progressively perturbed and pruned.
The cross-entropy method (CEM) updates a distribu-
tion rather than a set of points

Maximize
ψ

E
θ∼pψ

U(θ)

Article and book summaries by Vincent Zoonekynd 175/1044

where U(θ) is the expected discounted return under
policy πθ; the expectation is approximated with sam-
ples from pψ, and the distribution is updated by fitting
it to the best samples.
Evolution strategies optimize the same objective func-
tion, by using a gradient step, computed with the log-
derivative trick

∇ψ E
θ∼pψ

U(θ) = · · · = E
pψ

[
U(θ)∇ψ log pψ(θ)

]
.

Rank shaping replace the utilities U(θ) (which are
noisy) with their rank, or some transformation thereof.
11. To estimate the gradient ∇U(θ), one could use:
– Finite differences;
– Regression, after estimating U(θ+ε) for random off-

sets ε (instead of fixed-size, axis-aligned offsets);
– The log-derivative trick; the variance can be reduced
by using the reward-to-go, and by subtracting a
baseline.

12. Gradient ascent takes a step in the gradient di-
rection; the gradient can be clipped (coordinate-wise)
or rescaled (to cap its norm). Rescaling the gradient
to set its norm (restricted gradient) is equivalent to
maximizing a linear approximation of the objective in-
side a ball; the natural gradient defines that ball with
the Fisher information matrix; the trust region method
(TRPO) uses a line search in the gradient direction
within the Fisher information ball.
13. Actor-critic methods jointly optimize the policy
(actor) and refine an approximation of the value func-
tion (critic): by providing a better baseline, the critic
helps lower the variance of the policy gradient.
14. To evaluate the final policy:
– Use importance sampling, to focus on rare events;
– Use robust dynamic programming, or adversarial
analysis;

– Compute the Pareto frontier, if there are several
competing performance measures.

15. To balance exploration and exploitation, for bi-
nary bandits (single-state MDP, with binary rewards)
one can take random actions once in a while (ε-greedy).
Optimism under uncertainty keepd track of an esti-
mate of the (distribution of the) value of each action,
and chooses the action (“arm”) with the highest α-
quantile, or some other upper confidence bound, e.g.,

UCB1(a) = ρa + c

√
logN

N(a)
.

Dynamic programming on belief states (number of
tries, number of wins, for each arm – there are ex-
ponentially many beliefs) can be solved efficiently with
the Gittins allocation index [no details].
16. The MLE of the MDP can be obtained from the
counts, and solved at each step; instead of re-solving
it each time, a few Bellman updates may be sufficient,

e.g., focusing on states known to lead to the current
state. One can bias the estimated MDP to encour-
age exploration (increasing the reward of insufficiently-
visited states).
Bayes-adaptiveMDPs extend the state space S to S×B
where B is the set of possible beliefs on the model pa-
rameters.
Posterior sampling (Thompson sampling) samples
from the posterior model parameters, instead of using
the MAP.
17. Model-free methods model the state action value
function Q directly, without estimating the MDP.

Bellman Q(s, a) = E
r,s′

[
r + γMax

a′
Q(s′, a′)

]
Update Q(s, a)← Q(s, a) + α

[
target−Q(s, a)

]
Q-learning target = r + γMax

a′
Q(s′, a′) off-policy

SARSA target = r +Q(s′, a′) on-policy

With sparse rewards, learning can be slow.
Eligibility traces apply the update

Q(s, a)← Q(s, a) + αδ

δ = target−Q(s, a)

to all state-action pairs, with an exponentially decay-
ing coefficient λ, increased each time the pair is visited

Q(s, a)← Q(s, a) + λ(s, a) · α · δ

(it may not work well with off-policy updates, such as
Q-learning).
Experience replay can help avoid catastrophic forget-
ting.
18. Behavioural cloning uses supervised learning to
reproduce expert decisions, but suffers from cascading
errors: small errors compound and eventually lead the
agent to regions of the state space never visited by the
expert.
Inverse reinforcement learning learns a reward function
(not a policy) from trajectories, by matching policy fea-
tures. The problem is underspecified: also maximize
the entropy of the distribution over trajectories.
Generative adversarial imitation learning (GAIL) uses
a GAN to generate expert-like trajectories.
19. An MDP is a conditional distribution r, s′|s, a. A
POMDP is a conditional distribution r, s′, o|s, a.

At

Rt

St St+1

Ot

action

reward

state (hidden)

obeservation

The Kalman filter progressively updates beliefs about
the state, assuming the model is linear and Gaussian.

Article and book summaries by Vincent Zoonekynd 176/1044

The extended Kalman filter (EKF) linearizes non-linear
models (with Gaussian noise).
The unscented Kalman filter (UKF) is derivative-free,
and uses deterministic sampling (“delta points”) to
approximate non-linear functions (“unscented trans-
form”).

µ,Σ 7→ s±i = µ±
√
Σi 7→ f(s±i) 7→ µ′,Σ′

Particle filters (sequential Monte Carlo, SCM) can deal
with nonlinear, non-Gaussian models, but can fail be-
cause of particle deprivation. Particle injection tried
to remedy this by occsionally injecting particles from
a broad distribution (e.g., uniform), when the mean
particle weight becomes too high.
20. A POMDP can be seen as an MDP with beliefs
as states; for planning, only use the k-step-ahead sub-
MDP.
21. QMDP updates a set of alpha vectors, one for each
action.

Q(b, a) =
∑
s

Q(s, a)b(s) = α′ab

αa(s) = R(s, a) + γ
∑
s′

T (s′|s, a)Max
a′

αa′(s
′)

The fast informed bound is similar, but accounts for the
observation model. For lower bounds, try best action
worst state, or single action forever.
Point-based value iteration uses a set of alpha vec-
tors, associated to different belief points, U(b) =
Maxα∈Γ α

′b.
22. MCTS can be extended to POMDPs.
23. A controller (finite state controller, FSA) is a pol-
icy with an internal state.
24. In a simple game (single-state, multi-agent MDP),
a dominant strategy is a best response against all possi-
ble agent policies; a dominant strategy equilibrium need
not exist.
Games with a finite state space have a Nash equi-
librium: each agent follows a best-response strategy.
Computing a Nash equilibrium is PPAD-complete.
A correlated equilibrium is a joint policy (the agent’s
actions need not be independent) in which no agent
can change its action to increase its expected utility.
Hierarchical softmax models human agents:
– Level 0 agents play at random;
– Level k + 1 agents assume the other players are

level k, and select actions with a softmax with pre-
cision λ.

25. A Markov game (MG) is a multi-agent MDP. Pol-
icy evaluation, best response, softmax response

πi(ai|s) ∝ expλQ(s, ai),

Nash equilibrium can be generalized to MGs. To im-
prove the strategy, try gradient ascent with fictitious
play, or Nash Q-learning.

26. A partially-observable Markov game (POMG) is a
multi-agent POMDP.
27. In a decentralized POMDP, agents share the same
reward.

Bayesian optimization
R. Garnett (2021)

1. Sequential optimization iterates

x← policy(D)

y ← observe(x)
D ← D ∪

{
(x, y)

}
.

The new observation, x, is often selected by maximiz-
ing some function (acquisition function).
2. Gaussian processes are distributions on functions
whose restrictions on finite sets are Gaussian – they
are “very high-dimensional” Gaussian distributions:
f ∼ GP(µ, k) means (writing φ instead of f(x), to
simplify the notations)

φ ∼ N(µ,Σ)

µ = E[φ] = µ(x)

Σ = Cov[φ] = k(x,x).

Values are often observed with noise: y ∼ N(µ,Σ+N).
The posterior is a conditional Gaussian:

µD = µ(a) + k(x,x)(Σ +N)−1(y − µ)
kD(x, x′) = k(x, x′)− kx(x,x)(Σ +N)−1k(x, x′).

If L is linear and X Gaussian. then (X,LX) is Gaus-
sian. Since ∇ or h = vech∇∇⊤ are linear, if f is a GP,
then so if (f,∇f, hf).

(f,∇f, hf) ∼ GP

 µ
∇µ
hµ

 ,

 k k∇⊤ kh⊤

∇k ∇k∇⊤ ∇kh⊤
hk hk∇⊤ hkh⊤

If f ∼ GP(µ ≡ 0, k) is sampled from a GP, defined
on a compact space X, with ∀x 6= x′ Var[φ − φ′] =
k(x, x′) − 2k(x, x′) + x(x′, x′) 6= 0, then f a.s. has a
unique maximum on X.
Adding constraints to a GP, e.g., “f has a local maxi-
mum at x0”, or “f ′(x0) = 0, f ′′(x0) ⩽ 0”, can make the
process non-Gaussian (with a GP, the distribution of
f ′′(x0) is unbounded). In this case, use factor graphs.
3. The prior on the mean only affects the extrapolation
regime.

x

y

Article and book summaries by Vincent Zoonekynd 177/1044

For the prior on the mean, use a constant or a linear
combination of basis functions, µ(x) = β′ψ(x). Sta-
tionary covariance functions are of the form k(x, x′) =
κ(x − x′); isotropic ones of the form k(x, x′) =
κ(‖x′ − x‖).
Stationary covariance functions are characterized by
their Fourier transform ν (Bochner’s theorem)

κ(x) =

∫
exp(2πix′ξ)dν(ξ)

where ν is a finite, positive, symmetric, Borel measure
on Rn (spectral measure).
Common covariance functions include (d = ‖x′ − x‖):

kM1/2 = exp(−d)

kM3/2 = (1 +
√
3d) exp(−

√
3d)

kM5/2 = (1 +
√
5d+ 5

3d
2) exp(−

√
5d)

kSE = exp(− 1
2d

2)

Their sample paths are a.s. C 0, C 1, C 2, C∞.
The spectral mixture covariance is defined by

k(ξ) =
∑
i

wiN(ξ;µi,Σi)

κ(ξ) = 1
2

[
k(ξ) + k(−ξ)

]
KSM(x, x′) =

∑
wi · exp

[
−2π2(x− x′)⊤Σi(x− x′)

]
· cos

[
2π(x− x′)⊤µi

]
.

The linear covariance function corresponds to

f(x) = β0 + β⊤x

β ∼ N(a,B)

kLIN(x, x
′) = b2 + x⊤Bx

We can rescale the input and the output of the covari-
ance function: λ2k(d/`).
Automatic relevance determination (ARD) estimates
those length and scale parameters from data.
Beta warping transforms the data with{

R −→ [0, 1]
x 7−→ Beta(x; a, b)

to focus around zero.

qbeta(xs, 3, 3)Covariance functions can be combined:

Cov[f + g] = kf + kg

Cov[fg] = kfkg.

4. To select the GP family, the input and output
scales, and the observation noise, use the MAP esti-
mator, or model averaging (hyperparameter marginal-
ization, perhaps via MCMC), or search through a space
of covariance structures (e.g., described with a gram-
mar), perhaps with Bayesian optimization.
5. (One-step) Bayesian decision theory suggests to se-
lect the action maximizing the expected utility

D : observed action
ψ : unobserved data
a ∈ A : actions
u(a, ψ,D) : utility
Maximize

a
E
[
u(a, ψ,D)

∣∣ a,D]
For T = 1, we maximize

α1(x,D) = E[u(D1)|x]− u(D).

For T = 2, we would like to maximize

α2(x,D) = E[u(D2)− u(D)|x1]
= E[u(D2)− u(D1) + u(D1)− u(D)|x1]
= E[α1(x2|D1)|x1 = x] + α1(x,D)

but we know that, at the next step, we will choose x2
to maximize α, so

α2(x,D) = E[α∗1(D1)|x1 = x] + α1(x,D).

There is an optimization, α∗1, parametrized by x1, in-
side an expectation – and, if we increase T , there will
be even more nesting.

x1 x1 xTy1 y2 yT u(DT)· · ·

Argmax
x1

E
y1

Argmax
s2

E
y2

E
yT

αT = α1 + E[α∗T−1]

= α1 + E[MaxαT−1]

= α1 + E[MaxE[MaxαT−2]]

· · ·

Instead, we can use an optimal but truncated path
(T = 1 or 2), or a suboptimal but complete path (using
a heuristic to select xt).
6. For Bayesian optimization, the final action is a bet
on the location of the extremum. The action space can
be:
– Only the points examined;
– Points close to the points examined;
– All the points in the domain X of f .
For linear (risk-neutral) utility:

u(D) = Max
(x,y)∈D

µD(x) single reward

u(D) = Max
(x,y)∈X

µD(x) global reward

Article and book summaries by Vincent Zoonekynd 178/1044

(do not use Max
(x,y)∈D

y: it includes observation noise).
For risk-averse or risk-seeking behaviour, replace µ
with µ+ βσ, β < 0 or β > 0.
Optimal control is slightly different: we want each yi
to be large, i.e., we are maximizing

∑
yi.

The information gain, E[∆H], or E[∆KL], is another
utility function.
7. The expected gain utility

α(x,D) = E[u(D ′)|x,D]− u(D)

can be used as an activation function.

Utility Activation
single reward expected improvement
global reward knowledge gradient
unit for improving probability of improvement
single reward
information gain mutual information
cummulated reward posterior mean

Bayesian optimization is based on either Bayesian de-
cision theory, or multi-arm bandits (infinite-arm ban-
dits), for instance, using an upper bound (e.g., the
99.9% quantile) of y = f(x); it is equivalent to max-
imizing the probability of improvement beyond some
threshold.
Thompson sampling maximizes a random acquisition
function, sampled from the posterior.
Two-step lookahead works better.
8. For Gaussian processes, without noise, the acquisi-
tion functions without noise are

αEI(x) = (µ− φ∗)Φ
(
µ− φ∗

σ

)
+ σφ

(
µ− φ∗

σ

)
αPI = Φ

(
µ− τ
σ

)
where

µ = µ(x)

σ = σ(x)

φ∗ : best value of f(x) so far
Φ, φ : Gaussian cdf and pdf
τ : improvement threshold

9. For the implementation, use the Coolesky decom-
position, and update it sequentially.
Given observations z, use inducing values v(

v
z

)
∼ N

((
µ
m

)
,

(
Σ k′

k C +N

))
and compute an approximation of their conditional dis-
tribution

v|z ∼ N(µ̃, Σ̃)

and marginalize them

p(f |z) =
∫
p(f |z)q(v|z)dz.

11. We assumed that each observation had a constant
cost; if it varies, and is known in advance, estimate it
(with a GP, jointly).
For optimal batch selection, try an n-dimensional ac-
quisition function.
Multifidelity optimization also uses several surrogates
of an expensive objective function (e.g., early stopping
– freeze-thaw, hyperband).
For multi-objective optimization, use the volume under
an estimate of the Pareto frontier as utility (S-metric)
and maximize the expected hypervolume improvement
(EHVI).

On the origin of implicit regularization
in stochastic gradient descent

S.L. Smith et al. (2021)
Full-batch gradient descent with finite step size can be
described as a modified gradient flow, with a regular-
izer 1

4α ‖∇`‖
2, where α is the learning rate. For SGD,

the implicit regularization is

α

4m

∑
‖∇`i‖2 .

Implicit gradient regularization
D.G.T. Barrett and B. Dherin (2021)

The discrete steps of gradient descent lead the model
away from the steepest descent path on the loss land-
scape. This path can be described as the steepest de-
scent path on a modified loss landscape. The modified
loss uses a gradient penalty α

4

∑
‖∇`i‖2.

The implicit regularization
of stochastic gradient flow for least squares

A. Ali et al. (2020)
Gradient descent for least squares

Minimize
β

1

2n
‖y −Xβ‖2

with infinitesimal step sizes is described by the gradient
flow

β̇t =
1

n
X ′(y −Xβt), β0 = 0.

Stochastic gradient descent, with minibatches I of size
|I| = m, can be described by a SDE

dβ =
1

n
X ′(y −Xβ)dt+ εQ(β)1/2dW

Q(β) = CovI

[
1

m
X ′I(yI −XIβ)

]
.

It is similar to ridge regression with λ = 1/t.

Article and book summaries by Vincent Zoonekynd 179/1044

The benefits of implicit regularization
from SGD in least squares problems

Z. Zou et al. (2021)
(Unregularized) stochastic graidnet descent has a reg-
ularizing effect: it generalizes at least as well as ridge
regression.

Implicit regularization of discrete gradient
dynamics in linear neural networks

G. Gidel et al. (2019)
The optimization of an overparametrized model does
not end in any parameter achieving a zero training loss:
the choice of optimization algorithm (and of hyperpa-
rameters) directs training towards a particular solu-
tion; for a deep linear model, gradient descent leads to
a low-rank solution.

On lazy training in differentiable programming
L. Chizat et al (2019)

Neural nets sometimes converge to zero training loss
with their parameters hardly varying: this is due to
the scaling of the weights (or, equivalently, of the in-
put), which make the network behave as its lineariza-
tion around its initialization.

Robust supervised learning
with coordinate gradient descent

S. Gaïffas and I. Merad (2022)
Estimating a robust gradient ∇θ` is time-consuming:
instead, use robust estimates of the partial derivatives
E[∂`/∂θi], with coordinate descent. Choose which co-
ordinate to update with importance sampling.
Robust estimators of the mean of x1, . . . , xn include
the median-of-means (MOM) (median of the blockwise
means), the trimmed mean, and the Catoni-Holland es-
timator: µ such that∑

ψ

(
xi − µ
σ

)
= 0,

where ψ is, e.g., the sigmoid

ψ(x) = 2Arctan(ex)− π

2

and σ satisfies ∑
χ

(
xi − x̄
σ

)
= 0

where x̄ is the sample mean, and

χ(u) =
u2

1 + u2
− c,

where c is such that EZ∼N(0,1)[χ(Z)] = 0. Both µ and
σ can be computed with fixed point iterations:

µ← µ+
σ

µ

∑
ψ

(
xi − µ
σ

)
σ ← σ

(
1− χ(0)

n

∑
χ

(
xi − x̄
σ

))
.

Alternatively, one could use traditional empirical risk
minimization (ERM) on disjoint subsets, and aggregate
them with a median-of-mean.

A generalized Catoni’s M-estimator under
finite αth moment assumption with α ∈ (1, 2)

P. Chen et al.
Try M-estimators of location∑

i

φ
(
β(xi − θ̂)

)
= 0

with

φ(x) =

x

=

log
(
1 + x+

xα

α

)
if x ⩾ 0

− log
(
1− x+

xα

α

)
if x < 0

Efficient learning with robust gradient descent
M.J. Holland and K. Ikeda

In gradient descent, replace the average of the gradi-
ents with an M-estimator.

Challenging the empirical mean
and empirical variance: a deviation study

O. Catoni (2011)
Properties of the M-estimator of the mean∑

ψ
(
α(yi − θ̂)

)
= 0

with ψ non-decreasing and

− log

(
1− x+

x2

2

)
⩽ ψ(x) ⩽ log

(
1 + x+

x2

2

)
.

Mean estimation and regression under
heavy-tailed distributions – a survey
G. Lugosi and S. Mendelson (2019)

The quality of a (univariate) mean estimator µ̂n is of-
ten measured with the mean square error E

[
(µ̂n−µ)2

]
but, if the differences |µ̂n − µ| are not sufficiently con-
centrated, the expectation need not reflect the typical
error. Instead, prefer estimators µ̂n that are close to µ
with high probability

|µ̂n − µ| ⩽ ε w.p. 1− δ.

For Gaussian data, the sample mean satisfies (L-sub-
Gaussian)

|µ̂n − µ| ⩽
Lσ
√

log(2/δ)√
n

w.p. 1− δ.

We want an estimator with a similar inequality, but
for fat tail distributions (the estimators will depend
on δ, but will only require finite variance; with more
assumptions, e.g., finite third moment, they need no
longer depend on δ):

Article and book summaries by Vincent Zoonekynd 180/1044

– The median-of-means estimator splits the data into
k groups, computes their means, and the median of
those means;

– Catoni’s estimator generalizes the characterization
of the mean as the solution µ̂n of

∑
(xi− µ̂n) = 0 to

∑
ψ

(
xi − µ̂n

s

)
= 0

for

φ(x) =

log

(
1 + x+

xα

α

)
if x ⩾ 0

− log

(
1− x+

xα

α

)
if x < 0

,

s =
√
n/2σ, and some estimator of σ;

– The trimmed mean splits the data in two, uses the
first half to compute the quantiles, and the second
half (without the observations beyond the quantiles)
to compute the mean.

For multivariate sub-Gaussian data,

‖µ̂n − µ‖ ⩽
√

trΣ

n
+

√
2λmax log(1/δ)

n
w.p. 1− δ

E ‖µ̂n − µ‖2 =
trΣ

n

Traditional multivariate medians (geometric (spatial),
Tukey (half-space), Liu (simplicial), Oja) do not give
the desired bounds. Neither do the following medians:
– The point µ̂n such that the Euclidean ball centered
at µ̂n that contains half the data has minimal radius;

– Rescale the xi’s such that ‖xi‖ ⩽ 1/α (i.e., shrink
them towards zero), perhaps after centering the
data (use independent batches to estimate the center
(mean) and to compute the shrunk mean).

The following (median of means tournament) works:
let Ta, a ∈ Rn, be the set of points x ∈ Rn

at least as close to z1, . . . , zk as a, and set µ̂n =
Argmina radius(Ta), where z1, . . . , zk are block means
(a semi-definite relaxation can be computed effi-
ciently).

Robust sparse voting
Y. Allouah et al. (2022)

The quadratically regularized weighted median is

QrMedW (w, x) = Argmin
z

1
2Wz

2 +
∑
i

wi |z − xi| .

Contrary to the median, it isW -Byzantine resilient (an
attacker can change the median by choosing to be on
one end or the other, and its impact is unbounded).
The Byzantine resilient mean estimator is a clipped

mean centered on the QrMed:

BrMeanW (w, x) =

ClipMean
(
w, x;QrMed4W (w, x),

‖w‖1
4W

)
ClipMean(w, x;µ,∆) =

1

‖w‖1

∑
i

wiClip(xi, µ−∆, µ+∆).

To aggregate complete rankings, use the majority
judgement, or the randomized Condorcet voting sys-
tem.
If the voters only provide sparse scores, on arbitrary
scales, the following is sparsely unanimous and W -
Byzantine resilient (but not independent of irrelevant
alternatives).

n : voter
a : alternative

θna : scores
wn : voting rights

θa ←
θa −Min θam

Max θam −Min θam

snm = Mean
a,b

θma − θmb
θna − θnb

sn = 1 + BrMean
m

(snm − 1)

τnm = Mean
a

smθma − snθna

τm = BrMean
m

τnm

Mehestan(w, θ) = QrMed
n

snθn + τn

(if you do not insist on resilience and scale invariance,
the weighted mean is better).
Individually scaling the preferences cannot lead to
sparse unanimity.

Algorithmic game theory
T. Kesselheim (2020)

1. In a network congestion game, n players have to find
a path from their respective start nodes to their target
node, on a graph, and incur a cost (delay) for each edge
used; the per-user cost depends on the number of users
using this edge.

s1

s2

s3

t1

t2

t3

0,0,0

0,0,0

4,4,4

1,2,3 0,0,0

0,0,0

Each player wants to minimize its cost, but society
wants to minimize the total cost.
A congestion game is the datum of
– A set of players J1, nK;
– A set of resources R = J1,mK;
– A strategy space for each player Σi ⊂ 2R;

Article and book summaries by Vincent Zoonekynd 181/1044

– A delay function for each resource dr : J1, nK→ Z.
The cost of a state s = (s1, . . . , sn) ∈ Σ1 × · · ·Σn for
player i is ci(s) =

∑
r∈Si dr

(
nr(s)

)
, where nr(s) =

#{i : r ∈ Si} is the number of players using resource r.
In a congestion game, every sequence of best response
improvement steps is finite: there is a pure Nash equi-
librium. This can be seen by showing that the Rosen-
thal potential

Φ(s) =
∑
r

nr(s)∑
k=1

dr(k)

decreases.
2. This sequence can be exponentially long but, in a
singleton congestion game (∀i ∀R ∈ si |R| = 1), it is
at most polynomial.
Pure Nash equilibria are exactly the local minima of
the Rosenthal potential.
In symmetric network congestion games (all players
have the same source and target nodes), the Nash equi-
libria can be computed in polynomial time (by reduc-
tion to a min-cost flow problem).
3. A (cost-minimization) normal form game is defined
by
– A set of players J1, nK;
– For each player i, a set of pure strategies Si;
– For each player, a cost function

ci : S =
∏
j

Sj −→ R.

Bimatrix games are a special case.

2

5

6

1

1

5

6

2

A B
A

B
0

1

10

6

15

15

0

60

C D
L

I

4. Pure Nash equilibria do not always exist, but ev-
ery finite normal form game has a mixed Nash equi-
librium (a distribution on strategies, for each player);
the proof uses Brouwer’s fixed point theorem. For bi-
matrix games, one can find a mixed Nash equilibrium
with a simplex-like algorithm.
5. NP is a complexity class for decision problems, but
Nash equilibrium is a search problem. A search prob-
lem is FP if we can find a solution in polynomial time;
it is FNP if we can verify a solution in polynomial time.

FPPPAD PLS

FNP

Finding a mixed Nash equilibrium in a normal form
game is PPAD complete; finding a pure Nash equilib-
rium in a congestion game is PLS complete.
A local search problem is in PLS (polynomial local
search) if there are polynomial algorithms to

– Find a feasible solution;
– Compute the cost of a feasible solution;
– Improve a feasible solution or, if it is already opti-
mal, prove it.

Max-Cut is PLS-complete, and can be reduced to the
problem of finding a Nash equilibrium in a congestion
game.
6. A correlated equilibrium is a probability distribution
on states (the players are no longer independent) such
that ∀i ∈ N ∀si ∈ Si ∀s′i ∈ Si

E
s∼p

[
ci(s)|si

]
⩽ E
s∼p

[
ci(s

′
i, s−i)|si

]
,

i.e., whenever p tells player i to play si, it is the best
thing to do.
A coarse correlated equilibrium only demands

E
s∼p

[
ci(s)

]
⩽ E
s∼p

[
ci(s

′
i, s−i)

]
,

i.e., player i is better off following p than always choos-
ing s′i.
A correlated equilibrium can be computed in polyno-
mial time (via linear programming).
To find an (approximate) coarse equilibrium, the play-
ers can follow a no-regret algorithm. With two players,
it would be:
– The player picks a distribution pt over strategies;
– The adversary picks a cost vector `t;
– The player picks an action from pt, incurs the corre-
sponding loss, and gets to know the cost vector.

The player tries to minimize the (external, expected)
regret

E

[∑
t

`t(at)−Min
a

∑
t

`(a)

]
(we compare the player’s action with the best constant
action in hindsight – the best action sequence in hind-
sight,

∑
tMina `t(a), would be too strong). For multi-

ple players, each player chooses a distribution, and the
loss vector is determined by the decisions of the other
players
7. The multiplicative weights algorithm progressively
updates the probabilities by increasing those with low
cost and decreasing those with high cost:

w1 = (1, . . . , 1)

pt(i) ∝ wt(i)
wt+1(i)← wt(i)(1− η)ℓt(i).

With η =
√
logM/T , the regret is at most 2

√
T logM .

8. The social cost is the sum of the players’ costs

SC(S) =
∑
i

ci(S).

The price of anarchy for pure Nash equilibria (PNE)
compares the worst Nash equilibrium with the best so-
cietal outcome.

PoAPNE =
Max
S∈PNE

SC(S)

Min
S

SC(S)

Article and book summaries by Vincent Zoonekynd 182/1044

In a congestion game with affine delay functions,
PoA ⩽ 5/2. Other equilibrium concepts have a higher
price of anarchy.

1 ⩽ PoAPNE ⩽ PoAMNE ⩽ PoACE ⩽ PoACCE

A game is (λ, µ)-smooth (λ > 0, µ < 1) if

∀s, s ∗
∑
i

ci(s
∗
i , s−i) ⩽ λSC(s∗) + µSC(s);

the price of anarchy for coarse correlated equilibria is
then at most λ/(1− µ).
9. The price of stability compares the best equilib-
rium (the PoA used the worst) with the best societal
outcome.

PoSEq =

Min
s∈Eq

SC(s)

Min
s

SC(s)

A cost-sharing game is a congestion game with dr(x) =
cr/x; the societal cost is then SC(s) =

∑
r:nr(s)⩾1 cr.

The price of stability of a cost-sharing game is at most

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

For a symmetric cost sharing game (all players have
the same strategies), it is 1, but the price of anarchy
can be large.

s t
1 + ε

n

A market sharing game is a (utility maximization) con-
gestion game with Si ⊂ J1,mK and ui(s) = vsi/nsi(s),
where vj is the demand in market j, shared among the
players entering it. The social welfare is then

SW(s) =
∑

j : nj(s)⩾1

vj .

The price of anarchy of a utility-maximization game is

PoAEq =
Max
s∈S

SW(s)

Min
p∈Eq

SW(p)
.

A utility-maximization game is (λ, µ)-smooth (λ > 0,
µ ⩾ 0) if

∀s, s′
∑
i

ui(s
∗
i , s−i) ⩾ λSW(s∗)− µSW(s);

its PoACCE is at most (1 + µ)/λ. The market-sharing
game is (1,1)-smooth: PoACCE ⩽ 2.
10. In a first-price auction, where each player has a
value vi for the item, makes a bid bi, and has utility
ui(b, vi) = vi−bi if he wins and zero otherwise, there is
a Nash equilibrium: the highest value player bids the
second highest value, and the others bid their value.
In a second price auction (Vickrey auction), ui(b, vi) =
vi −Maxj ̸=i bi; it is a dominant strategy to bid truth-
fully.

Given a set of players J1, nK, a set of outcomes X,
valuation functions vi : X → R, and possible bids
B = B1×· · ·×Bn, a mechanism is the datum of an out-
come rule f : B → X and a payment rule p : B → Rn.
The players’ utilities are

ui(b) = vi
(
f(b)

)
− pi(b).

If the bids are valuation functions, the mechanism is
direct. A mechanism is truthful (dominant strategy
incentive compatible, DSIC) if bidding the true value
is a weakly dominant strategy.
11. In a single-parameter mechanism, X ⊂ Rn

⩾0 and
vi(x) = vi · xi. In this case, if the allocation rule f is
monotone, i.e., the z 7→ fi(x, b−i) are non-decreasing,
setting the payment rule to

pi(bi, b−i) = bifi(bi, b−i)−
∫ b1

0

fi(t, b−i)dt

makes the mechanism truthful (Myerson’s lemma).
12. In a combinatorial auction, there are n items and
each bidder has a value for each subset of items. If
bidders are single-minded (they only care whether they
get all their desired items or not), if their preferences
are public (but their valuations private), the greedy-
by-value mechanism (give bidders what they want, if
possible, starting bidders with the largest bids) is a
d-approximation, where d is the size of the largest
bundle. For large bundle sizes, prefer greedy-my-sqrt-
value-density (order the bidders by bi/

√
|S∗i |): it is an√

m-approximation.
13. A VCG mechanism is a mechanism whose allo-
cation rule f : V → X maximizes social welfare, i.e.,
f(b) ∈ Argmaxx

∑
i bi(x), and whose payment rule is

pi(b) = Max
x

∑
j ̸=i

bj(x)−
∑

bj
(
f(b)

)
(player i’s externality). It is DSIC. Examples include
second-price single-item auction, sponsored search auc-
tions (vi(x) = viαj if agent i gets slot j), unit-demand
combinatorial auctions (vi(S) = Maxj∈S vij).
VCG requires solving a welfare maximization problem:
an approximation is not enough – for instance, VCG
payments with a greedy allocation for unit-demand
combinatorial auctions (a 2-approximation) do not give
a truthful mechanism.
14. Given a (non-truthful) mechanism, with incom-
plete information (the bidders’ values are drawn from
a known distribution vi ∼ Di), a Bayes-Nash equi-
librium is a profile of bidding functions βi : Vi → Bi
such that ∀i ∀vi ∈ Vi ∀b′i ∈ Bi

E
v−i∼D−i

ui
(
β(v), vi

)
⩾ E
v−i∼D−i

ui
(
(b′i, β−i(v)), vi

)
.

15. A mechanism is (λ, µ)-smooth if

∀v ∈ V ∀i ∀b∗i ∀b ∈ B∑
i

ui
(
(b∗i , b−i), vi

)
⩾ λ ·OPT(v)− µ

∑
i

pi(b);

Article and book summaries by Vincent Zoonekynd 183/1044

the price of anarchy is then bounded (same bound for
pure Nash equilibria, (coarse) correlated equilibria, and
Bayes-Nash equilibria):

PoA ⩽ Max(µ, 1)

λ
.

Single-item first-price auction is (12 ,1)-smooth; single-
item all-pay auction is (12 ,2)-smooth.
16. Combinatorial auction with unit-demand valua-
tions and first-price payments is (12 ,1)-smooth. First-
price greedy-by-sqrt-value-density for multi-minded
combinatorial auctions is (12 ,

√
2m)-smooth.

17. A Walrasian equilibrium (in a combinatorial
auction) is a price vector (Nash equilibria were about
players’ bids, not prices) q ∈ Rm

⩾0 and an allocation
S such that each bidder gets a bundle maximizing his
utility

∀S′i vi(Si)−
∑
j∈Si

qi ⩾ vi(S′i)−
∑
j∈S′

i

qi.

Walrasian equilibria (if they exist) maximize social wel-
fare. Unit-demand VCG prices are a Walrasian equi-
librium.
18. In the posted prices mechanism, buyers come one
by one, and buy the set of unsold items maximizing
their utility. For unit-demand, the expected social wel-
fare of the posted prices mechanism is half the expected
optimal welfare – set the prices to (the expectation of)
half the value for the buyer getting it in the optimal
welfare allocation.
19. If the values are drawn from distributions Di, the
virtual values are

φi(t) = t− 1− Fi(t)
fi(t)

.

For a truthful single-parameter mechanism, the ex-
pected revenue is the expected virtual welfare:

E
v

∑
i

pi(v) = E
v

∑
i

φi(vi)xi(v).

The virtual welfare maximizing mechanism (with My-
erson’s payments) is truthful and maximizes expected
revenue among truthful payments.
20. The second-price auction maximizes the expected
revenue among all truthful mechanisms (if valuations
are drawn from the same distribution, if the item is
always allocated). Posting a price

p∗ = Max
{
φ−1(0), F−1(1− 1

n)
}

gives a 1− (1− 1
n)
n ⩾ (1− 1/e)-approximation of the

optimal expected revenue. (Surprisingly, truthfulness
is not a restriction.)
21. To match agents to houses, when agents have dif-
ferent preferences (without money), start by assigning
the houses at random, then build a directed graph with

edges from each agent to the owner of the house he
prefers best among the remaining ones, find a cycle,
reallocate the houses in it, and remove the correspond-
ing nodes; iterate until the graph is empty. The result
allocation is stable.
22. The Gale-Shapley algorithm generalizes this to
situations with preferences from both agents and items.
23. To cut a cake [0, 1] between n agents with valua-
tions

Vi(X) =

∫
x∈X

vi(x)dx X ⊂ [0, 1] Vi([0, 1]) = 1,

we may want:
– Proportionality: ∀i Vi(Ai) ⩾ 1/n;
– Envy-freeness: ∀i, j Vi(Ai) ⩾ Vi(Aj);
– Equitability: ∀i, j Vi(Ai) = Vi(Aj).
For two agents, the cut-and-choose mechanism is pro-
portional, envy-free, but not necessarily equitable. For
n agents, the Dubins-Spanier algorithm is proportional.
Ensuring envy-freeness is more complicated. None of
those algorithms is truthful.
24. A ranking rule for three or more candidates satis-
fying unanimity and independence of irrelevant alter-
natives is a dictatorship.
25. Shapley values formalize cost-sharing.

Mechanics for mathematicians
J. Wunsch (2020)

2. Newton’s law, F = ma, describes the evolution of a
physical system as a second-order differential equation.
Examples include:
– Gravitation (1d): ẍ = −1;
– Spring: ẍ = −ω2x;
– Magnetism: ẍ = ẋ×B;
– Gravity: ẍ = −x̂/ ‖x‖2.
3. The initial value problem has a unique solution
(Picard-Lindelöf); it may not have a closed form solu-
tion: try Taylor expansions or numeric methods (New-
ton).
4. In dimension 1, if the force does not depend on
time, it comes from a potential:

ẍ = F (x) ⇝ ẍẋ = F (x)ẋ ⇝ d

dt

(
1

2
ẋ2 + V (x)

)
= 0

where V ′(x) = −F (x). The energy E = 1
2 ẋ

2 + V (x) is
constant.
5. Plot the level curves of the energy in the phase
plane to identify periodic motion and distinguish be-
tween stable and unstable equilibria (V (x0) > 0 and
V (x0) < 0).
6. In Rn, we would also like to write F (x) = −∇V (x),
but that is only possible if curlF = 0, or, more
generally, if the vector field F is conservative, i.e.,∫
γ
F (x) · dx only depends on the endpoints of the

path γ.

Article and book summaries by Vincent Zoonekynd 184/1044

7a. The Lagrangian is the difference between kinetic
T and potential V energy.

L = T − V L(x, ẋ) = 1
2 |ẋ|

2 − V (x)

The action of a trajectory γ : [0, T]→ R3 is

S(γ) =

∫ T

0

L
(
γ(t), γ̇(t)

)
dt.

The principle of least action states that the action is
stationary, i.e., its directional derivatives are zero:

d

ds
S(γ + sφ)

∣∣∣∣
s=0

= 0

for all paths φ with φ(0) = φ(T) = 0.
For a functional of the form

S(γ) =

∫ T

0

L
(
γ(t), γ̇(t), t

)
dt,

the stationarity condition becomes∫ T

0

[
∂L

∂x
· φ(t) + ∂L

∂v
· φ′(t)

]
dt = 0

and, after integrating the second term by parts (and
using φ(0) = φ(T) = 0),∫ T

0

(
∂L

∂x
− d

dt

∂L

∂v

)
·φ(t)dt = 0

giving the Euler-Lagrange equation

∂L

∂x
=

d

dt

∂L

∂v
.

7b. If a coordinate xi does not appear in L, then

d

dt

∂L

∂vi
=
∂L

∂xi
= 0,

i.e., ∂L/∂vi is a conserved quantity.
There is a similar result for time: if ∂L/∂t = 0,

dL

dt
=
∂L

∂x
· γ̇ +

∂L

∂v
· γ̈ +

�
��∂L
∂t

=

(
d

dt

∂L

∂v

)
· γ̇ +

∂L

∂v
· γ̈ (Euler-Lagrange)

=
d

dt

(
∂L

∂v
· γ̇
)

(product rule)

hence
d

dt

(
−L+

∂L

∂v
· γ̇
)

= 0

i.e., the Hamiltonian

H(x, v) = −L(x, v) + ∂L

∂v
· v

is conserved. (In simple cases, H = T + V .)
The Lagrangian approach facilitates changes of coor-
dinates and easily allows for constraints (e.g., with a
reparametrization).

7c. More generally, a continuous symmetry

F a : Rn −→ Rn

F a∗ (x, v) =
(
F (x),∇F (x) · v

)
L
(
F a∗ (x, v), t

)
= L(X, v, t)

gives rise to a conservation law (Noether’s theorem)

p =
∂L

∂v
·W where W (x) =

d

da
F a(x)

∣∣∣∣
a=0

.

Examples include momentum and angular momentum.
11. The Hamiltonian is defined as

H =
∂L

∂v
· v − L.

With the change of variables

q = x

p =
∂L

∂v

it becomes H = pv − L(x, v). We then have

∂H

∂p
= v +

�
��p
∂v

∂p
− ∂L

∂x

∂x

∂p
=0

−
�
�

��∂L

∂v
=p

∂v

∂p

= v

= ẋ

= q̇

∂H

∂q
=

�
��p
∂v

∂p
− ∂L

∂x

∂x

∂p
=1

−
�

�
��∂L

∂v
=p

∂v

∂p

= −∂L
∂x

= − d

dt

∂L

∂v
(Euler-Lagrange)

= −ṗ

Hamilton’s equations of motion are

q̇ =
∂H

∂p

ṗ = −∂H
∂q

.

They define a vector field

vH =

(
∂H/∂p
−∂H/∂q

)
and a flow (Φt)t.
The Hamiltonian vector field has vanishing divergence,
∇ · vH = 0; its flow is therefore volume-preserving
(Liouville’s theorem).
For a function defined on phase space, a(q, p),

da

dt
=
∂a

∂q
· q̇ + ∂a

∂p
· ṗ

=
∂a

∂q
· ∂H
∂p
− ∂a

∂p
· ∂H
∂q

= {a,H} (Poisson bracket)
= (vH · ∇)a.

Article and book summaries by Vincent Zoonekynd 185/1044

The flow is a simplectomorphism,

(∇Φt)J(∇Φt)′ = J

where J =

(
0 I
−I 0

)
.

Portfolio construction with Gaussian mixture
returns and exponential utility

via convex optimization
E. Luxenberg and S. Boyd (2022)

The expected utility of a portfolio whose constituent
returns are a Gaussian mixture has a simple closed
form

r ∼ GM
(
(µi,Σi, πi)1⩽i⩽k

)
R = w′r

U(r) = 1− e−γR

E
[
U(R)

]
= 1−M(w,−γ)

M(w, t) = E[etR] =
∑

πi exp
[
tµ′iw +

1

2
w′Σiw

]
and maximizing the entropic value at risk

EVaRα(R) = inf
λ>0

logM(w,−λ)− logα

λ

and can also be formulated as a convex problem. [Im-
plementation in a few lines of cvxpy.]

Entropic portfolio optimization: a disciplined
convex programming framework

D. Cajas (2021)
The EVaR (and the EDaR, entropic drawdown at risk)
can also be optimized using samples. Implementation
in Riskfolio-Lib.

OWA portfolio optimization: a disciplined
convex programming framework

D. Cajas (2021)
The ordered weighted average (OWA) of (yi)1⩽i⩽T is a
weighted average of order statistics,

∑
wiy(i). Exam-

ples include the Gini mean deviation

GMD = Mean
i ̸=j

|yi − yj |

or the L-moments (λ2 = 1
2GMD). They can be formu-

lated with a linear program.

Find w,α, β, y
To maximize w′µ− λ

∑
i(αi + βi)

Such that w′1 = 1
w 6= 0
w′r = y
∀i, j αi + βj ⩾ wiy(j)

where rki is the return of asset k in scenario i.

Causal matrix completion
A. Agarwal et al.

To solve the matrix completion problem

A ∈ Rm×n latent
ε ∈ Rm×n noise
E[ε] = 0

Ỹ = A+ ε

P ∈ [0, 1]m×n propensity score
D ∈ {0, 1}m×n missingness mask
E[D] = P

Yij =

{
Ỹij if Dij = 1

∗ otherwise

one can try

USVT Minimize
Q : rankQ⩽µ

‖(Y −Q)�D‖22

softImpute Minimize
Q

‖(Y −Q)�D‖22 + λ ‖Q‖∗

(but they may not perform well if the data is not
MCAR) or inverse propensity weighting

Minimize
Q

∑
i,j :Dij=1

1

Pij
d(Yij , Qij) + λR(Q).

To fill in a missing value Yij , synthetic nearest neigh-
bours
– Look for several fully-observed blocks Sk, with non-

overlapping rows (e.g., maximial bicliques),
– Approximate the row ACk from Sk, with a principal

component regression,
– Compute the corresponding prediction for Yij ,
– And average those predictions.

i

j

S1

S2

S3

AR1

AR2

AR3

AC1
AC2

AC3

Matrix estimation
by universal singular value thresholing

S. Chatterjee (2015)
Given a matrix X ∈ [−1, 1]m×n, m ⩾ n, with missing
values, USVT completes it as follows:
– Fill in the missing values with 0;

Article and book summaries by Vincent Zoonekynd 186/1044

– Compute the SVD;
– Only keep the singular values above 2

√
np, where p

is the proportion of observed values;
– Reconstruct the matrix;
– Clip the entries to [−1, 1].
Applications include:
– Low-rank matrices;
– Latent space models xij = f(βi, βj) + εij ;
– Bradley-Terry models

pij = P [team i wins over j] = ai
ai + aj

Xij ∼ Bernoulli(pij)

and its non-linear generalizations (p monotonic);
– Stochastic block models
– Graphons (estimation of a graphon from a single
graph sampled from it);

– Distance matrices;
– Positive semi-definite matrices.

Matrix completion and low-rank SVD
via fast alternating least squares

T. Hastie et al. (2015)
The matrix completion problem

Minimize
M

1

2
‖(X −M)�O‖2F + λ ‖M‖∗

where ‖·‖∗ is the nuclear norm, the sum of the singular
values (a convex relazation of the rank) can be solved
with the softImpute algorithm, iterating:

X̂ = coalesce(X, 0)

X̂
SVD
= UDV ′

M̂ = USλ(D)V ′

X̂ = coalesce(X, M̂)

where the soft thresholding is Sλ(Dii) = (Dii−λ)+; an
efficient implementation can use a reduced rank SVD,
and write X̂ as the sum of a sparse and a low-rank
matrix, X̂ = coalesce(X, M̂) = (X − M̂) + M̂ .
The maximum margin matrix factorization (MMMF)
problem

Minimize
A,B

1

2
‖(X −AB′)�O‖2F +

λ

2

(
‖A‖2F + ‖B‖2F

)
is biconvex and can be solved with alternating least
squares (ALS); the solution is

Â = UrSλ(Dr)
1/2

B̂ = VrSλ(Dr)
1/2.

The softImpute-ALS algorithm combines both ap-
proaches.

Minimize
A,B

1

2

∥∥∥X̂ −AB′∥∥∥2
F
+
λ

2

(
‖A‖2F + ‖B‖2F

)
.

A swiss army infinitesinal jackknife
R. Giordano et al. (2020)

To compute approximate bootstrap, cross-validation or
jackknife samples for an estimator θ defined by

1

N

∑
n

wngn(θ) = 0

(the gn’s could be the gradients of a loss function – use
automatic differentiation to compute them) use a first
order approximation.

G(θ, w) =
1

N
w′g

H(θ, w) =
1

N
w′∇θg

G(θ(w), w) = 0

∂G

∂θ

∂θ

∂w
+
∂G

∂w
= 0

∂θ

∂w
= −

(
∂G

∂θ

)−1
∂G

∂w

= −H−1
(

1

N
g

)
θ̂IJ (w) = θ̂1 +

∂θ

∂w

∣∣∣∣
w=1

(w − 1)

= θ̂1 −H−11 G(θ̂1, w − 1)

Uncertainty prediction for deep sequential
regression using meta models

J. Navrátil et al.
A metamodel predicts the error of a base model:

Base model: Minimize
ϕ

E
[
loss(ŷ, y)

]
Meta model: Minimize

γ
E
[
loss(ẑ, z)

]
where z = loss(ŷ, y) (those three loss functions can be
different).

Learning prediction intervals
for model performance

B. Elder et al. (2021)
Use a meta model to predict the performance (e.g., ac-
curacy) of the base model, and a meta-meta model to
predict a confidence interval on it.

Confidence scoring using whitebox
meta-models with linear classifiers

T. Chen et al.
Build a meta model from linear features on the various
layers of the base model.

Article and book summaries by Vincent Zoonekynd 187/1044

Graph similarity learning for change point
detection in dynamic networks

D. Sulem et al. (2022)
To detect changepoints in time-varying networks
(Gt)t⩾0, train a Siamese GNN

G1

G2

gnn

gnn
distance sort-k fc s

and use its output as a similarity measure, e.g.,
Mean
i∈J1,LK s(Gt, Gt−i) or Mean

i,j∈J1,LK
i<j

s(Gt−i, Gt−y).

Sorted pooling in convolutional networks
for one-shot learning

H. András (2020)
Max pooling can be replaced by:
– k-Max pooling, returning the k-th largest value in

each patch;
– Sort-k pooling, returning a weighted average of the
top-k values, with learned weights.

Rough volatility: fact or artefact
R. Cont and P. Das (2022)

Volatility clustering suggests H > 1
2 , even though the

roughness of the realized volatility suggests H < 1
2 .

The p-variation of a function x : [0, T]→ R is the limit∑
|x(ti+1)− x(t)|p −→ [x]p

when the partition (0, t0, t1, . . . , tN = T) gets finer.
The variation index and the roughness index are then

p(x) = inf{ p ⩾ 1 : [x]p <∞}
H(x) = 1/p(x).

If x is a fractional Brownian motion with Hurst expo-
nent H, then H(x) = H a.s.. To estimate the Hurst
exponent from a finite sample,
– Compute

Wp =
∑
i

|∆Kix|p∑
j: [tLj−1,t

L
j]∩[tKi−1,t

K
i] ̸=∅

|∆Ljx|p

where the partition πL is a refinement of πK ,
– Find p̂ such that Wp̂ = T ,
– And let Ĥ = 1/p̂.
Realized volatility is rough (H < 1

2), even if instanta-
neous volatility is not (H = 1

2): roughness comes from
market microstructure noise.

Error-correcting output codes with ensemble
diversity for robust learning in neural networks

Y. Song et al. (2021)
Jointly train (end-to-end) a set of binary classifiers and
the ECOC code matrix to combine their outputs, max-
imizing

– The distance between rows (codewords)
– And the shared information distance between
columns (binary tasks), viz the variation of infor-
mation

V (X,Y) = 2H(X ∧ Y)−H(X)−H(Y)

to mitigate adversarial attacks.

Time-aware language models
as temporal knowledge bases

B. Dhingra et al.
To make your language model aware of time (some facts
have an expiration date, e.g., the name of the presi-
dent), model Pθ[mask|context, time], e.g., by prefixing
each input with the date, “year: 2022”.

Density-preserving data visualization
unveils dynamic patterns

of single-cell transcriptomic variability
A. Narayam et al. (2020)

With t-SNE and UMAP, the cluster sizes correspond
to the number of observations and ignore the density;
denSNE and densMAP augment the objective with a
differentiable measure of the total density, to preserve
the average distance to the nearest neighbours∑

j pij ‖xi − xj‖
2∑

j pij
.

Available in umap-learn.

Comparing clusterings – an overview
S. Wagner and D. Wagner (2007)

Use an information-based measure, e.g., the normal-
ized mutual information

NMI1(C1, C2) =
I(C1, C2)√
H(C1)H(C2)

.

The stochastic collocation Monte Carlo
sampler: highly efficient sampling

from expensive distributions
L.A. Grzelak et al. (2016)

To sample from a distribution FY , one could use

u ∼ Unif
y = F−1Y (u)

or, more generally, for an auxilliary distribution FX
(e.g., Gaussian)

x ∼ FX
y = F−1Y

(
FX(x)

)
.

If F−1Y is expensive to compute, stochastic collocation
Monte Carlo (SCMC) approximates F−1Y ◦FX with La-
grange polynomials on Gauss quadrature points.

Article and book summaries by Vincent Zoonekynd 188/1044

Predicting value at risk for cryptocurrencies
using generalized random forests

K. Görgen et al. (2022)
Random forests can be used for quantile regression:
change the splitting criterion to classify the observa-
tions wrt the quantile(s) of interest. (Quantile regres-
sion forests only use quantile regression in the leaves,
without adjusting the splitting criterion.)

A generalized precision matrix for t-Student
distributions in portfolio optimization

K. Bax et al. (2022)
With a Gaussian random variable, the precision ma-
trix (the inverse of the variance matrix) describes the
conditional dependence structure; with non-Gaussian
data, this is no longer the case. Alternatives to the
precision matrix Ω = Σ−1 include:

Ωij = −E
x

[
∂2

∂xi∂xj
log f(x)

]
Ωij = − E

xi,xj

[
E
x\ij

[
∂2

∂xi∂xj
log f(x)

]
1x2

i+x
2
j⩾t

]
Ωij = E

x

∣∣∣∣ ∂2

∂xi∂xj
log f(x)

∣∣∣∣
Try them instead of Σ−1 in portfolio optimization.
[Also check local Gaussian correlation.]

Community detection
and portfolio optimization

L. Zhao et al. (2021)
Compute the correlation matrix from daily returns, on
a 500-day moving window; build the PMFG (planar
maximally filtered graph); compute communities (in-
fomap); pick a stock at random (sic) in each commu-
nity; build an optimized portfolio from those stocks.

Network diversification
for a robust portfolio allocation

M. Jaeger and D. Marinelli
Use the inverse of the degree (or eigen-centrality) on
the PMFG as portfolio weights.

LoCoV: low dimension covariance voting
algorithm for portfolio optimization

J. Duan and I. Popescu
Compute the optimal portfolio on all subsets of k as-
sets, and average the weights.

Lazy network: a word embedding based
temporal financial network to avoid economic

shocks in asset pricing models
G. Adosoglou et al. (2022)

– Compute the similarity between the companies’ 10K
filings for year t;

– Compute the absolute value of the difference be-
tween the similarities in years t and t− 1;

– Invest in the periphery of the corresponding graph,
i.e., companies with idiosyncratic changes.

A picture is worth a thousand words:
measuring investor sentiment by combining

machine learning and photos from news
K. Obaid and K. Pukthuanthong

News sentiment can be extracted from news photos;
it contains the same information as the sentiment ex-
tracted from text. Try a pretrained Inceptionv3, with
a head fine-tuned on DeepSent (1000 images) on data
from the WSJ: it can precit return and volume at 1 day
and 1 week (with different signs).

Realized semibetas:
disentangling good and bad downside risks

T. Bollerslev et al.
Consider four semibetas, depending on the signs of
the market and asset returns. Only βmarket<0

asset>0
and

βmarket<0
asset<0

are priced.

The semibetas are defined from the decomposition

β =
Cov(rmarket, r)

Var rmarket

=
c++ + c−− − c+− − c−+

Var rmarket

= β++ + β−− − β+− − β−+.

Investor attention and stock returns
J. Chen et al. (2020)

Combine 12 proxies of investor attention (aggregated
over all stocks):
– Abnormal trading volume (1m vs 12m);
– Extreme returns (1m vs 12m);
– Past returns (12m);
– Nearness to the Dow 52-week high, and historical
high;

– Analyst coverage;
– Change in advertising expenses;
– Mutual fund inflow, and outflow;
– Media coverage;
– Google search volume;
– Edgar search volume.
Aggregate with
– PCA,
– scaled PCA (sPCA)

βi = β(y ∼ xi)
A = PC1(β1x1, . . . , βnxn)

y : future returns
x : proxies

– or partial least squares (PLS)

πi = β(x1 ∼ y) time series regressions
At = β(xt ∼ π) cross-sectional regressions.

Article and book summaries by Vincent Zoonekynd 189/1044

Some applications of TDA
on financial markets

M.A. Ruiz-Ortiz et al. (2022)
Using
– Daily returns of 4 indices, for 15 days (15 points in
4-dimensional space),

– or 4-dimensional delay embeddings of cryptocur-
rency returns, for 50 days (50 points)

compute the persistence landscape λt and Var ‖λt‖1 or
‖λt‖1 + |‖λt‖1 − ‖λt−1‖1| to detect crashes.
The persistent homology turbulence index (PHTI) is
obtained by
– Taking 60 days of industry log-returns (60 points in
k-dimensional space), or a delay embedding of a sin-
gle time series;

– Computing the persistence diagram Pt, then the
Wasserstein distances between Pt and Pt−1, then a
60-day moving average, then the quantile over a 5-
year window,

– or, alternatively, by computing the persistence land-
scape and ‖λt−τ − λt‖2.

Tail-GAN: non-parametric scenario
generation for tail risk estimation

R. Cont et al. (2022)
To generate scenarios to compute the VaR or the ES,
train a GAN, whose discriminator evaluates the quality
of VaR and ES estimates (sorting is a.e. differentiable)
using a scoring function (the pair (VaR,ES) is elicitable
– the formula is complicated) on a set of static and dy-
namic trading strategies.

Sensitivity measures
based on scoring functions

T. Fissler and S.M. Pesenti (2022)
A statistic T is elicitable if there is a scoring function S
such that T (X) = Argmint E

[
S(t,X)

]
. For instance,

mean S(µ, x) = (µ − x)2, median S(m,x) = |m− x|,
VaRα, or the pair (VaRα,ESα) are elicitable; for each
of those, there is actually a (known) family of scoring
functions.
The sensitivity of T wrt information Y is

E[S]− E[S|Y]

E[S]
.

Multi-objective reward generalization:
improving performance of deep reinforcement

learning for selected applications
in stock and cryptocurrency trading

S. Cornalba and C. Disselkamp
If the reward is a vector rather than a scalar (e.g.,
(µ, µ/σ)), optimize a random positive linear combina-
tion of rewards, resampled at each step.

Weisfeiler and Lehman go cellular:
CW networks

The Weisfeiler-Lehman isomorphism test can be gen-
eralized to simplicial of CW complexes (i.e., cells with
arbitrary shapes). A cell has 4 types of neighbours:
– Boundary adjacent: cells on the boundary, one di-
mension smaller;

– Coboundary adjacent: cells on the boundary, one
dimension larger;

– Lower adjacent cells: cells of the same dimension,
sharing a lower-dimensional cell on their boundary;

– Upper adjacent cells: cells of the same dimension, on
the boundary of the same higher dimensional cell.

Coboundary and lower adjacencies can be omitted
without affecting the expressive power of the test.
A graph can be lifted to a CW complex in many ways,
e.g., the clique complex (each (k+ 1)-clique becomes a
k-cell), limited to cliques of size at most n, or the cycle
complex.
Message-passing GNNs can be generalized to those
lifted graphs.

A reverse expected shortfall
optimization formula

Y. Guan et al. (2022)
To minimize the expected shortfall

ESα =
1

1− α

∫ 1

α

VaRβ(X)dβ

= Min
t∈R

t+
1

1− α
E
[
(X − t)+

]
,

it suffices to minimize a linear function plus the excess
mean loss (for each t).
Conversely,

E
[
(X − t)+

]
= Max
α∈[0,1]

(1− α)
[
ESα(X)− t

]
is useful in worst-case (i.e., robust) optimization.
These formulas generalize to optimized certainty equiv-
alent (OCE) risk measures of the form

R[X] =

∫
t∈R

t+
1

β
E
[
v(X − t)

]
.

Improved iterative methods
for solving risk parity portfolio

J. Choi and R. Chen (2022)

Doubly truncated moment risk measures
for elliptical distributions
B. Zuo and C. Yin (2022)

The tail conditional moments are

TCMq,n(X) = E
[
(X − TCEqX)n

∣∣ X > xq
]

TCEq(X) = E
[
X
∣∣ X > xq

]
xq = q-th quantile.

Article and book summaries by Vincent Zoonekynd 190/1044

For the doubly truncated moments, replace the condi-
tion X > xq with xp < X < xq.

Multivariate doubly truncated moments
for generalized skew-elliptical distributions

with applications to multivariate
tail conditional risk measures

B. Zuo and C. Yin (2022)
For many multivariate distributions, one can compute
E[Y |a ⩽ Y ⩽ b] and E[Y Y ′|a ⩽ Y ⩽ b].

RPS: portfolio asset selection using
graph-based representation learning

M.A. Fazli et al.
In portfolio optimization, replace the correlation ma-
trix with a similarity matrix computed from the dis-
tance matrix of a node embedding (Node2Vec(com-
puted from the complete graph with correlations as
weights.

correlation
distances

embedding
graph

Connecting Sharpe ratio and Student
t-statistic, and beyond

E. Benhamou
If X ∼ N(µ, σ2), the ŜR = µ̂/σ̂ is (non-centered) Stu-
dent.

The statistics of Sharpe ratios
A.W. Lo (2002)

For iid returns,

σ(ŜR) =

√
1 + 1

2SR
T

.

For non-iid returns, annual and monthly Sharpe ratios
are related by (q = 12)

SR(q)
SR =

q√
q + 2

q−1∑
k=1

(q − k)ρk

.

In particular, for AR(1) returns,

SR(q)
SR =

√
q

[
1 +

2ρ

1− ρ

(
1− 1− ρq

q(1− ρ)

)]−1/2
.

The variance of ŜR increases by

Var ŜR(q)
Var ŜR

= 1 +

2
q−1∑
j=1

(1− j/q)2

1 + 2/SR2 .

Multi-portfolio internal rebalancing processes
K. Francis-Staite (2022)

The (internal) rebalancing problem

i: asset class
j: portfolio
ai: value of asset class i
pj : value of portfolio j

Mij : desired proportion of asset class i in portfolio j

where
∑
iMij = 1,

∑
ai =

∑
pj , looks for A, as

close to M as possible (in some sense), such that∑
iAij = 1 and Ap = a (one may add a constraint

∀ij Mij = 0⇒ Aij = 0).
In banker rebalancing, all the portfolios except one (the
banker) are given their target allocation; the banker
receives the remaining funds. In linear rebalancing,
each asset class is considered separately, and the over-
/under-weights are distributed equally (not in propor-
tion of the weight of the portfolio). Market-invariant
rebalancing is more equitable.

Modeling bid and ask price dynamics
with an extended Hawkes process

and its empirical applications
for high-frequency stock market data

K. Lee and B.K. Seo
Four-dimensional Hawkes process, for the up and down
bid and ask movements

λt = µt +

∫ t

−∞
e−β(t−u)AudNu

where µt and At are observed (or A ∈ R4×4 constant).

Multi-asset spot and option market simulation
M. Wiese et al. (2021)

Do not directly generate a grid of call prices (for var-
ious expiries and strikes) but a grid of discrete local
volatilities (DLV)

σtk =

√
θtk

1
2k

2∆tΓtk

θtk = Ct+∆t,k − Ct,k ≈ ∂tCtk
Γtk ≈ ∂kkCtk

to enforce the “no static arbitrage” constraint.
Reduce the dimension of the DLV grid (from 26 to 3)
with an auto-encoder σ 7→ x 7→ σ.
Train a conditional model xt+1|xt, xt−1 with a normal-
izing flow

ut+1 ∼ U(0, 1)3

xt+1 ← f(ut+1;xt, xt−1).

The result still has a drift: it is not a martingale.

Article and book summaries by Vincent Zoonekynd 191/1044

For several assets, sample ut+1 from a Gaussian copula
with a block structure (or a non-parametric, flow-based
copula).

Risk-neutral market simulation
M. Wiese and P. Murray (2022)

Remove the drift by reweighting the samples (the
weights are the solution of a convex optimization prob-
lem).

Lazy prices
L. Cohen et al (2019)

Changes in 10K reports have a (negative) predictive
power (earnings, profitability, news, bankruptcies), es-
pecially the “risk factor” section and statements about
the executive team (CEO, CFO) and litigation.

Introduction to causal inference
B. Neal (2020)

1. Simpson’s paradox shows that omitting important
variables can lead to the opposite conclusion: for in-
stance, if two treatments are available for some medical
condition, a non-invasive and an invasive one, the for-
mer used mostly for mild conditions and the latter for
more severe ones, the invasive one can appear worse
on the whole population, even though it is better on
both sub-populations, simply because it tends to be
used mostly on difficult patients.

Treatment Outcome

Condition

But a different causal graph, e.g.,

Treatment

Outcome

Condition

(if the invasive treatment is administered with delays,
letting the patient’s condition worsen), the same num-
bers lead to the opposite conclusion.

Sleeping with
your shoes on

Waking up with
a headache

Binge drinking

2. The potential outcomes Yi(0) and Yi(1) are the
values of the outcome Y for subject i if it does not
(T = 0) or does (T = 1) receive the treatment.

T Y

X

We only observe one of them,
i T Y Y (1) Y (0) Y (1)− Y (0)
1 0 0 ? 0 ?
2 1 1 1 ? ?
3 1 0 0 ? ?
4 0 0 ? 0 ?
5 0 1 ? 1 ?
6 1 1 1 ? ?

and we are interested in their differences, the indidual
treatment effect

ITEi = Yi(1)− Yi(0)

or the average treatment effect
ATEi = E[Yi(1)− Yi(0)].

In general, it is different from the associational differ-
ence, which is easy to compute.

ATE 6= E[Y |T = 1]− E[Y |T = 0]

They are equal if the ignorability (or exchangeability)
assumption is satisfied:

Y (0), Y (1) ⊥⊥ T.

T Y

X

(We can ignore how the subjects were selected for the
treatment; the treated and the control groups are com-
parable). This is the case for randomized control tri-
als (RCT). More generally, if the unconfoundedness as-
sumption is satisfied

Y (0), Y (1) ⊥⊥ T |X,

T Y

X

we can compute the ATE with the adjustment for-
mula

ATE = E[Y (1)− Y (0)]

= EX
[
E[Y |T = 1, X]− E[Y |T = 0, X]

]
.

A few more assumptions are actually needed:
– Unconfoundedness;
– Positivity (overlap): the supports of X |T = 0 and
X |T = 1 are the same, i.e., all subgroups of data
appear both in [T = 1] and [T = 0];

– Consistency: no multiple versions of the treatment;
– No interference: Yi(ti) does not depend on tj , j 6= i.
Causal inference has two steps:
– Identification, i.e., converting a causal estimand
(e.g., the ATE) into a statistical estimand (e.g., the
adjustment formula);

– Estimation, i.e., computing the statistical estimand
from the data (this often involves some statistical of
machine learning model).

Article and book summaries by Vincent Zoonekynd 192/1044

3. A Bayesian network is a DAG encoding a joint
probability distribution as

P (x1, . . . , xn) =
∏
i

P (xi | pai).

In particular, Xi is independent of its non-descendants
given its parents (local Markov assumption). If adja-
cent nodes are dependent, the DAG is minimal.
Association flows along chains, forks and conditioned
immoralities (colliders, v-structures)

Association is blocked by conditioned chains, condi-
tioned forks, unconditioned immoralities (for immoral-
ities, we need to condition, or avoid conditioning, on
any descendant of the immorality).

Blocked paths contain one of

Unblocked paths only contain

Two nodes are d-separated if all paths between them
are blocked; d-separation implies conditional indepen-
dence (global Markov property).

X ⊥⊥G Y |Z =⇒ X ⊥⊥P Y |Z

T Y

W confounding
association

causal
association

4. Causal quantities, such as P [Y |do(T = t)], can be
computed
– From the structural causal model (SCM) by re-

placing the equation for T with T = t;
– From the Bayesian network factorization, by setting
the factor for T to 1T=t;

– From the causal graph, by cutting all edges into T
(manipulated graph).

It is sometimes possible to convert a causal quantity
(with the “do” operator) into a statistical one, i.e.,
computable from observational data (identification).
For instance, if W satisfies the backdoor criterion
T → Y , i.e.,
– W blocks all backdoor (i.e., non-causal) paths from
T to Y ;

– W does not contain any descendant of T ,
then, W is a sufficient adjustment set:

P [Y |do(T = t)] =
∑
w

P [Y, t, w]P [w]

(backdoor adjustment).
Beware of M -bias: in the following graph, do not con-
dition on Z – it opens a backdoor path.

T Y

Z

5. In randomized experiments, association is cau-
sation. This can be seen by:
– Covariate balance: the treatment and the control
groups are identical

P [X |T = 1]
d
= P [X |T = 0]

– Exchangeability (unconfoundedness)

E[Y (1) |T = 1] = E[Y (1) |T = 0]

E[Y (0) |T = 0] = E[Y (0) |T = 1]

– Absence of backdoor path, because T has no incom-
ing edges: W = ∅ is a sufficient adjustment set.

6. Backdoor adjustment is sufficient but not necessary
for identifiability. For instance, in presence of unob-
served confounders W ,

T Y

W

M

we may be able to use the frontdoor adjustment, by
separately computing the causal effects T → M and
M → Y , and combining them.

P [Y |do(t)] =
∑
m

P [m|t]
∑
t

P [y|m, t′]P [t′].

The do-calculus gives a complete list of (3) transfor-
mations to identify causal quantities, whenever possi-
ble.
7. To estimate the ATE with a sufficient adjustment
set W ,

τ = E[Y (1)− Y (0)]

= EW
[
E[Y |T = 1,W]− E[Y |T = 1,W]

]
Article and book summaries by Vincent Zoonekynd 193/1044

we can fit a statistical model to

µ(t, w) = E[Y |T = t,W = w]

(conditional outcome modeling, COM), or separate
models to

µ0(w) = E[Y |T = 0,W = w]

µ1(w) = E[Y |T = 1,W = w]

(grouped conditional outcome modeling, GCOM) or
with a neural net learning a representation of w (TAR-
Net).

t

w
µ(t, w)

COM

w
µ(0, w)

µ(1, w)

GCOM

w
µ(0, w)

µ(1, w)

TARNet

The X-learner approach:
– Fits models µ̂0(x), µ̂1(x);
– Fits models

τ̂1(x) = Y (1)− µ̂0(x),

τ̂0(x) = µ̂1(x)− Y (0);

– Combines them

τ̂ g(x)τ̂0(x) +
(
1− g(x)

)
τ̂1(x)

for some g : X → [0, 1], e.g., the propensity score,
or 1/2, or 0, or 1.

The conditioning set W can be high-dimensional, but
it can be replaced with the (1-dimensional) propensity
score e(w) = P [T = 1|W = w]:

Y (0), Y (1) ⊥⊥W =⇒ Y (0), Y (1) ⊥⊥ e(W).

T Y

W

T Y

W

e(W)

In particular,

E[Y (t)] = E

[
1T=t · Y
P [t|W]

]
.

The propensity score is unknown, but can be esti-
mated, leading to the inverse propensity weighting
(IPW) estimator

τ̂ = Mean
i : ti=1

yi
ê(wi)

− Mean
i : ti=0

yi
1− ê(wi)

(to trade variance for bias, trim the propensity scores
ê to [ε, 1− ε]).
Other methods include:
– Doubly robust methods, which model both µ(t, w)
and e(w);

– Matching;

– Double machine learning:

res(Y ∼W) ∼ res(T ∼W);

– Causal trees and forests.
For confidence intervals, use the bootstrap.
8. The observational-counterfactual decomposition of
the ATE

τ = E[T (1)− Y (0)]

= P [T = 1]E[Y |T = 1] + P [T = 0]E[Y (1)|T = 0]

− P [T = 1]E[T (0)|T = 1] + P [T = 0]E[Y |T = 0]

gives bounds on τ , (rather large but) finer if we make
more assumptions, such as:
– Monotone treatment response: ∀i Yi(1) ⩾ Yi(0);
– Monotone treatment selection

E[Y (1)|T = 1] ⩾ E[Y (1)|T = 0]

E[Y (0)|T = 1] ⩾ E[Y (0)|T = 0];

– Optimal treatment selection

Yi = 1 =⇒ Yi(1) ⩾ Yi(0)
Yi = 0 =⇒ Yi(0) ⩾ Yi(1).

Sensitivity analysis examines the question “how
strong should the effect of an unobserved confounder
W on T and Y be for the causal effect of T on Y to
drop below some threshold” (as a contour plot, causal
effect ∼ confounding effects).

T Y

W

7. Instrumental variables allow identification in
presence of unobserved counfounders, but they require
parametric assumptions.

T Y

WZ

δ

α

For instance, if the structural equations are linear, we
can measure α and αδ and use the Wald estimand

δ =
E[Y |Z = 1]− E[Y |Z = 0]

E[T |Z = 1]− E[T |Z = 0]
.

In the continuous linear setting,

δ =
Cov(Y, Z)

Cov(T,Z)
;

it can also be estimated with 2-stage least squares (2sls)

lm
(
Y ∼ predict(T ∼ Z)

)
.

If the instrument is an encouragement to take the treat-
ment, we can stratify the population into
– Compliers: T = Z;

Article and book summaries by Vincent Zoonekynd 194/1044

– Always-takers: T = 1;
– Always deniers: T = 0;
– Defiers: T = ¬Z.
If there are no defiers (monotonicity), we can compute
the complier average causal effect, non-parametrically,
still with the Wald estimand.

CACE = E
[
Y (1)− Y (0) |T (1) = 1, T (0) = 0

]
=

E[Y |Z = 1]− E[Y |Z = 0]

E[T |Z = 1]− E[T |Z = 0]

10. Adding a time dimension

Control
Treatment

t = 0 t = 1
time

and making the parallel trends assumptions

Y1(0)− Y0(0) ⊥⊥ T,

the average treatment effect on the treated (ATT) can
be estimated with the difference-in-differences

ATT = E
[
Y1(1)− Y0(0)|T = 1

]
= E[Y1 − Y0|T = 1]− E[Y1 − Y0|T = 0].

(But the parallel trends assumption is not stable under
data transformations, e.g., log.)
11. Conditional independence and d-separation are
equivalent is the graph is Markov and faithful to the
probability distribution.

d-separation Conditional independence
Markov

faithfulness

Faithfulness is not always possible: some effects could
cancel out.

A

B C

D

α γ

β δ

⇝

A

D

αβ + γδ = 0

Two graphs are Markov equivalent iff they have the
same skeleton and immoralities.
The PC algorithm identifies the Markov equivalence
class of a probability distribution:
– Find the skeleton, with conditional independence
tests;

– Find the immoralities, with conditional indepen-
dence tests;

– Orient the remaining edges, whenever possible, as-
suming we have detected all the immoralities.

In the linear Gaussian setting, we cannot distinguish
between A→ B and A← B, but in the
– Linear, non-Gaussian noise,
– Or nonlinear, additive noise

settings, we can.
12. While it is not possible to identify the essential
graph A—B, it is possible with interventions. For
instance, an intervention on B gives

A B ⇝ A B

I

A ⊥⊥ B

A B ⇝ A B

I

A 6⊥⊥ B.

For n ⩾ 3, n − 1 1-node interventions are sufficient.
For multinode interventions, blog2 nc + 1, or dlog2 ce
are sufficient (and necessary, in the worst case), where
c is the size of the largest clique, if you already know
the essential graph.
There are similar results for parametric interventions,
i.e., if we change P [Xi|pai] instead of removing pai.
13. Covariate shift refers to the situation where
the distribution of (x, y) changes between training and
testing, but that of y|x remains. More generally, let us
assume that the distribution of x changes e.g., through
some (possibly unknown) intervention, but the causal
structure remains. Without intervention, we can pre-
dict Y from its Markov blanket (parents, children,
lovers),

Y

but with intervention, we should only use the causal
parents of Y .
To study the transportability of causal effects across
populations, add a “selection node” to indicate which
nodes have their causal mechanism changed.

T Y

X

S

14. Counterfactuals, such as P [Y (t)|T = t′, Y = y],
can be computed from a structural causal model, but
they cannot be written with the do operation, or ob-
tained from observations.
For instance, Y := UT + (1− U)(1− T), where

Y = 1 happy
T = 1 get a dog
U = 1 dog person.

Article and book summaries by Vincent Zoonekynd 195/1044

If we observe T = 0, Y = 0, we can compute U (abduc-
tion), modify the SCM by setting T := t, and compute
Y (t). If Y = f(U) is not invertible, use a prior on U
to get a probabilistic counterfactual.
While unit-level counterfactuals require and SCM,
population-level counterfactuals E[Y (t)|T = t′] can be
computed as the CATE (“potential outcome calculus”
generalizes do-calculus).

Causal inference: what if
M.A. Hernán and J.M. Robins (2020)

DoWhy: an end-to-end library
for causal inference

A. Sharma and E. Kiciman
Causal inference requires 4 steps:
– Provide the causal graph and specify the “treat-
ment” and “outcome” variables;

– Identify the ATE (average treatment effect), i.e.,
convert the causal estimand E[Y |do(X = x)] into
a statistical estimand (i.e., something computable
from observational data): backdoor criterion, front-
door criterion, instrumental variables, etc.

– Compute the ATE (propensity score, linear regres-
sion, 2-stage least squares, etc.)

– Robustness tests:
· Add a ranfom variable;
· Replace the treatment with a random variable
(placebo), or the outcome;
· Use a subset of the data;
· Add an unmeasured common cause.

Approximate kernel-based
conditional independence tests

for fast non-parametric causal discovery
E.V. Strobl and S. Visweswaran

Replace X, Y , Z with random Fourier features and de-
fine ΣXY ·Z = ΣXY − ΣXZΣ

−1
ZZΣZY ; then ΣXY ·Z = 0

iff X ⊥⊥ Y |Z.
R implementation in RCIT.

Learning functional causal models
with generative neural networks

O. Goudet et al.
The causal generative neural network (CGNN) builds
a functional causal model (FCM) by combining
– A global approach, selecting a (small number of)
CPDAG(s)

– And a local approach (explaining the asymmetry be-
tween Y = f(X) and X = f(Y) – one is often
simpler than the other), fitting models of the form
Xi = f(pai, Ei) where f is a shallow network and
the Ei’s are independent noises selecting the best
generative model by looking at the maximum mean

discrepandy (MMD)

MMD(D , D̂) =
1

n2

∑
ij

k(xi, xj) +
1

n2

∑
ij

k(x̂i, x̂j)

− 1

n2

∑
ij

k(xi, x̂j)

for some kernel k (e.g., Gaussian).

Structural agnostic modeling:
adversarial learning of causal graphs

D. Kalainathan et al.
For each variable Xi, train a neural network Xi =
f(ai � X\i, Ei), where the ai’s are binary gates (with
penalties to ensure sparsity and acyclicity).

Efficient differentiable quadratic programming
layers: an ADMM approach

A. Butler and R.H. Kwon (2021)
Quadratic optimization problems

Find z
To minimize 1

2z
′Qz + z′p

Such that Az = b
` ⩽ z ⩽ u

can be solved with ADMM

f(x) =
1

2
z′Qz + z′p+ IAx=b

g(z) = Iℓ⩽z⩽u

Find x, z
To minimize f(x) + g(z)
Such that x = z;

each step can be solved analytically.

x← Argmin
x :Ax=b

1

2
x′Qx+ x′p+

ρ

2
‖x− z + µ‖2

z ← Argmin
ℓ⩽z⩽u

‖x− z + µ‖2

µ← µ+ x− z

It can also be used for optimization as a layer (when
Q, p, A, b, `, u depend on θ): to compute the gradient,
use the fixed point property of the ADMM iteration:
it is less computationally-intensity than the KKT con-
ditions.

Article and book summaries by Vincent Zoonekynd 196/1044

Graph representation learning
W.L. Hamilton (2020)

1. Machine learning on graphs covers the following
tasks:
– Node classification,
– Relation prediction,
– Graph classification (or regression)
but also: node clustering (community detection),
graph clustering, etc.
2. Traditional node and graph features include:
degree, centralities (eigenvector, closeness, between-
ness), clustering coefficient (different normalizations),
graphlet count, Weisfeiler-Lehman kernel, path-based
kernel (e.g., distribution of degree sequences in random
walks, or in shortest paths).
Measures of neighbourhood overlap include:

|N(u) ∩N(v)|
du + dv

,
|N(u) ∩N(v)|√

dudv
,
|N(u) ∩N(v)|
|N(u) ∪N(v)|∑

w∈N(u)∩N(v)

1

dw
,
∑
w

1

log dw
,
∑

βi(Ai)uv;

some can be directly computed from the adjacency ma-
trix:

(I − βA)−1 − I, D−1(I − βA)−1D−1.

The graph Laplacian L = D −A satisfies

x′Lx =
∑
u,v∈E

(xu − xv)2;

it is often normalized as Lsym = D−1/2LD1/2 or
Lrw = D−1L. The ratio cut and normalized cut

RCut(A1, . . . ,An) =
∑
k

|(u, v) ∈ E : u ∈ Ak, v 6∈ Ak|
|Ak|

NCut(A1, . . . ,An) =
∑
k

|(u, v) ∈ E : u ∈ Ak, v 6∈ Ak|∑
u∈Ak

du

are maximized (after relaxation) by the second small-
est eigenvector of L or Lrw. Spectral clustering applies
k-means to the smallest eigenvectors of L.
3. We can compute node embedding with an encoder-
decoder architecture (for a fixed graph)

enc : V −→Rd

dec : Rd ×Rd−→R+.

The decoder could be (a, b) 7−→ ‖a− b‖2, a′b,
or ea

′b; the loss could be dec(zu, zv) · Su,v,
‖dec(zu, zv)− Su,v‖, −Suv logdec(zu, zv) for some
node similarity measure S, e.g., S = A, or S =
(A,A2, . . . , Ak), or some node neighbourhood overlap
measure.
These can often be seen as matrix factorizations, e.g.,

Minimize
Z

‖ZZ ′ − S‖22 ,

or random walk embeddings.
Those shallow embeddings have limitations.
4. These decoders can be generalized to multirelational
graphs, e.g., knowledge graphs (KG), and matrix fac-
torizations become tensor factorizations:

z′uRτzv

− ‖zu + rτ − zv‖
− ‖g1,τ (zu) + rτ = g2,τ (zv)‖

〈zu, rτ , zv〉 =
∑
i

zuirτizvi

Re〈zu, rτ , z̄v〉
− ‖zu � rτ = zv‖

(the complex decoder allows for asymmetric relations).
5. GNNs are neural networks transforming the adja-
cency matrix of a graph in a permutation-equivariant
(or -invariant) way: f(PAP ′) = Pf(A) (or f(PAP ′) =
f(A)), by message passing:

mN(u) ← aggregate
(
{hv, v ∈ N(u)}

)
hu ← update(hu,mN(u)).

It is common to add self-loops and omit the explicit
update step:

hu ← aggregate
({
hv, v ∈ N(u) ∪ {u}

})
.

The aggregation can be

mu =
∑
v

hv (GNN)

mu =
1

|N(u)|
∑
v

hv

mu =
∑
v

hv√
|N(u)| |N(v)|

(GCN).

The sum can be replaced by

mu = MLP
(∑
v∈N(u)

MLP(hv)
)

mu = MLP
(

1

|N(u)|!
∑

π∈S|N(u)|

lstm(hv1 , . . . , hv|N(u)|)

)

(approximated with a random set of permutations, or
even a single one, corresponding to some canonical or-
dering, e.g., by degree).
We can also add attention

mN(u) =
∑
v

αu,vhv

αu,v ∝ exp a′[Whu ⊕Whv] (GAT)
αu,v ∝ exp(h′uWhv) (bilinear attention)
αu,v ∝ expmlp(hu, hv).

To limit oversmoothing, try skip connections, gated
updates,

hu ← gru(hu,mN(u))

Article and book summaries by Vincent Zoonekynd 197/1044

or jumping knowledge (JK) connections.

+ + +SC:

JK: +

GNNs can be generalized to multirelational graphs,
i.e., graph with several edge types (or edge features).
Graph pooling is needed for graph-level predictions:
– Sum or mean aggregation of the node embeddings
– Attention with LSTM:

q ← lstm(o, q)

ev ← f(zv, q)

av ∝ exp ev

o =
∑

avzv

– Graph coarsening

A← S′AS

X ← S′X

for some cluster assignment matrix S.
6. Pretraining with neighbourhood reconstruction loss
does not work well. Try to maximize the mutual infor-
mation between node embeddings and graph embed-
dings:

− E
data

logD(zu, zG)− E
corrupted

data

log
(
1−D(z̃u, zG)

)
.

For deep networks, use gated updates.
7. A GNN layer is a convolution: it can be ex-
pressed without message passing, with the adjacency
matrix A, or Asym = D−1/2AD−1/2, or some Lapla-
cian, L = D −A, Lsym = D−1/2LD−1/2

Z = mlp
(
f(A)mlp(X)

)
with, e.g.,

f(A) =
∑(

I − αÃ
)k

Ã = (D + I)−1/2(A+ I)(D + I)−1/2.

GNNs reproduce the operations in the Weisfieler-
Lehman graph isomorphism test (which cannot distin-
guish between and – this is a strong limitation,
and breaking it is an open problem).
9. Variational graph autoencoders generate graphs
from node embeddings with a dot product decoder:

µ, σ = GNN(A,X)

z ∼ N(µ, σ)

P [Aij − 1] = σ(z′izj).

They are good for reconstruction, but not for graph
generation. A graph-level VAE uses a graph (not node)
embedding and generates an adjacency matrix in one

go: A = σ
(
mlp(zG)

)
; the nodes of the generated graph

need to be matched to the original ones, e.g., with a
heuristic ordering.
Autoregressive decoders generate the rows (of the lower
triangular part) of A one by one, each conditioned on
the previous ones, as with the preferential attachment
model

→ → →

with a graph-level RNN

latent representation
RNN
adjacency matrix row

where each row is generated by a node-level
RNN

The graph recurrent attention network (GRAN) also
generates the rows one by one, but each new row is
computed by a GNN on the graph built so far.

NodePiece:
compositional and parameter-efficient

representations of large knowledge graphs
M. Galkin et al.

Node embeddings do not scale to very large networks:
we would have to learn and store the embedding of all
the nodes. Instead, select (a smaller number of) “an-
chor” nodes (at random), whose preliminary embed-
dings will be learned, and compute the embeddings of
all the nodes on the fly, with a (learned) MLP, taking
as inputs the preliminary embeddings of the k closest
anchors, their distances (numbers of hops), and the
features of the edges to/from that node.

Graphon pooling in graph neural networks
A. Parada-Mayorga et al. (2020)

Pooling, in graph neural networks (GNN), is often de-
terministic and arbitrary. Instead, consider the input
graph as a locally constant graphon and sample from
it, to have increasingly coarser approximations of the
input graph.
There are two ways of sampling from a graphon
W : [0, 1]2 → [0, 1]: either pick points at ran-
dom xi ∼ U(0, 1) and link them with probabilities
W (xi, xj), or randomly partition the interval [0, 1]
into

⊔
Ui and link nodes i and j with probability∫∫

Ui×Uj W (x, y)dxdy/ |Ui × Uj |; use the latter.

Article and book summaries by Vincent Zoonekynd 198/1044

DDG-DA: data distribution generation
for predictable concept drift adaptation

W. Li et al. (2022)
To deal with slow concept drift, forecast the evolution
of the data distribution to adapt the model.

Conditional Sig-Wasserstein GANs
for time series generation

H. Ni
By analogy with the Wasserstein distance

W1(µ, ν) = sup
f :X→R
∥f∥Lip⩽1

E
X∼µ

f(X)− E
X∼ν

f(X),

define the signature-Wasserstein distance between (dis-
tributions on) time series

Sig-W1(µ, ν) = sup
L linear
∥L∥2⩽1

L

(
E

X∼µ
S(X)− E

X∼ν
S(X)

)

=

∥∥∥∥ E
X∼µ

S(X)− E
X∼ν

S(X)

∥∥∥∥
2

≈
∥∥∥∥ E
X∼µ

SM (X)− E
X∼ν

SM (X)

∥∥∥∥
2

(this is the MMD (maximum mean discrepancy) with
the truncated signature SM as features).
For time series continuation, E

[
S(X>t)|X⩽t

]
can be

computed by linear regression S(X>t) ∼ S(X⩽t).
Use as a discriminator, with generator:

+ +
past
+

noise
linear ReLU linear ReLU linear ReLU linear

To compute the signature: signatory (Python).

Fractional SDE-Net: generation
of time series data with long-term memory

K. Hayashi and K. Nakagawa (2022)
Neural ODEs can be generalized to neural SDEs (by
adding noise) and neural fractional SDEs (if H 6= 1

2 ,
Itō calculus no longer applies but, for H > 1

2 , we can
still define a stochastic integral).

Holdout-based fidelity and privacy assessment
of mixed-type synthetic data
M. Platzer and T. Reutterer

To measure fidelity and privacy risk of generated data,
look at:
– 1- and 2-dimensional distributions;
– The distance to the closest observation in the train-
ing data

and compare them with the holdout set.

Multi-asset spot and option market simulation
M. Wiese et al.

Generate synthetic time series with normalizing flows

(Ft, Zt+1) 7−→ Xt+1

Zt+1 7−→ (Ft, Xt+1)

where X is observed, Z latent, and Ft =
(Xt, Xt−1, . . .). For option prices, enforcing the no-
arbitrage condition complicates things.

A hybrid deep learning approach to
purchasing strategy of carbon emission rights

J. Xu and Y. Fu
Stack GARCH and GRU to forecast carbon emission
prices.

past
200 days GARCH forecast

more
predictors

GRU better
forecast

Predictors include carbon markets, equity index, FX,
energy (oil, etc.), futures, industrial indices, air qual-
ity.

Cryptocurrency valuation:
an explainable AI approach

Y. Liu and L. Zhang
“Fundamental ratios” for crypto currencies, such as
miners’ earnings/price, market value/traded value,
market value/number of users2, are bad predictors of
future returns. Instead, the utility/price ratio has some
predictive power on long-term returns.

utility =
velocity× staking ratio
volatility× dilution rate

velocity =
tokens traded (past day)

tokens available

staking ratio =
inactive tokens (past year)

tokens available
dilution rate = token supply annual growth rate

Price impact of order flow imbalance:
multi-level, cross-sectional and forecasting

R. Cont et al. (2021)
The order flow imbalance (OFI) is the difference be-
tween:
– The change in bid volume at level m and
– The change in ask volume at level m;
normalize by dividing with the volume in levels up to
m; aggregate by taking the first principal component of
ofi1, . . . ,ofi10; use to explain contemporaneous returns,
or forecast future returns; also try to use the ofim or
PC1(ofi) of other stocks (lasso).

Article and book summaries by Vincent Zoonekynd 199/1044

Analysis of a five-factor capital market model
S.F. Jarner and M. Preisel (2017)

The Munk capital market model is

dr = κ(r̄ − r)dt+ σdW short interest rate
dS/S = (r + x)dt+ σdW stock index
dx = α(x̄− x)dt+ σdW equity risk premium

dI/I = πdt+ σdW price index (inflation)
dπ = β(π̄ − π)dt+ σdW expected inflation

Optimal portfolio choice and stock centrality
for tail risk events

C. Katsouris (2021)
Replace the variance matrix with the VaR matrix:

P [Ri ⩽ VaRαi] = α

P [Ri ⩽ CoVaRαij |Rj ⩽ VaRαj] = α

∆CoVaRij = CoVaRij −VaRij
Vii = VaR+

i

Vij =
√
VaR+

i VaR+
j ∆CoVaRij

Ṽ = 1
2 (V + V ′)

Optimal trend following portfolios
S. Valeyre (2022)

To estimate the trend, also use inter-asset cross-
correlations. The maximum Sharpe portfolio is then
w ≈ C−1(αCξ+βµµ′)C−1, where C is the variance ma-
trix of the asset returns, and Cξ that of the stochastic
trend.

Xit = µi +
∑
s<t

St−sξis + εit

Ct = VarX•,t Cξt = Var ξ•,t

The agnostic risk parity portfolio is the risk parity port-
folio on the first eigenvectors of the variance matrix.

From tether to libra: stablecoins,
digital currency and the future of money

A. Lipton et al.
Stable coins are often classified according to
their collateral (fiat-, commodity-, crypto- or un-
collateralized). Instead, look if the ability to redeem
the coin is guaranteed by a legal framework, technol-
ogy, or not guaranteed.

Combining reinforcement learning
and inverse reinforcement learning

for asset allocation recommendations
I. Halperin et al.

IRL learns a reward function from trajectories. T-REX
is an IRL algorithm learning the reward function from
non-optimal trajectories: for this, it relies on extra in-
formation, viz a ranking of all trajectories.
Combine RL and IRL:

– Learn the reward function of a group of portfolio
managers (following the same type of strategy);

– Solve the corresponding RL problem, to improve
their decisions.

To deal with the paucity of data, aggressively reduce
the dimension to sector weights (for the benchmark and
the strategies).

Limiting spectral distribution of
high-dimensional Hayashi-Yoshida estimator

of integrated covariance matrix
A. Chakrabarti and R. Sen (2022)

The Hayashi-Yoshida estimator of the integrated co-
variance matrix

ΣX,YHY =
∑
ij

∆Xi ·∆Yj · 1IXi ∩IYj ̸=∅

is inconsistent and unreliable in high dimension.

Tone at the top?
Quantifying management presentation

Wolfe Research (2018)
Extract the following features from call transcripts:
– Readability
– Tone (Harvard-IV, Loughran-McDonald, Vader)
– POS (proportion of adjectives, adverbs (subjectiv-
ity), first-person singular vs plural pronouns)

– Ratio of digits to letters
– Number of analysts participating
– Topics (LDA), after removing sector-specific words
or phrases (otherwise, the topics just identify the
sectors)

– Change in those features.
and forecast future returns or earnings surprises.

Text mining form 8-K disclosures
Wolfe Research (2020)

Companies need to report “material information” with-
ing 4 days in SEC form 8-K. Forecast future returns
(event study) with:
– Filing frequency;
– Positive and negative sentiment;
– Readability;
– Proportion of numbers in the text;
– Filing delay;
– Event abnormal return;
– Event type (SEC classification).

Network of economically-linked firms
Wolfe Research (2021)

Use the average momentum (k-month, or k-month mi-
nus 1-month) of nearby firms to forecast future returns,
where “nearby” is determined by:
– Business segment

Article and book summaries by Vincent Zoonekynd 200/1044

– Geographic exposure (US, CA, EU, UK, ANZ, AxJ,
JP, CN, EMEA, LATAM, rest);

– Number of sell-side analysts in common;
– Key executives
– Patent citations;
– Supply chain (bipartite graph of landlords and ten-
ants for REITs in the Russell 3000);

– Shipping network.

NLP 5G Evolution:
text mining global corporate filings

Wolfe Research (2019)
Compute the following features on 10K/10Q filings:
– Conformity to the SEC’s requirements;
– YoY or QoQ similarity with the previous one (cosine
similarity on bags of words, [try (sliced) Wasserstein
distance]);

– POS (adjectives, adverbs, pronouns).
Forecast future returns with an ensemble of elastic net
and xgboost.
For international companies, build a multilingual sen-
timent lexicon.
For languages with no spaces: jieba (Chinese),
tinysegmenter (Japanese), konlpy (Korean).

Patent, innovation and alpha
Wolfe Research (2019)

Innovative industries (more than 50% of the companies
have patents) outperform.
Define the R&D intensity as R&D/Sales,
or log(R&D/MCap), or the residuals of
log(R&D)∼log(MCap).
Compute features from patents:
– Innovation intensity: number of patents in a 3-year
window;

– Originality: (effective) number of patent classes or
subclasses;

– Number of citations, back-citations, number of
unique assignees in citations or back-citations, di-
vided by the number of patents;

– Number of foreign applications;
– Maintenance fee non-payment;
– HITS, PageRank.
Adjust those factors for size (regress against
log(MCap)).

Optimal expected utility risk measures
S. Geissel et al. (2017)

Risk measures defined from a utility function include:

ρSR(X) = inf{ η : E[u(X + η)] ⩾ q }
ρCE(X) = −CE[X] = −u−1 E[u(X)]

ρOCE(X) = − sup
η
−η + E[u(X + η)]

ρOEU(X) = − sup
η
−η + αCE[X + η] α ∈ (0, 1)

Deep quantile and
deep composite model regression

T. Fissler et al. (2021)
Quantile regression, for several quantiles, can be fitted
with a neural network, with constraints to ensure the
quantiles are in the correct order. This can be gener-
alized to “ES regression”: the expected shortfall (ES)
is not elicitable (not an M-estimator), but the triplet
(quantile, lower ES, upper UE) is.

(
F−1(τ),

1

τ

∫ τ

0

F−1,
1

1− τ

∫ 1

τ

F−1
)

2T-POT Hawkes model
for dynamic left- and right-tail

quantile forecasts of financial returns
M.F. Tomlinson et al. (2022)

Model quantiles of a time series with a (2-tailed) peaks-
over-threshold Hawkes model (Hawkes model with gen-
eralized Pareto excess magnitudes – the GPD parame-
ters are constant) rather than a GARCH model.

Multinomial backtesting
of distortion risk measures

S. Bettels et al. (2022)
The distorsion risk measure defined by a decreasing
g : [0, 1]↠ [0, 1] is

ρg(X) =

∫ 0

−∞

(
g(P [X > x])− 1

)
dx+

∫ ∞
0

g(P [X > x])dx

=

∫ 1

0

q+X(1− u)dg(u)

=

∫ 1

0

F−1X (1− u)dg(u)

q+X(u) = sup{x : FX(u) ⩽ u}.

Examples include:

VaR AVaR GlueVaR

g(u) = 1− (1− u)n MinVaR: E[Max(X1, . . . , Xn)]

g(u) = u1/n MaxVaR
g(u) = 1− (1− u1/n)n MinMaxVaR

g(u) =
(
1− (1− u)n

)1/n MaxMinVaR
etc.

Article and book summaries by Vincent Zoonekynd 201/1044

Decomposable sums and their implications
on naturally quasiconvex risk measures

Ç. Ararat et al. (2022)
A risk measure is naturally convex if
∀X,Y ∀λ ∃µ ρ

(
λX+(1−λ)Y

)
⩽ µρ(X)+(1−µ)ρ(Y).

The convexity index of f : Rm → R̄ is
c(f) = sup{λ < 0 : rλ convex}

or c(f) = sup{λ ⩾ 0 : rλ concave}

where rλ = e−λf(x).
convex not convex

0
λ

concaveconvex

0
λ

A function of the form
s(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn)

is quasi-convex iff
c(f1) + · · ·+ c(fn) ⩾ 0,

iff either all the fi’s are convex, or at most one is non-
convex and

1

c(f1)
+ · · ·+ 1

c(fn)
⩽ 0.

If the fi’s are convex,
1

c(s)
=
∑ 1

c(fi)
.

Model aggregation for risk evaluation
and robust optimization

T. Mao et al. (2022)
Given a risk measure ρ : M → R and an uncertainty
set F ⊂M , the worst case risk is

ρWR = sup
F∈F

ρ(F).

Instead, given an order relation ≼ on M , e.g., first or
second order dominance,

F ≼1 G iff ∀u increasing
∫
udF ⩽

∫
udG

F ≼2 G iff ∀u increasing convex
∫
udF ⩽

∫
udG

one can consider the model aggregation risk

ρMA(F) = ρ

(∨
F∈F

F

)
.

For ≼1 and ≼2, the supremum is easy to compute:∨
1
F = inf

F∈F
F cdf(∨

1
F

)−1
= sup
F∈F

F−1 icdf

π∨
2 F = sup

F∈F
πF integrated survival function

∨
2
F = 1 +

(
sup
F∈F

πF

)′
+

where the integrated survival function is

πF = E
X∼F

[
(X − x)+

]
=

∫ ∞
x

(
1− F (t)

)
dt.

Under reasonable assumptions on F ,

VaRMA,≼1
α = VaRWR

α

ESMA,≼2
α = ESWR

α .

Other risk measures include

RVaRα,β(F) =
1

α− β

∫ β

α

VaRs(F)ds range VaR

PDk(F) =
∫ 1

0

ksk−1VaRs(F)ds power distorsion

or the expectile, defined as the unique solution t =
exα(F) of

α E
X∼F

[
(X − t)+

]
= (1− α) E

X∼F

[
(X − t)−

]
.

Common uncertainty sets include
– The Wasserstein ball around F0:

Wp(F, F0) =

(∫ 1

0

∣∣F−1(s)− F−10 (s)
∣∣p ds)1/p

dim=1

Wp(F, F0) = inf
X∼F
Y∼F0

(
E ‖X − Y ‖pa

)1/p
– The mean-variance uncertainty set

Fµ,σ = {F ∈M : E[F] = µ and Var[F] = σ2}

Influence functions
for risk and performance estimators

S. Zhang et al. (2020)

The functional of an estimator θ̂ is

θ(F) = lim
n→∞
ri∼F

θ̂n(r1, . . . , rn).

Its influence function is

IF(r, θ, F) = d

dγ
θ(Fγ)

∣∣∣∣
γ=0

Fγ = (1− γ)F + γδr

It satisfies

E
r∼F

[
IF(r, θ, F)

]
= 0

θ̂n − θ(F) =
1

n

∑
IF(ri, θ, F) + remainder

hence
Var[θ̂n] ≈

1

n

∑
IF2(ri, θ, Fn)

(the variance of the estimator is the variance if the IF-
transformed returns).
We can compute the IF of most performance measures
(Sharpe, Sortino, Rachev, Omega ratios, etc.) and
therefore estimate their standard deviation (assuming
iid returns).
R implementation in RPEIF and RPESE.

Article and book summaries by Vincent Zoonekynd 202/1044

Standard errors of risk and performance
estimators for serially correlated returns

X. Chen and R.D. Martin (2019)
If the returns are not iid, the variance should be cor-
rected with the ACF,

Var[θ̂n] = E
[
IF2(r)

]
+ 2

∑
k⩾1

E
[
IF(r0)IF(rk)

]
which can be computed from the periodogram, which
can be smoothed with a GLM model for exponen-
tial distributions (polynomial regression with a lasso
penalty to control the degree).

PerformanceAnalytics:
estimation of higher order moments

D. Cornilly and B.G. Peterson (2020)
Factor model for the skewness and kurtosis tensors.

Dependence model assessment
and selection with DecoupleNets

M. Hofert et al. (2022)
Learn a transformation from a known copula in dimen-
sion d ⩾ 2 to the uniform copula in dimension 2, and
use it for gof tests (try several copulas, and keep that
for whhich the result is closes to uniform).

Continuous-time stochastic gradient descent
for optimizing over the stationary distribution

of stochastic differential equations
Z. Wang and J. Sirignano (2022)

To find the parameters θ of an SDE

dX = µθ(X)dt+ σθ(X)dW

to minimize

F (θ) =

∥∥∥∥ E
Y∼πθ

[
f(Y)− β

]∥∥∥∥2
where E

[
f(Y)

]
are some generalized moments of the

invariant distribution πθ:

∂tθ = −2α
[
f(X̄)− β

]
X̃ ′∇xf(X)

dX̃ = (X̃∂xµ+ ∂θµ)dt+ (X̃∂xσ + ∂θσ)dW

dX = µdt+ σdW

dX̄ = µdt+ σdW̄

(X̃ estimates ∂θX, α is the learning rate).

Multivariate matrix-exponential affine
mixtures and their applications in risk theory

E.C.K. Cheung et al. (2021)
The matrix-exponential distribution on [0,∞), X ∼
ME(α, T, t) has density f(x) = αeTxt, α ∈ R1×p,
T ∈ Rp×p, t ∈ Rp×1 and cdf F (x) = 1 + αeTxT−1t.
These are the distributions whose Laplace transform is

rational. They are stable by mixtures and affine mix-
tures (mixtures f =

∑
cifi, with potentially negative

weights ci ad long as f ⩾ 0).
Multivariate matrix-exponential affine mixtures have
density

f(x1, . . . , cM) =
∑

1⩽i1,...,iM⩽L
pi1,...,iM fi1(x1) · · · fiM (xM).

Graph neural networks for asset management
G. Pacreau et al.

Feed pricing data (and your model’s alpha) to an
LSTM, and the result to a GCN or GAT (or the hyper-
graph equivalent) to forecast future returns (or their
signs), with a penalty to get the correct order (learn-
ing to rank)

λ
∑
ij

[
(ŷi − ŷj)(yi − yj)

]
+
.

Portfolio selection models based on
interval-valued conditional value at risk

(ICVaR) and empirical analysis
J. Zhang and K. Zhang (2022)

To extend portfolio construction to return intervals
[xL, xU], use the elxicographic order of (mean, left) for
the objective and replace the constraint Ax ⩽ B with
aUx ⩽ bU , Γ(B,Ax) ⩽ γ, where

Γ(A,B) =
m(B)−m(A)

w(B) + w(A)

A = [aL, aU]

B = [bL, bU]

m(A) =
1

2
(aL + aU)

w(A) = aU − aL

γ ∈ [0, 1] fixed.

VaR anc CVaR can be similartly generalized to
interval-valued random variables.

The growth of relative wealth
and the Kelly criterion

A.W. Lo et al. (2017)
The Kelly portfolio f , for two assets a and b with ratio
returns Xa and Xb, maximizes

µ(f) = E
[
log(1 + fXa + (1− f)Xb)

]
and satisfies

E

[
Xa −Xb

1 + fXa + (1− f)Xb

]
= 0

(unless E[(1 + Xb)/(1 + Xa)] < 1 or E[(1 + Xa)/(1 +
Xb)] < 1, in which case f = 1 or f = 0.
Alternatively, given two investors f and g, we can look
for f maximizing the relative final wealth Wf/(Wf +
Wg).

Article and book summaries by Vincent Zoonekynd 203/1044

Fat tails and optimal liability driven portfolios
J. Rosenzweig

In portfolio optimization, replace the variance with
some other even moment (larger exponents give an ap-
proximation of the minimum return).

Traversing the local polytopes
of ReLU neural networks:

a unified approach for network verification
S. Xu et al.

A ReLU network defines a piecewise linear function.
Each neuron splits the space along a hyperplane: this
partitions the space into polytopes, each defined by a
set of inequalities; non-redundant inequalities (flipping
them gives a non-empty polytope) define the faces of
that polytope. Neighbouring polytopes (they differ by
the direction of one non-redundant inequality) form a
polytope graph, which can be explored with breadth-
first search (BFS). This graph, with BFS traversal, can
be used to prove properties of the network, e.g., exis-
tence of local adversarial attacks, or to generate coun-
terfactual samples. Previous approaches used mixed
integer programming (MIP), but the polytope graph
can be explored with linear programming (LP) alone
(to check if a set of linear inequalities defines the empty
set).

Explainable neural networks
based on additive index models

J. Vaughan et al. (2018)
The explainable neural network (xNN) is an additive
index model

f(x) = µ+
∑

γihi(βix)

where the hi’s are scalar functions defined by neural
nets.

Enhancing explainability of neural networks
through architecture constraints

Z. Yang et al.
The generalized additive index model (GAIM, aka pro-
jection pursuit learning)

f
(
E[y|x]

)
= µ+

∑
hi(w

′
ix)

can be estimated with neural networks hi,

f
(
E[y|x]

)
= µ+

∑
βihi(w

′
ix),

with an L1 penalty on both β and w, a smooth penalty
on hi, Meanx h

′′
i (wix)

2, a normalization constraint for
the hi’s,

E
[
hi(z)

]
= 0, E

[
hi(z)

2
]
= 1,

imposed by a batchnorm layer, and an orthogonality
constraint W ′W = Ik, i.e., W ∈ Stiefel(p, k), imposed
with the Cayley transform, i.e., by replacing the gra-
dient step

W ←W − τG, G = ∇WL

with

A = GW ′ −WG′

W ←
(
I +

τ

2
A

)−1(
I − τ

2
A

)
W.

GAMI-Net: an explainable neural network
based on generalized additive models

with structured interactions
Z. Yang et al.

One can estimate a GAM, with neural networks instead
of (1- and 2-dimensional) splines, and with:
– Pruning of less important main effects (proportion
of explained variance);

– Pairwise interactions, estimated on the residuals of
the main effects model, only for pairs for which one
variable has already been selected, chosen by looking
at the proportion of variance explained by forests of
shallow trees on each pair, pruned as above;

– An orthogonality penalty∑
ij

Mean f(xi)f(xi, xj)

to clearly separate the main effects from the inter-
actions.

Unwrapping the black box
of deep ReLU networks: interpretability,

diagnostics and simplification
A. Sudjianto et al.

A neural network with ReLU activations is a locally
linear model:
– Look at the parallel plot of the coefficients of those
linear functions;

– For each feature xi, plot the segments βixi ∼ xi, one
for each cell (“activation region”).

To simplify the model, merge nearby cells with similar
coefficients (not unlike the fused lasso).
Python implementation: aletheia-dnn.

Adaptive explainable neural networks (AxNNs)
J. Chen et al. (2020)

Fit an AIM (additive index model) on the residuals of
a GAM (generalized additive model), both estimated
with neural networks: the GAM estimates the main
effects, the AIM the residual interactions. Train with
AdaBoost, with 1-variable GAMs and 2-variable AIMs
as weak learners.

+

GAM

+

AIM

Article and book summaries by Vincent Zoonekynd 204/1044

Surrogate locally-interpretable models
with supervised machine learning algorithms

L. Hu et al. (2020)
A regression tree (with linear models with an L1

penalty, or GAMs, in the leaves), trained on the output
of a neural net, gives an interpretable surrogate model,
not unlike LIME (a linear model on a neighbourhood
of each observation) or KLIME (a linear model on each
k-means cluster – k-means is an unsupervised cluster-
ing algorithm, while a regression tree is a supervised
one).

Designing inherently
interpretable machine learning models

A. Sudjianto and A. Zhang (2021)
To measure the interpretability of a model, look
– if constraints such as additivity, sparsity, linearity,
smoothness, monotonicity can be imposed, globally
or locally, at least approximately,

– if the model can be visualized,
– if it uses an (orthogonal) projection of the input fea-
tures,

– if it segments the input space in a small number of
regions.

General pitfalls
of model-agnostic interpretation methods

for machine learning models
C. Molnar et al.

– Confusion between feature effect (Shapley score) and
feature importance (e.g., permutation feature impor-
tance, PFI): use both;

– Interpreting a model that does not generalize well:
this gives an interpretation of the model, not of the
data generation process;

– Non-intrinsically interpretable models – try GAM
boosting;

– Ignoring feature dependence: most methods assume
features are independent;

– Using only correlation to measure dependence:
check KCCA (kernel canonical correlation), HSIC
(Hilbert-Schmidt independence criterion), MI (mu-
tual information – more difficult to estimate);

– Ignoring interactions (when aggregated, significant
effects can cancel out): look at ICE curves;

– Ignoring uncertainty: use the bootstrap;
– Drawing causal conclusions.

Learning Wasserstein embeddings
N. Courty et al. (2018)

A Deep Wasserstein embedding is a mapping (of prob-
ability distributions, or images – the examples given
are MNIST and doodles) transforming the Wasserstein
distance into the Euclidean distance, trained on data
(xi = (x1i , x

2
i), yi = dW (x1i , x

2
i)), with a Siamese net-

work, regularized with a decoder and a reconstruction
loss.

Applications include Wasserstein barycenter (interpo-
lation) and principal geodesic analysis.

x1

x2

φ

φ

x̃1

x̃2

ψ

ψ

x1

x2

‖x̃1 − x̃2‖2

Set representation learning
with generalized sliced-Wasserstein embeddings

N. Naderializadeh et al.
To process sets with a neural net, one usually uses
permutation equivariant modules (e.g., self-attention,
or, more generally, processing each point in the same
way) and permutation invariance modules (multi-head
attention, pooling): DeepSets, SetTransformers. In-
stead:
– View the elements of a set as samples from a proba-
bility distribution µi;

– Project them on random 1-dimensional subspaces,
νiθ = gθ#µi;

– Compute the Monge map between each νiθ and some
reference distribution ν0θ: F−1νiθ

◦ Fν0θ ;
– Use the cummulative distribution transforms F−1νiθ

◦
Fν0θ − Id as representation of the µi.

The projection gθ, can be learned from data, using con-
trastive learning (SimCLR, SiamSiam).

Wasserstein embedding for graph learning
S. Kolouri et al. (2021)

Represent a graph with its node embedding, i.e., a set
of points in Rd, and then, the linear Wasserstein em-
bedding.
Do not compute all pairwise distances, but only dis-
tances to some reference graph.

Generalized sliced distances
for probability distributions

S. Kolouri et al.
The Radon transform recovers a distribution p from its
slices pf along hyperplanes

pfθ (t) =

∫
Rd

p(x)δ
(
t− 〈x, θ〉

)
dx

p(x) =

∫
Sd−1

(
pfθ ∗ η

)(
〈x, θ〉

)
dθ

where η̂(ω) = c |ω|d−1.
The generalized Radon transform uses a family of hy-
persurfaces H = {x ∈ Rd : fθ(x) = t} instead, where
the fθ are called “defining functions”. A metric ξ be-
tween 1-dimensional probability measures can be ex-
tended to higher dimensions

ζ(p, q) =

(∫
ξ(pfθ , qfθ)

rdθ

)1/r

, r ⩾ 1

Article and book summaries by Vincent Zoonekynd 205/1044

(generalized sliced probability metric) or

ζ∗(p, q) = sup
θ
ξ(pfθ , qfθ),

For instance:

ζ2(p, q) =

∫
‖Apfθ −Aqfθ‖ dθ

A = Id

Ap(t) =

∫ t

−∞
p(s)ds

Ap(t) =

∫ ∞
−∞

p(t)k(t, s)ds.

Parameter prediction
for unseen deep architecture

B. Knyazev et al. (2021)
Hypernetworks learn to compute the parameters of an-
other neural network from training data in a single for-
ward pass:

training data 7−→ weights

but they require the neural net to have a fixed archi-
tecture. Graph neural nets (GNN) allow an arbitrary
architecture (for a fixed set of node types):

training data, architecture 7−→ weights.

Squeeze-and-excitation networks
J. Hu et al.

A squeeze-and-excite block combines:
– A convolution layer, outputting C channels;
– Global averaging, separately for each channel, out-
putting a vector of length C;

– A simple transformation,

z 7→ s = σ
(
w2ReLU(w1z)

)
,

to compute the channel-specific scale, outputting a
vector of length C;

– Multiplication of the convolution output and the
scale.

Learning in high dimension
always amounts to extrapolation

R. Balestriero
Interpolation occurs when a new sample is in the con-
vex hull of the training data; in high dimension, this is
unlikely to happen.

x1, . . . , xN ∼ Unif(Bd)
x ∼ Unif(Bd)

P
[
x ∈ chull(x1, . . . , xN)

]
−−−−−−→
d,N→∞
N<2d/2/d

0

Task-based end-to-end model learning
in stochastic optimization

P.L. Donti et al.
Traditional machine learning, for

x: features f(x, y, z): loss
y: predictions
z: policy

is often a 2-step process

θ = Argmin
θ

E
x,y∼data

[
− log p(y|x; θ)

]
z(x) = Argmin

x
E

y∼p(y|x;θ)

[
f(x, y, z)

]
.

Black-box, end-to-end optimization is not very data-
efficient:

Minimize
θ

E
x,y∼Data

[
f
(
x, y, z(x; θ)

)]
.

Modeling the data distribution (instead of the policy)
in an end-to-end fashion (i.e., with the correct loss
function, instead of the log-likelihood) is more data-
efficient. Iterate:

x, y ∼ Data
z∗(x, θ) = Argmin

z
E

y∼p(y|x;θ)
f(x, y, z)

θ ← θ − α∇θf
(
x, y, z∗(x, θ)

)
.

N-Beats: neural basis expansion analysis
for interpretable time series forecasting

B.N. Oreshkin et al. (2020)
To forecast time series, stack blocks with two outputs,
to forecast/backcast the next/previous periods, taking
the residual of the previous block as input; the nonlin-
earities are given by basis function expansions

∑
θivi,

to extract the trend (first stack) and the seasonallity
(second stack).

input

trend stack

seasonality stack
⊕

output

block input

4×FC

FC FC

g g

backcast forecast

Article and book summaries by Vincent Zoonekynd 206/1044

stack input

block

block

block

	

	

	

· · ·

stack output

⊕

forecast

...

Ensemble several models: different loss functions
(SMAPE, MASE, MAPE), window lengths, random
initialization.

How powerful are graph neural networks?
K. Xu et al. (2019)

For ε ∈ R \Q, there exists f : R→ R such that{
Q×Multisets(Q) −→ R(

u, (vi)i
)
7−→ (1 + ε)f(u) +

∑
i

f(vi)

be injective. This suggests the following aggregation,
for graph neural nets (GIN):

hv ← MLP
(
(1 + ε)hv +

∑
u∈N(v)

hh

)
where ε is learned.

Principal neighbourhood aggregation
for graph nets

G. Corso et al. (2020)
Do not use a single aggregation operator, but several
(mean, standard deviation, minimum, maximum), and
rescale them with the degree (on a logarithmic scale,
otherwise the messages would be amplified or attenu-
ated exponentially).(

log(d+ 1)

〈log(d+ 1)〉

)+1, −1, or 0

Learning aggregation functions
G. Pellegrini et al. (2021)

Principal neighbourhood aggregation (PNA) uses a fi-
nite set of (4× 3 = 12) aggregations. Instead, try

LAF(x) = αLa,b(x) + βLc,d(1− x)
γLd,f (x) + δLg,h(1− x)

La,b(x) =

(∑
i

xbi

)a
x ∈ [0, 1]n

Neural message passing
for quantum chemistry
J. Gilmer et al. (2017)

mv ←
∑

w∈N(v)

M(hv, hw, evw)

hv ← U(hv,mv)

Rethinking graph transformers
with spectral attention

D. Kreuzer et al. (2021)
Transformers use positional embeddings, with sines
and cosines. For graphs, we could use the first eigenvec-
tors of the Laplacian (GT), but this ignores the eigen-
values. Instead, SAN learns the positional embedding:
for each node, transform the eigenvalues λ1, . . . , λm
and eigenvectors φij , . . . , φmj as

(2×m)
linear7−−−→
2×k

(k×m)
transformer7−−−−−−−→
m×m

(k×m)
sum7−−→ (k×1).

Randomly flip the sign of the eigenvectors to make the
model sign-invariant.

A generalization of transformer networks
to graphs

V. P. Dwivedi and X. Bresson (2021)
The graph transformer (GT) layer uses the low-
frequency eigenvectors of the Laplacian as positional
encoding.

Training graph neural networks
with 1000 layers

G. Li et al. (2021)
Use reversible (block-triangular) connections.

A dual-stage attention-based recurrent neural
network for time series prediction

Y. Qin et al.
Stack two LSTM layers with attention (DARNN).

αst ∝ f(ht−1, xt) s < t

ht = LSTM(hh−1,
∑
s<t

αstxs)

βst ∝ g(`t−1, hs) s < t

dt = LSTM(dt−1; yt−1,
∑
s<t

βsths)

ŷT = φ(dT ,
∑
s<T

βsThs)

Article and book summaries by Vincent Zoonekynd 207/1044

Gradients are not all you need
L. Metz et al. (2021)

Exact gradients (from automatic differentiation) may
be less informative than approximate (black-box) ones.
This phenomenon appears, in particular, in iterated
systems: RNNs, rigid body physics, ODE solvers, op-
timization layers, etc.
To limit the problem: initialize the RNNs close to
the identity, use LSTMs, use conservation laws (and
other known properties), try truncated BPTT, trun-
cated gradients, or, even black-box gradients.

Top2vec: distributed representations of topics
D. Angelov

top2vec = doc2vec+UMAP+HDBScan

Supervised linear dimension reduction
methods: review, extensions and comparisons

S. Xu et al.
Prefer PLS (an eigen decomposition) or LSPCA (man-
ifold optimization).

PCA: Minimize
U ′U=I

‖X −XUU ′‖2

PLS: Maximize
∥u∥=1

[
(Xu)′y

]2
(and iterate after projecting X and y on u⊥)

LSPCA: Minimize
β,U

s.t. U ′U=I

‖y −XUβ‖2 + λ ‖X −XUU ′‖2

A new coefficient of correlation
S. Chatterjee

To assess if Y = f(X) (for f measurable but not nec-
essarily monotonic):
– Sort the observations along X:

(X(1), Y(1)), . . . , (X(n), Y(n));

– Compute the ranks ri of Y(i);

– Let ξ(X,Y) = 1− 3

n2 − 1

∑
i ‖ri+1 − ri‖ .

It converges to∫
VarX EY [1Y⩾t|X]dpY (t)∫

VarY [1Y⩾t]dpY (t)

which is 0 iff X ⊥⊥ Y and 1 iff Y = f(X) a.s. for
some measurable f . If X ⊥⊥ Y , it is asymptotically
Gaussian:

√
n ξn(X,Y)

d−→ N(0, 2/5).

Alternatives include:
– The maximum information coefficient (MIC): maxi-
mum of MI(U ;V)/ logMin(x, y), where MI(U ;V) =
KL(pU,V ‖pUpV) and (U, V) is the discretization of
the scatterplot of (X,Y) on an x × y grid, with
xy ⩽ n0.6;

– The distance correlation

aij = ‖Xi −Xj‖
bij = ‖Yi − Yj‖
Aij = aij − ai• − a•j
Bij = bij − bi• − b•j

dCor = Cor(A,B)

– HHG: for each pair (i, j), i 6= j, compute the χ2

statistic to test indepence on the 2 × 2 contingency
table for |Xi −X| < |Xi −Xj | and |Yi − Y | <
|Yi − Yj |

– Hilbert-Schmidt independence criterion (HSIC)

HSIC =
1

n2

∑
ij

kij`ij +
1

n4

∑
ijqr

kij`qr −
2

n3

∑
ijq

kij`iq

kij = k(Xi, Xj)

`ij = `(Yi, Yj)

k(x, y) = `(x, y) = exp−1

2

(
x− y
σ

)2

R implementations in XICOR, energy (dCor), minerva
(MIC), HHG, dHSIC.

On the power of Chatterjee’s rank correlation
H. Shi et al.

Prefer Hoeffding’s D, Blum-Kiefer-Rosenblatt’s R, or
Bergsma-Dassios-Yanagimoto’s τ∗ to Chatterjee’s rank
correlation.

D =

∫ [
F (x, y)− F (x)G(y)

]2
dF (x, y)

R =

∫ [
F (x, y)− F (x)G(y)

]2
dF (x)dF (y)

τ∗ = 4I(x1, x3 < x2, x4; y1, y3 < y2, y4)

+ 4I(x1, x3 < x2, x4; y2, y4 < y1, y3)

− 8I(x1, x3 < x2, x4; y1, y4 < y2, y3)

where I(x1, x2 < x3, x4) = 1Max(x1,x2)<Min(x3,x4).

A simple measure of conditional dependence
M. Azadkia and S. Chatterjee

Conditional independence can be measured as

T (Y, Z|X) =

∫
EX VarZ

[
PY (Y ⩾ t|Z,X)|X

]
dFY (t)∫

EX VarY
[
1Y⩾t|X

]
dFY (t)

.

To estimate it:
– Let N(i) be the index of the nearest neighbour of
Xi;

– Let M(i) be the index of the nearest neighbour of
(Xi, Zi);

– Let Ri =
∑
j 1Yj⩾Yi be the rank of Yi;

Tn

∑
Min(Ri, RM(i))−Min(Ri, RN(i))∑

Ri −Min(Ri, RN(i))
.

It can be used for variable selection: add the variable
Xj maximizing Tn(Y,Xj |Xj1 , . . . , Xjk) until Tn ⩽ 0.
R implementation in FOCI.

Article and book summaries by Vincent Zoonekynd 208/1044

The oracle estimator is sub-optimal for global
minimum variance portfolio optimization

C. Bongiorno and D. Challet
Rotationallty invariant estimators (RIE) of the vari-
ance matrix

∀U ∈On Σ(U ′ŜU) = U ′Σ(Ŝ)U

filter the eigenvalues of the sample variance matrix
Ŝ while keeping its eigenvectors. The RIE optinmal
for the Frobenius distance (between the estimator and
the (unknown) true variance matrix) is not optimal for
minimum variance portfolio optimization.

A new parametrization of correlation matrices
I. Archakov and P.R. Hansen (2020)

A correlation matrix C can be parametrized with the
off-diagonal elements of logC: C 7→ vecl logC. This
generalizes the Fisher transform:

log

(
1 ρ
ρ 1

)
=

1

2
log(1− ρ2) 1

2
log

1 + ρ

1− ρ
1

2
log

1 + ρ

1− ρ
1

2
log(1− ρ2)

 .

For covariance matrices, add (log σi)i.
To compute the inverse (without the diagonal elements
of logC), iterate x 7→ x−log diag eA[x], where A[x] is A
with its diagonal replaced by x, and return C = eA[x];
we then have vecl logC = veclA.

Completing correlation matrices
O. Dreyer et al. (2021)

Complete concentration matrices by maximizing the
entropy of the resulting Gaussian distribution. If the
known correlations form a chordal graph, this can be
done efficiently.

The Hurst roughness exponent
and its model-free estimation
X. Han and A. Schied (2021)

The standard Hurst exponent measures the long-range
dependence of a time series (or function), using its au-
tocorrelation, The Hurst roughness exponent (the pth
variation of x converges to 0 if p > 1/H and to infin-
ity if p < 1/H) measures the roughness of a function.
They sometimes coincide (fBM), but not always.
The Gladyshev estimator is not scale-invariant, but can
be made so.

Portfolio optimization with idiosyncratic
and systemic risks for financial networks

Y. Yang et al. (2021)
Replace the variance matrix V with λΣ + (1 − λ)H,
where Σ is the matrix of covariances (V), or Kendall’s
τ ’s, or tail dependence coefficients, and H = (σσ′) �
(CC ′) where σ = diag V and C is the vector of clus-
tering coefficients.

Portfolio optimization with options
J.R. Chan et al. (2021)

For portfolios of options, replace the variance matrix,
in the Markowitz optimization problem, with

Λij =
P (O+

i , O
+
j)

P (O+
i)P (O

+
j)
,

where O+
i is the event “option i expires in the money”

(it can be computed from the pairwise copulas of stock
prices and the option strikes).

Online estimation and optimization
of utility-based shortfall risk

A.S. Menon et al.
Utility-based shortfall risk (UBSR) generalizes CVaR
(it is no longer coherent):

SRλ(X) = inf{t ∈ R : E[U(t+ x)] ⩾ −λ}.

Mean-covariance robust risk measurement
V.A. Nguyen et al. (2021)

The Chebychev ambiguity set around a mean-
covariance pair (µ,Σ) is the set of probability dis-
tributions with that expectation and that variance.
The Gelbrich distance between mean-covariance pairs
(µ1,Σ1) and (µ2,Σ2) is√

‖µ1 − µ2‖2 +Tr
[
Σ1 +Σ2 − 2(Σ

1/2
2 Σ1Σ

1/2
2)1/2

]
.

It is the Wasserstein distance between N(µ1,Σ1) and
N(µ2,Σ2).
The Gelbrich ambiguity set Gρ(µ,Σ) is the set of dis-
tributions q whose mean-variance pair is at distance at
most ρ of (µ,Σ).
For a (translation-invariant, positive homogeneous,
law-invariant) risk measure R,

sup
q∈Gρ(µ,Σ)

R
X∼q

[−w′X]=−µ′w+α
√
w′Σw+ρ

√
1 + α2 ‖w‖

where the risk coefficient α can be computed explic-
itly for VaR, CVaR, spectral risk measures, Kusuoka
risk measures (supremums of spectral risk measures),
distorsion measures (R[X] =

∫
R
τdh

(
FX(τ)

)
for some

non-decreasing [0, 1]→ [0, 1]).

Optimal investment with risk
controlled by weighted entropic risk measures

J. Xia (2021)

h(X) =

∫ ∞
0

1

a
E[e−aX]dµ(a)

Article and book summaries by Vincent Zoonekynd 209/1044

Deep reinforcement learning for the optimal
placement of cryptocurrency limit orders

M. Schnaubelt (2020)
Reinforcement learning (PPO) from limit order book
features:
– Queue imbalance (difference between bid and ask
volumes at various levels);

– Liquidity cost (cost of a market buy or sell order for
10, 20, 30, 50, 100 BTC or ETH);

– Volatility, drift, spread.

Deep partial hedging
S. Hou et al. (2021)

Partial hedging (hedging with less capital than
needed, minimizing P [loss > 0] (quantile hedging) or
E[loss|loss > 0] (efficient hedging)) is equivalent to ∆-
hedging with a modified payoff.
Use a neural net to approximate that payoff, while
accounting for transaction costs; also add a penalty
(Mint Vt)− to avoid being too much in the red.

A meta-method for portfolio management
using machine learning

for adaptive strategy selection
D. Kisiel and S. Gorse

Use xgboost to decide when to switch between hierar-
chical risk parity and wi ∝ 1/σ2

i (naive risk parity) on
18 ETFs. Features include:
– Returns, volatility, downside deviation, maximum
drawdown of the strategies;

– Average return and volatility of the ETFs;
– Average and standard deviation of the correlations;
– Quality ratios: number of independent bets (square
of the diversification ratio

∑
wiσi/σport of the max-

imum diversification portfolio) divided by the num-
ber of assets;

– Non-parametric k-NN entropy estimator;
– Cophenetic correlation coefficient (correlation be-
tween distances and distances on a dendrogram);

– Standardized generalized variance: GV = detV ,
SGV = det(V)1/p;

– Correlation matrix features: determinant, condition
number, fraction of the variance explained by the
eigenvalues outside the Marchenko-Pastur distribu-
tion.

Estimating security betas via machine learning
W. Drobetz et al.

Random forest (or neural network, or linear regression)
to forecast realized beta (computed from daily returns
over the next year) from stock characteristics (30 ra-
tios, industries, historical (3m, 1y, 5y) betas).

A transformer-based model for default
prediction in mid-cap corporate markets

K. Korangi et al. (2021)
Predict the term structure of default from

– Quarterly fundamental ratios,
– Quarterly financial ratios,
– Daily prices,
with a separate transformer for each, whose outputs
are then combines, with the time series of default indi-
cators (3m, 6m, 9m, 1y, 2y, 3y) as targets. Attention
weights and Shapley contributions help interpret the
model.

Market impact decay and capacity
H. Chan (2021)

When a trade is split over several days, subsequent
days still feel the market impact of previous days –
market impact does not immediately drop to zero but
decays (it drops to zero after a month).

w∗it: target weights
wit = (1− τ)wi,t−1 + τw∗it

τ : trading speed

Impact = α

√
size
ADV , α = 100 bp

Decayt = γt, γ = 0.85

Costit = C∆it

∑
s⩽t

signisDecayt−sImpactis

C: Capital
Capacity = Max{C : Max

τ
Sharpeτ ⩾ threshold }

The correlation risk premium:
international evidence

G. Faria et al.
The correlation risk is the difference between the im-
plied correlation

IC =
SVindex −

∑
i w

2
i SVi∑

i ̸=j
wiwj

√
SViSVj

SV = variance swap rates

and the realized correlation

RC =

∫ ∞
St

2

K2

(
1− log

K

St

)
Call[t,T](K)dK

+

∫ St

0

2

K2

(
1 + log

K

St

)
Put[t,T](K)dK

Similarly, the variance risk factor is the difference be-
tween the implied and the realized variance.

Sustainable investing in equilibrium
L. Pástor et al. (2020)

Green (ESG) have lower returns in equilibrium, but
(by definition) positive returns when positive shocks
hit the “ESG factor”.

Article and book summaries by Vincent Zoonekynd 210/1044

Deep differentiable reinforcement learning
and optimal trading

T. Jaisson (2021)
Policy gradient, to trade one assset, with a 2-scale al-
pha: the optimal strategy uses the fast alpha to time
the trades, and the slow alpha for the target weights.

Time series simulation by conditional
generative adversarial net

R. Fu et al.
To generate synthetic (univariate) time series, use a
conditional GAN

Min
G

Max
D

E
x∼Data

[
logD(x)

]
+ E
x∼noise

[
log(1−DGx)

]
or a WGAN

Min
G

Max
D

∥D∥Lip⩽1

E
x∼Data

[
logD(x)

]
− E
x∼noise

[
logD(G(x))

]
with weight clipping, no batchnorm, 3 FC layers of
100+ nodes, leaky ReLU (α = .1) activations and 30
inputs.

qgam: Bayesian nonparametric
quantile regression modeling in R

M. Fasiolo et al. (2021)
GAMs can be generalized to GAMs for location, scale
and shape (GAMLSS) and quantile GAMs. To esti-
mate a QGAM model, replace the pinball loss ρ(z) =
τz+ + (1 − τ)z− with the smooth extended log-f loss
(ELF)

ρ(z) = λ log(1+z/λσe)− (1− τ) z
σ
.

JointAI: joint analysis and imputation
of incomplete data in R
N.S. Erler et al. (2021)

Bayesian missing data imputation with MCMC (Gibbs
sampling, via Jags) for GLMM (mixed GLM) and
CLM (cummulative logit) multilogistic (mixed), sur-
vival models.

Informed Bayesian inference for the A/B test
Q.F. Gronau et al. (2021)

abtest: A/B testing for 3 hypotheses (positive, nega-
tive, or no effect), with a prior (expert knowledge).

BFPack: flexible Bayes factor
testing of scientific theories in R

J. Mulder et al. (2021)
Bayesian statistical tests for multiple hypotheses in-
volving inequalities and inequalities (e.g., µ = 0 vs
µ > 0 vs µ < 0, or σ1 = σ2 < σ3 vs σ1 < σ2 = σ3 vs
σ1 = σ2 = σ3 vs neither).

Shrinkage in the time-varying parameter model
framework using the R package shrinkTVP

P. Knaus et al. (2021)
MCMC estimation of the Bayesian time-varying pa-
rameter (TVP) model

yy = xtβt + εt

βt = βt−1 + wt

with a normal-gamma-normal (NGG) prior (normal
gamma, horseshoe, and lasso are limiting cases).

Modeling univariate and multivariate
stochastic volatility in R

with stochvol and factorstochvol
D. Hosszejni and G. Kastner (2021)

Efficient (C++) MCMC estimation of (uni- or mul-
tivariate) non-Gaussian, asymmetric (leverage effect)
stochastic models (non-linear state space models).

dalmatian: a package for fitting
double hierarchical linear models

in R via Jags and Nimble
S. Bonner et al. (2021)

Mixed model, with fixed and random effects for both
mean and variance.

Machine learning optimization algorithms
and portfolio allocation

S. Perrin and T. Roncalli (2019)
Four machine learning algorithms are applicable
to portfolio optimization (e.g., with a Herfindahl
penalty to increase diversification): coordinate descent,
ADMM, proximal gradient, and Dykstra’s algorithm.
Coordinate descent optimizes one variable at a time,
keeping the others fixed; those 1-dimensional optimiza-
tion problems often have an explicit solution (e.g., soft-
thresholding, for the lasso) or can be solved with line
search.
ADMM solves problems of the form

Find x, y
To minimize f(x) + g(y)
Such that Ax+By = c

by iterating

x← Argmin
x

f(x) + λ ‖Ax+By − c+ u‖22

y ← Argmin
y

g(y) + λ ‖Ax+By − c+ u‖22

u← u+ (Ax+By − c).

Finding a good value of λ is tricky:
– Increase λ if ‖r‖ � ‖s‖,
– Decrease λ if ‖r‖ � ‖s‖,
where r = Ax+By − c and s = 2λA′B∆y.

Article and book summaries by Vincent Zoonekynd 211/1044

Convergence to a moderately accurate solution is fast;
convergence to a more accurate solution much slower.
To put an optimization problem in ADMM form, con-
sider the following “tricks”:
– To minimize f(x) + g(x), minimize f(x) + g(y) sub-
ject to x = y;

– To minimize f(x) subject to x ∈ Ω, minimize
f(x) + 1Ω(y) subject to x = y;

– To minimize f(x) + g(x) subject to x ∈ Ω1 ∩ Ω2,
minimize f(x) + 1Ω1(x) + g(y) + 1Ω2(y) subject to
x = y;

– To minimize f(x) + g(Ax+ b), minimize f(x) + g(y)
subject to y = Ax+ y.

The proximal operator is

proxf (v) = Argmin
x

f(x) + 1
2 ‖x− v‖

2
2 ;

it generalizes the Euclidean projection (for f = 1Ω)
and can often be computed explicitly.
There is no formula for proxf1+f2 , but it can be com-
puted by iterating

x← proxf1(y + p)

p← y + p− x
y ← proxf2(x+ q)

q ← x+ q − y

starting with x = y = v and p = q = 0. Dykstra’s al-
gorithm generalizes this to a sum of m terms. It can
be used to project on an intersection: 1Ω1∩···∩Ωm =
1Ω1

+ · · ·1Ωm , e.g., an intersection of half-spaces (i.e.,
general inequality constraints, Ax = b, Cx ⩽ d).

Dykstra’s algorithm, ADMM and coordinate
descent: connections, insights, and extensions

R.J. Tibshirani (2017)
The best approximation problem

Find u ∈ Rn

To minimize ‖y − u‖2
Such that u ∈ C1 ∩ · · · ∩ Cd

can be solved with Dikstra’s algorithm, iterating

u← PCk(u+ zk)

zk ← zk −∆u

with a different k at each iteration (use a different dual
variable for each Ck).
Its dual is the regularized regression problem

Find w ∈ Rp

To minimize 1
2 ‖y −Xw‖

2
+
∑
i

hi(wi)

and the coordinate descent algorithm is equivalent to
Dykstra’s.

A note on portfolio optimization
with quadratic transaction costs

P. Chen et al. (2019)
The transaction costs should be included in the bud-
get constraint: for linear costs, w′1 = 1 becomes
w′1τ ‖w − w0‖1 = 1 – and we should also distinguish
between bid and ask prices. For quadratic transac-
tion costs, the problem is no longer convex, but still
amenable to ADMM.
[w′1 + C(w,w0) = 1 is not convex, but w′1 +
C(w,w0) ⩽ 1 is.]

Improving the robustness of trading strategy
backtesting with Boltzmann machines
and generative adversarial networks

Use a convolutional Wasserstein GAN to generate syn-
thetic time series.

Portfolio optimization
with sparse multivariate modelling

P.F. Procacci and T. Aste (2021)
Use the TMFG-LoGo variance matrix for portfolio op-
timization (the sparsity structure of Σ−1 is given by the
TMFG-filtered graph, and the correlation of TMFG-
linked asssets is preserved).

Sparse causality network retrieval
from short time series

T. Aste and T. Di Matteo

An information filtering approach to stress
testing: an application to FTSE markets

I. Seabrook et al. (2021)
Given a multivariate Gaussian(

X
Y

)
∼ N

[(
µX
µY

)
,

(
ΩXX ΩXY
ΩY X ΩY Y

)]
,

the impact of X on Y is the average change of the
variables in Y for a unit change of the variables in X

LX→Y = Mean
i

(
E[Y1|X = µX + 1]− E[Yi]

)
=

1

nY
1′Y ΩY XΩ′XX1X .

Make Ω−1 sparse with TMFG filtering.
Cluster the dates into market states, with a log-
likelihood penalized for frequent cluster changes
(Viterbi algorithm).
The most central groups (industrial sectors) have a
higher response but a lower impact, because of the
number of links within those groups rather than their
centrality.

Article and book summaries by Vincent Zoonekynd 212/1044

Simplicial persistence of financial markets:
filtering, generative processes

and portfolio risk
J.D. Turiel et al. (2020)

Check which triangles, separators, tetrahedra of the
TMFG (triangulated maximally filtered graph) are
persistent, i.e., present at times t and t + τ (and the
number of such triangles as τ varies).

A universal end-to-end approach
to portfolio optimization via deep learning

C. Zhang et al. (2021)
End-to-end portfolio construction, from daily price
data, with a few constraints, e.g., leverage, maximum
weight, number of assets (with a sorting operation – it
is differentiable).

Deep learning for portfolio optimization
Z. Zhang et al.

Only 4 assets (ETFs), with an LSTM trained on 10
years of daily price data.

End-to-end risk budgeting portfolio
optimization with neural networks

A.S. Uysal et al. (2021)
End-to-end portfolio construction, from 10 years of
daily price data, for 7 assets, with or without an opti-
mization layer (risk budgeting).

Integrating prediction
in mean-variance portfolio optimization

A. Butler and R.H. Kwon (2021)
End-to-end portfolio optimization has a quadratic op-
timization reformulation in the special case where the
return forecasts are a linear combination of the fea-
tures. Application to 24 commodities, with trend and
carry as features.

Scenario-based risk evaluation
R. Wang and J.F. Ziegel

The conditional value at risk (VaR) and expected
shortfall (ES) of X given the market state S are

CoVaRSX = VaR[X |S = VaRS]
ESSX = E[X |X ⩽ CoVaRSX].

More generally, given scenarios Q1, . . . , Qn, one can
define

MESX = Max
i

ESQiX

MVaRX = Max
i

VaRQiX

AESX = Meani ESQiX
iMESX = Mean

q∈[p,1]
MVaRqX

rMESX = ES
[
Max
i
Xi

]
, Xi ∼

indep.
Qi.

AES and eMES are coherent and comonotonic addi-
tive.
Basel III and IV require a stress adjustment, ES cal-
ibrated on the worst 12 months (MES), and a depen-
dence adjustment, average of the ES calibrated on the
worst 12 months and that calibrated on the worst pos-
sible dependence structure (comonotonic risk factors:
compute an ES esparately for each category of risk fac-
tors and add them).

A framework
for measures of risk under uncertainty

T. Fadina et al.
(Coherent) risk measures are computed (in the case of
a portfolio) from portfolio weights and a distribution
of asset retruns. A generalized risk measure uses, in-
stead, a set of distributions on asset returns, i.e., a set
of scenarios. One can them compute the worst case (or
average, etc.) VaR, ES, etc.

Forecasting market states
P.F. Procacci and T. Aste

Markov switching model (Viterbi algorithm) for the
precision matrix, estimated with the TMFG-LoGo net-
work filtering approach (intuitively, k-means, with
the Mahalanobis distance, and a penalty for cluster
changes).

Toeplitz inverse covariance-based clustering
of multivariate time series data

D. Hallac et al. (2017)
To estimate the correlation matrix between
xt, . . . ,xt+k, use the graphical lasso, but impose
a Toeplitz constraint to ensure Cor(xt,xt+ℓ) =
Cor(xs,xs+ℓ).

The adoption of blockchain-based
decentralized exchanges

A. Capponi and R. Jia (2021)
The pricing function F : R2 → R2 of an automated
market maker (AMM) satisfies

Fx, Fy > 0

Fxx, Fyy < 0

Fxy > 0

F (λx, λy) = λkF (x, y), k > 0

Fx/Fy −−−→
x→0

∞

Fx/Fy −−−−→
x→∞

0

Fx/Fy −−−→
y→0

0

Fx/Fy −−−→
y→∞

∞.

The number of assets in the AMM (usually 2), and
the volatility of their exchange rates, increase arbitrage
opportunities and lowers the incentives for liquidity

Article and book summaries by Vincent Zoonekynd 213/1044

providers. Higher curvature mitigates arbitrage, but
benefits more investors than liquidity providers.

G-learner and GIRL: goal-based wealth
management with reinforcement learning

M.F. Dixon and I. Halperin (2020)
G-learning is Q-learning (off-policy RL) with an en-
tropy penalty H(π) or KL(π‖π0). The free energy F is
the entropy-regularized state value funtction. The G-
function is the entropy-regularized state-action value
function.
With a few (Gaussian) assumptions and (quadratic)
approximations, the problem is tractable.

AlphaPortfolio: direct construction
through deep reinforcement learning

and interpretable AI
L.W. Cong (2019)

Train a neural network, computing portfolio weights,
from 12 months of 50 features (price, investments, prof-
itability, intangibles, value, liquidity) for 3000 stocks,
over 50 years, on 2-year mini-batches, to directly min-
imize the information ratio. One can add interactions
with the environment:
– Trading costs;
– Trade impact;
– Fund failure (loss beyond 50% within 1 year).
The portfolio is Q stocks long, Q stocks short, with
exponentially decaying weights.
The network could be an LSTM with attention

hk = LSTM(hk−1, xk)

r =
∑
k

ATT(hK , hk)hk

ATT(hK , hk) =
expαk∑
ℓ

expαℓ

αk =W ′0 tanh(W1hk +W2hK)

or a transformer (concatenation of several attention
blocks)

V,K,Q =W0x,W1x,W2x

Attention(Q,K, V) = Softmax
(
QK ′√
dk

)
V

(here,
√
dk helps keep the variance around 1).

Each asset is processed separately, and the results
are combined with a cross-asset attention network

(CAAN)

qi, ki, vi =WQri,WKri,WV ri

βij =
q′ikj√
dk

ai =
∑
j

SATT(qi, kj)vj

SATT(qi, kj) =
expβij∑
ℓ

expβiℓ

si = tanh(w′ai + e).

To interpret the model:

– Take the features with the largest E
[∣∣∣∣∂IR(x)∂xi

∣∣∣∣] and
use them in a polynomial regression with a lasso
penalty;

– Alternatively, use “textual factors” (topics) from
SEC filings to reproduce (distill) the model outputs.

Multi-horizon forecasting
for limit order books:

novel deep learning approaches
and hardware acceleration

using intelligent processing units
Z. Zhang and S. Zohren (2021)

Sequence-to-sequence (seq2seq) model, with attention,
for multi-step forecasts of price changes (direction or
value) from limit order book (LOB) data). Process the
LOB (bid, ask, volume, price) as if it were an image,
with inception modules.

input xt

encoder hi = f(hi−1, xi)

context ct =
∑
i

αithi

decoder h′t = f(h′t−1, tt−1, ct)

output yt ∼ g(h′t, ct)
attention weights αit ∝ exph⊤i h

′
t−1

or exph⊤i Wh′t−1

or exp tanhW [hi;h
′
t−1]

i : time (past)
t : time (future)

Textual factors: a scalable, interpretable,
and data-friven approach

to analyzing unstructured information
L.W. Cong et al. (2018)

Combine word embeddings and topic models:
– Compute word2vec embeddings
– Group the words into clusters, using LSH (locality-
sensitive hashing);

– Assume that the topics are the clusters, and estimate
a topic model, one topic at a time.

Article and book summaries by Vincent Zoonekynd 214/1044

Applications:
– Macroeconomic (CPI, GDP, housing prices, unem-
ployment, S&P, investment) forecasts from news
(WSJ);

– VIX back-filling (1889 to 1986);
– Model interpretation.

Forest through the trees: building
cross-sections of stock returns

S. Bryzgalova et al. (2019)
Instead of double and triple sorts (decision trees, to
forecast or explain future returns, using the same vari-
able and threshold for all nodes at the same depth),
use a more general “asset pricing tree”.

Towards realistic market simulations:
a generative adversarial networks approach

A. Coletta et al. (2021)
Train a cGAN (WGAN-GP) to generate new orders
mimicking real orders, and feed them (as an aggre-
gated agent) to a market simulator (abides) on which
you can train new trading strategies.

history LSTM
noise

· · · trade

history y1, . . . , yn
real or generated

trade yn+1

LSTM · · · real/fake

Zero-liquidation loans:
a structured product approach to DeFi lending

A. Sardon (2021)
A zero-liquidation loan is a loan, say of USD, with
an ETH collateral, at whose expiry the borrower can
choose to repay the loan in USD or ETH (i.e., leave
the ETH collateral to the lender).

Hist: a graph-based framework
for stock trend forecasting via mining
concept-oriented shared information

W. Xu et al.
Forecast future stock returns from:
– Stock features,
– Known “concepts” (sectors, industries, regions, etc.),
– Unknown concepts (initialize them with stock em-
beddings; link each stock to the nearest concept, ex-
cluding its own; discard unlinked concepts).

The GNNs (graph neural networks) are applied to the

bipartite stock-concept graphs.

GRU

·

−

−

GNN

GNN

FC FC

+

known
concepts

unknownconcepts

Embracing advanced AI/ML to help investors
achieve success: RL for financial goal planning

S. Mohammed et al.
RL (DQN, OpenAI Gym) for financial planning [not
unlike what I did at SRLGlobal]:
– Action: proportion of the wealth used for consump-
tion, each year, discretized;

– State: tax rate, life expectancy, wealth, market
state;

– Environment: Monte Carlo simulations;
– Reward: piecewise linear function of the probability
of success.

FinEAS: Financial embedding
analysis of sentiment

A. Gutiérrez-Fandiño et al. (2021)
BERT provides good token embeddings, but poor sen-
tence embeddings: prefer sentenceBERT, a pre-trained
BERT model (masked language model, trained for
next-sentence prediction), fine-tuned on an entailment
task. For sentiment analysis, either use sentenceBERT
for feature extraction, or fine-tune it.

MAD risk parity portfolios
C. Ararat et al. (2021)

The mean absolute deviation

MAD(X) = E |X − EX|

is a deviation measure; the corresponding risk measure
is

ρ(X) = E
[
−X + |X − EX|

]
.

The MAD is not differentiable, but it has subgradients;
Euler’s theorem is still valid:

∀s ∈ ∂MAD(w) MAD(w) = s′w.

A MAD-risk-parity portflio w is such that

∃s′ ∈ ∂MAD(w) ∀ij siwi = sjwj .

For long-only portfolios: wi ∝ MAD(xi)
−1.

Article and book summaries by Vincent Zoonekynd 215/1044

Forecasting financial market structure from
network features using machine learning

D. Castilho et al.
Take the current correlation matrix (on 100 assets),
turn it into a graph (e.g., the minimum spanning tree,
or edges for correlations in the top quartile, or above
some fixed threshold), compute node and edge features
(centralities, similarities, etc.) and use them to fore-
cast the next correlation matrix (or graph).

Hierarchical information clustering
by means of topologically embedded graphs

W.M. Song et al.
– Compute a correlation matrix;
– Build its PMFG;
– Find the non-separating 3-cliques, i.e., the 3-cliques

separating the graph into a (non-empty) interior and
a (non-empty) exterior;

– The interior and the clique form a planar graph
(“bubble”); the exterior and the clique form another
planar graph; they can be processed, recursively, in
the same way;

– We obtain a tree, with the bubbles as nodes, and the
cliques as edges;

– Orient the edges by comparing the weights of the
edges between clique and bubble;

– Converging bubbles define clusters.

Data considerations in graph representation
learning for supply chain networks

A. Aziz et al. (2021)
To forecast missing edges in the supply chain, use a
GNN on a knowledge graph, with several node types
(company, country, capability, product, certification)
and edge types (supplier, located, produces, comple-
mentary product, etc.), after completing the knowledge
graph using cooccurrence frequencies.

A machine learning approach
for predicting hidden links in supply chain

with graph neural networks
E.E. Kosasih and A. Brintrup

For each pair of nodes x, y, consider the union of their
(1-hop?) egonets, colour the nodes with the double
radius distance f(z) = [d(z, x), d(z, y)], and feed the
corresponding 1-hot embedding to a GNN to predict
the presence or absence of an edge x–y (there is one
such graph for each (x, y) pair).
Previous approaches to link prediction relied on node
similarity (but this assumes homophily – similar
companies are more likely to be competitors that
supplier/customer), maximum likelihood, or hand-
crafteed features.

General compound Hawkes processes
for mid-price prediction

M. Sjogrena nd T. DeLise (2021)

Model mid-prices as a compound Hawkes process

St = S0 +

N(t)∑
k=0

Xt

where N is a Hawkes process and X an n-state Markov
chain (e.g., taking values {±δ}, or {−a,+b}, etc.).

Data-driven hedging of stock index options
via deep learning

J. Chen and L. Li (2021)
To choose the hedge rate δ of an option, fit a
– Non-linear, but parametric model, combining Black-
Scholes (BS) delta and vega (Hull-White);

– Non-linear (splines) model, combining moneyness,
BS delta, and time-to-maturity;

– Non-linear model (neural network), combining mon-
eyness, BS delta, time-to-maturity, VIX level (for
calls), index returns (for puts) – using a GRU or
LSTM for the VIX and the index returns does not
improve things.

Deep reinforcement learning
for active high-frequency trading

A. Briola et al.
PPO (stable baselines + SMBO for hyperparameter
optimization) for single-stock intraday trading, from
LOB data. The state includes the volumes of the first
10 levels for the past 10 ticks, the agent’s position, the
mark-to-market value of its position, the current bid-
ask spread.

FinRL: a deep reinforcement learning library
for automated stock trading

in quantitative finance
X.Y. Liu et al. (2020)

Media abnormal tone,
earnings announcements, and the stock market

D. Ardia et al. (2021)
To estimate the “abnormal tone” present in news (news
contextualize information):
– Compute the tone of the news;
– Subtract the average for other companies in the uni-
verse;

– Aggregate around events;
– Remove the effeect of B/P , size, and earnings call
tone.

A model of text for experimentation
in the social sciences

M.E. Roberts et al.
Topic model whose weights are parametrized by ob-
served variables.

Article and book summaries by Vincent Zoonekynd 216/1044

Clustering market regimes
using the Wasserstein distance

B. Horvath et al. (2021)
To cluster a time series into regimes, use the Wasser-
stein k-means algorithm on time series windows (seen
as empirical distributions).

Measuring geopolitical risk
D. Caldara and M. Iacoviello (2021)

The geopolitical risk (GPR) index counts the number
of words or articles, in 10 US, UK, Canadian news-
papers, related to war threats, peace threats, military
build-up, nuclear threat, terrorist threat, begining of
war, escalation of war, terrorist attacks, with a few
excluded words (“movie”, “obituiary”, “cancer”, etc.).
Add country and city mentions for country-specific
measures.
Dictionary and data available.

Online estimation and optimization
of utility-based shortfall risk

A.S. Menon et al.
Utility-based shortfall risk (UBSR) generalizes CVaR
(it is no longer coherent):

SRλ(X) = inf
{
t ∈ R : E

[
U(t+ x)

]
⩾ −λ

}
.

Risk measures beyond frictionless markets
M. Arduca and C. Munari (2021)

Many risk measures can be defined as the minimum
amount x to invest in some asset (St)t (e.g., cash,
St ≡ 1), to make the strategy X acceptable (e.g.,
A = {X : qα(X) ⩾ 0}).

ρ(X) =

∫ {
xS0 : X + xS1 ∈ A

}
This can be generalized to more reference assets Si,t,
or even strategies on those assets.

Forecasting crude oil price
using event extraction

J. Liu and X. Huang (2021)

ARMA + GARCH residuals
Vader (sentiment)
Event extraction LSTM

FC

Exploration of the parameter space
in macroeconomic agent-based models

K. Naumann-Woleske et al.
Macroeconomic agent-based models (ABM) have many
parameters, but only changes in a few directions, in
parameter space, actually influence the output. These
directions (eigenvectors of the Hessian for the largest
eigenvalues) are not axis-aligned.

Investor sentiment in the stock market
M. Baker and J. Wurgler

Define a sentiment index as the first principal compo-
nent of several sentiment proxies:
– Trading volume;
– Dividend premium;
– Closed-edn fund discount;
– Number of IPOs;
– First day return on IPOs;
– Equity share in new issues
and also VIX, mutual fund flows, insider trading, etc.

Non-asymptotic estimation of risk measures
using stochastic gradient Langevin dynamics

J. Chu and L. Tangpi (2021)
The expected shortfall can be computed as the solution
of an optimization problem,

ESuX = inf
q∈R

1

1− u
E
[
(X − q)+

]
+ q

For X = f(r, S), where S = (X0, . . . , Xn) is a set of
risk factors and r the parameters of the strategy f ,
e.g., f(r, S) =

∑
riSi for a portfolio, it can be com-

puted with gradient descent.

Heterotic risk models
Z. Kakushadze (2015)

Hierarchical industry classifications define nested fac-
tor models (for the correlation matrix, not the vari-
ance)

V0 = β01V1β
′
01 +∆0

V1 = β12V2β
′
12 +∆1

V2 = β23V3β
′
23 +∆2

(where 0, 1, 2, 3 are stocks, subindustries, industries,
sectors).

ETF risk models
Z. Kakushadze and W. Yu (2021)

To compute the variance matrix of ETFs, estimate a
“heterotic risk model” after building an ETF taxon-
omy:
– Largest sector, industry, subindustry (if one domi-
nates, othersize “broad”);

– Largest capbin;
– Largest region or country;
– “Value” or “growth” or “mixed”;
– Bond type
– Duration bin;
– Credit rating’
– Commodity type;
– “Leveraged”, “inverse”, “normal”.

Article and book summaries by Vincent Zoonekynd 217/1044

Statistical industry classification
Z. Kakushadze and W. Yu (2016)

Cluster normalized returns (not raw returns, or correla-
tions), after “smoothing” stocks with an unreasonably
small volatility.
Use the effective rank as the number of clusters.
If you already have an industry classification, it is likely
better: only apply the clustering inside large subindus-
tries.

Cryptoasset factor models
Z. Kakushadze (2018)

(1-day) momentum, intraday volatility, and size – vol-
ume has little effect.

4-factor model for overnight returns
Z. Kakushadze (2015)

Size, intraday volatility (or (H − L)/C, averaged over
21 days), momentum, liquidity (volume).

Momentum residual networks
M.E. Sander et al. (2021)

Residual networks are discretizations of first order dif-
ferential equations, xn+1 = xn + fθ(xn). Momentum
residual networks are discretizations of second-order
ODEs.

vn+1 = γvn + (1− γ)f(xn)
xn+1 = xn + vn+1

εẍ+ ẋ = f(x), ε =
1

1− γ

They are invertible.

Loss surface simplexes
for mode-connecting volumes

and fast ensembling
G.W. Benton et al.

Global minima are believed to be connected by multi-
dimensional submanifolds. Search for simplicial com-
plexes K = chull(x1, . . . , xn) minimizing

E
x∼Unif(K)

[
`(x)

]
− λ log volume(K)

where the expected loss in the simplex is approximated
from 5 random points in it, and the number of vertices,
n, progressively increases.

GRAND: graph neural diffusion
B.P. Chamberlain et al. (2021)

GNNs are equivalent to the explicit, single-step Euler
discretization of a diffusion PDE: multi-step (Runge-

Kutta) and implicit schemes perform better.

x : node features (scalar field)
X : edge features (vector field)

〈x, y〉 =
∑
i

xiyi

〈〈X ,Y 〉〉 =
∑
i>j

wijXijYij wij ∈ {0, 1}

Xij = −Xji alternating edge field
(∇x)ij = xj − xi

(divX)i =
∑

j : (i,j)∈E

Xij =
∑
j

wijXij

〈〈∇x,X 〉〉 = 〈x, divX 〉 adjunction

The diffusion equation

∂x

∂t
= div

(
G(x)∇x

)
, Gij,ij = a(xi, xj),

for some attention function a, is of the form

∂xt
∂t

=
(
A(xt)− I

)
xt = Ā(xt)xt.

The explicit scheme is

xi ← xi +
∑
j

aij(xj − xi),

i.e., xk+1 = (I + τAk)xk. The implicit scheme is
(I − τAk)xk+1 = xk (it requires solving a linear sys-
tem). Multi-step schemes are of the form

s∑
j=0

αjxk+j = τ

s∑
s=0

βjĀ(xk+j)xk+j .

There are also adaptive schemes.

xk

xk+1

A
+

Euler

xk

xk+1

A

A

A

A

+

+

+

+

Runge-Kutta

For the attention matrix A, either learn it (linear
PDE), or use

A(Xi, Xj) = Softmax
(W ′kXi)

′(W ′QXj)

dk

where WK and WQ are learned.
Try to re-wire the graph after each backward step by
thresholding the attention.

Article and book summaries by Vincent Zoonekynd 218/1044

Fit without fear: remarkable mathematical
phenomena of deep learning

through the prism of interpolation
M. Belkin

Interpolating models, which overfit the data, may per-
form well out of sample. Examples include:
– k-nearest neighbour with a singular kernel, k(x, z) =
‖x− z‖−α, α > 0 (or a logarithmic kernel)

– Random ReLU features, fw(x) =
∑
wk(akx+ bk)+;

– Random Fourier features

fw(x) =

m∑
k=1

wke
i⟨vk,x⟩

vk
iid∼ N(0, I) fixed

w = Argmin
w : ∀i fw(xi)=yi

‖w‖

Error in download.file(paste0(url, fn),
destfile): download from 'https://www2.harvardx.harvard.edu/courses/IDS_08_v2_03/train-images-idx3-ubyte.gz'
failed
Error in Y[, i + 1] <- y == i: replacement
has length zero
Error in matrix(rnorm(dim(x)[2] * k), nr
= dim(x)[2], nc = k): non-numeric matrix
extent
Error in plot.window(...): need finite
'ylim' values
Error in axis(1): CreateAtVector [log-axis()]:
axp[0] = 0 < 0!
Error in plot.window(...): need finite
'ylim' values
Error in axis(1): CreateAtVector [log-axis()]:
axp[0] = 0 < 0!
Error in plot.window(...): need finite
'ylim' values
Error in axis(1): CreateAtVector [log-axis()]:
axp[0] = 0 < 0!

– Linear regression β = X†y.
In the under-parametried regime, we minimize the loss.
In the over-parametrized regime, we minimize some
penalty (it does not really matter which one) under
the constraint that the loss be zero. The test error
exhibits a “double descent” pattern.
Since global minima form a (potentially curved) sub-
manifold, the problem is not locally convex. Instead,
the PL condition suffices for gradient descent conver-
gence:

∀w 1

2
‖∇`(w)‖2 ⩾ µ

[
`(w)− `(w∗)

]
.

It is non-local, but may be replaced by PL*, locally:

1

2
‖∇`(w)‖2 ⩾ µ · `(w)

with µ = λmin(k), where k is the tangent kernel:

kx,y(w) =
〈
∇wf(x),∇wf(y)

〉
.

Decoupled weight decay regularization
I. Loshchilov and F. Hutter (2019)

Gradient descent θ ← θ − α∇f(θ) can be regularized
with weight decay

θ ← (1− λ)θ − α∇f(θ).

For SGD, this is equivalent to L2 regularization; for
Adam, it is not: weight decay works, L2 regularization
does not – do not put it in the loss function, keep it
separate.

Lookahead optimizer:
k steps forward, 1 step back

M.R. Zhang et al. (2019)
Iterate:
– Run the optimizer for k steps, from φ0 = θt to φk;
– Update θ in the direction of φk: θt+1 = φ0 +α(φk −
φ0).

There is a principled way of choosing α.

Unsupervised deep embedding
for clustering analysis

J. Xie et al. (2016)
Jointly learn a low-dimensional data representation
and a clustering:
– Initialize the data representation with an autoen-
coder x 7→ z = fθ(x);

Article and book summaries by Vincent Zoonekynd 219/1044

– Initialize the cluster centroids (µj)1⩽j⩽k (k known),
e.g., with k-means on the zi’s’;

– Measure the similarity between point zi and centroid
µj with a t distribution (as with t-SNE) with α = 1
degrees of freedom,

qij ∝
(
1 + α−1 ‖zi − µj‖2

)(α+1)/2
,

∑
j

qij = 1;

– As in self-training, define target distributions using
the high-confidence predictions,

pij ∝ q2ij/fj , fj =
∑
i

qij ;

– Jointly optimize θ and µ to minimize∑
i

KL(pi‖qi) =
∑
ij

pij log
pij
qij
.

MLP-Mixer:
an all-MLP architecture for vision

I. Tolstikhin et al.
The MLP mixer processes images by splitting them
into patches and successively applying two types of lay-
ers:
– MLP on the patch dimension (the same for all chan-
nels and offsets (columns));

– MLP on the offset and channel dimensions (the same
for each patch (row)).

Patches are all you need
Replace the MLP operations in MLP-mixer with con-
volutions.

Liquid time-constant networks
R. Hasani et al. (2021)

There are many variants of neural ODEs:

NODE dxt
dt

= fθ(xt, It, t)

CT-RNN dxt
dt

= −xt
τ

+ fθ(xt, It, t)

LTC dxt
dt

= −xt
τ

+ fθ(xt, It, t)(A− xt)

The effective time scale is no longer a constant τ :

1

τeff
=

1

τ
+ f.

Bayesian algorithm execution: estimating
computatble properties of black-box functions

using mutual information
W. Neiswanger et al. (2021)

Bayesian optimization can be generalized to black-box
algorithms A estimating some property of a function
f from a set of points (x1, y1), . . . , (xn, yn) (execution

path), with increasing precision as n → ∞: optimiza-
tion, numeric integraion, root finding. Use the acqui-
sition function

EIG(x) = H[A |Data]− E
yx∼GP(Data)

H
[
A |Data∪{(x, y)}

]
,

approximated using the execution path and/or approx-
imate Bayesian computation (ABC).

Fast and accurate network embeddings
via very sparse random projection

H. Chen et al. (2019)
Node embeddings are often computed in two steps:
– Form a node similarity matrix: DeepWalk, i.e., Ak,

or, more generally,
∑k
ℓ=1 αℓA

ℓ;
– Reduce its dimension: SVD, or skipgram, i.e., fac-
torization of

Muv = log
Suv · |S|
Du ·Dv

− b.

Use:
– A sparse ranfom projection

Pij =

+
√
s with probability 1/2s

0 with probability 1− 1/s

−
√
s with probability 1/2s

– Normalize Ak (its entries have a heavy-tailed distri-
bution):

Ãkij = Akij

(
dj
2m

)λ−1
where the normalization strength λ− 1 is chosen by
the user.

Available in Neo4j.

Database-friendly random projections:
Johnson-Lindenstrauss with binary coins

D. Achlioptas (2002)

Accurate intelligible models with pairwise
interactions

Y. Lou et al. (2013)
Generalized additive models with interactions (GA2M),
aka explainable boosting machines (EBM) can be esti-
mated efficiently (greedily, after estimating and fixing
the 1-dimensional functions, and approximating the in-
teractions on the residuals using cuts).
Implementation in interpret (R/Python).

Landscape of R packages for explainable
artificial intelligence

S. Maksymiuk et al. (2021)
Start with DALEX (also available in Python),
flashlight or iml; look at: feature importance (per-
mutations), Shapley score, ceteris paribus curve, par-
tial dependence plot.

Article and book summaries by Vincent Zoonekynd 220/1044

(In Python: aix360, eli5, interpret, lime, shap,
skater.)

AutoGL:
a library for automated graph learning

C. Guan et al.

Uncertainty, volatility and
persistence norms of financial time series

S. Rudkin et al. (2021)

Multilivel Monte Carlo methods
M.B. Giles

Monte Carlo variance reduction with control variates
uses

E[f] = E
[
f − λ

(
g − E[g]

)]
where E[g] is known; the optimal value of λ is

λ = Cor(f, g)

√
Var f

Var g
.

Two-level MLMC uses E[P1] = E[P0]−E[P1−P0] where
P0 is a cheap approximation of P1 (and we have taken
λ = 1).
More generally, MLMC uses

E[PL] = E[P0] +
∑

E[Pℓ − Pℓ−1]

where the expectation at level ` uses Nℓ ∝
√
Vℓ/Cℓ

samples, and Vℓ, Cℓ are the variance and cost of one
sample.
Generalizations include:
– Randomized MLMC: use a fixed number N of sam-
ples, but randomly select the level ` of each;

– Richardson approximation;
– Multi-index monte Carlo (time and space discretiza-
tions);

– Non-geometric grid;
– Quasi Monte Carlo.
Applications include: SDEs (Euler and Milstein), Lévy
processes, SPDE, nested simulations

EZ
[
f
(
EW [g(Z,W)]

)]
.

Parametric integration is related: to estimate E[fλ(X)]
as a function of λ, first estimate E[f0(X)], E[f1(X)],
then E[f1/2(X)] using (f0 + f1)/2 as a covariate and
continue recursively.

Multilevel Monte Carlo path simulation
M.B. Giles

Pair-copula constructions for financial
applications: a review

K. Aas (2016)
Financial applications of vine copulas in finance in-
clude:
– VaR or CVaR for small portfolios;
– Vine CAPM (with C-vines (stars) or R-vines (un-
constrained));

– Credit risk (probability of default), systemic risk
(CDS), liquidity risk (bid-ask spread), operational
risk;

– Scenario generation, for CVaR optimization or mul-
tivariate option pricing.

Bayesian inference for latent factor copulas
and application to financial risk forecasting

B. Schamberger et al. (2017)
In the 1-factor latent model, ui ⊥⊥ uj | v, we can infer
the values of v (unobserved) and of the copulas cj of
(uj , v) (assuming their families, Gaussian or Gumbel,
are known, and parametrizing them with the Fisher z
transform of their Kendall τ ’s, z = tanh−1(τ)) with
Gibbs sampling and adaptive rejection metropolis sam-
pling (ARMS).
Application: portfolio VaR.

Asymmetric CAPM dependence
for large dimensions:

the canonical vine autoregressive model
A. Heinen and A. Valdesogo

As an alternative to the multivariate GARCH model,
for more than 30 assets, use a C-vine (star-shaped),
whose bivariate copula parameter vary with time in a
DCC fashion, with GARCH residuals

S1 S2

x11

x12

x21

x22

M

S1|M

S2|M

x11|M
x11|M
x11|M
x11|M

and a Gaussian copula for xij |M,S1, S2 whereM is the
market, Si the sectors, xij the stocks in sector i.

Risk management with high-dimensional vine
copulas: an analysis of the Euro Stoxx 50

E.C. Brechmann and C. Czado (2013)
A regular (i.e., unconstrained) vine copula (with con-
stant parameters) with GARCH marginals, estimated
on 50 stocks and indices (Euro Stoxx 50 and country
indices) performs better than CAVA, a canonical (i.e.,
star-shaped) vine, with time-varying parameters and

Article and book summaries by Vincent Zoonekynd 221/1044

GARCH marginals.

M S2

S1

S3

x11

x12 x13

x21

x22

x23x31

x32 x33

Tree1

M,S2

M,S1

M,S3

x11, S1

x12, S1 x13, S1

x21, S2

x22, S2

x23, S2x31, S3

x32, S3 x33, S3

Tree 2

Copula-based factor models
for multivariate asset returns

E. Ivanov et al. (2017)

F
G

Fs Ft
F
G

Fs

Gt

F
G

Ft

Gs

F
G

Gs Gt

conditioning
variable

COPAR: multivariate time series modeling
using copulas autoregressive model

E.C. Brechmann amd C. Czado (2012)
A univariate copula-AR(p) model specifies copulas for

Xn−1, Xn

Xn−2, Xn|Xn−1

Xn−3, Xn|Xn−1, Xn−2

...
Xn−p, Xn|Xn−1, . . . , Xn−p+1.

The COPAR model similarly generalizes the VAR(p)
model; for two variables abd s < t:

Xs, Xt|Xs+1:t−1

Xs, Yt|Xs+1:t

Ys, Xt|X1:t−1, Ys+1:t−1

Ys, Yt|X1:t, Ys+1:t−1.

The realized hierarchical archimedean copula
in risk modelling

O. Okhrib and A. Tetereva
Estimate the structure of a hierarchical archimedean
copula (HAC – an alternative to the pair copula con-
stuction (PCC) of vine copulas) by testing if each
triplet of variables p, q, r is closer to

p q r or p q r or p q r or p r q

from the (rank) correlation (of intraday returns) – con-
trary to a dendrogram, the tree is not constrained to
be binary. Estimate the copula parameters (the copula
family is assumed known) by “inverting” the average
correlation (there can be more than two variables at a
time).

Nonparametric estimation of the tree structure
of a nested Archinedean copula

J. Segers and N. Uyttendaele (2018)
A rooted tree on a finite set of nodes (leaves) X is a set
of subsets λ ∈P(X) such that
(i) X ∈ λ;
(ii) ∀x ∈ X {x} ∈ λ;
(iii) ∀A,B ∈ λ A ⊂ B or B ⊂ A or A ∩B = ∅.
The triplet trees can be estimated from data (for
a known, 1-parameter copula family) with statistical
tests on Kendall’s τ . If they are not compatible, lower
the confidence level of the tests, α, until they are.

Implicit generative copulas
T. Janke et al.

To fit a nonparametric copula to data, train a neural
network with two components:
– The first transforms N(0, 1) random data into an-

other distribution Q, without paying attention to the
margins;

– The second makes the margins of Q uniform, to have
a copula, not with the (sample) probability integral
transform (it is not differentiable), but with a soft-
rank,

vi =
1

M

1

2

M∑
j=1

1

1 + expα(yi − yj)

≈ 1

M

∑
j

1yi⩽yj .

Use the energy distance as loss function

d2 = E
U,U ′∼data

V,V ′∼network

[
2 ‖U − V ‖ − ‖U − U ′‖ − ‖V − V ′‖

]
.

Copulas as high-dimensional generative
models: vine copula autoencoders

N. Tagasovska et al.
Learn a low-dimensional representation of the data
with an autoencoder; fit a vine copula to that rep-
resentation; use it to sample new data.

Principal component-guided sparse regression
J.K. Tay et al (2018)

Ridge regression (and elastic net) slightly bias the
solution towards the leading singular vectors of X.
PClasso provides a more aggressive shrinkage by re-
placing the ridge penalty β′β with β′V ZV ′β where
X = UDV ′ is the SVD and Z = diag(d21 − d2k)1⩽k⩽m.

Article and book summaries by Vincent Zoonekynd 222/1044

If the factors are known to form groups, treat each
separately.
The contours of the pclasso penalty are `1 balls more
or less elongated in the direction of the first singular
vectors.

Efficient scalable algorithms
for hierarchically semiseparable matrices

S. Wang et al.
HSS matrices are block matrices, with dense diagonal
blocks and low-rank off-diagonal blocks.

The fast kernel transform
J.P. Ryan et al.

Kernel methods require matrix-vector products x 7→
Kx, where the kernel K may be large. To speed up
computations, one can use a low-rank approximation
of K (the Nyström method uses a random sample of
the columns). Fast multipole methods use a low-rank
approximation of the off-diagonal blocks, but they re-
quire a kernel-specific (Laurent series) expansion of the
kernel.

Modern automatic differentialtion (AD) tools can au-
tomatically compute those expansions.
Implementation in fastKernelTransform.jl.

A short course on fast multipole methods
R. Beatson and L. Greengard

We want to compute u(xi) =
∑
j wjk(xi, xj) for some

specific kernel k (it is a matrix-vector product u = kw)
using a low-rank approximation

k(x, y) =

p∑
k=1

φk(x)ψk(y)

(at least for off-diagonal blocks of k).
For instance, in dimension 1, for

u(x) =
∑
j

wj

√
(x− xj)2 + c2,

one can use a Laurent expansion in x around (away
from) xj ; it can be used with a hierarchical decompo-
sition of R into “panels” T : use the exact function

sT (x) =
∑
j∈T

wj

√
(x− xj)2 + c2

for the panel containing x and nearby panels, and the
Laurent expansion for distant ones.
For the Gauss transform in dimension 2,

U(x) =

N∑
i=1

wie
−∥x−xi∥2

use the expansion into Hermite functions

e−∥x−xi∥
2

=
∑

n1,n2⩾0

Φn1,n2
(x− c)Ψn1,n2

(xi − c)

Φn1,n2
(x) = hn1

(x)hn2
(y)

Ψn1,n2(x) =
xn1yn2

n1!n2!

The multipole expansion, in dimension 2 (z ∈ C) is

φ(z) =
∑
i

qi log(z − zi)

=

(∑
i

qi

)
log z +

∑
k⩾1

1

k

∑
i qiz

k
i

zk
.

This gives an O(N logN) algorithm and, with more
work (formula to translate a multipole expansion
and/or convert it to a Taylor expansion) O(N).
This generalizes to dimension 3 (but the expansion is
more complicated).

Do vision transformers see
like convolutional neural networks?

M. Raghu et al.
The centered kernel alignment (CKA) compares neural
network layers (activations) X ∈ Rm×p1 , Y ∈ Rm×p2

onm samples (with p1 and p2 neurons) using the Gram
matrices K = XX ′, L = Y Y ′.

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
H = In − 1

n11
′

Kc = HKH

Lc = HLH

HSIC(K,L) = vec(Kc) · vec(Lc)
(m− 1)2

Article and book summaries by Vincent Zoonekynd 223/1044

Text generation with efficient (soft) Q-learning
H. Guo et al.

Policy-gradient is on-policy: it is not data-efficient. Q-
learning is off-policy, but noisy, and it converges slowly.
Try the following variants (soft Q-learning):
– Q-learning with an entropy penalty;
– In the Bellman equation, replace MaxaQ(st+1, a)
with log

∑
a expQ(st+1, a);

– Instead of the state action value Q, path consistency
learning (PCL) uses the state value function V and
V (st)− γV (st+1) = rt − log π(at|st).

Curiosities and counterexamples
in smooth convex optimization
J. Bolte and E. Pauwels (2020)

Given an increasing sequence of compact convex sub-
sets of R2 with positively curved boundaries (Cn)n∈Z,
there is a C k convex function with the Cn’s as
level sets, and a positive definite Hessian outside
Argmin f =

⋂
n∈Z Cn. The proof uses:

– The parametrization of ∂Cn by its normals, cn :
R/2πZ→ ∂Cn

– The boundary of the Minkowski sum λCn + (1 −
λ)Cn+1: λcn + (1− λ)cn+1;

– Bernstein interpolation to smooth piecewise linear
functions.

This can be used to build counter-examples, corre-
sponding to paths of infinite length, jiggling or spi-
ralling (e.g., the Newton flow need not converge, the
Tikhonov path may have infinite length, etc.)

x^5

y

x

y1

x

y

VICReg: variance-invariance-covariance
regularization for self-supervised learning

A. Bardes et al.
Siamese networks learn image representations by max-
imizing the agreement between embeddings of different
views of the same image. To avoid collapse problems,
use a loss made of three terms:
– Invariance: s(z, z′) = 1

n

∑
‖zi• − z′i•‖

2
2;

– Variance: 1

d

∑
hingeγ

√
Var z•j ;

– Covariance: c(z) = 1

d

∑
j1 ̸=j2

Cov(z)2j1,j2 .

Compositional processing emerges
in neural networks solving math problems

J. Russin et al.
Tensor product (TP) transformers replace the atten-

tion mechanism

Att(Q,K, V) = softmax
(
QK ′√
d

)
V

with

TP-Att(Q,K, V,R) = softmax
(
QK ′√
d

)
V �R.

The devil is in the detail:
simple tricks improve

systematic generalization of transformers
R. Csordás et al.

Tests on human language to code translation datasets
suggest the following advice.
– Use universal transformers, i.e., transformers with

weights shared between layers: they are less sensitive
to the order of the operations seen during training.

– Prefer relative (vs absolute) positional embedding,
to help generalization to longer output lengths.

– Avoid early stopping for model selection.
– Have validation and test sets for both the iid and
generalizaation splits.

– Use accuracy (not loss) for model selection.
– Try different scaling: N(0, 1), Glorot multiplied by√

d, Kaiming divided by
√
d.

Optimal design generation and power
evaluation in T: the skpr package

T. Morgan-Wall and G. Khoury (2021)
There are many notions of “optimal design” (choice of
a binary model matrix X):
– D-optimal: maximize det(X ′X)
– I-optimal: minimize tr[(X ′X)−1M]
– A-optimal: minimize tr(X ′X)−1

– G-optimal: minimize tr(X ′X)−1

– E-optimal: maximize σmin(X
′X)

– T-optimal: maximize tr(X ′X)
– Alias-optimal: minimize tr(A′A) where A =

(X ′X)−1X ′X2 where X2 is the model matrix for the
interaction terms.

In R: skpr, AlgDesign, DoEbase, FrF2, conf.design,
planor, rsm.

svars: an R package
for data-driven identification

in multivariate time series analysis
A. Lange et al. (2021)

VAR models are of the form

yt = µ+A1yt−1 + · · ·+Apyt−p + ut

ut ∼ N(0,Σ).

Structural VAR (SVAR) models further decompose the
innovations ut as

ut = Bεt

εt ∼ N(0, 1)

Article and book summaries by Vincent Zoonekynd 224/1044

where B is invertible and Σ = BB′; it is not identi-
fiable: B can be replaced by BO, for O ∈ On. To
identify it, make additional assumptions, such as:
– Assume Σ changes with time, e.g., Σ1 = BB′ until

time t0, and Σ2 = BΛB′, Λ diagonal, after;
– Assume Σ smoothly transitions from Σ1 to Σ2,

Σt = (1− λt)Σ1 + λtΣ2

with a logistic transition function

λt =
1

1 + e−γ(st−c)

for some state st;
– Assume Σt = B diag(GARCHt)B′;
– Use independent component analysis (ICA) to find
O ∈ On, parametrized as a product of n(n − 1)/2
Givens rotations, using:
• The Cramer-von Mises distance between the em-
pirical and the independence copulas;

• FastICA, steadyICA;
• or a Student likelihood.

DC3: a learning method
for optimization with hard constraints

P.L. Donti et al. (2021)
To solve (constrained) optimization problems with
deep learning:
– Train a neural net, on solved problems, to produce
partial solutions; item Complete them so satisfy the
equality constraints (this is differentiable, thanks to
the implicit function theorem);

– Perform a few gradient steps, along the manifold de-
fined by the equality constraints, to enforce the in-
equality constraints (still differentiable).

A unifying modeling abstraction
for infinite-dimensional optimization

J.L. Pulsipher et al.
InfiniteOpt.jl solves infinite dimensional optimiza-
tion problems, i.e., problems involving functions, prob-
ability distributions, differential operators, expecta-
tions; it automatically discretizes the problem.

A text-based analysis of corporate innovation
G. Bellstam et al. (2017)

Fit a latent Dirichlet allocation (LDA) model, with
15 topics, to 800,000 analyst reports for S&P compa-
nies; identify the “innovation” topic as the closest (for
the KL divergence) to the word distribution of a text-
book on innovation (first Google hit for “innovation
textbook pdf”); combine with the Loughran-McDonald
sentiment lexicon.

Language and domain specificity:
a Chinese financial sentiment dictionary

Z.Du et al. (2021)

Using news articles from finance.sina.com.cn and
manually selected words in 3 sentiment categories (pos-
itive, negative, and a China-specific “politically posi-
tive”, from 500 articles), train a word2vec model to
find similar words and extend the lexicon.

Factor models for Chinese A-shares
M.X. Hanauer et al. (2021)

For China, instead of the Fama-French factors, use
market, size, E/P (not B/P), and perhaps “abnormal
turnover”.

Turnover = shares traded
shares outstanding

Abnormal turnover = MA(turnover, 20 days)
MA(turnover, 250 days)

A comparison of global factor models
M.X. Hanauer (2019)

Replace the Fama-French factors with market, size,
E/P, cash-based profitability, change in assets, mo-
mentum.

Spectral factor models
F.M. Bandi (2020)

In the 1-factor model (CAPM), yt = α + βxt + εt,
decompose the factor returns (xt)t into high and low
frequency components (Wold decomposition)

yt = α+ βLFxLF
t + βHFxHF

t + εt

The classical model imposes βLF = βHF). Those spec-
tral betas can be obtained from the high and low fre-
quency components of y:

yLF
t = α+ βLFxLF

t + εLF
t

yHF
t = 0 + βHFxHF

t + εHF
t .

Weak supervision and Black-Litterman
for automated ESG portfolio construction

A. Sokolov et al. (2021)
Train a BERT classifier (on New York Times news –
they are already tagged) to recognize ESG articles, and
use it as a Black-Litterman view to tilt the portfolio
away from companies with a lot of ESG press cover-
age (alternatively, use this ESG score to adjust your
model’s alpha).

A reinforcement learning approach
to optimal execution

C.C. Moallemi and M. Wang (2021)
To decide when to trade (a single share), predict fu-
ture prices with an RNN and trade, at time t, if the
predicted price change on [t, T] is negative – otherwise,
wait.

Article and book summaries by Vincent Zoonekynd 225/1044

The loss 1

T

T∑
i=1

(
ri − rnni(x0)

)2 can be replaced with

(
r1 − rnn1(x0)

)2
+

T∑
i=2

(
rnni−1(x1)− rnni(x0)

)2
or
m∑
i=1

(
ri − rnni(x0)

)2
+

T∑
i=m

(
rnni−m(xm)− rnni(x0)

)2
(temporal difference supervised learning).
Instead of the (unconditional) predicted price change,
reinforcement learning uses the continuation value

C[t,T](x) = sup
π

E
π

[
τπ∑
i=t

∣∣∣∣ xt = x

]
,

i.e., it takes early stopping into account.
For the state x, use:
– Time of day;
– Spread, normalized by volatility, or price;
– Depth (level1, level5, imbalance (1− 5)/(1 + 5));
– Number of trades, number of price changes;
– Trade size (exponentially weighted).
Normalize the prices (and the price changes) by the
spread.
The reinforcement learning approach is slightly better,
but not much, and it is more data-hungry.

Portfolio selection:
a target-distribution approach

N. Lassance and F. Vrins (2021)
Replace the portfolio optimization problem

Find w
To maximize w′ E[X]− 1

2λw
′Var[X]w

with
Find w
To minimize KL(w′X ‖ target)

where the target distribution has the same first two
moments as an efficient portfolio, but with skewness
and kurtosis reflecting the investor’s preferences, e.g.,
a generalized Gaussian

f(x) ∝ exp− 1
2

(
|x− α|
β

)γ
or a shifted normal.
If the target distribution has a smaller support, use the
“conditionnal KL divergence”

CKL(f ‖ g) = E
X∼f

[
log

f(X)

g(X)

∣∣∣∣ X ∈ Supp g

]
+

p

1− p

where p = P
X∼f

[X 6∈ Supp g].

When the asset returns are Gaussian (and the target
mean and variances on or above the efficient frontier),
then the optimal portfolio is mean efficient.

Hidden errors in regression-based attribution
L. Sneddon

If the return forecasts are a linear combination of “al-
phas”, µ =

∑
αi, the (unconstrained) optimal portfolio

is

w = Argmax
w

w′µ− 1

2
λw′V w

= (λV)−1µ

=
∑

(λV)−1αi

which gives an exact decomposition of the returns

r′w =
∑

r′(λV)−1αi.

Estimation of a high-dimensional
counting process without penalty

for high-frequency events
L. Mucciante and A. Sancetta (2021)

The explanatory variances Xt for the intensity λt of a
counting process Nt (here, high-frequency trades) of-
ten measure some form of “activity”: they are positive
and have a positive impact on the number of events –
use a sign constraint in the model.

Find β

To minimize −2
∫ T

0

X ′tβ dNt +

∫ T

0

(X ′tβ)
2dt

Such that β ⩾ 0
Where dNt = λtdt

λt = X ′tβ
Xt ⩾ 0
λt > 0

Predictors include:
– Volume imbalance, for levels 1 to 5,

bid size− ask size
bid size+ ask size ;

– Trade imbalance;
– Spread;
– Duration.
and their exponentially weighted moving average.

The calculus of M-estimation in R with geex
B.C. Saul and M.G. Hudgens (2020)

Estimators defined by estimating equations∑
ψ(yi, θ̂) = 0

are asymptotically normal and their asymptotic vari-
ance can be computed with the sandwich estimator.
The geex package computes user-defined estimators
and their asymptotic variance (with numerical deriva-
tives, not automatic differentiation).

Article and book summaries by Vincent Zoonekynd 226/1044

The calculus of M-estimation
L.A. Stefanski and D.D. Boos (2001)

M-estimators (or generalized estimating equations,
GEE) are solutions of

∑
i ψ(yi, θ) = 0 or, more gener-

ally,
∑
i ψ(yi, θ) = ci with cn/

√
n
p→0.

Examples include:
– Mean: ψ(y, θ) = y − θ;
– Mean and MAD:

ψ(y, θ) =

(
|y − θ2| − θ1

y − θ2

)
;

– Any maximum likelihood estimator (MLE), with the
score function

ψ(y, θ) =
∂ log fθ(y)

∂θ
;

– Mean and variance:

ψ(y, θ) =

(
y − θ1

(y − θ1)2 − θ2

)
(it is not the same ψ function as for the MLE, but
it gives the same estimator);

– Ratio Ȳ/X̄:

ψ(y, θ) = y − θx or ψ(y, θ) =

 y − θ1
x− θ2
θ1 − θ3θ2

 ;

– µ, σ2, σ, log σ:

ψ(y, θ) =

y − θ1

(y − θ1)2 − θ2√
θ2 − θ2

log θ2 − θ4

 ;

– Instrumental variables βIV = βY |T /βW |T :

T

X

W

Y

ψ(y, θ) =

(
θ1 − t

(y − θ2w)(θ1 − t)

)

or ψ(y, θ) =

θ1 − t
θ2 − w

(y − θ3w)(θ2 − w)
(y − θ4w)(θ1 − t)

 ;

– Robust location ψ(y, θ) = hk(y−θ) where hk = ;
– Sample quantile: ψ(y, θ) = p− 1y⩽θ
– Positive mean deviation from the median:

ψ(y, θ) =

(
2(y − θ2)1y>θ2 − θ1

1
2 − 1y⩽θ2

)
;

– Non-linear least squares, y = g(x, β) + ε:

ψ(y, x, θ) =
[
y − g(x, β)

]
g′(x, β);

– Linear regression with robust loss (truncated L1):

ψ(y, x, θ) = hk(y − x′β)x;

– Generalized linear models (GLM).
Under reasonable assumptions,

θ̂ ∼ AMN
(
θ0,

V (θ0)

n

)
(asymptotically multivariate normal), where

θ0 : true parameter (unknown)
θ̂ : estimator

A(θ0) = E
Y∼F

[
− ∂ψ(Y, θ)

∂θ

∣∣∣∣
θ=θ0

]
B(θ0) = E

Y∼F

[
ψ(Y, θ0)ψ(Y, θ0)

′]
V (θ0) = A(θ0)

−1B(θ0)A(θ0)
−⊤ (sandwich estimator)

For the MLE, A = B = I is the information matrix and
V = I−1, but the general formula remains valid even
under model misspecification. Use a CAS to compute
the matrix products: often, you only want one of the
diagonal elements of V (your estimator alone is not an
M-estimator, but it is a component of one).
The variance matrix can also be used for Wald tests:
(θ̂ − θ0)′Vn(θ̂)−1(θ̂ − θ0).
For non-smooth functions, swap ∂θ and E:

A(θ0) = −
∂

∂θ
E

Y∼F

[
ψ(Y, θ)

]∣∣∣∣
θ=θ0

.

An axiomatization of Λ-quantiles
F. Bellini and I. Peri (2021)

The Λ-quantiles of a distribution F are

Λ-VaR(R) = − inf
{
x ∈ R : F (x) > Λ(x)

}
where Λ : R→ (0, 1) is non-decreasing; they are char-
acterized by the locality property: changing F above
or below Λ-VaR(F) does not change Λ-VaR(F).

Nonparametric extrema analysis
in time series for envelope extraction,

peak detection and clustering
K. Gokcesu and H. Gokcesu

To detect peaks (or bursts) in a signal (xt)t, compute
its envelope: signals a, b, such that ∀t at ⩽ xt ⩽ b(t)
and ∀t xt ∈ {at, bt}, minimizing∑

|at+1 − at|+
∑
|bt+1 − bt| .

If a and b are defined using constant interpolation,

at = stxt + (1− st)at−1
bt = (1− st)xt + stbt−1

st ∈ {0, 1}.

The problem can be solved efficiently, in O(T log T).

Article and book summaries by Vincent Zoonekynd 227/1044

Iterated and exponentially weighted moving
principal component analysis

P. Bilokon and D. Finkelstein (2021)
When computing principal components on an expand-
ing or moving window, the principal components can
flip sign: instead of recomputing them anew each time,
use an iterative algorithm (Ogita-Aishima) to refine the
previous ones.
To account for non-stationarity, use exponential
weights.
(Python implementation available.)

Iterative refinement
for symmetric eigenvalue decomposition

T. Ogita and K. Aishima (2018)

Principal component analysis:
a review and recent developments
I.T. Jolliffe and J. Cadima (2016)

PCA can be computed from the eigendecomposition of
the variance matrix S = VarX: the unit eigenvectors
a satisfy VarXa = a′Sa = λaa′ = λ, or from the SVD
of the column-centered data matrix X∗ = ULA′,

(n− 1)S = X∗′X∗ = (ULA′)′(ULA′) = AL2A′,

which also gives the biplot: the rows of U represent the
observations, those of AL the variables.
Variants include:
– Varimax: rotate the principal components to make
the loadings more concentrated;

– Sparse PCA (SCoTLASS);
– Robust PCA,

Minimize
L,S

‖L‖∗ + λ ‖S‖1 such that X = L+ S;

– Functional PCA;
– Symbolic PCA (PCA for intervals, histograms, etc.).

Evaluation of the importance of criteria
for the selection of cryptocurrencies

N.A. van Heerden et al.
To combine predictors x1, . . . , xm of y, use a linear
combination with weights:

wj = 1/m

wj ∝ σj
wj ∝ σj

∑
i

(1− ρij)

wj ∝ Hj (entropy)

wj ∝
d−j

d−j + d+j

where d+j = d(xj , y)

d−j = d(xj ,−y).

Learning-based robust optimization:
procedures and statistical guarantees

L.J. Hong et al. (2017)
The chance-constrained program

Find x
To minimize f(x)
Such that P

ξ∼P

[
f(x, ξ) ∈ A

]
⩾ 1− ε

can be relaxed to a robust optimization problem by
replacing the constraint with

∀ξ ∈ U g(x, ξ) ∈ A

for some set U (uncertainty set) such that
P
ξ∈P

[
ξ ∈ U] ⩾ 1− ε.

If P is only known from a sample, split the data in two:
– Use the first part to define the shape of U (ellipsoid,

convex hull, union of ellipsoids or polytopes);
– Use the second to calibrate the size of U , such that

P
data∼Pn

[
P
ξ∼P

[
ξ ∈ U(data)

]
⩾ 1− ε

]
⩾ 1− δ.

From data to decisions:
distributionally robust optimization is optimal

B.P.G. van Parys et al.
For the optimization problem

Find x
To minimize c(x, P)
Where c(x, P) = E

ξ∼P
γ(x, ξ)

use the distributionally robust predictor
ĉ(c, P̂) = sup

KL(P̂∥P)⩽r
c(x, P)

where P̂ is the empirical distribution: the out-of-
sample disappointment P

[
c(x, P) > ĉ(x, P̂)

]
decays

exponentially (uniformally) for all x.

Fractional growth portfolio investment
A.E. Brockwell (2021)

The Kelly portfolio, investing fractions k = Σ−1(µ −
r1) of the wealth in each asset, maximizes the expected
log-return

L = E

[
δ−1 log

At+δ
At

]
,

but the variance

V = Var

[
δ−1 log

At+δ
At

]
can be very high. The fractional Kelly portfolio invests
a fraction αk, α ∈ [0, 1], and has log-return expectation
and variance

L = r + (α+ 1
2α

2)S2

V = α2S2

where S =
√

(µ− r1)′Σ−1(µ− r1) is the Sharpe ratio
of the Kelly portfolio.

Article and book summaries by Vincent Zoonekynd 228/1044

Arbitrage-free implied volatility surface
generation with variational autoencoders

B.X. Ning et al.
To generate arbitrage-free synthetic implied volatility
(IV) surfaces:
– Fit a stochastic differential equation (SDE) to the
volatility surface, for each day;

– Train a VAR on the SDE parameters;
– Sample from the VAE;
– Compute the IV surface from the corresponding
SDE.

Regularization is all you need:
simple neural nets can excel on tabular data

A. Kadra et al.
A simple MLP with a cocktail of regularizers, with suit-
able hyperparameter tuning (BOHB, 4 days), outper-
forms traditional machine learning (gradient boosted
trees) on tabular data:
– Batchnorm;
– Stochastic weight averaging, i.e., averaging the local

optima encountered on the optimization path;
– Lookahead optimizer;
– Snapshot ensembles: ensembles of minima obtained
after restarts;

– Weight decay (L2);
– Dropout (various shapes);
– Skip connections (shakedrop, shake-shake);
– Mixup: data augmentation with convex combina-
tions of training samples

– Cutout: mask subsets of the input;
– Cutmix: Mixup + Cutout;
– FGSM (adversarial training).

Examining the dynamic asset market linkages
under the covid-19 global pandemic

A. Noda (2021)
To test for market efficiency (between 3 markets, S&P
500, Bitcoin, gold), estimate a VAR

xt = µ+A1xt−1 + · · ·+Aqxt−q + εt

with time-varying coefficients Ai, and compute the
“joint degree of market efficiency” ζ

Φ = (I −A1 − · · · − Aq)−1

ζ = Max
√
(Φ− I)′(Φ− I).

Under the efficient market hypothesis (EMH), A1 =
· · · = Aq = 0 and ζ = 0.
Those markets are getting less efficient.

multimode: an R package for mode assessment
J. Ameijeiras-Alonso et al. (2021)

To visually assess the presence of several models in uni-
variate data:
– The mode tree plots the modes versus the bandwidth
of a kernel density estimator (kde);

– The mode forest is a set of bootstrapped mode trees;
– The significant zero (SiZer) map plots the signifi-
cance of the sign of the slope of a kde (whether a
confidence interval for f ′h(x) is in R−, R+ or con-
tains zero) as a function of x and the bandwidth h.

There are also statistical tests.

50 60 70 80 90

0

2

4

6

8

10

Mode tree

N = 272

ba
nd

w
id

th
s

50 60 70 80 90

2

4

6

8

10
Mode forest

N = 272

ba
nd

w
id

th
s

50 60 70 80 90

−0.5

0.0

0.5

1.0

1.5

SiZer

N = 272

lo
g 1

0(
ba

nd
w

id
th

s)

mosum: a package for moving sums
in change-point analysis

A. Meier et al. (2021)
To detect changepoints (on the mean), compute the
average on a window of size G before and after all po-
tential breakpoints k

TG(k) =

√
G

2

(
Mean

k<t⩽t+G
Xt − Mean

k−G<t⩽t
Xt

)
and return Argmaxk |TG(k)| /σk. You can try several
(or asymmetric) bandwidths.

Conformal prediction with Orange
T. Hočevar et al. (2021)

A conformal predictor predicts a set of labels with
low nonconformity, for some user-chosen nonconfor-
mity function such as:
– Distance to the closest neighbour with the same la-
bel;

– Predicted probability of the correct class; s
– Difference of predicted probabilities of the two most
likely classes;

– (For regression) absolute error of the prediction.
Also check conformal (R), nonconformist (Python).

gdpc: an R package
for generalized dynamic principal components

D. Peña et al. (2020)
The first dynamic principal component of a multivari-
ate time series (z•t)t is the univariate time seties (ft)t
such that (ft−k, . . . , ft) gives the best reconstruction
of z•t:

zit ≈ αi +
k∑
j=0

βijft−j

(it is noisy at the ends of the sample and therefore not
useful for forecasting); β can be computed from f with
OLS and conversely. The loss can be a square loss, or
a robust alternative. The original DPC was a linear
combination (and convolution) of the observations.

Article and book summaries by Vincent Zoonekynd 229/1044

Generalized dynamic principal components
D. Peña and V.J. Yohai (2015)

Dimension reduction for time series
in a blind source separation context using R

K. Nordhausen et al. (2021)
Diagonalize, not just the covariance matrix, but
(jointly) several cross-covariance matrices, for several
lags.
Blind source separation of a multivariate time series
(zt)t assumes that the signals are autocorrelated, but
that the noise is not:

xt = µ+Ωzt

Covτ (zt) = E[ztz
′
t+τ] =

(
Λτ 0
0 0

)
.

Amuse uses the eigendecomposition of the autoco-
variance matrix of the standardized time series xst

t =
UΛτU

′, UU ′ = I. To allow the eigenvalues to be simi-
lar, sobi approximately jointly diagonalizes several au-
tocovariance matrices, maximizing∑

τ∈T

∑
i

(
u′i Covτ (x

st
t)ui

)2
, U orthogonal.

This can be generalized (gfobi) to include 4th cross-
moments Bτ = E[xt+τx

′
txtx

′
t+τ] by maximizing∑

τ

∑
i

(
u′iB(xst

t)ui
)2

or by using a wider class of cumulants (gjade).∑
τ

∑
i

∑
jk

(
u′iC

jk
τ (xst

t)ui
)2

Cjkτ = E[xt+τx
′
tejkxtxt+τ]

− Covτ (xt)(ejk + ekj)Covτ (xt)
′ − tr(ejk)Ip

(ejk)jk : standard basis of Rp×p

or by inserting a nonlinear function g in the moment
computations (y 7→ y2 or y 7→ log cosh y)∑
τ,i

E
[
g(u′ix

st
t)g(u

′
ix

st
t+τ)

2
]
−E

[
g(u′ix

st
t)
]
E
[
g(u′ix

st
t+τ)

2
]

or by combining linear and quadratic parts

λ
∑
i,τ

(uiCτu
′
i)

2
+ (1− λ)

∑
i,τ

E
[
(u′ix

st
t)

2(u′ix
st
t+τ)

2
]
.

For supervised dimension reduction (tsir, tsave,
tssh), approximately jointly diagonalize

Gτ (x
st
t , yt) = CovE[zt|yt+τ]

or Gτ (xst
t , yt) = E

[
Ip − Cov(zt|yt+τ)

]
by maximizing ∑

τ,i

(u′iGτui)
2.

Dimension reduction in R
S. Weisberg (2002, 2015)

Supervised dimension reduction of X given Y looks for
a subspace SpanB such that the distributions

Y | X = x and Y | BX = Bx

coincide, by using the first eigenvectors of

M =
1

n

∑
j

z̄j z̄
′
j

M =
1

n

∑
j

(
I −Var[Z|Y − j]

)2
M =

∑
i

yiziz
′
i

M =
∑

res(y ∼ x)iziz′i

(sir (sliced inverse regression), save (sliced aver-
age variance estimates), phd (principal Hessian direc-
tions)) where
– z is the standardization of x;
– y is discrete, with values j = 1, . . . , h (slice it into
equal-sized bins if needed);

– zj = E[Z | Y = j].
Implementation in dr.

Principal component analysis
with sparse fused loading

J. Guo et al. (2010)
Adding an L1 penalty to PCA does not give enough
sparsity: relax the orthogonality constraint by looking
for A and B such that X ≈ XBB′ (projection of X on
SpanB), B ≈ A, A orthogonal:

Find A,B

To minimize ‖X−XBA′‖2 + λ1
∑
k

‖βk‖1 + λ2
∑
k

‖βk‖22
Such that AA′ = I.

You can replace the second penalty with a fusion
penalty to pull the coefficients together when the cor-
relation is high.

λ2
∑
k

∑
s<t

|ρst| |βsk − sign(ρst)βtk|

SQUAREM: an R package
for off-the-shelf acceleration of EM, MM
and other EM-like monotone algorithms

Y. Du and R. Varadhan (2020)
The square iterative method (squarem) speeds up the
convergence of EM-like monotone iterative algorithms

θn+1 = F (θn)

L(θn+1) ⩾ L(θn)

Article and book summaries by Vincent Zoonekynd 230/1044

by iterating:

θ1 = F (θ0)

θ2 = F (θ1)

r = θ1 − θ0
v = (θ2 − θ1)− r
α = −‖r‖ / ‖v‖
θ3 = θ0 − 2αr + α2v

if L(θ3) > L(θ2)− η :

θ0 = F (θ3)

else:
θ0 = θ2.

Examples include:
– Poisson mixtures;
– Ecdf estimation from interval-censored data;
– Admixture (estimating the proportion of each ances-
tral population in each individual, and the propor-
tion of each allele in each ancestry);

– MM for logistic regression;
– Factor analysis

Z ∼ N(0, I) latent
Y ∼ N(β′Z,∆) observed.

The R package smicd:
statistical methods for interval-censored data

P. Walter

Fully hyperbolic convolutional neural networks
K. Lensink et al.

Hyperbolic networks

Yj+1 = 2Yj − Yj−1 + fθ(Yj),

i.e., discretizations of ÿ = fθ(y) are invertible (we can
recover Yj−1 from Yj and Yj+1). Combine them with
learned discrete wavelet transforms to coarsen the state
and increase the dimension without losing information.

Generative ODE modeling
with known unknowns
O. Linial et al. (2021)

To estimate the parameters θ of an ODE ż = fθ(z) for
which only an (unknown) transformation of the state
z = g(z) is observed, use an autoencoder

(xt)t θ, z0 (zt)t (xt)t
encoder known ODE

ż = fθ(z)

decoder

Exterior point operator splitting
for nonconvex learning

S. Das Gupta et al. (2021)
A closed set is prox-regular at a point if projection onto
it is single-valued in the neighbourhood of this point.

Examples include sparsity and low rank:

N = {x ∈ Rd : #x ⩽ k}
N = {X ∈ Rm×d : rankX ⩽ k}.

To solve the optimization problem
Find x

To minimize f(x) + 1
2β ‖x‖

2

Such that x ∈ C ∩N

where f is convex, C is convex, N is non-convex but
prox-regular around local minima, replace the con-
straint with an indicator function

Find x

To minimize f(x) + 1
2β ‖x‖

2
+ ι(x)

Where ι(x) =

{
0 if x ∈ C ∩N
∞ otherwise,

regularize it

ιµ(x) = Min
y
ι(y) +

1

2µ
‖y − x‖2

=
1

2µ
d(x,C ∩N)2

and progressively decrease µ (e.g., from 1 to 10−4).
To solve each subproblem

Minimize
x

f(x) + ιµ(x) +
1
2β ‖x‖

2︸ ︷︷ ︸
ι(x)

use ADMM (Douglas-Rachford)

x← proxγf z

y ← proxγι(2x− z)
z ← z + y − x

where proxγf z is the solution of a convex optimization
problem, often known in closed form, and proxγι can
be computed from the projection onto C ∩N .
Implementation in NExOS.jl.

High frequency covariance: a Julia package
for estimating covariance matrices
using high-frequency financial data

S. Baumann and M. Klymak (2021)
To estimate volatility in presence of microstructure
noise:
– Either use large intervals, so that the microstructure
noise disappears;

– Or combine the sample volatility estimators at two
different scales.

To estimate the covariance from asynchronous time se-
ries:
– Choose a grid of times and compute the correlation
using the last available log-prices

Cov(X,Y) =
1

N

∑
i

(X⩽ti − X̄)(Y⩽ti − Ȳ)

(but the correlations are biased downwards);

Article and book summaries by Vincent Zoonekynd 231/1044

– Refresh time sampling (BNHLS) uses an adaptive
grid where the next time is the time at which each
asset has an updated price; you may want to put
assets in blocks of similar trading frequencies;

– Pre-averaging averages returns on a moving window
and multiplies the returns of two assets when the
windows intersect;

– The spectral local method of moments is another es-
timator;

– The 2-scale volatility estimator can be used to com-
pute covariances:

Cov(X,Y)=
Var[γX + (1−γ)Y]−Var[γX − (1−γ)Y]

4γ(1− γ)

To make sure the covariance matrix is positive semi-
definite:
– Linearly interpolate with the identity;
– Or replace eigenvalues below a threshold with the
average of the (positive) eigenvalues thus discarded.

For the correlation matrix, iterate:
– Take the nearest positive semi-definite matrix;
– Take the nearest matrix with unit diagonal and off-
diagonal elements in [−1,+1].

On covariation estimation for multivariate
continuous Itō semimartingales with noise
in non-synchronous observation schemes

K. Christensen et al. (2011)
To estimate a covariance matrix from asynchronous
data, in presence of microstructure noise, first aver-
age the returns, with some kernel function, pooling k
consecutive ticks, k ∝ n, then use the Hayashi-Yoshida
estimator:

ρHY =

∑
IXi ∩IYj ̸=∅

∆Xi∆Yj

√∑
(∆Xi)2

∑
(∆Yj)2

.

Estimating the quadratic covariation matrix
from observations:

local method of moments and efficiency
M. Bibinget et al. (2014)

Estimator of the variance matrix, from asynchronous
data, in presence of microstructure noise, from the
Fourier coefficients of the time series on subintervals
of [0, 1]

Sjkℓ =
∑
i

(Yiℓ − Yi−1,ℓ)Φjk
(
ti−1,ℓ + tiℓ

2

)
Φjk =

kh (k + 1)h

j periods

BayesNetBP: an R package for probabilistic
reasoning in Bayesian networks

H. Yu et al. (2020)
To use a conditional Gaussian Bayesian network (CG-
BN, i.e., a PGM with a mixture of discrete and con-
tinuous nodes) estimated by bnlearn, catnet, deal,
pcalg, or Hugin (commercial).

ROI: an extensible
R optimization infrastructure

S. Theußl et al. (2020)
The ROI package provides a unified interface to most
optimization packages (linear, mixed integer, conic,
quadratic, nonlinear – there is a long list of supported
solvers): specify the objective (linear, mixed integer,
quadratic or nonlinear), the constraints (linear, sec-
ond order, semi-definite, (dual) exponential, (dual)
power cone, nonlinear), the bounds (and integrality
constraints), and the solver (the package can provide a
list of solvers suitable for the problem). Some problems
can be automatically reformulated (e.g., binary QP to
MILP).
Examples include:
– Best subset regression (linear regression with an `0
penalty);

– Relative risk regression (logistic regression for the
relative risk instead of the odds ratio, i.e., with a log
link);

– Convex clustering (sum of norm (SON) clustering):

Minimize
M

∑
i

‖Mi• −Xi•‖22 + λ
∑
i<j

‖Mi• −Mj•‖1 ;

– Graphical lasso.

CVXR: an R package
for disciplined convex optimization

A. Fu et al. (2020)
Long list of examples of convex optimization problems:
– Huber regression (L2 for small residuals, L1 for large
ones);

– Quantile regression;
– Elastic net;
– Logistic regression (z 7→ log(1 + ez) is convex);
– Graphical lasso

Find S

To maximize log detS − tr(SΣ̂)
Such that S ≽ 0∑

|Sij | ⩽ α

– Saturating hinges (linear splines, constant beyond
their boundaries)

Find w0, w
To minimize

∑
k `
(
yi, f(xi)

)
+ λ ‖w‖1

Such that
∑k
j=1 wj = 0

– Log-concave distribution estimation on J0, kK.
Article and book summaries by Vincent Zoonekynd 232/1044

– Survey calibration (changing the weights as little as
possible so that the statistics of the sample match
those of the population)

– Nearly isotonic fit: replace the constraints βi+1 ⩾ βi
with a penalty on (βi − βi+1)+;

– Nearly convex fit: idem with (βi − 2βi+1 + βi+2)+
– Worst case risk of a portfolio with constraints on
the asset variance matrix (e.g., known variances and
correlation signs)

Find Σ
To maximize w′Σw
Such that Σ ≽ 0

∀i, j Lij ⩽ Σij ⩽ Uij
– Catenary (with a ground constraint);
– Portfolio optimization;
– Kelly gambling;
– Channel capacity (maximum mutual information);
– Fastest mixing Markov chain on a known directed
graph: the rate of convergence is the second largest
eigenvalue of P , i.e., σmax(P − 1

n11
′).

cutpointr: improved estimation and validation
of optimal cutpoints in R

C. Thiele and G. Hirschfeld (2021)
For more robust cutpoints for (logistic-regression-like)
classification algorithms

data 7−→ score 7−→ 1score⩾cutpoint

optimize the Youden index

J = sensitivity+ specificity− 1

sensitivity =
TP

TP+ FN

specificity =
TN

TN+ FP
or some other metric, not on the sample data, but:
– After bootstrap (average the optimal cutpoints);
– Or after smoothing the cutpoint 7→metric function
(GAM, splines, loess);

– Or using a kde of the conditional distributions

score | P and score | N.

Colorspace: a toolbox for manipulating
and assessing colors and palettes

A. Zeileis et al. (2020)
There are many colour spaces:
– RGB;
– sRGB (device-independent: fixed Gamma);
– HSV, whose dimensions are confounded: brightness
changes dramatically with hue;

– HLS (very similar);
– XYZ (not perceptually uniform, unintuitive, but
standardized);

– LUV: perceptually uniform, for emissive technolo-
gies, but the UV dimensions (red/green and yel-
low/blue) are unintuitive;

– LAB (similar, for pigments);
– polarLUV, aka HCL – that is the one you should
use;

– polarLAB.
The package provides many predefined palettes,
functions to evaluate a palette (demoplot,
hclplot, specplot, swatchplot), some interactively
(hcl_wizard, hcl_color_picker, cvd_emulator) and
also desaturate, lighten, darken.
Many other packages provide collour palettes:
RColorBrewer, viridis, rcartocolor, scico, pals,
paletteer, wesandreson, Polychrome; also check
colorscience (more complex algorithms), roloc (En-
glish colour names).

Luminance = [0, 100]

0 50 100 150Chroma

0

360
Hue

60120

180

240 300

FastSHAP: real-time Shapley value estimation
N. Jethani et al.

The Shapley score is the solution of an optimization
problem:

Find φ
To minimize E

s∼p

[
v(s)− v(0)− s′φ

]
Such that 1′φ = v(1)− v(0)

where p is the Shapley kernel; it can be solved by gra-
dient descent.
If you want Shapley scores for many inputs to the same
neural net, learn a function to compute the solution of
that problem (for the constraint, either ignore it and
modify the solution to satisfy it, or add it as a penalty).

Efficient estimation of bid-ask spreads
from open, high, low and close prices

D. Aria et al. (2021)
Assuming that observed log-prices are the latent prices
plus or minus half the spread,

logPt = log P̃t + S · (Bt − 1
2)

Bt ∼ Bernoulli
the spread is given by

Cov(∆ logPt,∆logPt−1) = − 1
4Spread

2

unless there are periods with no trades. More gener-
ally,

Spread2 = −4Cov(∆ logPt,∆logPt−1)

(1− P [Pt = Pt−1])2.

This can be extended to OHLC data.

Article and book summaries by Vincent Zoonekynd 233/1044

A characterization of cross-impact kernels
M. Rosenbaum and M. Tomas (2021)

Model price impact as

Pt − P0 =

∫ t

0

K(t− s)(dNa
s −N b

s)

where (Na, N b) is a multi-dimensional Hawkes process
with intensity(
λat
λbt

)
=

(
µ
µ

)
+

∫ t

0

(
Φaa(t− s) Φab(t− s)
Φba(t− s) Φbb(t− s)

)(
dNa

s

dN b
s

)
and K : R+ → Rd×d is the cross-impact kernel.
A martingale-admissible kernel is a kernel for which
the prices are a martingale; this is the case if

Pt−P0 = long-term impact×long-termorder imbalance

=

(
lim
s→∞

K(s)

)
×
(

lim
s→∞

E[Na
s −N b

s |Ft]

)
.

A no-arbitrage condition imposes constraints on K(0)
and lims→∞K(s); there is only one martingale-
admissible kernel satisfying those (necessary) condi-
tions; it need not ensure the absence of arbitrage, but
fits the data well, and one can compute the closest no-
arbitrage kernel.

DAGs with NO TEARS:
continuous optimization for structure learning

X. Zheng et al. (2018)
A graph is acyclic if its adjacency matrix satisfies
tr eA = d – indeed,

tr eA = tr I + trA+
1

2!
trA2 + · · · ⩾ tr I = d

and trAk counts cycles of length k.
For a weight matrix W , use h(w) = tr eW⊙W − d
(W �W has the same sparsity as W and nonnegative
entries).

Dynotears:
structure learning from time series data

R. Pamfil et al. (2020)
Use the trace exponential function to enforce acyclicity
of W in the SVAR model

xt =Wxt +A1xt−1 + · · ·+Apxt−p + εt.

Beyond prediction in neural ODEs:
identification and interventions

H. Aliee et al.
Estimating an ODE from a single trajectory is an ill-
posed problem: even in the linear case, the ODE is not
uniquely determined:

(∀t etA = etB) 6=⇒ A = B.

Adding a regularizer does not help but, in practice, this
does not seem to matter, and a simple regularization

‖θ‖simple =
∥∥WL+1WL · · ·W 1

∥∥
1,1

(the L1 norm of the gradient of the neural network, if
we remove the nonlinearities) correctly recovers causal
relations.

Forecasting stock returns
with large dimensional factor models

A. Giovannelli and D. Massacci (2021)
Statistical factor models explain current stock returns
from risk factors computed from current stock returns.
Instead, explain future stock returns using risk factors
computed from other time series.

yit: trailing stock returns
xjt: predictors, known at time t
fkt: factors

yi,t+1 =
∑
k

βikfkt + εi,t+1

fkt =
∑
j

γkjxjt + ηkt

Industrial forecasting with exponentially
smoothed recurrent neural networks

M. Dixon (2020)
An α-RNN is an RNN

ht = tanh(Wxt + Uht−1 + b)

yt =Wht + b

with a smoothed hidden state

h̃t = tanh(Wxt + Uht−1 + b)

ht = (1− α)ht−1 + αh̃t

y =Wht + b

(apply α coordinate-wise, and re-estimate it from time
to time).

stratematch: prognostic score stratification
using a pilot design

R.C. Aikens et al.
Before (propensity score or Mahalanobis) matching,
stratify the data (fit a model y ∼ x|T = 0 on some
of the controls – do not reuse these data).

Solving mixed integer programs
using neural networks

V. Nair et al.
Represent a mixed integer program (MIP) as a bi-
partite graph with variables and constraints as nodes,
edges whenever a variable appears in a constraint, and
node or edge features from the coefficients of the prob-
lem (and the solution of the relaxation) and learn two
models (heuristics customized to a dataset):

Article and book summaries by Vincent Zoonekynd 234/1044

– A branching model, using imitation learning to re-
produce a known good (but expensive) branch-and-
bound heuristic (“full strong branching”);

– A “diving” model, to generate good partial assign-
ments.

Exact combinatorial optimization
with graph convolutional neural networks

M. Gasse et al. (2019)
Imitation learning to reproduce known good heuristics;
list of additional features, mostly from the solution of
the relaxed problem.

A unified algorithm for the non-convex
penalized estimation: the ncpen package

D. Kim et al. (2020)
Optimization of a convex loss with a non-convex
penalty can be performed with the CCCP (convex
concave procedure, or difference of convex (DC) algo-
rithm): write the objective as a difference of convex
functions

Loss(β) = L(β) +
∑

J
(
|βi|
)

= L(β) + κ
∑
|βi|︸ ︷︷ ︸

convex

+
∑

D(βi)︸ ︷︷ ︸
concave

Loss(β) ⩽ L(β) + κ
∑
|βi|+

∑
∇D(β̄i)βi

= U(β̄, β)

and iteratively minimize the upper bound obtained by
linearizing the concave term

β̄ ← Argmin
β

U(β̄, β).

To minimize U , use a quadratic approximation of L(β)
around β̄, combined with line search.

Lasso Ridge SCAD

MCP Truncated L1 Moderately clipped lasso

Sparse ridge Modified log Modified bridge

ROCnReg: an R package for receiver
operating characteristic curve inference

with and without covariates
M.X. Rodríguez-Álvarez and V. Inácio (2020)

The ROC curve plots the true and false positive frac-
tions

x = P [Y ⩾ c | D = 0]

y = P [Y ⩾ c | D = 1].

The partial area under the curve (pAUC) is the area
under the curve such that x ∈ [0, u1] (largest accept-
able FPR) or y ∈ [v1, 1] (lowest acceptable TPR). The
Youden index is

YI = Max
p
|ROC(p)− p| .

One can also consider the covariate-specific ROC
ROC(p|x) and the covariate-adjusted one

AROC(p) =
∫

ROC(p|x)dP (x)

(it is different from the pooled ROC).
One can compute bootstrap estimates of the ROC
curve (it can be considered as a cdf) and confidence
intervals for the AUC; there are also frequentist and
Bayesian approaches.

Precision-recall-gain curves:
PR analysis done right
P.A. Flach and M. Kull

In case of class imbalance, if there are too many neg-
ative samples, ignore the true negatives and consider
the precision-recall curve.
Rescale 1/precision and 1/recall, linearly, so that they
span [0, 1], before making the precision-recall plot and
computing its area under the curve (ignore the negative
gains).

precG =
prec− π

(1− π)prec = 1− π

1− π
FP
TP

recG =
rec− π

(1− π)rec = 1− π

1− π
FN
TP

NlinTS: an R package
for causality detection in time series

Y. Hmamouche (2020)
Nonlinear generalizations of Granger causality include
– Nonlinear models, i.e., comparing

Yt = f(Y<t) + εt

and Yt = g(Y<t, X<t) + εt

where f and g are neural networks;
– Transfer entropy

TEX→Y = I(Yt;X<t | Y<t)
= H(Yt | Y<t)−H(Yt | Y<t, X<t)

which can be normalized by dividing by H(Yt | Y<t).
Estimators of transfer entropy often rely on discretiza-
tion. Instead, one can use nearest neighbours.

H(X) = − E
x∼p

[
log p(x)

]
Ĥ(X) = − 1

n

∑
log p̂(xi)

Ĥ(X) = Γ(n)− Γ(k) + log c+
m

n

∑
di

Article and book summaries by Vincent Zoonekynd 235/1044

(assuming that p̂ is locally constant in balls around
each xi, where Γ is the gamma function, m the dimen-
sion, di twice the distance between xi and its kth near-
est neighbour, and c the volume of the unit ball. (The
estimator can be improved by letting k vary with i.)

tsmp: an R package for time series
with matrix profile

F. Bischoff and P.P. Rodrigues (2020)

Model-based clustering
of multivariate ordinal data

relying on a stochastic binary search algorithm
C. Biernacki and J. Jacques (2015)

To sample from the BOS (binary ordinal search) model
for ordinal data on J1,mK with location µ and precision
π, search µ in J1,mK with stochastic binary search:
– Start with the interval of candidates J1,mK;
– Pick an element at random in the interval of candi-
dates;

– Compare it with µ, with probability π; if there is
no comparison, select the result with probabilities
proportional to the lengths of the intervals e<, e=,
e>;

– Reduce the interval accordingly;
– Continue until the interval is a singleton.
It can be estimated with the EM algorithm if m ⩽ 8
(the latent variables are the pivots chosen and whether
the comparisons were performed). One can also con-
sider mixtures and/or multivariate extensions.

OneStep:
Le Cam’s one-step estimation procedure

A. Brouste et al. (2020)
Instead of computing the MLE:
– Start with a crude estimate, e.g., from moment
matching, quantile matching, or the MLE on a small
sample of the data;

– Do only one Newton step

θ ← θ − I−1θ
1

n

∑
˙̀(θ, xi)

using the information matrix Iθ if known, or an es-
timator

Îθ = −
1

n

∑
῭(θ, xi).

It is faster than the MLE, and still asymptotically ef-
ficient.

Regularized transformation models:
the tramnet package

L. Kook and T. Hothorn
Statistical models often estimate a conditional mean:
they look for a function f such that

f(x) = E[Y |X=x].

Instead, transformation models estimate the whole con-
ditional distribution

Y |X=x ∼ f(·|X=x).

They can still be linear: f(Y) − X ′β ∼ N(0, 1). The
transformation can be parametrized with Bernstein
polynomials

bn,k =

(
n

k

)
xk(1− x)n−k,

for which monotonicity is easy to enforce (
∑
k θkbk,n,

θk ⩽ θk+1; cf the basefun package). The models can
be stratified (a different transformation for each value
of a categorical variable, but the same linear parame-
ters β).

Skew-t expected information matrix evaluation
and use for standard error calculations

R.D. Martin et al. (2020)
The standard skew normal distribution has density
f(x) = 2φ(x)Φ(αx). The standard T distribution is
the distribution of T = Z/(χ2

ν/ν), where Z ∼ N(0, 1)
and χ2

ν are independent. The standard skew-T dis-
tribution is the distribution of T = Z/(χ2

ν/ν), where
Z ∼ SN(0, 1, α).

SimilaR:
R code clone and plagiarism detection

M. Bartoszuk and M. Gagolewski (2020)
Detect plagiarism from the program dependence graph:
a tree, indicating how statements are nested (like the
AST, but with no ordering), with “data dependence
edges” constraining the order in which the statements
can be executed.
In addition, canonicalize statements (e.g., spurious
braces), recognize duplicated variables, remove dead
code, assume functions have no side effect (and can be
memoized), rewrite map-like expressions (apply*) as
loops.

ROBustness in network (robin):
an R package for comparison
and validation of communities

V. Policastro et al. (2020)
To assess the significance of communities in a graph,
check how much perturbation is needed to alter them
(titration).

AQuadtree: an R package for quadtree
anonymization of point data

R. Lagonigro et al. (2020)
To preserve privacy, bin spatial data in a quadtree,
putting isolated points in an “isolated” bin instead of
discarding them.

Article and book summaries by Vincent Zoonekynd 236/1044

RNGforGPD: an R package for generation
of univariate generalized Poisson data

H. Li et al. (2020)
The generalized Poisson distribution (GPD)

P (y) =

{
θ(θ + λy)y−1e−θ−λy

0 if λ < 0 and y > b−θ/λc

allows for over- and under-dispersion in count data.
Its multivariate generalization is

Xi ∼ GPD(θi, λi) i ∈ J0,mK
Yi = Xi +X0 i ∈ J1,mK

Package wsbackfit for smooth backfitting
estimationo of generalized structured models

J. Roca-Pardiñas et al. (2020)
Generalized structured models (GSM)

Λ(Y) = G
(
Z, β, g(X)

)
+ S

(
T, δ, s(U)

)
,

with G,S, Λ known, β, g, δ, s unknown, generalize
GAMs

Y =
∑

gi(Xi) + ε

and varying coefficient models

Y =
∑

gi(Xi)Zi + ε.

gk: an R package for the g-and-k and
generalized g-and-h distributions

D. Prangle (2020)
The g-and-k and g-and-h distributions are 4-parameter
univariate distributions of the form

X = A+BG(Z)H(Z)

Z ∼ N(0, 1)

where A and B are location and scale parameters, G
introduces asymmetry, and H fattens the tails.

G(z) = 1 + c tanh(gz/2)

H(z) = z(1 + z2)k

H(z) = z exp(hz2/2).

(They are only defined from their quantiles: the den-
sity is not available in closed form.)

A new versatile discrete distribution
R. Turner (2020)

The Beta-binomial distribution

p ∼ Beta(α, β)
X ∼ Bin(n, p)

only allows for over-dispersion and its maximum like-
lihood estimation is unreliable. Instead, try the dis-
cretized beta

p(x) ∝ dbetaα,β
(
x+ 1

N + 2

)
, x ∈ J0, NK.

Linear fractional stable motion
with the rlfsm R package

S. Mazur and D. Otryakhin (2020)
LFSM generalizes fractional Brownian motion (fBM):

Xt =

∫ [
(t+ s)

H−1/α
+ − (−s)H−1/α+

]
dLs,

where L is a symmetric α-stable Lévy motion.

IndexNumber: an R package for measuring
the evolution of magnitures

A. Saavedra-Nieves and P. Saavedra-Nieves
(2020)

There are many ways of combining quantities and
prices over time, in a CPI-like fashion: Paasche,
Marshall-Edgeworth, Laspeyres, Fisher indices.

The Lambert way to Gaussianize heavy-tailed
data with the inverse of Tukey’s h
transformation as a special case

G.M. Goerg (2014)
Tukey’s h distribution

U ∼ N(0, 1)

Z = U exp(12hU
2),

which can be generalized to Y = σZ + µ, has fat tails.
Conversely, one can use the inverse transformation (ex-
pressible with the Lamber W function, i.e., the inverse
of u 7→ ueu) to remove fat tails.

Finding optimal normalizing transformations
via bestNormalize

R.A. Peterson (2020)
To make your data more Gaussian, try log,

√
·,

exp, Argsinh, Box-Cox (power transformation), Yeo-
Johnson (Box-Cox, separately for positive and negative
inputs), Lambert W × F , and ordered quantiles.

R Journal (2020)
The crqa package (recurrence quantification analysis,
RQA) extracts features from a recurrence (or cross-
recurrence) plot.
For fast topological data analysis (TDA), prefer Ghudi
in TDA in dimension 2, and Ripser in TDAstats in higher
dimensions.
The biglasso package provides out-of-code lasso, with
memory-mapped files and feature screening rules.
The DChaos package provides several estimators of the
Lyapunov exponent.
The ProjectManagement package designs Gantt
charts, identifies critical activities, computes early and
last times of each activity, manages resources and costs
– e.g., to allocate delay costs using Shapley values.
The futures API

Article and book summaries by Vincent Zoonekynd 237/1044

f <- future(expr)
v <- value(f)
r <- resolved(f)

enables asynchronous and parallel processing. Also
check future.apply, furrr. doFuture; parallel,
foreach, doMC (Unix), doParallel (Windows);
parallely, globals, listenv.
The KSPM package provides kernel regression.
The gofCopula package provide all the goodness-of-fit
tests you can think of, for the most common copulas.
The ari package generates videos from a presentation
and a script, using ffmpeg (tuneR) and (paid) text-to-
speech APIs (AWS Polly, Microsoft or Google).
The R-Docker ecosystem has become very large.
Seeded CCA is CCA after dimension reduction (when
p > n, it is faster than penalized CCA).
When reshaping data (normalizing a data-
frame), one may use regular expressions, e.g.,
(.*)[.](.*); the capture groups can be namaed
(?<part>,*)[.](?<dim>.*); named argument can
simplify this syntax: part='.*', '[.]', dim='.*'.
Alternatives include reshape2, data.table, tidyr,
tidyfast, tidyfst, etc.
The TULIP package provides (six) sparse generaliza-
tions of LDA; it uses tensr for tensor computations.
The NTS package provides non-linear time series mod-
els, such as threshold AR (TAR), functional AR

Xt =
∑
i

φi ∗Xt−i + εt,

where Xt, εt, φi are functions, and non-linear non-
Gaussian state space models (sequential Monte Carlo,
SMC).
The cran2copr package uses Redhat’s copr buildsys-
tem to turn CRAN packages requiring compilation into
(rpm-installable) binary packages. Also check bspm for
cross-distribution binary packages.

Deep matrix tri-factorization:
mining vertex-wise interactions
in multi-space attributed graphs

Y. He (2020)
Given the incidence matrix of a graph, G ∈ {0, 1}n×n,
and node features S ∈ Rn×s, O ∈ Rn×o, matrix tri-
factorization approximates the graph by finding Ŝ, Ô,
W minimizing∥∥∥G− ŜWÔ′

∥∥∥2 + λ1

∥∥∥S − Ŝ∥∥∥+ λ2

∥∥∥O − Ô∥∥∥
and can help predict missing edges. The matrix W
“harmonizes” the two feature spaces, linearly: instead,
replace the bilinear mapping (S,O) 7→ SWO′ with a
neural net; this generalizes to more than two feature
spaces.

Fast nonnegative matrix tri-factorization
for large-scale data co-clustering

H. Wang et al.
The fast nonnegative matrix factorization

Find F ∈ Rd×m

S ∈ Rm×c

G ∈ Rn×c

To minimize ‖X − FSG′‖2
Such that F, S,G ⩾ 0

F,G ∈ Ψ

where Ψ is the set of cluster indicator matrices (i.e.,
boolean object×cluster matrices: gij = 1 if xi belongs
to cluster j). It generalizes k-means but clusters both
rows and columns.
Regularize by adding terms tr(G′LdG) and tr(F ′LfF)
where L = I − D−1/2WD1/2 is the normalized graph
Laplacian.

Scalable non-negative matrix tri-factorization
A. Čopar et al. (2017)

Matrix trifactorization

Minimize
U,S,V

‖X − USV ′‖2 ,

estimated by gradient descent

U ← U � XV S′

USV ′V S′

V ← V � X ′US

V S′U ′US

S ← S � U ′XV

U ′USV ′V

possibly with orthogonality constraints U ′U = I,
V ′V = I,

U ← U �
√

XV S′

UU ′XV S′

V ← V �
√

X ′US

V V ′S′US

S ← S �
√

U ′XV

U ′USV ′V

can be computed blockwise.

Constant function market makers:
multi-asset trades via convex optimization

G. Angeris et al. (2021)
Decentralized (crypto-currency) exchanges (DES) do
not use a limit order book (LOB) but a constant func-
tion market maker (CFMM), an automated market
maker implemented as a smart contract, and to which
anyone can contribute liquidity (as with an ETF). Its
reserves are R ∈ Rn

+ (for n assets) and it maintains a
vector of weights v ∈ RN

+ , 1′v = 1 for the stakes of the
liquidity providers. A trade (∆,Λ) (“I give ∆ ∈ Rn

+

and want Λ ∈ RRn+) is accepted if φ(R+∆−Λ) = φ(R)
(or R + γ∆ − Λ, γ < 1, to account for a trading fee),

Article and book summaries by Vincent Zoonekynd 238/1044

for some concave, increasing, differentiable function φ,
such as

φ(R) = p′R (pegged: constant prices)

φ(R) =
∏

Rwii

φ(R) = (1− α)1′R+ α
∏

Rwii

φ(R) = 1′R− α
∏

R−1i .

The unscaled prices are

pi =
∂φ(R)

∂Ri
;

the prices are pi/pn if asset n is the numéraire.

Inverse options on a Black-Scholes world
C. Alexander and A. Imeraj (2021)

Options on Deribit, an unregulated bitcoin exchange,
are inverse option: options to buy or sell bitcoin,
priced, margined and settled in bitcoin, which avoids
the use of USD.

PayoffCall(S) = K.Max(K−1 − S−1, 0)
S : price of BTC in USD
K : strike in USD

They chose not to tell you
B. Knuteson (2021)

Overnight returns are less volatile, and higher, than
intraday returns.

CAC 40

W
ea

lth

2000s 2010s 2020s

0.5

1.0

2.0

Overnight
Intraday

A sparsity algorithm
with applications to corporate credit rating

D. Wang et al. (2021)
When looking for a counterfactual explanation of the
output of a black-box model, i.e., the minimum change
to the input to change the output, add a sparsifying
penalty to the optimization problem, to make the ex-
planation more actionable.

Financial return distributions:
past, present and covid-19
M. Wątorek et al. (2021)

To model distribution tails:

f(x) ∼ |x|−(1+α) 0 < α < 2 α-stable

f(x) ∼ |x|−(1+α) e−γ|x| γ > 0 truncated α-stable
f(x) ∼ |exp| (x−β) 0 < β < 1 stretched exponential
f(x) ∼ eq(−βx2) q-Gaussian

where the q-Gaussian distribution maximizes the Tsal-
lis entropy if the first and second moments are fixed,
and the q-exponential is

eq(x) =
[
1 + (1− q)x

]1/(1−q)
+

.

End-to-end risk budgeting portfolio
optimization with neural networks

A.S. Uysal et al. (2021)
Do not use risk budgeting blindly: use it end-to-end, to
maximize the information ratio (with cvxpylayers):
– Start with features (returns and volatility for 7
ETFs);

– Use a neural network to compute the risk budgeting
parameters, b, c;

– Solve the rist budgeting problem

Find y ⩾ 0
To minimize y′Σy
Such that

∑
bi log yi ⩾ c

– Compute the weights, w = y/ ‖y‖1;
– Compute the information ratio.

The unreasonable effectiveness
of optimal transport in economics

A. Galichon (2021)
Applications of optimal transport in economics include
many 2-player situations, such as matching problems

x : worker
y : job
αxy : job satisfaction
γxy : output
wxy : wage
ux = Max

y
(αxy + wxy)+

vy = Max
x

(γxy + wxy)+

Maximize ux and vy

Article and book summaries by Vincent Zoonekynd 239/1044

or hedonic models

x : producer
y : consumer
z : quality
Pz : price
Cxz : production cost
Uyz : utility
Maximize Pz − Cxz and Uyz − Pz.

If P (resp. Q) is the martingale measure for options on
X (resp. Y), the price of an option with payoff u(X),
resp. v(Y), is EP u(X), resp. EQ v(Y). If the market is
incomplete and there is no unique martingale measure
for (X,Y), the price of an option with payoff Φ(X,Y)
is at most

Max
π∈M (P,Q)

Eπ Φ(X,Y).

If P = Unif(0, 1), the solution of the optimal trans-
port problem is the graph of the cdf of Q – it defines
quantiles. Replacing [0, 1] with [0, 1]n gives multivari-
ate quantiles.
Inverse optimal transport tries to recover the transport
cost Φxy from the optimal transport plan πxy, often
from covariates φxyk

πxy = exp
[∑
k

λkφxyk − ux − vy
]

(λ, u, v unknown), for instance, to link import-exports
π to several measures of country similarity φxyk.

Stock price prediction using BERT and GAN
P. Sonkiya et al. (2021)

Use a GAN to forecast returns (e.g., from technical in-
dicators): you get a distribution of plausible returns (as
with a Bayesian model) – or an ensemble of forecasts.

Deep risk models: a deep learning solution
for mining latent risk factors

to improve covariance matrix estimation
H. Lin et al.

Feed stock returns to:
– A GRU, then a FC layer;
– A GAT (graph attention network), then a GRU and
a FC layer

to generate risk factor returns, which are then used
linearly, to reproduce stock returns (the loss is the ex-
plained variance, and, to stabilize the model, the ex-
plained forward variance), with a penalty for multico-
linearity (VIF).

Correlation scenarios
and correlation stress testing

N. Packham and F. Woebbeking (2021)

Model the correlation matrix as

cij = tanh
[
η +

∑
k

λk1only one of i and j is exposed to k

+
∑
k

νk1both i and j are exposed to k
]

where i and j are the assets, and k the risk factors.

Malliavin calculus in finance
E. Alós and D.G. Lorite (2021)

1. The implied volatility surface is the relation

σ ∼ log(F/K) + T

where F is the forward price. For T fixed, it exhibits
a smile, a skew; as T →∞, it becomes more symmet-
ric and flatter; empirically, the slope is proportional to
1/
√
T .

In incomplete markets, delta hedging can be replaced
by gamma hedging (hedging ∆ and Γ using bond, un-
derlying and vanilla options) or vega hedging (hedging
∆ and vega).
The implied volatility can be expressed as a weighted
average of future volatilities.

I0 =

∫ T

0

ertσ2
t

∂2BS
∂x2

S2dt∫ T

0

ert
∂2BS
∂x2

S2dt

2. The realized variance is an estimator of the inte-
grated variance,∫ t

s

σ2
udu ≈

∑
rti,ti+1

(log-returns),

but it is contaminated by microstructure noise.
Prefer the Fourier estimator of volatility∑

j

(∆jX)2 +
∑
j ̸=ℓ

(N∑
−N

eik(tj−tℓ)
)
∆jX∆ℓX.

Spot volatility exhibits jumps, clustering, roughness
and long memory (there is evidence for and against
both short and long memory – one could have both,
e.g., with the sum of a long-memory process and a
short-memory one).
Under reasonable assumptions, a local volatility model

dS

S
= rdt+ σ(t, S)dW

consistent with observed prices exists (i.e., it has
the correct marginals, but unrealistic dynamics), from
Gyöngi’s lemma and Dupire’s formula

σ2(T,K) =
∂TC + rK∂KC

1
2K

2∂2KC
.

For instance, the CEV (constant elasticity of variance)
model

dS = µSdy + σSγdW,

Article and book summaries by Vincent Zoonekynd 240/1044

for γ < 1, ensures Cor(S, σ) < 0 and produces a down-
ward sloping skew.
Stochastic volatility models have two sources of ran-
domness,

dS = rSdt+ σSdW

σ = f(Y)

dY = a(t, Y)dy + b(t, Y)dB;

the function f can be exponential, square root, abso-
lute value; the process Y can be log-normal, Ornstein-
Uhlenbeck or CIR.
For instance, the Heston model uses the square root of
a CIR process,

σ =
√
v

dv = k(θ − v)dt+ ν
√
vdB,

where ν is the vol-of-vol.
The SABR (stochastic alpha beta rho) model is

dF = σF βdW β ∈ [0, 1] (often, β = 1)
dσ = ασdB α > 0

ρ =
d〈W,B〉t

dt
.

Stochastic-local volatility models combine both ideas

dS

S
= rdt+ σtλ(t, S)dW,

where σ is a diffusion.
Rough volatility models are stochastic volatility mod-
els driven by a fractional Brownian motion, such as the
rough Bergomi model.

dS = rSdt+ σSdW

log
σ2
t

σ2
0

= ν
√
2HZt − 1

2ν
2t2H

Zt =

∫ t

0

(t− s)H− 1
2 dB, H < 1

2 .

The variance swap payoff is∑
log

Si
Si−1

−K,

where K (fair price) is chosen so that the initial con-
tract price be zero. The fair price of its continuous
analogue is

E

∫ T

0

σ2
t dt = 2E log

St
S0
.

The volatility swap payoff is√∑
log

Si
Si−1

−K;

the fair price of its continuous analogue

E

√∫ T

0

σ2
t dt

is more difficult to compute.
The gamma swap is a weighted variance swap∫ T

0

a(u)σ2
udu

with a(u) = Su/S0; it can be replicated with a Euro-
pean option with payoff

ST
S0

log
ST
S0
.

For arithmetic variance swaps, a(u) = S2
u.

3. Malliavin calculus is a calculus of variations for
stochastic processes.
The Malliavin derivative is an inverse D of the op-
erator

h 7−→W (h) =

∫ T

0

h(s)dWs

satisfying DW (h) = h and Df(A) = f ′(A)DA.
If F = f(W (h1), . . . ,W (hn)), it is defined as

DF =
∑

∂if(W (h1), . . . ,W (hn))hi;

it is then extended to the closure of the set of such
functions.
For instance, for Brownian motion, DsWt = 1[0,t](s).
For exponential Brownian motion, DrSt = σSt1[0,t](r).
It satisfies the following properties.

E〈DF, h〉 = E
[
FW (h)

]
Dψ(F1, . . . , Fn) =

∑
∂iψDFi

D(FG) = (DF)G+ F (DG)

E
[
G〈DF, h〉

]
+ E

[
F 〈DG,h〉

]
= E

[
FGW (h)

]
DrAt = 0 for r > t if A is adapted
Ds Et[A] = E[DsA]1[0,t](s)

The divergence operator, or Skorohod integral,
is the adjoint of the Malliavin derivative.

E〈DF, u〉 = E[Fδ(u)]

It generalizes the Ito integral to non-adapted processes.

δ(u) =

∫ T

0

u(s)dW (s)

For processes of the form u(s) =
∑
Aihi(s).

δ(u) =
∑
i

AiW (hi)− 〈DAi, hi〉.

In particular

δ

[∑
Ai1[ti,ti+1](s)

]
=

∑
Ai(Wti+1

−Wti)−
∑∫ ti+1

ti

DsAids

Article and book summaries by Vincent Zoonekynd 241/1044

where the second term is zero if the Ai are adapted
(Ito integral).
For a diffusion

dX = µds+ σdW

the Malliavin derivative is

DXt =

∫ t

0

Dµsds+ σ1[0,t] +

∫ t

0

DσsdWs;

it can be computed as the solution of a SDE or, after a
change of variable, an ODE. It is easy to compute for
most volatility models.
4. If F is FT -measurable, it can be expressed as (mar-
tingale representation theorem)

F = E[F] +

∫ T

0

m(T, s)dWs.

The Clark-Ocone-Haussman formula gives an ex-
plicit martingale representation,

F = E[F] +

∫ T

0

Er[DrF]dWr.

It can be used to build hedging strategies (apply it
to the final value of the replicating portfolio, VT =
αTST + βT e

rT) or price VIX options (apply it to σ2
t).

The integration by parts formula

E
[
f ′(F)G

]
= E

[
f(F) δ

(
Gu

〈DF, u〉

)]
can be used to compute the espectation of a derivative
(Greeks), with Monte Carlo simulations.
The anticipating Ito formula generalizes Ito’s for-
mula to non-adapted processes.
5. Fractional Brownian motion (fBM) is a Gaus-
sian process with covariance function

E[BtBs] =
1
2

(
t2H + s2H − |t− s|2H

)
;

in particular, Bt − Bs ∼ N
(
0, |t− s|2H

)
. For H 6= 1

2 ,
it is not Markovian, it is not a martingale, nor a
semi-martingale, and the increments are correlated:
E
[
(Bt − Bs)(Bu − Br)

]
= · · · 6= 0. It is self-similar,

(Bat)t
d
= (aHBt)t, and λ-Hölder continuous for λ < H.

Since it is not a semi-martingale, we cannot use Ito
calculus to define stochastic integration.
It has a representation as

Bt =

∫ t

0

K(t, s)dWs

K(t, s) ∝ (t− s)H− 1
2 +

(12 −H)

∫ t

s

(u− s)H− 3
2

(
1−

(s
u

)1
2−H

)
du

The Riemann-Liouville fractional Brownian mo-
tion (RLfBM) truncates this kernel and only keeps the
first term,

Bt ∝
∫ t

0

(t− s)H− 1
2 dWs.

The Malliavin derivative is DsBt = K(s, t); one can
also compute the Malliavin derivative of most rough
volatility models.

Python for algorithmic trading
Y. Hilpisch (2020)

For readers not very familiar with Python.

Artificial intelligence in finance:
a Python-based guide

Y. Hilpisch (2020)
For readers who have not been exposed to deep learn-
ing yet (with a chapter on reinforcement learning).

Introducing localgauss, an R package
for estimating and visualizing

local Gaussian correlation
G.D. Berensten et al. (2014)

To assess local changes in correlation, look at:
– The correlation curve, x 7→ ρ(x),

ρ = β
σX
σY

=
βσX√

(βσX)2 + σ2
ε

β(x) =
d

dx
E[Y |X = x]

σε2(x) = Var[Y |X = x];

– The conditional correlation (exceedance correlation)
– but, for a Gaussian distribution it tends to 0 in the
tails (unless |ρ| = 0);

– The Holland-Wang dependence

γ(x, y) =
∂2

∂x∂y
log fX,Y (x, y),

but it is not in [−1,+1] – in the Gaussian case,

γ =
ρ

1− ρ2
1

σXσY
;

– The local Gaussian correlation, obtained by maxi-
mizing the local likelihood

f : density
φθ: Gaussian density with parameter θ

Minimize
θx

∫
kh(v − x)

[
φθx(v)− log φθx(v)f(v)

]
dv

i.e.
∫
kh(v − x)∇θ log φθ(v)

[
f(v)− φθ(v)

]
dv = 0.

+0.98

+0.97 +0.97

+0.96 +0.96

+0.96 +0.95 +0.94 +0.93

+0.94 +0.93 +0.92 +0.90 +0.88

+0.94 +0.92 +0.91 +0.88 +0.85 +0.81 +0.74

+0.91 +0.89 +0.86 +0.82 +0.77 +0.69 +0.59 +0.44

+0.86 +0.82 +0.78 +0.73 +0.65 +0.54 +0.41 +0.25

+0.81 +0.78 +0.73 +0.68 +0.61 +0.51 +0.40

+0.75 +0.71 +0.66 +0.62 +0.56 +0.48 +0.39

+0.66 +0.61 +0.58 +0.54 +0.50 +0.45 +0.39

+0.50 +0.47 +0.46 +0.44 +0.41 +0.38

+0.38 +0.38 +0.37

−3 −2 −1 0 1 2 3

0.4

0.6

0.8

1.0

x

ρ

Article and book summaries by Vincent Zoonekynd 242/1044

Recognizing and visualizing copulas: an
approach using local Gaussian approximation

G.D. Berentsen et al. (2014)
Use Gaussian pseudo-observations to compute the local
Gaussian correlations.

Dynamic copula methods in finance
U. Cherubini et al. (2012)

0. Given the joint distribution of (X,Y), we want to
describe the joint distribution (copula and margins) of
(X,Y,X + Y). Applications include credit risk (sum
of non-Gaussian, dependent risks) and market dynam-
ics (non-independent increments – with the added re-
quirement that the resulting process be Markov and a
martingale).
1. Correlation trading (resp. correlation risk) exploits
(resp. measures the impact of) changes in correlation.
Copula-based models should not introduce any spuri-
ous arbitrage, e.g., when pricing derivatives with dif-
ferent expiry dates, or when aggregating risk (VaR).
2. The price of a bivariate digital put, MDP (receive
$1 if SA ⩽ KA and SB ⩽ KB) is related to the price of
the univariate digital puts, DPA, DPB , via the copula
C:

MDP = vP [SA ⩽ KA, SB ⩽ KB]

= vC
(
QA(KA), QB(KB)

)
= vC

(
DPA
v

,
DPB
v

)
where v is the discount factor. Other examples in-
clude: bivariate digital corridor, digital best-of, first-
to-default, nth-to-default.
The Fréchet copulas are mixtures of the mix, max and
independence copulas.
The Kendall function of an Archimedean copula

k(t) = P
[
C(U, V) ⩽ t

]
= t− φ(t)

φ′(t)

is useful to derive closed-form formulas for
Archimedean copulas.
The following bivariate copula is not exchangeable:

(u, v) 7−→ uαvβC(u1−α, v1−β), α, β ∈ [0, 1].

Archimedean copulas can be made hierarchical, by re-
placing C(· · ·) = φ−1

[
φ(·) + φ(·) + φ(·) + φ(·)

]
with

φ3
−1[φ3φ1−1(φ1(·) + φ1(·)

)
+ φ3φ2

−1(φ2(·) + φ2(·)
)]
.

The conditional probabilities are

P [X ⩽ x | Y = y] =
∂C
(
FX(s), v

)
∂v

∣∣∣∣∣
v=FY (y)

P [X ⩽ x | Y ⩽ y] =
∫ FY (y)

0

∂2C
(
FX(x), w)dw.

In particular, for a 1-factor copula, i.e., if the Xi’s are
independent given X1,

P
[
U2 ⩽ u2, . . . , Un ⩽ un | U1 = u1

]
=
∏
i>1

∂1C(u1, ui)

C(u1, . . . , un) =

∫ u1

0

∏
i>1

∂1C(u, ui)du.

This can be generalized to more factors.
3. Copulas can be used to describe, not only cross-
sectional data, but also time dependence – but we need
to impose a few constraints on the result:
– The Markov property, which results from the effi-
cient market hypothesis – the price should contain
all the information;

– The martingale property: the time series should be
unpredictable.

Given a Markov process (Ut)t with uniform margins,
we have, for s ⩽ r ⩽ t,

P (Us ⩽ us, Ut ⩽ ut)

=

∫
P [Us ⩽ us, Ut ⩽ ut | Ur ⩽ u]du

=

∫
P [Us ⩽ us | Ur = u] · P [Ut ⩽ ut | Ur ⩽ u]du

=

∫
∂2Csr(us, u) · ∂1Crt(u, ut)du

We can define a product a bivariate copulas:

A ∗B(u, v) =

∫ 1

0

∂2A(u, t)∂1A(t, v)dt.

It is associative, non-commutative, and satisfies

C ∗Π = Π ∗ C = Π (zero)
C ∗M =M ∗ C = C (one)
W ∗W =M (minus one)

W ∗ C ∗W = Ĉ survival copula

More generally, A ∗B(x, y) = A ? B(x, 1, y), where

A ? B(u1, . . . , um+n−1) =∫ 1

0

∂mA(u1, . . . , um−1, ξ)∂1B(ξ, um+1, . . . , um+n−1)dξ.

A stochastic process is Markov if its copulas satisfy

Ct1,...,tn = Ct1,t2 ? Ct2,t3 ? · · · ? Ctn−1tn .

It is mixing if lim
k→∞

Ci,i+1 = Π.

It is right-continuous if lim
k→0+

Ci,i+k =M.

Brownian dynamics are defined by Cst = CGauss
ρt−s ..

Farlie-Gumbel-Morgenstern dynamics can only pro-
duce very low correlations.

C(u, v) = uv + θuv(1− u)(1− v) θ ∈ [−1, 1]
θst =

1
3θsrθrt

θn = 3

(
θ

3

)n

Article and book summaries by Vincent Zoonekynd 243/1044

Time-changed Brownian copulas are more flexible: ev-
ery semi-martingale is a time-changed Brownian mo-
tion (with the quadratic variation for martingales and,
more genrally, Lévy subordinators or other increasing
processes, such as cummulated volatility or cummu-
lated jump intensity).
The C-convolution of FX and FY is the copula of
(X,X + Y):

FX
C∗ FY (u, v) = CX,X+Y (u, v)

=

∫ u

0

∂1C
[
w,FY

(
F−1X+Y (v) + F−1X (w)

)]
dw

FX+Y (t) =

∫ 1

0

∂1C
[
w,FY

(
t− F−1X (w)

)]
dw.

A Markov process (Xt)t is a martingale iff
(i) The increments Xt −Xs have finite mean;
(ii) ∀s, t ∀u ∈ [0, 1] almost everywhere∫ 1

0

F−1Xt−Xs(v)∂1CXs,Xt−Xs(u, dv) = 0.

This is the case, for instance, if the increments and the
copula are symmetric: Č(u, v) := u − C(u, 1 − v) =
C(u, v).
4. The c-quantile curve of y conditioned on x, q(x, p),
is the value of y such that

p = F (y|x) = ∂1C
(
FX(x), FY (y)

)
.

A stationary copula-based Markov process is defined
by its invariant distribution G∗ and the copula C of
(Ct−1, Xt). Ti estimate it, use the empirical distribu-
tion for G∗, and the MLE for the copula C.
The α-mising coefficients are

αk = sup
m∈Z

sup
A∈Fm

−∞
B∈F∞

m+k

|P (A ∩B)− P (A)P (B)| .

The β-mixing coefficients are similar, but use
partitions {A1, . . . , AI}, {B1, . . . , BJ} of Ω and∑
ij |P (Ai ∩Bj)− P (Ai)P (Bj)|.

The ρ-mixing coefficients are

ρk = sup
m∈Z

sup
f∈L2(Fm

−∞)

g∈L2(F∞
m+k)

Cor(f, g).

The maximum correlation of a copula C is

ρC = sup
f,g∈L2(0,1)∫
f=

∫
g=0∫

f2=
∫
g2=1

∫∫
f(u)g(v)C(du, dv).

if ρC < 1, then a stationary Markov process defined
from C is α- and ρ-mixing, i.e., αk → 0, ρk → 0 when
k →∞. This is the case for the Student and Marshall-
Olkin copulas.

A process (Xt)t has long memory if H(t, h) ∼h→∞
Ah−p, A > 0, p > 0, and short memory if H(t, h) =
O(e−Ah), A > 0, where the Hellinger measure of de-
pendence between Xt and Xt+h is

H(t, h) = 1−
∫∫

f
1/2
XtXt+h

(x, y) f
1/2
Xt

(x) f
1/2
Xt+h

(y) dxdy.

It can be computed from the copulas 1
2

∫∫
(c1/2 −

1)2− 1 and replaced by other measures of dependence:∫∫
c2−1,

∫∫
c log c,

∫∫
C(u, v)−uv,

∫∫ (
C(u, v)−uv

)2,
sup |C(u, v)− uv|.
We can also define non-parametric Markov processes
(i.e., processes with functional parameters), for in-
stance,

Xt =

{
Xt−1 + εt with probability η(Xt−1)

εt otherwise.

Analyzing dependent data with vine copulas:
a practical guide with R

C. Czado (2019)
1. Distribution F , density f , copula C, copula den-
sity c, conditional density and h-functions are related
as follows.

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
f(x1, . . . , xd) = f

(
F1(x1), . . . , Fd(xd)

)
f1(x1) · · · fd(xd)

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud
f(x1|x2) = c12

(
F1(x1), F2(x2)

)
f(x2)

F (x1|x2) =
∂C
(
F1(x1), u2

)
∂u2

∣∣∣∣∣
u1=F2(x2)

h1|2(u1|u2) =
∂C(u1, u2)

∂u2

2. Some dependence measures can be computed from
the copula.

ρ = 12

∫∫
[0,1]2

uvdC(u, v)− 3

τ = 4

∫∫
[0,1]2

C(u, v)dC(u, v)− 1

λL = lim
t→0+

C(t, t)

t

3. Bivariate copula classes include: elliptical (Gaus-
sian, Student), Archimedian (defined from a gener-
ator function, C(u, v) = φ−1

(
φ(u) + φ(v)

)
, Clay-

ton, Gumbel, Frank, Joe, a few 2-parameter fami-
lies (Clayton-Gumbel (BB1), Joe-Gumbel (BB6), Joe-
Clayton (BB7), Joe-Frank (BB8)), Tawn (3 parame-
ters, with shapes not symmetric along the diagonal),
Marshall-Olkin, etc.
Extreme value copulas are the limiting copulas of
(Max1⩽i⩽nXi,Max1⩽i⩽n Yi); they are the copulas sat-
isfying

∀m ∈ N× ∀u, v ∈ [0, 1] C(u, v) = C(u1/m, v1/m)m.

Article and book summaries by Vincent Zoonekynd 244/1044

They are the copulas of the form

C(u, v) = exp

[
log(uv)A

(
log v

log(uv)

)]
where A : [0, 1] → [12 , 1] is called the Pickands depen-
dence function.
Copulas can be plotted in x-scale (original), u-scale
(uniform margins) or z-scale (Gaussian margins).

u1

u 2

z1

z 2

u1

u 2

z1

z 2

u1

u 2

z1

z 2

u1

u 2

z1

z 2

To sample from a bivariate copula:

{
u ∼ Unif
v ∼ h2|1(·|u)

i.e.

u ∼ Unif
ε ∼ Unif
v = h−12|1(ε|u).

To estimate copula parameters, first process the mar-
gins (parametrically or not – this may involve regres-
sion or time series modeling) and invert the formula
giving Kendall’s τ from the ccopula parameter.
Let C12|3 be the conditional distribution of U1, U2 given
U3. The margins are no longer uniform: it is not a cop-
ula. The margins are C1|3 and C2|3: the conditional
bivariate copula is

C12;3(u1, u2|v3) = C12|3
(
C−11|3(u1|v3), C

−1
2|3(u2|v3)

)
.

Conditional copulas depend on the conditioning value,
but it can be averaged out:

CA12;3(u1, u2) =

∫
C12;3(u1, u2|v3)dv3.

It is a copula, which can also be obtained as the partial
copula, i.e., the distribution of (these are uniform)

V1|3 = C2|3(U2|U3)

V2|3 = C2|3(U2|U3).

4. A 3-variate copula can be decomposed using bivari-
ate copula (pair copula construction, PCC) by repeat-
edly using f1|2 = c12f1:

f123 = f1|23f2|3f3

f2|3 = c23f2

f1|23 = c12;3f1|3

= c12;3c13f1

f123 = c12;3c13c23f1f2f3.

The conditional copula c12;3 depends on x3, but we will
assume it does not (simplified PCC).
f123(x1, x2, x3) = c12;3

(
F1|3(x1|x3), F2|3(x2|x3);x3

)
·

c13
(
F1(x1), F3(x3)

)
·

c23
(
F2(x2), F3(x3)

)
·

f1(x1)f2(x2)f3(x3)

Conversely, we can define a 3-variate copula density as
c(u1, u2, u3) = c12;3

(
C1|3(u1|u3), C2|3(u2|u3)

)
·

c13(u1, u3)c23(u2, u3)

where C1|2(u1|u2) = ∂C12/∂u2. The copula c12 can be
computed by integration.
In dimension d, there are many possible decomposi-
tions.

c1···d =
∏
i<j

cij:i+1,...,j−1 D-vine

c1···d =
∏
i<j

cij:1,...,i−1 C-vine

5. A regular vine (R-vine) is a sequence of trees
T1, . . . , Td−1 such that
(i) V (T1) = J1, dK;
(ii) V (Ti) = E(Ti−1);
(iii) {a, b} ∈ E(Ti) =⇒ |a ∩ b| = 1.
To simplify the notations, let Ae = union(flatten(e))
be the complete union and D{a,b} = Aa ∩ Ab the con-
ditioning set.
A D-vine is a vine whose trees are chains.
A C-vine is a vine whose trees are stars.
Regular vines can model multivariate Gaussian or Stu-
dent distributions, with the partial correlations as pa-
rameters.
Regular vines can be encoded in triangular matrices.
6. To sample from a multivariate distribution:

w1
iid∼ U(0, 1)

x1 = F−11 (w1)

x2 = F−12 (w2|x1)
...

xd = F−1d (wd|x1, . . . , dd−1)

7. To find a good starting point for the optimiza-
tion, start to estimate the parameters sequentially.
For instance, for c123 = c12|3c13c12, first estimate c12,
c13, then estimate c12|3 from the pseudo-observations
C1|3(uk1|uk3), C2|3(uk2|uk3) (for observation k).
8. If the vine structure is known, but not the copula
families, select them with the AIC, sequentially or not.
If the vine structure is not known, use a greedy ap-
proach (Dißmann algorithm), with a minimum span-
ning tree for each tree, computed from |τ |, AIC, a cop-
ula gof p-value, etc. For C-vines, it suffices to choose

Article and book summaries by Vincent Zoonekynd 245/1044

the root of the tree. For D-vines, it suffices to choose
the order of the nodes (a Hamiltonian path, with a
TSP solver).
9. To compare models, use the AIC, BIC, KLIC (KL
criterion – log-likelihood) or the likelihood ratio test
(with correction for model complexity).
10. With stock return data: fit univariate
GARCH(1,1) models with Student innovations and use
the residuals; find a representative stock in each sec-
tor (high

∑
i |τij |); fit a C-vine copula to each sector

(VineCopula::RVineStructSelect); use it for portfo-
lio VaR computation (you need parametric margins).
11. Recent developments in vine copula based model-
ing include:
– Bayesian vine copulas: they provide credible inter-
vals;

– Intependence tests, for the pair copulas, to simplify
the models (you can also truncate them);

– Factor vine copulas (?);
– Non-parametric pair copulas;
– Non-simplified vines (with covariates);
– Tests for constant conditional correlation, to select
the vine structure violating the simplifying assump-
tion as little as possible;

– Goodness-of-fit (gof) tests;
– Approximate KL divergence betwwen vine copulas;
– Relation between graphical models and vine copulas
(conditional independences correspond to indepen-
dence copulas);

– Conversely, vine copulas inside graphical models;
– Discrete variables;
– D-vine-copula-based quantile regression;
– Factor structure for vine copulas.
Applications include:
– Copulas with a time-varying dependence structure;
– D-vines for longitudinal data;
– Modeling the relations between the entries of real-
ized variance matrices (parametrized with the loga-
rithm of the Cholesky decomposition);

– Medical diagnostic test accuracy (copula of TP, TN,
P);

– Survival data;
– Copulas with zero inflation (in insurance).
For software implementations, check VineCopula (su-
percedes CDVine) and vinecopulib (C++/R/Python).

Error in file(file, "rt"): cannot open
the connection

Error in `[.xts`(d, , 1:10): subscript
out of bounds

z1

z 2

u1

u 2

Simulating copulas: stochastic models,
sampling algorithms and applications

J.F. Mai and M. Scherer (2017)
1. Bivariate copulas can be sampled as(
C−11|2(U1|U2), U2

)
, where U1, U2 ∼ U(0, 1) and

C1|2(u1|u2) = ∂C/∂u2.
Measures of dependence can be computed from the
copula:

τ = 1− 4

∫∫
∂C

∂u1

∂C

∂u2

ρ =

∫∫
C −

∫∫
Π∫∫

M −
∫∫

Π

where Π(u) =
∏
ui is the independence copula and

M(u) = Mini ui the comonotonicity copula.
For an exchangeable copula, the correlation (the same
for all pairs) satisfies ρ ⩾ −1/(d− 1).
An extendible sequence of random variables is part
of an infinite exchangeable sequence: the correlation is
then nonnegative, but it need not have positive orthant
dependency,

P [∀i Xi ⩾ xi] ⩾
∏
i

P [Xi ⩾ xi].

Homogeneous mixtures, θ ∼ F , Xi
iid∼ Fθ, are exactly

the extendible sequences (DeFinetti).
Heterogeneous mixtures partition the dimensions and
use a different distribution for each part.
Extreme value distributions C(ut1, . . . , u

t
d) =

Article and book summaries by Vincent Zoonekynd 246/1044

C(u1, . . . , ud)
t have a Pickand representation

δ : measure on the simplex ∆d

P (w1, . . . , wd) =

∫
∆d

Max{w1u1, . . . , wdud} δ(du)

C(u1, . . . , ud) =
(∏

ui

)P (logu/1′ logu)

.

2. With the sampling procedure

M ∼ F
X1, . . . , Xd ∼ Exp(M),

the cdf of the margins is φ(x) = E[e−xM], i.e., the
Laplace transform of F , and the survival copula of
(X1, . . . , Xd) is C(u1, . . . , ud) = φ(φ−1u1+· · ·+φ−1ud)
(archimedean copula). If φ is not completely mono-
tonic, the same formula may still define a copula for
small values of d, but it may not be extendible, just
exchangeable.
Archimedean copulas can be rescaled:
– An α-stable Lévy subordinator Λm stopped at M ,
defines a new random variable M̂ = ΛM with
Laplace transform φ(xα) (the Laplace transform of
a Lévy subordinator is ψ(x) = xα);

– The Laplace transform of M1 + · · ·+Mβ is φ(x)β .
Hierarchical (H-extendible) archimedean copulas are
defined as

Cϕ0

(
Cϕ1

(u11, . . . , u1d1), . . . , CϕJ (uJ1, . . . , uJdJ)
)
,

provided the generators are compatible: φj and (φ−10 ◦
φj)
′ completely monotonic. They can be sampled as

Eji ∼ Exp(1)
M with Laplace transform φ

Λ(1), . . . ,Λ(J) Lévy subordinators with exponents ψj
Uji = (φ0 ◦ ψj)(Eji/Λ(j)

M).

Archimedean copulas can be made asymmetric, e.g.,

V ∼ Cϕ
Ũ ∼ Π

Uk = Max{V 1/αk
k , Ũ

1/αk
k }

3. The lack of memory characterizing exponential dis-
tributions, P [X ⩾ x + y|X ⩾ y] = P [X ⩾ x], general-
izes, in dimension d, to the Marshall-Olkin distribution

F̄ (x1, . . . , xn) = P [∀i Xi ⩾ xi]

= exp

[
−

∑
I⊂J1,dK
I ̸=∅

λI ·Max
i
xi

]
.

There are 2d − 1 parameters. It can be interpreted as
the time-to-failure, when the failure of a group of items
I ⊂ J1, dK has a different cause for each I.

To sample from it:

EI ∼ Exp(λI) for each I ⊂ J1, dK, I 6= ∅
Xk = Min{EI : I 3 k }.

The corresponding survival copula is

Ĉ(u1, . . . , ud) =
∏
I

Min
k∈I

u
λI/

∑
J∋k

λJ

k .

They can be sampled as

Yi ∼ Cat
(
P(J1, dK) \ {∅})

P (Yi = I) = λI/
∑
λJ

εi ∼ Exp
(∑

λJ
)

Xk = ε1 + ε2 + · · ·+ εMin{i : k∈Yi}.

The MO copula is an extreme value copula (but the
MO distribution is not an extreme value distribution),
has a singular component, has an interpretation in
terms of shocks (insurance, credit risk), and positive
upper tail dependence (but lower tail independence).
For an exchangeable Marshall-Olkin copula, |I| =
|J | ⇒ λI = λJ and

C(u1, . . . , ud) =
∏

u
ak−1

(k)

where ∀i, j (−1)i∆iaj ⩾ 0 (d-monotone sequence).
To sample from it:
– Sample the time until the first shock (the minimum
of exponential variables is still exponential);

– Sample the number of components affected;
– Iterate.
If the sequence (ak)k can be extended to an infinite
completely monotone sequence (wiith a0 = 1, this is
the case iff ak = E[X], for some random variable X
with values in [0, 1]; equivalently, the Hankel deter-
minants are nonnegative), this is an extendible MO
copula.
A completely monotone sequence defines a Lévy sub-
ordinator with ψ(1) = 1 and a Lévy-frailty copula
Cψ(u1, . . . , ud) =

∏
u
ψ(i)−ψ(i−1)
(i) .

To sample from it:

Ek ∼ Exp(1)
Λt ∼ Lévy(ψ)
Xk = inf{t > 0 : Λt > Ek}
Uk = exp(−Xk).

There is an h-extendible variant.
4. Spherical distributions can be recognized from their
charaacteristic function φX(t) = E[eit

′X] = ϕ(‖t‖2)
(but not all univariate functions define a character-
istic function: there are fewer as the dimension in-
creases). Extendible spherical distributions are mix-
tures of Gaussians,

√
WZ, Z ∼ N(0, I).

Article and book summaries by Vincent Zoonekynd 247/1044

For elliptical distributions X ∼ Ed(µ,Σ, φ), φ(t) =
eit

′µφ(t′Σt); they are extendible if µ = µ11 and

Σ = σ2

1 ρ

ρ 1

h-extendible elliptic copulas have a block correlation
matrix.
7. Variance can be reduced with antithetic variables
(u 7→ 1 − u), control variates (e.g., from an indepen-
dence structure – it may not work well), or importance
sampling (e.g., by increasing the dependence).
8. Exchangeable Marshall-Olkin copulas

C(u1, . . . , ud) =
∏

u
ak−1

(k)

can be generalized to Shock copulas

C(u1, . . . , ud) =
∏

gk(u(k)).

A random vector (X1, . . . , Xd) has a min-stable ex-
ponential distribution, i.e., Min{c1X1, . . . , cdXd} have
univariate exponential distributions for all c1, . . . , cd ∈
[0,∞], iff the margins are exponential and the copula
is an extreme value copula.
Extendible extreme value copulas are characterized by

C(u1, . . . , ud) = E

[
exp−

d∑
k=1

Λ− log(uk)

]
for a strong IDT subordinator Λ with ψ(1) = 1.
A. A Lévy subordinator is a càdlàg stochastic pro-
cess (Λt)t⩾0 with Λ0 = 0 satisfying:
(i) Stochastic continuity (no deterministic jumps)

∀t ⩾ 0 ∀ε > 0 lim
t→0

P
[
|Λt+h − Λt| ⩾ ε

]
= 0

(ii) Independent increments;
(iii) Stationary increments: Λt+h − Λt

d
= Λh;

(iv) t 7→ Λt is a.s. non-decreasing.
Λt is infintely divisible.
The Laplace transform of a Lévy subordinator is
E[e−xΛt] = e−tψ(x) (Lévy-Khinchin) where ψ(x) =
µx+

∫
[0,∞]

(1 + e−tx)ν(dt) (ψ is the Laplace exponent,
µ the drift, ν the Lévy measure).
Examples include:
– Poisson: ψ(x) = λ(1− e−x), ν(B) = λ11∈B (number

of jumps of size in B per unit of time);
– Compound Poisson: Λt = µt+

∑Nt
1 Ji;

– Gamma: µ = 0, ν(dt) = β(e−ηt/t)1t>0dt, ψ(x) =
β log(1 + x/η), Λt ∼ Γ(βt+ η);

– Inverse Gaussian

Λt ∼ IG(βt, η)

Λt = inf{s > 0 : ηs+Xs = βt}
Xt standard Brownian motion

– α-stable: ν(dt) = α

Γ(1− α)
1

t1+α
1t>0dt.

An additive subordinator has independent, but not nec-
essary stationary, increments.
A strong IDT subordinator is a non-decreasing càdlàg
stochastic process (Λt)t with Λ0 = 0, strongly infinitely
divisible such that

(Λt)t⩾0 = (Λ
(1)
t/n + · · ·+ Λ

(n)
t/n)t⩾0

where Λ(i) are iid copies of Λ.

A partial correlation vine based approach
for modeling and forecasting

multivariate volatility time series
N. Barthel et al. (2018)

Partial correlations on the edges of a vine provide an
unconstrained parametrization of a correlation matrix.
Model volarilities and partial correlations with a HAR
(heterogeneous AR, e.g., 1-, 5- and 22-day lags) or
VARFIMA model.

Pair copula construction
for financial applications: a review

K. Aast (2016)
Applications of the pair copula construction (PCC) in-
clude:
– VaR and CVaR of a portfolio;
– Probability of default;
– Liquidity riskk (bid and ask spread of several assets);
– Systemic risk (CDS of financial institutions, stock
market indices);

– (Scenario-based) CVaR portfolio optimization (C-
vine with skewed Student margins)

– Option pricing.

kdecopula: an R package for the kernel
estimation of bivariate copula densities

T. Nagler (2017)
To reduce the boundary effect when estimating a non-
parametric copula density:
– Reflect the data over the sides of the square;
– Use kernels supported on the square, e.g., Beta;
– Transform the margins to make them Gaussian.

Evading the curse of dimensionality
in nonparametric density estimation

with simplified vive copulas
T. Nagler and C. Czado (2016)

(Truncated, simplified) vine copulas provide scalable
high-dimensional deensity estimators, by reducing the
problem to a sequence of bivariate density estimations.
Implementation: rvinecopulib, kde1d.

Article and book summaries by Vincent Zoonekynd 248/1044

ESG, risk and (tail) dependence
R. Bax et al. (2021)

For assets j, in sector S, in ESG category k ∈
{A,B,C,D}, estimate a vine copula with fixed first
and second-level trees

S

A

B

C

D

j

A,S B, S C, S D, S

j, C

and aggregate measures of dependence (Kendall’s τ) or
tail dependence (tail dependence coefficient λ) as

|τj,k|∑
{j,k}⊂i

|τi|
.

Market making via reinforcement learning
T. Spooner et al. (2018)

Define the reward as P&L penalized against specula-
tion (inventory×change in price). For the state, use
the inventory, the spread, the price change, the book
imbalance, the signed volume, the volatility, and the
RSI, with tile coding – combine several discretizations
of the state space, e.g., from grids with different off-
sets. Use TD (SARSA) with eligibility traces; train on
market data. The actions are

and an inventory-clearing order.

Reinforcement learning
for optimized trade execution

Y. Nevmyvaka et al. (2006)

Risk-sensitive compact decision trees
for autonomous execution

in presence of simulated market response
S. Vyetrenko and S. Xu (2021)

Do not maximize E[G] but E[G]− λVar[G].

Persistent clustering
and a theorem of J. Kleinberg

G. Carlsson and F. Mémoli (2008)
Single linkage clustering is the only functor from the
category of finite metric spaces and non-decreasing
maps to the category of persistent sets (multiscale clus-
terings (X, θ), there θ(r) is interpreted as the partition
of X at scale r) that
– Preserves the underlying set
– Gives the expected persistent set for 2-point spaces
∆2(δ): θ(r) is {{∗}, {∗}} is r < δ and {{∗, ∗}} oth-
erwise;

– Gives the discrete partition for r � 1.

Coarser categories allow more such multiscale cluster-
ing functors:
– Increasing monic maps: density-based clustering;
– Isometries: anything (too general).

Classifying clustering schemes
G. Carlsson and F. Mémoli (2010)

There is no clustering scheme (X, d) 7→ P ∈
Partitions(X) satisfying Kleinberg’s axioms: scale in-
variance, surjectivity (all clusterings are possible, if we
change the metric), consistence (reducing/increasing
intra/inter-cluster distances does not change the clus-
tering) – we need multi-scale clusterings.
Single-linkage clustering can be defined from 2-
simplices ∆2(δ), δ > 0, and morphisms ∆2(δ) → X.
The 2-simplex∆2(δ) can be replaced by other simplices
(∆m(δ) is very similar to dbscan) or an arbitrary fam-
ily of metric spaces.

Characterization, stability and convergence
of hierarchical clustering methods

G. Carlsson and F. Mémoli (2010)
A dendrogram (X, θ) defines an ultrametric (x, y) 7→
Min{r ⩾ 0 : x and y belong to the same component
of θ(r)}. Conversely, an ultrametric defines a den-
drogram. Single linkage clustering corresponds to the
maximal subdominant ultrametric.
The distorsion of a map of metric spaces f : (X, d) →
(Y, d) is

dis(f) = Max
x,x′∈X

|d(x, x′)− d(fx, fx′)| .

The joint distorsion of f : X → Y and g : Y → X
measures the degree to which they are inverses,

dis(f, g) = Max
x∈X
y∈Y

|d(x, gy)− d(fx, y)| .

The Gromov-Hausdorff distance between (X, d) and
(Y, d) is

1
2 Min
f,g

Max
{
dis f, dis g, dis(f, g)

}
.

Single linkage hierarchical clustering (X, d)→ (X,u) is
a contraction for the Gromov-Hausdorff distance. Av-
erage linkage and complete linkage are not continuous.

A probabilistic graphical model approach
to model interconnectedness

A. Denev et al. (2017)
The output of a model is often used as input to another:
PGMs can account for those dependencies – they are
not needed is you just want expectations, but the prob-
ability distributions contain more information.

Article and book summaries by Vincent Zoonekynd 249/1044

EU GDP

German DGP German unemployment

Probability of default
corporate loans

Probability of default
retail loans

Loss = PD × LGD

S&P returns VIX level

stock 1
returns

stock n
returns

stock 1
volatility

stock n
volatility

option 1 option n

portfolio of stocks portfolio of options

portfolio

Building probabilistic causal models
using collective intelligence

O. Laudy et al. (2021)
CausalityLink (commercial) extracts data from text:
– Numeric indicators (GDP, etc.), from a large ontol-
ogy, with timestamps and duration;

– Trends: changes in those indicators over some time
span;

– Events, with start and end date;
– Causal links: indicator/trend/event → indicator/

trend.
Use those links to build a Bayesian network:
– Start with the nodes you are interested in;
– Add edges between them, starting with the strongest
ones, but only if you do not introduce a cycle.

Use two states (up, down); estimate the root note prob-
abilities from the past 90 days (with a 14-day half-life);
estimate the single-cause probabilities P (B|A) from
count data. For multiple causes, combine P (B|Ai) into
P (B|A1, . . . , Ak) using a log-linear model

P (A1, . . . , Ak, B) ∝

exp
[
µ+

∑
λAℓ=iℓ + λB=j +

∑
λAℓ−iℓ
B=j

]
,

where iℓ, j ∈ {up,down}.

Foundations of reinforcement learning
with applications in finance
A. Rao and T. Jelvis (2021)

Reinforcement learning (RL), or stochastic control is
the study of sequential optimal decisions under uncer-
tainty. The environment is described by a Markov de-
cision process (MDP), i.e., the conditional distribution
of reward r and next state s′ given current state s and
action a,

P (r, s′|s, a);
we want to find the policy π(a|s) maximizing the (ex-
pected) return, i.e., the discounted sum of future re-
wards Gt =

∑
s⩾t γ

s−tRt.
One can distinguish between
– Prediction: Computing the value function V π(s) −
E[G0|S0 = s], for a given policy π;

– Control: computing the optimal value function V ∗,
and the corresponding optimal policy π∗;

– Planning: solving a known MDP (often, with dy-
namic programming);

– Learning: solving an unknown MDP.
1. Inventory management can be modeled as an MDP:
– State: number of items on inventory, constrained to
be at most N ;

– Action: number of items to order (there might be a
(fixed) delivery delay);

– Stochastics: demand ∼ Poisson(λ).
Dynamic pricing for end-of-season products can also
be modeled as an MDP” assume the demand is
Poisson(λ), with λ a known function of price.
3. The Bellman policy operator Bπ : V 7→ R + γPV
is a contraction: it has a fixed point. Policy itera-
tion oterates it to compute V π. Value iteration it-
erates the Bellman optimality operator B∗ : V 7→
Maxa(R+ γPV): it alternates two steps,

V ← V π policy evaluation
π ← greedy(π) policy improvement.

6. Merton’s portfolio problem is an analytic solution to
the dynamic asset allocation and comsumption prob-
lem.
7. The optimal exercise of an Americal ooption in the
binomial tree model can be computed with dynamic
programming; this generalizes to more general optimal
stopping problems.
In a (no-arbitrage) incomplete market, option prices
are not uniquely defined. Superhedging computes up-
per and lower bounds, but they are often too faar apart.
Instead, one can compute the price maximizing some
expected utility, e.g., CARA (expected utility indiffer-
ence pricing).
8. Optimal execution can be modeled as an MDP:
– State: price, number of shares left to sell, time left;
– Action: number of shares sold;
– Reward: utility of the sales proceeds, after correcting
the price with the temporary price impact (“eating
into the book”);

– Stochastics: the price follows a random walk, cor-
rected with the permanent price impact.

Article and book summaries by Vincent Zoonekynd 250/1044

For (unrealistic) linear price impacts, we can solve the
Bellman equation.
8. Optimal market making can be modeled as an MDP:
– State: mid-price, current P&L, inventory;
– Actions: bid and ask prices and quantities;
– Reward: utility of P&L and inventory value;
– Stochastics: random walk for the mid-price; random
number of shares bought and sold.

9. Many RL prediction algorithms are based on the
update rule

V (St)← V (St) + α
(
target− V (St)

)
for different targets:
– Monte Carlo: Gt;
– TD (temporal difference): Rt+1 + γV (St+1);
– n-step TD, Gt,2 = Rt+1 + γRt+2 + γ2V (St+2), or,
more generally, Gt,k;

– TD(λ), an exponentially-weighted average of the
Gt,k, which can be efficiently computed (without
waiting for the end of the episode) with eligibility
traces.

10. For control, if the MDP is unknown, we need
to replace the state value function V with the state-
action value funtion Q, abd alternate policy evalua-
tion (Monte Carlo, TD, TD(λ) – for Q, TD is called
SARSA), and policy improvement (ε-greedy rather
than greedy, to explore enough).
But this is on-policy. If the target and behaviour poli-
cies, π and µ are different (off-policy):
– Q-learning uses Rt+1 + γMaxaQ(St+1, a) as target;
– Importance sampling multiplies the SARSA updates
with π(St, At)/µ(St, At) (for one step).

Convergence is not guaranteed if we combine boot-
strapping (using V itself in the target), off-policy learn-
ing, and function approximation.

Which trading agent is best? Using a threaded
parallel simulation of a financial market

changes the pecking order
M. Rollins and D. Cliff (2020)

Automated trading algorithms (AA, GDX, ZIP, ZIC))
are often compared in market (LOB) simulators (e.g.,
BSE, the Bristol Stock Exchange), but which comes
ahead depends on the mix of strategies they compete
with. The computation time, and the ressulting delay
of those algorithms, may change the rankings.

Parametrized response zero-intelligence
(PRZI) traders
D. Cliff (2021)

In the zero-intelligence constrained (zic) strategy, each
trader has a side (buy or sell), a limit price λ, only
trades one share, and samples their bid or ask uni-
formly in [pmin, λ] or [λ, pmax].
The shvr strategy bids one tick above the current best
bid (if below λ).

The gvwy strategy bids at the trader’s limit price (no
profit, unless the trade crosses the spread).
Those strategies can be blended.

1

1

x1

y

x1

y

x1

y

x1

y

x2

y

x2

y

x2

y

x2

y

a

1

Strategic bidding in continuous double auctions
P. Vyteling et al. (2018)

The AA (adaptive aggressiveness) strategy tunes its
aggressivity (eager to trade, even for lower profits, vs
eager to profit, even for a lower probability of trade).
Prior algorithms include:
– zip (zero-intelligence plus), a variant of zic which
progressively updates its profit margin;

– gd, which estimates the probability that a bid will
be accepted;

– gdx, which also uses dynamic programming, and
may delay trading, waiting for better market con-
ditions.

BSE: a minimal simulation
of a limit-order-book stock exchange

D. Cliff (2018)

Reinforcement learning with expert trajectory
for quantitative trading

S. Chen et al. (2021)
Reinforcement learning with expert trajectories uses
(some variant of Q-learning with) a reward of 1 for
the expert and 0 for the other agent’s actions.

An empirical assessment of characteristics
and optimal portfolios

C.G. Lamoureux and H. Zhang (2021)
Do not optimize a sum of squared residuals, but a util-
ity function.∑

t

(1 + rport,t)
1−γ

1− γ
utility

rport,t =
∑

wi,t−1ri,t portfolio returns

wi,t = fθ(xi,t) portfolio weights
xi,t stock characteristics

Constructing long-short stock portfolios
with a new listwise learn-to-rank algorithm

X. Zhang et al. (2021)
Learning-to-rank models for information retrieval

Loss =
∑

fk
relevance

· 1

log(1 + k)
discount

factor

Article and book summaries by Vincent Zoonekynd 251/1044

focus on best-ranked items: adapt them for stock selec-
tion by focusing on both the top and bottom items bny
generalizing the Placket–Luce probability distribution
on Sn (ListMLE)

P [σ] =
∏
i

θσ−1(i)∑
k⩾i θσ−1(k)

to consider long-short pairs (instead of long-only items)
θi ⇝ θ2n+1−i.

Imputation, estimation
and missing data in finance

G. DiCesare (2006)
Comparisons of estimators of the parameters of a
partially-pbserved multivariate Brownian motion:
– EM algorithm;
– Impute-solve:
· Simulate Xmis|Xobs, θk;
· Estimate θ̂ from the completed dataset;
· Update θk+1 = θk + γk(θ̂ − θk);

– Impute-posterior:
· Sample Xmis|Xobs, θk;
· Sample θ|Xobs, Xmis.

The EM algorithm can be implemented with the sweep
operator

sweepk :

{
Rp×p −→ Rp×p

G 7−→ H : hkk = −1/gkk
hjk = hkj = gjk/gkk

hjℓ = hℓj = gjℓ −
gjkgjℓ
gkk

sweep1 · · · sweeppG = −G−1 detG

on the sufficient statistic

T =

(
1 1′Y
Y ′1 Y ′Y

)
Θ =

(
−1 µ
µΣ

)
.

Some of those computations can be generalized to
SDEs: for instance, after Euler discretization, one can
sample from Xi|Xi−1, Xi+1 with Metropolis-Hastings.
From the Markovian property, we can cut the data
into blocks along dates for which all the variables are
observed.

Dynamic style analysis and applications
M. Markov et al. (2004)

Return-based sstyle analysis is a constrained regres-
sionof a fund’s returns against benchmarks,

Rt = α+
∑
i

βirit + εt, β ⩾ 0, β′1 = 1.

Allow for time-changing exposures βit and add a
“smoothness” penalty on

∑
‖βit − βi,t−1‖2 (smooth-

ness would be a penalty on ∆2β, not ∆β; one could
also use a Kalman filter).
Choose the scale of the penalty to maximize R2.

To find the positionof the most likekely breakpoint,
compare all the models with a penalty on∑

i,t
t ̸=t0

‖βi,t − βi,t−1‖2 ,

for all values of t0 (one could try the fused lasso in-
stead).

Conditional distribution in portfolio theory
E. Qian and S. Gorman (2001)

The simplified Black-Litterman framework can be gen-
eralized for views on returns, volatilities and corre-
lations. In the case of two assets, r1, r2, and views
µ̃2 = E[r2] and σ̃2

2 = Var[r2], regress r1 ∼ r2:

r1 = µ1 + ρ
σ1
σ2

(r2 − µ2) + ε

ε ∼ N
(
0, σ2

2(1− ρ2)
)

and compute E[r1], Var[r1], Cov[r1, r2] as a function of
ρ, µ1, µ2, σ1, σ2, µ̃2, σ̃2.
For a view on d = r1 − r2, regress r1 and r2 against d.
In the general case r ∼ N(µ,Σ) with views on v = Pr,
regress r ∼ v:

r = µ+ΣP ′Σ−1v (r − µv) + ε

ε ∼ N(0,Σ− ΣP ′Σ−1v PΣ)

µv = Pµ

Σv = PΣP ′.

The posterior is then

µ̃ = µ+ΣP ′Σ−1v (µ̃v − µv)
Σ̃ = Σ + ΣP ′(Σ−1v Σ̃vΣ

−1
v − Σ−1v)PΣ.

Global portfolio optimization revisited: a least
discrimination alternative to Black-Litterman

J. Pézier (2007)
Given a prior distribution p (e.g., X ∼ N(µ,Σ))
and constraints on a posterior distribution p̃ (e.g.,
E[PX] = v, as in Black-Litterman, or PX = v, or
Var[PX] = V), look for the posterior distribution p̃,
satisfying those constraints, and minimizing the differ-
ence in certainty equivalent of the optimal (dynamic)
strategy (Black-Litterman only considers static strate-
gies, i.e., portfolios)

CE
(
fp̃(x) | p̃

)
− CE

(
fp(X) | p

)
.

For a payoff (random variable) Y and a utility func-
tion u, the certainty equivalent is defined as E

[
u(Y)

]
=

u
(
CE[Y]

)
.

Article and book summaries by Vincent Zoonekynd 252/1044

Fully flexible views: theory and practice
A. Meucci (2008)

Given a prior distribution on asset returns (and/or risk
factors), and views, i.e., constraints on some of the gen-
eralized moments, blend them:
– Take N samples from the prior; see them as a uni-
form distribution p (you could also use importance
sampling);

– Solve the optimization problem

Find q, probability distribution
on the samples

To minimize the relative entropy E (q, p) =

∫
q log

q

p
Such that the constraints be satisfied

– If there are confidence levels on the views, use the
mixture (1− c)p+ cq (or

∑
ciqi of there are several

views);
– Use for portfolio construction.
In the Gaussian case:

X ∼ N(µ,Σ)

E[QX] = µ̃

Var[GX] = Σ̃

X ∼ N(µ̄, Σ̄)

µ̄ = µ+ΣQ′(QΣQ′)−1(µ̃−Qµ)
Σ̄ = ΣG′

[
(QΣQ′)−1Σ̃(QΣQ′)−1 − (QΣQ′)−1

]
GΣ.

In the general case, to impose constraints on expecta-
tions, volatilities and correlations, use∑

j

qjXjk = mk∑
j

qjX
2
jk = m̂2

k + σ2
k∑

j

qjXjkXjℓ = m̂km̂ℓ + σ̂kσ̂ℓckℓ

(this is not quite right, because we use m̂ and σ̂ from
the prior, but it makes the constraints linear and the
problem convex).

Deep learning for portfolio optimization
Z. Zhang et al. (2020)

Neural net (LSTM), fed past prices and returns to di-
rectly compute the weights maximizing the information
ratio (for 4 assets).

Enhancing time series momentum strategies
using deep neural networks

B. Lim et al. (2019)
Time series momentum strategies require both a trend
estimator and position sizing (volatility scaling), to

keep the volatility constant), e.g.,

trend = past returns trend = MACD/σ
position = sign(trend) position = φ(trend)

φ(y) = ye−y
2

=

Instead, use a neural net (WaveNet, fed the past 5 days
of returns) to directly find the position size maximizing
the information ratio.

Deep reinforcement learning for trading
Z. Zhang et al. (2020)

Comparison of 3 reinforcement learning algorithms,
critic-only (DQN), actor-only (policy gradient) and
actor-critic, to maximize the (after-transaction-cost)
P&L of a (volatility-adjusted) strategy using 1m, 2m,
3m, 1y normalized returns, price, MACD(63,252),
RSI(30): DQN works better.

Macroeconomic forecasting
with statistically validated knowledge graphs

S. Tilly and G. Livan (2021)
To forecast/nowcast industrial production:
– Use the global database of events, language and tone
(GDELT, available via Google BigQuery) to build
theme co-occurrence graphs;

– Filter the themes relevant to economic growth with
an LSTM, trained on 1000 manually labeled events
(4000 nodes, 1 million edges);

– Compute its backbone using a disparity filter: nor-
malize the weights of the edges connected to a given
node so they sum up to 1 and apply the Benjamini-
Hochberg (BH) procedure;

– Compute the portrait divergence to compare the
graph with the previous month’s;

– Compute the eigenvector centralities of all the nodes;
– Reduce the dimension of the centralities with PLS;
– Add the Baltik Dry index (a shipping index) and
crude oil price to the predictors;

– Conclude with Granger cauisality, and a factor-
augmented AR model.

An information-theoretic,
all-scales approach to comparing networks

J.P. Bagrow and E.M. Bollt (2019)
The network portrait of a graph is a matrix
Bℓ,k =number of nodes having k nodes at distance `.
The 0th row contains the number of nodes; the first
row is the degree distribution; each row defines a prob-
ability distribution.

Error in count(.): Argument 'x' is not a
vector: list

Error in count(.): Argument 'x' is not a
vector: list

Error in count(.): Argument 'x' is not a
vector: list

Article and book summaries by Vincent Zoonekynd 253/1044

For weighted graphs, compute all shortest paths and
bin their lengths
The network portrait divergence compares graphs us-
ing the Jensen-Shanon divergence between the distri-
butions P (k, `) ∝ kBℓ,k.

Portraits of complex networks
J.P. Bagrow et al. (2007)

Comparing methods for comparing networks
T. Tantardini et al. (2019)

Distances between networks include:
– Distance between the similarity matrices S = (I +
ε2D − εA)−1, where A is the adjacency matrix and
D the degree;

– Distances between graphlet counts; one can also
compute them on each egonet, aggregate them (Net-
Dis), and use PCA;

– Distance between the graphlet correlation matrices,
obtained by counting, for each node, in how many
graphlets of each type it is, and computing the cor-
relation matrix between those counts;

– Distance between the spectra of the Laplacians, e.g.,
via the heat signature trace h(t) =

∑
i e
−λit;

– Graph kernels, TDA, portrait divergence, etc.
The graphlet correlation distance (GCD) gives the best
results.

Open-source cross-sectional asset pricing
A.Y. Chen and T. Zimmerman (2021)

List of 300+ investment signals. Unusable code (Stata)
and data (commercial).

The most general methodology
to create a valid correlation matrix

for risk management and option pricing
R. Rebonato and P. Jäckel (1999)

Correlation matrices can be parametrized as C = BB′,
where the rows of B are on the sphere Sn−1.

bij = cos θij

j−1∏
k=1

sin θik 1 ⩽ j ⩽ n− 1

bin =

n−1∏
k=1

sin θik

θ ∈ Rn×(n−1)

The closest correlation matrix can be obtained by solv-
ing

Minimize
θ

∥∥∥Ĉ − C∥∥∥2
F
.

As a starting point for the optimization:
– Eigenvalue decomposition C = SΛS′;
– Zero out the negative eigenvalues: Λ+;
– Compute B0 = S

√
Λ+;

– Normalize the rows of B0: B.
If C was a valid correlation, we have C = BB′.

Unconstrained parametrization
for variance covariance matrices

J.C. Pinheiro and D.M. Bates (1996)

Generating realistic
stock market order streams

J. Li et al. (2020)
WGAN whose generator uses an LSTM to condense
past orders and a (pretrained) neural net to differ-
entially approximae the continuous double auction
(CDA) mechanism.

Style transfer with time series:
generating synthetic financial data

B. da Silva and S.S. Shi (2019)
Generate high frequency data with a denoising autoen-
coder (?) rather than a GAN or VAE; then use style
transfer to get daily data.

Time series generative adversarial networks
J. Yoon et al. (2019)

Jointly learn a latent representation and a GAN.
Data

Noise

Latent
representation

Data

real/fake

enc
RNN

G

dec

D

On unbiased simulations of stochastic bridges
conditional on extrema

A. Schaug and H. Chandra (2019)

The promises and pitfalls of machine learning
for predicting stock returns

E. Leung et al. (2021)
Nonlinear models, e.g., GBM, have better predic-
tive power on future returns than linear models, but
their advantage almost disappears if we account for
transaction costs, microcaps, multiple testing, non-
synchronous implementation, risk constraints.

Matrix evolutions: synthetic correlations
and explainable machine learning

for constructing robust investment portfolios
J. Papenbrock et al. (2021)

Financial correlation matrices have the following prop-
erties:
– The distribution of correlations is positively skewed;
– Eigenvalues follow the Marchenko-Pastur distribu-
tion but for a very large eigenvalue (market) and a
couple of large eigenvalues (industries);

– The first eigenvector has positive entries (Perron-
Frobenius);

Article and book summaries by Vincent Zoonekynd 254/1044

– The correlation has a “hierarchical structure”, i.e.,
the distances from the correlation

√
1− cij are very

close to the distances on the (single linkage) dendro-
gram dij ; this can be measured by the cophenetic
correlation Cor(

√
1− c, d);

– The minimum-spanning tree is scale-free, i.e., it has
a power law degree distribution.

To generate real-looking correlation matrices, pick ma-
trices at random in some neighbourhood of the em-
pirical correlation and use multiobjective optimization
(why?) to match
– The average correlation;
– The Gini coefficient of the eigenvalues;
– The single-linkage cophenetic correlation;
– The sum of the negative coefficients of the first eigen-
vector.

Those matrices can then be used to compare invest-
ment strategies, e.g., risk parity and hierarchical risk
parity.

MOEA/D: A multi-objective evolutionary
algorithm based on decomposition

Q. Zhang and H. Li (2007)
To solve the multiobjective optimization problem

Maximize
x∈Ω

f1(x), . . . , fn(x),

reduce it to a set of 1-dimensional problems

Maximize
x∈Ω

∑
i

λifi(x)

(where λ is fixed) and solve them sequentially, starting
each optimization with the solution of the closest λ.
Instead, MOEA/D solves the problems simultaneously:
– Pj : Maximize

x∈Ω

∑
i λijfi(x) subproblems;

– xjt: best solution to Pj after t steps;
– xj,t+1: computed from the xj′,t for the subproblems
where λ·j′ is close to λ·j

Contrary to domination-based multiobjective opti-
mization, decomposition-based algorithms can deal
with higher-dimensional problems (if there are
many objectives, most candidate solutions are non-
dominated).

History, shocks and drifts:
a new approach to portfolio formation

M. Kritzman and D. Turkington (2021)
Generate scenarios by changing low-frequency compo-
nents (shocks, trend) and keeping the high-frequency
part.

=

change this

+

keep this

Spectral temporal graph neural network
for multivariate time series forecasting

D. Cao et al. (2021)
To forecast multivariate time series, stack the following
layers:
– GRU: X 7→ R;
– Correlation layer, i.e., self-attention

W = Softmax
(
QK ′√
d

)
, Q = RW1, K = RW2;

use the attention matrix W as a graph incidence (or
weight) matrix in the next layer;

– Graph Fourier transform, independently for each
component;

– 1-dimensional convolution;
– Gated linear unit: GLU(a, b) = a� σ(b);
– (Repeat several times)
– Fully-connected layer.

Fast ES-RNN: a GPU implementation
of the ES-RNN algorithm

A. Redd et al. (2019)
ES-RNN uses an LSTM to compute the parameters of a
Holt-Winters exponential smoothing model; it won the
M4 competition – Theta, another exponential smooth-
ing variant, won the previous one.

COIN: Compression
with implicit neural representation

E. Dupont et al. (2021)
To compress and image, overfit a neural net (pixel coor-
dinates 7→ RGB) to it and store the quantized weights;
it is competitive with jpeg at low rates.

Learning continuous image representation
with local implicit image function

Y. Chen et al. (2020)
From an imageH×W×3, compute featuresH×W×D.
In the neighbourhood of a pixel (h,w), use the features
Mh,w,· of that pixel and those Mh±1,w±1,· of its neigh-
bours to forecast RGB values. Since a point is in sev-
eral neighbourhoods, ensemble their forecasts, using
areas as weights.

Learning neural network subspaces
M. Wortsman et al. (2021)

Do not look for a point in weight space but a subspace
(segment, Bézier curve, simplex): in each epoch, pick
a random point in the subspace to train, and force the
endpoints to be orthogonal; at test time, use the mid-
point.

A unified approach to measurement error
and missing data: overview and applications

M. Blackwell et al. (2017)

Article and book summaries by Vincent Zoonekynd 255/1044

Multiple overimputation generalizes multiple imputa-
tion to noisy observations – a missing observation is an
observation with infinite noise.

imputeTS:
time series missing value imputation in R

S. Moritz and T. Batrz-Beielstein (2017)
Missing values in univariate time series can be imputed
by a Kalman filter (ARIMA or structural models), in-
terpolation, or seasonal decomposition (or locf, mean,
median, mode, moving average, constant value, ran-
dom value).

Comparison of different methods
for univariate time series imputation in R

S. Moritz et al. (2015)
The zoo and forecast packages provide several na.*;
also check Amelia, mtsdi, VIM, mice, imputeR (they
deal with multivariate non-time-series data: add poly-
nomials of time, lags and leads).

Imputation of multivariate time series data:
performance benchmark for multiple
imputation and spectral techniques

J. Bauer et al. (2013)
First look for missingness patterns: proportion of miss-
ing data, run lengths, etc. (CDS data, 1000 tickers, 10
maturities).
Data imputation with empirical orthogonal functions
(DINEOF – EOF is another term for left and right
singular vectors) uses the SVD to recover the missing
data, progressively increasing the number of singular
values retained.
Singular spectrun analysis (SSA) adds lagsx1 x2 · · ·

...
...

...
xL xL+1 · · · xN

and reconstructs the signal by averaging over the anti-
diagonals. It can be generalized to multivariate SSA
(MSSA).

Temporal regularized matrix factorization
for high-dimensional time series prediction

H.F. Yu and N. Rao (2016)
Matrix completion can be used to model time series,
in high dimension, with missing values: Y ≈ FX.

Minimize
F,X

∑
int

(yit − f ′ixt)2 + λ1R(F) + λ2R(X)

The regularizer R(X) could come from a graph

R(X) =
∑
t

‖xt‖2 +
∑
s,t

wst ‖xt − xs‖2

if the weights are chosen beforehand. Instead, use the
negative log-likelihood of some time series model

R(X) = − logP (x1, . . . , xT |θ),

e.g., an AR model

R(X) =
∑
t>L

∥∥∥∥∥xt −
L∑
ℓ=1

θℓxt−ℓ

∥∥∥∥∥
2

+
∑
t

‖xt‖2

and a penalty (prior) for θ.
Applications include missing value imputation and
forecasting.

Probabilistic sequential matrix factorization
O.D. Akyildiz et al. (2019)

In the matrix factorization problem

Minimize
C,X

‖Y − CX‖ ,

add a prior on C (matrix variate Gaussian) and X
(nonlinear state space model).

s ∼ IG
C ∼ MN(C0, I, sV0)

x0 ∼ N(µ0, sP0)

xk ∼ N(fθ(xk−1), sQ0)

yk ∼ N(Cxk, sR0)

(For s constant, it is Gaussian, but if we marginalize
it, we get more robust Student distributions.)

Mixtures, EM and missing data
B. Stewart (2017)

We want to estimate µ = E[X] and Σ = Var[X] in
presence of missing data.
0. Start with initial estimates, e.g, means and vari-
ances (diagonal Σ) from available observations.
1. For each missingness pattern, estimate a regres-
sion Xmis = Xobsβ + ε. We can compute β and
σ2 = Var ε from µ, Σ. We this replace each miss-
ing value with a distribution Xmis,i ∼ N(Xobs,iβ, σ

2).
More precisely, we will need the expectations E[Xmis,i]
and E[Xmis,iX

′
mis,i] (E-step).

2. Using the expectations E[X] and E[XX ′], re-
estimate µ,Σ, with MLE (M-step).
3. Iterate until convergence.

Amelia II: a program for missing data
J. Honaker et al. (2011)

To impute missing data, the EMB (EM with boot-
strap) algorithm:
– Bootstraps missing data m = 5 times
– Models each bootstrap dataset as a Gaussian
N(µ,Σ), using the EM algorithm for MLE with miss-
ing values;

– Imputes the missing values with their conditional ex-
pectation (m times).

Article and book summaries by Vincent Zoonekynd 256/1044

What to do about missing values
in time series cross-section data

J. Honaker and G. King (2010)
To allow smooth interpolation when needed, add ba-
sis functions to the data (e.g., with cubic splines); also
add lags and leads of the variables. Implementation in
Amelia.

mice:
multiple imputation by chained equations in R

S. van Buuren and K. Groothuis-Oudshooin
(2011)

Iterate T times:
– Sample θ1 from θ1|Y obs

1 , Y2, . . . , Yp;
– Sample Y mis

1 from Y mis
1 |θ1, Y obs

1 , Y2, . . . , Yp;
– …
– Sample θp;
– Sample Y mis

p .
Those conditional models (often, regression or GLMs)
need not be compatible: they may not come from a
well-defined joint distribution – this does not seem to
be a problem. Generate 5 such implied datasets; fit
your model on each of them; pool those models. The
VIM package provides a few more plots.

Gaussian process imputation
of multiple financial time series

T. de Wolff et al. (2020)
Missing data in time series (4 to 10 time series)
can be imputed with a multi-output Gaussian pro-
cess (MOGP), with a multioutput spectral mixture
(MOSM) kernel.

MOGPTK:
the multioutput Gaussian process toolkit

T. de Wolff et al. (2020)
Built with PyTorch (formerly Tensorflow/GPflow).

Spectral mixture kernels
for multioutput Gaussian processes

G. Parra and F. Tobar (2017)

kij(τ) =
∑
q

αqij exp
[
− 1

2 (τ + θqij)
′Σqij(τ + θqij)

]
·

cos[(τ + θqij)
′µqij + φqij]

GP-VAE:
deep probabilistic time series imputation

V. Fortuin et al. (2019)
VAE with a low-dimensional GP prior on the latent
space, with a Cauchy kernel (it can be seen as a Gamma
mixture of RBF kernels at different scales). When com-
puting the ELBO, only include terms with data. To
generate data, replace the missing values with 0 (this
introduces bias).

BRITS: bidirectional recurrent imputation
for time series

W. Cao et al. (2018)
Use an RNN (BiLSTM) to impute missing values; the
loss is delayed until we have the next observation

x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x5 x6

One can add cross-sectional features.

Recurrent neural networks for multivariate
time series with missing values

Z. Che et al. (2017)
To deal with missing values in a RNN (GRU), use the
last available value and add to the input: a missingness
indicator, and the time since the last observation

NAOMI: Non-autoregressive multiresolution
sequence imputation
Y. Liu et al. (2019)

Deep generative models for sequences are autoregres-
sive: errors compound. Instead, use a multi-resolution
approach: feed the time series (with the missing values
zeroed out) and the mask to a BiLSTM, predict xn/2
from h0 and hn, feed that new value to the network,
and proceed recursively.

Multivariate time series imputation
with generative adversarial networks

Y. Luo et al. (2018)
Train a GAN to generate complete data that looks
like real data (assuming you have several/many sim-
ilar time series); find a point in latent space (noise)
that gives a time series close to the actual data; use it
to generate a complete time series.

E2GAN: end-to-end
generative adversarial network

Y. Luo et al. (2019)
Use a denoising autoencoder as generator.

Estimating missing data
in temporal data streams using

multidirectional recurrent neural networks
J. Yoon et al. (2017)

First interpolate within streams (BiRNN), then impute
across streams (AE with dropout).

Article and book summaries by Vincent Zoonekynd 257/1044

Time series imputation and prediction with
bidirectional generative adversarial networks

M. Gupta and R. Beheshti (2020)
Given many similar time series, train a GAN whose
generator fills in the missing values, and whose discrim-
inator distinguishes between real and imputed values.

Panning for gold: Model-X knockoffs for
high-dimensional controlled variable selection

E. Candès et al. (2017)
To select relevant variables in a model Y ∼ X while
controlling the false discovery rate (FDR), one could
use conditional randomization, i.e., repeatedly sample
X∗i from Xi|X−i, compute test statistics Ti and T ∗i ,
compare them, and use

P =
1 +

∑
k 1Ti>T∗

i

1 +K
.

This can be done with a single sample (K = 1) with
a knockoff distribution, i.e., a distribution (X, X̃) such
that
(i) (X, X̃)

d
= (X, X̃)swap(S), where S ⊂ J1, pK and

swap(S) swaps Xj and X̃j for all j ∈ S
(ii) X̃ ⊥⊥ X | Y (e.g., X̃ is constructed without look-

ing at Y
For a Gaussian distribution, X ∼ N(0,Σ), we can use

(X, X̃) ∼ N
(
0,

(
Σ Σ− diag(s)

Σ− diag(s) Σ

))
and sample from X̃|X, where s is chosen so that
the matrix be positive semi-definite; we then have
Cor(Xj , X̃j) = 1− sj .
– Choose Σapprox ≈ Σ, e.g., I or block-diagonal;
– ŝ = Argmin

s

∑
|1− sj | st s ⩾ 0, diag(s) ≼ 2Σapprox;

– γ = Argmax
γ

γ st diag(γŝ) ≼ 2Σ;

– s = γŝ.
Use a statistic Wj = wj(X, X̃, y) such that

wj
(
(X, X̃)swap(S), y

)
=

{
+wj(X, X̃, y) if j 6∈ S
−wj(X, X̃, y) if j ∈ S

for instance, a difference of lasso coefficients

Zj = bj(λ)

Wj = |Zj | −
∣∣∣Z̃j∣∣∣

or

Zj = Max{λ : bj(λ) 6= 0 }
Wj = sign

(
|Zj | − |Z̃j |

)
Max

{
|Zj | , |Z̃j |

}
.

Conditional on |W1| , . . . , |Wp|, the signs of the null
(i.e., irrelevant) Wj are iid coin flips. Estimate the
false discovery proportion as

F̂DP(t) = #{ j : Wj ⩽ −t}
#{ j : Wj ⩾ t}

;

set the threshold to
τ = Min

{
t > 0 : F̂DP(t) ⩽ q

}
and select the variables Ŝ = { j : Wj ⩾ τ }: this con-
trols the modified FDR

mFDR = E

[∣∣Ŝ ∩H0

∣∣∣∣Ŝ∣∣+ 1/q

]
⩽ q

(add 1 to the F̂DR numerator to control the FDR). R
implementation: knockoff.

Detection of accounting anomalies
in the latent space using

adversarial autoencoder neural nets
M. Schreyer et al. (2019)

To add an arbitrary prior to the latent space of an
autoencoder, e.g., a Gaussian mixture, use a discrimi-
nator.
input Encoder latent Decoder output

prior Discriminator

Learning sampling in financial statement
audits using VQ autoencoding neural networks

M. Schreyer (2020)
The VQ-VAE

x
qθ7−→ ze 7−→ zq

pϕ7−→ x̃

adds a “quantize” operation to the autoencoder, which
maps the latent representation ze to the closest vec-
tor zq among a (learned) codebook eψ. The loss has 4
terms:
– Reconstruction from zq [depends on ψ, φ];
– Reconstruction from ze, skipping the reconstruction
step [θ, φ];

– ‖ze − z̄q‖ to move the latent representation towards
the codebook vectors [θ];

– ‖z̄e − zq‖ to move the codebook vectors towards the
latent representation [ψ];

where ·̄ is the stop-gradient operation: identity in the
forward pass, zero in the backward pass – i.e., the
quantity is considered constant.

Counterexample-guided learning
of monotonic neural networks

A. Sivaraman et al. (2020)
To ensure that a trained model is monotonic, compute
its (upper and lower) monotonic envelope: f̄(x0) comes
from the maximum monotonic violation for x ⩽ x0 and
can be computed with an SMT solver – more precisely,
an OMT (optimization modulo theories) solver such as
OptiMathSAT proprietary.
One can also include those examples at training time,
adding (to the next batch) counterexamples for each
sample in the current batch, and assigning them the
average label.

Article and book summaries by Vincent Zoonekynd 258/1044

Automatically learning compact quality aware
surrogates for optimization problems

K. Wang et al. (2020)
In the predict-then-optimize framework

ξ 7−→ θ 7−→ Argmin
x

fθ(x)

simplify the optimizatyion layer by replacing x ∈ Rn

with x = Py, y ∈ Rm, m � n, where P is learned
(rather than random).
[Implementation with cvxpylayers – qpth is older and
limited to quadratic programming.]

Generative minimization networks:
training GANs without competition

P. Grnarova et al. (2021)
To find the Nash equilibria of a min-max game

Player 1 : Min
u

Max
v

M(u, v)

Player 2 : Max
v

Min
u
M(u, v)

the often-used gradient descent ascent (GDA) need not
converge. Instead, minimize the duality gap

DG(u, v) = Max
v′

M(u, v′)−Min
u′

M(u′, v).

For GANs,

M(u, v) = E
z1∼data
z2∼noise

[
logDv(z1) + log(1 +DvGuz2)

]
.

To estimate the duality gap, run k steps of gradient
descent to find uworst and vworst.

Ultra data-efficient GAN training: drawing
a lottery ticker first, then training it toughly

T. Chen et al. (2021)
To train a GAN with little data:
– Look for a lottery ticket, with iterative magnitude
pruning (train for t epochs and 100 samples, prune
the smallest weights rewind);

– Train with adversarial augmentation: perturbations
to the intermediate features.

Bootstrap your own latent:
a new approach to self-supervised learning

J.B. Grill (2020)
BYOL performs self-supervised learning (SSL) without
negative pairs by training two networks:
– An online network, which predicts the target repre-
sentation of an augmented version of the input;

– A target network, moving average of the online net-
work.

Exploring simple Siamese
representation learning

X. Chen and K. He (2020)
To learn a latent representation, use simple siamese
networks (SimSiam): feed two augmentattions of the
same image to two copies of the same network, keeping
one frozen (“stop-gradient”) and use the latent repre-
sentation of one to predict that of the frozen one (that
is BYOL without the moving average).

Understanding self-supervised learning
dynamics without contrastive pairs

Y. Tian
In BYOL/SimSiam, the stop gradient and the predic-
tor are important; the moving average, weight decay,
predictor optimality, less so.
DirectPred does not train the predictor, but sets its
wights using the PCA of its input.

Non-additive measures
V. Torra et al. (2014)

A non-additive measure (or capacity, or fuzzy mea-
sure) satisfies

A ⊂ B ⇒ µ(A) ⩽ µ(B).

It can model negative and positive interactions,

µ(A tB) < µ(A) + µ(B)

µ(A tB) > µ(A) + µ(B).

For instance, a 2-book set {x1, x2} may be more valu-
able than the individual books,

v({x1, x2}) > v({x1}) + v({x2}).

In a workshop, if µ(A) is the number of widgets pro-
duced by the workes in A, we have µ(A t B) =
µ(A) + µ(B) if they work independently, µ(A t B) >
µ(A)+µ(B) if they cooperate, µ(AtB) < µ(A)+µ(B)
if the interfere.
Examples include
– Sugeno λ- measures,

µ(A tB) = µ(A) + µ()B) + λµ(A)µ(B);

– Distorted probabilities µ(A) = f(P (A)), with f non-
decreasing and P a probability;

– ⊥-decomposable non-additive measures, µ(AtB) =
µ(A)⊥µ(B), where ⊥ is a t-conorm,

a⊥b = b⊥a
a ⩽ c, b ⩽ d⇒ a⊥b ⩽ c⊥d
a⊥(b⊥c) = (a⊥b)⊥c
a⊥0 = a

The Möbius transform of µ is

m(A) =
∑
B⊂A

(−1)|A|−|B|µ(B)

Article and book summaries by Vincent Zoonekynd 259/1044

and satisfies
µ(A) =

∑
B⊂A

m(B).

The Choquet integral is

Cµ(f) =

∫ ∞
0

µf (r)dr

µf (r) = µ{x : f(x) > r}

Cµ(f) =
∑(

f(xs(i))− f(xs(i−1))
)
µ(As(i))

As(i) = {xs(i), . . . , xs(N)}

where the f(xs(i)) are in increasing order. (In the book
example, Cv(n) is the value of n1 copies of volume 1
and n2 copies of volume 2, if we sell n1 ∧ n2 2-book
sets and the rest as individual volumes.) The Sugeno
integral is

Sµ(f) =
∑
r∈[0,1]

r ∧ µf (r)

= Max
i

Min
{
f(xs(i)), µ(As(i))

}
.

The generalized fuzzy integral of a simple function

f =

n⊕
i=1

ai1Ai A1 ! · · · ! An

is
GFµ(f) =

⊕
ai � µ(Ai).

The Choquet integral is obtained with ⊕ = + and� = ·, the Sugeno integral with⊕ = max and � = min.
There are several notions of entropy for non-additive
measures.

HY (v) =
∑
i

h

(∑
A⊂N
i ̸∈A

γn|A|
(
v(A ∪ {i})− v(A)

))

HMR(v) =
∑
i

∑
A⊂N
i ̸∈A

γn|A|h
(
v(A ∪ {i})− v(A)

)
h(x) = −x log x

γnk =
(n− k − 1)! k!

n!
.

A maximal chain ∅ = C0 · · · Cn = J1, nK defines
a probability distribution

pC =
(
v(C1)− v(C0), . . . , v(cn)− v(cn−1)

)
and yet another entropy

Mmin(v) = Min
C

H(pC).

5a. The von Neumann-Morgenstern theorem states
that a preference order on subsets of a convex set X
satisfies
(i) p � q ⇒ λp(1− λ)r � λq + (1− λ)r
(ii) p � q and q � r ⇒ ∃α, β ∈ (0, 1)

αp+ (1− α)r ≺ q ≺ βp+ (1− β)r

iff there exists u : P(X)→ R such that
– p � q ⇔ u(p) ⩾ u(q)
– (affine) ∀p, q ∈P(X) ∀λ ∈ [0, 1]

u
(
λp+ (1− λ)q) = λu(p) + (1− λ)u(q)

Such a u is unique up to a positive affine transforma-
tion. This result can be generalized to mixture spaces
(replace λp+ (1− λ)q with hλ(p, q)), subjective proba-
bilities, i.e., preference orders such that
E ∩G = F ∩G = ∅⇒ (E � F ⇔ E ∪G � F ∪G),

and Savage acts, i.e., maps f : S → X.
5b. An urn contains 30 red balls and 60 black-or-yellow
balls; you are presented with four lotteries:
– Get $100 if you pick a red ball;
– Get $100 if you pick a black ball;
– Get $100 if you pick a red or yellow ball;
– Get $100 if you pick a black or yellow ball;
For most people, R � B, but RY ≺ BY: this cannot
be formalized by expected utility theory (Ellsberg’s
paradox), but can be with the Choquet integral utility
model, which accounts for both uncertainty (probabil-
ity theory) and imprecision (or knightian uncertainty
– fuzzy sets).
5c. The Choquet integral can be generalized to func-
tions taking negative values,∫

a dv =

∫ 0

−∞

[
v(a ⩾ y)− v(S)

]
dy +

∫ ∞
0

v(a ⩾ y)dy.

If v is convex (supermodular), i.e.,
∀A,B v(A ∪B) + v(A ∩B) ⩾ v(A) + v(B),

its core {p : ∀A p(A) ⩾ v(A)} is non-empty and∫
a dv = Min

p∈Core(v)

∫
a dp.

6. The Möbius transform can be defined for a function
on a poset f : (P,⩽)→ R.

µ(x, y) =

1 if x = y

−
∑

y⩽z<x
µ(y, z) if y < x

0 otherwise

∆f (x) =
∑
y⩽x

µ(x, y)f(y)

f(x) =
∑
y⩽x

∆f (y)

It measures the extra contribution not achieved by
smaller coalitions.
Let v̄ be the multilinear extension of the non-additive
measure v : {0, 1}n → R. The Shapley value is

φi(v) =
∑
S∋i

1

|S|
∆v(S)

=

∫ 1

0

∂

∂xi
v̄(t, . . . , t)dt.

It is characterized by:

Article and book summaries by Vincent Zoonekynd 260/1044

– Symmetry: φσ(i)(σv) = φi(v);
– Efficiency: v(X) =

∑
φi(v);

– Null-zero:
(
∀S v(S ∪ i) = v(S)

)
⇒ φi(v) = 0;

– Additivity: φ(v + w) = φ(v) + φ(w).
It can be generalized
– From singletons {i} to arbitrary subsets;
– To bi-cooperative games, where v(S, T) is the value

if voters in S vote +1, those in T vote −1, and the
rest abstain;

– To a subset of P(X) (feasible coalitions), described
by a graph.

Understanding machine learning
for diversified portfolio construction

by explainable AI
M. Jaeger et al. (2020)

Block-bootstrap the investment universe (16 assets, 20
years, daily, 1- or 3-month blocks), build HRP and
ERC portfolios (monthly rebalancing), forecast Cal-
mar(HRP) − Calmar(ERC) from bootstrap features
(presence of trend, stability of this trend, dispersion,
how good an approximation the hierarchy-filtered cor-
relaton matrix is, etc.) with xgboost, and explain with
Shapley values.
The Shapley vs feature plot is an alternative to partial
dependency plots.

Return attribution
C.R. Bacon and M.A. Wright (2012)

(Textbook material)

Performance attribution: history and progress
C.R Bacon (2019)

(Review)

Geometric attribution
and the interaction effect

A.E. Weber (2018)
There are many variants of Brinson attribution: arith-
metic or geometric, with or without interaction.

r =
∑

wiwi

r̄ =
∑

w̄ir̄i

A =
∑

wir̄i

S =
∑

w̄iri

r − r̄ =
∑

(wi − w̄i)(r̄i − r̄) +
∑

w̄i(ri − r̄i) +
∑

Ii

r = r̄ =
∑

(wi − w̄i)(r̄i − r̄) +
∑

wi(ri − r̄i)
1 + r

1 + r̄
=

1 + rA
1 + r̄

· 1 + r

1 + rA
1 + r

1 + r̄
=

1 + rA
1 + r̄

· 1 + r

1 + rS
· (1 + r̄)(1 + r)

(1 + rA)(1 + rS)

(For the geometric ones, write each factor as 1+contri-
bution.)

Risk-adjusted performance attribution
J.D. Fisher and J. D’Alessandro (2018)

The CAPM RP = α + βRM = α + RB + (1 − β)RB
suggests adding a risk term to Brinson analysis (it is
easier to outperform by taking on more risk):

RP −RB = α+ (1− β)RB .

Risk-adjusted performance attribution
D. Spaulding (2016)

Brinson analysis can be adjusted for risk: replace the
returns µ with

MM =
σBenchmark
σPortfolio

· µ.

Attribution hears a Who!
A. Muralidhar (2016)

Replace MM with

M3 =
√
T
(µP − 1

2σ
2
P)− (µB − 1

2σ
2
B)√

σ2
P − σ2

B − 2σPσBρ

where T is the number of years of data.

Dynamic segment timing and the predictability
of actively managed mutual fund returns

J.C. Hsu et al. (2016)
The Hsu-Kalesnik-Myers (HKM) model generalizes the
multi-period Brinson model by decomposing the re-
turns into static, dynamic and stock-specific compo-
nents.

Performance attribution:
measuring dynamic allocation skill

J.C. Hsu et al. (2010)
HKM model

Absolute return equity risk attribution
and forecasting

R.A. Cooper and T. Li (2012)
Return attribution µ =

∑
µi defines a volatility and

information ratio attribution:

σ =
σ2

σ
=

Var
∑
Xi

σ
=

∑
Cov(Xi, X)

σ
=
∑

ρiσi

IR =
µ

σ
=

∑
µi
σ

=
∑ ρiσi

σ
· µi
ρiσi

=
∑

ρi
σi
σ
IRi

Article and book summaries by Vincent Zoonekynd 261/1044

Effective return: a brealthrough in
cummulative performance attribution

R. Surz (2010)
For multi-period return attribution:
– Replace the time-changing returns rijt with constant

returns rij leading to the came cummulated returns;
– weak them ever so slightly so that ri, r̄i and r̄ have
the correct values;

– Then, use 1-period Brinson analysis.

Conditional benchmarks and predictors
of mutual find performance

S. Cederburg (2018)
Managerial skill can be measured from the residuals of
a Cahart 4-factor regression. Allow non-constant re-
gression coefficients by estimating them (with the gen-
eralized method of moments, GMM) from some covari-
ate, e.g., the 3-month lagged factor loadings (computed
from portfolio weights and (constant) constituent fac-
tor exposure).
[One could also use a Kalman filter.]

Non-linear factor attribution
S. De Boer (2019)

B : exposures
X = Bf + ε

P : factor-mimicking portfolios
w = Bp+ η

η : residual weights

ω =
Ωη

η′Ωη

Cik =
ω2
ik∑
ℓ ω

2
iℓ

∆ = ε′diag(η)C

Characteristics-based factors
Z. Chen et al. (2018)

There is a difference between stock characteristics (e.g.,
momentum) and stock exposures (e.g., beta to a mo-
mentum portfolio): only the former explain returns –
using the latter to adjust returns (residuals of a regres-
sion against the factor portfolio) is a bad idea.

Arbitrage portfolios
Z. Chen et al. (2018)

Look at double-sorted portfolios, wrt both stock char-
acteristics and beta (for this characteristic).

Smart beta multifactor methodology:
mixing vs integrating

T. Chow et al. (2017)

To combine investment factors, one could invest in
stocks with a good overall score, or combine single fac-
tor portfolios – the former has better performance, but
higher turnover and concentration.

Downsampling time series
for visual representation

S. Steinarsson (2013)
Split the data into (equal-size) buckets, with the first
and last points alone in their bucket.
– Keeping only the median (or the mode) in each
bucket tends to remove local extrema.

– The longest line algorithm picks a point in each
bucket to maximize the length of the resulting line
(dynamic programming).

– The Douglas-Peucker algorithm picks the point
farthest away from the line from the first to the last
point, and iterates until the points are sufficiently
close.

– The Visvalingam-Whyatt algorithm measures the
importance of a point as the area of the triangle it
forms with its adjacent points.

– The largest triangle algorithm picks the point in each
bucket with the largest area with the point selected
in the previous bucket and the average point in the
next one.

We can use dynamic bucket sizes (to keep outliers):
– Start with equal-sized buckets;
– Fit a linear regression in each bucket (also include
one point before and one point after);

– Split the bucket with the largest residuals, and merge
the pair with the smallest residuals.

A Bayesian graphical approach
for large-scale portfolio management

with fewer historical data
S. Oya (2021)

The L1 penalty in the graphical lasso can be seen as a
Laplace prior; the posterior can be sampled with Gibbs
sampling (positive definiteness complicates matters).

The Shapley decomposition for portfolio risk
S. Mussard and V. Terraza (2008)

The variance of a portfolio is w′V w =
∑
wiσ

2
i +

2
∑
i<j wiwjρijσiσj ; the second term, the “between se-

curity risk”, can be decomposed into individual asset
contributions with Shapley values.

Porfolio performance attribution
via Shapley value

N. Moehle et al. (2021)
Use Shapley values to decompose any performance
measure into the contribution of features that can be
turned on or off, e.g., inputs (used or not), constraints,
terms in the optimization objective, etc.

Article and book summaries by Vincent Zoonekynd 262/1044

Variance allocation and Shapley value
R. Colini-Baldeschi et al. (2017)

The Shapley decomposition of a variance game is

Var
[∑

Xi

]
=
∑
i

Cov

(
Xi,

∑
j

Xj

)
.

The Shapley value decomposition
of optimal portfolios

H. Shalit (2017)
Use Shapley values to decompose the risk (volatility)
of the mean-variance and the mean-Gini portfolio built
on a set of assets.
The Gini mean difference is

GMD(X) = 1
2 E
X1,X2

|X1 −X2| = 2Cov
(
X,FX(X)

)
.

Deep learning for portfolio
Z. Zhang et al. (2020)

LSTM on prices, for 4 assets (ETFs on equities, bonds,
commodities and VIX), to compute portfolio weights
(softmax) maximizing the Sharpe ratio.

Portfolio construction
as linearly constrained separable optimization

N. Moehle et al. (2021)
The portfolio optimization problem

Find h
To minimize α′h− γh′V h− φ(h)
Such that ` ⩽ 1′h ⩽ u
Where V = XΣX ′ +D

where φ models transaction costs, minimum trade size,
tax liability, position limits, minimum holdings size,
integer share constraints, can be formulated as a sepa-
rable affine problem

Find h, y ∈ Rn, c ∈ R
To maximize α′h− γ(y′y + h′Dh)
Such that y = CXh

c+ 1′h = 1
1− u ⩽ c ⩽ 1− `

Where Σ = CC ′ Cholesky

i.e., of the form (after introducing slack variables to
remove the inequalities)

Find x
To minimize

∑
f(xi)

Such that Ax = b.

For a lower bound, solve the convex problem

Minimize
x

∑
f∗∗i (xi) such that Ax = b

where f∗∗ is the convex envelope of f .

The problem

Find x, z ∈ Rn

To minimize IA(z) +
∑
fi(xi)

Such that x = z

Where IA(z) =

{
0 if Az = b

∞ otherwise

can be solved with ADMM:

L(x, z, λ) = f(x) + IA(z) +
1
2 ‖x− z + λ‖2

x← Argmin
x

L(x, z, λ)

z ← Argmin
z

L(x, z, λ)

λ← λ+ x− z.

The z update reduces to solving a linear system, and
the x updates are univariate xi ← proxfi(zi−λi), with
fi piecewise quadratic. ADMM is guaranteed to con-
verge for convex problems: since it is non-convex, ini-
tialize with the relaxed problem.
Scaling may help

Find x
To minimize

∑
fi(xi) ⇝

Such that Ax = b

Find x̃
To minimize

∑
fi(Eiix̃i)

Such that DAEx = Db
Where x̃ = E−1x

E diagonal
D invertible

Exploring the factor zoo
with a machine-learning portfolio

H. Sak et al. (2019)
Train an ensemble of models, for 100 stocks, on a
moving window; only use predictors with a significant
Fama-French alpha in the training window.

Deep fundamental factor models
M.F. Dixon and N.G. Polson (2020)

Fit a neural network on a moving window, to predict
the returns of 3000 assets from 50 factors. Use the gra-
dient and the Hessian (of the output wrt the input) to
find the most important factors and interactions.

Article and book summaries by Vincent Zoonekynd 263/1044

Deep factor model
K. Nakagawa et al. (2018)

Deep factor models (17 factors to predict the returns
of 2000 Topix stocks with a fully-connected neural net)
can be interpreted with layerwise relevance propaga-
tion (LRP) [yes, this ignores the nonlinearity].

` : layer
i, j : neurons
x : activations (before non-linearity)
z : activations (after)
g : non-linearity
Rℓi : contribution of neuron i
Rn : output

Rℓi =
∑
j

zij
z•j

Rℓ+1
j

zij = wℓijx
ℓ
i

xℓ+1
i = g(zi•) = g(

∑
sℓijx

ℓ
i)

To improve numeric stability, replace zij/z•j with

zij
z•j + εsign(z•j)

or
z+ij

z+•j
−
z−ij

z−•j

Deep recurrent factor model:
interpretable non-linear

and time-varying multi-factor model
K. Nakagawa et al. (2019)

Layerwise relevance propagation to interpret LSTM-
based factor models (500 stocks, 17 factors); the con-
tributions are comparable to those of a linear model.

Interpreting deep learning models
with marginal attribution

by conditioning on quantiles
M. Merz et al. (2021)

The first- and second-order marginal attribution by
conditioning on quantiles (MACQ) of a model x 7→
µ(x) are

Sj = E

[
Xj

∂µ(X)

∂Xj

∣∣∣∣ µ(X) = µα

]
Tij = E

[
XiXj

∂2µ(X)

∂Xi∂Xj

∣∣∣∣ µ(X) = µα

]
where µα is the α quantile of µ(X). If the origin 0 is
chosen in the middle of the data,

µα ≈ µ(0) +
∑
i

Si −
1

2

∑
ij

Tij .

Monotone and partially monotone neural nets
H. Daniels and M. Velikova (2010)

Neural networks with just one hidden layer cannot
approximate arbitrary monotonic functions, but with
two, they can, for instance, with a min-max network
(but it will not work well in practice).

x 7−→ Min
i

Max
j

σ

(∑
wijkxk

)

Certified monotonic neural networks
X. Liu et al. (2020)

Add a penalty

E
x∼Unif

∑
i

Max
{
b,−∂xif(x)

}2
to ensure that the derivatives of f are at least b ⩾ 0.
Proving that a ReLU network is monotonic can be for-
mulated as a mixed integer program. To speed up com-
putations, enforce and test monotonicity for pairs of
consecutive layers (instead of the whole network).
One can also look for monotonicity violations around
a given observation.

A biclustering method
for time series data analysis

J. Lee et al. (2009)
The plaid model for biclustering is

Zij = µ0 +
∑
k

(µk + αik + βkj)ρikκkj + εij ,

where ρ, κ are binary variables indicating cluster mem-
bership (of cluster k, for row i and column j), and
µk + αik + βkj describes cluster k. The layers (bi-
clusters) can be extracted one by one, by alternatingly
estimating and (ρ, κ).
For time series, ensure that the clusters in the time di-
mension are convex by filling in gaps of size at most C,
and only keeping the largest convex component (there
is also a pruning step, limited to the interval extremi-
ties in the time dimension).

Improved biclustering
of microarray data demonstrated through

systematic performance tests
H. Turner et al. (2005)

The original plaid algorithm used alternating least
squares (3 steps: ρ, κ and µ + α + β); instead, use
binary least squares

ρ = Argmin
ρ∈{0,1}n

∑
ij

(zij − ρixj)2

(the objective is separable).

Plaid models for gene expression data
L. Lazzeroni and A. Owen (2002)

(First paper on the plaid model.)

Article and book summaries by Vincent Zoonekynd 264/1044

Biclustering of expression data
Y. Cheng and G.M. Church (2000)

To find a δ-bicluster, i.e., a short subset of rows I and
columns J such that the mean square residue

H(I, J) = Mean
i∈I

(aij − aiJ − aIj + aIJ)
2

be below δ, one could start with the full matrix and
greedily remove the row or column reducing H(I, J)
the most, until we reach δ (or no row or column re-
duces H). Instead,
– Remove the rows (resp. columns) with

d(i) = Mean
j∈J

(aij − aiJ − aIj + aIJ)
2 > αH(I, J);

– Remove the rows (columns) with the largest d(i);
– Add back rows (columns) with d(i) ⩾ H(I, J).
(Also look at the row variance

V (I, J) = Mean
j∈J

(aij − aIj)2

to reject trivial clusters.)

The Gibbs-plaid biclustering model
T. Chekouo et al. (2015)

Plaid model with a prior on the gene labels ρik and the
condition labels κjk, from similarities from the gene
ontology (GO) annotations and proximity in time re-
spectively.

Extracting conserved gene expression motifs
from gene expression data

T.M. Murali and S. Kasif (2003)
A conserved motif (xMotif) is a pair (I, J) of genes and
samples such that ∀i ∈ I ∀j ∈ J ai ⩽ xjbi. To find
them:
– Pick k samples at random (seed);
– Find the genes on which they agree;
– Find the samples on which those genes agree;
– Discard if unsatisfactory;
– Start again.

Spectral biclustering of microarray data:
coclustering genes and conditions

Y. Kuger et al. (2003)
SVD to uncover checkerboard patterns.

QuBic: a qualitative biclustering algorithm
for gene expression data

G. Lie et al. (2009)
The QuBic qualitative clustering algorithm
– Starts with a graph, with genes as vertices, and gene
similarity as edge weights;

– Picks the heaviest edge;
– Builds a cluster around it, progressively adding
genes, such that the proportion of samples with the
same gene expression (terciles) remains above 95%.

A systematic comparison and evaluation of
clustering methods for gene expression data

A. Prelić et al. (2006)
The bimax algorithm, for binary data:
– Picks a row as a template, and divides the columns
into two groups: 1s in the template, and 0s in the
template;

– Divides the rows into three groups:
· With 0s where there are 0s in the template;
· With 0s where there are 1s in the template;
· The rest;

– Proceeds recursively (the two blocks of zeroes can be
ignored).

A linear time biclustering algorithm
for time series gene expression data

S.C. Madeira and A.L. Oliveira (2005)
Discretize the data and look for biclusters with the
same value in each column (date), from the suffix tree
(Ukkonen) of the rows.

U1 U2 D3 U4 U5

N1 N2 N3 U4 N5

D1 U2 D3 U4 D5

N1 U2 D3 U4 N5

Biclustering gene expression using
factor graphs and the max-sum algorithm

M. Denitto et al. (2015)
The biclustering problem can be solved iteratively, by
looking for the largest bicluster, replacing with with
noise, and iterating. The problem of finding the largest
bicluster can be modeled with a factor graph and bi-
nary variables xij for cluster membership:
– aijxij to promote high-value clusters (high gene ex-

pression);
– d(aij , akl)xijxkl to promote coherent clusters;
– A factor for each pair of rows i, k (resp. columns),
zero if either is zero or if they have the same (col-
umn) pattern

I

{∑
j

xij = 0 or
∑
ℓ

xkℓ = 0 or
∑
j

(xij−xkj)2 = 0

}
to get submatrices

(Prior approaches used exemplars and had a quartic
number of factors.) The problem can be efficiently
solved with the MaxSum message passing algorithm
(the messages can be computed explicitly).

A biclustering approach based on
factor graphs and the max-sum algorithm

M. Denitto et al. (2017)
More detailed version of the same paper.

Article and book summaries by Vincent Zoonekynd 265/1044

Biclustering of time series data
using factor graphs

M. Denitto et al. (2017)

HOP-MAP: efficient message passing
with high-order potentials

D. Tarlow et al. (2010)
In a factor graph (with binary variables), with high-
order potentials such as
– Cardinality: θ(h1, . . . , hN) = f(h1 + · · ·+ hN),
– Convexity: θ(h1, · · · , hN) = 1{i : hi=1} convex,
– Ordering: θ(hx, hy) = 1 if exactly one coordinate, i,

of hx is 1, exactly one coordinate, j, of hy, is 1, and
i < j,

the messages can be computed efficiently with dynamic
programming.

Factor graphs, message passing,
loopy belief propagation

A factor graph is a factorization of an (unnormalized)
probability distribution as p(x) ∝

∏
f φf (xf), where

each φf only depends on a subset xf of the variables
x1, . . . , xN . It can be represented as a bipartite graph,
with nodes for variables xi and factors φf , and edges
whenever a variable is used in a factor.

x1

x2

f1 x3 f2 x4

p(x1, x2, x3, x4) ∝ φ(x1, x2, x3)φ(x3, x4)

In the case of trees, the probability can be maximized
by message passing, i.e., exchanging messages between
nodes (each message to/from a variable is a function
of its possible values – for a discrete variable with k
values, it is a dimension-k vector).

µx→f (x) = 0

µf→x(x) = log f(x)

µf→x(x) = Max
x1···xM

log f(x, x1, . . . , xM) +
∑
m

µxm→f (xm)

µx→f (x) =
∑

ℓ∈N (x)

µfℓ→x(x).

Empirically, the max-sum algorithm still gives good
results for non-trees (loopy belief propagation).

Simultaneous supervised clustering
and feature selection over a graph

X. Shen et al. (2012)
The fused lasso, a penalty on

∑
|βi+1 − βi|, clusters

the predictors of a linear regression when there is an
ordering on them. This ordering can be represented
by a graph : the fused lasso can be generalized
to an arbitrary (e.g., complete) graph. The L1 norm
in the penalties

∑
|βi| (for irrelevant predictors) and

∑
|βi − βj | can be replaced with Min{|β| , 1}: the ob-

jective is no longer convex, but a difference of convex
functions, amenable to difference convex programming
(or minimization-majorization, MM).

Min{|β|,1}
=

|β|
−

(|β|−1)+

Derivative analytics with Python
Y. Hilpisch (2015)

2. An option-pricing framework should account for
different sources of risk: level, volatility, jump, and
interest rate.
Perfect hedging is only possible with continuous rebal-
ancing and in complete markets – in particular, with-
out jumps.
3. For options, market stylized facts include:
– Returns have fat tails, prices present jumps;
– Volalility is stochastic, tends to cluster, mean-
reverts, is negatively correlated with returns (lever-
age);

– Implied volatility has a smile, which is flatter for
longer-term options (term structure);

– Interest rates are stochastic, mean-reverting, and of-
ten positive.

A market model should include stochastic volatility,
jumps and stochastic short rates.
4. There is no arbitrage (in continuous time, “no free
lunch with vanishing risk”) iff there is an equivalent
martingale measure Q. It is unique iff the market is
complete.
6a. If the risk-neutral density (RND) q is known, the
price of a European option with payoff CT can be com-
puted as

C0 = e−rT
∫ ∞
0

CT (s)q(s)ds.

The characteristic function (Fourier transform) q̂(u) =
EX∼q[e

iuX] is often known: the option price can be
computed using Parseval’s identity (I ignore signs, nor-
malization factors, discounting factor),

C0 = 〈CT , q〉 = 〈ĈT , q̂〉,

leading to the Lewis formula

C0 = S0−
√
S0Ke

−rT/2

π

∫ ∞
0

Re[e−izkφ(−z−i/2)] dz

z2 + 1
4

.

6b. The Carr-Madan formulas compute Ĉ0 (where
C0 is a function of k = logK) using Fubini’s theorem
(simple closed-form formula); the option price can then
be computed with the (inverse) fast-Fourier transform
(FFT).
7. For American options, the option value V and its
continuation value C can be computed as (primal ap-

Article and book summaries by Vincent Zoonekynd 266/1044

proach)

Vt = sup
τ

EQ0
[
B0(τ)hτ (Sτ)

]
Ct = EQt

[
e−r∆tVt+∆t(St+∆t)|St = s

]
Vt(s) = Max

{
ht(s), Ct(s)

}
.

This is a lower bound on the option value. The dual
approach gives an upper bound.

V0 =
∑
τ

EQ0
[
B0(τ)hτ (Sτ)

]
= EQ0 Max

t
B0(t)

(
ht(St)−Qt

)
Qt =

∑
u⩽t

(
Vu(Su)− E0

u−∆t Vu(Su)
)
.

Both rely on least squares Monte Carlo (LSM,
Longstaff-Schwartz).
8. The following models extend the Black-Scholes
model (BSM73):
– Merton (M76): jumps;
– Heston (H93): stochastic volatility;
– Bates (B96): jumps and stochastic volatility;
– BCC97: jumps, stochastic volatility and stochastic
rates.

dS

S
= (r − rJ)dt+ vtdZ1 + JdN

dv = κ(θ − v)dt+ σ
√
vdZ2

dr = κ(θ − r)dt+ σ
√
rdZ3 (CIR)

For a single CIR process, one can explicitly compute
B0(T).
The characteristic function of the BCC97 model is the
product of those of H93 and M76J (the stochastic rate
only intervenes through B0(T)).
Option valuation can be done by solving a PDE (the
formula is similar to the Black-Scholes one, but involves
an integral), Fourier transform (Lewis or Carr-Madan)
or (for arbitrary options) Monte Carlo simulations (re-
place the drift with r, carefully discretize the SDE,
simulate, and compute the average discounted payoff).
10. For Monte Carlo simulations, the price can be dis-
cretized with the Euler or log-Euler scheme. For the
volatility, naive discretization is not exact: it can be
discretized exactly, but this involves a non-central χ2

distribution, which is slow; instead, one can truncate
(or reflect – there are many variants) the naive dis-
cretization; this also easily accounts for the correlation
between the volatility and price innovations.
Use all the Monte Carlo variance reduction tricks you
can think of: antithetic variables, moment matching,
control variates (European option prices, which can be
computed exactly, when pricing Americal options).
11. The Black-Scholes model is complete; the Hes-
ton model (stochastic volatility) is not, but any option
can be replicated with the underlying and one option.

The Bates model (with jumps) is not complete: one
would need an infinite number of options to replicate
any payoff. Consequently, the martingale measure Q is
not unique: several prices are compatible with the ab-
sence of arbitrage. However, market prices correspond
to one of those measures: calibration estimates it.
Calibrate the model parameters to liquid vanilla op-
tions (e.g., euro stoxx 50, 3 maturities less than 1
year, 5 strikes, Eonia and Euribor up to 1 year), using,
as loss function, the MSE of prices (for pricing), rela-
tive prices, or implied volatilites (for hedging), perhaps
with some weights (e.g., vega-weighted implied volatil-
ity).
The CIR model can be calibrated from the forward
rates; the forward rates can be computed from the
yields

YT = − logB0(T)

T
fT = YT +

∂YT
∂T

T.

Optimize in several steps: r, σ, J , and finally σ + J .
There may be multiple local optimal: add an L2

penalty to stay close to the previous-day solution.
13. Delta hedging is ony exact if it is continuous, if
the underlying is the only source of risk, if the price
paths are continuous, and if volatility is constamt.
Jump risk cannot be hedged away but, if there are op-
tions on many underlyiers, it can be diversified away.
For a single option, delta heding is insufficient: try to
add options to the replicating portfolio.

Estimation of risk-neutral densities
using positive convolution approximation

O. Bondarenko (2003)
The risk-neutral density (RND) f satisfies

Option price =
∫ +∞

0

Payoff(F)f(F)dF

and can be estimated from puts and calls

f(F) =
∂2P (k)

∂K2

∣∣∣∣
K=F

=
∂2C(k)

∂K2

∣∣∣∣
K=F

.

Intuitively,f(x)dx is the price of an option paying $1 if
the spot ST is in [x, x+ dx] and zero otherwise.
The positive convolution approximation (PCA) looks
for a density of the form f = φh ∗ u, where φh is a
fixed kernel (its shape is not that important, but its
bandwidth is) and u an arbitrary density, to recover
the put prices.

Find u

To minimize
∑[

Pi −D2f(Ki)
]2

Such that u ⩾ 0,
∫
u = 1

Where f = φh ∗ u
D−2f(x) =

∫ x
−∞

∫ y
−∞ f(z)dzdy

After discretization, f(x) =
∑
ajφ(x−zj), ∆z = 0.5h,

this becomes a quadratic optimization problem.

Article and book summaries by Vincent Zoonekynd 267/1044

A simple and reliable way to compute
option-based risk neutral distributions

A.M. Malz (2014)
To estimate the risk-neutral density (RND) from the
Breeden-Litzenberger formula

f(F) =
∂2P (k)

∂K2

∣∣∣∣
K=F

=
∂2C(k)

∂K2

∣∣∣∣
K=F

fit the implied volatilitiess with a clamped cubic splines
(set the first derivative to zero at the boundaries) and
differentiate the Black-Scholes call prices. Check for
no-arbitrage violations: the call price should be de-
creasing and convex.

Exploring return dynamics
via corridor-implied volatility

T.G. Andersen et al. (2015)
If there are no jumps, the realized variance is

EQ
0 [RV] = 2

∫ ∞
0

M(K)

K2
dK

where M(K) = Min
{
P (K), C(K)

}
and the realized

variance is computed from the squared ratio- or log-
returns (in the absence of jumps, they give the same
result). With jumps, the result remains if we replace
the squared returns with the difference

2(ratio-returns− log-returns)

(which is approximately 2/3 of the squared ratio-
returns and 1/3 of the log-returns).
The CBOE VIX estimates the market-free implied
volatility (MFIV)

MFIV =
2erT

T

[∫ F

0

P (K)

K2
dK +

∫ ∞
F

C(K)

K2
dK

]

and is computed as

σ2 =
2erT

T

∑ ∆Ki

K2
i

M(Ki)−
1

T

(
F

Kf
− 1

)2

∆Ki =
1
2 (Ki+1 −Ki−1)

∆K1 = K2 −K1

∆KN = KN −KN−1

Kf = first strike below F

where only liquid strikes are used – but the corridor of
strikes used, [K1,KN], can change and create spurious
jumps.
The corridor implied volatility uses the same formula
for a more stable corridor, defined from the [3%, 97%]
quantile range of the distribution defined by the cdf

R(K) =
P (K)

P (K) + C(K)
.

Construction and interpretation
of model-free implied volatility

T.G. Andersen and O. Bondarenko (2007)
Earlier paper on the corridor implied volatility (CIV),
where the corridor is defined from the PCA (positive
convolution approximation) risk-neutral density esti-
mator.
There is a negative variance risk premium in the VIX.

Model-free implied volatility
and its information content

G.J. Jiang and Y.S. Tian (2003)
Derivation of the MFIV estimator from the Britten-
Jones-Neuberger formula

EQ
0

[∫ T2

T1

(
dSt
St

)2
]
= 2

∫ ∞
0

C(T2,K)− C(T1,K)

K2
dK

by adding a risk-free rate, setting T1 = 0 so that the
second term is a call payoff, either zero, or leading to
a put price via the put-call parity.

Option prices, implied price processes
and stochastic volatility

M. Britten-Jones and A. Neugerger (2000)
(The formula is derived as the limit of a discrete
model.)

Towards a theory of volatility trading
P. Carr and D. Madan (2002)

The model-free implied volatility (MFIV) can be com-
puted as follows.

f(y) = f(x) + f ′(x)
[
(y − x)+ + (x− y)+

]
+

∫ x

0

f ′′(t)(t− y)+dt+
∫ ∞
x

f ′′(t)(y − t)+dt

EQ
0

[
f(F)

]
= f(K)B0 + f ′(K)

[
C(K)− P (K)

]
+

∫ K

0

f ′′(k)P (k)dk +

∫ ∞
K

f ′′(k)C(k)dk

Letting f(F) = log(FT /F0) and K = F0,

EQ
0

[
log

FT
F0

]
= −

∫ F)0

0

P (k)

k2
dk −

∫ ∞
F0

C(k)

k2
dk

EQ
0

[
log

FT
F0

]
Itō
= −1

2
EQ
0

∫ T

o

σ2
t dt.

Prices of state contingent claims
implicit in option prices

D. Breeden and R. Litzenberger (1978)
Notice that

d

dx

∫ ∞
x

f(x, y)dy =

∫ ∞
x

∂f(x, y)

∂x
dy − f(x, x)

Article and book summaries by Vincent Zoonekynd 268/1044

and apply it to the price of a call option

C(K) =

∫ ∞
0

(S −K)+f(S)dS =

∫ ∞
K

(S −K)f(S)dS;

this gives
dC(K)

dK
=

∫ ∞
K

−f(S)dS − 0

and finally
d2C(K)

dK2
= f(K).

Is implied correlation worth calculating?
Evidence from foreign exchange options

and historical data
C. Walter and J.A. Lopez (2000)

The correlation between (the log-returns of) two cur-
rency pairs A/C and B/C satisfies

ρA,B/C =
σ2
A/C + σ2

B/C − σ
2
A/B

2σA/CσB/B
.

Computing it from implied volatilities has sometimes
(not always) some predictive power on future correla-
tion.

Implied correlation
for pricing multi-FX options

P.V. Shecvhenko (2004)
For unrelated currency pairs, A/B and C/D,

ρA/B,C/D =
σ2
C/B + σ2

A/D − σ
2
D/B − σ

2
C/A

2σ2
A/Bσ

2
C/D

.

Implied correlation:
a new measure of diversification

V.D. Skintzi and A.P.N. Refenes (2005)
The implied correlation is defined from the implied
volatilities of an index and its components as

ρ =
σ2 −

∑
w2
i σ

2
i∑

i ̸=j
wiwjσiσj

.

Measuring equity risk
with option implied correlations

A. Buss and G. Vilkov (2012)
Adjust the historical correlations

ρij = (1− λ)ρ̂ij + λ

such that σ2 =
∑
wiwjσiσj ρ̂ij .

λ =
σ2 −

∑
wiwjσiσj ρ̂ij∑

wiwjσiσj(1− ρ̂ij)
.

We can then define option implied betas

βi =
σi
∑
wjσjρij
σ2

.

Estimating realistic implied
correlation matrix from option prices

K.N. Numpacharoen (2013)
If σ2 > σ̂2, replace ρij = (1− λ)ρ̂ij + λ with

ρij = (1− λ)ρ̂ij −
λ

n− 1
.

Machine learning fund characterizations
D. Mehta et al. (2020)

Approaches to cluster funds (with k-means, hclust,
fuzzy-C-means, SOM) often uses performance and risk
measures as features (performance ratios, betas). Some
use the bipartite graph of the top 10 holdings, pro-
jected, with spectral clustering.
Use aggregate data (proportion of assets in a given as-
set class, country, sector, capitalization bin, etc.) with
a decision tree, random forest, or a neural net (FC, 3
layers, 512/256/128/ReLu, softmax) to reproduce the
Morningstar classification (not clustering, but classifi-
cation).

Sequential deep learning for credit risk
monitoring with tabilar financial data

J.M. Clements et al. (2020)
Gradient boosted trees, commonly used to assess credit
risk (from credit card data) do not leverage the time
dimension of the data (without clever feature engineer-
ing): try temporal convolutions (TCN). Other base-
lines include MLP, TabNet (attention for tabular data)
and LSTMs.
Winsorize using the boosted tree cutoffs.

Covid-19 spreading in financial networks:
a semiparametric matrix regression model

M. Billio et al. (2021)
Model the time-varying adjacency matrix of the finan-
cial network as

At =
∑
r

Brfrt + Et

Et ∼ MN(0, I,Σ)

Σ diagonal
At, Br, Et matrices
fit scalars (risk factors)

where the matrix normal distribution is

X ∼ MN(M,U, V)

M : mean
U : variance among rows
V : variance among columns

vecX ∼ N(vecM,V ⊗ U).

Use both stock returns and volatility, and separately
model Aret,ret, Aret,vol, Avol,ret, Avol,vol.

Article and book summaries by Vincent Zoonekynd 269/1044

returns volatility
leverage

risk premium

Application: Bayesian inference, 500 European firms,
pairwise Granger causality

Deep portfolio optimization via distributional
prediction and residual factors

K. Imajo et al. (2020)
Do not forecast returns, but idiosyncratic returns –
residuals, ε, of a factor model.
Forecast the return distribution using quantile regres-
sion: a neural network forecasting the quantiles of
εi,t|εi,<t (assume Σ = Var ε is diagonal).
Account for inductive biases:
– Amplitude invariance (volatility clustering): (xt)t

and (λxt)t are equally likely, using homogeneous
function x 7→ ‖x‖φ(x/ ‖x‖);

– Time-scale invariance: (xt)t and (xλt)t are equally
likely, using shared weights at different scales.

Maximize the Sharpe ratio of the optimal portfolio
w = λ−1Σ−1µ.

Algorithms for learning graphs
in financial markets

J.V.M. Cardoso et al. (2020)
The graphical lasso models financial returns as

Minimize
Σ−1≽0

tr(Σ−1S)− log det∗(Σ−1) + α
∥∥Σ−1∥∥

1
.

Add a few constrains:
– The precision matrix Σ−1 is a graph Laplacian,
Σ−1 = LW = diag(W1)−W ;

– The graph has k connected components,m i.e.,
rankΣ−1 = p− k;

– To avoid isolated nodes, each node has degree d,
diagW = d1.

The problem can be solved by alternatingly estimating
Σ−1 and W (with ADMM).

Find W ⩾ 0, Θ ≽ 0
To minimize trace(SLW)− log det∗Θ
Such that Θ = LW

rankΘ = p− k
rankLW = p− k
diagW = d1

The rank constraint can be enforced with
k∑
i=1

λi = 0,
using

k∑
i=1

λi(A) = Min
V ∈Rp×k

V ′V=I

tr(V ′AV)

For robustness to outliers, replace the Gaussian distri-
bution with a Student (the problem is no longer convex,
but still amenable to MM).

ADMM solves
Find x, z
To minimize f(x) + g(z)
Such that Ax+Bz = c

by iterating

x← ArgminL(x, z, y)

z ← ArgminL(x, z, y)

y ← y + λ(Ax+Bz − c)

where L(x, z, y) is

f(x) + g(z) + y′(Ax+Bz − c) + 1
2 ‖Ax+Bz − c‖2 .

R implementation in fingraph.

Learning high-dimensional Gaussian
graphical models under total positivity

without adjustment of tuning parameters
Y. Wang et al. (2020)

A Gaussian distribution is multivariate totally positive
of order 2 (MTP2, attractive Gaussian random field) if
all partial correlations are positive.
A density f on Rp is MTP2 if

∀x, y ∈ Rp f(x)f(y) ⩽ f(x ∧ y)f(x ∨ y)

(where ∧ and ∨ denote the elementwise min and max).
The cmit algorithm estimates a sparse graphical
model, starting with a complete graph, and removing
edge i–j if

∣∣ρij|S∣∣ ⩽ λ for some S ⊂ J1, pK, |S| ⩽ η
(max degree).
It can be modified for MTP2 models: remove edge i–
j if ρ̂ij|S∪{k} < 0 for some S ⊂ N (i) \ {j}, |S| ⩽ `,
and some k 6∈ S ∪ {i, j}; progressively increase `; only
estimate ρ̂ on a minibatch.

cgam: an R package for the constrained
generalized additive model

C. Liao and M.C. Meyer
Monotonicity and convexity constraints for GAMs; al-
lows qualitative (ordered) variables.

Disparity of clustering coefficients
in the Holme-Kim network model

R.I. Oliveira (2016)
The Holme-Kim random graph model extends the
Barabasi-Albert one with a triad formation step (with
some fixed probability) after each preferential attach-
ment.
The local clustering coefficient of a node is the pro-
portion of neighbours that are connected. The local
clustering coefficient of a graph is the average of the
local clustering coefficients of its nodes.
The global clustering coefficient of a graph is the pro-
portion of paths of length 2 that can be completed
in a triangle . Those coefficients are different: .

Article and book summaries by Vincent Zoonekynd 270/1044

The local clustering coefficient of the Holme-Kim ran-
dom graph remains bounded away from zero, but the
global one slowly (1/ log n) tends to zero.

The atlas for the aspiring network scientist
M. Coscia (2020)

760-page illustrated book

fastnet: an R package for fast simulation
and analysis of large scale social networks

X. Dong et al. (2020)

The H-index of a network
and its relation to degree and coreness

L. Lü et al. (2015)
The core decomposition of a graph is obtained by re-
moving all notes of degree 1 (repeat until there are
none left – new ones may be created), then all nodes
of degree at most 2, and so on – the coreness of a node
is the step at which it was removed. The H-index of
a node is the largest h such that there are at least h
neighbours with degree at least h. Iterating the H-
index operator, starting with the degree, converges to
the coreness; the updates can be asynchronous.

Characterization of complex networks:
a survey of measurements

L.F. Costa et al. (2006)
List of graph metrics

Graph evolution:
densification and shrinking diameters

J. Leskovec et al. (2007)
Real-world grapjs grow with time and exhibit:
– densification: (#edges) ∝ (#nodes)a, a > 1;
– shrinking: the effective diameter (90% quantile of
the distance distribution) decreases.

The community-guided attachment model builds a
graph on the leaves of a complete b-ary tree of depth t
(representing nested communities), by adding an edge
i–j with probability proportional to cd(i,j), where the
distance is measured on the tree; for a dynamic model,
one can use all the nodes instead of just the leaves. It
exhibits densification, but not shrinking.
The forest fire model adds nodes one by one, linking
them to a random existing node, then to a random sub-
set of its neighbours, then to a random subset of these
neighbours’ neighbours, and so on (citation networks
arise like that). For a narrow range of parameters, it
exhibits a heavy tail degree distribution, densification,
shrinking, communities.

ANF: a fast and scalable tool
for data mining in massive graphs

C.R. Palmer et al. (2002)

To approimately compute the size of neighbourhoods,

N (x, h) = {y ∈ V : d(x, y) ⩽ h}

iterate (for all x, and increasing h)

N (x, h) =
⋃
x–y

N (y, h− 1)

using HyperLogLog structure (to count distinct ele-
ments). Use approximate neighbours to speed com-
putations further.

New methods for generating synthetic
equivalents of real social networks

D. Xu et al. (2018)
Generate a random network with overlapping commu-
nities by assigning each node to a random number of
random communities and connecting all the nodes in
each community. Prune and/or rewire if desired.

Polychrome: creating and assessing qualitative
palettes with many colours

K.R. Coombes et al. (2019)
If you need large palettes (up to 36 colours).

vsgoftest: and R package for goodness of fit
testing based on KL divergence

J. Lequesne and P. Regnault (2020)
The Vasicek normality test relies on the Gaussian dis-
tribution maximizing entropy (for a fixed variance).
The Vasicek-Song gof test generalizes it to arbitrary
(continuous) distributions, by using the KL divergence
between the sample and the null distributions.

Flexible regression models for count data based
on renewal processes: the Countr package

T. Kharat et al. (2019)
Count data is often modeled as a Poisson distribu-
tion (or, sometimes, Geometric or Binomial), but this
imposes EY = VarY , has no memory, and constant
hazard function. Instead, consider renewal processes
with other inter-event distributions (Weibull, Gamma,
Burr).

r <- renewalCount(y~1, d, "weibull")

Evaluating probabilistic forecasts
with scoring rules

A. Jordan et al. (2019)
Scoring rules compare probabilistic forecasts: let F be
the forecast (a probability distribution, parametric or
given by samples), y the outcome, and S(F, y) the score
(lower is better).
A proper scoring rule satisfies

∀F,G E
Y∼G

S(G,Y) ⩽ E
Y∼G

S(F, Y),

Article and book summaries by Vincent Zoonekynd 271/1044

with equality iff F = G. Examples include the log-
arithmic score and the continuous ranked probability
score (CRPS)

LogS(F, y) = − log f(y)

CRPS(F, y) =
∫ [

F (z)− 1y⩽z
]2
dz

= E
X∼F

|X − y| − E
X1,X2∼F

|X1 −X2| .

If the forecast is provided as a sample, the CRPS can
be efficiently computed drom the order statistics.

Bayesian and non-Bayesian cause-specific
competing risk analysis for parametric
and non-parametric survival functions:

the R package CFC
A.S. Mahani and M.T.A. Sharabiani

Cause-specific competing risk survival analysis is sur-
vival analysis with multiple, mutually-exclusive end-
points: Ḟk(t) =

[
1 −

∑
Fℓ(t)

]
λk(t). By letting E(t) =

1 =
∑
Fk(t), we get Ė/E = −

∑
λk and

E =
∏

Sk

Sk(t) = exp−
∫ t

0

λk(s)ds

Fk(t) =

∫ t

0

∏
Sℓ(s)λk(s)ds.

Randomized matrix decompositions using R
N.B. Erichson et al. (2019)

The rsvd package provides randomized (for big
data) SVD, PCA, robust PCA, CUR, interpola-
tive decomposition. Also check irlba, RSpectra,
svd::propack.svd, svd.

ManifoldOptim:
an R interface to the ROPTLIB library
for Riemannian manifold optimization

S.R. Martin et al. (2020)
The minimum average deviance estimation (MADE)
method for sufficient dimension reduction (SDR) looks
for B such that the local regression (with weights from
a kernel in the original space, and bandwidth from
cross-validation) y ∼ B′X gives the best fit: it is an
optimization on the Grassmanian.
In a linear model Y = µ + βX + ε, X ∈ Rp, Y ∈ Rr,
ε ∼ N(0,Σ), not all of Y contains relevant informa-
tion: the Σ-envelope of Spanβ is the smallest subspace
S ⊃ Spanβ such that Σ = ΣS + ΣS⊥ . Finding such a
subspace can be formulated as an optimization prob-
lem on the Grassmanian.
Also check Pymanopt (Python), GrassmanOptim (R),
ROPTLIB (C++, in Julia, or R: ManifoldOptim, ldr
(likelihood based dimension reduction)).

An introduction to the augmented inverse
propensity weighted estimator

A.N. Glynn and K.M. Quinn (2009)
The average treatment effect (ATE) is E[Y (1)−Y (0)].
There are many nore acronyms: ATT, ATC (aver-
age treatment effect on treated/control), SATE, PATE
(sample/population ATE), CATE (conditional ATE –
for a subgroup).
– Propensity matching is not data-efficient;
– The regression estimator fits a model Y ∼ T + Z,

ÂTE = Mean
i

[
Ŷ (T = 1, Z = zi)− Ŷ (T = 0, Z = zi)

]
– The inverse propensity weighting (IPW) estimator
models the probability of treatment π(z),

ÂTE = Mean
i

[
Ti

π(Zi)
Yi −

1− Ti
1− π(Zi)

Yi

]
It has poor small-sample properties (π can be close
to zero) and can even be outside the possible range
for Y (1)− Y (0).

– IPW* normalizes the weights to ensure they sum
to 1.

ÂTE =

(∑ Ti
π(Zi)

)−1∑ Ti
π(Zi)

Yi

−
(∑ 1− Ti

1− π(Zi)

)−1∑ 1− Ti
1− π(Zi)

Yi

– The covariate Z contains information, not only
about T , but also about the outcome Y . The aug-
mented IPW (AIPW) adjusts the ATE accordingly.
It is doubly robust: it is consisten if either π or Ŷ is
well specified. R implementation in CausalGAM.

Debiased inverse propensity score weighting
for estimation of average treatment effects

with high dimensional confounders
Y. Wang and R.D. Shah (2020)

The oracle estiamtor

ATE = Mean
i

Ti
π(Zi)

Yi −Mean
i

1− Ti
1− π(Zi)

Yi

is unbiased, but there is a bias of the propensity score
is estimated from data.
If µ ⊥⊥ T |Z,

ATE = Mean
i

Ti
π(Zi)

(Yiµi)−Mean
i

1− Ti
1− π(Zi)

(Yi − µi)

has the same properties, and we can choose µ to reduce
the bias, e.g., with

Find µ

To minimize
∑(ˆ̃Y (Z = Zi)− µi

)2
Such that

∥∥∥∥ 1nZ ′(Ỹ −f̃(Z))− 1

n
Z ′(µ−f̃(Z))

∥∥∥∥
∞
⩽ η

Article and book summaries by Vincent Zoonekynd 272/1044

where
Ỹ =

T (1− π̂)
π̂

Y +
(1− T)π̂
1− π̂

Y

(to ensure µ ⊥⊥ T |Z, split the data in 3: to estimate π̂
and f̃ = ˆ̃Y , for the constraint, and for the rest).
Other methods include: IPW, AIPW, ARN (approxi-
mate residual rebalancing), TMLE (targeted MLE).

Zigzag expanded navigation plots in R:
the R package zenplots

Zigzag plots are pairs plots where adjacent axes share
the same variable.

Latent space approaches
to social network analysis

P.D. Hoff et al. (2002)
In a latent space network model, nodes have both fea-
tures xi and latent coordinates zi, and the edge prob-
abilities are

zi ∼ N(µ,Σ)

logit yij = βxi + βxj + d(zi, zj)

GNAR: Generalized
network autoregressive process in R

M. Knight et al. (2020)
In GNARs, Xit is a linear combination of its past val-
ues (AR) and those of its neighbours (GCN), with
weights depending on the lag and the distance (number
of hops).

colorspace: a toolbox for manipulating
and assessing colours and palettes

A. Zeilis et al. (2020)

black

white
yellow blue

HSV
black

white

yellow blue

HSL
black

white

yellow

blue

HCL

Tensor learning for regression
W. Guo and I. Patras (2012)

A tensor regression is a linear regression with tensors,
e.g., Yi = XijkℓWjkℓ+b where the weight tensorW has
low weight (e.g., a CP decomposition – use alternating
optimization)

TensorLy: tensor learning for Python
J. Kossaifi et al. (2019)

ETAS: an R package for fitting
the space time ETAS model of earthquake data
The ETAS (epidemic-type aftershock sequence)
marked point process is a Hawkes-like model for earth-
quakes (time, position, magnitude).

Just interpolate:
kernel ridge regression can generalize

T. Liang and A. Rakhlin (2018)
In ridge regression

Minimize
β

‖y −Xβ‖2 + λ ‖β‖2

we can let β → 0. If the model is overparametrized, the
OLS solution is not unique and interpolates the data;
the problem becomes

Find β

To minimize ‖β‖2
Such that y = Xβ.

Surprises in high-dimensional
ridgeless least squares interpolation

T. Hastie et al. (2020)
Interpolation does not contradict generalization.

A continuous time view
of early stopping for least squares

A. ALi et al. (2019)
Early stopped gradient approximates ridge regression:
with the gradient flow and t = 1/λ, the error is at most
1.7 times that of the ridge.

β ← β + ε
X ′

n
(y −Xβ) Gradient descent

β̇ =
X ′

n
(y −Xβ) Gradient flow

β(λ) = (X ′X − nλI)−1X ′y Ridge
β(t) = (X ′X)†(I − exp−tX ′X/n)X ′y

Computing the Oja median in R:
the package OjaNP

D. Fischer et al. (2020)
There are several multivariate generalizations of the
median:
– The marginal median is the coordinate-wise median;
it is not affine equivariant;

– The Tuckey median is the intersection of the mini-
mal halfplanes containing at least half the data;

– The spatial median µ minimizes
∑
i ‖xi − µ‖2; it is

not affine-equivariant;
– The Oja median is

Argmin
µ

∑
i1<···<ik

V (xi1 , . . . , xik , µ)

where V (x1, . . . , xk+1) is the volume of the simplex
(x1, . . . , xk+1) in Rk.

Article and book summaries by Vincent Zoonekynd 273/1044

They define signs

msgnx = [signx1, . . . , signxk]

msgnX x = msgn(x−mmedX)

ssgnx =
x

‖x‖
if x 6= 0

ssgnX x = ssgn(x− smedX)

osgnX x =
∑

i1<···<ik−1

∇x det[xi1 −m, . . . , xik−1
−m,x−m]

and ranks 1
n

∑
sign(xi − x), and rank (or sign) corre-

lation matrices.

Covatest: an R package for selecting a class
of space-time covariance functions

C. Cappello et al. (2020)
Classes of space-time covariance functions include:
– Sum-product: the increments of C, in the space and

time directions, are constant

C(h, u) = k1C0(h)C1(u) + k2C2(h) + k3C3(u);

– Integrated product: the increments of 1/C are con-
stant;

– Gneiting: the increments of logC are constant.

BayesNetBP: an R package for probabilistic
reasoning in Bayesian networks

H. Yu et al. (2020)
Exact inference in directed probabilistic graphical
models (PGM), assuming the structure known (use
bnlearn, deal, catnet, pcalg if needed) – gRain is
limited to discrete Bayesian networks.

mlogit: random utility models in R
Y. Croissant (2020)

R package for generalizations of the multinomial
logit/probit model (modeling discrete choices driven by
n unobserved utility function): heteroskedasticity, cor-
related errors, individual heterogeneity (mixed mod-
els).

Pseudo-counts:
how to compute them efficiently in R

M. Happ et al. (2020)
Comparing two or more samples with rank-based tests
can lead to paradoxical results (e.g., µ1 < µ2 < µ3 <
µ1): replace the ranks 1

a

∑
F̂ (x) with the pseudo-ranks

F̂ (x) where

Y ∼ Categorical
(J1, aK, p)

X ∼ FY
F =

∑
piFi

A data envelopment analysis
toolbox for Matlab

I.C. Álvarez et al. (2020)
Data envelopment analysis (DEA) is a way of measur-
ing the “distance” (of a firm, turning some input into
some output) to the efficient frontier.

n: # firms X ∈ Rm×n inputs
m: # inputs Y ∈ Rs×n outputs
s: # outputs

Let P = {(x, y) : ∃λ ∈ Rn
+ x ⩾ Xλ, y ⩽ Y λ, λ′1 = 1}

be the set of attainable solutions (remove λ′=1 is ev-
erything is scalable).
The radial input-oriented model measures the efficiency
of firm i as θi = Min{θ : (θxi, yi) ∈ P}. If θi < 1,
we can improve (xi, yi) (produce the same with less).
The input excess and output shortfall are θx−Xλ and
Y λ− y. Similarly, the radial output oriented model is
φi = Max{φ : (xi, φyi) ∈ P}. There are also direc-
tional variants.

input

output

input

output

input

output

o.o.
i.o.

The real numbers – a survey of construction
I. Weiss (2015)

Cauchy sequences and Dedekind cuts are not the only
constructions of R:
– Decimal expansions (but arithmetic is tricky);∑

an/2
n with no restriction on an (up to equiva-

lence);
– Nested families of intervals; Cauchy filters;
–
∑
s∈S s, where S is a multiset of elements of the form

1/n;
∑
n∈A 1/n,

∑
n∈A an for a fixed sequence a such

that an → 0,
∑
an =∞;

– Continued fractions; producst
∏
(1 + 1/an); a0 +

1/a1+1/a2+. . . ; a0+1/a1+1/a1a2+1/a1a2a3+. . . ;
– Approximate endomorphisms, i.e.f : Z → Z such
that {f(x+ y)− f(x)− f(y)} be finite, up to equiv-
alence f ∼ g if {f(x)− g(x)} is finite;

– The universal property of the completion of Q.

Fisher information distance:
a geometric reading

S.I.R. Costa et al. (2014)
Formulas for computations on the Riemannian mani-
fold of Gaussian distributions N(µ, σ2).

Self-normalizing flows
T.A. Keller et al. (2020)

Normalizing flows require the Jacobian determinant,
which is expensive to compute, unless it is triangular or
easy to approximate – instead, have the network learn

Article and book summaries by Vincent Zoonekynd 274/1044

both the flow at each layer and its inverse [cf. synthetic
gradients].

Explaining by removing:
a unified framework for model explanation

I.C. Covert et al. (2020)
Most model explanation methods (SHAP, LIME, etc.)
can be unified and presented as a 3-step process:
– Removal: remove part of the image (one or several
circular regions, or regions from a segmentation al-
gorithm) and replace it (with noise, a constant value,
a generative model, blur, etc.);

– Behaviour: compute the effect of the removal (on
theoutput, the loss, the average loss);

– Aggragation: aggregate those effects (smallest de-
stroying subset, smallest sufficient subset, mean af-
ter inclusion/removal, Shapley value, linear model,
etc.).

Reservoir computing meets
recurrent kernels and structured transforms

J. Dong et al. (2020)
A function f : R → Rk and random points wi in Rp

(sampled from some distribution) define random fea-
tures

φ(u) =
1√
N

[
f(〈w1, u〉), . . . , f(〈wN , u〉)

]
and a kernel k(u, v) =

〈
φ(u), φ(v)

〉
.

C-space tunnel discovery
for puzzle path planning

X. Zhang et al. (2020)
Rigid body disentanglement puzzles rely on narrow
tunnels in configuration space. Find those tunnels
by aligning the features (gap-gap or gap-notch) of the
pieces:
– Euclidean-to-geodesic ratio pairs of points on a sur-
face where the EGR is a local minimum are around
gaps or notches;

Minimize
u,v

dE(u, v)

dG(u, v)
+ αdE(u, v)

use the heat kernel method to compute the geodesics;
– Medial axis notch detection:
· Compute the medial axis (a surface);
· Use themean curvature flow to reduce it to a curve,
the skeleton;
· For each point on the skeleton, find the closest
point on the surface, and compute the distance to
the opposite point;
· Notches are local minima for this distance;

– Neural network, trained on data from simple puxzles
(solved y a traditional planner), taking an image of
the puzzle as input (5 channels: luminance, depth,
normal) and predicting where the tunnels are.

This does not work on puzzles not relying on gap-gap
or gap-notch alignment (e.g., Hanamaya Elk).

Fast and flexible temporal point processes
with triangular maps

O. Schur et al. (2020)
A triangular map is a map f : RN → RN such that
fi(x1, . . . , xn) only depends on (x1, . . . , xi) and fi is
increasing in xi. They are used in normalizing flows:
if x ∼ p, then F (x) ∼ p̃, with

p(x) = |det JF (x)| p̃
(
F (x)

)
=

(∏ ∂fi
∂xi

)
p̃
(
F (x)

)
.

This formula is strangely similar to the likelihood of a
temporal point process (TPP)

p(t) =
∏

λ(ti) exp−
∫ T

0

λ(u)du

=

(∏ dΛ

dt
(ti)

)
exp−Λ(T)

where Λ(T) =
∫ T
0
λ(u)du.

To sample, draw z from a homogeneous Poisson process
on [0,Λ(T)] and compute t = F−1(z).
Examples include:
– Inhomogeneous Poisson processes: Λ is deterministic
and F = Λ (elementwise);

– Renewal processes: Λ(t) = Φ(t−t1)+
∑
j⩽i Φ(tj−ti),

where ti is the last event before t, and Λ = C ◦Φ◦D,
where

D =

1 0

−1

0 −1 1

computes pairwise differences, C = D−1 (cummu-
lated sum) and Φ acts elementwise.

– Modulated renewal process:

Λ(t) = Φ
(
Λ(r)− Λ(ti)

)
+
∑
j⩽i

Φ
(
Λ(tj)− Λ(tj−1)

)
and F = CΦDΛ.

Use rational quadratic splines for Φ and Λ.
Generalize the model to F = CΦ2BL · · ·B1Φ1DΛ
where the Bℓ are lower-triangular block-diagonal ma-
trices.

Eigengame: PCA as a Nash equilibrium
I. Gemp et al. (2020)

To find the first eigenvector of a symmetric matrix
M = X ′X, one can solve the optimization problem

Find v
To maximize 1

2v
′Mv

Such that ‖v‖ = 1

with Oja’s rule (Krasulina’s algorithm):
Mv gradient
(I + vv′)Mv projection of Mv on TSn−1

v ← v + η(I + vv′)Mv gradient step
v ← v/ ‖v‖ Projection on Sn−1

Article and book summaries by Vincent Zoonekynd 275/1044

This can be generalized to the top k eigenvectors: re-
place Sn−1 with the Stiefel maniold and use Gram-
Schmidt orthonormalization (matrix Krasulina).
We can recover the span of the top k eigenvectors by
solving

Find V ∈ Rn×k (k < n)
To maximize tr(V ′MV)
Such that V ′V = I.

For k = n, we want to maximize the trace, minimize
the off-diagonal elements; to recover the order of the
eigenvectors, each is only penalized by the previous
ones.

v1 ← Argmax
v′1v1=1

〈v1,Mv1〉

v2 ← Argmax
v′2v2=1

〈v2,Mv2〉 −
〈v2,Mv1〉2

〈v1,Mv1〉

vi ← Argmax
v′ivi=1

〈vi,Mvi〉 −
∑
j<i

〈vi,Mvj〉2

〈vj ,Mvj〉

(the constraints v′ivj = 0 are redundant: 〈viMvj〉 =
λ〈vi, vj〉 at the optimum.) The ith objective can also
be written

ui(vi) = 〈vi,Mvi〉 −
∑
j<i

〈vi,Mvj〉2

〈vj ,Mvj〉

= ‖Xvi‖2 −
∑
j<i

〈Xvi, Xvj〉2

〈Xvj , Xvj〉
.

PCA is the unique strict Nash equilibrium of this k-
player differentiable game. Solve with Riemannian
gradient ascent on the sphere, sequentially or (asyn-
chronously) in parallel.

Learning undirected graphs
in financial markets

J.V.M. Cardodo and D.P. Palomar (2020)
Do not learn a graph but its Laplacian L = D −W

Find L
To minimize tr(LS)− log gdetL+ hα(L)
Such that L1 = 0

∀i 6= j Lij = Lji ⩽ 0

where S is the (detoned) correlation and gdet the
pseudo-determinant (the product of the nonzero (pos-
itive) eigenvalues).
To constrain the number of connected components
k = dimkerL, note that

dimkerL ⩾ k ⇐⇒
k∑
i=1

λi(L) = 0

k∑
i=1

λl(L) = Min
V ∈Rp×k

V ′V=I

tr(V ′LV).

The resulting problem can be solved in an alternating
fashion.

Find L ≽ 0
V ∈ Rp×k

To minimize tr(LS)− log gdetL+ η tr(V ′LV)
Such that L1 = 0

∀i 6= j Lij = Lji ⩽ 0
diagL = 1
V ′V = I

A step towards neural genome assembly
L. Vrček et al. (2020)

De novo genome assembly looks for a path in
a graph, avoiding short tips , transitive
edges and choosing a branch in bubbles

.
Use a GNN for each of those three problems.

Sanity checks for saliency maps
J. Adebayo (2018)

It is difficult to assess the quality of model explana-
tions. Saliency maps (gradient, gradient�input, inte-
grated gradient, guided backprop, guided GradGAM,
smoothGrad) are misleading: they often give results
similar to a simple (task-agnostic) edge detector – com-
pare them with an untrained model, or a model with
shuffled labels.

Coupling-based invertible neural networks are
universal diffeomorphism approximators

T. Teshima et al. (2020)
A set M of functions Rm → Rn is a distributionlly
universal approximator if, for all absolutely continu-
ous measure µ on Rm, for all measure ν on Rn, there
exists a sequence (gi)i in M such that gi∗µ

d−→
i→∞

ν.

Affine coupling flows are transformations of the form
ψ(x, y) = (x, es(x) � y + t(x)) (the exponential is ele-
mentwise).
Combining affine flows (with y 1-dimensional) and in-
vertible affine transformations gives an Lp universal
approximator, and therefore a distributionally univer-
sal approximator.

Ignorance is bliss: adversarial robustness
by design through analog computing

and synaptic asymmetry
A. Cappelli et al. (2020)

To fight adversarial attacks, insert a non-differentiable
layer (an optical processing unit (OPU), m = |Rx|2, R
random, input and output quantized to 8 bits) and use
direct feedback alignment (DFA) instead of backprop-
agation to differentiate through it.

Article and book summaries by Vincent Zoonekynd 276/1044

Hard negative mixing for contrastive learning
Y. Kalantidis et al. (2020)

Contrastive learning (learning an embedding in which
different augmentations of the same image are closer
than those of another image) benefits from better pos-
itive pairs (more data augmentation) or better negative
paits (SinCLR, MoCo): MoCHi creates synthetic neg-
atives by averaging two negative samples, or a negative
and a positive sample.

SuperLoss:
a generic loss for robust curriculum learning

Early in training, downweight hard samples, identified
by a large loss, (or a large loss with high confidence)
by changing the loss function.

Deep transformation invariant clustering
T. Monnier et al.

Image clustering often relies on latent representa-
tions. Instead, work in pixel space, and jointly learn
prootypes (for each cluster) and transformations (to
align each image to its prototype – or the inverse).
It is an image (parametric) analogue of dynamic time
warp (DTW).

Clustering Argmin
c1...cK

∑
i

`
(
xi, {c1, . . . , cK}

)
TI clustering Argmin

c1...cK

∑
i

Min
β1...βK

`
(
xi, {Tβ1

c1, . . . , TβK cK}
)

DTI clustering Argmin
c1...cK
f1...fK

∑
i

`
(
xi, {Tf1(xi)c1, . . . , TfK(xi)cK}

)
The transformation parameters are computed by a neu-
ral network f . Each transformation is a sequence of
parametric transformations Tβ1 ◦ · · · ◦ TβM , inclusing:
– Affine colour transformations;
– Spatial transformers networks;
– Morphological transformations, with the max and
min of dilation and erosion replaced by softmax
(α > 0) and softmin (α < 0).

T (x)uv =

∑
u′v′

xu+u′,v+v′ · au+u′,v+v′ · expαxu+u′,v+v′∑
u′v′

au+u′,v+v′ · expαxu+u′,v+v′

The loss function can be from k-means of a Gaussian
mixture (GMM). During training:
– Reassign tiny clusters to a noisy copy of the largest
cluster;

– Progressively add more complex transtormations
(curriculum learning).

Image analysis using mathematical morphology
R.M. Haralich et al. (1987)

Spatial transformer network
M. Jaderberg et al. (2016)

Transform an image with a parametric transformation
Tθ (affine, projective, peicewise affine, thin plate spline)
with the parameters computed from the image itself:

x 7−→ Tθ(x)(x).

Learning energy-based models
by diffusion recovery likelihood

(ICLR 2021)
An energy-based model (EBM) pθ(x) = fθ(x)/Zθ can
describe a distribution on images x (use a CNN for fθ):
training is done with the gradient

E
x∼data

∂fθ(x)

∂θ
− E
x∼pθ

∂fθ(x)

∂θ

and sampling with Langevin Monte Carlo

xt+1 ← xt +
δ2

2
∇xfθ(xt) + δεt

but convergence is slow.
Recovery likelihood, from a noisy image x̃ = x+ σε (or
x̃ = ax + σε, a, σ constants) is easier to sample from
(less multimodal)

p(x|x̃) =
exp

[
fθ(x)−

‖x̃− x‖2

2σ2

]
Z̃θ(x̃)

Use a sequence of EBMs, trained on increasingly noise
versions of the dataset.

Score-based generative modeling
through stochastic differential equations

(ICLR 2021)
Score-based generative models consider a sequence of
noise scales σ1 < · · · < σN , going from the data distri-
bution pdata to near-Gaussian noise pdata ∗N(0, σNI),
and learn a score function sθ minimizing∑

i

σ2
i E
s∼Data

E
x̃∼pσi (x̃|x)

‖sθ(x̃, σi)−∇x̃ log pσi(x̃|x)‖
2

Stochastic differential equations (SDE) provide a con-
tinuous generalization, progressively adding noise to an
image with a diffusion

dx = f(x, t)dt+ g(t)dW

and removing it with the reverse-time SDE

dx =
[
f(x, t)− g2(t)∇x log pt(x)

]
dt+ g(t)dW.

Article and book summaries by Vincent Zoonekynd 277/1044

Reinforcement learning upside down:
don’t predict rewards, just map them to actions

J. Schmidthuber (2019)
UDRL learns a mapping

(state, horizon, reward) 7−→ action

using training data from the past

(s1, t2 − t1, r[t1,t2], a[t1,t2])

and extrapolate (use it to find actions leading to a
higher reward in a shorter time frame).

Extrapolation towards imaginary 0-nearest
neighbour and its improved convergence rate

A. Okuno and H. Shimodaira (2020)
The k-nearest neighbour classifier is a weighted aver-
age, often with positive constant weights – but real
weights can remove the bias and improve convergemce.
Instead, the multiscale k-NN uses adaptive weights, by
extrapolating the values as k → 0, with a linear regres-
sion k-NN ∼ distance2k.

It is not what machines can learn,
it is what we cannot teach

G. Yehuda et al. (2020)
Deep learning cannot solve NP-complete problems
from data: that would require non-polynomial data
generation.

Movement pruning:
adaptive sparsity by fine-tuning

V. Sanh et al. (2020)
For transfer learning, do not prune small weights, but
weights that move towards zero when fine-tuning.

after

before

after

before

On ranking via sorting
by estimated expected utility

C. Calauzènes and N. Usunier (2020)
Learning-to-rank loss functions include
– The discounted cummulated gain

DCGp =
p∑
i=1

relevancei
log(1 + i)

– The expected reciprocal rank, the expectation of
the inverse of the ranl of the first relevant result,
E[1/rank], which encourages diversity.

A loss is compatible with expected utility iff the set
of optimal ranking is connected (by transpositions of
adjacent items).

Tight nonparametric convergence rates
for stochastic gradient descent

under the noiseless linear model
R. Berthier et al. (2020)

Kernel SGD performs interpolation as

fk ← fk−1 − γ
(
fk−1(xk)− yk

)
k(·, xk).

Leverage the average:
an analysis of KL regularization in RL

N. Vieillard et al. (2020)
Add the following penalties:
– Entropy, τH(π), to penalize deterministic policies;
– Kullback-Leibler −λKL(π‖πk), to remain close to
the previous policy.

Munchausen reinforcement learning
N. Vieillard et al. (2020)

Augment the reward with the log-policy:

r(s, a)⇝ r(s, a) + α log π̂(s|a).

For the optimal policy:

log π∗(a|s) =

{
0 if a is optimal
−∞ otherwise.

Neumiss networks: differentiable programming
for supervised learning with missing values

M. Le Morvan et al. (2020)
Under Gaussian assumptions, the linear model with
missing values (MCAR, MAR – MNAR is more com-
plex and requires more assumptions) is

f(xobs) = 〈βobs, xobs〉+〈
βmis, µmis +Σmis,obsΣ

−1
obs(xobs − µobs)

〉
.

The model can be estimated with a neural network:
– β, µ, Σ are parameters to estimate;
– At each step, mutiply elementwise the vectors with
the missingness pattern m or 1−m, and matrices by
mm′;

– For Σ−1, use a Neumann series, i.e., Σ−1 =∑
k⩾0(I − Σ)k, but learn the weights W (instead of

using W − I − Σ).

S0 =W0

S1 = (W1 �mm′)S0 + I

S2 = (W2 �mm′)S1 + I

S2 �mm′ ≈ Σ−1obs

Article and book summaries by Vincent Zoonekynd 278/1044

Statistical and topological properties
of sliced probability divergences

K. Nadjahi et al. (2020)
The sliced Wasserstein distance (average of the
Wasserstein distances after projection on random 1-
dimensional subspaces) has good theoretical properties
(similar to, and sometimes even better than the origi-
nal Wasserstein distance).
The generalized sliced Wasserstein distance uses a non-
linear projection, e.g., a neural network with a 1-
dimensional output.

The dynamics of learning
with feedback alignment

M. Refinetti et al. (2020)
Backpropagation propagates the error ε of a neural
net from the output to the input: each layer re-
ceives this error, transformed by a product of matrices
Aℓ+1Aℓ+2 · · ·Anε.
Instead, direct feedback alignment (DFA) uses
fixed random matrices.
Evidence from shallow networks shows two phases:
– First, the weights change until the DFA direction
becomes aligned with the actual gradient;

– Only then does learning actually start.

Direct feedback alignment scales to modern
deep learning tasks and architectures

J. Launay et al. (2020)
Extensive survey of DFA on complex architectures:
they fail with CNNs, struggle with graph neural nets,
but work surprisingly well with everything else (fully-
connected networks, attention, etc.).

Low-dimensional hyperbolic
knowledge graph embedding

I. Chami et al. (2020)
A knowledge graph encodes different types of relations:
hierarchical (e.g., “is a”), symmetric (e.g., “married
to”), asymmetric, etc.
Embed both entities and relations in hyperbolic space,
with a learned curvature c, different for each type of
relation.
For the relations r, do not only learn an embedding,
but also a rotation Rotr, and a reflection Refr; apply
them to the head h of the triplet (h, r, t); combine them
with an attention mechanism, and translate (Möbius
addition) with the relation embedding

Att(Rotr · h,Refr · h)⊕c r.

Data from WorldNet, Freebase, Yago3.
The (non-commutative, non-associative) Möbius addi-
tion is defined from the parallel transport:

x⊕ y = expx P0→x log0 y.

Learning clique forests
G.P. Massara and T. Aste (2019)

A clique is a maximal complete subgraph. A separa-
tor is an intersection of two cliques. A clique graph
has cliques as nodes and separators as edges. It is a
clique forest if it has no cycles (forest) and satisfies
the “clique intersection property”: if C1 and C2 are
cliques, then C1 ∩ C2 is in all the cliques on the path
from C1 to C2.
A perfect elimination order is an ordering σ =
(v1, . . . , vn) of the vertices such that each Adj(vi)∩Gi:n
is a clique in Gi:n, where Adj(v) is the set of vertices
adjacent to v.
A graph is chordal iff if has a clique forest iff it has a
perfect elimination order. The junction tree algorithm
provides efficient exact inferrence on chordal undi-
rected probabilistic graphical models (chordal Markov
random fields).
The maximally filtered clique forest (MFCF) is
an alternative to the graphical lasso (or other PGM
structure inference algorithms: PC, etc.) which pro-
gressively builds a clique forest by adding vertices one
by one with clique expansion to maximize the gain (in-
crease in the “score”, e.g., the sum of the edge weights
(correlations), or the log-likelihood).

−→

isolated
node

or

new clique
+

separator

or

larger
clique

Complex networks on hyperbolic surfaces
T. Aste et al. (2004)

Filter a graph by progressively adding edges as long
as it remains embeddable in an orientable surface of
genus g.
The geneus of a graph (minimum genus of an orientable
surface on which the graph can be embedded without
edge intersections) is a measure of complexity; it is
higher for small-world networks (which have “worm-
holes”).

A tool for filtering information
in complex systems

M. Tuminello et al. (2005)
Idem.

Network filtering for big data:
triangulated maximally filtered graph

G.P. Massara et al. (2015)
The planar maximally filtered graph (PMFG) can be
construicted greedily, but with p planarity tests at
O(p2), it is still O(p3).

Article and book summaries by Vincent Zoonekynd 279/1044

The deltahedron heuristic starts with a tetrahedron
K4 = and progressively adds vertices .

T2 : 7−→

Choose the triangle to maximize the sum of the edge
weights; add the vertices in some predetermined order,
e.g., using the sum or maximum of the incident edges.
The result is a tree of 4-cliques separated by 3-cliques.
The triangulated maximally filtered graph (TMFG)
chooses the optimal vertex and triangle at each step;
it is still O(p2). It can be extended with more local
moves

T1 : 7−→

A : 7−→ (non-chordal)

S : 7−→

Topological regularization
with information filtering networks

T. Aste
The maximally filtered clique forest (MFCF), from
the squared Kendall correlation, with different max-
imum clique sizes, can be used to infer the sparsity
structure of the concentration matrix of a multivariate
Gaussian or Student distribution, as an approximate
penalty. Use training/validation sets to separately esti-
mate the model and choose the hyperparameter (max-
imum clique size).

Topological regularization
via persistence sensitive optimization

A. Nigmetov et al. (2020)
Persistence holomogy can help control the complexity
of the solution of an optimization problem, e.g., the de-
cision boundary of a classifier, or the latent represen-
tation of an auto-encoder, by removing low-persistence
0-dimensional features (noise).

Loss =
∑

di−bi⩽ε
(di − bi)2

The 0-dimensional persistence diagram of a function
f : X → R is

Dgm(f) =
{(
f(vbirth), f(vdeath)

)}
.

An ε-simplification of f is a function g such that
‖f − g‖∞ ⩽ ε and

Dgm(g) =
{
(b, d) ∈ Dgm f : |d− b| > ε

}
.

Persistence-sensitive optimization (PSO) alternates be-
tween two gradient descents (each with its own momen-
tum):

– Gradient step to reduce Loss(θ);
– ε-simplification g of fθ;
– Gradient step to reduce ‖fθ − g‖2 (g fixed).

Second-order optimization made practical
R. Anil et al. (2020)

Updates for gradient-based optimization are of the
form w ← w − ηg. Preconditioning methods are
w ← w − Pg, where P is an n × n matrix computed
from the Hessian (Newton) or gradient-gradient corre-
lations. AdaGrad assumes P is diagonal, while Sham-
poo uses

W ∈ Rm×n

Lt =

t∑
s=1

GsG
′
s ∈ Rm×m

Rt =
∑

G′sGs ∈ Rn×n

w ← w − ηL−1/4GR−1/4.

The condition number for L is bad (⩾ 107): double
precision computations are required.
Also check: K-FAC, GGT.

The non-convex Burer-Monteiro approach
works on smooth semi-definite programs

N. Boumal et al. (2018)
The semi-definite program

Find X ∈ Rn×n

To minimize 〈C,X〉
Such that AX = b

X ≽ 0

can be reformulated, if X has rank p, as

Find Y ∈ Rn×p

To minimize 〈CY, Y 〉
Such that AY Y ′ = b.

It is not convex but, under reasonable assumptions,
first- and second-order optimality conditions are also
sufficient.

Fairwashing explanations
with off-manifold detergent

C.J. Anders et al. (2020)
Most explanations of black-box methods (gradient,
x� grad (contribution), integrated gradient, layerwise
relevance propagation) ignore the data manifold and
can be manipulated: keep the model as is on the data
manifold and alter it orthogonally – in practice, add the
desired explanation to the loss function (it is Goohart’s
law).
Projecting the explanations tangentially to the mani-
fold makes them more robust (use the k-nearest neigh-
bours, or an autoencoder, to estimate the tangent
space).

Article and book summaries by Vincent Zoonekynd 280/1044

NCVis: noise contrastive approach
for scalable visualization

A. Artemenkov and M. Panov (2020)
Noise contrastive estimation (NCE) maximizes

E
x∼data

log
pθ(x)

pθ(x) + νpnoise(x)
+

ν E
x∼noise

log
νpnoise(x)

pθ(x) + νpnoise(x)

Simplify t-SNE by:
– Replacing the Gaussian distributions in the input
space with uniform distributions on the k nearest
neighbours;

– Treating the normalization constant in the low-
dimensional space as a parameter;

– Using NCE with, as noise distribution, the data dis-
tribution on edges with one end replaced at random.

Python code available. Also check UMAP (slower),
FIt-SNE.

Efficient algorithms for t-distributed stochastic
neighbourhood embedding

G.C. Linderman et al. (2017)
FIt-SNE is a faster implementation of t-SNE
(fast_tsne in R or Python).
It is also useful in dimension 1: plot it several times,
with dodging, and colours from DBscan or features of
interest.

Arbitrary style transfer in real-time
with adaptive instance normalization

X. Huang and S. Belongie (2017)
Instead of training a style transfer network so that
the statistics of the latent representation match those
of the target image (a time-consuming optimization),
AdaIN (adaptive instance normalization) just rescales
them.

RealMix: towards realistic
semisupervised deep learning algorithms

V. Nairet et al (2019)
Semi-supervised learning relies on a few ideas:
– Consistency training: outputs on unlabeled data
should be invariant to small perturbations;

– Entropy minimization: decision boundaries should
avoid dense regions (the model should be more con-
fident);

– MixUp: linear interpolation of (labeled) data points;
– Data augmentation;
– Out-of-distribution masking: mask unlabeled sam-
ples with low confidence (to account for different dis-
tributions in the labeled and unlabeled sets);

– Training signal annealing: limit training on labeled
samples (there are too few of them) to avoid averfit-
ting.

Inclusive GAN: improving data
and minority coverage in generative models

N. Yu et al. (2020)
Implicit maximum likelihood estimation (IMLE) alle-
viates the mode collapse problem of GANs by matching
each real sample with a generated one (instead of the
opposite).

Minimize
θ

E
z1,...zn∼N(0,I)

E
x∼data

Min
i
‖Gθ(zi)− x‖2

(use a fast nearest neighbour algorithm, e.g., priori-
tized DCI). One can combine adversarial and recon-
structive (IMLE) losses.

Fast k-nearest neighbour search
via prioritized DCI

K. Li and J. Malik (2017)
Fast (approximate) nearest neighbour search can be
done with k-d-trees (only in low dimension) or locality-
sensitive hashing (LSH – but performance degrades if
there are large density variations).
Dynamic continuous indexing (DCI) does not partition
the points, but uses indices, each ordering the points
in a random direction. Prioritied DCI does not visit
one point from each index at each iteration, but pri-
oritizes them (with the distance, along the projection
direction, between the query and the next point).

Finding nearest neighbours
in growth-restricted metrics

D.R. Karger and I.M. Ruhl (2002)
To perform nearest neighbour seach in an arbitrary
metric space, store, for each observation, a random list
of neighbours at distance ⩽ r, for several values of r,
and use them, progressively reducing r, to move closer
to the target point.
A discrete metric space has (ρ, c)-expansion if
∀p ∈ X |Bp(r)| ⩽ ρ =⇒ |Bp(2r)| ⩽ c |Bp(r)| .

For instance, (Zd, L1) has (1, 2d)-expansion.
Applications if the KR dimension include internet rout-
ing and machine learning (the manifold hypothesis).

JASS: Japanese-specific sequence to sequence
pretraining for neural machine translation

Z. Mao et al. (2020)
Pretrain the model on units larger than words (文節≈
noun or verb phrase) on a masked prediction or re-
ordering task.

Tapas: weakly supervised table parsing
via pre-training

J. Herzig et al. (2020)
Train a BERT model for question answering on table
data (free-form questions, asking which cells to select
and which aggregation function (sum, avg, count, nop)
to use) on data from Wikipedia (Infobox, Wikitable).

Article and book summaries by Vincent Zoonekynd 281/1044

Synthesizer: rethinking self-attention
for transformer models

Y. Tay et al. (2020)
In the transformer X 7→ Softmax(QK ′)V , replace the
dot product QK ′ with:
– a shallow net F : Rd → Rℓ, operating identically on

each of the ` tokens Rd×ℓ → Rℓ×ℓ

– or a random matrix.

SIGN: scalable inception graph neural network
F. Frasca et al. (2020)

Graph neural nets do not scale well to large graphs:
one often uses seed nodes (picked at random, or us-
ing PageRank), adds their neighbourhoods, and only
computes the loss on the seed nodes.
Instead, use a shallow net of the form

X 7→ A0XΘ0, . . . , ArXΘr
σ7→ Z 7→ ZΩ

σ7→ σ(ZΩ)

where Θk and Ω are parameters and the A′ks are fixed
operators (so that AkX can be precomputed), e.g., Bk,
where B is the adjacency, the personalized pagerank
adjacency, or triangle-based adjacency.

Erdös goes neural:
an unsupervised learning framework

for combinatorial optimization on graphs
N. Karalias and A. Loukas (2020)

To solve combinatorial optimization problems with
deep learning, do not directly look for a solution, but
for a probability distribution on candidate solutions:
if E[f(S)] = a, we know there is a solution S with
f(S) ⩽ a.
For instance, given a graph G, to find a set of vertices
S ⊂ V (G)minimizing f(S), for some nonnegative func-
tion f , use independent Bernoulli distributions on the
vertices and Loss = E[f(S)]/(1 − t): by the Markov
inequality, it guarantees

P
[
f(S) ⩽ loss

]
⩾ t.

To account for constraints S ∈ Ω, add 1S∈Ω · β to f
and find a computable differentiable upper bound for
P [S ∈ Ω].
For box constraints∑

vi∈S
ai ∈ [bℓ, hh],

rescale the probabilities to satisfy the constraint in ex-
pectation

pi ← clamp(cpi, 0, 1)∑
vi∈V

aipi =
1

2
(bℓ + bh).

To retrieve integral solutions, use (sampling or) con-
ditional expectations: sort the vertices by decreasing

probabilities and decide to add them to S one by one,
by comparing

E
[
f(S) | vi+1 ∈ S

]
and E

[
f(S) | vi+1 6∈ S, Si ⊂ S

]
.

Applications include max-clique and constrained min-
cut.

An alternative to backpropagation
in deep reinforcement learning

S. Chung (2020)
If the mapping from state S to action A is given by a
multi-layer network of stochastic units

Hℓ ∼ P (Hℓ|Hℓ−1,Wℓ),

the reinforce gradient estimator

∇W EG = E[G∇W logP (A|S)]

can be written

∇Wℓ EG = E[G∇Wℓ logP (Hℓ|Hℓ−1)]

which suggests the update rule

Wℓ ←Wℓ + αG∇Wℓ logP (Hℓ|Hℓ−1).

The following has lower variance

Wℓ ←Wℓ + αGE[∇Wℓ logP (Hℓ|Hℓ−1)|S,A]

and the expectation can be approximated at the mode
Ĥℓ of P (Hℓ|S,A)

Wℓ ←Wℓ + αG∇Wℓ log(Ĥℓ|Ĥℓ−1);

the modes can be estimated by gradient ascent.

Realm: retrieval-augmented
language model pre-training

K. Guu et al. (2020)
Augment a masked language model (bert) with a re-
trieval system (maximum inner product search) and
train them together.

Sampled softmax with random Fourier features
A.S. Rawat et al. (2020)

Since sampling from the full softmax distribution p is
expensive

h : input embedding
ci : embedding of class i
oi = τh′ci raw score (logit)
pi = eoi/Z probability
t : true label
L (x, t) : loss
∇θL = −∇θot + E

s∼p
[∇θos]

it is often replaced by an easier distribution, e.g., uni-
form, or some prior – but the softmax distribution is

Article and book summaries by Vincent Zoonekynd 282/1044

the only one which gives an unbiased estimator. To
have a low bias, we need the pi/qi to be close to 1.
Kernel-based sampling uses qi ∝ k(h, ci), where k :
Rd × Rd → R is some kernel. If the kernel can be
linearized, k(h, c) = φ(h)′φ(c), for φ : Rd → RD,
sampling can be done in O(D log n) by a divide-and-
conqueer algorithm (put the classes in a binary tree:
we only need

∑
c∈S φ(c) for the subtrees S).

The softmax is obtained for k(h, c) = exp(τh′c). The
quadratic kernel

k(h, c) = α(h′c)2 + 1

φ(x) = [
√
α(z ⊗ z), 1]

is not a good approximation of the exponential kernel,
and does not scale well with the embedding dimen-
sion d.
Use random Fourier features (and a normalized embed-
ding)

φ(u) =
1√
D

[
cosw′1u, . . . , cosw

′
Du, sinw

′
1u, . . . , sinw

′
Du
]

wi ∼ N(1, 1/τ)

exp−τ
2
‖x− y‖ ≈ φ(x)′φ(y).

Transformers are RNNs: fast autoregressive
transformers with linear attention

A. Katharopoulos et al. (2020)
The softmax in the attention mechanism can be lin-
earlized, e.g., with a quadratic kernel, random Fourier
features, or φ(x) = elu(x) + 1.

Language ID in the wild:
unexpected challenges on the path

to a thousand-language web text corpus
I. Caswell et al. (2020)

Language identification on real (dirty, web-crawled)
data for low-resource languages is tricky: avoid overly
cleaned data, deduplicate, balance the data, use cu-
rated wordlists (500/language), train a transformer
and check the types or errors (mojibake, create use
of Uniciode, obfuscationm boilerplate, high-resource
nearly language, n-gram overlap, antspeak, repetitions,
etc.)

A convenient generalization
of Schlick’s bias and gain functions

J.T. Barron (2020)
Increasing functions [0, 1] → [0, 1] with at most one

inflection point (a, t ∈ (0, 1), s ⩾ 0).

B(x, a) =
x

(1/a− 2)(1− x) + 1

G(x, a) =

B(2x, a)

2
if x < 1/2

B(2x− 1, 1− a) + 1

2
if x ⩾ 1/2

C(x, s, t) =

tx

x+ s(t− x) + ε
if x < t

(1− t)(x− 1)

1− x− s(t− x) + ε
+ 1 if x ⩾ t

B(x,a)

x

B
(x

, 0
.5

)

G(x,a)

x

G
(x

, 0
.5

)

C(x,s,t)

x

C
(x

, 1
, 0

.5
)

q-neurons: neuron activations based on
stochastic Jackson’s derivative operators

F. Nielsen and K. Sun (2018)
Replace the activation function f with

gq(x) =
f(x)− f(qx)

1− q
,

with q ∼ N(1, σ2) (but remove a small interval around
1 for stability). The gradient of g contains second-order
information:

lim
Var q→0

g′q(x) = f ′(x) + f ′′(x)x.

The q- and (p, q)-derivatives (from quantum calculus)
are

Dqf(x) =
f(x)− f(qx)

(1− q)x

Dp,q(x) =
f(px)− f(qx)

(p− q)x
.

Learning
with differentiable perturbed optimizers

Q. Berthet et al. (2020)
To differentiate through an Argmax

C = Conv{y1, . . . , yn}
F (θ) = Max

y∈{y1,...,yn}
〈y, θ〉 = Max

y∈C
〈y, θ〉

y∗(θ) = Argmax
y∈C

〈y, θ〉 = ∇θMax
y∈C
〈y, θ〉

add noise z ∼ exp−U(z) (this generalizes the Gum-
bel softmax trick, for which C = ∆ is the standard
simplex).

Fε(θ) = E
z

[
F (θ) + εZ

]
y∗ε (θ) = E

z

[
Argmax

y
〈y, θ + εZ〉

]
= ∇θFε(θ)

Article and book summaries by Vincent Zoonekynd 283/1044

The Jacobian can be computed with Monte Carlo sim-
ulations.

y∗ε (θ) = E
[
F (θ + εZ)∇Zν(Z)/ε]

Jθy
∗
ε (θ) = E

[
F (θ + εZ)∇Xν(Z)∇Zν(Z)′ −∇Zν(Z)2/ε2

]
Applications include rank correlation, shortest path.

Geometric distances via optimal transport
D. Alvarez-Melis and N. Fusi (2020)

Optimal transport on (X ,Y) can be used to compare
datasets (e.g., to choose the closest one for transfer
learning). If the labels are not the same, replace them
with the corresponding distribution in feature space
(input), and use the optimal transport distance be-
tween those distributions as “distance” (transportation
cost) between the labels.

Lambda networks: modeling long-range
interactions without attention

(2020)
Lambda layers are a variant of / an alternative to at-
tention layers, which map a context to a linear func-
tion, which is then applied to the input (keys).

Fourier neural operator
for parametric partial differential equations

Z. Li et al. (2020)
An infinite-dimensional generalization of neural nets
approximates a function

G : A = F (D,Rda) −→ U = F (D,Rdu)

by minimizing E
a∼µ

Cost
(
Gθ(a), G(a)

)
. First, lift the

input to a higher-dimensional representation, with a
shallow neural net

v0 : D −→ Rda

v1 : D
v0−→ Rda P−→ Rdv ,

then apply iterative updates

vt+1(x) = σ

(
Wvt(x) +

∫
D

kϕ(x− y)vt(y)dy
)
;

parametrize kϕ : Rda −→ Rdv×dv in Fourier space and
use the FFT to compute the convolution.

Algebraic statistics in practice
M. Casanellas et al. (2019)

Exponential random graph models (ERGM) are of the
form

pθ(G) ∝ exp〈T (G), θ〉.
The fiber of G is the set of graphs with the same suf-
ficient statistic {G′ : T (G′) = T (G)}. For log-linear
models, i.e., T (G) = BAG, where AG is the adjacency
matrix, toric ideals can help describe the fiber and sam-
ple from it (Metropilis-Hastings), to perform goodness-
of-fit tests.

The number of Markov equivalance classes (MEC) of
directed graphical models on n nodes, and the number
of MECs with only one GDAG, are open problems in
combinatorics.
To infer the structure of a directed graphical model
with conditional independence tests, it has to be faith-
ful, ie, causal effects should not cancel out: (for Gaus-
sian linear structural equation models (SEM)), that
condition defines a real algebraic surface, and the vol-
ume of tubes around it tells us how many samples are
needed.
Instead of testing all conditional independence rela-
tions, choose an order on the vertices and only test
for Xi ⊥⊥ Xj |X⩽j,≠i,j , i < j. Prefer the order leading
to the sparsest DAG (sparsest permutation search – a
vertex on the permutahedron, polytope whose vertices
are orderings of J1, nK and with edges when two permu-
tations differ by a transposition of adjacent elements).
(Things get even more complicated with unobserved
variables.)
Phylogenetics models consider a probability distribu-
tion on {A,C, T,G}n at the root of the tree (e.g., uni-
form), a transition matrix for each edge (e.g., with a
single parameter, P (x|y) for x 6= y), and we observe the
probabilities on the leaves. Some relations between the
probabilities on the leaves (the fact that some matrix
has low rank) depend on the structure of the tree and
the model: they can help identify the tree, select the
model, or prove model identifiability.

Factor investing with Black-Litterman-Bayes:
incorporating factor views and priors

in portfolio construction
P.N. Kolm and G. Ritter (2020)

1. The simplified Black-Litterman framework models
stock returns as

r ∼ N(µ,Σ) stock returns
Z ∼ N(0,) views uncertainty
Q = Pr + Z views

and then computes the conditional distribution of re-
turns given the views, r |Q = q.
2. The textbook Black-Litterman model is more com-
plicated: the views are not on the returns but on the
expected returns.

µ ∼ N(π,C) expected stock returns
r ∼ N(µ,Σ) stock returns
Z ∼ N(0,Ω) uncertainty of the views
Q = Pµ+ Z views on expected returns

We can then compute the conditional distributions
µ |Q = q and r |Q = q, and the optimal (uncon-
strained) portfolio

w∗ = Argmax
w

w′µ− 1

2
λw′Σw = λ−1Σ−1µ.

Article and book summaries by Vincent Zoonekynd 284/1044

3. The factor Black-Literman replaces the stock return
model, r ∼ N(µ,Σ), with a factor model, r = Xf + ε;
the views are on the expected factor returns µ (not the
factor returns).

µ ∼ N(ξ, V) expected factor returns
f ∼ N(µ, F) factor returns
r = Xf + ε factor model
ε ∼ N(0, D)

Z ∼ N(0,Ω) uncertainty of the views
Q = µ+ Z views on expected factor returns

From this model, we can compute the conditional dis-
tributions of the expected factor returns µ |Q = q, then
of the factor returns f |Q = q, then of the stock returns
r |Q = q.

Portfolio optimization
with drawdown constraints
A. Chekhlov et al. (2003)

The conditional drawdown (or conditional drawdown
at risk, or conditional expected drawdown) is the av-
erage of the worst α% drawdowns. Average and max-
imum drawdowns are special cases (α = 1 or 0). For
portfolio optimization, assume the portfolio weights are
constant and consider “uncompounded” returns (i.e.,
assume that log- and ratio-returns are the same).

Drawdown:
from practice to theory and back again
L.R. Goldberg and O.Mahmoud (2014)

Deep fundamental factor models
M.F. Dixon and N.G. Polson (2019)

Use a neural network to forecast 1-period ahead stock
returns (Russell 1000) from stock-level investment fac-
tots,

yt+1 = f(xt) + noise.
The gradient (and the Hessian, for interactions) makes
the model interpretable. [Data and code available]

A study on the use of artificial intelligence
for learning characteristics of fund’s behavior

T. Tajiri (2020)
Dimension reduction (VAE) from holdings data.

A basket half-full: sparse portfolios
E. Seregina (2020)

Nodewise regression estimates the precision matrix (in-
verse of the variance) of x1, . . . , xn with a regression for
each column, βij = coef(xi ∼ s−i), as

C =

1 −β12
−β21

1

with a lasso penalty to encourage sparsity, rescaled
with the variance of the residuals Θ = Σ−2C, Σ =
diag(σ2

1 , . . . , σn); symmetrize (with Min(C,C ′)) and
discard negative eigenvalues. If there are many vari-
ables, first use a low-rank factorzation X = BF + E,
then sparse nodewise regression on the residuals, and
finally Woodbury’s formula to recover the precision
of X.

When bots take over the stock market:
evasion attacks against algorithmic traders

E. Nehemya et al. (2020)
To build an adversarial attack on an automatic trading
algorithm f , find a perturbation v such that f(x+v) =
y with high probability, where x is the input and y the
desired output (we do not know f(x) in advance: it
could already be y). It is a white-box attack, but it
may transfer.

Quant bust 2020
Z. Kakushadze (2020)

Quant strategies such as stat-arb and, more generally,
medium-term strategies (1 day to 1 month) rely on
long-term investors keeping their positions and ignor-
ing potentially profitable medium-term fluctuations.
During the Covid-19 crisis, they sold theor positions:
that assumption was broken.

Deep reinforcement learning
for asset allocation in US equities

M. Alonso and S. Srivastava (2020)
CNN, RNN, LSTM, from 50 years of HLC prices for 25
stocks to maximize the average log-returns; the gener-
ated weights are combined with the previous 20 ones
with a 1× 1 convolution to reduce turnover (this dras-
tically reduces performance as well).

Explainable machine learning
in credit risk management
N. Bussmann et al. (2020)

Use the correlation between the Shapley contributions
to group the predictors.

An operational measure of riskiness
D.P. Foster and S. Hart (2009)

Given a discrete random variable X modeling the
outcome of a gamble, i.e., sich that EX > 0 and
P [X < 0] > 0, its Foster-Hart risk r is the positive
solution of

E log

(
1 +

X

r

)
= 0;

it is greater than the maximum loss and guarantees
no-bankruptcy. For continuous distributions, it need
not be defined: use the maximum loss instead.

Article and book summaries by Vincent Zoonekynd 285/1044

Parametric UMAP: learning embeddings
with deep neural networks for representation

and semi-supervised learning
T. Sainburg et al. (2020)

UMAP learns an embedding of the data points that
preserves the graph structure of the data; paramet-
ric UMAP uses a neural network to compute that em-
bedding (instead of looking for the coordinates of each
point in the dataset), which allows adding new points.
Contrary to t-SNE, the loss function uses negative sam-
pling and does not require normalization.

pt-SNE
j|i ∝ exp−d(xi, xj)

2σ2
i

pUMAP
j|i = exp−d(xi, xj)− ρi

σi

qt-SNE
ij ∝

(
1 + ‖zi − zj‖2

)−1
qUMAP
ij =

(
1 + a ‖zi − zj‖2b

)−1
Losst-SNE = KL(p, q) =

∑
i ̸=j

pij log
pij
qij

LossUMAP = CE(p, q)

=
∑
i ̸=j

pij log
pij
qij

+ (1− pij) log
1− pij
1− qij

The UMAP loss can be used as a regularization to learn
a latent representation preserving the structure of the
data, in autoencoders or for semi-supervised learning.

From trees to continuous embeddings and back:
hyperbolic hierarchical clustering

I. Chami et al. (2020)
Hierarchical clustering algorithms are often heuristics.
More rigorously, one can minimize the DasGupta cost

Cost(T) =
∑
ij

wij |leavesT (i ∨ j)|

=
∑
ijk

(wij + wik + wjk − wijk) + 2
∑
ij

wij

where

i, j: leaves
i ∨ j: lowest common ancestor (LCA)

T (i ∨ j): tree below i ∨ j
wij : similarity of i and j

wijk =

wijwik
wjk

 ·
1{i,j|k}
1{i,k|j}
1{j,k|i}

{i, j|k}: i ∨ j is a descendant of i ∨ j ∨ k.

This combinatorial optimization problem can be re-
laxed by looking for a hyperbolic embedding, replacing
i ∨ j with the point on the geodesic between i and j
closest to the origin, and1{i,j|k}

1{i,k|j}
1{j,k|i}

 with softmaxτ

d(i ∨ j, 0)d(i ∨ k, 0)
d(j ∨ k, 0)

 .

To reconstruct the tree, use d(i ∨ j, 0). (To speed up
the O(n3) sum, use all (i, j) pairs, but sample a single
k at random.)
This can be used as a (differentiable) step in a longer
ML pipeline (end-to-end training).

AlgebraNets
J. Hoffmann et al. (2020)

Try using albegras other thanR for weights and activa-
tions (C, H, C2×2, R2×2, R3×3, R4×4, dual numbers
R[ε]/〈ε2〉, cross-product R3): often, fewer parameters
suffice.

Fast and simple PCA
via convex optimization

D. Garber and E. Hazan (2015)
To find the largest eigenvalue of a positive definite ma-
trix, use the power method on M−1 = (λI − X)−1

for λ > λ1(X): it has the same eigenvectors, but its
condition number λ1/(λ1 − λ2) can be lower. The
product M−1w required by the power method can
be efficiently computed by solving a convex problem,
M−1w = Argminz

1
2z
′Mz − w′z.

Use variance-reduced stochastic gradient (SVRG) and
progressively reduce λ to bring it closer to λ1(X).

Sharpness minimization
for efficiently improving generalization

P. Foret et al. (2020)
Simultaneously minimize loss and loss sharpness by re-
placing Loss(w) + λ ‖w‖22 with

Max
∥ε∥p⩽ρ

Loss(w + ε) + λ ‖w‖22 .

Use the first-order expansion of the loss to approxi-
mate the solution of the inner maximization problem
and compute the gradient). Only compute the sharp-
ness, Maxε Loss(w + ε)− Loss(w), on minibatches.

Fact or fiction: verifying scientific claims
D. Wadden et al. (2020)

Given a statement, use bert (Scibert, BioMet
Roberta) to label sentences from paper abstracts as
supports/refutes/no_info.

Automatic generation of reviews
of scientific papers

A. Nikiforovskaya et al. (2020)
Combine bibliometric analysis (PageRank and Louvain
community detection on the citation, co-citation, or
text similarity graphs) with extractive summarization
(bertsum computes the relevance of each sentence for
a summary) to generate a review “paper” for a domain,
i.e., identify and summarize the (many) relevant pa-
pers in a domain (the output is a table with columns

Article and book summaries by Vincent Zoonekynd 286/1044

“paper”,“summary”, “relevance”). The citation con-
text (the sentence citing a paper) provides additional
context.

Descending through a crowded valley:
benchmarking deep learning optimizers

R.M. Schmidt et al. (2020)
The best optimizer is problem-dependent, but:
– Adam, RAdam, NAdam, AMSBound, AdaBound
have robust default parameters;

– A non-constant learning rate schedule may help: co-
sine , cosine with restarts , or trapezoidal .

Beyond vector spaces:
compact data representation

as differentiable weighted graphs
D. Mazur et al. (2019)

To account for arbitrary geometries, embed your data
in a graph rather than a vector space [PyTorch imple-
mentation available].

pθ(i, j) edge probability
wθ(i, j) edge weight

d(i, j) = Min
π:i→j

∑
e∈π

wθ(e)

Loss = E
G∼pθ

L(G) +
1

|E|
∑
ij

pθ(i, j)

(use the “log-derivative trick” (reinforce) for the gra-
dient). After optimization, the edge probabilities are
close to 0 or 1: discard all those below 0.5 to have
a sparser graph. Examples include generalization of
MDS (or Poincaré MDS) and collaborative filtering.

L(G) =
(
‖xi − xj‖ − d(i, j)

)2
L(G) =

[
1 +

e−d(ui,x
+)

e−d(ui,x−)

]−1

Embedding words in non-vector spaces
with unsupervised graph learning

M. Ryabinin et al. (2020)
Embedding words (GloVe) in Euclidean or hyperbolic
space (constant curvature) assumes the geometry of
the space is the same everywhere: instead, use a graph
embedding.

Poincaré GloVe: hyperbolic word embedding
A. Tifrea et al. (2019)

The Gromov δ-hyperbolicity measures how tree-like
(hyperbolic) a metric space is: it is half (the av-
erage of) the difference between the biggest two of
d(x, y) + d(z, t), d(x, z) + d(y, t), d(x, t) + d(y, z) (nor-
malize it by dividing by the average distance; hyper-
bolic spaces have lower values).
Words can be embedded as Gaussian distributions –
but the space of Gaussian distributions is hyperbolic –

the space of diagonal Gaussians is isometric to a prod-
uct of Poincaré half planes (H2)n.

Gradient estimation
with stochastic softmax tricks

M.B. Paulus et al. (2020)
Sampling from a discrete distribution

U ∼ U(0, 1)

i = Max{i : p1 + · · ·+ pi−1 ⩽ U}
Z = onehot(i)

can be parametrized with a Gumbel distribution

Gi ∼ Gumbel(0, 1)
i = Argmax(Gi + log pi)

Z = onehot(i)

and relaxed (Gumbel softmax)

Gi ∼ Gumbel(0, 1)
Xi = Gi + log pi

Z = softmax(X).

The “reparametrization trick” is used to differentiate
wrt the parameters of a discrete distribution (in the
backward pass – in the forward pass, you may still use
discrete distributions). It can also be written

Z = Argmax
x∈conv X

U ′x− tf(x)

U ∼ Gumbel
X = ∆n

f(x) =
∑

xi log xi

t: temperature

Deep Bayes 2019
1. Frequentist and Bayesian approaches do not dis-
agree: maximum likelihood only provides asymptotic
guarantees, and is asymptotically equivalent to the
Bayesian approach.
Frequentist and Bayesian approaches use probabilities
to encode different types of randomness. The frequen-
tist approach assumes randomness in the data gener-
ation process – even though there is rarely any actual
physical (e.g., quantum) randomness, just complex,
chaotic phenomena that look random. The Bayesian
approach uses probability theory to model uncertainty.

Likelihood Parameters Conjugate prior
Gaussian µ Gaussian

σ−2 Gamma
(µ, σ−2) Gaussian-Gamma
Σ−1 Wishart

Bernoulli p Beta
Multinomial (p1, . . . , pm) Dirichlet
Poisson λ Gamma
Uniform θ Pareto

Article and book summaries by Vincent Zoonekynd 287/1044

2. The posterior distribution p(θ|x) is often in-
tractable: variational inference replaces it with a
simpler distribution q(θ), as close as possible for the
(mode-seeking) Kullback-Leibler divergence.

q = Argmax
q

KL
(
q(θ)

∥∥ p(θ|x))
KL(q‖p) =

∫
log

q(θ)

p(θ)
q(θ)dθ

Since the posterior is intractable, so seems the KL di-
vergence.
However, the evidence p(x) can be decomposed as

log p(x) =

∫
log p(x)q(θ)dθ

=

∫
log

p(x, θ)

p(θ|x)
q(θ)dθ

=

∫
log

(
p(x, θ)

p(θ|x)
q(θ)

q(θ)

)
q(θ)dθ

=

∫
log

p(x, θ)

q(θ)
q(θ)dθ +

∫
log

q(θ)

p(θ|x)
q(θ)dθ

= L
(
q(θ)

)
+KL

(
q(θ)

∥∥ p(θ|x)).
Since the lhs does not depend on q, to minimize the
KL divergence, it suffices to maximize the evidence
lower bound (ELBO) L

(
q(θ)

)
.

Note that, since KL ⩾ 0, it is indeed a lower bound:
log p(x) ⩾ L

(
q(θ)

)
.

The ELBO can be decomposed as

L
(
q(θ)

)
=

∫
log

p(x, θ)

q(θ)
q(θ)dθ

= E
θ∼q

[
log p(x|θ)

]
−KL

(
q(θ)

∥∥ p(θ)).
The first term, the expected log-likelihood, is maxi-
mum if q = δθ̂MLE

; the second term, the KL divergence
with the prior p(θ), is minimum if q = p, and acts as a
regularizer. This decomposition is similar to the Bayes
formula:

Posterior ∝ likelihood× prior
ELBO = data term+ regularizer.

The mean-field approximation constrains q to be of the
form q(θ) =

∏
i qi(θi). Block coordinate descent up-

dates the estimate of qj while keeping the other qi’s

fixed.

L
(
q(θ)

)
=

∫
log

p(x, θ)

q(θ)
q(θ)dθ

= E
θ∼q

log p(x, θ)− E
θ∼q

log q(θ)

E
θ∼q

log p(x, θ) = E
θj∼qj

E
θi∼qi
i ̸=j

log p(x, θ)

E
θ∼q

log q(θ) =
∑
i

E
θi∼qi

log qi(θi)

= E
θj∼qj

log qj(θj) + const

L
(
q(θ)

)
= E
θj∼qj

[
E

θi∼qi
i ̸=j

log p(x, θ)− log qj(θj)

]
+ const

= E
θj∼qj

[
log rj(θj)− log qj(θj)

]
+ const

= −KL
(
qj(θj)

∥∥ rj(θj))+ cont

This is maximum for qj = rj ; it can be computed if
prior and likelihood are conditionally conjugate, i.e.,
when p(θj |θi ̸=j and p(θj |x, θi ̸=j are in the same family.
3. To estimate a mixture of Gaussians

Zi ∼ Categorical(π1, . . . , πk)
Xi ∼ N(µzi , σ

2
zi)

θj = (µj , σ
2
j),

use the evidence decomposition

log p(X|θ) =
∫

log
p(X,Z|θ)
q(Z)

q(Z)dZ +∫
log

q(Z)

p(Z, |X, θ)
q(Z)dZ

= L (q, θ) +KL
(
q(Z)

∥∥ p(Z|X, θ))
⩾ L (q, θ)

Insead of maximizing p(X|θ), maximize L (q, θ), wrt
q and θ. The EM algorithm is the block-coordinate
ascent algorithm to maximize L .

E step q = Argmax
q

L (q, θ)

= Argmin
q

KL
(
q(Z)

∥∥ p(Z|X, θ))
= p(Z|X, θ)

M step θ = Argmax
θ

L (q, θ)

= Argmax
θ

E
Z∼q

log p(X,Z|θ)

If Z is discrete, this is tractable.

q(Zi = k) =
p(xi|Zi = k, θ)p(Zi = k|θ)∑
ℓ

p(xi|Zi = `, θ)p(Zi = `|θ)

θ = Argmax
θ

∑
i

∑
k

q(Z = k) log p(xi, Z = k|θ)

Variational EM uses variational inference in the E step.

Article and book summaries by Vincent Zoonekynd 288/1044

A variational lower bound g of f satisfies

∀x ∀ξ f(x) ⩾ g(ξ, x)
∀x ∃ξ f(x) = g(ξ, x)

The MM algorithm iterates

x← Argmax
x

g(ξ, x)

ξ ← Argmax
ξ

g(ξ, x)

The Ada-gram (adaptive skipgram) algorithm extends
the word2vec model by considering several embeddings
for each word, corresponding to different meanings.
Add a latent variable to select the meaning; use a
Dirichlet process to have an unbounded number of
meanings per word.
4. PCA is a latent variable model

p(X,Z|θ) =
∏
i

p(xi|zi, θ)p(zi|θ)

=
∏
i

N(xi|V zi + µ, σ2I)N(zi|0, I);

it can be estimated with the EM algorithm, generalized
to mixture PCA

p(X,Z, Y |θ) =
∏
i

N(xi|Vtizi + µti , σ
2
tiI)N(zi|0, I)πti

or non-linear PCA

p(X,Z|θ) =
∏
i

p(xi|zi, θ)p(zi|θ)

=
∏
i

[∏
j

N(xij |µj(zj), σ2
j (xj))

]
N(zi|0, I)

(mean and variance of the factorized (diagonal) Gaus-
sian are nonlinear functions of the latent variables in-
stead of linear or constant).
For the E step, we need q(z) =

∏
i p(zi|xi, θ), which is

intractable: use a variational approximation

q(zi|xi, φ) ≈ p(zi|xi, θ)

q(zixi, φ) =
∏
j

N
(
zij |µj(xi), σ2

j (xi)
)

where µj and σj are other neural nets. The ELBO

L (φ, θ) =

∫
q(Z|X,φ) log p(X|Z, θ)p(Z)

q(Z|X,φ)
dZ

is intractable:
– Instead of doing a full optimization at each step, al-
ternatively for φ and θ, optimize jointly for (φ, θ)
using gradient descent;

– Use mini-batches;
– Express∇θL and∇ϕL as expectations, and approx-
imate them with Monte Carlo;

– Somehow reduce the variance of those gradient esti-
mators.

∇θ E
z∼qϕ

[
f(z, θ)

]
= E
z∼q

[
∇θf(z, θ)

]
∇ϕ E

z∼qϕ

[
f(z, φ)

]
= E
z∼qϕ

[
∇ϕf(z, φ)

]
+ E
z∼qϕ

[
f(z, φ)∇ϕ log qϕ(z)

]
Monte Carlo estimators of the second term
(reinforce estimator) are unstable: the score func-
tion, ∇ϕ log qϕ(z), whose expectation is zero, oscillates.
To reduce the variance, use a baseline,

E
z∼qϕ

[(
f(z, φ)−B(φ)

)
∇ϕ log qϕ(z)

]
with B(φ) ≈ E[f], or use the reparametrization trick
(only for continuous variables), replacing z ∼ qϕ with
ε ∼ r, z = gϕ(ε).

∇ϕ E
z∼qϕ

[
f(z, φ)

]
= ∇ϕ E

ε∼r

[
f(gϕ(ε), φ)

]
= E
ε∼r

[
∇ϕf(gϕ(ε), φ)

]
q r y = gϕ(ε)

N(µ, σ2) N(0, 1) y = µ+ σε
Gamma(1, β) Gamma(0, 1) y = βε

Exp(λ) U(0, 1) y = −λ−1 log ε
N(µ,AA′) N(0, I) y = µ+Aε

A meta-transfer objective
for learning to disentangle causal mechanisms

Y. Bengio et al. (2019)
Latent representations that best encode causal rela-
tions are better at transfer learning: optimize for
fast transfer learning and robustness to distributional
changes.
For instance the following two models, for discrete vari-
ables, are equivalent,

P (A,B) = P (A)P (B|A)
P (A,B) = P (B)P (A|B)

but if one undergoes a sparse change (e.g., an unknown
intervention in a correct causal model), it will adapt
faster.
Instead of considering separate models, one can con-
sider a mixture.

R = log
[
σ(γ) · LikA→B +

(
1− σ(γ)

)
· LikB→A

]
∂R

∂γ
= σ(γ)− σ(γ +∆)

∆ = log
LikA→B(new data)
LikB→A(new data)

The variables A and B need not be observed: they can
be a latent representation.

Article and book summaries by Vincent Zoonekynd 289/1044

Elements of causal inference
J. Peters et al. (2017)

1. A causal model contains more information than a
probabilistic model.

gene

phenotype data

forecast

gene phenotype

gene

phenotype data

confounder

gene phenotype

2. A joint probability on (X,Y) is consistent with both
X → Y and X ← Y :

p(x, y) = p(x)p(y|x) = p(y)p(x|y).

To infer the direction of causality, we can rely on:
– Interventions: change x and check if y changes;
– The “independence” of cause pX and mechanism
pY |X – for a notion of independence to be defined;

– The independence of the noises in the structural
causal model (SCM):

X = NX

Y = f(X,NY)

NX ⊥⊥ NY .

(The influence of time is not always clear: in psychol-
ogy, cause and effect tend to be simultaneous; at the
microscopic scale, the laws of physics are invertible.)
3. To model an intervention with a SCM, just change
the corresponding assignment.
To study counterfactuals with an SCM

X = NX

Y = f(X,NY),

observe (x, y), compute NX and NY , then change the
value of X (equivalently, NX) and see how it affects
Y . Counterfactual statements are not transitive (X =
2⇒ Y = 5, Z = 2⇒ Y = 10, X = 2 6⇒ Z = 10).
Do not confuse conditional probabilities, interventions
(do-calculus) and counterfactuals: even if the interven-
tional probabilities are the same, the counterfactual
statemens can differ.
4. Causal inference is possible with just two variables,
but requires additional assumptions.

C
cause

−→ E
effect

Indeed, every joint distribution (X,Y) can be writ-
ten Y = f(X,NY), X ⊥⊥ NY : just set f(x, nY) =
F−1Y |X(nY), NY ∼ U(0, 1).

One can restrict the class of models, so that they can
only be written in one direction (and hope that this
direction is the “causal” one).
– Linear models with non-Gaussian additive noise
(LiNGAM), E = αC +NE , NE ⊥⊥ C;

– Non-linear additive noise model (ANM), Y = f(X)+
NY , NY ⊥⊥ X;

– Discrete additive noise;
– Post-nonlinear model, Y = g

(
f(X) +NY

)
, NYX.

One can choose the direction in which PC and PE|C
are “independent”, in some sense.
– For a deterministic relation,

Y = f(X), f : [0, 1]→ [0, 1], f(0) = 0, f(1) = 1,

IGCI (information geometric causal inference) in-
dependence is defined as Cor[log f ′, pX] = 0 (where
log f ′ and pX are seen as probability densities). We
then have Cor[log(f−1)′, pY] ⩾ 0, with equality if
f = id (the peaks of pY are regions where f has
small slope and f−1 large slope: pY contains infor-
mation on f−1).

– In high dimension, the model Y = AX + NX ,
NX ⊥⊥ X, A ∈ Re×d satisfies the trace condition
if τe(AΣXXA′) = τd(ΣXX)τe(AA

′), where τk(B) =
trace(B)/k (it measures the “independence” of A
and PX). If A is invertible and NX = 0, then
τ(A−1ΣY YA

−1′) ⩽ τ(ΣY Y)τ(A−1A−1′). with equal-
ity if all the singular values of A have the same ab-
solute value.

– PC and PE|C are algorithmically independent if the
algorithmic mutual information

I(PC : PE|C) := K(Pc) +K(PE|C)−K(PC,E)

is zero, where K is the Kolmogorov complexity. This
implies K(PC) +K(PE|C) ⩽ K(PE) +K(PE|C) (it
is easier to describe C → E than E → C.

Implementation:
– Regression with subsequent independence tests (RE-
SIT), for additive noise models, estimates y ∼ x
and x ∼ y, and tests x ⊥⊥ y − ŷ and y ⊥⊥ x − x̂,
with an independence test looking beyond correla-
tion, e.g., HSIC (in R, use mgcv::gam(y~x) and
dHSIC::dhsic.test). Alternatively, compute the
log-likelihoods

LX→Y = − log VarX − log Var(y − ŷ).

– For IGCI, estimate CX→Y =
∫ 1

0
log f ′(x)p(x)dx as

ĈX→Y =
1

N − 1

N−1∑
j=1

log

∣∣∣∣ yj+1 − yj
xj+1 − xj

∣∣∣∣ ,
where x1 < x2 < · · · < xN ; it should be smaller in
the causal direction; one could also useH(X) instead
of CX→Y

– For the trce method, compute

rX→Y =
τ(AY ΣXXA

′
Y)

τ(AYA′Y)τ(ΣXX)

it is closer to 1 in the causal direction.

Article and book summaries by Vincent Zoonekynd 290/1044

One could train a machine learning model, using
datasets (or dataset features) as inputs.
5. Semi-supervised learning does not work well if
X → Y (but even in this case, knowing PX can help
build a classifier with lower loss: the loss involves p̂X).
Covariate shifts can help, if a change in PX,Y is better
explained by a change in PX (with PY |X unchanged)
than by a change in PY .
6. SCMs satisfy the Markov property, equivalently:
– d-separation implies conditional independence;
– Any X is independent of its non-descendants given

its parents;
– P (X) =

∏
P
(
Xi|Pa(Xi)

)
.

Two graphs are in the same Markov equivalence class if
they have the same skeleton and the same v-structures
(or “immoralities”: two non-directly-linked parents).
The completed partially directed acyclic graph
(CPDAG) of a Markov equivalence class contains a di-
rected edge i→ j iif one of the DAGs in the equivalence
class has it.
The Markov blanket of a node contains its parents, its
children, and it children’s parents.
A probability distribution is faithful wrt a graph if con-
ditional independence implied d-separation.
A causal effect is confounded if

P doX=x(y) 6= P (y |X = x).

In the kidney stone example (Z is the size of the stone,
large or small, T the treatment, invasive or not, and
R, the outcome),

T

Z

R

the average causal effect (ACE) is

P doT=A(R = 1)− P doT=B(R = 1)

6= P (R = 1|T = A)− P (R = 1|T = B)

(the signs can even be different: Simpson’s paradox),
but we can adjust for Z:

P doT=A(R = 1) =
∑
z

P (R = 1|T = A,Z = z)P (Z = z).

When those equalities hold, Z a a valid adjustment set
of T → R.
The parents of X form a valid adjustment set for Y
(if Y 6∈ Pa(x)) More generally, Z is a valid adjustment
set if it blocks all non-directed paths from X to Y and
contains no descendant of any node on a directed path
from X to Y .
In a linear Gaussian model, the effeect of X on Y can
be summarized by a single number,

∂

∂x
EdoX=x[Y].

The propensity score compresses the influence of sev-
eral confounders Z into a lower-dimensional variable
L.
Z1 Z2 Z3

X Y

Z1 Z2 Z3

L

X Y

Pearl’s do-calculus is a list of (three) rules saying when
we can add or remove a condition, or a “do” action, or
replace an action by a condition.
To check interventional equivalence, it suffices to con-
sider interventions on single variables, replacing them
with noise.
The unit-level causal effect is Bu(t = 1) − Bu(t = 0).
The average causal effect is

CE = Mean
u

Bu(t = 1)−Bu(t = 0).

For a randomized experiment, it can be estimated as

ĈE =
1

#U1

∑
u∈U1

Bu(t = 1)− 1

#U0

∑
u∈U0

Bu(t = 0).

SCMs can be generalized to non-statistical information
measures, non-probabilist notions of independence.
Let R : 2V → R+ be a non-decreasing function, mea-
suring the information in a subset x ⊂ V . The condi-
tional information is R(x, y) − R(y) ⩾ 0. The condi-
tional mutual information is

I(x : y|z) = R(x, z) +R(y, z)−R(x, y, z)−R(z);

it is non-negative if R is modular. We can write
x ⊥⊥ Ry|z when it is zero. For a graph such that
R(xj ,Paj , nj) = R(Paj , nj) (a node xj does not con-
tain more information than its parents and its unob-
served node nj) and R(n1, . . . , nd) =

∑
R(nj) (the un-

observed nodes are independent), d-separation implies
conditional independence (wrt R). Examples of such
an R include the number of words in a text, or the
multi-information,

I(x1, . . . , xd) = K(x1, . . . , xd)−
∑
j

K(xj),

where K is the Kolmogorov complexity. The algorith-
mic independence of conditionals,

I(PX1|Pa1
, . . . , PXd|Pad) = 0

is equivalent to

K(PX1,...,Xd) =
∑

K(PXj |Paj).

7. The DAG is identifiable in the following cases:
– Linear Gaussian with equal error variances;
– Linear non-Gaussian acyclic model (LiNGAM),

Xi =
∑
k∈Pai

βikXk +Ni;

Article and book summaries by Vincent Zoonekynd 291/1044

– Nonlinear Gaussian additive noise model

Xi = fi(Pai) +Ni,

and its special case, the causal additive model
(CAM),

Xi =
∑
k∈Pai

fik(Xk) +Ni.

Known interventions can also help identify the graph.
There are two types of algorithms to infer the structure
of an SCM.
– Some (IC (inductive causation), PC, SGS) test for
conditional indepence, i.e., d-separation: we can de-
tect v-structures; the CPDAG is identifiable. The
conditional independence tests can be based on par-
tial correlation, or be nonlinear: X ⊥⊥ Y |Z if
X − E[X|Z] ⊥⊥ Y or Y − E[Y |Z] ⊥⊥ X.

– Score=based methods assume that the correct graph
gives a better fit to the data and maximize the BIC,
or the Bayesian Dirichlet (BD) score (for discrete
variables, following a multinomial distribution, with
a Dirichlet prior), or the BDe (BD equivalent, ac-
counting for Markov-equivalence). (Greedy equiv-
alence search (GES) uses the BIC, starts with an
empty graph, greedily adds edges until a local max-
imum, then tries to remove some of them, and stops
there.)

It is possible to combine score- and independence-based
approaches (MaxMin hill climbing). The following can
also help infer the structure of the graph:
– Intervention with known targets;
– Intervention with unknown targets (models with a
smaller number of intervened variables are more
likely);

– Environment changes (we sometimes observe the
same SCM, with different parameters).

R software to estimate SCMs include pcalg, bnlearn,
CompareCausalNetworks, InvariantCausalPre-
diction, daggity.
8. Half-sibling regression was used for exoplanet
search.

Q N

Y X

R

signal noise signal

measurement of interest measurement

9. Simpson’s paradox shows that ignoring hidden vari-
ables can lead to incorrect causal conclusions – causal
reasoning is very sensitive to model mis-specification.
A set of random variables is causally sufficient if there
are no hidden causes influencing more than one vari-
able.
An instrumental variable Z allows us to find the ACE

(average causal effect) α in Y = αX + δH +NY .

H

Z X Y
β

α

γ δ

If you ignore the hidden variables (and apply the PC
algorithm), you can get incorrect causal conclusions.

H

A B C A B C

DAGs are not closed under marginalization; there are
many extensions:
– MAG (maximal ancestral graphs);
– PAG (partially ancestral graphs);
– IPG (induced path graph);
– POIPG (completed partially oriented induced path
graph);

– ADMG (acyclig directed mixed graph);
– Chain graphs.
The FCI (fast causal inference) algorithm is a general-
ization of the PC algorithm to PAGs.
Conditional independences are not the only constraints
that can help identify a model:
– Verma constraints,∑

b

P (b|a)P (d|a, b, c) = f(c, d)

which can detect the presence of a directed edge
A→ D;

– Bell’s inequality (which ruled out hidden variables
in quantum mechanics);

– Elementary inequalities, in information theory, and
their generalizations;

– Covariance-based constraints, such as

ρACρBD = ρADρBC = ρABρCD

H J

A B C D

– An additive model

H = NH

X = f(H) +NX

Y = g(H) +NY

can be estimated by (nonlinear) dimension reduc-
tion;

– One can detect if a path is blocked by a hidden vari-
able with few values.

10. With time series, the DAG is often identifiable,
even in presence of instantaneous effects.
Granger causality relies on

Xk
t ⊥⊥ X

j
<t |X

−j
<t =⇒ Xj → Xk

Article and book summaries by Vincent Zoonekynd 292/1044

(if there are no instantaneous effects). There are non-
linear variants of Granger causality. The transfer en-
tropy TE(X → Y) = I(Yt : X<t|Y<t) looks tempting,
but it fails to measure the strength of an influence.
VAR models can be generalized

Xi
t = fi

(
(Paiq)t−q, . . . , (Pa

j
0)t
)
+N j

t .

The spectral independence criterion (SIC) is an-
other way of formalizing the independence between
cause and mechanism.

Yt =
∑
k⩾1

h(k)Xt−k

CXX(τ) = E[XtXt−τ]

SXX = ĈXX (Fourier transform)

SY Y (ν) =
∣∣∣h̃(ν)∣∣∣2 SXX(ν)

The SIC is〈
SXX ·

∣∣h̃(ν)∣∣2〉 = 〈SXX〉〈∣∣h̃(ν)∣∣2〉,
where 〈f〉 =

∫ 1/2

−1/2
f(ν)dν; one then has

〈
SY Y ·

∣∣h̃(ν)∣∣2〉 ⩽ 〈SY Y 〉〈∣∣h̃(ν)∣∣2〉,
with equality if

∣∣∣h̃(ν)∣∣∣ is constant.
Machine learning in finance

M.F. Dixon et al. (2020)
The inconsistent notations make the book needlessly
difficult to read.
1. Statistics assumes the data generation process is
known, while machine learning does not, but the mod-
els are very similar:
– ARIMA and RNN (i.e., NARX) model stationary

time series;
– GARCH and GRNN model stationary, heteroskedas-
tic time series;

– CNN generalizes exponential smoothing;
– Auto-encoders generalize PCA.
In supervised learning, a “teacher” provides the right
answer; in reinforcement learning (RL), the teacher
only provides a “reward”.
The optimal investment problem can be written

St+1 = St · (1 + φt) asset price
Wt+1 = (1− ut)Wt + utWt(1 + φt) wealth

rt =
Wt+1 −Wt

Wt
= utφt portfolio returns

Rt = rt − λVar[rt] reward.

The policy ut maximizing E
∑
Rt is

u∗t =
E[φt]

2λVar[φt]

Other examples include:

– Algorithmic trading, where the state is the 5-day re-
turns (momentum of all 500 stocks in the S&P 500)
and the action whether to buy the S&P500 for 5 days
or not;

– Execution: the input is the limit order book (LOB),
the output, the next mid-price;

– Mortgage: the output is the mortgage state, the in-
put the previous state and explanatory variables.

2. Neural networks are well-suited to point-wise esti-
mation – we also want to estimate uncertainty.
For frequentists, the source of uncertainty is that we
only have a sample, not the whole population (θ is
fixed, and θ̂ is a random variable, which depends on
the sample).

MSE(θ̂) := E
∥∥∥θ̂ − θ∥∥∥2

2

bias(θ̂, θ) := E[θ̂ − θ] = E[θ̂]− θ

MSE(θ̂, θ) = trVar[θ̂] +
∥∥∥bias(θ̂, θ)∥∥∥2

2

– If n is large and p small, the frequentist and
Bayesian approaches are (asymptotically) equiva-
lent.

– If p is large or the likelihood intractable, the
Bayesian approach is easier.

– If n is small, prefer the Bayesian approach: frequen-
tist results are often only asymptotic.

For model selection, frequentist tests and AIC assume
the models are nested.
If the priors are equal, the Bayes factor is equal to the
posterior odds.

B =
P (data|model1)
P (data|model2)

P (data|model) =
∫
θ

p(x|M, θ)p(θ|M)dθ

P (model1|data)
P (model2|data)

=
P (model1)P (data|model1)
P (model2)P (data|model2)

The Bayesian approach prevents overfitting: if the
model is too complex, P (data|model) is low.
Bayesian model averaging uses P (model|data) as
weights.
Logistic regression is a discriminative model estimating
P (y|x). The naive Bayes model is the corresponding
generative model:

P (x, y) = p(y)
∏

p(xi|y).

3. Bayesian linear regression is a Gaussian process:

θ0, θ1 ∼ N(0, 1)

y = θ0 + θ1x

E[yiyj |xi, xj] = 1 + xixj

Article and book summaries by Vincent Zoonekynd 293/1044

An AR(p) model is a discrete equivalent of GP regres-
sion with a Matern kernel.
Gaussian process regression is available in sklearn,
GpyTorch or Stan.
In finance, GP regression can be used for option pricing
(train on a grid):

parameters 7→ price, greeks, precision.

For large amounts of data, use structured kernel in-
terpolation (SKI):
– Choose a subset of points U ;
– Use local cubic interpolation: KX,U ≈ WXKU,U ,
with WX sparse;

– Note that KX,Z ≈WXKU,UW
′
Z .

If the inducing points U form a grid and K is an RBF
kernel, KU,U usa Kronecker product of Toeplitz ma-
trices: KU,U = T1 ⊗ · · · ⊗ Tp. Use conjugate gradi-
ent (CG) to solve K−1y, and compute log detK with
an approximate diagonalization (Toeplitz matrices are
almost circulant, and circulant matrices are diagonal-
izable with a Fourier transform); rescale to [0, 1]n for
numeric stability. For extrapolation, combine squared
exponential (SE) and linear kernels.
The GP also provides analytic derivatives (Greeks):
∂x∗ E[f |x, y, x∗] = ∂x∗µx∗ + ∂x∗Kx∗,x(Kx,x + σ2I)−1y

Gaussian processes can have a multi-dimensional re-
sponse:

f ∼MGP (mµ,K,Ω)

vec[f(x1), . . . , f(xn)] ∼ N(vecM,Σ⊗ Ω)

4. The VC dimension of a feed-forward network is

VC dim ⩾W × L× log
W

L

where L is the number of layers and W their width.
If the payoff of an option, the option price is a con-
vex function of the spot price: to ensure convexity in
a neural net, have the weights of all the layers but the
first be positive.
Neural networks can be used in option pricing, e.g., to
compute the option price V from the spot price S (with
constraints: V ⩾ 0, convex, 0 ⩽ ∆ ⩽ 1) or to predict
the implied volatility σ from the moneyness M = S/K
(with constraints: σ > 0, convexity) – more constraints
may be needed to to avoid arbitrage (e.g., option price
increasing wrt T , convex wrt K).
Bayesian neural nets add noise to the weights.
5. To interpret a neural net, compute its sensitivi-
ties, ∂y/∂x, and ∂2y/∂xi∂xj for the interactions
For instance, the linear risk model r = Bf + ε can be
generalized into a nonlinear risk model rt = Ft(Bt)+εt;
the sensitivities can be interpreted as (non-linear) fac-
tor returns.
7. The stochastic volatility model with leverage and
jumps (SVLJ) is

yt = εt · ext/2 + Jtπt

xt+1 = µ(1− φ) + φxt + σηt(
ηt
εt

)
∼ N(0,Σ)

Σ =

(
1 ρ
ρ 1

)
ρ < 0 (leverage)
πt ∼ N(0, σ2)

Jt : jump, with parameter p

8. The generalized RNN (GRNN) accounts for het-
eroskedasticity by using the Mahalanobis distance in
the loss.
Use stationarity and autocorrelation tests to decide
which lag to use in a RNN; for stationary time series,
a plain RNN is good enough, for non-stationary ones,
GRU or LSTM are preferable.
CNNs generalize weighted moving averages; one can
also use non-uniform lags, e.g., 2k (non-sequential
model).
Auto-encoders generalize PCA, for instance to model
the yield curve (from the changes in yields).
With ReLU activations, the nonlinear factors learned
by an auto-encoder to explain the variability of a port-
folio can be built from puts and calls – they are in-
vestible.
9. The exploration-exploitation dilemma only appears
in online RL – batch-mode RL, more common in fi-
nance, cannot explore.
SARSA (on-policy) or Q-learning (off-policy) can solve
the optimal stock execution problem (linear impact
model), after discretizing everything (prices, shares left
to sell, time, action):

St+1 = St(1− µat) + σZt

at : shares sold∑
at = V

st ⩾ 0

rt = atSt = λVar[St+1xt+1] reward
atSt : value of the shares sold
Xt+1 : shares left to sell

Portfolio trading (multi-period portfolio management)
is another example: the state, st = (pt, bt, Xt), con-
tains the portfolio composition (stock), the bond in-
vestment, and the market state (Markov or, if the lag
is too large, HMM). The reward is

rewardt = portfolio return− λ ·Var[portfolio return].

The max can be replaced with the mellow max

mm(x) =
1

ω
log

(
1

n

∑
eωxi

)
.

Article and book summaries by Vincent Zoonekynd 294/1044

10. Reinforcement learning is trickier in finance,
because of the higher dimension and the lower sig-
nal/noise ratio.
In option pricing, RL can provide replicating portfo-
lios, minimizing the risk-adjusted cost of hedging:

HT (ST) payoff
Πt = utSt +Bt hedge portfolio
uT = 0

ΠT = BT = HT (ST)

utSt+1 + er∆tBt = ut+1St+1 +Bt+1

Bt = e−r∆t[Bt+1 + (ut+1 − ut)St+1]

u∗t (St) = Argmin
u

Var[Πt|Ft] =
Cov(Πt+1,∆St|Ft)

Var(∆St|Ft)

In higher dimensions, prefer probabilistic methods to
Q-learning.

xt portfolio values
bt cash
vt = 1′xt + bt portfolio value
x+t = xt + ut investment decision
1′ut + b+t − bt = 0 self-financing, vt = v+t

pit asset prices
rt asset returns
xt+1 = (1+ rt)� x+t
rt − rf1 =Wzt +M ′ut + εt asset return model
zt predictors
M ′ut market impact
zt+1 = (I − Φ)� zt + εzt OU process

y =

(
x
z

)
state

R0 = (rt − rf1)′(xt + ut) wealth gain
R = R0 − λVar[R0]− impact− fee reward

The Bellman equation can be written

V ∗(y) = Max
a

R(y, a) + γ E[V ∗(y′)]

= Max
π

E
a∼π

[R(y, a) + γ E[V ∗(y′)]].

One can then add a penalty

1

β
log

π(a|y)
π0(a|y)

for each time step

1

β

∑
t′⩾t

γt
′−t log

π(at′ |yt′)
π0(at′ |yt′)

.

G-learning is Q-learning with a stochastic policy and
an entropy penalty, for noisy environments (the G-
function is the Q-function with an entropy penalty).

F-learning is the analogue for the the state value func-
tion V . Soft-Q-learning is G-learning with a uniform
prior π0.
RL also applies to wealth management,

Wt+1 = (Wt − ct)[(1− αt)R+ αtRf]

where the policy is (ct, αt)0⩽t<T and the reward CRRA
utility.
For instance, for a defined-contribution retirement
plan,

xt : asset values (including cash)
ut : changes
rt : returns
r̄t : average returns
Σt

ct : cash inflow
−ct : consumption

the reward is

−ct − λE[(target− (1 + rt)(xt + ut))+]− u′tΩut,

where the second term is a penalty for missing a target
portfolio value (replace it with a quadratic penalty for
tractability), and the last term is a regularizer.
11. Behavioural cloning does not generalize well: the
model does not understand the dynamics of the system.
Instead, learn the reward function.
In inverse reinforcement learning (IRL), the data
is (s, a, s′), not (s, a, r, s′), and the goal is to find both a
reward function r and a policy π. The reward function
is not well-specified: the optimal policy is unchanged
if the reward is transformed as

r̃(a, a, s′) = r(s, a, s′) + γΦ(s′)− Φ(s).

GAIL (generative adversarial imitation learning) cali-
brates the reward function so that the solution of the
RL problem looks like the demonstration.
We can also learn from failed trajectories (labeled as
such) – they are actions to avoid. IRLF (IRL from fail-
ure) looks for a policy leading to trajectories close to
the successful ones and far from the failed ones.
T-REX (Trajectory-ranked Reward EXtrapolation)
learns preferences: not the absolute values r(s, a), but
just whether r(s, a) > r(s′, a′).
Financial applications Infer the reward function of a
single agent: - high-frequency trading strategy identi-
fication (e.g., for fraud detection by regulators): clus-
ter the strategies using the learned reward functions,
rather than arbitrary features, which could be uninfor-
mative - reward function of a risk-averse option trader:
assuming the trader uses the QLBS model, there is
only one parameter to find, the risk aversion � - re-
ward function of a portfolio investor (...) Infer the
reward function of the ”average” investor: - Investor

Article and book summaries by Vincent Zoonekynd 295/1044

sentiment State: market data Actions: sentiment (dis-
cretized into 3 levels), from news Reward: to estimate
– it will yield ”useful” features; dimension reduction of
market data - Inflow/outflow for a single stock Idem,
but the actions are the inflow/outflow for a single stock

Machine learning for factor investing
G. Coqueret and T. Guida (2020)

The authors provide data: 100 characteristics, uni-
formized, for 1000 stocks (in the US), monthly, over
20 years.
4. Fama-MacBeth regressions proceed in two steps:
– For each stock, regress the returns against the factor
returns, yielding the exposure βik of stock i to factor
k;

– For each date, regress the stock returns against the
exposures, yielding the premium γtk of factor k at
time t.

Note the difference between characteristics (e.g., E/P)
and exposures (e.g., β to the “high E/P minus low
E/P” portfolio).
The factor portfolios are often cryptically called SMB
(size), HML (value), WML (momentum), RMW (prof-
itability), CMS (investment), BAB (low risk).
5. The features are autocorrelated but the label (the
variable to predict) is not: try to remove the autocor-
relation.
Removing noisy observations (not only outliers, but
also 60% of the values in the center of the distribu-
tion) may help.
10. The BART package provides Bayesian additive re-
gression trees (regression trees with a prior which, after
Monte Carlo sampling, can be used as ensemble).
12. Combine several models with ensembles, forecast
combinations (find weights w, nonnegative and sum-
ming to 1, to combine forecasts from several models
– the nonnegative constraint has a sparsifying effect)
and stacked ensembles.
Use decision trees to forecast the absolute error of a
model from macro-economic variables; then, use it as
a regime indicator.
13. In portfolio optimization, try to add a diversifying
constraint w′w ⩽ δ (or a penalty) on the Herfindahl
index.
Try to forecast returns scaled by volatility, r/eσ, in-
stead of returns.
14. To interpret models, check the iml, lime,
breakDown packages.
15. To infer a causal graph from data, check the pcalg,
CAM or baycn package.
The CausalImpact and bsts packages fit structural
time series models, to detect or test for the presence of
regime changes.
The ReinforcementLearning package provides Q-

learning on SARS data (state, action, reward, next
state), for discrete state and action spaces.

Towards a definition
of disentangled representations

I. Higgins et al. (2018)
A latent representation is disentangled wrt a symme-
try group of the set of world states, decomposed as a
direct product G = G1 × · · · ×Gn, if:
– The action of G on the world states extends to an

action on the latent representations, making the map

World states 7−→ Latent representations

equivariant;
– The space of latent representations decomposes as
V = V1 × · · ·Vn, such that each Gi acts on Vi and
leaves the other Vj ’s invariant.

Note that:
– The decomposition of G is not unique (e.g., for trans-
lations in the plane, any basis gives a decomposition
R2 ≈ R×R);

– There may be no non-trivial decompositions of G
(e.g., rotations, SO(3)).

If V is a vector space and the action linear, we can fur-
ther cceompose the latent space into irreducible repre-
sentations.

Disentangling by subspace diffusion
D. Pfau et al. (2020)

Let M be an orientable Riemannian manifold. The
parallel transport along a loop γ : [0, 1] → M , γ(0) =
γ(1) = x at a point x ∈ m, defines a linear map
Hγ : TxM → TxM – the holonomy of γ. The holon-
omy group at x, Holx(M), is the set of all such maps.
If M =M1 × · · · ×Mn, then TxM =

⊕
TxMi (orthog-

onal decomposition) and the action of each Holx(M)
leaves each TxMi invariant. If M is simply connected
and geodesically complete, the converse is true (deR-
ham decomposition theorem): if a proper subspace
U (TxM is invariant under HolxM for some x, then
M =M1 ×M2, U = TxM1, U⊥ = TxM2.
The holonomy group requires all loops: instead, we can
get the same information from random walks, and the
corresponding diffusion

∂p(x, t)

∂t
= ∆0p(x, t),

where ∆0 is the Laplace-Beltrame operator on func-
tions on M . The Laplacian can be generalized to a
Laplacian ∆1 on TM , and a “second-order connection
Laplacian” ∆2 on T ∗M ⊗TM . If M =M1×· · ·×Mn,
then the projections TxM → TxMi are in the kernel of
∆2 (eigenfunctions for λ = 0).
The Geomancer (genmetric manifold component esti-
mator) algorithm estimates ∆2 from points in M :
– Build the symmetric nearest neighbour graph;

Article and book summaries by Vincent Zoonekynd 296/1044

– For each i, perform PCA on the xj − xi, j ∈ N(i),
to get local coordinates Ui and local tangent vectors
vj : xj − xi ≈ Uivj ;

– Compute the graph Laplacian

∆0f =

(∑
j∈N(i)

fi − fj
)
i

∆1v =

(∑
j∈N(i)

vi −Q′ijvj
)
i

∆2Σ =

(∑
j∈N(i)

Σi −Q′ijΣjQij
)
i

;

– The parallel transport Qij induced by the ambient
(Euclidean) space can be estimated from the local
coordinates Qij = UijV

′
ij , where U ′jUi = UijΣijV

′
ij is

the SVD decomposition;
– To avoid spurious eigenfunctions (skew symmetric
matrices, and small eigenvalues from ∆0), consider
the action of ∆2 on symmetric, zero-trace matrices
– the eigenfunctions are linear combinations of the
desired projections.

Robustly disentangled causal mechanisms:
validating deep representations
for interventional robustness

R. Suter et al.
The VAE penalty can be modified to impose more
structure on the latent space: β-VAE (stronger
penalty); FactorVAE, β-TCVAE (ICA); DIP-VAE.
If the “generative factors” Gi are known (orentation,
position, shape, colour, etc.), one can try to minimixe
MI(Gi, Zi) and minimize MI(Gi, Zj), i 6= j.
We can allow for confounding in the latent factors Zi by
asking that Z\i be a valid adjustment set for Zi → X.

X

Z1 Z2 Zn· · ·

C

Towards conceptual compression
K. Gregor et al. (2016)

VAEs output blurry images: recurrent VAEs progres-
sively improve the result.

x

RNN

RNN

r

noise

ε = x− r
reconstruction

error input

reconstruction

Reinforcement learning
under moral uncertainty

E. Ecoffet and J. Lehman (2020)
To ensure robots behave “ethically”, we need a moral
theory, but there is no single “correct” one – utili-
tarianism, deontology and virtue ethics all have their
proponents. This moral uncertainty can be addressed
with multi-agent reinforcement learning and some vot-
ing system.
An ethical theory hould have an influence over out-
comes “proportional” to its credence, regardless of the
scale of its rewards (proportional say).
In Nash voting, each agent (moral theory) has a voting
budget and uses part of it, at each step, to vote on
the possible actions; the winning theory sees its bud-
get decrease accordingly. Nash voting is unlikely to
find compromises.

Assessing game balance with AlphaZero:
exploring alternative rule sets in chess

N. Tomašev et al. (2020)
[To plot and compare the entropy of several dis-
tributions, show the histogram of the negative log-
likelihoods − log p: the average gives the entropy.]

Path signature on Lie groups
D. Lee and R. Ghrist (2020)

The path signature can be generalized to Lie-group-
valued time series.
Let G be a Lie group, g its Lie algebra, PG the set
of paths in G. A path in G, γ : [0, 1] → G, defines
a path in g, γ′ : [0, 1] → g; conversely, a path in g,
f : [0, 1]→ g, defines a path in G via the ODE

γ′t = ft(γt)

γ0 = g

A time serie s(γ̂i)i in G defines a path in G, via the
discrete derivative and linear interpolation

γ̂′i = log(γ̂1
i γ̂i+1) ∈ g

γy = γ̂i exp
[
(t− τ)γ̂′i

]
, t ∈ [i, i+ 1).

Note that:
– The logarithm is not always defined: the points
should be sufficiently close;

– The exponential is not always surjective (for com-
pact Lie groups, it is);

– The Lie and Riemann exponentioals differ (but they
coincide for biinvariant metrics; compact Lie groups
have such a metric).

The path signature of a path γ ∈ PG is a formal power
series in g, S(γ) ∈ T ((g)) (it can also be defined with

Article and book summaries by Vincent Zoonekynd 297/1044

iterated integrals).

I = (i1, . . . , im) multi-index
N = dimG

1 ⩽ ik ⩽ N
∆m simplex
ω1, . . . , ωN basis of g∗

S(γ) =

∫
∆m

ωi1(γ
′
t1) · · ·ωim(γ

′
tm)dt1 · · · dtm ∈ R

As in Euclidean spaces, the signature characterizes
paths up-to tree-like equivalence.
To detect a lead-lag relation between two paths, γ1
and γ2, check the sign of S1,2(γ) and S2,1(γ) , where
γ = (γ1, γ2).
You may want to transform the time series, e.g.:
– Replacing γt with (t, γt), which removes the
reparametrization invariance;

– Prepending a path from 0 to γ0, which removes
translation invariance;

– Replacing γt with (γt, γt−τ , . . . , γt−mτ).
The signature does not use the Lie algebra structure
of g. There is a signature-preserving bijection between
paths in G and paths in RN : we can apply Euclidean
data analysis techniques to Lie-group-valued time se-
ries.
The (normalized) signature transform is a universal
and characteristic feature map (those properties are
equivalent).
(i) Any continuous bounded function f : OG −→ R

can be approximated by a linear function;

f(.) ≈ 〈`, S(·)〉

(ii) The map {
M (PG) −→ T ((g))

µ 7−→ Eµ[S],

where M (PG) is the set of finite Borel measures on
PG, is injective.

Fast differentiable sorting and ranking
M. Blondel et al. (2020)

Let σ(θ), s(θ) , r(θ) denote the arg sort, sort and rank
of a vector θ ∈ Rn. Argsort and rank can be defined
as

σ(θ) = Argmax
σ
〈θσ, ρ〉

r(θ) = Argmax
π
〈θ, ρπ〉

where ρ = (n, n− 1, . . . , 1) and θσ is θ permuted by σ.
The permutahedron of a vector x ∈ Rn is the convex
hull of its permutations.

P (w) = Conv{wσ, σ ∈ Sn} ⊂ Rn

Sorting and ranking are soutions of linear programs,

s(θ) = Argmax
y∈P (θ)

〈y, ρ〉

t(θ) = Argmax
y∈P (ρ)

〈y,−θ〉

The optimization problem

Argmax
µ∈P (w)

〈µ, z〉

can be regularized with Q(µ) = 1
2 ‖µ‖

2, which gives

Argmin
µ∈P (w)

1
2 ‖µ− z‖

2

(projection onto the permutahedron) or the entropic
regularization E(µ) = 〈µ, log µ− 1〉, which gives

log Argmax
µ∈P (ew)

〈z, µ〉 − E(µ) = logArgmin
µ∈P (ew)

KL(µ, ez).

To control the regularization strength, multiply Q or
E by ε or, equivalently, divide z by ε. Fine-tuning
ε is important for some applications (top-k classifica-
tion), but irrelevant for others. The solution can be
computed as z − v(zσ(z), w)σ−1(z), where

vQ(s, w) = Argmin
v1⩾···⩾vn

1
2 ‖v − (s− w)‖2

eE(s, w) = Argmin
v1⩾···⩾vn

〈es−v, 1〉+ 〈ew, v〉.

These isotonic regressions can be computed efficiently
with the “pool adjacent violator” (PAV) algorithm.
The Jacobian is easy to compute. The whole algorithm
is O(n log n). Code available (Numpy, Jax, PyTorch,
TensorFlow): fast-soft-sort.
Applications include rank correlation and trimmed
least squares.

Predicting what you already know helps:
provable self-supervised learning

J.D. Lee et al. (2020)
Self-supervised pretraining works well if

input ⊥⊥ pretext task | downstream task

Approximate conditional independence can be quanti-
fied with partial correlation.

PDE-constrained optimization
and the adjoint method

A.M. Bradley (2010)
The adjoint method computes the gradient,
df
(
x(p)

)
/dp, of an implicit function x(p) defined

by g(x, p) = 0, using the Lagrangian L(x, p, λ) =

Article and book summaries by Vincent Zoonekynd 298/1044

f(x) + λ′g(x, p).

df

dp
=

d

dp
L
(
x(p), p, λ

)
=

d

dp

[
f(x) + λ′g

(
x)p), p

)]
=
df

dx

dx

dp
+ λ′

(∂g
∂x

dx

dp
+
∂g

∂p

)
=
(df
dx

+ λ′
∂g

∂x

)dx
dp

+ λ′
∂g

∂p

If dx/dp is difficult to compute, we can choose λ to
make the first term disappear.

= −
(∂g
∂x

)−1 df
dx

∂g

∂p

We can get the same result directly by differentiating
g(x, p) = 0, but this is useful for PDE-constrained op-
timization,

Find p, x

To minimize F (x, p) =

∫ T

0

f
(
x(t), p, t

)
dt

Such that h(x, ẋ, p, t) = 0
g
(
x(0), p

)
= 0

where directly computing

dF

dp
=

∫ T

0

(∂f
∂x

dx

dp
+
∂f

∂p

)
dt

is difficult because of dx/dp. The Lagrangian is

L =

∫ T

0

(f + λh) + µ′g,

and we can choose λ (a function) and µ (a vector) to
make the terms in dx/dp disappear: we are left with a
differential equation for λ.
Applications of PDE-constrained optimization include:
– Finding the parameters of a PDE given observations;
– Design optimization (e.g., airplane wing).

Neural CDEs for long time series
via the log-ODE method

J. Morill et al. (2020)
Neural ODEs are a continuous analogue of ResNets.
Neural controlled differential equations are continuous
analogues of RNNs.
A controlled ODE (CDE) is an equation of the form

Zt = Za +

∫ t

a

f(Zs)dXs

where X : [a, b]→ Rn and f is unknown.
In a neural CDE,X is known (linear interpolation of an
irregularly sampled time series), X+Z is a latent (i.e.,
hidden) variable, and Yt = `(Zt) is observed; given X
and Y , we want to estimate f and `. As for RNNs,

estimation for long time series is challenging. The log-
ODE method uses

Zt = Za +

∫ t

a

f̂(Zs)LogSigNa,b(X)ds,

where LogSigNa,b is the depth-N log-signature anf f̂ ex-
tends f to the Lie algebra where LogSigNa,b lives (but
the implementation directly estimated f and ignores
the Lie algebra structure).

Efficient transformers: a survey
Y. Tay et al (2020)

Transformers combine vector embedding, positional
encoding, self- (and cross-)attention, layer nor-
malizartion, and residual connections.
The attention matrix is too large for the model to effi-
ciently deal with large sequences, but it can be approx-
imated with fixed patterns (blocks, strides, connected
blocks), learnable patterns (e.g., k-means clustering of
the tokens), side memory, low-rank factorizations, ker-
nels.

Tensor programs I:
wide feedforward or recurrent networks

of any architecture are Gaussian processes
G. Yang (2019)

Random, shallow, infinitely wide neural nets are Gaus-
sian processes. This generalizes to “tensor programs”,
involving three types,
– G: vector, asymptotically Gaussian,
– H: vector,
– A: matrix, asymptotically Gaussian,
and three operations,

MatMul :
{
A×G −→ G
(A, x) 7−→ Ax

LinComb :

{
Gk −→ G

(x1 . . . , xn) 7−→
∑
aixi

NonLin :

{
Gk −→ H

(x1, . . . , xn) 7−→ φ(x1, . . . , xn)
.

Tensor programs II:
neural tangent kernel for any architecture

G. Yang (2020)
“Neural tangent kernel” refers to two results, corre-
sponding to the initialization and the training of a neu-
ral net.
(i) For a shallow network f with random weights,

Θ(x, y) = 〈∇θfθ(x),∇θfθ(y)〉 converges to a de-
terministic kernel as the width of f tends to in-
finity.

(ii) During gradient descent, the kernel remains con-
stant and describes the evolution of the neural
net:

ft − fdata = e−ηtΘ(f0 − fdata).

Article and book summaries by Vincent Zoonekynd 299/1044

Neural tangent kernel:
convergence and generalization in neural nets

A. Jacot (2018)
Original NTK paper.

Generative language modeling
for automated theorem proving
S. Polu and I. Sutskever (2020)

A transformer model (GPT-like, 36 layers) can gener-
ate proof for MetaMath:
– Predict a proof step from a goal;
– Pretrain on text (arxiv, Math StachExchange,
Github);

– Train on synthetic data (n-digit arithmetic, ring al-
gebra) and rteal data (set.mm: 38k theorems, 3m
steps);

– Also learn a value function
MetaMath is a proof assistant based on string substi-
tution – it is simpler than human-friendly alternatives
(Coq, HOL Light, Lean), but its de Bruijin factor, the
ratio of the length of a formal proof to that of a text-
book, is 10 ∼ 20, instead of 1 ∼ 3.

KarateClub: an API-oriented
open-source Python framework

for unsupervised learning on graphs
B. Rozembergczhi et al. (2020)

Sklearn-like API for community detection, wholegraph
embedding, node and graph classification; built on
Numpy (dense matrices), Scipy (sparse metrices), gen-
sim (matrix factorization), PyGSP (signal porocessing
on graphs), NetworkX. GraphTool (ciommunity detec-
tion) and snap are more limited.

Efficiently sampling functions
from Gaussian process posteriors

J.T. Wilson et al. (2020)
One can sample from a Gaussian process

y|X ∼ N(0,KXX)

as follows

µ∗ = K∗(KXX + σ2I)−1y

Σ∗ = K∗∗ −K∗X(KXX + σ2I)−1KX∗.

The Nyström approximation approximates KXX using
a subset Z ⊂ X of the data,

K ≈ KZK
−1
ZZK

′
Z .

The fully independent training conditional (FITC)
method uses an arbitrary set of points (not necessarily
among the observations),

K ≈ KZK
−1
ZZK

′
Z + diag(KXX −KXZK

−1
ZZKZX)+ σ2I

(it is obtained by integrating those points out

p(y|x) =
∫
u

p(y, u|x, z) =
∫
u

p(y|u, x, z)p(u|z)

and assuming that the variance of the first factor is
diagonal). The computations can be simplified using
Woodbury’s formula.
Besides those function space approximations, the
weight space approximation expresses f as a linear com-
bination of random Fourier features.

φi(x) = cos(θix+ τi)

f =
∑

wiφi

w|x, y ∼ N(µ,Σ)

µ = (Φ′Φ+ σ2I)−1Φ′y

Σ = (Φ′Φ+ σ2I)−1σ2

If (a, b) is Gaussian, then (Matheron’s rule – equality
in distribution)

(a|b = β)
d
= a+Cov(a, b)Cov(b, b)−1(β − b)

can be used to incrementally update a sample from a
Gaussian proccess.

Towards an API for the real numbers
H.J. Boehm (2020)

Recursive real arithmetic replaces real numbers x ∈
R with (computable) functions fx : R×+ → Q where
fx(e) is a rational approximation of x with error
bounded by e: |x− fx(e)| ⩽ e. Equality of recursive
reals in undecidable (halting problem), except in some
special cases (often, when the computations only in-
volve integers, the 4 operations, log, exp, trigonometric
functions and their inverses).
Applications include calculators (Google’s Android cal-
culator, for users who do not understand IEEE float-
ing point arithmetic) and testing the accuracy claims
of floating point implementations.
Also check F. Johansson’s Calcium.

Traditional and heavy-tailed regularization
in neural network models

C.H. Martin and M.W. Mahoney (2019)
As the optimization progresses, the spectral density of
the weight matrices (distribution of the singular val-
ues) changes: Marchenko-Pastur (MP), corresponding
to Gaussian weights; MP with outliers, corresponding
to Gaussian weights plus a low-rank matrix; power law
distribution. Code available.

A neural network based framework
for financial model calibration

S. Liv et al. (2020)
Train a neural network to model the mapping from
SDE parameters to option price; then, train another
one to learn the inverse mapping.

Article and book summaries by Vincent Zoonekynd 300/1044

https://github.com/CalculatedContent/WeightWatcher

Learning to see through observations
Y.L. Liv et al (2020)

Remove window reflections or fence obstructions from
short videos using the motion difference between the
obstrucion and the background.

Modeling 3D shapes by reinforcement learning
C. Lin et al.

Generate 3D shapes, as humans do in 3D software, in
two steps:
– First, approximate the shape with 3D primitives;
– Them, edit the mesh (edge loops rather than ver-
tices) for the details.

Use imitation learning of a heuristic policy as pretrain-
ing before actual reinforcement learning.

Stanza: a Python NLP toolkit
for many human languages

P. Qi et al. (2020)
If CoreNLP, Flair, Spacy, UDpipe do not cover enough
languages (includes Japanese, Chinese, Arabic, but
also ancient Greek, old French, etc. – much fewer for
NER).

Deep rank-based transposition invariant
distances on musical sequences

G. Hadjeres and F. Nielsen
To compute a distance between musical sequences,
train a seq2seq autoencoder (or a seq2seq network to
transpose motifs) and use a permutation-based dis-
tance (rank correlation or Kendall’s τ) on the high-level
features (only use the ` largest features).

QuantGAN:
deep generation of financial time series

M. Wiese et al. (2019)
GAN, with a TCN in the generator, to model volatil-
ity, drift and innovations separately and reproduce the
stylized facts of time series (fat tails, clustered volatil-
ity, leverage Cor(r, σ) < 0).

(ηt)t 7−→ (σt, µt, εt)t 7−→ (µt + σt · εt)t

Generative adversarial networks for financial
trading strategies fine-tuning and combination

A. Koshiyama et al. (2019)

QuantNet: transferring learning
across systematic trading strategies

A. Koshiyama et al. (2020)
Build a stock-level but market-specific (technical anal-
ysis) trading strategy using market-specific weights for
the first and last layers (linear or LSTM, “encoder”
and “decoder”) and shared weights in the middle, with
the Sharpe ratio as loss.

returns
(univariate
time series)

market-
specific

weights shared
across markets

market-
specific

trading
signal

Compact representation of uncertainty
in hierarchical clustering

C.S. Greenberg et al. (2020)
Hierarchical clusterings are often built with greedy al-
gorithms, beam search, or sequential Monte Carlo.
Consider a (posterior) probability distribution on hi-
erarchies H,

linkage function E : P(X)×P(X) −→ R+

energy of a tree E(H) =
∏

XiXj

∈H

E(Xi, Xj).

The partition function can be computed, exactly, with
dynamic programming, using

Z(X) =
∑
H

E(H) =
∑

Y⊂X st
x∈X
|X|>1

E(Xi, X\Xi)·Z(Xi)·Z(X\Xi).

The MAP hierarachical clustering can be computed
similarly, using Max instead of

∑
(the complexity is

“only” O(22m), much less than the number of hierar-
chies, (2n− 3)!!).

Scalable nearest neighbour search
for optimal transport

A. Backurs et al. (2020)
The Wasserstein-1 distance on a finite set X ⊂ Rn can
use used, for instance, to compare documents, seen as
distributions on words, after word2vec or glove embed-
ding, but it is expensive to compute. Approximations
include:
– Mapping each point in the support of µ to the near-

est point in the support of ν;
– Building a random quad-tree (k-d tree) on X and
using

W1(µ, ν) ≈
∑
x∈X

2ℓ(x) |µ(x)− ν(x)|

where `(x) is the level of x in the tree.
Instead, actually compute the optimal transport on the
tree,

f = Argmin
f s.t.

pr1 f=µ
pr2 f=ν

∑
x,y∈X

f(x, y)t(x, y)

Article and book summaries by Vincent Zoonekynd 301/1044

where t is the distance on the tree, and use it with the
actual Euclidean distance instead

W1(µ, ν) ≈
∑
x,y∈X

f(x, y) ‖x− y‖ .

On the limitations
of representing functions on sets

E. Wagstaff et al. (2019)
Representing arbitrary permutation-invariant func-
tions with a neural net (deep set) requires a latent rep-
resentation layer at least the input dimension – dimen-
sion reduction would require discontinuous functions.

Evolving normalization-activation layers
H. Liu et al. (2020)

Layer search (as oppsed to architecture search) for a
replacement for the BatchNorm-ReLU (or BatchNorm-
Swish) combination commonly used as a computa-
tion graph made of elementary operations (+, ×, /,
max, neg, σ, tanh, exp, log, abs, ·2,

√
·) and ag-

gregations on some dimensions of the input tensor
(batch/channel/instance/group mean/sd) leads to a
combination of batch and instance normalization.

Enhance social recommendation
with adversarial graph convolutional networks

J. Yu et al. (2020)
Social recommendation systems do not work that well
because the relations between users are noisy, hetero-
geneous and too few. Use an autoencoder to gener-
ate alternate neighbourhoods (intuitively, informative
neighbourhoods, and/or users with similar taste) by
applying a GCN (with skip-layer connections) to motif-
induced adjacency matrices

· · ·
user
item
follows
bought

to get a user embedding, and then decoding it.
The user embedding and the reconstructed graph can
then be used in a discriminator (GCN with attention)
to ensure that the alternate neighbourhoods contain
the users contributing the most.

Increasing generality in machine learning
through procedural content generation

S. Riss et al. (2020)
The interplay between machine learning (ML) and pro-
cedural content generation (PCG) goes both ways:
– ML can generate new contents;
– PCG can help train ML systems: data augmen-
tation, domain randomization, curriculum learning,
generating new environments (metalearning: poet).

Constructive PCG runs in fixed time, with no search
(Perlin noise, L-systems, cellular automata, etc.).

Search-based PCG can use CMA-ES, differential evo-
lution, constraint satisfaction, to search for good con-
tents, sometimes with multiple objective functions (for
diversity), which require the computer to play the game
for which the contents is being generated.
GANs do not work well: they generate contents that
looks right, but does not work (is not playable); they
can be combined with search (in the latent space). Re-
inforcement learning can also be used, to progressively
modify random contents into playable contents.

bayestestR: describing effects and their
uncertainty, existence and significance

within the Bayesian framework
S. Makowski et al. (2019)

The probability of direction (PD) is a Bayesian ana-
logue of a p-value: it is the proportion of the posterior
density (of a coefficient in a regression) with the same
sign as the median; it varies between 50% (correspond-
ing to p = 1) and 100% (p = 0). Like the p-value, it
does not account for effect size.

0
median

In a Bayesian context, the point null hypothesis H0 :
β = 0 has probability zero and should be replaced by a
region of practical equivalence (ROPE), e.g., H0 : β ∈
[−0.1σ,+0.1σ]. The null hypothesis can be rejected if
Pposterior(H0) ⩽ α (do not use it if the parameters are
highly correlated).
The package relies on rstanarm and also computes
(and plots) MAP estimates, credible intervals and
Bayes factors.

AutoML-Zero: evolving machine learning
algorithms from scratch

E. Real et al. (2020)
AutoML often limits the search to one aspect of
the model, e.g., architecture search using hand-
designed block, optimization algorithms, LSTM-like
gating mechanisms, data augmentation. A more flex-
ible search space considers three functions, setup,
predict, learn; predict and learn are called in a
loop; they are made up of assembler-like operations on
scalars (s), vectors (v) and matrices (m), of the same
size as the input, with no control structures, e.g.,

m1 = s2 ×m2

s0 = mean(v1)
s3 = sin(s4)

s1 = runif().

The search space is too large for random search, but
evolutionary strategies fare better. To speed up the
search, use small datasets, and detect equivalent algo-
rithms by hashing their outputs on 10 inputs.

Article and book summaries by Vincent Zoonekynd 302/1044

The search rediscovers gradient descent, multiplica-
tive interactions, normalized gradient, weight averag-
ing, dropout, learning rate decay.
This approach can also be used to improve existing al-
gorithms to adapt them to different situations (e.g.,
little data, fast training, more classes, etc.)

Scaling laws for neural language models
J. Kaplan et al. (2020)

The loss of a transformer model depends on compute
time, dataset size, model size.

Loss ∝ Compute−0.05 ×Data−0.10 × Size−0.10

Fawkes: protecting personal privacy against
unauthorized deep learning models

S. Shan et al. (2020)
Modify your pictures before distributing them (imper-
ceptibly, in feature space) to prevent their use to train
face recognition systems.

FixMatch: simplifying semisupervised learning
with consystency and confidence

K. Sohn et al. (2020)
FixMatch performs semi-supervised learning using
pseudolabels (forecasts of the model, when the codel
is sufficiently confident) and consistency regularization
(similar inputs should give similar outputs).

Stable neural flows
S. Massaroli et al. (2020)

To learn a mapping u 7→ v, neural ODEs find a vector
field f whose integration gives the desired function.

ẋ = f(x)

x(0) = u

x(1) = v

More generally, one can add affine maps

u
g7−→ x(0) 7−→ x(1)

h7−→ v

if the dimensions do not match.

ẋ = f(u, x)

x(0) = g(u)

h(x(1)) = v

The resulting ODE may have stiff dynamics and
chaotic behaviour (sensitivity to small perturbations
in the input lead to adversarial attacks). Replace
ẋ = f(u, x) with ẋ = −∂xε(u, x) (or, more generally, a
Hamiltonian model).

Dissecting neural ODEs
S. Massaroli et al. (2020)

Vanilla neural ODEs (continuous-depth neural nets)
are not universal approximators.

dh

ds
= fθ(s, h)

h(0) = x

h(1) = y

They can be augmented,
d

ds

(
h
a

)
= fθ(s, h, a)

h(0) = x

a(0) = 0

h(1) = y

or

d

ds

(
h
a

)
= fθ(s, h, a)(

h(0)
a(0)

)
= g(x)

h(1) = y.

(Higher-order ODEs can also be formulated as aug-
mented neural ODEs.)
Data-controlled neural ODEs incorporate the input x
in the vector field,

dh

ds
= fθ(s, h, x).

adaptive depth neural ODEs use a data-rependent in-
tegration interval

dh

ds
= fθ(s, h)

h(0) = 0

h(s(x)) = y.

[The implementation uses torchdiffeq.]

Representation learning
through latent canonicalizations

O. Litany et al. (2020)
Approaches to learn from simulated data include:
– Pretraining on simulated data and fine-tuning on
real data;

– Domain adaptation, if there is a lot of unlabeled real
data;

– Domain randomization.
To learn a “disentangled” representation (this often
just means “isotropic”), train an autoencoder and lin-
ear transformations of the latent space which reset
one or two parameters of the (generated) input (e.g.,
colour, background colour, size, rotation, font) to a de-
fault value.

input latent output

Cj : canonicalizer
for feature j

p(x, z) = p(x|z)p(z) (generative model)
p(x, z) = p(x|z) p(z1) · · · p(zn)︸ ︷︷ ︸

disentangled

Article and book summaries by Vincent Zoonekynd 303/1044

Meta-pseudo labels
H. Pham et al. (2020)

A classifier can be trained with the true labels (e.g., bi-
nary), smoothed labels, with the labels from a teacher
network trained independently (log-probabilities, also
available for non-labeled data), or “meta-labels”, still
from a teacher network, not trained to produce good
forecasts, to help train the student.

Random projections for manifold learning
C. Hegde et al. (2007)

The Grassberger-Procaccia algorithm computes the in-
trinsic dimension of a cloud of points from pairwise dis-
tances using the “scale-dependent correlation dimen-
sion”

C(r) = Mean
i ̸=j

1∥xi−xj∥⩽r

k̂ = D(r1, r2) =
logC(r1)− logC(r2)

log r1 − log r2

where r2, r2 are chosen so that C be linear on [r1, r2]
amd [r1, r2] be large. It can be computed from a ran-
dom projection RN → RM , with M ∝ K logN .

Rethinking batch normalization
in transformers

S. Shen et al. (2020)
Since batch statistics, in natural language processing,
have much higher variance than in computer vision,
layer-norm is often preferred. BatchNorm can be used,
but with running statistics instead of batch statistics
(“powernorm”).

NeRF: representing scenes
as neural radiance fields for view synthesis

M. Mildenhall et al. (2020)
A scene can be represented as a non-convolutional,
fully-connected neural net{

R5 −→ R4

(x, y, z, θ, φ) 7−→ (R,G,B,A)

computing the radiance emitted at a point (x, y, z) in
direction (θ, φ) and turned into an image using vol-
umetric rendering, which is differentiable. It can be
learnt from several (100) views of the same scene (pro-
cessed with colmap (SfM)). The density (alpha) only
depends on the position, but the colour also depends
on the direction, to account for specuar effects.
To capture high-frequency details (neural nets are bi-
ased towards low-frequency functions, map each coor-
dinate to a high-dimensional space{

[−1, 1] −→ [−1, 1]2L
x 7−→ (sin 20πx, cos 20πx, . . . , sin 2L−1πx, cos 2L−1πx)

(this is the Transformer’s positional embedding).

Do not use columetric rendering with fixed points (de-
terministic quadrature), but with N points sampled at
random in evenly-spaced bind (stratified sampling).
Use two networks, a coarse one, with stratified sam-
pling, to estimate the density (alpha channel), as a
piecewise constant pdf, and a finer one, for density and
colour, using points sampled from this pdf insterad of
stratified sampling (hierarchical sampling strategy).

On the spectral bias of neural networks
N. Rahaman et al. (2019)

The Fourier transform of ReLU networks can be com-
puted explicitly: lower frequencies are learned first,
and they are more robust to random perturbations of
the parameters.

Structure from motion
J.L. Schönberger et al. (CVPR 2016)

Structure-from-motion (SfM) reconstructs a 3D scene
from an unordered image collection, in several steps:
– Feature extraction: SIFT or learned features;
– Matching: identification of potentially overlapping
images;

– Geometric verification and triangulation;
– Adjustments, to avoid error accumulation and down-
play outliers.

Colmap is an open-source implementation, with a se-
ries of improvements to increase robustness.

Volatility is rough
T. Gatheral et al. (2014)

Log-volatility looks like a fractional Brownian motion

m(q,∆) = 〈|log σt+∆ − log σt|q〉 ∝ ∆qH , H ≈ 0.1

(data from http://realized.oxford-man.ox.ac.
uk). This explains the power law seen in the skew,

∂σ

∂K

∣∣∣∣
K=0

∼ τ−(1
2−H).

Buy rough, sell smooth
P. Glasserman and P. He (2018)

Buy stocks whose implied volatility roughness is high.

The market generator
A. Kondratyev and C. Schwarz

A restricted Boltzman machine (RBM) has two layers
of binary variables, visible v and hidden h.

E(v, h) = −a′v − b′h− v′wh
p(v, h) ∝ exp−E(v, h)

w ← w + η
[
〈v′h〉data − 〈v′h〉model

]
a← a+ η

[
〈v〉data − 〈v〉model

]
b← b+ η

[
〈h〉data − 〈h〉model

]

Article and book summaries by Vincent Zoonekynd 304/1044

http://realized.oxford-man.ox.ac.uk
http://realized.oxford-man.ox.ac.uk

To get an unbiased estimate of 〈v′h〉model, one could
iteratily sample from h|v and v|h, for long enough (103
times).

p(hj = 1|v) = σ(bj + w′• jv)

p(hi = 1|h) = σ(ai + w′i •h)

Instead, k-step contrastive divergence (CD) iterates for
k steps only:

∆wij = η
[
p(hj = 1|v(0))v(0)i − p(hj = 1|v(k))v(k)i

]
∆ai = η[v

(0)
i − v

(k)
i]

∆bj = η
[
p(hj = 1|v(0))− p(hj = 1|v(k))

]
To deal with real (non-binary) data, round number in
[xMin, xMax] to 16-bit binary numbers.
Experiments on 4 time series of FX returns amd 30
hidden units can reproduce the marginal distributions
and the correlation structure.
To generate autocorrelated samples, initialize the RBM
with the previous values St−1 and sample h and v a
small number of times (� 103). To account for non-
stationarity (volatility clustering), add a binary indica-
tor for each input time series, indicating of the volatil-
ity is high or low (3-month vs long-term), and keep
them fixed.

Handling risk-on/risk-off dynamics with
correlation regimes and correlation netwoeks

J. Papenbrock and P. Schwendner (2015)
Cluster correlation matrices (estimated at different
points in time) to identify regimes: 25 assets (equi-
ties, bonds, commodities, FX), daily returns, 1-month
window, filtered with average linkage clustering (why
not a minimum spanning tree?), k-means, k = 5.

Deep generative models
A. Soleimany (2020)

VAEs can help increase diversity: do not use N(0, 1)
to sample in the latent space but soemthing more dis-
persed (larger variance or fatter tails).
CycleGANs have two generators and two discrimina-
tors; they can be applied, not only to images, but also
to sounds (to change the voice from one person to an-
other, via spectrograms).

BANANAS: Bayesian optimization
with neural architectures for NAS

C. White et al. (2019)
Cell-based search spaces for network architecture
search (e.g., from NASBench) assume the network ar-
chitecture is fixed, with “cells” to be filled in, from a
few building blocks; each cell can be encoded by list-
ing the paths in it (there is an exponential number of
possible paths, but if the length is limited, it remains
reasonable).

1× 1 3× 3

3× 3

MP
MP

For Bayesian optimization, use a neural net (of an en-
semble of neural nets) instead of a Gaussian process,
to predict (the mean and variance of) the accuracy of
an architecture, and Thompson sampling.

Multiplicative interactions
and where to find them

S.M. Jayakumar et al. (ICLR 2020)
Try replacing concatenation with multiplication – gat-
ing, hypernetworks, dynamic convolutions, attention,
etc. Replace linear maps (x, z) 7→ W [x; z] + b with bi-
linear ones (x, z) 7→ z′Wx + z′U + V x + b (W is then
a 3-dimensional tensor).

Big Bird: transformers for longer sequences
M. Zaheer et al. (2020)

The quadratic size of the attention matrix does not al-
low BERT to scale to large texts. Instead of a dense
matrix, use a sparse one, combining:
– Random links: with several layers, random sparse
matrices can approximate dense ones;

– A window, i.e., non-zero elements close to the diag-
onal;

– Bidirectional inks between important tokens (e.g.,
cls) and all other tokens.

Bootstrap your own latent:
a new approach to self-supervised learning

J.B. Grill et al. (2020)
SimCLR performs self-supervised learning by combin-
ing augmentations and negative samples. Negative
samples are not really needed: use two neural net-
works, the trained one (“online”) and an exponentially
weighted moving average (“target”), the online net-
work predicting the latent representation of the target
one under a different augmentation.

Direct feedback alignment scales to
modern deep learning tasks and architectures

J. Launay et al. (2020)
Given a neural network

· · · → hi−1
Wi−→ ai

fi−→ hi
Wi+1−→ ai+1 → · · · ,

Article and book summaries by Vincent Zoonekynd 305/1044

back-propagation computes

∂L

∂Wi
=

∂L

∂ai+1

∂ai+1

∂hi

∂hu
∂ai

∂ai
∂Wi

=
∂L

∂ai+1
Wi+1f

′
i(ai)Wi.

Direct feedback alignment (DFA) replaces the first two
factors (since they come from the next layer, they are
not biologically plausible, and they prevent paralleliza-
tion) with

∂L

∂aN
Bi

where Bi is a fixed random matrix, randomly project-
ing the global error.
DFA works well for fully-connected architectures (not
convolutional ones).

Deep unsupervised learning
P. Abbeel et al. (2020)

1. Deep unsupervised learning includes generative
models which sample from the data manifold, and self-
supervised learning (e.g., guessing the angle of a rotated
image). Those models provide one or more of:
– Probability density;
– Sampling;
– Latent representation.
Applications include (conditional) data generation,
anomaly detection, compression (WaveOne is better
than jpeg2000), pretraining for text (GPT2, BERT)
and vision (CPC, MoCo).
2. Likelihood-based models allow us to sample x ∼ p
and to compute probabilities p(x). For discrete dis-
tributions, we could use a histogram, but this does not
scale (a 28×28 binary image would require 228×28 bins)
and generalizes poorly. Instead, look for a parametric
distribution, estimated using maximum likelihood or,
equivalently,

KL(data‖pθ) = E
x∼data

[
− log pθ(x)

]
−H(data).

If the probability pθ is modeled by a neural net, we
need to ensure that

∀x pθ(x) ∈ [0, 1]∑
x

pθ(x) = 1

This can be done with a Bayesian net,

log pθ(x) =
∑
i

log pθ
(
xi|parents(xi)

)
,

e.g., an autoregressive model

log pθ(x) =
∑
i

log pθ(xi|x1:i−1)

where p(x1) is given by a histogram and p(xi|x1:i−1)
by a neural network with a softmax. Recurrent net-
works allow some parameter sharing – they even work

for MNIST, but try to add skip connections (i−1, j)→
(i, j) and/or use positional encoding

(i, j, previous state) 7−→ (output, next state).

Masking-based models, such as MADE (masked autoen-
coder for distribution estimation) take a neural net and
remove connections (apply a mask) such that output i
only depends on inputs 1 : i− 1.

x1

x2

x3

x4

p(x1)

p(x2|x1)

p(x3|x1:2)

p(x4|x1:3)
A B B

There are two types of layers, A and B, containing only
connections from i to j where i < j (A) or i ⩽ j (B);
use at least one layer of type A, anywhere. The mask
depends on the ordering; you can use several orderings
(masks) on the same underlying network (but not too
many).
Causal convolutions naturally provide the autoregres-
sive structure, with shared parameters, but they have
a limited receptive field.

output

input

p(xi|x<i)

WaveNet uses dilated convolutions, gated residual
blocks and skip connections.

dilated convolution

tanh σ

1× 1

×

+

A 2-dimensional generalization of WaveNet would have
a blind spot.

PixelCNN uses filters of the form but only above
the pixel of interest (“vertical stack”),

Article and book summaries by Vincent Zoonekynd 306/1044

combined with a 1-dimensional network to address the
blindspot on the left (“horizontal stack”); the vertical
stack is fed to the horizontal stack.
Using a multinomial distribution (softmax) for pixel
values is suboptimal: similar pixel values have similar
probabilities. PixelCNN++ uses a mixture of logistic
distributions (the cdf is a sigmoid), with downsampling
and (UNet) skip connections.
Convolutions have a limited receptive field: Pixel-
SNAIL uses CNNs and self-attention,

A(q, k, V) =
∑
i

eq·ki∑
j

eq·kj
vi

(if the query q is close to the 1-hot vector for coordi-
nate i, the output is close to vi) with masking; different
orders are possible.

Extensions include:
– Conditional PixelCNN;
– Hierarchical AR image models, which progressively
increase the resolution;

– Generating a greyscale image first, before adding
colour.

AR models are very slow: they generate one pixel at a
time. The can be sped up by breaking the AR pattern
(scaling AR video models).

1 1

1 1

1 1

1 1

2 2

2 2

1 1

1 1

2 2

2 2

3 3

3 3

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

or by caching the activations (WaveNet, fastPixelC-
CNN).
There is no straightforward latent representation (ev-
erything is pixelwise), but the Fisher score

˙̀(x, θ) = ∇θ log pθ(x)

can be used. It also allows interpolation.
3. Flow models allow sampling x ∼ pθ, probability
computation pθ(x) and also provide a latent represen-
tation. They transform the input into a target distri-
bution, z ∼ pz, e.g., z ∼ N(0, 1).

x −→ → → −→ a = fθ(x)

In dimension 1, the distribution of x is given by a
change of variable, provided fθ is invertible,

pθ(x) = pz
(
fθ(x)

) ∣∣∣∣∂fθ(x)∂x

∣∣∣∣
and θ can be found by maximizing∑
i

log pθ(xi) =
∑
i

log pz
(
fθ(xi)

)
+ log

∣∣∣∣∂fθ(x)∂x
(xi)

∣∣∣∣ .
Sampling is straightforward: z ∼ pz, x = f−1θ (z).
In dimension 1, with pz = U(0, 1), the flow is just the
cdf of x, and could be estimated as a mixture of Gaus-
sians.

x
data

−→
x

z

flow

−→
z

latent representation

In dimension 2, this becomes(
x1
x2

)
7−→

(
z1 = fθ(x1)

z2 = fθ(x1, x2)

)

Loss(θ) =
∑
i

log pz1
(
fθ(x1)

)
+ log

∣∣∣∣ dz1dx1

∣∣∣∣+
log pz1

(
fθ(x1, x2)

)
+ log

∣∣∣∣ dz2dx1

∣∣∣∣ .
For instance, fθ(x1) could be the cdf of a mixture of
5 Gaussians and fθ(x1, x2) the cdf of a mixture of 5
Gaussians conditional on x2.

−→

−→

In dimension n, notice that sampling from a Baysian
net is a flow: use an autoregressive flow (AF).

x1 ∼ pθ(x1) x1 = f−1θ (z1)

x2 ∼ pθ(x2|x1) x2 = f−1θ (z2;x1)

x2 ∼ pθ(x3|x1, x2) x3 = f−1θ (z3, x1, x2)

pθ(x) = p
(
fθ(x)

) ∣∣∣∣det ∂fθ(x)∂x

∣∣∣∣
Instead of learning an invertible mapping x 7→ z, one
can learn z 7→ x (inverse AR flow, IAF): training
is now sequential (slow), but sampling parallelizable
(fast) (ParallelWaveNet, IAF-VAE).
The loss is now

E
x∼data

[
− log pθ(x)

]
=

E
x∼data

[
− log pz

(
fθ(x)

)
− log

∣∣∣∣det ∂fθ(x)∂x

∣∣∣∣]

Article and book summaries by Vincent Zoonekynd 307/1044

For affine flows (multivariate Gaussians)

z = f(x) = A−1(x− b) z ∼ N(0, 1)

x = Az + b x ∼ N(b, AA′)

the log-likelihood is expensive to compute (since
∂f/∂x = A−1, we need detA).
The elementwise flow x 7→ (fθ(x1), . . . , fθ(xn)) is not
expressive enough, but could be used for some layers.
NICE and RealNVP split the variables in two

z1:d/2 = x1:d/2

zd/2:d = dd/2:d · sθ(x1:d/2) + tθ(x1:d/2)

where sθ, tθ are arbitrary neural nets.
Split images using a checkerboard pattern or channels.

x : 32× 32× 1

x1 : 16× 16× 2

x2 : 8× 8× 4

z1 : 16× 16× 2

z2 : 8× 8× 4

z3 : 4× 4× 16

layer 1

layer 1

layer 1

Flow++ replaces the affine transformations in Real-
NVP

xi = zi · aθ
(
parent(xi)

)
+ bθ

(
parent(xi)

)
with non-linear transformations, e.g., the cdf (or icdf)
of Gaussian or logistic mixtures, or piecewise linear
or quadratic functions. If the data is discrete ,
we do not want a pdf with peaks , but something
closer to a piecewise uniform distribution : add
U(− 1

2 ,+
1
2) to the data (dequantization). Also check

Glow, FFJORD.
(To check if a latent coordinate k is independent from
the others, take two images x(1), x(2); compute z(1),
z(2); replace z(1)k with z(2)k ; compute the corresponding
image x; check if it looks real, e.g., with a GAN – this
could also be part of the loss function.)
4. With AR and flow models, all variables are ob-
served, but they depend on one another. With latent
variable models, some variables are hidden, but the
observed variables are conditionally independent given
the latent variables.

z

x
pθ(x|z)

z ∼ pz

x ∼ pθ(x|z)

The likelihood is pθ(x) =
∑
z pz(z)pθ(x|z) and the

model can be trained as

Maximize
θ

∑
i

log pθ
(
x(i)
)
=
∑
i

log
∑
z

pz(z)pθ
(
x(i)|z

)
.

If z only takes a small number of values, the objective
is tractable, e.g., a mixture of 3 Gaussians:

z ∼ Unif{A,B,C}
x ∼ N(µz, σ

2
z).

Prior sampling replaces Ez∼pz [·] with the average over
a sample z(i)k ∼ pz, but most terms are negligible un-
less, by chance, zk is close to a latent representation of
x – and things get worse in high dimension: use impor-
tance sampling. A good proposal distribution would be
q(z) = pθ(z|x(i)), but it is difficult to sample from. In-
stead, use a variational approach and find q = N(µ, σ2)
close to pθ(z|x(i)) by minimizing

KL
(
q(z)

∥∥ pθ(z|x(i)) = E
z∼q

log
q(z)

pθ(z|x(i))

= E
z∼q

log
q(z)

pθ(x(i)|z)p(z)/pθ(x(i))
= E
z∼q

[
log q(z)− log pθ(x

(i)|z)− log p(z)
]

computable

+ log pθ(x
(i)).

does not
depend on q

Instead of finding a distribution q minimizing the KL
divergence for each i, use amortized inference and solve

Minimize
ϕ

∑
i

KL
(
qϕ(z|x(i))

∥∥ pθ(z|x(i)))
where qϕ is a neural net: qϕ(z|x) = N

(
µϕ(x), σ

2
ϕ(x)

)
.

Z X
pθ(x|z)

qϕ(z|x)

Note that pθ is part of the model while qϕ is merely
used for inference. This is the importance weighted au-
toencoder (IWAE).

Find θ and φ

To maximize
∑
i

log
1

K

∑
k

px(z
(i)
k)

q(z
(i)
k)

pθ(x
(i)|z(i)k)

−
∑
i

KL
(
qϕ(x|x(i))

∥∥ pθ(z|x(i)))
Where z

(i)
k ∼ qϕ(·|x(i))

The traditional VAE uses K = 1.
The VAE loss can also be derived from Jensen’s in-
equality:∑

i

log pθ(x
(i)) =

∑
i

log
∑
z

p(z)pθ(x
(i)|z)

=
∑
i

log
∑
z

q(z)

q(z)
p(z)pθ(x

(i)|z)

=
∑
i

log E
z∼q

[
p(z)

q(z)
pθ(x

(i)|z)
]

⩾
∑
i

E
z∼q

log
p(z)

q(z)
pθ(x

(i)|z)

Article and book summaries by Vincent Zoonekynd 308/1044

Jensen’s inqeuality, log EX ⩾ E logX, is an equality
if X is constant, i.e., if q(z) ∝ pθ(z|x(i)):

∑
o

log pθ(x
(i)) = Max

q

∑
i

E
z∼q

log
p(z)pθ(x

(i)|z)
q(z)

.

This is the variational lower bound (VLB, or evidence
lover bound, ELBO). To train the model, maximize the
VLB wrt both q and θ.
The VAE objective can also be derived by computing
KL
(
q(z)

∥∥ p(z|x)):
log p(x) = E

z∼q

[
log

p(z)p(x|z)
q(z)

]
+KL

(
q(z)

∥∥ p(z|x)).
The optimization wrt q is tricky because the objective
is an expectation wrt q. The likelihood ratio gradient
(score function, reinforce)

∇ϕ E
z∼qϕ

[
f(z)

]
= E
z∼qϕ

[
∇ϕ log qϕ(z) · f(z)

]
is very noisy (try to minimize Ex∼N(µ,1) ‖x− 5‖2: the
gradient is 1

2 (x − µ) ‖x− 5‖2 – each step is in a ran-
dom direction, but they are slightly longer in the right
direction). Whenever possible, the reparametrization
trick (or pathwise derivative) works better:

E
z∼N(µ,σ2)

[
f(x)

]
= E
ε∼N(0,1)

[
f(µ+ σε)

]
The β-VAE forces the latent representation to be even
more Gaussian (β � 1):

Loss = E
z∼qϕ(z|x)

[
log pθ(x|z)

]
− β ·KL

(
qϕ(z|x)

∥∥ p(z)).
The VQ-VAE provides a better separation between
classes by quantizing the latent space. The VQ-VAE-
v2 (current SOTA) uses a hierarchical latent space
(with progressive up- and down-sampling) and self-
attention; contrary to GANs, it does not suffer from
mode collapse.
More complex distributions for p(x|z), e.g., PixelCNN,
tend to forget the latent code...
Variational approximation has other uses. Flow++
does not use uniform quantization, which results in
piecewise constant distributions, , but learns it
(variational dequantization) .
Mutual information can be approximated as

I(z;x) = H(z)−H(z|x)
= H(z)− E

(z,x)∼p(z,x)

[
− log p(z|x)

]
= H(z) + E

[
log q(z|x)− log q(z|x) + log p(z|x)

]
= H(z) + E

[
log q(z|x)

]
+KL

⩾ H(z) + E
[
log q(z|x)

]

H(X|Y) H(Y |X)I(X;Y)

H(Y)H(X)

5,6. Implicit models learn a mapping z 7→ x with-
out explicit density estimation – just samples. We can
no longer compute KL(pdata‖pmodel): we will use other
distances (MMD, JSD, EMD, etc.)
A generative adversarial network (GAN) is a min-
imax game between a generator and a discriminator

Min
G

Max
D

E
x∼data

logDx+ E
z∼pz

log(1−DGz).

To evaluate the quality of the generated images, the
kernel density estimator (aka Parzen window density
estimator) does not work well in high dimension. The
inception score uses a pretrained classifier: the class
of each generated image should be easy to recognize
p(y|x) has low entropy) and the classes should be di-
verse p(y) has high entropy).

IS = exp
[
H(y)−H(y|x)

]
= exp E

x∼generated
KL
(
p(y|x)

∥∥ p(y))
It is still suceptible to model collapse. The Frechet in-
ception distance (FID) compares the mean and covari-
ance of the features (Inception-v3 pool3) of the real
and generated images:

d2 = ‖m−mw‖2 + tr
(
C + Cw − 2(CCw)

1/2
)
.

Those evaluation methods are not good enough to be
used as objectives, though.
The optimal discriminator is

D∗(x) =
pdata(x)

pdata(x) + pgenerated(x)
;

the objective is then

V (G,D∗) = − log 4 + JSD(pdata‖pgenerated).

The Jensen-Shannon divergence is between the KL (no
mode collapse, blurry) and the inverse KL (mode col-
lapse) divergences. If the discriminator is too good,
it saturates (its gradient is zero – uninformative): for
the generator loss (only), change the second term from
log(1 −DGz) to − logDGz: the uninformative gradi-
ents are no longer for the fake samples but for the real
ones. (It is no longer a zero-sum game: the loss is
different for G and D.)

log
(
1− σ(x)

)

fake real

− log σ(x)

fake real

Article and book summaries by Vincent Zoonekynd 309/1044

DCGAN (deep convolutional GAN) uses mostly con-
volutions; it allows for vector arithmetic (pose, smile,
glasses, gender). When interpolating using a GAN, do
not use a straight line (it would go close to the origin,
which is a muddy image), but a half-circle away from
the origin.
Improved training of GANs introduced a few ideas:
– Feature matching: for some feature f , add

∥∥∥∥ E
x∼data

[
f(x)

]
− E
z∼noise

[
f(Gz)]

∥∥∥∥2
to the loss;

– Minibatch discrimination: feed minibatches, rather
than individual images, to the discriminator, to spot
mode collapse (of just add exp−‖fxi − fxj‖1 to the
loss, or to the input, for some feature f);

– Historical averaging: regularize by adding∥∥θ − 1
T

∑
t θi
∥∥2 to the loss (cf. Cesaro (usually at

text time only), TRPO);
– One-sided label smoothing (only for the real data);
– Virtual batch normalization: natch-norm procudes
correlated samples: compute the batch statistics us-
ing a virtual batch made of the current observation
and a fixed reference batch;

– Semi-supervised learning: have the discriminator
predict labels, if available, instead of just real vs fake;

– Inception score.
TheWasserstein GAN (WGAN) replaces the JSD with
the Wasserstein distance

W (preal, pgen) = inf
γ∈Π(pr,pg)

E
(x,y)∼γ

‖x− y‖

=
∑
∥f∥L⩽1

E
x∼pr

[
f(X)

]
− E
x∼pg

[
f(X)

]
.

To enforce the Lipschitz condition, just clip the
weights. There is no classifier: the Lipschits function
is just a “critic”. The gradient is more meaningful, and
the model more robust (no need for all those tricks).
WGAN-GP replaces the weight clipping with a gradi-
ent penalty

(
‖∇xD(x)‖2 − 1

)2, evaluated at a rendom
point between a real and a fake sample; there is no
batch-norm in the discriminator.
ProGAN progressively increases the resolution.
SNGAN (spectral normalization) uses a hinge loss

LD = E
x∼data

(Dx− 1)− + E
z∼noise

(−DGz − 1)−

LG = − E
z∼noise

[DGz],

conditional batchnorm, and enforces the Lipschitz con-
dition using spectral normalization of the weight matri-
ces,W ←W/σ(W); the spectral norm (largest singular
value) can be approximated with power iteration (one
iteration is enough).

The discriminator can use labels in different ways:
adversarial

loss

x y

adversarial
loss

x

y

adversarial
loss

classification
loss

x

y

adversarial
loss

scalar product

x

y

SAGAN uses self-attention, spectral normalization (in
both discriminator and generator) and hinge loss.
BigGAN scales everythingm adds orthogonal regular-
ization ‖W ′W − I‖2F , but only for the off-diagonal el-
ements ‖W ′W � (1− I)‖2F , use the truncation trick
(truncate the Gaussian N(0, I) at test time to [−c, c])
and “standing statistics” (?) for batch-norm.
StyleGAN uses the noise in a different way: the gen-
erator starts with a constant input and progressively
upscales it, adding noise at each step; there are two
types of noises: the style noise, preprocessed by an-
other network, is incorporated at each step; additional
Gaussian noise, different at each step, is also added. As
with style transfer, StyleGAN uses (adaptive) instance
normalization.
StyleGAN2 addresses some artefacts in StyleGAN
(e.g., water-droplet-like artefacts, very visible in the
activations, but less so in the final images) and can
compute the latent representation of an image.
The variational information bottleneck (VIB) add an-
other encoder before the discriminator,

generator
data

Encoder Discriminator fake or realx z

to reduce the information it receives, with a constraint
on the mutual information I(X;Z) ⩽ Ic or a varia-
tional bound on the mutual information

E
x

[
KL
(
p(z|x)

∥∥ r(z))] ⩽ Ic.
Pix2Pix is a conditional GAN (cGAN) used, e.g., to
colour black-and-white images, in which the discrim-
inator takes pairs of images to ensure the output is
related to the input;

B&W image
noise

generator
color
image

discriminator
real
or

fake

it also uses an autoencoder loss B&W → colour →
B&W. To reduce the capacity of the discriminator,
have it work on patches. Examples include colour-
ing images, turning contours into images, sharpening,
turning sketches into photorealistic images (GauGAN),
controlling drawing software (learning-to-paint), video
(video2video: pose detection to change the person
moving or dancing, deep fake adding frames, increasing
resolution, etc.)
GANs can also be used for representation learning. The
InfoGAN generator takes as input a code c and noise
z to generate an image x; to ensure that the code is

Article and book summaries by Vincent Zoonekynd 310/1044

actually used, maximize the mutual information I(c, x)
or a variational lower bound.

I(c;x) = I(c;G(z, c))

= H(x)−H(c|G(z, c))
= H(c) + E

x∼G(z,c)
E

c′∼p(c′|x)
log p(c′|x)

⩾ H(c) + E
x∼G(z,c)

E
c′∼p(c′|x)

log q(c′|x)

real
noise
code

G q

D
real
or

fake

code

It can also be used for unsupervised category discovery
(with a discrete code).
BiGAN (bidirectional GAN) and BigBiGAN learn
“generators” in both direction, between image and la-
tent representation; the discriminator learns to distin-
guish encoder pairs (x, ẑ) from generator pairs (x̂, z).

x x̂

ẑ z

x or x̂

z or x̂

+ loss

Energy-based models

p(x) =
1

Z
e−E(x)

are estimated by maximizing

E
x∼data

[
log pθ(x)

]
= E

[
−Eθ(x)

]
− logZ(θ).

The partition function Z can be replaced by a varia-
tional lower bound.

logZ = log
∑
x

e−Eθ(x)

= log
∑
x

q(x)

q(x)
e−Eθ(x)

= log E
x∼q

[
e−Eθ(x)

q(x)

]
⩾ Max

ϕ
E

x∼qϕ

[
log

e−Eθ(x)

qϕ(x)

]
⩾ Max

ϕ
E

x∼qϕ
[−Eθ] +H[qϕ].

The objective is then an entropy-regularized GAN (the
entropy helps prevent mode collapse).

Max
θ

Min
ϕ

E
x∼data

[
−Eθ(x)

]
+ E
x∼qϕ

[
Eθ(x)

]
−H(qϕ)

The entropy is usually difficult to compute (except for
some models, e.g., PixelCNN).
The WGAN optimizes the dual; optimal transport
GAN directly optimized the primal, e.g., using implicit
MLE:
– Generate n samples from pθ;
– Pick n real images;

– For each real image, pick the “closest” generated im-
age, form some measure of distance (since each real
image is matched, we avoid mode collapse);

– Move θ to make them closer.
Adversarial losses also have applications in transfer
learning,

labeled images
(simulated)

unlabeled images
(real)

adversarial loss
classification loss

fairness,

data
quantity of interest

sensitive attributes

Maximize
θ

Loss(θ) such that Losssensitive(θ) ⩽ K

or imitation learning (GAIL)
E
π

[
logD(s, a)

]
+ E
πexpert

[
log(1−D(s, a))

]
− λH(π),

which works better with a variational information bot-
tleneck (VAIL).
7. Self-supervised learning is a form of unsuper-
vised learning which holds part of the data and tasks
a neural network to recover it.
Denoising autoencoders add different types of noise
(Gaussian, zero, zero-or-one); they make the output
constant in directions orthogonal to the data manifold.
They can be stacked.
Impainting removes the central region, a random block,
or an element (segmentation mask); use a GAN loss in
addition to the reconstruction loss to avoid blurry im-
ages.
The split-brain autoencoder predicts one view of an im-
age from another (e.g., colour from greyscale, L 7→
(a, b)); it works better with quantized colours (pixel-
wise classification problem).

x x̂

One can try to predict the relative position of two
patches (include gaps, jitter the patches; chromatic
aberration can be a problem: it points to the center
of the image),

or reorder them , as a jigsaw problem, or predict by
how much an image was rotated (4 rotations work bet-
ter than more).
Word embeddings predict the center of a window
(CBOW) or the context of a word (skipgram, with neg-
ative sampling).

Article and book summaries by Vincent Zoonekynd 311/1044

contrastive predictive coding (CPC) looks for an en-
coder E such that the mutual information I(Ex1;Ex2)
be high if x1 and x2 are patches from the same image,
and low otherwise. Applications include sound, iamges.
language, reinforcement learning; data augmentation is
important.
Even if you have data, unsupervised pretraining fol-
lowed by supervised fine-tuning outperforms super-
vised training.
Instance discrimination looks for a latent representa-
tion in which augmented versions (cropped, flipped,
etc.) of the same image are close and different images
are far apart: MoCo (keep a buffer of negative exam-
ples), SimCLR, MoCo-v2.
8. Use AR models if you need a density – but sampling
is slow.
Use VAEs if you need both a latent representation and
samples.
Use GANs if you want good quality samples (sharp
images), fast-training, or image-to-image translation.
9a. Supervised learning solves

Maximize
θ

E
(x,y)∼data

[
log pθ(y|x)

]
.

Semi-supervised learning leverages unlabeled data.
Entropy minimization ensures the classifier is confident
on unlabeled data. Pseudo-labels are confident predic-
tions, on the unlabeled data, progressively added to
the training data.
Label consistency asks that predictions be similar
for different augmentations of any given input, e.g.,
with the π-model
y

x DA

cross-entropy

squared difference

+

w

loss

or temporal ensembling (the squared difference is with
a moving average of past latent representations of the
input) or mean teacher (instead of keeping a moving
average for each input, just keep a moving average of
the weights, and compare the latent representations
computed with the current and average weights).
An adversarial example x + r can be found as r =
εg/ ‖g‖, where g = ∇x log p(y|x; θ̂), or

r = Argmax
∥r∥⩽ε

KL
(
p(·|x; θ̂)

∥∥ p(·|x+ r; θ̂)
)

(linearize the Kullback-Leibler divergence and use
power iteration).
Virtual adversarial training (VAT) makes the forecasts
for x and x + r, for unlabeled data, close; it performs
best.
Unsupervised data augmentation (UDA) (back-
translation, image augmentation) improves perfor-
mance more than random perturbations. Training

signal annealing (TSA) helps prevent overfitting on
labeled data by masking out high-confidence samples

Minimize
θ

Mean
x,y
− log pθ(y|x)1pθ(y|x)⩽ηt .

MixUp creates new, synthetic observations by combin-
ing existing ones.

λ ∼ Beta(α, α)
λ′ = Max(λ, λ′)

x′ = λ′x1 + (1− λ′)x2
MixMatch uses MixUp to mix labeled and unlabeled
observations, computes the labels by running the clas-
sifier on several augmentations of the input, averaging
the outputs, and shapening (temperature) the average.
The noisy student trains progressively larger models:
– Train a teacher models;
– Train a student model on the original data, and
teacher forecasts for unlabeled data, with both in-
put noise (data augmentation) and model noise
(dropout, stochastic depth);

– Iterate with a larger student.
9b. Unsupervised distribution alignment tries to
find a mapping betwwen two domains, A and B, ei-
ther as conditional probabilities, p(a|b) and p(b|a), or
as maps A⇆ B, using only unpaired data from A and
B. Examples include daylight and night-time images,
black-and-white and colour images, segmentation mask
and photograph, English and French sentences, image
and caption, painting and photograph, etc.
CycleGAN combines marginal matching, which ap-
proximates the marginals p(a|b) ≈ qθ(a|b), p(b|a) ≈
qθ(b|a) such that

q(b) = E
a∼p

[
q(b|a)

]
≈ p(b)

q(a) = E
b∼p

[
q(a|b)

]
≈ p(a)

and cycle consistency. It can cheat the cycle con-
sistency condition by hiding information (steganogra-
phy).
DualGAN uses a stochastic mapping GAB : A ×
X → B instead of A → B, but the cycle consistency
G)BA

(
GAB(a, z), z

′) = a makes it ignore z and z′. In-
stead, the augmented CycleGAN learns mappings be-
tween A× Z and B × Z.
Word2vec embedings for dfferent languages can be
aligned with a rotation: approximate marginal match-
ing with adversarial training followed by a refinement
of the rotation by solving the exact alignment problem
for the top pairs.
Unsupervised machine translation combines word-level
alignment, monolingual models (marginal matching),
back-translation (cycle consistency).
10. Compression. The Shannon entropy is the num-
ber of bits needed to transmit information,

H(X) =
∑
i

p(xi) log
1

p(xi)
.

Article and book summaries by Vincent Zoonekynd 312/1044

For any uniquely decodable code C,∑
(s,w)∈C

2−ℓ(w) ⩽ 1

(Kraft-McMillan inequality); conversely, for any
lengths satisfying this ineqaulity, there exists a prefix
code.
The length of a code is at least the entropy, H(X) ⩽
〈`〉; there exists a code with average length 〈`〉 ⩽
H(X) + 1. Huffman coding (a trie, built bottom up)
has length `i = d− lg p(xi)e; it is optimal.
If we only have an approximation p̂ of p, the average
length is KL(p̂‖p)+H(p). If the entropy is too high, try
conditioning: H(X|C) ⩽ H(X), e.g., with AR models.
The “+1” in 〈`〉 ⩽ H(X)+1 matters if H(X) is small:
use larger chunks. The entropy of the English language
is around 1 bit per character.
Arithmetic coding encodes a message as a subinter-
val of [0, 1]: for each new character, split the current
interval into subintervals of sizes proportional to the
probabilities of each symbol, and pick that currespond-
ing to the new character. To send the final interval, use
any number in it.
Asymmetric numeral systems are an alternative to
arithmetic coding using integers instead of intervals:
partition N into subsets Sa, Sb, etc., one for each sym-
bol, such that “Sa contains a proportion p(a) of inte-
gers”, and progressively update a state s ∈ N, starting
at s = 0, by setting enc(s, a) to the sth element of Sa.
High-dimensional (discretized) continuous data can be
modeled as a mixture of simple distributions, p(x) =∑
i p(i)p(x|i), using

– Max-mode coding: send i = Argmax p(i|x) en-
coded with p, then x encoded with p(·|i); it costs
H(X) +KL(true‖mixture);

– Posterior sampling: use i sampled from p(·|x) in-
stead;

– Bits-back coding.
The Lempel-Ziv (LZ) compression algorithm looks,
in the text seen so far, for the longest match to the
string starting at the current position, and outputs its
location and length.
11. NLP. The perplexity of a language model is
the average number of possible next words, i.e., the
branching factor – it is between 5 and 10 for free speech,
and more constrained, 3 or 4, for translation.
Here are some milestones in the history of language
models:
– GloVe, a factorization of the pointwise mutual infor-
mation matrix,

PMI(x, y) = log
p(x, y)

p(x)p(y)
,

obtained from the co-occurrence matrix;
– Word2vec, another vector embedding, predicting a
word from its context (CBOW, continuous bag of
words) or the opposite (skipgram);

– Byte pair encoding (BPE, usually up to 32,000 to-
kens);

– n-gram models with smoothing;
– NPLM, an n-gram model, with vector embeddings

and a neural net;
– Skip-thought, skipgram with sentences instead of
words (contrary to the word embeddings, the sen-
tence embeddings are not model parameters but are
computed from the word embeddings);

– ELMO, contextual word representations from RNNs;
– GPT, contextual word representations with a
transformer-based generative model;

– BERT (masking), RoBERTa;
– Electra: BERT-like model (masking) with a discrim-
inator to distinguish real from generated sentences;

– T5, which combines all of the above.

Multitask and metalearning
C. Finn (Stanford, 2020)

2. A multitask learning network can take as additional
input a description of the task,

x

· · ·
· · ·

· · ·

...
...

zi

y =
∑
j

1zi=jyj

multiplicative gating: no shared parameters

x · · · y

zi
very few shared parameters

or split the parameters into task-specific and shared
(or soft-shared: λ

∑
‖θt − θt′‖).

There can be negative transfer – independent networks
may work better.
3. There are three types of metalearning algorithms:
black-box, optimization-based and non-parametric.
In black-box algorithms, a first network processes the
training data and outputs parameters for the second
network, which performs the task.

LSTM:
fθ

(x1, y1)(x2, y2)(x3, y3)

ϕi

x

gϕi

y

Di Dtest
i

Optimization-based algorithms, e.g., MAML (model-
agnostic meta-learning) learn parameters θ such hat
starting the optimization at θ gives the best perfor-
mance on the new tasks.

Minimize
θ

∑
task i

Loss
(
θ − α∇θLoss(θ,D train

i),D test
i

)
Article and book summaries by Vincent Zoonekynd 313/1044

ϕ∗
1

ϕ∗
2ϕ∗

3

∇L1

∇L2

∇L3

4. MiniImageNet is a metalearning benchmark for one-
shot 5-class image classification.
A siamese network checks if two images are of the same
class – but training a binary classification model for n-
way classification may not be optimal. Matching net-
works learn an embedding on which k-NN performs
well. If there are several samples per class, a prototypi-
cal network embeds them all, computes their averages,
and uses k-NN on those averages,

p(y = k|x) ∝ exp−d(fθ(x), ck).

One can also learn the distance (relation networks) or
allow for several prototypes per class (infinite mixture
of prototypes, IMP).
5. MAML ensembles are an example of Bayesian met-
alearning algorithm.
6. Since MAML and black-box meta-learning only
need gradients, they can be used with policy gradi-
ent – but the variance is high, and it is on-policy.
Value-based reinforcement learning (off-policy) is not
gradient-based: it is difficult to combine it with
MAML.
8. Model-based reinfircement learning learns the
dynamics (usually, the same across tasks); model-
predictive control (MPC) replans after each step, be-
cause we may end up in a state slightly different from
what the model predicted. Learn either in latent space
or in image space (video prediction)

(observationn, actionn) 7−→ observationn.

9. In life-long learning, the agent is asked to learn
a first task, then a second, and so on, instead of all at
the same time. Task order can be known, predictable,
or random; task boundaries may be known or not; they
can change abruptly or progressively shift.
We want to minimize the regret.
There can be positive/negative forward/backward
transfer: the current task can make the performance
on future/previous tasaks better/worse.
The follow-the-leader algorithm stores all the data seen
so far and trains on it. The catastrophic forgetting algo-
rithm takes a gradient step on the current observation
and forgets it.
To avoid forgetting previous tasks, keep a small amount
of data for each task and add a constraint that the loss
on the previus tasks does not get worse.
10. Generative teaching networks (GTN) learn how to
generate data to train on, to help select the network

architecture – once it is chosen, train on actual data,
long enough.
Weight normalizaion suggests to parametrize the
weights as w = g · v/ ‖v‖, g ∈ R+ and learn v and
g seprately.
Learning to RL (LRL – RL2 is similar) learns a RNN
(s, t, at) 7→ at; it is amenable to differential Hebbian
learning (“neurons that fire together wire together”)
and neuromodulated differentiable Hebbian learning
(with eligibility traces).
To avoid catastrophic forgetting when “learning to con-
tinuouslty learn”, ANML uses second network to iden-
tify the task and zero out the wrights irrelevant for
it.

input

neuromodulation network

prediction network × output

Poet and Go-Explore use goal switching and automat-
ically generate tasks.
11. Mutual information is a measure of dependence

I(x; y) = KL
(
p(x, y)

∥∥ p(x)p(y))
= H

(
p(y)

)
how hard it
is to guess y

−H
(
p(y|x)

)
how hard it
is to guess y
knowing x

For instance, the empowerment is

I(st+1; at) = H(st+1)−H(st+1|at).

Some variants of Q-learning

Q(s, a)← s(s, a) +Max
a′

Q(s′, a′)

increase exploration (soft Q-learning, SAC)

Q(s, a)← s(s, a) + log

∫
expQ(s′, a′)da′

Q(s, a)← s(s, a) + E
s′,a′

[
Q(s′, a′)− log π(a′|s′)

entropy

]
Soft actor critic (SAC) updates the policy as

π ← Argmin
π

KL
(
π(·|s)

∥∥ expQπ
old

(s, ·)
)
.

To learn without a reward function, train a VAE
to represent the state of the world, pick a state
at random, and use it as a goal. To get diverse
goals, update the VAE using weighted MLE, maximiz-
ing E

[
w(x) log p(x)

]
instead of E

[
log p(x)

]
, e.g., with

w(x) = p(x)α, α ∈ [−1, 0), to increase entropy. Learn-
ing π(a|s, goal) is equivalent to maximizing I(s; goal).
Intrinsic motivation adds an exploration bonus
− log pπ(s) to the reward – but check state marginal
matching (SMM) instead.
Instead of specifying a goal, give the policy a “skill” z
(an integer) and have a discriminator try to guess it

Article and book summaries by Vincent Zoonekynd 314/1044

from the subsequent state(s). Policy and discrimina-
tor cooperate. This maximizes the mutual information
I(z; s). (In hierarchical reinforcement learning, once
the skills have been learnt, one can learn a policy that
switches between them.)
12. To avoid memorization, add a penalty on the infor-
mation stored in the parameter (meta-regularization).
If there is no explicit boundary between tasks, use the
performance of the current model to detect changes
or, more generally, BOCPD (Bayesian online change-
point detection – it is differentiable: you can backprop
through it): MOCA (metalearning with changepoint
analysis).
If there is no explicit task, learn a representation of
the data (unsupervised: BiGAN, DeepCLuster), ar-
bitrarily cluster the data (in different ways), an ask
metalearning to learn to distinguish those classes.
If two gradients conflict (g1 · g2 < 0), project each onto
the normal hyperplane of the other (PCGrad: project-
ing conflicting gradients).

Generative deep learning
D. Foster (2019)

1. Naive Bayes models are generative; they may work
with simple tabular data, but will fail with pixels.
2. To classify images (cifar-10), one could try dense
layers (200, 150, 10, softmax; ReLU), but convolu-
tions (3×3, 32, 321, 322, 641, 641, dense(128), dropout,
dense; leaky ReLU, batchnorm after each layer – I in-
dicate the stride with indices) work better.
3. To generate images (mnist), we could try an
autoencoder, but the distribution in the latent space
is not centered, far from Gaussian, and unbalanced.
Instead, a variational autoencoder (VAE, or β-VAE)
adds noise to the latent space and forces the distribu-
tion to be close to N(0, 1). Check the 1-dimensional
disributions in the latent space: after training, they
should look Gaussian. You can interpolate between
images, or change some attribute, e.g., by adding
λ ·
[
avg(smile)− avg(¬smile)

]
(CelebA).

4. GANs are notoriously difficult to train: they suffer
from mode collapse, oscillating loss, uninformative loss
(the loss function of the generator changes with time: if
the loss increases with time, this may not be worrying,
the quality may be improving) and hyperparmeters are
tricky to select.
The Wasserstein GAN (WGAN) removes the log in
the objective, makes the critic 1-Lipschitz with weight
clipping, and trains the critic to convergence (e.g., 5
steps for each generator step).
Instead of clipping the weights, the WGAN-GP uses a
gradient penalty,

(
‖∇inputcritic‖−1

)2
, where the gradi-

ent is evaluated at random averages between generated
and real images, and removes the critic batchnorm. Ex-
amples include “Quick, draw!”, cifar-10 horses and
CelebA.

5. A CycleGAN uses two generators and two discrim-
inators, with a UNet or ResNet architecture,

Conv2D
Instance Normalization

ReLU
Conv2D

Instance Normalization

+

instance normalizaion instead of batch normalization,
and a PatchGAN discriminator: it does not output a
single number, but an 8 × 8 matrix indicating if each
patch is real or generated (what is consistent across
patches is the style, rather than the contents: that is
what we want to capture).

img A id

img A
fake B valid B

reconstr A
reconstr B

valid A fake A
img B

img B id

GA

GB
dB

dA

Neural style transfer combines three losses: for the
contents (MSE of the features), the style (MSE of the
GRAMmatrices of the features, for several layers), and
the total variation (actually L1.25 instead of L1); the
model uses a pretrained VGG19 and is fitted with L-
BFGS-B [why not gradient descent?].
6. To generate text, try an LSTM RNN, or a GRU, or
their bidirectional variants, or stack them, after an em-
bedding layer; train with teacher forcing; sample with
temperature [and try beam search] (Maluuba NewsQA,
to generate answer-question pairs from text).
7. To generate monophonic music (Bach cello suites),
use music21 to process the midi files, and stacked
LSTMs, outputting pitch-duration pairs one by one.
MuseGAN deals with polyphonic music (Bach
chorales); the generator has 4 componentss, whose out-
put change (or not) with each bar (or track); the dis-
criminator uses 3-dimensional convolutions.
8. The WorldModel for reinforcement learning (RL) in
OpenAI Gym’s CarRacing game has three components:
– A VAE to process the image: imgt 7→ ht 7→ imgt;
– An RNN with a mixture density network (MDN-

RNN), i.e., an LSTM followed by an MDN (which
outputs a mixure of 5 Gaussians in each dimension,
i.e., parameters p1, . . . , p5, µ1, . . . , µ5, σ1, . . . , σ5 ∈

Article and book summaries by Vincent Zoonekynd 315/1044

Rn), which tries to predict the next state,
(at−1, ht) 7→ ĥt+1;

– A controller (at−1, ht, ĥt+1) 7→ (at, r̂t+1), fully con-
nected, trained with CMA-ES, in parallel (estool).

One can train using the MDN-RNN as a model (in-
dream training) – to reduce overfitting, add a temper-
ature parameter to control model uncertainty and steer
the controller towards safer, better understood actions.

Agent

Environment
actionrewardnext state

environment

agent time

a
r

s

9. Transformers are stacked attention layers (no RNN,
no CNN), with positional encoding and multihead at-
tention. BERT is a bidirectional masked language
model; GPT2 is unidirectional; MuseNet is unidirec-
tional and uses a sparse transformer.

Q

KV

Query

Key

Value

×
×

softmax

Attention

x

w1x

w2x

w3x

×
×

softmax

Self-attention

ProGAN progressively increases the resolution of the
image during training.
SAGAN uses self-attention (some parts of the image
that are far apart, e.g., the background, should be sim-
ilar).
BigGAN uses a truncated Gaussain (z

∣∣ |z| ⩾ ε, in-
stead of z ∼ N(0, 1)), to increase diversity, adds the
noise to each layer, uses a shared embedding (?), a
hierarchical latent space (?), orthogonal initialization
(W ′W = I), orthogonal regularization (‖W ′W − I‖2F
or ‖W ′W � (1− I)‖2F), spectral normalization, hinge
loss, EWMA of the weights, etc.
StyleGAN is a style transfer network, based on Pro-
GAN, adding the noise to each layer, with adaptive in-
stance normalization to match the mean and variance
of each feature with those of the desired style.

Machine learning for asset managers
M. López de Prado (2020)

1. Applications of machine learning (ML) infinance
include existence (of a phenomenon, of information
in data), variable importance, causation, dimension
reduction, visualization, latent representation, outlier
detection, etc.

2. Use random matrix theory (RMT) to denoise cor-
relation matrices, setting the noise eigenvalues to their
average (to preserve the trace).
For clustering, try detoning – removing the market
component (the matrix is then singular, but it is not
an issue).
3. Correlation can be turned into a distance as d =√
1− ρ or d =

√
1− |ρ| (it is the Euclidean distance

between the standardized vectors). The variation of
information VI is another distance.

H(X) = E
x
[− log px] (entropy)

=
∑
x

−px log px

H(X,Y) = E
x,y

[− log pxy]

H(X|Y) = H(X,Y)−H(Y)

KL(p‖q) = E
x∼p

[
− log

qx
px

]
(KL divergence)

=
∑
x

px log
px
qx

Hc(p‖q) = E
x∼p

[− log qx] (cross-entropy)

= H(p) +KL(p‖q)
I(X;Y) = H(X)−H(X|Y) (mutual information)

= H(Y)−H(Y |X)

=
∑
xy

pxy log
pxy
pxpq

= KL(pxy‖pxpy)
= E

y

[
KL
(
p(x|y)

∥∥ p(x))]
= E

x

[
KL
(
p(y|x)

∥∥ p(y))]
VI(X,Y) = H(X|Y) +H(Y |X)

= H(X) +H(Y)− 2I(X;Y)

= 2(H(X,Y)−H(X)−H(Y)

= H(X,Y)− I(X;Y)

ṼI(X,Y) =
VI(X,Y)

H(X,Y)

= 1− I(X;Y)

H(X,Y)˜̃VI = 1− I(X;Y)

Max
{
H(X),H(Y)

}
4. Use k-means clustering on the columns of the dis-
tance matrix

√
1− ρ (or

√
1− |ρ|); choose k to maxi-

mize the clustering quality q (optimal number of clus-
ters, ONC)

q =
E[S]

Var[S]

Si =
bi − ai

Max(ai, bi)

where ai (resp. bi) is the average distance between
observation xi and the elements of its cluster (resp.,

Article and book summaries by Vincent Zoonekynd 316/1044

of the nearest cluster). Compute the clustering qual-
ity for each cluster; recluster those below average (just
once) and keep the new clustering if quality improves.
5. Instead of forecasting labels based on time, tick,
volume or price bars, +1 if r > τ

0 if |r| ⩽ τ
−1 if r < −τ,

use a tripple barrier +1 profit-taking barrier
−1 stop-loss barrier
0 time-out barrier

or trend scanning: whether each observation is in an
up/down trend or not, by looking at the minimum p-
value of linear regressions on [t, t+ T], for various T .
For bet sizing:
– Assume the Sharpe ratio is a standard Gaussian and
bring it back to U(−1, 1);

– Given n binary predictors, their average under H0 :
p = 1

2 is known; bring it back to U(−1, 1).
6. To measure feature importance, check:
– p-values;
– Shapley values;
– Accumulated local effects (ALE);
– Mean increase impurity: weighted information gain,
from a random forest;

– Mean decrease accuracy: drop in accuracy after shuf-
fling the values of a variable.

Replace the accuracy with:
– The negative log-likelihood of the true labels;
– The probability-weighted accuracy,∑

n
1correct × (pmax

n − 1/K)∑
n
(pmax
n − 1/K)

where K is the number of classes and pmax
n the prob-

ability, from the model, of the most likely class.
To deal with multicolinearity, cluster the features.
7. Numeric instability, in portfolio construction, is due
to the condition number of the precision matrix V −1;
it is worse when there are highly correlated assets. It is
usually dealt with by regularization (Black-Litterman),
constraints, or better estimates of the concentration
matrix. Nested clustered optimization (NCO) denoises
(RMT) and clusters (ONC) the covariance matrix,
computes optimal portfolios withing each cluster, and
then the inter-cluster optimal portfolio.
8. To limit selection bias under multiple testing, esti-
mate the FDR and the FWER from

FPR α =
FP

TN+ FP

FNR β =
FN

TP+ FN

θ =
TP+ FN
TN+ FP

Approximations of the distribution of
– The sample Sharpe ratio;
– The maximum sample Sharpe ratio after k trials.
help define a deflated Sharpe ratio.
Use clustering to estimate the effective number of tri-
als.
9. To limit overfitting, test on synthetic data, using
– Resampling: cross-validation, (sequential) bootstrap
and their variants;

– Monte Carlo: parametric, GAN, VAE.

Probabilistic foundations
of statistical network analysis

H. Crane (2018)
A random graph is a graph-valued random variable.
3. We rarely observe the whole graph, but only some
sample of it: it is not always straightforward to in-
fer properties of the population graph from those of
the sample graph (consistency), and this depends a lot
on how the network was sampled – vertex sampling
(which tends to generate empty subgraphs, if the pop-
ulation graph is large and sparse), edge sampling (a
list of edges, e.g., when you intercept communications),
snowball sampling (pick k nodes at random and con-
sider their radius-r egonets), hyperedge sampling (col-
laboration, e.g., co-author networks) or path sampling
(traceroute, to study the internet).
4. Common models include:
– Erdos-Renyi: P (Yij = 1) = p;
– Barabasi-Albert (preferential attachment);
– Exponential random graph model (ERGM),

P (Y = y) ∝ exp
∑
i

θiTi(y)

where the Ti are features (sufficient statistics);
ERGMs do not work well with sampled networks;

– Graphons, P (Yij = 1) = φ(Ui, Uj), where Ui
iid∼

U(0, 1) and φ : [0, 1]2 → [0, 1] or, in closed form

P (Y = y) =

∫
[0,1]N

∏
i ̸=j

φ(ui, uj)
yij
(
1−φ(ui, uj)

)1−yij
du

– Sparse graphon, φn(u, v) = ρ−1n w(u, v), for graphs of
size n, where ρ−1n is the edge density (e.g., ρn = n –
this allows sparse graphs, which are impossible with
graphons, but not power law degree distributions)

– Stochastic block model (SBM) P (Yij + 1) = 1 −
exp θiθjw(k(i), k(j)) degree-corrected SBM P (Yij +
1) = 1− exp θiθj log φk(i),k(j)(Ui, Uj)

– Graphex: an exchangeable point process on [0,∞)2

Y (A) = #{a ∈ A : a ∈ Y }, A ⊂ [0,∞)∞,

where (t, t′) ∈ Y is a link between t and t′ (users are
identified by their registration timestamp)

Article and book summaries by Vincent Zoonekynd 317/1044

6. Some of those models are vertex-exchangeable: the
distribution is invariant under permutation of the ver-
tices. More generally, exchangeable random graphs are
continuous mixtures of graphons (Aldous-Hoover theo-
rem). This generalizes de Finetti’s theorem: if (Xn)n⩾1

is an exchangeable sequence of random variables with
values in {0, 1} then, there exists f : [0, 1]2 → [0, 1]
such that X has the same distribution as Y defined by

Un
iid∼ U(0, 1) n ⩾ 0

Yn = f(U0, Un) n ⩾ 1

i.e., it is a continuous mixtture of iid sequences
fu(Un) = f(u, Un).
8. Relatively exchangeable models only requires that
the distribution be invariant under some permutations
of the vertices, for instance, generalized SBM

P (Yij = 1) = φk(i),k(j)(Ui, Uj)

k : N→ J1, kK
φk1,k2 : [0, 1]2 −→ [0, 1]

Ui
iid∼ U(0, 1)

where k indicates the class of each node. Relative ex-
changeability can be relative to another network:

P (Yij = 1) = φG|{i,j}(Ui, Uj).

More generally, consider k-ary relations, for various
k’s, X1, . . . , Xr, Xj : N

aj →Xj , for instance
– a1 = 1, X = J1, kK, for the SBM;
– a1 = 2, X = {0, 1} for graph exchangeability;
– a1 = 1, X = Rd for latent space models.
Under reasonable assumptions, relative exchangeable
random graphs are continuous mixtures of

P (Yij+1) = φX1|{i,j},...,Xr|{i,j}(Ui, Uj) Ui
iid∼ U(0, 1).

9. An edge-exchangeable random graph is an ex-
changeable sequence of ordered pairs (exchangeable
modulo vertex renaming). If P is the set of vertices,
an interaction propensity process is a sequence of iid
random variables with values in P ×P,

P [Xk = (r, s)] = fr,s.

Examples include the vertex component model fij =
fout
i f in

j or the (preferential attachment) Hollywood
model (which does not generate a graph but a sequence
of edges). Edge-exchangeable graphs are continuous
mixtures of interaction propensity processes.
One can also consider relative edge exchangeability
P [Xi = (r, s)] = f

k(i)
r,s , k : N → J1, kK. The no-

tion of exchangeability (and the Hollywood model)
can be extended to hyperedges (collaboration networks
(IMDb, coauthors): the interaction propensity process
is a probability distribution on finP, the set of finite
multisets of elements of P: P [Xi = 1] = fx, x ∈ finP)
and paths.

11. To model dynamic networks, one often makes a
simplifying Markov assumption, or even a projective
Markov assumption ((Gt)t is Markov on {0, 1}N×N ,
and so are its restrictions). The temporal ERGM is

P (Yt+1 = y′|Yt = y) ∝ exp
[
η · T (y, y′)

]
.

A rewriring process samples a new rewriring map

W :

{
{0, 1}N×N −→ {0, 1}N×N

Yt 7−→ Yt+1

for each t.
A graph-valued Lévy process is defined by
– Y0 = 0 ∈ {0, 1}N×N ;
– Stationary increments Yt+s4Yt

d
= Ys;

– Independent increments: Yt04Yt1 , Yt14Yt2 , . . .,
Ytk−1

4Ytk independents
It can be constructed as Y0 = 0, Yt+1 = Yt4Zt+1,
Zt+1 ∼ µ, for some distribution µ on {0, 1}N×N (or
using a rewriring process).

Deep reinforcement learning hands-on
M. Lapan (2020)

1. While the inputs of supervised learning algorithms
are pairs (x, y), where y is the value to predict from x,
reinforcement learning uses tuples, (s, a, r, s′), where s
is the current state, a the action chosen by the agent,
r the (immediate) reward and s′ the next state, and
tries to find the best action for any given state (an ac-
tion that may not have been chosen by the agent) for
the sum of the discounted rewards (and not just the
immediate reward).
Challenges of RL include:
– The best action is not known;
– Delayed rewards;
– Non-iid observations;
– Exploitation vs exploration.

POMDP

MDP

MRP Bandit

MC
+reward

+action +state

2. OpenAI Gym provides RL environments. Some
of the environments require the commercial MuJoCo
physics simulator (PyBullet is a free alternative, slower
with an unpleasant API).
There is no sklearn-like standard Python library for
RL algorithms: check OpenAI Baselines (Tensorflow,
with a declarative interface), ptan (used by the book),
catalyst, etc.
4. The RL algorithm taxonomy distinguishes between:
– Policy-based (we directly try to find the best pol-
icy, i.e., a map from states to actions – it could be
stochastic) vs value-based (we try to estimate the

Article and book summaries by Vincent Zoonekynd 318/1044

value of each state, i.e., the cummulated reward we
would get if we started in a given state and acted op-
timally – from there, we can find the optimal policy);
there are also hybrid algorithms, estimating both
policy and value function, each helping improve the
other;

– On-policy (the training data was generated by the
current best estimate of the policy) vs off-policy
(the training data was generated by some other pol-
icy, e.g., an old policy, or a policy modified to explore
more).

– Model-based (we use the data to estimate the dy-
namics of the environment) vs model-free (we do
not) – RL usually refers to searching for an optimal
policy for an unknown MDP, only accessible through
observations: if the MDP is known, this is an easier
planning problem.

The cross-entropy method (CEM) is the simplest
policy-based RL algorithm: it learns to repeat actions
that performed well.
– Start with a random policy;
– Act according to this policy;
– Keep the best 30% episodes;
– Train a new policy to replicate what the agent did
in those episodes.

This works in simple environments, such as CartPole,
but even for FrozenLake, a few adjustments are needed:
– Larger batches (successful episodes are rarer);
– Keep successful episodes in memory for longer;
– Decrease the learning rate; train for longer.
5. For a known MDP, the value of a state V (s), or
of a state-action pair Q(s, a), satisfies the Bellman
equation,

V (s) = Max
a

E[r + γV (s′)]

Q(s, a) = E[r + γMax
a′

Q(s′, a′)].

6. For an unknown MDP, the update

Q(s, a)← r + γMax
a′

Q(s′, a′)

is a bit too violent: it completely discards the previous
value of Q(s, a)... (Tabular) Q-learning uses:

target← r + γMax
a′

Q(s′, a′)

Q(s, a)← (1− λ)Q(s, a) + λtarget

Deep Q-learning (DQN) minimizes

Loss = [Q(s, a)− (r + γMax
a′

Q(s′, a′))]2.

As often with RL, it does not work in practice without
a few adjustments:
– Use ε-greedy, with ε decreasing, to explore enough

at the begining;
– Use a replay buffer (fixed-size, or prioritized) to have
enough diversity;

– Training is unstable because we are “chasing our
tail” (Q(s, a) and Q(s′, a′) are too close): use a target
network, and only update it from time to time;

– To ensure the Markov property, keep the previous
state(s) in memory.

8. DQN can (should) be improved on:
– N -step DQN (this is no longer really off-policy: we
assume that the intermediate action was optimal –
but if you only look 2 or 3 steps ahead, it is almost
off-policy)

Q(st, a) = rt + γMax
a

Q(st+1, a)

= rt + γrt+1 + γ2 Max
a

Q(st+1, a)

= · · ·

– Double DQN: since DQN tends to overestimate Q
(because of the Max), use the other network to
choose the optimal action

Q(st, a) = rt + γMax
a

Q(st+1, a) Bellman

Q(st, a) = rt + γMax
a

Q′(st+1, a) DQN (target network)

Q(st, a) = rt + γQ′(st+1,Argmax
a

Q′(st+1, a)) Same formula

Q(st, a) = rt + γQ′(st+1,Argmax
a

Q(st+1, a)) Double DQN

– Noisy networks: instead of taking actions completely
at random to explore, add noise to the network
weights, with learned variance (Bayesian FC layer;
use a low-rank parametrization for the matrix of
variances);

– Prioritized replay buffer: prioritize samples with a
larger loss, i.e., train more on data that surprises
you (the observations are no longer iid: use sample
weights);

– Dueling DQNs separately estimate the value of the
state and the advantage of the action,

Q(s, a) = V (s) +A(s, a);

to ensure that the average advantage is zero, use

Q(s, a) = V (s) +A(s, a)−Mean
a

A(s, a)

– Categorical (distributional) DQN: replace expecta-
tions with distributions (histograms, 51 bins).

9. To speed up the computations:
– Only compute the gradient when it is needed (not
for the target or to select actions) (detach());

– Only build the computation graph when it is needed
(torch.no_grad());

– Use larger batches: sample from several (identical)
environments;

– Play and train in separate processes.
10. DQN could be used to design an intraday trading
strategy: the state could be the current position and
the previous 1-minute bars OHLC prices, the actions
“buy” or “sell”, the reward the after-transaction-cost
(realized, or unrealized) P&L. Do not expect the strat-
egy to perform well out-of-sample.

Article and book summaries by Vincent Zoonekynd 319/1044

[For some reason, all the applications of RL in finance
use DQN. (My report on end-to-end portfolio construc-
tion used policy-based RL.)]
11. So far, we have focused on the value function, V (s)
or Q(s, a), but what we really want is the policy. For
small, discrete action spaces, we can easily solve the
optimization problem

Maximize
a

Q(s, a)

but for large or infinite action spaces, it is more prob-
lematic.
The policy gradient is

J = E[Q(s, a)]

∇θJ = E
πθ
[Q(s, a) ∇θ log πθ(a|s)]

= E
πθ1

[Q(s, a) ∇θ2 log πθ2(a|s)]

= ∇θ2 E
πθ1

[Q(s, a) log πθ2(a|s)]

Loss = −Q(s, a) log π(a|s).

(Note that there is no log in the definition of J , but
there is one in the definition of the loss: the gradients
are nonetheless the same, because the parameter θ in
the expectation is fixed when we differentiate the loss,
but not when we compute the expectation of J .)
The cross-entropy method is a policy gradient method
with Q(s, a) = 0 or 1.
Reinforce uses the returns as Q:

Loss = −
∑
t

Gt log π(at|st).

However:
– The variance is very high: use a baseline, e.g., a

constant, such as the average discounted reward, or
moving average (use a deque), or an estimate of
V (s);

– Full episodes are required: we could use Q(s, a) =
r + γV (s′), with another network to estimate V
(Actor-Critic), or unroll a few steps of the Bellman
equation, especially if γ is not too high;

– There is not enough exploration (there is some at
the begining, because the policy is stochastic): add
an entropy bonus, H(π);

– The samples are correlated (and we cannot increase
the replay buffer, because policy gradient methods
are on-policy): use parallel environments to gener-
ate enough samples.

In practice:
– Use a baseline;
– Add an entropy bonus;
– Unroll 10 steps of the Bellman equation;
– Use parallel environments;
– Clip the gradients;
– Monitor the KL divergence between the current and
previous policy (spikes are a bad sign), the L∞ and
L2 norm of the gradients, the components of the loss.

12. If all the Q-values are positive, the optimization
of

Loss = −Q(s, a) log π(a|s)

will try to move the network towards each action en-
countered, whether good or bad, but it will move
slightly less towards bad actions. In contrast, if the Q-
values are sometimes positive and sometimes negative,
the optimization will move towards the good actions,
and away from the bad – it will move less, and in more
consistent directions.
This can be ensured with a baseline.
The Advantage-Actor-Critic (A2C) method makes
the baseline state-dependent, V (s):
– The actor computes the policy, π(a|s);
– The critic computes the state value function, V (s).
There are 3 losses (pay attention to their signs!): pol-
icy, value and entropy.
13. SGD works better with iid observations, but in-
teracting with the environment gives correlated obser-
vations:
– For off-policy methods (such as DQN), use a huge
replay buffer;

– For on-policy methods (such as policy gradient), use
parallel environments (this is not sample-efficient).

There are two types of parallelism for RL (Asyn-
chronous advantage actor critic, A3C):
– In data-level parallelism, the workers are in charge
of the interactions between agent and environment,
and everything else (loss, gradient, SGD) is central-
ized;

– In gradient-level parallelism, the workers also com-
pute their contributions to the loss and the gradient.

14. RL (self-critical sentence training, SCST) can be
used to generate text, e.g., in a chatbot, asking a cus-
tomer more details about her query, and directing her
to the correct page. It has several advantages over
maximum likelihood estimation:
– It allows for several unrelated outputs, e.g., different
translations of the same sentence, different answers
to the same question – the “average” of those out-
puts is unlikely to be a good answer;

– We can maximize the score we want, e.g., BLEU –
it does not need to be differentiable.

mle : E
x∼data

[log pmodel]

reinforce : E
s∼data
a∼π

[Q(s, a) log π(a|s)]

The rewards are too sparse to use reinforce directly:
first pre-train with MLE (traditional seq2seq), then
fine-tune with reinforce.
As baseline, use a greedy decoder to get a BLEU score
estimate of the whole sentence.
15. The state space can be complex: for instance,

Article and book summaries by Vincent Zoonekynd 320/1044

TextWorld is a grid world of which we are only given
a textual description, which can be processed by an
LSTM before being fed to a DQN.
16. One could also attempt to use RL to generate GUI
actions from a textual description such as “Click on
‘Close’”, “Open collapsed groups and click on the link
with ‘foobar’”, “select yesterday’s date using the date
picker tool”, “tick checkboxes containing ‘foobar’”, etc.
17. A2C has three ingredients:
– The reinforce gradient,

∇J = ∇θ log πθ(a|s)(R− Vθ(s));

– The baseline, Vθ(s), which minimizes the MSE with
the value from the Bellman equation;

– An entropy bonus.
If the action space is continuous, represent the policy
as a Gaussian distribution, parametrized by µ and σ2.
(Deep) Deterministic policy gradient (DDPG) is simi-
lar, but with a deterministic policy – so far, the policies
in policy gradient (PG) methods were stochastic.

∇θQ(s, µ(s)) = ∇aQ(s, µ(s)) · ∇θµ(s)

Note that the critic, Q(s, a), is not used as in A2C: in
A2C, it was optional (it was just there to reduce the
variance – without it we get the Reinforce algorithm).
Here, it is needed: we will train end-to-end using its
gradient. Contrary to A2C, DDPG is off-policy.
Since the policy is deterministic, something else is
needed to explore, e.g., adding iid noise to the actions,
or using an Ornstein-Uhlenbeck process

dx = θ(µ− x)dt+ σdW

(but this requires the agent to be stateful and does not
seem to improve on iid noise).
(Distributed) distributional (deep deterministic) policy
gradients (D4PG) adds the usual DQN improvements
to DDPG:
– Distribution of Q-values instead of Q-value, with the

cross-entropy loss to compare the two distributions;
– n-step Bellman equation;
– Prioritized replay buffer;
– iid noise.
18. For actual robots (you can put a PyBoard, a few
sensors, a few servos, on a 3D-printed frame), train
them (with DDPG) in a simulator and hope the trained
model also works on the robot. [Meta-learning is a
more recent approach, but it requires more computa-
tion power on the robot.]
19. Small changes in the model can lead to large
changes in the policy: that is why we were monitoring
the KL divergence between the distribution of actions
between consecutive steps. Instead of just monitoring
it, trust region methods constrain it.
Proximal policy optimization (PPO)

– Replaces the objective Jθ = E[log πθ(at|st)At] with
Jθ = E[rt ·At], where the importance weights are

rt =
πθnew(at|st)
πθold(at|st)

πθnew(at|st)/πθold(at|st)
– Clips the importance weights to (1− ε, 1 + ε);
– Replaces the advantage

At = −V (st)+rt+γrt+1+· · ·+γT−t+1rT−1+γ
T−1V (sT)

with

At = σt + (γλ)σt+1 + · · ·+ (γλ)T−t+1σT−1

where σt = rt + γV (st+1)− V (st).

Trust region policy optimization (TRPO) uses the dis-
counted visitation probability

ρπ(s) = P [s1 = s] + γP [s2 = s] + · · · ,

defines the loss as

E[G] +
∑
s

ρπ(s)
∑
a

π̃(a|s)A(s, a)

where G is the discounted reward, π̃(a|s) the argmax
policy, adds a constraint KL(θold‖θ) ⩽ δ, and uses the
conjugate gradient (CG) method to solve the resulting
constrained optimization problem.
ACKTR (A2C using K-FAC trust region) combines
A2C, Kronecker-factored (K-FAC) second-order opti-
mization, and trust regions.
Soft actor-critic (SAC – currently the preferred ap-
proach for continuous control) uses
– Entropy regularization: add an entropy bonus to
each reward, to encourage actions that will lead to
more exploration in the long term;

– Clipped double-Q trick: learn two networks to pre-
dict the Bellman Q-value, and use the minimum, to
deal with Q-value over-estimation.

There are 4 networks: π, V , Q1, Q2.
20. Population-based optimization algorithms are not
sample-efficient, but eminently parallelizable.
Genetic algorithms (GA):
– Randomly perturb the current policies;
– Keep the best ones;
– Iterate.
Evolutionary strategies:
– Fit a Gaussian distribution to the parameters of the
current population of policies;

– Sample from it;
– Keep the best ones;
– Iterate.
Evolutionary strategies (CMA-ES):
– Randomly perturb the current policy, in several
ways;

– Compute the fitness of the resulting policies;

Article and book summaries by Vincent Zoonekynd 321/1044

– Modify the original policy weights by adding the
same noise, but rescaled proportionally to the fit-
ness – you can use the PyTorch optimizers (not just
plain descent): they just need something that looks
like a gradient.

21. So far, we achieved exploration with ε-greedy poli-
cies (for value-based methods) or an entropy bonus (for
policy-based methods). But taking isolated random ac-
tions may not be sufficient to explore other regions of
the search space: several steps may be needed.
Noisy networks (Bayesian neural nets) add noise the
the weights, with a learned variance. This may look
similar to ε-greedy, but the noise is added to the
weights, not the network output.
Count-based methods add a reward for rarely-visited
states, c/

√
N (as UCB, for bandits). If there are many

states, or if the state space is continuous, use a density
estimator, or a learned state embedding, or a hashing
function.
Curiosity-driven exploration does not use the reward
from the environment at all, but a measure of novelty.
Prediction-based methodsmeasure the novelty of a state
by attempting to predict something from the environ-
ment: if prediction is easy, the state is not that new
and does not warrant more exploration. As intrinsic
reward, one could even use the ability of a (trained)
neural network to predict the output from another one
(untrained, randomly initialized) (more generally, the

same idea, distillation of a random neural net, can be
used for outlier detection).
22. Model-based methods are more sample-efficient.
For insntance, imagination-augmented agents (I2A)
train an environment model (s, a) 7→ (r, s′) and gen-
erate trajectories from it. They use two policies, the
learned one, and a distilled version to generate trajec-
tories, and use an RNN to compute a latent represen-
tation of the generated trajectories to add them to the
input of the policy.
23. For two-player games (tic-tac-toe, chess, go), the
minimax algorithm can rarely expand the full tree. In-
stead:
– Expand it using the current best policy (MCTS:
Monte Carlo Tree Search); only the first moves are
stochastic;

– Progressively update the value of the nodes, as in
value iteration;

– Train a model on those partially expanded trees, as
if they were fully expanded;

– From time to time, compare the performance of the
two models (the trained one, and that used to ex-
pand the tree), and update the latter.

AlphaGo Zero uses a variant of MCTS.
24. Attempts to solve the Rubik’s Cube with self-play
(ADI, autodidactic iterations) were not convincing.
25. RL also applies to (competing or collaborating)
multi-agent sustems (MARL).

Article and book summaries by Vincent Zoonekynd 322/1044

Multiplicative interactions
and where to find them

S.M. Jayakumar et al. (ICLR 2020)
Try replacing concatenation with multiplication – gat-
ing, hypernetworks, dynamic convolutions, attention,
etc. can be expressed as multiplications. More gen-
erally, replace linear maps (x, z) 7→ W [x; z] + b with
bilinear ones (x, z) 7→ z′Wx+ z′U +V x+ b (W is then
a 3-dimensional tensor).

Gradients as features
for deep representation learning

F. Mu et al. (ICLR 2020)
The gradient of the output wrt the parameters provides
a latent representation of the input.

Enhancing adversarial defense
by k-winners-take-all

C. Xiao et al. (ICLR 2020)
The gradient of the loss wrt the input is used to mount
adversarial attacks. One way to thwart those attacks
is to use “obfuscated gradients”, i.e., non-differentiable
layers (differentiable wrt the parameters, for training,
but not wrt the input).
But non-differentiable layers can be approximated, in
the backward pass, with differentiable ones. Prefer
non-differentable layers that cannot easily be approx-
imated by smooth functions, such as the k-winners-
take-all: φk(y)j = yj if yj is in the k largest compo-
nents of y, φk(y)j = 0 otherwise. The loss surface,
in weight space, is smooth almost everywhere (so the
network is still easy to train) but in input space, it
is not (so searching for adversarial examples is more
problematic).

Jacobian adversarially regularized
networks for robustness

A. Chan et al. (ICLR 2020)
For images, the gradient of the loss wrt the input is it-
self an image, which can help tell how robust a model
is: for robust models, it looks like the input, i.e., like
an actual picture, while for non-robust models, it looks
like noise. During training, adding a discriminator to
make this gradient image look more like a picture im-
proves robustness (since the colours are off, add a 1-
layer CNN to make the Jacobian look more like a real
image).

Meta-learning with warped gradient descent
S. Flennerhag et al. (ICLR 2020)

WarpGrad learns a gradient preconditioner (as in the
natural gradient, but learned, and non-linear) in the
meta-learning phase – it is fixed when the final tasks
are learned.

Truth or backpropaganda? An empirical
investigation of deep learning theory

M. Goldblum et al. (ICLR 2020)
Many commonly-held beliefs about neural networks,
only proved for unrealistic architectures, such as deep
linear networks, are actually wrong in general: there
are sub-optimal local minima, low L2 norm local min-
ima need not be better, low-rank models need not be
better or more robust (maximizing the rank actually
works better). In spite of this, neural networks work
well, thanks to their initialization.

Piecewise linear activations substantially
shape the loss surfaces of neural networks

F. He et al. (ICLR 2020)
ReLU networks divide the input space into “cells”; in
each cell, the local minima are connected, but there are
spurious minima.

Bounds on over-parameterization
for guaranteed existence of descent paths

in shallow ReLU networks
A. Sharifnassab et al. (ICLR 2020)

We already knew that sufficiently over-parametrized
shallow ReLU networks were easy to train (the loss
landscape has the “descent path property”). The con-
verse is true: when a network is not sufficiently over-
parametrized, the optimization can easily get stuck
(there are “local cup minima”).

Evaluating the search phase
of neural architecture search

K. Yu et al. (ICLR 2020)
Evaluating network architecture search (NAS) algo-
rithms is tricky, and they do not seem to perform much
better than random search. They are biased towards
fast-converging cells (shallow and wide), which do not
guarantee better generalization.

NAS evaluation is frustratingly hard
A. Yang et al. (ICLR 2020)

Understanding architectures learnt
by cell-based neural architecture search

Y. Shu et al. (ICLR 2020)
Network architecture search (NAS) algorithms are bi-
ased towards fast-converging cells (shallow and wide),
which do not guarantee better generalization.

Understanding and robustifying
differentiable architecture search

A. Zela et al. (ICLR 2020)
Architectures that do not generalize correspond to a
sharper minimum of the loss function: stop when the
largest eigenvalue of the Hessian (on a random valida-
tion minibatch) starts to increase. Alternatively, in-
crease the regularization of the inner problem, to lower
the curvature.

Article and book summaries by Vincent Zoonekynd 323/1044

Neural oblivious decision ensembles
for deep learning on tabular data

S. Popov et al. (ICLR 2020)
Many traditional machine learning algorithms can be
used as layers of deep neural networks, either as is, if
they are differentiable, or after regularization if they
involve discrete choices. For instance, in oblivious de-
cision trees (decision trees which use the same features
and thresholds at each tree level), one can use soft
thresholds, i.e., replace xi > b with σ((

∑
λixi − b)/s),

and sparsemax instead of softmax for sparsity. Those
layers can be stacked (NODE).

Meta-learning acquisition functions for
transfer learning in Bayesian optimization

M. Volpp et al. (ICLR 2020)
In GP-based Bayesian optimization, replace the ac-
quisition function with a neural network, trained on
similar objective functions; train with RL (no gradient
needed).

Learning space partitions
for nearest neighbor search

Y. Dong et al. (ICLR 2020)
Many classical algorithms rely on some heuristic to
speed them up: in particular this is the case of search
algorithms (A*, DPLL, etc.), which explore a tree or a
graph, and need to choose which node to explore next.
Those heuristics can be replaced with a neural net.
Approximate nearest neighbour search often relies on
space partition, often dependent on data (LSH, k-
means (quantization), hyperplane partitions). Use
supervised learning to find better partitions (neural
LSH): compute the k-NN graph of the data; find a
balanced partition (combinatorial graph partitioning,
KaHIP); use a deep neural net to assign each point of
Rn to a partition. At query time, use the neural net
to find the most likely bins, and search them for the
nearest neighbour.

Learning to link
M.F. Balcan et al. (ICLR 2020)

Use a neural net to predict the best hyperparameters
(of hierarchical clustering).

Neural network branching
for neural network verification

J. Lu and M.P. Kumar (ICLR 2020)
Use a graph neural net (GNN) to find branch-and-
bound heuristics.

Explanation by progressive exaggeration
S. Singla et al. (ICLR 2020)

Counterfactuals are a way of explaining the forecasts
of a model: minimal changes to the input to change
the output (adversarial examples). They are usually

computed as an optimization problem, but one could
use a neural network to automatically compute them.
The counterfactual explanation should look real: use a
discriminator. Also add a self-consistency loss (if the
output is the age of a person from a picture, making
it 10 years older, and then 10 years younger, should
recover the initial image).

Mathematical reasoning in latent space
D. Lee et al. (ICLR 2020)

There are three main types of logic: propositional
logic (and, or, not operators, but no quantifiers:
SAT solvers, such as minisat), first-order logic (with
quantifiers over variables: SMT solvers, e.g., z3),
and higher-order logic (with quantifiers over variables,
functions and propositions: theorem provers, such as
coq, agda, isabelle). HOL Light is an interactive
theorem prover, with a database of 19,000 mathemat-
ical statements, covering algebra, topology, calculus,
and measure theory. Like most theorem provers, it re-
lies on rewrite rules – but it is very time-consuming to
check which rules can be applied, and where they lead
to.
With a graph neural net, one can learn an embedding
that helps tell if a rewrite rule applies to a given state-
ment (by taking the scalar product of the embeddings)
and perform approximate reasoning, by moving several
steps in the latent space.

Learning heuristics for quantified boolean
formulas through reinforcement learning

G. Lederman et al. (ICLR 2020)
Learned constraint solver heuristics outperfom hand-
crafted ones. A formula in conjunctive normal form
(CNF) can be represented as a bipartite graph, whose
nodes are terms and variables, which can be fed to a
graph neural net (GNN).

Deep symbolic superoptimization
without human knowledge
H. Shi et al. (ICLR 2020)

To simplify expressions, in a compiler, one can use rein-
forcement learning to select which rules to apply among
a set of predefined rewrite rules. To avoid the depen-
dence on rules provided by humans, model the expres-
sions as trees, compute node (or rather sub-tree) em-
beddings (with a tree LSTM), select a subtree (with a
neural network), decode it using a tree LSTM with at-
tention, replace the subtree with the new one and start
again. Train with Reinforce and curriculum learning
with increasingly long expressions.

CLN2INV: learning loop invariants
with continuous logic networks

G. Ryan et al. (ICLR 2020)
Automated program verification struggles with loops:
the loop invariants still have to be specified by hu-
mans – once provided, the SMT solver can do its job.

Article and book summaries by Vincent Zoonekynd 324/1044

One can use neural networks to guide the search for
invariant formulas from recorded execution traces, af-
ter relaxing logical formulas into continuous logic net-
works (CLN) (and progressively tightening the relax-
ation during the optimization).

Oblique decision trees
from derivatives of ReLU networks

G.H. Lee and T.S. Jaakkola (ICLR 2020)
An oblique decision tree is a decision tree whose de-
cision nodes are linear classifiers (i.e., of the form
w′x < α instead of xi < α). Locally constant neural
networks model oblique decision trees, in a parsimo-
nious way (N neurons suffice for 2N nodes); they can
be obtained as the gradient of a ReLU network, further
processed with another neural net.

PCMC-Net:
feature-based pairwise choice markov chains

Alix Lhéritier (ICLR 2020)
Traditional choice models (multinomial logit, random
utility models) do not account for human idiosyn-
crasies: independence of irrelevant alternatives, reg-
ularity (increasing the choice set does not change the
ranking). Pairwise choice Markov chain (PCMC) mod-
els are more general: they use a Markov chain whose
transition matrix models the preference between pairs
of alternatives and consider its stationary distribution.
If there are too many alternatives, use a neural net
to approximate the transition matrix and compute the
stationary distribution. Application: airline itinerary
choice

Higher-order function networks for learning
composable 3D object representations

E. Mitchell et al. (ICLR 2020)
Hypernetworks are neural networks computing the
weights of another network. They can be used to de-
sign input-dependent networks, for instance to apply a
different decoder for each type of object when recon-
structing it from a cloud of points.

Neural epitome search
for architecture-agnostic network compression

D. Zhou et al. (ICLR 2020)
Hypernetwork to uncompress, on the fly, the weights
of a neural network.

You only train once:
loss-conditional training of deep networks

A. Dosovitskiy and J. Djolonga (ICLR 2020)
Hypernetworks can be used to generate a family of im-
age compression models, using

compression+ λ · reconstruction

as loss, with the weights depending on λ.

Continual learning with hypernetworks
J. von Oswald et al. (ICLR 2020)

Hypernetworks can also be used for continual learn-
ing, preventing catastrophic forgetting by comput-
ing an embedding of the task, computing the new
weights from that embedding, with a constraint that
the weights of the previous tasks to remain fixed.

Generalization bounds
for deep convolutional neural networks
P.M. Long and H. Sedghi (ICLR 2020)

Neural networks may appear too expressive to lead to
good generalization, but the training procedures do not
stray far from the initialization, considerably reducing
the risk of overfitting. Increasing the number of pa-
rameters decreases the distance from initialization.

Learning to balance: Bayesian meta-learning
for imbalanced and out-of-distribution tasks

H.B. Lee et al. (ICLR 2020)
The goal of meta-learning, or “learning to learn”, is
to be able to learn a new task with little data (few-
shot learning) and only a few steps of gradient descent.
MAML (model-agnostic meta learning) is one of the
popular algorithms for this: it learns a good initializa-
tion, from which new tasks can be learned quickly.
To account to task imbalance, class imbalance and dis-
tribution shift, in meta-learning (MAML),
– Use sample and task statistics to recognize these;
– Feed them to a neural net to compute the step size
and number of steps (more and smaller steps for
larger tasks – the gradients are larger and there is
more information to extract), and the shift to apply
to the initial parameters (to account for distribution
shift).

Meta dropout: learning to perturb
latent features for generalization

H.B. Lee et al. (ICLR 2020)
To improve the decision boundaries in few-shot learn-
ing (MAML), learn input-dependent data augmenta-
tion (multiplicative noise, at each layer).

Empirical Bayes transductive meta-learning
with synthetic gradients

S.X. Hu et al. (ICLR 2020)
MAML learns a weight initialization that can be used
for any new task. Instead, leverage the unlabeled data
of the new task to choose that initialization.

Rapid learning or feature reuse? towards
understanding the effectiveness of MAML

A. Raghu et al. (ICLR 2020)
MAML uses an outer loop to find a good initialization,
and an inner loop, on a few samples, to adapt that

Article and book summaries by Vincent Zoonekynd 325/1044

initialization to the new task. Comparing the repre-
sentations learned across several tasks shows that only
the last layer changes: MAML relies on feature reuse.
To speed things up, only train the last layer in the
inner loop (ANIL).

Transferring optimality across data
distributions via homotopy methods

M. Gargiani et al. (ICLR 2020)
In transfer learning, progressively deform the source
task to the target task (with a simple convex combina-
tion).

Cross-domain few-shot classification
via learned feature-wise transformation

H.Y. Tseng et al. (ICLR 2020)
In few-shot classification, try to make the feature distri-
bution, for the new task, more diverse, with a “feature-
wise transformation layer”.

Scalable and order-robust continual learning
with additive parameter decomposition

J. Yoon et al. (ICLR 2020)
In continual learning, separate shared parameters from
task-specific parameters.

Sliced Cramer synaptic consolidation
for preserving deeply learned representations

S. Kolouri et al. (ICLR 2020)
To prevent catastrophic forgetting in sequential learn-
ing, one could keep track of some of the inputs of the
previous tasks, and add a penalty to ensure their latent
representations are kept. Instead, try to preserve the
distribution of those latent representations.

An exponential learning rate schedule
for deep learning

Z. Li and S. Arora (ICLR 2020)
There are countless learning rate schedules: decreas-
ing, triangular, cosine, etc. Even weirder ones work,
such as an exponentially increasing one (yes, increas-
ing, not decreasing: multiply the learning rate by 1+c,
c > 0, at each iteration) – this assumes the presence of
normalizing layers, which make the loss function scale-
invariant.
The tapered exponential schedule has an exponential
growth in each phase, and a small drop at the end of
each phase, before moving to a lower growth rate.

Budgeted training: rethinking deep neural
network training under resource constraints

M. Li et al. (ICLR 2020)
If your training budget is limited and known in ad-
vance, linearly decreasing the learning rate, down to
zero, may be good enough.

Rethinking the hyperparameters for fine-tuning
H. Li et al. (ICLR 2020)

What matters is not really the learning rate, but the
effective learning rate, η/(1−m), which combines learn-
ing rate and momentum.

Revisiting self-training
for neural sequence generation

J. He et al. (ICLR 2020)
Semi-supervised learning often works as follows: train
a teacher network on real data; train a student network
on data labeled by the teacher; fine-tune the student
on real data; iterate (the student becomes teacher).
Dropout is important (noisy self-training).

Contrastive representation distillation
Y. Tian et al. (ICLR 2020)

Distillation is similar, but instead of matching the out-
put of the teacher network, i.e., the class labels, the
student network tries to match the logits. Instead, one
could try to match the features, one layer before, af-
ter mapping them to the same vector space (they have
different dimensions), using the cosine distance.

DeepHoyer: learning sparser
neural network with differentiable
scale-invariant sparsity measures

H. Yang et al. (ICLR 2020)
Instead of the lasso sparsifying regularizer, try the
Hoyer-square regularizer H(w) = ‖w‖21 / ‖w‖

2
2 (or

the group Hoyer). It is differentiable (like L1) and
scale-invariant (like L0); it still trims small values, but
preserves large ones.

Padé activation units: end-to-end learning
of flexible activation functions

in deep networks
A. Molina et al. (ICLR 2020)

The activation functions (ReLU, sigmoid, tanh, etc.)
are usually fixed. Instead, we can choose a flexible
parametrization, that allows a large variety of shapes,
and learn the activation functions. The Padé approx-
imations, i.e., rational functions (quotients of polyno-
mials)

gθ(x) =

m∑
i=0

θix
n

1 +

∣∣∣∣∣ n∑j=1

θm+jxj

∣∣∣∣∣
are often used by computers in numerical computations
(e.g., for special functions). A random variant adds a
small uniform noise to θ.

Effect of activation functions on the training
of overparametrized neural nets
A. Panigrahi et al. (ICLR 2020)

Article and book summaries by Vincent Zoonekynd 326/1044

Most theoretical studies assume ReLU activations. Ex-
periments suggest that non-smooth activation func-
tions (e.g., ReLU, ELU) lead to faster convergence
(than swish, tanh). The situation improves with depth.

Order learning
and its application to age estimation

K. Lim et al. (ICLR 2020)
Here is another way of adding (robustness to) nonlin-
earities to a neural net: do not output an absolute value
(age, distance, pitch, score, etc.), but compare inputs,
with a siamese network; at test time, the numeric value
can be computed by interpolation.

x

y

 x � y
x ≈ y
x ≼ y

This approach can be combined with clustering, if there
are distinct groups in the input requiring different mod-
els: train separate models for random clusters, update
cluster membership from the model performance, iter-
ate.

Geometric analysis
of nonconvex optimization landscapes

for overcomplete learning
Q. Qu et al. (ICLR 2020)

Overcomplete dictionary learning looks for A ∈ Rn×m

and X ∈ Rm×p such that Y = AX. Since the prob-
lem has many symmetries, it is non-convex, but if all
minima are equivalent, and if the saddle points are not
flat, it can be solved efficiently. We can require A to
be row-orthonormal, and column-near-orthogonal, i.e.,
impose an upper bound on the absolute value of the
correlation (i.e., cosine) of any two columns. To get
one column of A, solve

Find q ∈ Sn−1

To minimize −‖q′Y ‖44

(in the over-complete case, use the spikiness, L4, rather
than L1).
With pre-conditioning, this can be generalized to con-
volutional dictionary learning (A is no longer near-
orthogonal): yi =

∑
k ak ⊛ xki, where yi, ak, xki ∈ Rn,

with xki sparse
Examples include phase retrieval, low-rank matrix re-
covery, phase synchronization, shallow/linear neural
net, sparse blind deconvolution, etc.

Short and sparse deconvolution:
a geometric approach

Y. Lau et al. (ICLR 2020)

Understanding l4-based dictionary learning:
interpretation, stability, and robustness

Y. Zhai et al. (ICLR 2020)
The L4 norm, or “spikiness”, can be used instead of the
L2 or L1 norms, for instance, for dictionary learning:

Find A ∈ On
To maximize ‖AY ‖44

A closer look at the optimization landscapes
of generative adversarial networks

H. Berard et al. (ICLR 2020)
Consider the cosine similarity between the game vec-
tor field v, i.e., the concatenation of the gradients of
the generator and discriminator, and the linear path
(θt)t∈[0,1] between the initial and final parameters.

ct = cos(θ1 − θ0, v(θt))

Plotting ct (and ‖v(θt)‖) for t ∈ [0.5, 1.5] reveals two
possible behaviours: attraction (decreasing) and rota-
tion (bump at 1).

0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

C
os

in
e

0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

C
os

in
e

0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

C
os

in
e

An inductive bias for distances: neural nets
that respect the triangle inequality

S. Pitis et al. (ICLR 2020)
When learning a distance function, we want it to sat-
isfy the triangle inequality. Deep metric learning often
learns an embedding and then computes the Euclidean
distance in that latent space – but not all metrics can
be computed in that way.
A DeepNorm network is

hi = gi(Wihi−1 + Uix)

‖x‖ = hk

where h0 = 0, W1 = 0, the Wi are non-negative, g is
convex and positive homogeneous, e.g.,

g(u) = αrelu(u) + βu

maxReLU(x, y) = [max(x, y), αrelu(x) + βrelu(y)]

where α, β ⩾ 0.

Article and book summaries by Vincent Zoonekynd 327/1044

Wide Mahalanobis norms are of the form

‖x‖ = MaxMean
i

(‖Wix‖2)

MaxMean(x1 . . . , xn) = αMax(x1, . . . , xn)+

(1− α)mean(x1, . . . , xn).

Deep batch active learning by diverse,
uncertain gradient lower bounds

J.T. Ash et al. (ICLR 2020)
Active learning approaches can be uncertainty-based
(for small batches) or diversity-based (for larger
batches). They can be combined: use the gradient
of the loss (for the most likely label) wrt the parame-
ters as a representation of the unlabeled examples, and
sample using a determinantal point process (DPP) or
(less expensive) k-means++.

Accelerating SGD with momentum
for over-parameterized learning

C. Liu and M. Belkin (ICLR 2020)
Nesterov momentum provably accelerates (full) gradi-
ent descent, but not stochastic gradient descent. In-
stead, try

wt+1 ← ut − η1∇f(ut)
ut+1 ← (1 + γ)wt+1 − γwt + η2∇f(ut)

Variance reduction with sparse gradients
M. Elibol et al. (ICLR 2020)

The SpiderBoost gradient,

gn+1 = gn +∇fn(θn)−∇fn(θn−1),

where fn is the loss on the nth batch, can be approx-
imated with sparse updates, only computing a ran-
dom subset of the coordinates with the largest variance
(sparse forward and backward passes).

Coherent gradients: an approach to
understanding generalization in gradient

descent-based optimization
S. Chatterjee (ICLR 2020)

Models trained with gradient descent (GD) generalize
well (even though they could just memorize their in-
put) because strong gradient directions (common to
many observations) are kept and weak gradients can-
cel out. It is possible to perturb GD to suppress weak
gradients (cf. random forests).

Stochastic weight averaging in parallel:
large-batch training that generalizes well

V. Gupta et al. (ICLR 2020)
Start training with large batches, but stop early; then,
train on small batches, in parallel; finally average the
weights.

Why not to use zero imputation? correcting
sparsity bias in training neural networks

J. Yi et al. (ICLR 2020)
Replacing missing values with 0 changes the scale of
the output of the first layer; rescale the input accord-
ingly (as with dropout).

ProxSGD:
training structured neural networks
under regularization and constraints

Y. Yang et al. (ICLR 2020)
Although the L1 norm is a sparsifying constraint, SGD
cannot push the weights to exactly zero – it cannot en-
force hard constraints. Replace the gradient step

g ← ∇xf(x) + r(x)

x̂← x̂− αg

with a proximal step

g ← ∇xf(x)

x̂← Argmin
x∈X

(x− x̂)′g + 1
2 ‖x− x̂‖

2
+ r(x)

When the penalty r is the L1 norm, the proximal op-
erator is soft-thresholding.

Identity crisis:
memorization and generalization

under extreme overparameterization
C. Zhang et al. (ICLR 2020)

To study how overparametrized models generalize, look
at extreme situations, such as learning with just one
sample (learning the constant map) and learning the
identity map. Shallow networks are better at learning
the identity map, deeper networks are better at learn-
ing the constant map.

Deep double descent:
where bigger models and more data hurt

P. Nakkiran et al. (ICLR 2020)
The double descent phenomenon is visible for:
– test error vs model size;
– test error vs epoch.

Gradient descent maximizes
the margin of homogeneous neural networks

K. Lyu and J. Li (ICLR 2020)
Deep neural nets are too expressive and should overfit.
They work because gradient methods have an implicit
bias towards maximum-margin solutions.

Unbiased contrastive divergence
algorithm for training

energy-based latent variable models
Y. Qiu et al. (ICLR 2020)

Article and book summaries by Vincent Zoonekynd 328/1044

Contrastive divergence (CD), used to train energy-
based models (EBM) such as restricted Boltzman ma-
chines (RBM), uses a biased gradient estimator (a
small, fixed, number of MCMC steps) and may diverge.
Unbiased MCMC can provide an unbiased gradient es-
timator (by using a random number of MCMC steps).

Mixout: effective regularization to finetune
large-scale pretrained language models

C. Lee et al. (ICLR 2020)
Drop-connect sets some of the weights to zero. Instead,
set them to the weights of a pre-trained network.

Self-supervised learning of appliance usage
C.Y. Hsu et al. (ICLR 2020)

To detect causality in weakly-related data streams,
such as total energy consumption of a home over time,
and people’s location in the home (approximate, from
Wifi perturbations), try to predict one from the other
(the cause from the consequence: location given energy
event): when prediction is possible, the two are related.

SELF: learning to filter noisy labels
with self-ensembling

D.T. Nguyen et al. (ICLR 2020)
With low-quality (crowd-sourced) training data, some
of the labels may be incorrect. Only train on reliable
labels: to identify they, compare the predictions of the
current model and that a few epochs ago: more reliable
labels have more stable predictions.

DivideMix: learning with noisy labels
as semi-supervised learning

J. Li et al. (ICLR 2020)
To identify noisy observations, one can model that
noise: the per-sample loss is then a two-component
mixture (noisy samples have a larger loss). One can
then discard the noisy labels and use semi-supervised
learning. To avoid confirmation bias, train two net-
works, each filtering the other’s noise.

Simple and effective regularization methods
for training on noisily labeled data with

generalization guarantee
W. Hu et al. (ICLR 2020)

To deal with label noise, one could add a penalty for
the distance to the initialization parameters, or actu-
ally model the noise by adding trainable auxiliary vari-
ables. For a wide neural net, these are equivalent to
kernel ridge regression with a neural tangent kernel.

AugMix: a simple data processing method
to improve robustness and uncertainty

D. Hendrycks et al. (ICLR 2020)
Traditional data augmentation applies one transforma-
tion to the image. Instead, apply several, and mix

the results (with a weighted DAG); add a consistency
penalty to the loss to ensure that different augmenta-
tions yield the same result.

ReMixMatch: semi-supervised learning
with distribution matching

and augmentation anchoring
D. Berthelot et al. (ICLR 2020)

MixMatch performs semi-supervised learning by train-
ing on the labeled data, running the model on many
augmentations of the unlabeled data, and using the re-
sulting label distribution. ReMixMatch enforces con-
sistency among augmentations, makes the label distri-
bution close to that of the training set, and adds a
self-supervised loss (rotation prediction).

Robust training with ensemble consensus
J. Lee and S.Y. Chung (ICLR 2020)

To make a network more robust, we can train it on the
(100− e)% observations with the smallest loss (as with
a truncated regression).
Identify noisy examples among those small-loss exam-
ples by perturbing the network: if an image was not
noisy (learned by generalization), the prediction does
not change, but if it was noisy (learned by memoriza-
tion), it changes.
An ensemble of neural nets, obtained by adding noise,
at test time, to the input or to the network (e.g., with
droupout), or by taking the same network from previ-
ous epochs (a “self-ensemble”) is more robust than a
single network.

Self-labelling via simultaneous clustering
and representation learning

Y.M. Asano et al. (ICLR 2020)
Jointly learn a representation and a clustering (or la-
beling) of the data, with a constraint that each label
be used the same number of times, by iteratively com-
puting the optimal labeling (optimal transport) and
training a classifier.
Use data augmentation. You can learn several clus-
terings (classification heads – cf. DeepCluster) at the
same time.

RaPP: novelty detection
with reconstruction along projection pathway

K.H. Kim et al. (ICLR 2020)
Autoencoders can be used to detect anomalies: their
reconstruction error is large. Do not only compare the
input and the output of the network, feed the output
back to the input, and also compare the intermediate
layers: if the autoencoder is

x x̂

x̂ ˆ̂x

g1 g2 g3 f3 f2 f1

g1 g2 g3 f3 f2 f1

Article and book summaries by Vincent Zoonekynd 329/1044

also compare g1(x) and g1(x̂), g2(g1(x)) and g2(g1(x̂))
etc.

Robust subspace recovery layer
for unsupervised anomaly detection

C.H. Lai et al. (ICLR 2020)
Auto-encoders can be used for anomaly detection:
the reconstruction error is larger than usual. But
auto-encoders are not robust to outliers: add a
robust subspace recovery layer z 7→ Az between
the encoder and the decoder, which projects to an
even lower-dimensional subspace, with ‖AA′ − I‖ and
‖z −A′Az‖2 as penalties.

Classification-based anomaly detection
for general data

L. Bergman and Y. Hoshen (ICLR 2020)
A similar idea can be applied to many other models:
for out-of-distribution samples, the error is often larger.
For instance, GOAD picks M random affine transfor-
mations, transforms the data with them, and tries to
recover which transformation was used: the prediction
accuracy is an anomaly score.

Input complexity
and out-of-distribution detection

with likelihood-based generative models
J. Serrà et al. (ICLR 2020)

Likelihood can be used to identify out-of-distribution
datasets – but the distribution of those likelihoods can
be higher than for the training set (it is easier), or lower
(more difficult). The likelihood is correlated with the
complexity of the data (Kolmogorov complexity, ap-
proximated by a lossless compression algorithm). Com-
pensate for this relation:

S(x) = −LogLik(x)− Complexity(x).

This can be interpreted as a likelihood ratio test.

Novelty detection via blurring
S. Choi and S.Y. Chung (ICLR 2020)

Random network distillation (RND) takes two net-
works: a randomly-initialized, fixed network g, and a
network f trained to replicate g on the training data.
Since they only match on the training data, their dif-
ference ‖f(x)− g(x)‖ is larger for out-of-distribution
samples. Blurring the data (RND trained on both raw
and blurred data) helps.

White noise analysis of neural networks
A. Borji and S. Lin (ICLR 2020)

Titration (progressively adding noise to images and
checking the output, or the confusion matrix) can help
understand classification biases

Feature interaction interpretability: a case
for explaining ad-recommendation systems

via neural interaction detection
M. Tsang et al. (ICLR 2020)

Detect interactions via feature perturbation, and use
them for sparse feature crossing.

Detecting extrapolation with local ensembles
D. Madras et al. (ICLR 2020)

To see if a model is extrapolating (and if the forecasts
are unreliable), train several models (with the same
structure) and check if they agree. This can be done
with a single model as well: at the local minimum,
changing the weights in the direction of the smallest
eigenvalues of the Hessian of the loss does not change
the loss much, and provides a “self-ensemble” of mod-
els.

Conservative uncertainty estimation
by fitting prior networks

K. Ciosek et al. (ICLR 2020)
To estimate the uncertainty of a neural network, train
several networks, with different random initializations,
and check if they match.

Towards neural networks
that provably know when they don’t know

A. Meinke and M. Hein (ICLR 2020)
Our models do not really model P [y|x], but
P [y|x, in-distribution]. We can actually estimate
P [y|x] with Bayes’s formula.

Quantifying point-prediction uncertainty
in neural networks

via residual estimation with an i/o kernel
X. Qiu et al. (ICLR 2020)

Given a trained neural net, train another neural net to
predict the uncertainty of the forecasts

(x, ŷ) 7→ ‖y − ŷ‖2 .

Distance-based learning from errors
for confidence calibration

C. Xing et al. (ICLR 2020)
To estimate the uncertainty of a prediction from a clas-
sifier, cluster the observations in each class, and use the
distance to the cluster center. Use a neural network to
approximate those uncertainty estimates.

Ensemble distribution distillation
A. Malinin et al. (ICLR 2020)

There are two types of uncertainty:
– Data uncertainty: the classes overlap, or we are too
close to the decision boundary;

– Knowledge uncertainty: out-of-distribution observa-
tion, i.e., we are too far from the training data.

Article and book summaries by Vincent Zoonekynd 330/1044

The situation can be estimated from an ensemble of
models:
– If the models are all unsure, we are close to the de-
cision boundary;

– If the models are sure but disagree, the data is out-
of-distribution;

– If the models are sure and agree, that is fine.
Do not distill a single teacher model into a student
one, nor the mean of an ensemble of teacher models,
but both mean and diversity of the ensemble, using
Dirichlet distributions.

A constructive prediction of the generalization
error across scales

J.S. Rosenfeld et al. (ICLR 2020)
Predict the generalization error by fitting a model

test error ∼ log(#samples) + log(#parameters).

Pitfalls of in-domain uncertainty estimation
and ensembling in deep learning
A. Ashukha et al. (ICLR 2020)

Before comparing (ensembles of) models (with the log-
likelihood, or the Brier score), ensure the models are
calibrated. To assess an ensembling technique (which
may produce dependent models), compute the equiv-
alent number of independent models (for instance, an
ensemble of 100 dropout variants of a models could be
equivalent to 2 independently-trained models). Test-
time augmentation works well.

Unrestricted adversarial examples
via semantic manipulation

A. Bhattad et al. (ICLR 2020)
Computer vision neural networks can be trained to be
robust to adversarial attacks, in the sense that images
close to the input will give the same output, where
closeness is measured with the L∞ or L2 norm.
But this leaves enough room for photo-realistic attacks,
manipulating colour and texture or adding barely per-
ceptible shadows.

Breaking certified defenses:
semantic adversarial examples

with spoofed robustness certificates
A. Ghiasi et al. (ICLR 2020)

The robustness certification radius is not a good mea-
sure of robustness: we can find attacks that look like
natural images, get misclassified, but have a large cer-
tification radius. The shadow attack changes the lumi-
nosity of each pixel, as if there were a shadow on the
image; add a penalty to make it smooth (no edges),
and another to keep the change small.

A target-agnostic attack on deep models:
exploiting security vulnerabilities

of transfer learning
S. Rezaei and X. Liu (ICLR 2020)

Many models are built from publically-available pre-
trained networks: only the head of the network is un-
known to the attacker. Inputs with a single very large
activation provide good adversarial attacks.

Transferable perturbations
of deep feature distributions

N. Inkawhich et al. (ICLR 2020)
Using the latent feature distributions, from the inter-
mediate layers, leads to more transferable attacks.

Thieves on sesame street!
model extraction of BERT-based APIs

K. Krishna et al. (ICLR 2020)
If a model, trained by fine-tuning a publically-available
pre-trained model (e.g., BERT – the availability of the
pre-trained model is important) on proprietary data,
has a public API (e.g., Google Translate), it is (eco-
nomically) possible to extract it, by feeding it data
(e.g., random words, with no grammatical structure, or
Wikipedia excerpts), collecting the results, and train-
ing a new model. This model stealing attack allows
intellectual property theft, (white-box) adversarial at-
tacks, and data leakage.
Defences include API watermarking (for 0.1% of the
queries, return an incorrect answer and store the in-
put/answer pair) and membership classification (rec-
ognize out-of-distribution inputs and return random
data), but they only work on naive adversaries.

Prediction poisoning: towards defenses
against DNN model stealing attacks

T. Orekondy et al. (ICLR 2020)
To protect a trained model f : x 7→ y against stealing
attacks, try to perturb the attacker’s gradient: do not
return y = f(x), but y+δ, where δ is small, |δ| < ε and
maximizes the angle between the gradients ∇Loss(y)
and ∇Loss(y + δ).

Article and book summaries by Vincent Zoonekynd 331/1044

EMPIR: ensembles of mixed precision
deep networks for increased robustness

against adversarial attacks
S. Sen et al. (ICLR 2020)

Low-precision networks are less accurate but more ro-
bust to adversarial attacks than full-precision ones: use
an ensemble of both.

Enhancing transformation-based defenses
against adversarial attacks

with a distribution classifier
C. Kou et al. (ICLR 2020)

To defend against adversarial attacks, one can use data
augmentation at test time, i.e., feed several altered im-
ages to the classifier, and use a majority vote – but
accuracy degrades. Instead, train the model that will
actually be used, the model including the data aug-
mentation.

Defending against physically realizable attacks
on image classification

T. Wu et al. (ICLR 2020)
Training against rectangular occlusion attacks im-
proves robustness to physically realizable attacks.

Skip connections matter: on the transferability
of adversarial examples generated with resnets

D. Wu et al. (ICLR 2020)
Replace the skip connection z1 = z0 + f(x0) gradient
1+f ′ with 1+γf ′, γ < 1: the resulting network is more
robust to transferred (black-box) adversarial attacks.

Adversarial Lipschitz regularization
D. Terjék (ICLR 2020)

Lipschitz regularization is usually implemented with
a gradient penalty. The Lipschitz regularization,
E[|f(y)− f(x)| / |y − x|], tends to diverge when esti-
mated using pairs of points from a minibatch: instead,
use adversarial examples, y = x+ r, |r| ⩽ ε (one could
also use a gradient penalty, as in WGANs).

Consistency regularization
for generative adversarial networks

H. Zhang et al. (ICLR 2020)
The gradient penalty (Lipschitz) adds a computational
overhead. Use consistency regularization (as in semi-
supervised learning – deformed images should have the
same output) on the discriminator instead of the Lip-
schitz constraint (gradient penalization, spectral nor-
malization) (CR-GAN)

Intriguing properties
of adversarial training at scale

C. Xie et A. Yuille (ICLR 2020)
Removing clean images from the training set makes
the model more robust to adversarial attacks. Clean

images and adversarial examples seem to come from
different distributions: in the BatchNorm layers, use
different statistics for the clean and adversarial inputs
(mixture batch normalization), or use a non-batch nor-
malization (e.g., group norm).
Deeper networks are more robust.

Universal approximation
with certified networks

M. Baader et al. (ICLR 2020)
Interval analytics can provide `∞ robustness certifica-
tion (robustness to `∞ adversarial examples) but, for
arbitrarily-trained networks, the intervals are often too
large. However, for any function, there exists a ReLU
network approximating it and whose `∞ robustness can
be proved by interval analysis.

Adversarially robust representations
with smooth encoders

T. Cemgil et al. (ICLR 2020)
VAEs are not robust to adversarial perturbations; the
encoder is to blame: train it adversarially. The ad-
versarial training searches for an input image, close to
the initial input, but with latent representation as far
away (for the Wasserstein distance) as possible. To
check that the output is also robust, use a classifier
(detecting the presence of glasses, of a smile, etc.) and
try to change the predicted class.

Sign bits are all you need for black-box attacks
A. Al-Dujaili and U.M. O’Reilly (ICLR 2020)

Most attacks require an estimate of the gradient of the
network wrt to its input, which requires O(n) queries.
Looking for the sign of the gradient (an element of
{±1}n instead of Rn) still requires O(n) queries, but
an adversarial attack is often found much earlier.

Sign-OPT:
a query-efficient hard-label adversarial attack

M. Cheng et al. (ICLR 2020)

Understanding the limitations
of conditional generative models

E. Fetaya et al. (ICLR 2020)
Discriminative models are not robust to outliers and
adversarial attacks. Generative models do not nec-
essarily fare better: with MNIST digits on CIFAR
background, images interpolated between digits have a
higher log-likelihood (because there is more content in
the background, more entropy unrelated to the class).

Data-independent neural pruning via coresets
B. Mussay et al. (ICLR 2020)

Prune the weights of a neural network by keeping those
with the highest importance (if there are several out-
puts, take the maximum of the importances) and then
fine-tuning.

Article and book summaries by Vincent Zoonekynd 332/1044

Provable filter pruning
for efficient neural networks

L. Liebenwein et al. (ICLR 2020)
Pruning is usually empirical (no guarantees), and only
looks at the weights, not the data. Instead, look at the
contributions of a neuron to the activations of the next
layer.

Lookahead: a far-sighted alternative
of magnitude-based pruning
S. Park et al. (ICLR 2020)

Magnitude-based pruning (discarding low weights)
does not take into account the connectivity of the net-
work: if a large-weight edge is only connected to small-
weight edges, it may not be that important, and could
also be discarded – taking into account the previous
and next layer can change which edges seem impor-
tant: prune weights that are small and/or connected
to small weights. More formally, do not prune Wk

into W̃k to minimize ‖Wkx − W̃kx‖2 but to minimize
‖Wk+1WkWk−1x−Wk+1W̃kWk−1x‖2.

Comparing rewinding and fine-tuning
in neural network pruning

A. Renda et al. (ICLR 2020)
After pruning a network, one usually fine-tunes it, but,
since the network is now different, the optimal hyper-
parameters are no longer the same: they have to be
re-estimated. Rewinding the weights (i.e., using old
weights) or just the larning rate, before fine-tuning,
works as well as hyperparameter tuning.

The intriguing role of module criticality
in the generalization of deep networks

N.S. Chatterji et al. (ICLR 2020)
Rewind a layer (only one) back to its initialization: the
impact is sometimes visible, sometimes not. This sug-
gests that some layers are more important than others;
this can be explained by the loss landscape, the path
from the initialization to the final weights, which looks
like a tunnel for some layers (less important), or like
a funnel (more important). The width of that funnel
(network criticality) is related to generalization.

Dynamic model pruning with feedback
T. Lin et al. (ICLR 2020)

Pruning can be done before training, after training,
several times during training, or dynamically during
training, potentially reactivating prematurely pruned
weights). This can be done with a binary mask on the
weights (use the mask in the forward pass, but not in
the backward pass; the mask can change at each step)
or a threshold vector (layer-wise, filter-wise or neuron-
wise).

Dynamic sparse training:
find efficient sparse network from scratch

with trainable masked layers
J. Liu et al. (ICLR 2020)

Instead of training, pruning and fine-tuning a network,
learn both the weights and a threshold vector (layer-
wise, filter-wise or neuron-wise).

Signal propagation perspective for pruning
neural networks at initialization

N. Lee et al. (ICLR 2020)
Surprisingly, it is possible to prune the network before
training, by looking at the change in loss when remov-
ing a parameter, which can be computed as a gradient,
∇cLoss(c � w) evaluated at c = 1, where c ∈ {0, 1}m
is the mask. This works better if the singular values
of the weights matrices of each layer (strictly speaking,
the singular values of the jacobian of each layer) are
close to 1.

One-shot pruning of recurrent neural networks
by jacobian spectrum evaluation

S. Zhang and B.C. Stadie (ICLR 2020)
For efficient backward/forward propagation in a RNN,
we want the eigenvalues of Jt = ∂ht/∂ht+1 to be close
to 1, but they are initially small: only keep the weights
likely to help maximize χ =

∑
t E ‖Jt‖F , i.e., those

with the largest value of |∂θχ| (set the others to 0, per-
manently). (the weights are pruned before training,
the first time they see the data: it is a sparse initial-
ization)

Batch-shaping for learning
conditional channel gated networks

B.E. Bejnordi et al. (ICLR 2020)
To reduce the energy consumption of a neural net, only
use part of it, with a gating mechanism to choose which
features to compute.

Depth-adaptive transformer
M. Elbayad et al. (ICLR 2020)

Sequence-to-sequence models have more and more pa-
rameters; they can be shrunk by distillation or struc-
tured pruning. Instead, reduce the model in a sample-
specific way: add exits at each level of the decoder, and
a halting mechanism.

Triple wins: boosting
accuracy, robustness and efficiency together

by enabling input-adaptive inference
T.K. Hu (ICLR 2020)

Multi-output networks seem more robust to adversarial
attacks.

Article and book summaries by Vincent Zoonekynd 333/1044

Gradient L1 regularization
for quantization robustness

M. Alizadeh et al. (ICLR 2020)
Neural networks can be trained to be more robust to
post-training quantization (a bounded, additive per-
turbation) by adding an L1 penalty for the gradient of
the loss (wrt the weights).

Robust learning with jacobian regularization
J. Hoffman et al. (ICLR 2020)

Additive powers-of-two quantization:
an efficient non-uniform discretization

for neural networks
Y. Li et al. (ICLR 2020)

Quantization (after clipping) can be uniform (write
the number with k bits), power-of-two (less preci-
sion for larger numbers), or sum of powers of two,
q = 2x + 2y + 2z (with k terms).

Learned step size quantization
S.K. Esser et al. (ICLR 2020)

To learn layer-specific quantization, with gradient de-
scent, use the floor function in the forward pass, and
relax it to the identity in the backward pass (using a
different function in the forward and backward pass,
to deal with locally constant functions, is a common
trick). Rescale the step size with the size of each bin.

Mixed precision DNNs:
all you need is a good parametrization

S. Uhlich et al. (ICLR 2020)
In mixed precision DNN, the bitwidth is different for
each layer, for the weights and the activations. For
the uniform and pow-2 quantization schemes, do not
directly estimate the bitwidth: parametrize the quan-
tization with the maximum and the stepsize (the gra-
dients are better-behaved). To train the model, add a
penalty for the total memory required for the weights
and activations; for the backward pass, set the deriva-
tive of the floor function to 1.

Precision gating:
improving neural network efficiency

with dynamic dual-precision activations
Y. Zhang et al. (ICLR 2020)

Dynamic quantization computes most features in low
precision and a few (input-dependent) important ones
in high precision, using a gating mechanism (precision
gating).

BinaryDuo: reducing gradient mismatch
in binary activation network

by coupling binary activations
H. Kim et al. (ICLR 2020)

Binary neural nets, i.e., neural nets whose weights and
activations are ±1, are difficult to train. Approaches

include coupling them with a higher-precision network,
or using a surrogate, such as a stochastic binary neu-
ral net. To reduce the gradient mismatch problem:
train coupled binary and ternary models; then decou-
ple them and fine-tune the binary one.

Critical initialisation in continuous
approximations of binary neural networks

G. Stamatescu et al. (ICLR 2020)
Train a continuous surrogate for the binary neural net:
a stochastic binary neural net.

Kaleidoscope: an efficient, learnable
representation for all structured linear maps

T. Dao et al. (ICLR 2020)
To reduce the number of parameters in a neural net,
one can use structured matrices instead of arbitrary,
dense matrices: low-rank, sparse, Kronecker-factored,
DFT, etc. Those matrices are products of sparse matri-
ces, and they can be obtained from butterfly matri-
ces (block matrices, whose blocks are diagonal); the
construction encodes a recursive divide-and-conquer
structure. The sparsity pattern is fixed, and learnable
with gradient descent.

Reformer: the efficient transformer
N. Kitaev et al. (ICLR 2020)

The reformer is a memory-efficient variant of the trans-
former, using reversible residual layers (there is no
longer any need to keep all the activations in memory),
and locality-sensitive hashing (LSH) to locate and com-
pute the largest elements of softmax(Q′K) (which is
almost sparse).

x2

x1

•
F

+ •
G

+ y2

y1

Lite transformer
with long-short range attention

Z. Wu et al. (ICLR 2020)
The attention matrix can be decomposed into local at-
tention (dense, close to the diagonal) and global at-
tention (sparse, off-diagonal): one can use a lower-
dimensional attention mechanism for the global part,
and a CNN for the local part.

Article and book summaries by Vincent Zoonekynd 334/1044

ELECTRA: pre-training text encoders
as discriminators rather than generators

K. Clark (ICLR 2020)
Instead of masked pretraining, pretrain with replaced
token detection. The replacements come from a small
BERT, trained at the same time. (The model only
requires 4 GPU·day.)

ALBERT: a lite BERT for self-supervised
learning of language representations

Z. Lan et al. (ICLR 2020)
Albert is a smaller BERT-like model, with a projec-
tion between the 1-hot word encodings and their vec-
tor embeddings, to reduce the number of parameters,
shared parameters across layers, a sentence-order pre-
diction loss, no dropout (there is enough data: it is not
needed), and more data.

FSPool: learning set representations
with featurewise sort pooling
Y. Zhang et al. (ICLR 2020)

Transformer-based language models present visible
patterns (vertical or horizontal lines, rectangles) in
their self-attention heatmaps, which can be used to
construct parse trees.

Poly-encoders: transformer architectures
and pre-training strategies

for fast and accurate multi-sentence scoring
S. Humeau et al. (ICLR 2020)

To decide if two sentences follow one another, the bi-
encoder feeds each to a transformer and uses the scalar
product of the outputs as score. The cross-encoder
(BERT) feeds both sentences to a transformer (and
can use cross-sentence attention) and directly outputs
a score. The bi-encoder is less accurate, but much
faster. The poly-encoder feeds the candidate sentence
to a transformer that outputs a query, feeds the con-
text to a transformer that outputs a sequence of states,
and uses an attention mechanism to combine query and
states.

Are transformers universal approximators
of sequence-to-sequence functions?

C. Yun et al. (ICLR 2020)
Transformers are universal approximators of contin-
uous, permutation-equivariant sequence-to-sequence
functions. Transformers with positional encoding are
universal approximators of continuous sequence-to-
sequence functions.

Tree-structured attention
with hierarchical accumulation

X.P. Nguyen et al. (ICLR 2020)
The attention mechanism can be generalized to hierar-
chical structures, e.g., parsed sentences.

On the relationship between
self-attention and convolutional layers

J.B. Cordonnier et al. (ICLR 2020)
Transformers (self-attention with positional encoding)
also work for images: they can compute convolutions
(you need as many heads as there are pixels in the
receptive field).

Multi-scale representation learning for spatial
feature distributions using grid cells

G. Mai et al. (ICLR 2020)
The (1-dimensional) positional encoding used in trans-
formers can be generalized to 2 dimensions, and it
can be learned: Space2Vec is an embedding (x, y) 7→
latent representation.

Neural text generation
with unlikelihood training

S. Welleck et al. (ICLR 2020)
Standard language models produce too many frequent
tokens and too few rare tokens. This may be due to
maximum likelihood estimation: add an unlikelihood
penalty to explicitly penalize negative tokens, defined
as tokens previously used in the sentence.

The curious case of neural text degeneration
A. Holtzman et al. (ICLR 2020)

Text-generation models (e.g., GPT2), relying on beam
search, generate text less surprising than humans do.
Instead of beam search, which is an approximation of
maximum likelihood, use sampling, but discard the
most unlikely words, not by retaining the top-k pro-
posals, but by retaining the top-p (probability mass)
ones (p = 0.95).

Towards verified robustness
under text deletion interventions

J. Welbl et al. (ICLR 2020)
Language models suffer from undersensitivity: deleting
parts of a sentence can make a model more confident,
because it exploits shallow clues (negation, premise-
only entailment, etc.). To avoid those problems, ensure
that removing words does not increase the probability,
e.g., with interval bound propagation (IBP).

BERTScore:
evaluating text generation with BERT

T. Zhang et al. (ICLR 2020)
Text generation evaluation metrics are often based
on n-grams (BLEU, ROUGE, METEOR, chrF), but
they struggle with synonyms. More recent metrics
(Meant, YiSi, BERTScore) are based on embeddings.
BERTScore computes the BERT embeddings of the
two sentences (generated and reference), then all the
cosine similarities; it then greedily matches the words
(in each directions, to separate precision from recall)
averages the similarities, and computes an F1 score.

Article and book summaries by Vincent Zoonekynd 335/1044

Improving neural language generation
with spectrum control

L. Wang et al. (ICLR 2020)
The word embeddings of current language models do
not span the whole available space; this can be seen
in the distribution of the singular values. Instead of
learning an embedding x 7→ Wx from 1-hot-encoded
vectors, learn its SVD decomposition W = UΣV ′,
with penalties to enforce the orthogonality of U and
V and to make the kth singular value close to ck−γ or
c1 exp(−c2kγ)

Mirror-generative neural machine translation
Z. Zheng et al. (ICLR 2020)

Non-parallel (i.e., monolingual) data can help train
better NMT systems, e.g., using back-translation
(translated sentences should sound idiomatic). The 4
models (source and target language models, and the
translation models in both directions) can be linked
with a VAE whose latent variable models the contents
of the sentence, trained iteratively (one direction at a
time).

Logic and the 2-simplicial transformer
J. Clift et al. (ICLR 2020)

Attention can be generalized to higher-order relations
(between 3 objects instead of 2): use two keys instead
of one, and replace the scalar product of query and key
with the tetrahedron volume

〈a, b, c〉 = (a · b)c− (a · c)b+ (b · c)a.

Strategies for pre-training
graph neural networks

W. Hu et al. (ICLR 2020)
To limit negative transfer in graph neural nets, pre-
train both node embedding (predict (masked) node la-
bels, or context) and graph embeddings (various super-
vised tasks: attribute prediction, structural similarity).

Composition-based multi-relational
graph convolutional networks

S. Vashishth et al. (ICLR 2020)
To process knowledge graphs with GNN, learn both
node and edge embeddings.

InfoGraph: unsupervised and semi-supervised
graph-level representation learning

via mutual information maximization
F.Y. Sun et al. (ICLR 2020)

There are two common representations of graphs:
– Graph kernels decompose graphs into substruc-
tures/motifs and counts them;

– Graph2vec compute node embeddings, and aggre-
gates them (cf. word2vec, doc2vec).

InfoGraph uses graph convolutions, and a discrimina-
tor, fed with pairs of graph and subgraph representa-
tions, to decide if they are from the same graph. For
semi-supervised learning, use two encoders, one with
the supervised loss, one with the unsupervised one, and
keep them close to one another by maximizing the mu-
tual information between their activations – this can
be done by a discriminator, fed with a representation
from each encoder, and deciding if they correspond to
the same graph (cf. student/teacher networks).

What graph neural networks cannot learn:
depth vs width

A. Loukas (ICLR 2020)
Message-passing GNNs are not universal, unless nodes
have uniquely identifying features, and depth×width =
Ω(n2) (the exponent is lower for some tasks).

PairNorm: tackling oversmoothing in GNNs
L. Zhao and L. Akoglu (ICLR 2020)

GNNs achieve best performance with 1 or 2 layers –
adding more layers leads to vanishing gradients, over-
fitting, and “oversmoothing”.

Learning deep graph matching
with channel-independent embedding

and Hungarian attention
T. Yu et al. (ICLR 2020)

The attention mechanism can also be generalized to
graph neural nets (GNN).

Learning to retrieve reasoning paths over
wikipedia graph for question answering

A. Asai et al. (ICLR 2020)
When searching for the answer of a question in a text
database (e.g., Wikipedia), the paragraph containing
the answer may not have a lot of overlap (often mea-
sured at the word level, e.g., tf-idf): multi-hop reason-
ing may be needed. Use an RNN to learn the path in
the graph.

Differentiable reasoning
over a virtual knowledge base

B. Dhingra et al. (ICLR 2020)
Question answering over text often requires combin-
ing information from several sources. The traditional
approach (retrieve the relevant documents, understand
them, answer) struggles with such multi-hop questions:
we do not know which documents to retrieve until we
have partially answered the question.
Encode entities as vectors and relations as sparse ma-
trices; use BERT to measure the similarity between re-
lations and mentions; information retrieval can then be
done with sparse matrices products and approximate
k-NN queries.

Article and book summaries by Vincent Zoonekynd 336/1044

You can teach an old dog new tricks!
On training knowledge graph embeddings

D. Ruffinelli et al. (ICLR 2020)
Implementation details (knowledge graph embedding)
matter: small tricks can make old models (whose train-
ing did not use them) look as good as recent models
(whose training did).

Graph constrained reinforcement learning
for natural language action spaces

P. Ammanabrolu and M. Hausknecht
Reinforcement learning algorithms struggle with the
discrete but very large action space of text adventure
games such as Zork. Use a knowledge graph represent-
ing (what we know of) the game world, with a graph at-
tention network (GAT), to trim down the search space
(Verb Object1 Object2).

Query2box: reasoning over knowledge graphs
in vector space using box embeddings

H. Ren et al. (ICLR 2020)
To answer first-order logic queries on a knowledge
graph, model entities as points (in latent space), and
queries as boxes (or unions of boxes); relations map
entities to boxes, e.g., (S,V,?) or (?,V,O).

Tensor decompositions
for temporal knowledge base completion

T. Lacroix et al. (ICLR 2020)
The ComplEx model

Xi,j,k = 〈Ui, Vj , Ūk〉

is a low-rank tensor completion model, for knowledge
bases, often used with a nuclear 3-norm regularizer. It
can be generalized to temporal knowledge bases,

Xi,j,k,t = 〈Ui, VjŪk, Tt〉

or (temporal and non-temporal predicates)

Xi,j,k,t = 〈Ui, Ṽj + Vj � Tt, Ūk〉,

with a temporal regularizer∑
‖Tt+1 − Tt‖pp .

LambdaNet: probabilistic type inference
using graph neural networks

J. Wei et al. (ICLR 2020)
Computer code (untyped Python, TypeScript) can be
parsed into a tree (an abstract syntax tree, AST),
which can be fed to a graph neural net and a pointer
network, for various prediction tasks: type inference,
bug detection, etc.
The compiler can provide more links to add to the
graph.

Hoppity: learning graph transformations
to detect and fix bugs in programs

E. Dinella et al. (ICLR 2020)
A (Javascript) program can be represented as an ab-
stract syntax tree (AST), which a graph neural net can
turn into a latent representations. A bugfix is a graph
edit, represented by a sequence of operations.

Towards a deep network architecture
for structured smoothness

H. Habeeb and O. Koyejo (ICLR 2020)
CNNs gather information from fixed neighbourhoods:
instead, the “fixed grouping layer” (FGL) uses neigh-
bourhoods defined by data, e.g., with some clustering
algorithm (fMRI data) or external data (industries, in
finance), and ensures that the receptive fields do not
span group boundaries.

Deep 3D pan
via adaptive t-shaped convolutions

with global and local adaptive dilations
J.L.G. Bello and M. Kim (ICLR 2020)

The filters used by convolutions need not be square:
form some applications, T-shaped ones make sense.

Denoising and regularization via exploiting
the structural bias of convolutional generators
R. Heckel and M. Soltanolkotabi (ICLR 2020)
An auto-encoder (U-Net) trained on a single image
(n = 1) first learns the image, then the noise – early
stopping provides denoising. This comes from the lin-
ear upsampling, which fits the smooth part (low fre-
quency) before the noise.

Adjustable real-time style transfer
M. Babaeizadeh and G. Ghiasi (ICLR 2020)

Robust and interpretable blind image denoising
via bias-free convolutional neural networks

S. Mohan et al. (ICLR 2020)
Bias-free CNNs are better at denoising.

Neural symbolic reader: scalable integration
of distributed and symbolic representations

for reading comprehension
X. Chen et al. (ICLR 2020)

Language models (BERT) cannot easily answer simple
questions requiring arithmetic computations. Adding
specialized modules (addition, subtraction, count,
span, negation, etc.) does not allow compositionality
and does not generalize well to new problems. The neu-
ral semantic reader extracts the structure of the text
and the question, turns the question into a program,
and runs it on the parsed text.

Article and book summaries by Vincent Zoonekynd 337/1044

Neural arithmetic units
A. Madsen and A.R. Johansen (ICLR 2020)

Neural networks are good at interpolation, but not at
extrapolation: arithmetic expressions perform better.
For instance, the neural arithmetic logic unit (NALU)
is defined as

w = tanh×sigmoid (sign and scale)

a =
∑

wixi (sum)

b = exp
∑

wi log(|xi|+ ε) (product)

g = sigmoid (gate)
y = ga+ (1− g)b (output)

But it does not consistently find the correct solution
(and negative numbers are a problem). Instead, the
neural arithmetic unit, biases w towards -1, 0 and +1,
and uses an actual multiplication, with a gating mech-
anism to select what to multiply.

What can neural networks reason about?
K. Xu et al. (ICLR 2020)

A given neural network architecture (e.g., GNN) has
an implicit prior on the struture of the computa-
tions/algorithm it learns: it will more easily learn
algorithms aligned with that structure. The GNN
nested loops (loop over the nodes, loop over the neigh-
bours, apply some function) are aligned with dynamic
programming algorithms: this explains their success.
They do not work for NP-complete problems, though:
try “neural exhaustive search” (NES) instead.

Learn to explain efficiently
via neural logic inductive learning
Y. Yang and L. Song (ICLR 2020)

Neural networks can be used to explain an image by
mapping its elements (e.g., car, wheel, window, etc.)
to vectors, and relations to matrices, and using an
attention mechanism to find first-order-logic formulas
matching the scene.

Scale-equivariant steerable networks
I. Sosnovik et al. (ICLR 2020)

CNNs are translation-equivariant, but not scale-
equivariant. Use a predefined basis of filters, at
different scales, and learn a (scale- and rotation-
independent) linear combination of them.

B-spline CNNs on Lie groups
E.J. Bekkers (ICLR 2020)

DeepSphere: a graph-based spherical CNN
M. Defferrard et al. (ICLR 2020)

Co-attentive equivariant neural networks:
focusing equivariance on

transformations co-occurring in data
D.W. Romero and M. Hoogendoorn

Group equivariant CNNs apply the same filter after the
various actions of a (discrete) group. Add an attention
mechanism to identify co-occurring actions.

On universal equivariant set networks
N. Segol and Y. Lipman (ICLR 2020)

Sn-equivariant affine maps are of the form X 7→ XA+
11′XB+ 1c′ (DeepSets). If B = 0, each row of the in-
put is transformed in the same way (PointNet).

Pure and spurious critical points:
a geometric study of linear networks

M. Trager et al. (ICLR 2020)
The geometry of the weight space differs from that of
the function space: one can distinguish between crit-
ical points in function space (“pure”) and those only
in parameter space (“spurious”). For linear networks
and quadratic loss, spurious critical points are saddle
points and there are no bad minima: all local minima
are global, even if the network has a bottleneck layer
– in this case, the map is not full rank, and the space
of such maps, the determinantal variety, is non-convex
and non-smooth.

Efficient Riemannian optimization on the
Stiefel manifold via the Cayley transform

J. Li et al. (ICLR 2020)
If a matrix W is skew symmetric, then (I +W)(I −
W)−1 is orthogonal (Cayley transform). The paths

Article and book summaries by Vincent Zoonekynd 338/1044

Y (α) = (1 − 1
2αW)−1(1 + 1

2αW)X, or their iterative
approximation Y (α) = X + 1

2αW (X + Y (α)), allow
for Riemannian optimization on the Stiefel manifold
(the space of orthogonal matrices) – orthogonal weight
matrices improve learning, accuracy and robustness.

On the need for topology-aware generative
models for manifold-based defenses

U. Jang et al. (ICLR 2020)
Generative models assume that the distribution in the
latent space is a standard Gaussian – in particular, the
data manifold is contractible. In reality, it could be
more complex – in particular, there could be several
connected components.

AE-OT: a new generative model based
on extended semi-discrete optimal transport

D. An et al. (ICLR 2020)
The optimal transport map from a uniform distribution
to a multi-modal one can be discontinuous and can lead
to mode collapse. It is the gradient of the Brenier po-
tential, which is continuous and convex: directly learn
the Brenier potential (in a latent representation),

Deep orientation uncertainty learning
based on a Bingham loss

I. Gilitschenski et al. (ICLR 2020)
The Bingham distribution, on the hypersphere, is

p(x) ∝ exp(x′MZM ′z)

where x ∈ Sd−1, M ∈ O(d) and Z ∈ Rd×d is diag-
onal. To estimate the orientation of an object, as a
unit quaternion, have a neural network estimate M
(with Gram-Schmidt orthonormalization) and Z, and
use the log-likelihood as loss function. The normalizing
constant is difficult to compute: use a pre-computed
look-up table and a radial basis function (RBF) inter-
polator.

Neural Tangents: fast and easy
infinite neural networks in Python

R. Novak et al. (ICLR 2020)
Neural-Tangents provide infinitely-wide layers, as a
drop-in replacement for stax, the jax neural network
library. Since these are Gaussian processes, they do
not scale well with dataset size.

Harnessing the power
of infinitely wide deep nets on small-data tasks

S. Arora et al. (ICLR 2020)
The neural tangent kernel (NTK) works better than
random forests on the UCI dataset, and better than
ResNets on small datasets (10 to 100 samples).

DDSP: differentiable digital signal processing
J. Engel et al. (ICLR 2020)

DDSP provides digital signal processing operations (os-
cillators, filters, etc. – everything you would do in an
audio editor such as Audacity or with a music program-
ming language sucg as ChucK), as Tensorflow layers
(non-reproducible) examples include removing the re-
verb (or extracting it to add it to another recording)
or changing the timbre (violin→flute, human→violin).

BackPACK: packing more into backprop
F. Dangel et al. (ICLR 2020)

BackPACK is a PyTorch library to compute more quan-
tities during back-propagation:
– the individual gradients from a mini-batch (for in-
stance to identify which samples are informative and
which are not, for importance sampling),

– the variance of the gradients in a mini-batch (to mon-
itor the signal-to-noise ratio and increase the batch
size if needed),

– a Fisher information matrix approximation.
Also check: PyHessian, JAX (or Zygote, in Julia) (both
forward and backward AD, AD through arbitrary pro-
grams: loops, conditionals).

DiffTaichi: differentiable programming
for physical simulation

Y. Hu et al. (ICLR 2020)

At stability’s edge: how to adjust
hyperparameters to preserve minima selection
in asynchronous training of neural networks?

N. Giladi et al. (ICLR 2020)
To ensure stability in (centralized) asynchronous SGD,
rescale the learning rate: learning rate ∝ 1/delay.

Gap aware mitigation of gradient staleness
S. Barkai et al. (ICLR 2020)

Distributed stochastic gradient descent can rely on:
– Ignoring synchronization problems;
– Waiting until all the workers have finished;
– Staleness awareness: divide the learning rate by the
delay: η 7→ η/(τ + 1), but this over-penalizes old
gradients;

– Gap-awareness: use the gap (minimum number of
updates needed to move from the previous to the
current parameters):

1 +
‖θt − θt−τ‖
η · E[∇loss] .

Decentralized deep learning
with arbitrary communication compression

A. Koloskova et al. (ICLR 2020)
ChocoSGD combines decentralized SGD with (lossy)
communication compression: do not send everything,

Article and book summaries by Vincent Zoonekynd 339/1044

do not send accurate numbers, but keep track of the
cummulated errors, to send them later, once they have
accumulated.

SQIL: imitation learning
via reinforcement learning with sparse rewards

S. Reddy et al. (ICLR 2020)
Imitation learning suffers from distribution shift: if the
agent ends up away from the trajectory, it no longer
knows what to do. Adversarial approaches (e.g., GAIL)
use a discriminator, separating expert from agent tra-
jectories, but GAN training is unstable. Instead of
learning a reward function, set the reward of the ex-
pert actions to 1, those of the agent to 0, put both in
the replay buffer, and use off-policy learning (e.g., soft
actor critic).

Optimistic exploration
even with a pessimistic initialisation

T. Rashid et al. (ICLR 2020)
Optimistic initialization does not work well with func-
tion approximation. Use optimistic Q-values:

Q+(s, a) = Q(s, a) + C/(N(s, a) + 1)M .

Dynamical distance learning
for semi-supervised and unsupervised

skill discovery
K. Hartikainen et al. (ICLR 2020)

RL problems often have sparse rewards: the agent only
receives a reward when it reaches the goal. Learn a dis-
tance function, measuring how many time steps away
two states are, on trajectories for the current policy.
Then, use minus this distance as a reward, to improve
the policy.
This generalizes the discounted state value function,
which can be seen as a measure of the distance to the
final goal – instead of the distance between arbitrary
states.

Imitation learning
via off-policy distribution matching

I. Kostrikov et al. (ICLR 2020)
ValueDICE is an alternative to DAC, GAIL, based on
the Donsker-Varadhan representation of the KL diver-
gence

KL(p‖q) = Max
f :X→R

E
x∼p

[f(x)]− log E
x∼q

[ef(x)].

Implementation matters in deep RL:
a case study on PPO and TRPO
L. Engstrom et al. (ICLR 2020)

Apparently insignificant code-level optimization
(value-clipping, reward-clipping, Adam annealing, or-
thogonal initialization, etc.) have a large impact
– more than the choice of algorithm (e.g., PPO vs
TRPO).

Explain your move:
understanding agent actions

using specific and relevant feature attribution
N. Puri et al. (ICLR 2020)

To explain the action chosen by an agent, perturb the
state features and re-compute theQ-value: if it changes
a lot (in absolute value, and/or relatively to the Q-
values of the other actions), the feature was important.

Disagreement-regularized imitation learning
K. Brantley et al. (ICLR 2020)

To limit the compounding error problem in behavioural
cloning, add a penalty term to stay close to the the ex-
pert distribution.

RIDE: rewarding impact-driven exploration
for procedurally-generated environments

R. Raileanu and T. Rocktäschel (ICLR 2020)
Reward actions that have a large impact on the envi-
ronment, measured by the L2 norm of the difference
between the latent state representations. To focus on
unforeseen/surprising consequences, train a model to
predict the next (latent) state from the current state
and the action. To focus on changes we can actually
control, train a model to predict the action from the
current and next state.

Toward evaluating robustness of deep
reinforcement learning with continuous control

T.W. Weng et al. (ICLR 2020)
Threat models in reinforcement learning include:
– Observation manipulation (before the agent receives
it);

– Action manipulation (after the agent chooses it).
To prevent those threats, one could learn the dynam-
ics, identify unsafe states, and avoid them – but per-
formance degrades a lot.

Keep doing what worked: behavior modelling
priors for offline reinforcement learning

N. Siegel et al. (ICLR 2020)
When learning from a fixed replay buffer, with no
new trajectories, avoid actions that would lead away
from the explored portions of the state-action space,
by putting a prior on the policy, to make it close to
those in the buffer – or, better, close to the actions
that worked.

Model-based reinforcement learning
for biological sequence design

C. Angermueller et al. (ICLR 2020)
To find biological sequences x maximizing f(x) (the re-
sult of some wet-lab experiment result), use reinforce-
ment learning, where the actions select the next charac-
ter of the (fixed-length) sequence, and we only receive

Article and book summaries by Vincent Zoonekynd 340/1044

a reward, f(x), at the end. Add a penalty to increase
diversity.

Harnessing structures for value-based planning
and reinforcement learning

Y. Yang et al. (ICLR 2020)
Represent the Q-value as a matrix, state×action (after
discretization, if needed): quite often, it is low-rank.
Use such a low-rank matrix in planning or reinforce-
ment learning.

The ingredients of real-world robotic
reinforcement learning

H. Zhu et al. (ICLR 2020)
Real-world reinforcement learning faces three prob-
lems:
– No resets (the robot could get stuck – or could reach
the goal, from which the optimal action is to do noth-
ing): learn a perturbation agent;

– High-dimensional observations (images) instead of
low-dimensional state: learn a low-dimensional rep-
resentation of the state, with a VAE;

– No reward: train a classifier to recognize the goal
(from a set of example images).

Behaviour suite for reinforcement learning
I. Osband et al. (ICLR 2020)

bsuite provides a set of experiments and metrics
(exploration, generalization, credit assignment, scal-
ability, etc.) to test and compare RL algorithms
(like MNIST for RL). It can also generate a 1-page
LATEXsummary, to add to your paper.

Evolutionary population curriculum
for scaling multi-agent reinforcement learning

Q. Long et al. (ICLR 2020)
In multi-agent reinforcement learning, start with small
populations, and progressively increase the size. The
model, for each agent, should be applicable to an
arbitrary number of inputs (number of enemies,
ressources). When increasing the population size, we
do not only want agents that perform well when the
population size is N : they should also be good initial-
izations for population size 2N – use an evolutionary
strategy, with k groups of agents, and keep those per-
forming best at size 2N . Application: grassland game
(grass, sheep, wolves).

Demystifying inter-class disentanglement
A. Gabbay and Y. Hoshen (ICLR 2020)

To disentangle class (e.g., identity, in a face recognition
system) from content (pose), learn separate class and
content embeddings but, to avoid information leakage,
have the class embedding be the same for all members
of that class.

Learning representations for
binary-classification without backpropagation

M. Lechner (ICLR 2020)
Backpropagation is biologically implausible. Alterna-
tives include: Hebbian learning, Target propagation,
Feedback alignment (FA), direct feedback alignment
(FDA), monotone DFA.

Reconstructing continuous distributions of 3D
protein structure from Cryo-EM images

E.D. Zhong (ICLR 2020)
Each Cryo-EM (electron microscopy) image contains
only one molecule, in a random orientation and loca-
tion, but they may not all be in the same configuration.
We usually try to cluster them. Instead, assume the
configurations form a 2-dimensional manifold. For the
orientation and location of the molecule in each image,
use an optimization over SO(3)×R2

Intrinsically motivated discovery of diverse
patterns in self-organizing systems

C. Reinke et al. (ICLR 2020)
To find interesting and diverse patterns in a self-
organizing system (snowflakes, animal skin patterns,
or, as in this example, the continuous game of life –
time and space are still discrete, but the values are in
[0,1]), start with a random initial state and look after
200 steps.
To ensure diversity in the output, learn a latent rep-
resentation (8-dimensional VAE) of the outputs; pick
a point at random in this latent space; find an input
whose output is close to that point; iterate (and retrain
the VAE once in a while).
Since random noise tends to generate global patterns
rather than local ones, use patterns from a CPPN
(compositional pattern-producing network) as inputs.

Learning compositional Koopman operators
for model-based control

Y. Li et al. (ICLR 2020)
Koopman operator theory takes a non-linear dynamical
system xn+1 = F (xn) and finds an embedding into a
higher-dimensional space y = g(x) such that the dy-
namics become linear yn+1 = Kyn. Systems made of
many parts are often modeled (and controlled) with
interaction graphs. Those two approaches can be com-
bined, the graph structure corresponding to a block
Koopman matrix.

SNODE: spectral discretization
of neural ODEs for system identification

A. Quaglino et al. (ICLR 2020)
Separate the neural ODE “find θ so that x de-
fined by ẋ(t) = fθ(t, x(t)), x(t0) = y0 minimizes∫
Loss(t, x(t))dt”, into two:

– Find a function x minimizing the loss;

Article and book summaries by Vincent Zoonekynd 341/1044

– Find θ so that this x approximately solves the ODE.
Estimate the derivative ẋ by expressing x with Leg-
endre polynomials. This is much faster than using an
ODE solver.

On robustness
of neural ordinary differential equations

H. Yan et al. (ICLR 2020)
Neural ODEs are more robust to noise than CNNs with
residual connections

ż(t) = fθ(z(t), t)

z(0) = zin

z(1) = zout

For time-invariant steady neural ODE (TisODE)

ż(t) = fθ(z(t))

one can add a further robustness penalty.

Deep audio priors emerge from
harmonic convolutional networks

Z. Zhang et al. (ICLR 2020)
Auto-encoders (U-Net) can denoise images, but not
sound: replace the convolutions with harmonic con-
volutions (a form of dilated convolutions): do not use
[(1 − ε)f, (1 + ε)f] as neighbourhood of frequency f ,
but {f, 2f, 3f, . . . , 12f}.

On the steerability
of generative adversarial networks

A. Jahanian et al. (ICLR 2020)
One can learn transformations (rotation, translation,
zoom, colour changes, etc.) in the latent space of
GANs, to some extent (not beyond the training dis-
tribution).

Controlling generative models
with continuous factors of variations

A. Plumerault et al. (ICLR 2020)
Yet another attempt to control the output of a GAN:
size, orientation, colour, etc.

Real or not real, that is the question
Y. Xiangli et al. (ICLR 2020)

The Realness GAN considers that samples are not fully
real or fully fake, and optimizes

Max
G

Min
D

E
x∼data

KL(A1‖D(x)) + E
x∼fake

KL(A0‖D(x))

where A0 and A1 are random variables (e.g., A0 ∼
Beta(5, 1), A1 ∼ Beta(1, 5)).

Dynamic time lag regression:
predicting what & when

M. Chandorkar et al. (ICLR 2020)
The dynamic time-lag regression y(t + g(xt)) = f(xt)
(with f and g unknown) has a closed-form log-
likelihood. It has applications in astronomy (solar wind
prediction).

Intensity-free learning
of temporal point processes

O. Shchur et al. (ICLR 2020)
When modeling temporal point processes (TPP), in-
stead of using an RNN to compute the estimate the
intensity function λt, estimate the density function of
the time until the next event, with normalizing flows
(to transform a Gaussian density into the desired den-
sity) or a Gaussian mixture.

Variational autoencoders for highly
multivariate spatial point processes intensities

B. Yuan et al. (ICLR 2020)
Instead of modeling the intensity function λ, model the
density h(x) = λ(x)/

∫
λ (this is how one can sample

from the process: first sample the number of points N ,
from a Poisson distribution, then sample N points, iid,
from h), with a VAE.

On solving minimax optimization locally:
a follow-the-ridge approach

Y. Wang et al. (ICLR 2020)
The nonconvex-nonconcave minimax problem

Min
x

Max
y

f(x, y)

can be solved with the follow-the-ridge algorithm,
which requires second-order information (the gradient
is zero along the ridge).

xt+1 ← xt − η∇xf(xt, yt)
yt+1 ← yt − η∇yf(xt, yt) + ηH−1yy Hyx∇xf(xt, yt)

Gradientless descent:
high-dimensional zeroth-order optimization

D. Golovin et al. (ICLR 2020)
When the gradient of the function to minimize is
not available, gradient-less methods (moving in a ran-
dom direction if it improves the objective) outperform
gradient-approximating ones such as accelerated ran-
dom search (ARS),

x← x− εf(x+ hv)− f(x)
h

v

for a random unit vector v.

Article and book summaries by Vincent Zoonekynd 342/1044

On mutual information maximization
for representation learning

M. Tschannen et al. (ICLR 2020)
When learning a latent representation, we want the la-
tent representation to simpler (lower-dimensional) but
to keep as much information as possible from the input.
This can be achieved by maximizing the mutual infor-
mation MI(x, g(x)) between the input x and the latent
representation g(x) (InfoMax). Modern variants max-
imize MI(g(x1), g(x2)), where x1 and x2 are different
parts of the same image (e.g., top and bottom). The
mutual information is maximum if g is bijective, and is
invariant by bijections – it is unlikely to find good rep-
resentations. However, the approximations of MI used
(NCE, noise contrastive estimation, or NWJ) are not
invariant under bijections, and prefer (hard-to-invert
maps that are) good representations.

Understanding the limitations of variational
mutual information estimators

J. Song and S. Ermon (ICLR 2020)

Learning robust representations
via multi-view information bottleneck

M. Federici et al. (ICLR 2020)
If we know that two images correspond to the same
label (but do not know the label), we can still learn a
latent representation by maximizing the mutual infor-
mation between the latent representations of the two
images (to keep what is common and discard what is
not) and minimizing the divergence between the distri-
butions of those latent representations (in the case of
a VAE). For isolated images, use data augmentation.

Rényi fair inference
S. Baharlouei et al. (ICLR 2020)

Try the Rényi correlation

ρ(X,Y) = sup
f,g

Ef(X)=Eg(Y)=0

Ef(X)2=Eg(Y)2=1

[
f(X)g(Y)

]

instead of mutual information (for discrete variables, it
is tractable, especially when one is binary). To make
a model fairer (classifier or clustering), add a penalty
for the Renyi correlation between the output and the
protected attribute.

Overlearning reveals sensitive attributes
C. Song and V. Shmatikov (ICLR 2020)

Sensitive attributes can be censored using adversarial
training (it should be impossible to predict the sensi-
tive attribute from the latent representation) or infor-
mation theory (by minimizing the mutual information
between the latent representation and the sensitive at-
tribute). Unfortunately, such censoring is either ineffi-
cient or harmful to the model.

Training individually fair ML models
with sensitive subspace robustness
M. Yurochkin et al. (ICLR 2020)

A model is individually fair if it is robust to sensitive
perturbations.

Understanding why neural networks
generalize well through GSNR of parameters

J. Liu et al. (ICLR 2020)
The one-step generalization ratio is the ratio of the
change in test loss over the change in training loss.
The gradient signal-to-noise ratio is the ratio of the
squared norm of the mean gradient over the variance of
the gradients computed on individual samples; it mea-
sures if the gradients of the different samples agree.
If the gradients are consistent across samples, the
GSNR and OSGR are large, and the model general-
izes well.

Stable rank normalization for improved
generalization in neural networks and GANs

A. Sanyal et al. (ICLR 2020)
The generalization gap depends on (the product of) the
spectral norms of the weight matrices (Lipschitzness)
and (the sum of) their stable ranks.
The stable rank of a matrixW with singular values σi’s
is

srank(W) =
‖W‖2F
‖W‖22

=

∑
σ2
i

σ2
1

⩽ rank(W)

Deep probabilistic subsampling
for task-adaptive compressed sensing

I.A.M. Huijben et al. (ICLR 2020)
Gumbel max sampling

Argmax
i

log pi + gi, for gi ∼ Gumbel(0, 1)

can be made differentiable by replacing the argmax
with a softmax (with temperature), and trained to de-
cide which Fourier frequencies to sample to best help
classify or reconstruct an input image.

A function space view of bounded norm
infinite width ReLU nets: the multivariate case

G. Ongie et al. (ICLR 2020)
The r-norm measures the representation cost of a func-
tion

R(f) = lim
ε→0

inf
θ
{‖θ‖2 : ‖hθ − f‖ ⩽ ε}

where hθ is a 1-hidden-layer infinite-width ReLU
network. It can be characterized as R(f) = c ·∥∥R(−∆)(d+1)/2f

∥∥
1
where ∆ is the Laplacian and R

the Radon transform. In dimension 1: R(f) =
∫
|f ′′|.

It is not a RKHS norm (as with the NTK). Some func-
tions have infinite R(f), even though they are well ap-
proximated with 2-hidden-layer networks.

Article and book summaries by Vincent Zoonekynd 343/1044

Knowledge consistency
between neural networks and beyond

R. Liang et al. (ICLR 2020)
Given two trained networks performing the same task,
compare their latent representations xA, xB as follows:
– Try to express xB as a linear transformation of xA;
– Try to express the residuals as a 1-layer non-linear
transformation of xA;

– Try to express the residuals as a 2-layer non-linear
transformation of xA;

– The residuals are then noise.
This gives a decomposition of the latent representa-
tion, which can help spot unreliable features, measure
overfitting, and compress networks.

Functional vs. parametric equivalence
of ReLU networks

M. Phuong and C.H. Lampert (ICLR 2020)
The function computed by a (ReLU) network is in-
variant under: permutation of neurons, rescaling (of
two layers, with inverse scaling factors). These are the
only function-preserving transformations: the fold-sets
of a ReLU network provide enough constraints on the

weights.

Stochastic AUC maximization
with deep neural networks
M. Liu et al. (ICLR 2020)

AUC maximization can be formulated as a min-max
problem, non-convex and concave, solvable with the
approximate proximal point method (APPM).

Playing the lottery with rewards and multiple
languages: lottery tickets in RL and NLP

H. Yu et al. (ICLR 2020)
The “lottery ticket hypothesis” is not limited to image
classification: it also seems to hold in NLP and RL.

Article and book summaries by Vincent Zoonekynd 344/1044

Deep equilibrium models
S. Bai et al. (NeurIPS 2019)

A deep neural network with weight-tied, input-injected
layers computes the repeated application of a function
zi+1 = fθ(zi, x); it converges (in practice) to an equilib-
rium point z∗ = fθ(z

∗, x). Deep equilibrium (DEQ)
models find this equilibrium by root finding rather than
iteration. They can replace deep neural networks (Trel-
lisNet, universal transformer) with 1-layer networks:
they are more memory-efficient.

List-decodable linear regression
S. Karmalkar et al. (NeurIPS 2019)

List-decodable models are robust methods return-
ing, not one estimator, but a list of estimators, with a
good one (‖α̂− α∗‖ < ε) with high probability. They
allow for adversarial outliers, and contamination be-
yond 50%.

Legendre memory units: continuous-time
representation in recurent neural networks

A. Voelker et al. (NeurIPS 2019)
Strided recurrent neural nets can account for long-term
dependencies, with Legendre polynomials: they are an
alternative to LSTMs. [They also do hardware, and
have implemented their RNN as a spiking neural net.]

Neural networks
with cheap differential operators

R.T.Q. Chen and D. Duvenaud (2019)
The divergence div ·f =

∑
∂fi/∂xi of a neural net

f : Rd → Rd only requires the diagonal of the Jaco-
bian. It can be efficiently computed by hollow networks

x1

x2

x3

h1

h2

h3

f1

f2

f3

hi = ci(x−i)

fi = τi(xi, hi)

(the Jacobian can easily be separated into diagonal and
non-diagonal parts, your deep learning framework can
be asked to only compute the gradient of the diagonal).
Applications include fixed point iterations, normalizing
flows.

Kernel instrumental variable regression
R. Singh et al. (NeurIPS 2019)

To learn a causal relation in presence of confounding
variables, regression is biased: it gives a prediction, not
a counterfactual prediction.

Z X Y

e

h

Gas price Ticket price Ticket sales

Other market forces

Random
assignment

Medical
treatment

Health
outcome

Income

Use an instrumental variable Z (which influences X
but not directly Y) and 2SLS:

X ∼ Z
Y ∼ X̂(Z) estimated on disjoint samples.

Replace the linear regressions with kernel ridge regres-
sions. Asymmetric sample splitting is important, with
more observations in the first stage, and even more if
the relation Z → X is less smooth. DeepIV is prefer-
able if there is enough data (10,000 observations) and
the relation is complex.

Adversarial samples are not bugs,
they are features

A. Ilyas et al. (NeurIPS 2019)
Take a dataset with cats and dogs, train a model, re-
place each sample with an adversarial example, and flip
the labels accordingly, and learn a new model: it works
well on the test set. The new model uses non-robust
features that generalize well.

Quantum entropy scoring for fast robust mean
estimation and improved outlier detection

Y. Dang et al. (NeurIPS 2019)
PCA is a good way to find outliers, score(xi) =
〈xi,PCAk〉, but it only detects outliers in one direction
at a time: it is not ideal in high dimension. Quantum
entropy scoring (QUE) replaces PCA with regularized
PCA

W = Argmax
trU=1, U≽0

α〈U,Σ〉+ tr(U logU)

score(X) = 〈XX ′,W 〉

Uniform convergence may be unable to explain
generalization in deep learning

V. Nagarjan and J.Z. Kotler (NeurIPS 2019)
To explain why overparametrized models generalize
well, we can use uniform convergence to find bounds of
the form

generalization gap ⩽ O
(
effective model size
training set size

)
where the effective model size accounts for the bias of
the training algorithm (SGD). Those bounds are too
loose or require unreasonable assumptions. They do
not even behave like the generalization gap: they in-
crease with the training set size (it is in the denomi-
nator but also hidden in the numerator, e.g., with the
norm of the weights), while the generalization gap de-
creases.

Article and book summaries by Vincent Zoonekynd 345/1044

class 1
learned boundary

class 1

Most new points
would be correctly

classified

but those
to close to

the training set
would not

Deep learning models can learn complex boundaries,
which hurt uniform convergence bounds [and look like
a bonanza for adversarial attackers] but not general-
ization.

Estimation of the Lipschitz constant
of deep neural networks

(M. Fazlyab et al.) (NeurIPS 2019)
Computing the Lipschitz constant of a neural net is
NP hard: we can only hope to find approximations
or bounds. Taking the product of the (matrix) norms
of the weights is overly conservative. The Lipschitz
constant can be expressed as the solution of a noncon-
vex optimization problem whose relaxation is a semi-
definite program (solved with CVX and Mosek).
Robustness is one application: low-Lipschitz networks
are more robust – conversely, networks trained with
robust algorithms have a lower Lipschitz constant.

Data-dependent sample complexity of deep
neural networks via Lipschitz augmentation

C. Wei et al. (NeurIPS 2019)
Regularizers can be designed in a principled way, based
on theoretical upper bounds of the generalization er-
ror, but those bounds are loose. The following data-
dependent bound

generalization ⩽ jacobian norm× hidden layer norm
margin×

√
training set size

+ lower-order terms

where the Jacobian norm is the L∞ norm of the Ja-
cobian wrt the weights, the hidden layer norm is the
L∞ norm of the activations (on the training set), the
margin is minimum, over the training set, of the dif-
ference between the first two logits, suggests to use the
Jacobian as a regularizer (for the hidden layer norm,
just use BatchNorm or LayerNorm).

Scalable global optimization
via local Bayesian optimization

D. Erikson et al. (NeurIPS 2019)
Thompson sampling can be used as an acquisition
function for Bayesian optimization: sample a function
from the posterior and estimate its minimum [?]. It
is parallelizable: just sample k functions. In higher
dimensions (beyond 10), do not try to find a global
approximation of the objective, but just a local one.

Expand/shrink the region based on progress (trust-
region-based Bayesian optimization, TuRBO).
Code available.

Uncertainty
on asynchronous time event prediction

M. Biloš et al. (NeurIPS 2019)
The forecast for the next event should change with time
and account for uncertainty (it should not be a point
in the simplex, but a distribution on it). Model con-
tinuously evolving distributions over the simplex with:
– Dirichlet distribution parameters evolving with a ba-
sis function decomposition;

– Logistic-normal parameters evolving with a weighted
Gaussian process.

20
40

60
80

100

20406080100

20 40 60 8010
0

20
40

60
80

100

20406080100

20 40 60 8010
0

20
40

60
80

100

20406080100

20 40 60 8010
0

20
40

60
80

100

20406080100

20 40 60 8010
0

20
40

60
80

100

20406080100

20 40 60 8010
0

20
40

60
80

100

20406080100

20 40 60 8010
0

20
40

60
80

100

20406080100

20 40 60 8010
0

Applications include anomaly detection.

Variational Bayesian
optimal experimental design

A. Foster et al. (NeurIPS 2019)
An informative experimental design reduces en-
tropy. The expected information gain EIG(d) =
Ey
[
H[P (θ)] − P [p(θ|y, d)]

]
is intractable: use varia-

tional inference.

Poisson mini-batching for Gibbs sampling
with convergence rate guarantees

R. Zhang and C. DeSa (NeurIPS 2019)
When using Gibbs sampling on subsets of variables,
i.e., when sampling from xi|xJ instead of xi|xI , J (I,
a Metropolis-Hastings rejection step is needed to cor-
rect the bias. Instead, add an auxiliary Poisson vari-
able for each factor to control if it is used – it is unbi-
ased, even without MH.

Parameter estimation
in particle Gibbs sampling

A. Wigren et al. (NeurIPS 2019)

X X X

θ θ θ
Gibbs

X X X

θ θ θ
Particle Gibbs

X X X

θ θ θ Marginalized
particle Gibbs
(less correlation)

To fit SEIR (suceptible-exposed-infected-recovered)
models for humans and mosquitoes, use Gibbs sam-
pling: sample from x|θ, y, then θ|x, y. Sampling

Article and book summaries by Vincent Zoonekynd 346/1044

fromx|θ, y is difficult: use a particle filter. To re-
duce the correlation, marginalize what can easily be
marginalized (conjugate distributions), either by hand
or using a probabilistic programming such as birch,
which uses a particle filter with delayed sampling.

Causal confusion in imitation learning
P. de Haan et al. (NeurIPS 2019)

A self-driving car, trained with imitation learning,
could learn to pay attention to the brake indicator to
decide when to brake, rather than the road... Adding
more information (dashboard, history, etc.) can in-
crease causal confusion and lead to poorer real-world
performance.
Compute a latent state with a VAE; consider all pos-
sible causal graphs from the latent stated, encoded by
binary masks; train each of them (train them together,
with the mast as input). Run the models on new data
(via interventions: change some past action and see
what happens) and pick the best (look at the states
independently).

· · ·

Learning to control
self-assembling morphologies:

a study of generalization via modularities
D. Pathak et al. (NeurIPS 2019)

Dynamic graph networks combines several identical
neural nets (with shared weights) into a graph, the
output of one being sent to the input of the next ones.

Graded meta policy search
R. Mendonca et al. (NeurIPS 2019)

In meta-learning, learn local policies, for the training
tasks, and combine them with supervised learning to
deal with the whole tasks.

Using a logarithmic mapping to enable lower
discount factors in reinforcement learning

H. van Seijen et al. (NeurIPS 2019)
In practice (with function approximation) only dis-
count factors close to 1 work well. Poor performance
seems to come from large differences in the action gaps
between states

∆(s) = Q∗(s, a∗)−Q∗(s, ã),

where a∗ is the optimal action and ã that chosen by
the algorithm.
Logarithmic Q-learning replaces Q with logQ; it is pos-
sible to get the correct optimum in spite of E[logX] ⩽
logEX.

Hindsight credit assignment
A. Harutyunyan et al. (NeurIPS 2019)

Do not use time for credit assignment, estimate
P (a|x, f(τ)), where a is a past action, x a past state
and f(τ) a future outcome.

Q(x, a) = r(x, a) + E
τ

[∑
γk
P (a|x,Xk)

π(a|x)
Rk

]

x y za c

b

P (a|x, y) > P (b|x, y) more direct path
P (c|y, z) = π(c|y) any action will do

Weight-agnostic neural networks
A. Gaier and D. Ha (NeurIPS 2019)

Look for neural network architectures that work well
without training.
To simplify the search, use a shared weight (yes, only
one parameter: all the weights of all the layers are the
same), random. Start with minimal networks of the
form

and modify them by inserting nodes, adding connec-
tions, or changing activation functions.
The performance is decent on reinforcement learning
problems, competitive with SOTA models after train-
ing, for much smaller networks.
Those architectures contain implicit priors.

Asymmetric valleys:
beyond sharp and flat local minima

H. He et al. (NeurIPS 2019)
According to popular belief, flat minima generalize bet-
ter. But the loss landscape could be flat in some direc-
tions and sharp in others.

sharp flat

Prefer solutions biased towards the flat side – they gen-
eralize better; they can be obtained by averaging the
solutions on the SGD path.

Article and book summaries by Vincent Zoonekynd 347/1044

UniXGrad: a universal, adaptive algorithm
with optimal guarantees

for constrained optimization
A. Kavis et al. (NeurIPS 2019)

Gradient descent

xn+1 = xn − α∇f(xn)

could be replaced by an “implicit” step,

xn+1 = xn − α∇f(xn+1)

which can be approximated with two explicit steps

yn+1 = xn − α∇f(xn)
xn+1 = xn − α∇f(xn+1).

The MirrorProx algorithm adds a generalized projec-
tion wrt a Bregman divergence.

yt = Argmin
y
〈y,∇fxt−1〉+ αDR(y, xt−1)

xt = Argmin
x
〈x,∇fyt〉+ αDR(x, xt−1)

DR(x, y) = Rx−Ry − 〈∇Ry, x− y〉

R(x) =
1

2
‖x‖2

The UniXGrad algorithm evaluates the gradients
∇fxt−1 and ∇fyt at weighted averages x̄t−1 and ȳt
of the previous points y1, . . . , yt−1, xt−1 and y1, . . . , yt.
and uses an adaptive learning rate, defined with the
sum of the gradient differences ‖∇fx̄t−1 −∇fȳt‖2.

Sinkhorn barycenters with free support
via Frank-Wolfe algorithm

G. Luise et al. (NeurIPS 2019)
To compute the average between probability distribu-
tions (for the Sinkhorn divergence, i.e., entropic op-
timal transport), assume a∗ =

∑
aiδxi , with the xi’s

fixed and estimate the ai’s. Instad, do not fix the xi’s,
but add them one by one, and do not re-estimate the
previous coefficients.

Learning dynamic polynomial proofs
A. Fawzi et al. (NeurIPS 2019)

Given a polynomial P , prove that ∀x ∈ [0, 1]n P (x) ⩾
0, using a reinforcement learning agent, trained with
DQN, with unsupervised dense rewards, accounting for
symmetries.

Generative modeling by estimating
gradients of the data distribution

Y. Song and S. Ermon (NeurIPS 2019)
Generative models are usually implicit, only provid-
ing a sampling procedure (e.g., GANs) or explicit,
directly modeling a probability distribution function
(e.g., VAE), but these need to be normalized. Instead,

model the score function ∇x log p(x). It can be esti-
mated from data (integration by parts, score match-
ing).

Fisher divergence = 1
2 E
x∼data

‖∇x log pdata(x)− sθ(x)‖

= E
x∼data

[
1
2 ‖sθ(x)‖

2
2 + tr∇xsθ(x)

]
It is necessary to add some noise:
– At least a very small amount, because the data lies
on a low-dimensional manifold (or, even, is discrete),
to help convergence;

– A larger amount of noise to have a better estimate
of the score in low-density regions – but this leads to
noisy samples.

The noise-conditional score network trains a single
model for all levels of noise (the level of noise is one
of the inputs). One can sample from a score func-
tion using Langevin dynamics; progressively reduce the
amount of noise while sampling (annealed Langevin dy-
namics).

Implicit generation and modeling
with energy-based models

Y. Du and I. Mordatch (NeurIPS 2019)
Energy-based models (EBM)

pθ(x) ∝ exp−Eθ(x)

can be trained with contrastive divergence

L (θ) = E
x∼data

[
− log pθ(x)

]
∇L = E

x∼data

[
∇Eθ(x)

]
− E
x∼pθ

[
∇Eθ(x)

]
and sampled from with Langevin dynamics.

Residual flows
for invertible generative modeling

R.T.Q. Chen et al. (NeurIPS 2019)
The invertible ResNet f : x 7→ x + g(x) is invertible if
g has Lipschitz constant less than 1 (enforced by spec-
tral normalization) and its inverse can be computed by
fixed point iterations. To compute

log |det∇xf | =
∑ (−1)k

k
tr Jg(x)

k,

use the Russian roulette estimator which replaces
the infinite sum with an unbiased estimator, computed
as a weighted sum of a random number of terms.
The lipswish activation is Lipschitz.

swish(x) = x · sigmoid(x)
lipswish(x) = swish(x)/1.1

Article and book summaries by Vincent Zoonekynd 348/1044

Hype: a benchmark for human eye perceptual
evaluation of generative models
S. Zhou et al. (NeurIPS 2019)

Use crowdsourcing to evaluate the quality of a gen-
erative model, by measuring the time needed by hu-
mans to decide if an image is real or fake, either by
showing the image for a limited amount of time, pro-
gressively increased or decreased depending on perfor-
mance (“adaptive staircase procedure”, from psycho-
metrics) or by letting the user choose how long they
need. It costs $60 and takes 60 minutes per model.
It was tested on WGAN-GP, ProGAN, SN-GAN, BE-
GAN, BigGAN.

Adaptive density estimation
for generative models

T. Lucas et al. (NeurIPS 2019)

MLE
overgeneralization

Adversarial training
mode dropping

Noise Feature
space

Image
space

MLE
adversarial

traininginvertible

Maximum likelihood estimators (MLE) and adversar-
ial training have complementary advantages and draw-
backs: combine them into a hybrid approach to ensure
both dataset coverage and sample quality.

Emergence of object segmentation
in perturbed generative models

A. Bielski and P. Favaro (NeurIPS 2019)

Image VAE

BG

FG

mask

+ composite
image discriminator

Unsupervised object segmentation is possible: add a
random shift to the foreground and mask: the recon-
structed image should still look real.

Faster width-dependent algorithm
for mixed packing and covering LPs

D. Boob et al. (NeurIPS 2019)
A mixed packing-covering linear program (MPC-LP)
is of the form

Find x ∈ [0, 1]n

Such that Px ⩽ 1
Cx ⩾ 1 where P,C ⩾ 0.

The corresponding saddle point problem is

Minimize
x∈[0,1]n

Max
y∈∆p
z∈∆q

L(x, y, z).

It is often solved by minimizing the primal-dual gap f ,
with a strong convex penalty φ,

Minimize
w

f(w) + φ(w)

with Nesterov’s dual extrapolation. Replace strong con-
vexity

φ

(
u+ v

2

)
⩽ 1

2

[
φ(u) + φ(v)

]
− 1

2
‖u− v‖

with a weaker notion, area convexity,

φ

(
u+ v + t

3

)
⩽ 1

3

[
φ(u)+φ(v)+φ(t)

]
− 1

3
√
3
(v−u)′M(u−t).

For instance, γ(x, y) = xy log x+ 2y log y, on [0, 1]2.

Sparse logistic regression learns
all discrete pairwise graphical models

S. Wu et al. (NeurIPS 2019)
Logistic regression, with an `1 (or `2,1) penalaty, can
recover the structure of a graphical model, such as the
Ising (binary) model

P (z) ∝ exp

[∑
i,j

Aijzizj +
∑
i

θizi

]
z ∈ {±1}n.

Smoothing structured decomposable circuits
A. Shih et al. (NeurIPS 2019)

Circuits (aka sum-product networks) describe proba-
biliy distributions and allow efficient computation of
likelihood partition function, marginals, etc. provided
they are smooth.
A circuit is smooth if the children of any ⊕ gate use the
same variables. It is easy to ensure, but the algorithm
is quadratic; it can be sped up by representing groups
of variables as intervals.

Tractable probabilistic models
V. van den Broeck et al. (UAI 2019)

Combining generative and discriminative
models for hybrid inference

V.G. Satorras et al. (NeurIPS 2019)
Use a neural network to add a correction term to
Kalman-like algorithms.

hidden

state

observed

hi

xi

y

Neural

Kalman +

hi+1

xi+1

Article and book summaries by Vincent Zoonekynd 349/1044

Fast and accurate least mean squares
A. Maalouf et al. (NeurIPS 2019)

The average of n points in Rd is a convex combina-
tion of d + 1 of those points; such a representation
can be obtained recursively, by putting the points in
d + 1 (random) groups and computing their means
(Caratheodory theorem).
Transform the least mean square (LMS) problem
Argminx ‖Ax− b‖

2
2 + g(x):

‖Ax− b‖22 = [x−1]
[
A′

b′

]
[A b]

[
x
−1

]
= [x−1]P ′P

[
x
−1

]
.

The covariance matrix 1
nP
′P = 1

n

∑
pip
′
i is the average

of n points, pip′i in Rd2 : if can be replaced with a con-
vex combination of d2+1 points (useful of d2+1� n)

Fast structure learning
with modular regularization

G. VerSteeg et al. (NeurIPS 2019)
To recover the dependence structure among a large
number of variables from a small number of observa-
tions, assume that each observed variable has a single
latent parent.

unconstrained model latent factor model

The total correlation

TC(X) =
∑
i

H(Xi)−H(X)

= KL(joint‖product of marginals)

aka multivariate mutual information (it generalizes
H(X;Y) = H(X) + H(Y) − H(X,Y)) can be used
to characterize graphical models such that

∀i 6= j Zi ⊥⊥ Zj (latent)
∀i 6= j Xi ⊥⊥ Xj |Z (observed)

by TC(X|Z) + TC(Z) = 0. For a “modular” model
(each Xi depends on a single Zj), it suffices to add
∀i TC(Z|Xi) = 0.
To fit those models, set Z =WX+ε, ε ∼ N

(
0, diag(η)

)
and solve

Minimize
W

TC(X|Z) + TC(Z) + penalty,

where the penalty makes the TC(Z|Xi) small and can-
cels out computationally expensive terms.
This can also be applied to large correlation matrices
in finance: we recover industry classifications.
Numpy an Pytorch code available: LinearCorex,
T-Corex.

Principal component projection and regression
in nearly linear time

through asymmetric SVRG
Y. Jin and A. Sidford (NeurIPS 2019)

Principal component projection and PCR are usu-
ally done by explicit computation of the eigenvec-
tors or through polynomial approximations of the
sign function. Instead, use a rational approximation
(Zolotarev). It is also possible to reduce the variance
of the estimates by expanding the eigenvalue problem
to higher dimensions. The algorithm is almost linear
in nnz(A).

PIDForest: anomaly detection
via partial identification

P. Gopalan et al. (NeurIPS 2019)
The sparsity of a region C is

sparsity(C) = volume(C)
points in C .

Anomalies can be partially identified (PID) with their
PID score:

score(x) = Max
x∈C
C cube

sparsity(C),

which can be efficiently approximated with a random
forest.

A neurally plausible model
learns successor representation

in partially observable environments
E. Vértez and M. Sahani (NeurIPS 2019)

The successor representation (SR), the expected
discounted future state occupancy,

M(s, s′) = E

[∑
k⩾‘

γk1st+k=s′

∣∣∣∣ st = s

]
is a hybrid between model-based and model-free RL.
The successor features replace state occupancy with
state features.. If the reward function changes, one
can use the SR to compute the value function – bt it
does not work with noisy observations. To represent
the distribution (belief) on the current state, use the
distributed distributional code (DDC)

µ = E
s∼p

[
ψ(s)

]
M(µ) = E

[∑
k⩾1

γkψ ∗ st+k
∣∣∣∣ µt = µ

]

Learning reward machines
for partially observable RL

R.T. Icarte et al. (NeurIPS 2019)
A reward machine (RM) is an automaton-based reward
function. It can be used as a memory for POMDP
problems. Learning a RM is a discrete optimization
problem.

Article and book summaries by Vincent Zoonekynd 350/1044

Scene representation neworks: continuous 3D
structure aware neural scene representation

V. Sitzmann et al. (NeurIPS 2019)
From a 2D image, use a hypernetwork to learn a scene
representation network, which can be fed to a neural
renderer to generate images from other points of view.
The SRN maps positions to the properties (colour,
shape, etc.) at that position/voxel; contrary to voxel-
based representations there are no discretization arte-
facts. The neural renderer uses ray marching (look for
objects closest to the camera on each ray from the cam-
era), sped up by predicting the distance to the nearest
object fro the camera in each direction.

Hyper-
parameters

Neural
scene

representation
Neural
renderer

2D
image

2D
image

A condition number for joint optimization
of cycle-consistent networks

L.J. Guibas et al. (NeurIPS 2019)
A mapping graph is a graph (V,E), with a set Du as-
sociated to each vertex and a mapping Du → Dv as-
sociated to each edge u → v. It is cycle-consistent if
the composition of the mappings along any cycle is the
identity (as with CycleGAN or back-translation).

Cascade RPN: delving into high quality region
proposal network with adaptive convolution

T. Vu et al. (NeurIPS 2019)

deformable convolution adaptive convolution

Probabilistic watershed:
sampling all spaning forests for seeded

segmentation and semi-supervised learning
E.F. Sanmartín et al. (NeurIPS 2019)

Poincaré recurrence, cycles and spurious
equilibria in gradient descent-ascent

for non-convex non-concave zero-sum games
E. Vlatakis (NeurIPS 2019)

Gradient descent-ascent does not always work or non-
convex non-concave zero-sum games (GANs, etc.):
they suffer from spurious equilibria, cycles, and diver-
gence.

Graph-based discriminators:
sample complexity and expressiveness

R. Livni and Y. Mansour (NeurIPS 2019)
To compare two distributions from their samples, use
and integral probability measure (IPM)

IPM(p1, p2) = sup
h∈H

∣∣∣∣ E
x∼p1

h(x)− E
x∼p2

h(x)

∣∣∣∣ , H ⊂ {0, 1}X

or a more powerful graph-based discriminator

IPM(p1, p2) = sup
g∈G

∣∣∣∣ E
x,y∼p1

g(x, y)− E
x,y∼p2

g(x, y)

∣∣∣∣ ,
for G ⊂ {0, 1}X×X .

Learning by abstraction:
the neural state machine

D. Hudson and C. Manning (NeurIPS 2019)
Neural nets can get the right answer for the wrong
reason. The neural state machine is a differentiable
graph-based model outputting a scene graph, used as
a state machine, with objects (with attribute – colour,
shape, etc – given by several embeddings) as nodes and
relations (e.g., relative positions) as edges. A quesion
about the scene (visual question answering, VQA) is
translated into a sequence of instructions, which are
then run on the state machine.

Batched multi-arm bandits
Z. Gao (NeurIPS 2019)

In the batched multi-arm bandit problem, one chooses
k arms, gets the results, and plays again. The grid (k)
can be imposed or chosen.

Are sample means in multi-arm bandits
positively or negatively biased?

J. Shin et al. (NeurIPS 2019)
The sample mean (of a fixed arm, at a fixed time) is
negatively biasd for ε-greedy, UCB, Thompson thresh-
olding. But for the chosen arm and a stopping time:
– Negatively biased under optimistic sampling;
– Positively biased under optimistic stopping;
– Positively biased under optimistic choosing.

SIC-MMAB:
synchronization involves communication

in multi-player multi-arm bandits
E. Boursier (NeurIPS 2019)

In the multi-player MAB, the reward is zero in case of a
collision. If the collisions are observed and the players
can comminicate, the regret for M players is∑

k>M

log T

µM − µk
.

Article and book summaries by Vincent Zoonekynd 351/1044

If they cannot communicate, this does not change: if
they are synchronized, they can use the collisions to
exchange bits of information. If they are not synchro-
nized (if they do not start at the same time) and do
not observe the collisions (only the zero rewards), this
is trickier.

Recovering bandits
C. Pike-Burke and S. Grunewalder (2019)

Bandits are often used for product recommendation,
but you do not want to recommend a sofa to some-
one who has just bought one – you should wait. In
recovering bandits, the reward is a function of the time
since the arm was last played, modeled as a Gaussian
process. They require some strategic thinking: if you
expect a good arm’s reward to increase, you may want
to wait and play a less good arm for the time being.
UCB and Thompson sampling can be modified into d-
step look-ahead strategies.

Strategizing against no-regret learners
Y. Deng et al. (NeurIPS 2019)

Mean-based algorithms can be fooled: play a subop-
timal action long-enough to trick your opponent into
thinking it is optimal for you, then play the actual op-
timal solution for as long as it takes your opponent to
realize they were duped.
No-regret algorithms include exp3, multiplicative
weights, follow the perturbed leader.

Time-accuracy tradeoffs for learning a ReLU
with respect to Gaussian marginals

S. Goel et al. (NeurIPS 2019)
ReLU regression looks for w such that y ≈ relu(w′x).
If x ∼ N(0, 1), a shallow neural net with stochastic
gradient descent learns w.

Small ReLU networks are memorizers:
a tight analysis of memorization capacity

C. Yun et al. (NeurIPS 2019)
A 2-layer fully-connected ReLU network can memorize
N points with Θ(

√
N) notes (vs Θ(N) for a 1-layer

neural net).

On making stochastic classifiers deterministic
A. Cotter et al. (NeurIPS 2019)

To solve a non-convex constrained problem, e.g. with
fairness constraints

Find θ
To minimize g0(θ)
Such that ∀igi(θ) ⩽ 0

look for Nash equilibrium of the Lagrangian

L (θ, λ) = g0(θ) +
∑

λigi(θ).

There might be no pure Nash equilibrium, but there is
a mixed one, giving rise to a stochastic classifier (alter-
natively update θ and λ, and put a uniform distribution
on the trajectory).
To transform a stochastic classifier into a determinis-
tic one, one could use thresholding f̂ = 1f⩾1/2, but
the performance can be very different (for instance if
f ≡ 0.51). Instead, use hashing (cf the difference be-
tween thresholding and dithering for images), which
fakes stochasticity – it replaces stochasticity with arbi-
trariness.
One can try to interpolate between thresholding and
hashing: partition the samples into different regions
and use a different threshold in each.

Cold case: the lost MNIST digits
C. Yadov and L. Bottou (NeurIPS 2019)

MNIST was not the whole data: 50,000 samples were
discarded (computers were less powerful, then): aM-
NIST adds them back and provides some metadata.
Testing set rot is real: MNIST classifiers perform less
well on the new data than on the initial dataset – how-
ever, the ranking of the classifiers remains unchanged.

Optimal sparse decision trees
X. Hu et al. (NeurIPS 2019)

It is possible to compute the optimal sparse decision
tree (with a penalty on the number of nodes), in time
(often) linear in the number of samples and features,
with a proof of optimality (in time exponential in the
number of features). Code available.

Optimizing generalized rate metrics
with three players

H. Narasimhan et al. (NeurIPS 2019)
We often need to train models with fairness con-
straints, e.g., |precision(G1)− precision(G2)| ⩽ ε,

Find θ
To minimize ψ

(
R1(θ), . . . , Rk(θ)

)
Such that ∀i ψi

(
R1(θ), . . . , Rk(θ)

)
⩽ 0

where the Rk’s are prediction rates, i.e., expectations
of counts (FPR, etc.) on subsets of the data. Introduce
slack variables

Find θ, ξ
To minimize ψ(ξ1, . . . , ξk)
Such that ∀i ξi ⩾ Ri(θ).

The Lagrangian formulation

Minimize
θ,ξ

Maximize
λ⩾0

ψ(ξ)− λ′
(
ξ −R(θ)

)
is a 3-player game: use the exact solution for xi , SGD
for λ, and SGD with surrogates for Rk(θ) ⩽ R̃k(θ).
There is a TensorFlow constrained optimization
(TFCO) library.

Article and book summaries by Vincent Zoonekynd 352/1044

This looks like that: deep learning
for interpretable image recognition

C. Chen et al. (NeurIPS 2019)
Attention is not sufficient to explain what a convnet
sees: it only tells where, not what. Add a prototype
layer, which learns prototypes and outputs how sim-
ilar each prototype is to a given patch; combine the
prototype scores into output logits.

Paradoxes in fair machine learning
(NeurIPS 2019)

Fairness in machine learning is often defined as some
quantity, e.g., odds, being equal among all groups (for
some predefined protected attributes). Fairness in fair
division relies on a few axioms, e.g.,
– Resource monotonicity: adding more resources
makes everyone better off;

– Population monotonicity: adding more people makes
everyone worse off.

Adding resource monotonicity to equal odds does
not impact efficiency; adding population monotonicity
does.

Multicriteria dimensionality reduction
with applications to fairness

T. Tantipongpipat et al. (NeurIPS 2019)
PCA is not fair: the reconstruction error need not be
the same for all groups (for instance, face reconstruc-
tion for males is easier than for females). Instead, con-
sider optimization problems of the form

Minimize
P projection

g(f1(P), . . . , fk(P))

where fi(P) is the reconstruction error for group i and
g some aggregation function (e.g., sum, for PCA). For
instance

Minimize
P

Max
i∈J1,kK

(
Max
Q
‖AiQ‖2F − ‖AiP‖

2
F

)
Maximize

P

∏
‖AiP‖2F .

Implicit regularization
in deep matrix factorization

S. Arora et al. (NeurIPS 2019)
Deep neural networks generalize well, even with no reg-
ularization – it is widely believed that SGD provides
implicit regularization.
The matrix completion problem is often solved with a
nuclear norm penalty

Minimize
W

∑
(i,j)∈Ω

(wij − bij)2 + λ ‖W‖∗

but a deep matrix approximation (yes, a deep linear
network) performs better

Minimize
W1,...,WN

∑
(i,j)∈Ω

[
(WNWN−1 · · ·W1)ij − bij

]2

(no regularization).
In deeper networks, small singular values move more
slowly with gradient descent, while larger singular val-
ues move faster: the longer gaps between singular val-
ues give a low-rank matrix.

SGD on neural networks learns
functions of increasing complexity

D. Kalimeris et al. (NeurIPS 2019)
Stochastic gradient descent (SGD) starts to learn an
“essentially linear’ classifier (its performance can be
explained by a linear classifier) and then increasingly
complex models.

When does label smoothing help?
R. Müller et al. (NeurIPS 2019)

Label smoothing replaces hard targets with soft
targets : this ensures that observations are close
to their prototypes (weights of the last layer) and far
from the others – the clusters are tighter.
Neural networks are over-confident: temperature scal-
ing and label smoothing can help calibrate them.
Label smoothing is bad for distillation: the model no
longer knows how different the classes are.

Splitting steepest descent
for growing neural architectures

L. Wu et al. (NeurIPS 2019)
To build smaller neural nets, progressively split neu-
rons into several copies.

Positional normalization
B. Li et al. (NeurIPS 2019)

Normalization variants:

width &
height

channelbatch

batch instance group layer positional

The moments (µ, σ) used for the normalization contain
information: re-inject them later in the network.

Variance reduction for matrix games
Y. Carmon et al. (NeurIPS 2019)

In zero-sum games

Min
x∈X

Max
y∈Y

f(x, y),

Y can be seen as constraints (GAN) or uncertainty
(robust optimization).
Examples of bilinear games MinxMaxy y

′Ax include
matrix games (X = Y = simplex), SVM (X Eu-
clidean, Y simplex) and linear regression (X = Y =
Euclidean).

Article and book summaries by Vincent Zoonekynd 353/1044

Provably robust deep learning
via adversarially trained smoothed classifiers

H. Salman et al. (NeurIPS 2019)
Randomized smoothing transforms a classifier f into

g(x) = Argmax
y∈Y

P
δ∼N(0,σ2I)

[
f(x+ δ) = y

]
.

Look for adversarial examples for the smoothed classi-
fier.

Zero-shot knowledge transfer
via adversarial belief matching

P. Micaelli and A. Storkey (NeurIPS 2019)
Model compression (pruning, quantization, distilla-
tion) usually requires training data, but one can use
a generator instead. This works even though the gen-
erated samples do not look like actual samples – they
suffice to describe the teacher’s decision boundaries.

noise generator φ
teacher
student

yT

yS

Maximize
ϕ

Minimize
θ

KL(yT , yS)

Learning perceptual inference by contrasting
C. Zhang et al. (NeurIPS 2019)

Raven’s progressive matrices (RPM) are psychologi-
cal tests for spatial-temporal reasoning (“thinking in
pictures”, for humans). With computer-generated
datasets (raven, pgm), computers can have a go at
it, modeling the attributes in the images and the rules
they follow with a Gumbel softmax.

Better transfer learning
with inferred successor maps

T. Madarasz and T. Behrens (NeurIPS 2019)
Replace the Q-value function

Qπt (s, a) = E
[∑

γkrt+k|st = s, at = a
]

with the successor representation (SR)

Mπ
t = E

[∑
γk1st+k+1=s′

∣∣ st = s, at = a
]

Qπ(s,) =
∑
s′

M(s, a, s′)w(s′)

Infra-slow brain dynamics
as a marker of cognitive function and decline

S. Ajmera (NeurIPS 2019)
Gaussian process factor analysis (GPFA) can extract
latent signals, at various time scales, from fMRI data.

y : high-dimensional signal (observed)
x : low-dimensional signal (latent)
y = Ax+ noise
xi ∼ GP

Understanding sparse JL for feature hashing
M. Jagadeesan (NeurIPS 2019)

Sparse Johnson-Lindenstrauss is a dimension reduction
method trying to preserve distances, defined by a ran-
dom transformation, with s nonzero entries in each col-
umn. Equivalently, it is the sum of s feature hashing
dimension reductions.

h : J1, nK↠ J1,mK hash function
σi ∈ {±1} random

f(x) =
∑

j∈h−1(i)

σjxj

There is a tradeoff between the number of hash func-
tions s, the dimension m, and `2 distance preservation
with 3 regimes:
– m small: poor performance, regardless of the num-
ber of hash functions;

– m large: performance proportional to
√
s (s = 4 is a

good choice);
– m very large: good performance, regardless of the
number of hash functions.

The performance is measured by looking at vectors
with small `∞-to-`1 norm ratio.

A non-convex approach for exact and efficient
multichannel sparse blind deconvolution

Q. Qu et al. (NeurIPS 2019)
Gradient descent, Huber loss andpreonditioning effi-
ciently solve the blind deconvolution problem.

y = a ∗ x

x = hidden, sparse

a = hidden, ‖a‖ = 1

y = observed

Applications include superresolution (microscopy) and
neuron spike identification.

Efficiently learning
Fourier sparse set functions

A. Amrollahi et al. (NeurIPS 2019)
The Walsh-Hadamard (or Fourier) transform of a set
function x : 2V → R, seen as a function x : Fn2 → R,
is

x̂ :

Fn2 −→ R

f 7−→
∑
t∈Fn2

(−1)⟨f,t⟩xt.

It is sparse if ‖x̂‖0 ⩽ k, and low-frequency if ∀f ∈
supp x̂ |f | ⩽ d, where |f | is the Hamming weight of f ,
i.e., the number of nonzero elements.

Article and book summaries by Vincent Zoonekynd 354/1044

For instance, the cut function of a graph,

x(A) =
∑
s∈A

t∈V⊂A

w(s, t)

is sparse (k = |E|) and low-frequency (d = 2).
Applications include hyperparameter tuning, where
x ∈ 2V is a boolean vector describing the hyperpa-
rameters (SGD vs Adam, number of layers, layer size,
etc.) and F (x) the corresponding loss.

Surfing: iterative optimization
over incrementally trained deep networks

G. Song et al. (NeurIPS 2019)
To invert a generator (e.g. a VAE), do not start with
the fully trained model, but follow a local optimum
through the training (“surfing”) – the loss landscape is
much nicer at the begining.

R2D2: repeatable and reliable
detector and descriptor

J. Revaud (NeurIPS 2019)
To align two images, identify the “keypoints”, compute
their “descriptors’ (e.g., sift), and match the points if
they are close. We want the keypoints to be, not only
repeatable (still present on a slightly modified image),
but also reliable (i.e., useful for matching – this ex-
cludes repeated patterns),

Training image estimators
without image ground truth

Z. Xia and A. Chakrabarti (NeurIPS 2019)
To learn how to restore image quality, e.g., for mo-
tion deblurring of face images, when (low-quality, high-
quality) image pairs are not available, use pairs of low-
quality images corresponding to the same high-quality
image,

y1 = θ1x+ ε1

y2 = θ2x+ ε2

with a swap loss
∥∥∥θ̂1x̂2 + ε̂1 − y1

∥∥∥.
KernelGAN: blind SR kernel estimation

using an internal GAN
S. Bell-Kligler (NeurIPS 2019)

Deep linear network (equivalent to a 1-layer network,
but with more local minima) to infer the kernel to use
for super-resolution (SR).

Differentiable ranking and sorting
using optimal transport

M. Cuturi et al. (NeurIPS 2019)
The 1-dimensional optimal transport can be solved by
sorting. Conversely, the entropic regularization of the
OT problem provides a differentiable regularization of
the sorting and ranking operations.

Nonparametric density estimation
and convergence rates

for GANs under Besov IPM losses
A. Uppal et al. (NeurIPS 2019)

Density estimation does not work well in high dimen-
sions, but GANs solve a similar problem. GANs mini-
mize an integral probability metric (IPM)

P̂ = Argmin
Q

sup
f∈F

E
X∼Q

[
f(X)

]
− E
X∼data

[
f(X)

]
= Argmin

Q
fF (Q, data)

dF (P,Q) = sup
f∈F

∣∣∣∣ E
X∼P

[
f(X)

]
− E
X∼Q

[
f(X)

]∣∣∣∣
Besov spaces Bsp ≈ {f ∈ Lp :

∥∥f (s)∥∥ bounded} are
generalization of Sobolev spaces (p = 2); they are well-
approximated with neural nets with ReLU activations.

Wasserstein Weisfeiler-Lehman graph kernels
M. Togninalli et al. (NeurIPS 2019)

Traditional graph kernels decompose the graphs into
simple substructures, compute the similarities between
those substructures and aggregate them in a simplis-
tic way, by averaging. Use the Wasserstein distance
instead (or, rather, e−λdW).

Putting an end to end-to-end
S. Löwe et al. (NeurIPS 2019)

Greedy InfoMax (GIM) is a form of semi-supervised (or
even unsupervised) learning which learns a neural net-
work without using end-to-end back-propagation (the
forward pass is still end-to-end, though, but can be
done less often; learning can be asynchronous) by di-
viding it into “modules” (groups of layers), each with
its own “self-supervised” loss, InfoNCE, the mutual
information between nearby patches (for images or
sound).

On the downstream performance
of compressed word embeddings

A. May et al. (NeurIPS 2019)
The eigenspace overlap score (EOS) measures how
much information is retained when compressing word
embeddings Araw 7→ Acompressed, from the left singular
vectors, A = UDV ′,

EOS =
1

d

∥∥U ′compressedU
∥∥2
F
.

Numerically accurate hyperbolic embeddings
using tiling-based models

T. Yu and C. de Sa (NeurIPS 2019)
Euclidean models of hyperbolic space are numerically
inaccurate far from the origin: instead of using Eu-
clidean coordinates, consider a tiling of hyperbolic
space and represent a point by a tile (an element of

Article and book summaries by Vincent Zoonekynd 355/1044

the tiling group) and the Euclidean coordinates of the
corresponding point in the central tile (close to the ori-
gin and therefore accurate).

XLNet for language pretraining
Z. Yang et al. (NeurIPS 2019)

Autoregressive language models are usually unidirec-
tional: XLNet changes this order of the words, so that
it becomes bidirectional

P [xik+1
|xi1 , . . . , xik , xik+1

].

The new position ik+1 can be used as an attention key.

BERT
RoBERTa
XLNET ALBERT T5

flops

accuracy

A step towards quantifying
independently reproducible ML research

E. Raff (NeurIPS 2019)
A paper is independently reproducible if it is repro-
ducible without the author’s code. They tried to re-
produce 255 papers, succeeded for 60% of them, and
identified the features of reproducible papers.

Average individual fairness
A. Roth (NeurIPS 2019)

Fairness is often defined from the false negative rate
for groups of interest. Instead of looking at the nega-
tive rate for a single problem for each group, look at the
negative rate over several problems for a single subject.

Optimal transport methodology
for lineage tracing

K. Yang (NeurIPS 2019)
To use optimal transport for lineage tracing (to study
cancer progression or embryogenesis):
– Use (unbalanced, relaxed) Monge optimal transport,
i.e., learn a transport map (instead of a coupling),
parametrized by a neural net: it is faster and pro-
vides a mapping for new samples;

– Use optimal transport wrt the Euclidean distance in
a latent space, learned by an autoencoder.

Estimation of Wasserstein distances
in the spiked transport model

J. Niled-Weed (NeurIPS 2019)
To estimate the Wasserstein distance Wp(µ, ν) from
samples X1, . . . , Xn ∼ µ, Y1, . . . , Yn ∼ ν, one is
tempted to use the plugin estimator Wp(µ̂,ν̂n), but
the difference is of the order n1/d.: the empirical dis-
tribution µ̂n is a bad estimator of µ. In some cases
(e.g.,when µ has a density), better estimates are avail-
able.

While it may be possible to estimate Wp(µ, ν) directly
rather than through estimates µ̂ and ν̂ of µ and ν, the
difference is still at least (n log n)−1/d.
The spiked covariance model is X ∼ N(0,Σ), Σ =
I + βvv′, where I i high-dimensional noise and βvv′ a
low-dimensional perturbation.
The spiked transport model assumes

suppX, suppY ⊂ U (low-dimensional)
suppZ ⊂ U ⊥

µ = Law(X + Z)

ν = Law(Y + Z)

and looks for a coupling between X and Y . The dif-
ference is

n−1/k +

√
d log n

n

(the second term corresponds to the search for U .)

Generalizing learning with optimal transport
S. Jegelka et al. (NeurIPS 2019)

One can align word embeddings for different languages
with optimal transport after adding some rotational in-
variance:

Minimize
Γ∈Π(µ,ν)

Min
P∈F

∑
ij

Γijd(xi, Pyj)

with F = {P ∈ Rd×d : ‖P‖p ⩽ k}, where ‖·‖p is the
Shatten norm (the Lp norm of the singular values).
Use entropic regularization, normalization, and stabi-
lized Sinkhorn.
Regularize the adversary: it should be close to an
orthornormal transformation (no extreme distortion),
βMinP∈On ‖fW (X)−XP ′‖2, computed with orthogo-
nal Procrustes, P ∗ = UV ′, where fW (X ′)X = UΣV ′.

Towards a mathematical theory of development
G. Schiebinger (NeurIPS 2019)

Single-cell RNA sequencing (scRNA-seq) provides
snapshots if the genes expressed at various stages of
development. Optimal transport can link those snap-
shots: unbalanced optimal transport can account for
cell proliferation and entropic regularization.

t = 0

t = 1

t = 2

optimal coupling low entropy high entropy

Find π

To minimize
∫∫

c(x, y)π(x, y)dxdy − εH(π)

Such that π(·, y) = Pt2(y)
π(x, ·) = Pt1(y)g(x)

t2−t1

Article and book summaries by Vincent Zoonekynd 356/1044

Model the time dependence as ẋ = f(x):

Minimize
f

‖xt2 − f(xt1)‖
2
+ reg(f).

Unsupervised hierarchy matching
with optimal transport over hyperbolic space

D. Alvarez-Melis et al. (NeurIPS 2019)
To match hierarchies using optimal transport, account-
ing for orthonormal transformations is not enough: the
order of the branches can change. Use continuous non-
linear mappings, parametrized by a neural net.

Optimal transport mapping
input convex neural networks

A.V. Makkuva (NeurIPS 2019)
The optimal transport can be defined as T = ∇f∗,

f = Argmin
f∈CVX

E
X∼P

[
f(X)

]
+ E
Y∼Q

[
f∗(Y)

]
and f can be parametrized as an input convex neural
network (ICNN).

Wasserstein style transfer
Y. Mroueh (NeurIPS 2019)

To perform style transfer, from a style image Is to
a content image Ic, learn an encoder-decoder pair,
I 7→

(
Fj(I)

)
j
7→ I, where j is the position, in the

image, of the features F , and a Monge map T between
the empirical distributions

∑
δFj(Ic) and

∑
δFj(Is).

That map is learned using a Gaussian approximation

W2(µ, ν) ⩾W2

(
N(Eµ,Varµ), N(E ν,Var ν)

)
.

The Wasserstein distance and the Monge map for
Gaussians are known in closed form.
To limit content loss, consider the McCann interpolates
(1 − t)Id + tT instead. To interpolate between styles,
use Wasserstein barycenters instead of linear interpo-
lation.

From entropy-regularized optimal transport
to Sinkhorn divergences

A. Genevay (NeurIPS 2019)
There are three ways of computing “distances” between
distributions:
– Csiszár φ-divergence, e.g., the Kullback-Leibler di-

vergence;
– Maximum mean discrepacies,

MMD(α, β) = sup
∥f∥F⩽1

∣∣∣∣ Ex∼α[fX]− E
y∼β

[fY]

∣∣∣∣
for some RKHS H ;

– Optimal transport, which is slower to compute, but
provides better gradients.

With an entropic regularization

H(π|α⊗ β) =
∫

log
dπ(x, y)

dα(x)dβ(y)
dπ(x, y),

the dual is an unconstrained optimization problem and
the Sinkhorn algorithm solves it for discrete distribu-
tions. But this regularization assumes the data is ob-
served with noise, and tries to remove it: you get

when you would prefer

.

The regularized Wasserstein distance is not a distance:
dW,ε(α, α) 6= 0. Instead, consider the Sinkhorn diver-
gence,

SDε(α, β) = dW,ε(α, β)−
1

2
dW,ε(α, α)−

1

2
dW,ε(β, β).

For ε→∞, it converges to a MMD.

How does mini-batching
affect Curvature information

for second order deep learning optimization?
D. Granziol et al. (NeurIPS 2019)

Spec(A+noise) is not an unbiased estimator of SpecA.
In particular, the largest eigenvalue is perturbed up-
wards. Random matrix theory (RMT) can correct this
bias.

Acceleration through spectral modeling
F. Pedregosa and S. Scieur (NeurIPS 2019)

Accelerated gradient methods only use the largest (and
smallest) eigenvalue(s) of the Hessian, ignoring the rest
of the spectrum: model the spectral distribution as a
Marcenko-Pastur distribution (fitted using the largest
eigenvalue and the trace) and use it to find the optimal
first-order method. In special cases, this is equivalent
to the heavyball method.

The importance of better models
in stochastic optimization

H. Asi and J Duchi (NeurIPS 2019)
SGD is very sensitive to step size and can diverge.
(Approximate) proximal optimization (aProx)
minimizes an approximation of the objective with a
penalty to keep the new point close to the previous.
Approximations include:
– The function itself (i.e., no approximation, just a
penalty);

– A linear approximation;
– A linear approximation floored at zero (it is often
known that f ⩾ 0): this prevents divergence and
can be implemented by replacing x← x− αg with

x← x = Min
{
α,
f(x)

‖g‖2
}
g.

Article and book summaries by Vincent Zoonekynd 357/1044

https://wasserstein-transfer.github.io/

Beyond SGD: in search of a preconditioner
E. Hazan (NeurIPS 2019)

Preconditining makes the loss surface more isotropic.
LiSSA (linear time second order stochastic optimiza-
tion) writes the Hessian inverse as an infinite series (as-
suming the eigenvalues are below 1 in absolute value)
and samples from it; to estimate the powers, use iid
samples (one sample for each, i.e., rank-1 matrices).

H−1 =
∑
k⩾0

(I −H)k

H−1 ≈ (I −H)kp · p−1k
(I −H)k ≈

∏
1⩽i⩽k

(I −Hi)

For non-convex functions, use cubic regularization
(FastCubic). For neural nets, there is no improvement
on SGD.
Replace AdaGrad x ← x − diag(

∑
gtg
′
t)
−1/2g (you

can take the full matrix instead of the diagonal)
with GGT, x ← x − (GtG

′
t)
−1/2gt, where Gt =

[gt|βgt−1|β2gt−2| · · ·]. It can be efficiently imple-
mented using (GG′)−1/2x = G(G′G)−3/2x, since G′G
is smaller than GG′. Plot the eigenvalues of GG′
against the epoch.
AdaGrad keeps two gradients, Adam three. To reduce
memory usage, only keep a “low-rank approximation”
of the gradients (first reshape them into matrices or
tensors): extreme tensoring.

Symmetric and multi-secant
quasi-Newton methods

D. Scieur et al. (NeurIPS 2019)
Quasi-Newton methods approximate the Hessian using
the gradient and the secant equation f ′′(x)−1(f ′y −
f ′x) ≈ y − x. Let ∆x and ∆G be the matrices con-
taining the first differences of successive estimates and
gradients, and H be an estimator of (f ′′)−1. The se-
cant equation becomes H∆G = ∆X. Quasi-Newton
methods find a matrix H, close (for some norm), to
some reference matrix H0, such that H∆G = ∆X.
For instance, LBFG uses H0 = Hk, N = 1 seconds,
d(H,H0) = ‖H −H0‖∇2f . For N > 1, the secant
equation has no solution in general: use an approxi-
mation instead (it reduces to a Procrustes problem).

Stochastic Newton and cubic Newton methods
with simple local linear quadratic rates

D. Koralev et al. (NeurIPS 2019)
Cubic regularization generalizes Newton’s method

〈f ′xk, x− xk〉+
1

2
‖x− xk‖2f ′′(xk)

+
M

6
‖x− xk‖3 .

Subsampled methods estimate the gradient and the Hes-
sian on different (independent) subsets; use a very large
minibatch for the Hessian.

K-FAC: extensions,
improvements and applications

J. Martens (NeurIPS 2019)

gradient descent momentum second order

Second-order methods should be faster, but the curva-
ture changes very quickly: the second-order approxi-
mation is only valid locally – use a trust region, either
as a hard constraint or, equivalently, as an L2 penalty.
One can replace the Hessian wit GGN, Fisher informa-
tion or (not recommended) empirical Fisher informa-
tion.
The generalized Gauss–Newton method approxi-
mates the Hessian of

h(θ) =
1

m

m∑
i=0

L
(
yi, f(xi, θ)

)
as G = 1

m

∑
J ′iHiJi where Ji = ∇θf , Hi = ∇zzL.

This is the Hessian of h with f replaced with its first-
order approximation around θ. The square norm loss,
L(y, z) = 1

2 ‖y − z‖
2 gives H = I and G = 1

m

∑
J ′iJi

(Gauss–Newton). When z is the natural parameter of
an exponential family, G is the Fisher information and
G−1∇h the natural gradient. GGN works better than
the Hessian in practice.
The Hessian is too large, but many approximations are
available: diagonal (Adam), block-diagonal (tonga),
low-rank + diagonal (L-BFGS), Krylov (Newton-CG,
HF).
The Kronecker-factorized approximate curvture
(K-FAC) exploits the structure in layers of the neu-
ral net For a single linear layer, a 7→ s = Wa,
and L(y, f(x, θ)) = − log p(y|x, θ), ∇qL = ga′, where
g = ∇sL and the Fished information is F =
Cov(vec∇w, vec∇w) = · · · − E[aa;]⊗ E[gg′] = A⊗G.
The Kronecker product allows efficient computations:
(B⊗C)−1 = B−1⊗C−1, (B⊗C) vecX = vec(CXB′).

Shared weights, in CNNs or RNNs, complicate things.
K-FAC works better than SGD for large batch sizes.
TensorFlow implementation available.

HAWKV2: Hessian-aware trace-weighted
quantization of neural networks

A. Gholami (NeurIPS 2019)
To choose how many bits to keep for each layer, use
the trace of the Hessian, computed as

trA = E
z∼Rademacher

[
z′Az

]
.

Implementation: PyHessian.

Article and book summaries by Vincent Zoonekynd 358/1044

New methods for regularization path
optimization via differential optimization

P. Grigas and H. Liu (NeurIPS 2019)
The first order condition defining the regularization
path, ∇xFλ

(
x(λ)

)
= 0 leads to an ODE, which can

be solved with the Euler scheme (or a better one); it
involves the Hessian, but computations canbe avoided
using the conjugate gradient (CG).

Foundations of causal inference:
challenges and opportunities of big data

N. Kiyavash (NeurIPS 2019)
Granger causality can be extended to point processes,
using directed information as a loss function; the re-
sulting directed information graph (DIG) is a Bayesian
network; it can also, more easily, be estimated from a
model of the point process, e.g., a multivariate Hawkes
process. Applications include neural spike trains, twit-
ter activity, econometric modeling of systemic risk, hy-
perlink creation between (one million) websites (show-
ing clusters of merchant and review sites).

Insider threat detection via hierarchical
neural temporal point processes

X. Wu (NeurIPS 2019)
Detect fraudulent sessions (from login time,
email activity, web activity, device access, open-
ing/copying/creating/deleting files) by combining
RNNs (LSTM) and masked temporal point processes
(MTPP), using encoder-decoders, predicting activity
type and time (intra-session) and session time (inter-
session).
Datasets: CERT insider threat, Wikipedia vandalism.

Temporal point processes:
web, social media, and networking systems

N. Ganguly (NeurIPS 2019)
Hawkes-RNN models can be used to study:
– Temporal and information influence of social media
users; latent opinion inference;

– Tweet-hashtag (reinforcement) and hashtag-hashtag
ineractions;

– Spikes in network traffic.

Temporal logic point processes
S. Li et al. (NeurIPS 2019)

Add prior knowledge (“event A happens before B”) to
temporal point processes (TPP) using temporal logic
soft constraints (with learned weights).

The graph Hawkes network for reasoning
on temporal knowledge graphs
Z. Han et al. (NeurIPS 2019)

A temporal knowledge graph stores (S,V,O,timestamp)
tuples. In a neural Hawkes process, the intensity of
events of type k is λk = f(w′kht). However, there are

too many event types, and some are concurrent. Learn
vector representations of entities and predicates; re-
spond to queries of the form (S,V,?,t).
Data: political events, news.

Deep point process destructors
D. Inouye (NeurIPS 2019)

Destructive learning identifies patterns in the data,
removes them in an invertible way, and starts again.
For point processes, use time warping. A point pro-
cess destructor is a time transformation that maps the
point process studied to the unit process λ ≡ 1.
For deep point processes destructors, e.g. if D =
D2 ◦D1,

λ(t) =
dD

dt
= λ2

(
D1(t)

)
λ1(t).

More generally, a deep point process replaces the mix-
ture λt =

∑
i λi(t) with λ(t) =

∏
i λi(t

(i−1)), t(0) = t,
t(i) = Di(t

(i−1)) (each Di can be a weak model).

Bandits, estimation and hypothesis testing
S. Athey (NeurIPS 2019)

Bandits (aka adaptive experiments in statistics) are
more data-efficient than traditional experiments. Ban-
dits create unbalanced data (they are not iid); naively
estimating the value of an arm is potentially biased and
non-Gaussian. Inverse propensity weighting addresses
those problems but increases variance; there are other
weighting schemes.

Preserving causal constraints in counterfactual
explanations for machine learning classifiers

(NeurIPS 2019)
Counterfactual explanations should be actionable (you
cannot decrease your age or education level) and sat-
isfy some constraints (you cannot be under 20 and have
a PhD): use a structural causal model.

EconML: a machine learning library
for estimating heterogeneous treatment effects

(NeurIPS 2019)
Includes: DeepIV, DoubleML, causal forests, etc.

Adaptive TRPO: convergence
and faster rates for regularized MDPs

L. Shani et al. (NeurIPS 2019)
Mirror descent is the trust-region optimization algo-
rithm

xk+1 ← Argmin
x

〈
∇f(xk), x− xk

〉
+ αkBω(x, xk)

where the first term is a linear approximation of the
objective and the second term is a Bregman divergence

Bω(x, y) = ω(x)− ω(y)− 〈∇ω(y), x− y〉.

Article and book summaries by Vincent Zoonekynd 359/1044

If ω is the Euclidean norm, Bω is the Euclidean dis-
tance and mirror descent is projected gradient descent.
If ω is the negentropy, Bω is the Kullback-Leibler di-
vergence, and mirror descent is exponentiated gradient
descent.

How metalearning could help us
accomplish our grandest AI ambitions,
and early, exotic steps in that direction

(NeurIPS 2019)

task
+

dataset
Model φ

new data fϕ7−→ forecasts
gθ

Generative teaching networks (GTN) generate data to
learn on. Backpropagate to train the generator, but
use weight normalization. Use different model archi-
tectures.

noise fake data model

real data
performance

generator learn

In RNNs, do not only store information in the activa-
tions, but also in the weights, using Hebbian learning:
“neurons that fire together wire together”.

wt+1
ij = wtij + ηxtix

t
j .

Train w and α (“differentiable plasticity”) with SGD:

yi = tanh
∑
i

(wij + αijH
t
ij)yi

Ht+1
ij = ηyiyj + (1− η)Ht

ij .

In modulated Hebbian learning, the Hebbian trace Hij

is only updated if some neuron M fires:

Ht+1
ij = Ht

ij +Mty
t−1
i ytj .

To prevent catastrophic forgetting, use a mask to select
which par of the network to use for the current task.

input × output

One-ended algorithms (natural selection, human cul-
ture) generate their own problems and solve them. The
“paired open-ended trailblazer” (poet) generates en-
vironments of varying difficulties (e.g., landscape, for a
robot to navigate in); trains an agent on each of them
in parallel; re-evaluate the agents on all models and
copy them accordingly (this works better than linearly
interpolating between easy and difficult environments
– curriculum learning is hard, and a linear curriculum
is rarely optimal).

Better model-based RL through meta-RL
P. Abbeel (NeurIPS 2019)

Use domain randomization: simulated environments
do not look like the real world, but they may be as
different between them as they are different from the
real world – instead of using just one simulated envi-
ronment, use many, and measure the performance on
unseen environments.
Overfitting plagues model-based RL much more than
supervised learning: the agent would try to exploit re-
gions of the state space where the model is imprecise
but promising. Use domain randomization, e.g., with
an ensemble of models.
Train asynchronously.
To speed up meta-RL: train separate RL agents for all
the tasks, then train a global agent to match those local
agents (imitation learning)

Abstraction and meta-RL
D. Abel (NeurIPS 2019)

State abstraction tries to make reinforcement learning
easier by replacing the state space with a smaller, dis-
crete set, with no drop n the quality of the solution
learned.
Action abstraction replaces the action space with a
larger one, by adding options, i.e., long-term actions
(defined by a start condition, an end condition, and a
policy). Finding options that minimize planning time
is NP-hard, and hard to approximate (at least in the
worst case).

Scalable metalearning
R. Hadsell (NeurIPS 2019)

WarpGrad learns to precondition the gradient – it
learns the geometry of the space while optimizing the
model.
Vanilla transformers do not work well in RL: add
(GRU-like) gating.

Metalearning with warped gradient descent
S. Flennerhag (NeurIPS 2019)

Learn how to warp the loss surface into something nice;
this is equivalent to learning a gradient preconditioner.

Fairness assessment for AI
in the finance industry

(NeurIPS 2019)
AIF360 is a Python library for fairness measures and
mitigation algorithms.

Forecasting firm material event sequences
from SEC 8k reports

(NeurIPS 2019)
Seq2seq transformer model to map past events to fu-
ture events; the attention maps provide explanations.

Article and book summaries by Vincent Zoonekynd 360/1044

Explainable small business credit scoring
(NeurIPS 2019)

Accounting software companies have access to detailed
accounting data and can use it to decide whether to
grant a loan (xgboost, monotonicity constraints, Shap-
ley values).

Adversarial learning of “deep fakes”
in accounting

(NeurIPS 2019)
Adversarial autoencoders impose a structure on the la-
tent representation, e.g., a mixture of clearly separated
Gaussians, to disentangle.
Auditors use ERP data: a fraudulent company could
use an adversarial attack to hide anomalous transac-
tions.

Imperceptible attacks on tabular data
(NeurIPS 2019)

Tabular data is also suceptible to adversarial attacks,
Since not all features are equally important (you can
lie more about your number of pets than about your
salary), define a notion of “perceptability” and mini-
mize it to mount your attack (LowProFool, DeepFool,
FGSM).

Understanding equilibria in multiagent systems
M. Woolridge (NeurIPS 2019)

While Siri does not (yet) talk to Siri, multiagent sys-
tems are already there, e.g., with algorithmic trading
– but those systems are unstable and can lead to flash
crashes.
1. To understand this instability, consider it as a
bug, and use model checking: build the state transi-
tion graph of the system and use temporal logic (LTL,
an extension of propositional logic with temporal op-
erators)

♢φ eventually
□φ always
φU ψ until
□♢φ infinitely often
♢□φ always after some point

to formulate and check the desired properties of the
system, in particular reachability ♢φ and invariance
□φ.
2. This is too restrictive: an undesirable state could
be reachable only through a sequence of irrational de-
cisions. Use the Reactive Modules language to describe
the agents and their goals, and check reachability un-
der Nash equilibrium.
3. This approach only works on small systems: for
large systems, use agent-based models, calibrated on
real data, and simulations.
The flash crash prevention measures (stop trading if
the prices drop too much) seem ineffective and even

counterproductive: if investors need to sell ad cannot,
they will find something else to sell – the flash crash is
contagious.

Putting ethical AI to the vote
A. Procaccia (NeurIPS 2019)

When there are several stakeholders for a given prob-
lem (e.g., food donations allocation), if the problem
is recurring, build a model for each stakeholder and
aggregate their preferences (social choice). Since the
output of the model is noisy, the aggregation mecha-
nis, should be robust to noise: Borda count is robust,
pairwise-majority consistent (PMC) methods are not.
[This is currently used as a decision-support tool; it is
more efficient than humans in terms of diversity and
cost.]
Other applications of this virtual democracy (the mod-
els vote, or the humans) include ethical decisions for
self-driving cars (aggregating the ethical choices of one
million Americans in a fraction of a second), or ESG
investment (when several people, e.g., a family, want
to invest together, but do not have the same views on
ESG).

Gaussian process behaviour
in wide deep neural networks

A.G.G. Matthews (NeurIPS 2019)
As the width of a 1-layer neural net tends to infinity, it
converges to a Gaussian process (natural tangent ker-
nel). This is still the case for k-layer neural nets, if
deeper layers grow faster.

The natural tangent kernel
T.G.J. Rudner et al. (NeurIPS 2019)

In continuous time, gradient descent is just an ODE,
θ̇ = −η∇θL (θ); it also gives us the dynamics of the
output of the neural net during gradient descent: a
diffusion, for the neural tangent kernel

Θ(x, y) = ∇θf(θ)∇θf(θ)′.

For natural gradient descent, this becomes

Θnat(x, y) = ∇θf(θ)F (θ)−1∇θf(θ)′,

where F (θ) is the Fisher information matrix. Linearize
those dynamics and solve the resulting ODE, instead
of SGD to train the network.

Deep ensembles: a loss landscape perspective
S. Fort et al. (NeurIPS 2019)

Ensembles work better than Bayesian neural nets: en-
semble can cover several modes; Bayesian approaches
struggle to (since the modes are connected, they should
be able to).
Average the weights around each mode, and the pre-
dictions across modes.

Article and book summaries by Vincent Zoonekynd 361/1044

MIM Mutual information machine
M. Livne et al. (NeurIPS 2019)

Replace the VAE loss

`(θ) = KL
(
qθ(z|x)p(x)

∥∥pθ(x|z)p(z))
where x is the observed variable and z the latent rep-
resentation, with the more symmetric Jensen-Shannon
divergence, and add a regularizer

H
(
qθ(z|x)p(x)

)
+H

(
pθ(x|z)p(z)

)
(entropy of the two joint distributions on (x, z)) to help
maximize the mutual information between x and z

H(x, z) = H(x) +H(z)− I(x; z).

Pitfalls of in-domain uncertainty estimation
and ensembling in deep learning

(NeurIPS 2019)
Metrics used for uncertainty estimation (log-likelihood,
Brier score, calibration error, AUC) have pitfalls, but
can be fixed.

Neural tangents: fast and easy
infinite neural networks in Python

R. Novak et al. (NeurIPS 2019)
Infinite-width neural nets (Gaussian processes) in
JAX/stax.

Using loss surface geometry
for practical Bayesian deep learning

A.G. Wilson (NeurIPS 2019)
http://losslandscape.com/

A simple baseline
for Bayesian uncertainty in deep learning

W. Maddox et al. (NeurIPS 2019)
SWAG fits SGD iterates with a low-rank + diagonal
Gaussian distribution.

Can you trust your model’s uncertainty?
J. Snoek et al. (NeurIPS 2019)

Measures of uncertainty include the expected calibra-
tion error (ECE), which can be gamed, and proper scor-
ing rules such as the negative log-likelihood, which em-
phasizes tails too much, or the Brier score.
Methods include:
– Post hoc calibration, with temperature scaling;
– Ensembling;
– Monte Carlo dropout;
– Stochastic variational inference;
– Bayesian only in the last layer.
Under distribution shift, post hoc calibration is the
worst, ensembling (with small ensembles: 5) is the
best.

Dropout as a Bayesian approximation:
representing model uncertainty

in deep learning
Y. Gal an Z. Gharhamani (2015)

Dropout performs approximate Bayesian inference.

High-dimensional Bayesian optimization using
low-dimensional feature spaces

R. Moriconi et al. (NeurIPS 2019)
Bayesian optimization in high dimension (d ⩾ 20) can
use a random projection, an additive decomposition
of the objective function, or a nonlinear embedding,
learned with a VAE, progressively, during optimiza-
tion.

X Z X

y

f

BO

Function space prior in Bayesian deep learning
R. Grosse (NeurIPS 2019)

The automatic statistician searches for compositional
GP kernels describing the data (and can output an En-
glish text describing the model): having a better prior
makes it better at extrapolation.
The neural kernel network (NKN) is a neural network
computing (x, y) 7→ k(x, y); each layer combines prim-
itive kernels (or kernels from previous layers), using
additions and multiplications (good for extrapolation
and exploration).
Functional variational BNNs specify a prior on the
stochastic process, not on the weights; variational in-
ference can be done on function (not weight) space.
[GPs are currently still preferable.]

Try depth instead of weight correlation
S. Farquhar et al. (NeurIPS 2019)

The widespread belief that the approximate posterior
for Bayesian neural nets needs correlations between
weights only holds for shallow networks. Even for lin-
ear networks, n ⩾ 3 layers gives a full correlation ma-
trix for the outputs.

Deep generative models
for genetic variation and drug design

D. Marks (NeurIPS 2019)
The alignment and evolution of biological sequences
(mutation, insertion, deletion) can be modeled with
Bayesian VAEs or Bayesian seq2seq models, and be
used to sample from possible future flu viruses to make
vaccines.

Article and book summaries by Vincent Zoonekynd 362/1044

http://losslandscape.com/

x

q(z|x, φ)

z

p(x|z, θ)

VAE

x

q(z|x, φ)

z

p(x|z, θ)

q(θ|φ)

θ

Bayesian VAE

Measure-valued derivatives
for approximate Bayesian inference

M. Rosca et al. (NeurIPS 2019)
Besides the reinforce (score function) and
reparametrization estimators of the gradient of an
expectation

d

dθ
E

x∼pθ
f(x) =

d

dθ

∫
f(x)pθ(x)dx

=

∫
f(x)

dpθ
dθ

dx

=

∫
f(x)

dpθ
dθ

pθ(x)

pθ(x)
dx

=

∫
f(x)

d log pθ
dθ

pθ(x)dx

= E
x∼pθ

[
f(x)∇θ log pθ(x)

]
d

dθ
E

x∼pθ
f(x) =

d

dθ
E
x∼p

f
(
gθ(x)

)
if z ∼ p =⇒ gθ(z) ∼ pθ

the measure-valued derivative is less known
d

dθ
E

x∼pθ
=

∫
f(x)

dpθ
dθ

dx

= cθ
(

E
x∼p+θ

f(x)− E
x∼p−θ

f(x)
)

[when sampling from p+θ and p−θ , use the same ran-
dom numbers, to lower variance] where dpθ/dθ =
cθ(p

+
θ − p

−
θ) is the decomposition of the signed mea-

sure dpθ/dθ into difference of probability measures, up
to a multiplicative factor (e.g., Hahn-Jordan decompo-
sition) [the authors provide a table of such decompo-
sitions]. For instance, for the Gaussian distribution,

d

dµ
φµ,1(x) =

1√
2π

(
W2,.5(x− µ)−W2,.5(µ− x)

)
where W is the Weibul distribution.
This requires no strong assumptions (it works with dis-
crete distributions and discontinuous f), has low vari-
ance, but requires 2 |θ| evaluations of f (in terms of
clock time, the score function with baseline is faster
for |θ| ⩾ 100).

Monte Carlo gradient estimation
in machine learning

S. Mohamed et al. (2019)
Survey article: why we need the gradient

∇θ E
x∼pθ

[
fθ(X)

]

and three ways of computing it: score function
(reinforce), reparametrization (“pathwise”) and
measure-valued.

Information in the weights and emergent
properties of deep neural networks

S. Soatto and A. Achille (NeurIPS 2019)

x z y
n

data representation task

nuisance

Supervised learning looks for a representation z, as
small as possible, i.e., minimizing I(x; z), containing
as much information on the task as the input, i.e.,
I(z; y) = I(x; y). The Lagrangian of the constrained
optimization problem is

L
(
p(z|x)

)
= H(y|z)

crossentropy
+ β · I(z;x).

regularizer

Troublingy, setting z to the index of the image in the
training set is close to optimal (16 bits on cifar): the
Lagrangian should be minimized, not on the training
data, but on the data we do not have yet.
Information is also stored in the weights. However,
since the weights are real, the information is infinite,
and most if it is irrelevant: the relevant information
can be measured by how much noise can be added to
the weights without changing the result (or the drop
in accuracy as a function of noise). More precisely,

Minimize KL
(
q(w|data)‖p(w)

)
Such that E

w∼q(w|data)

[
Ldata(w)

]
⩽ t

with Lagrangian

L = E
w∼q(w|data)

[
Ldata(w)

]
expected loss

+ β ·KL
(
q(w|data)‖p(w)

)
information in the weights

SGD minimizes the Fisher information of the weights.
The distance between two tasks (for transfer learning)
can be defined as

d(D1 → D2) = I(D1D2;w)
complexity of

learning together

− I(D1;w)
complexity of
learning one

Alternatively, on can represent a task with the diagonal
of its Fisher information matrix (task2vec),

d(D1,D2) = cos(F1, F2).

Article and book summaries by Vincent Zoonekynd 363/1044

Understanding
thermodynamic variational inference

R. Brekelmans et al. (NeurIPS 2019)
The thermodynamic variational objective gives a
tighter alternative to the ELBO.

KL

ELBO

q(z|x)

p(z|x)

TVO

πβ(z|x)

GAIT:
a geometric approach to information theory

J. Gallego et al. (NeurIPS 2019)
Shannon entropy considers that all symbols are differ-
ent in the same way. Information theory can be ex-
tended to account for the geometry of the space – like
the Wasserstein distance, but in closed form. Consider
a similarity space (X , κ),

∀x, y 0 ⩽ κ(x, y) ⩽ 1
∀x κ(x, x) = 1

and a probability distribution P on X .

KP (x) = E
y∼p

[
κ(x, y)

]
ordinariness of x

1/KP (x) rarity of x
Hk

1 [p] = E
x∼p

[
− logKP (x)

]
.

It is conjectured that Hk
1 is concave (under reasonable

conditions): we can use −Hk
1 to define a similarity-

sensitive Bregman divergence.

Dk(P‖Q) = 1 + E
x∼P

[
log

KP (x)

KQ(x)

]
− E
x∼Q

[
log

KP (x)

KQ(x)

]

Contrastive predictive coding
A. van den Oord (NeurIPS 2019)

Contrastive predictive coding (InfoNCE, noise con-
trasting encoding) learns to distinguish pairs with the
same label, e.g., (dog1,dog2) from pairs with different
labels, e.g., (dog1,cat2). Labels are not strictly neces-
sary to learn a useful representation: just assume that
nearby patches (of the sound dignal, etc.) are from
the same class (phoneme, speaker, etc.) while other
matches from the dataset are unrelated.

audio signal
encoder

state
AR model

forecasts

Perception as generative reasoning:
structure, causality probability

(NeurIPS 2019)

Discriminative model p(label|image)
Generative model p(image|label)× p(label)

In the generative model, the first factor can include
physics engines and renderers, the second can add
structure, e.g., p(label) = p(label|z)p(z).

image policy action

Discriminative

image model next image

action
Generative

Perception and action
from generative models of physics

K. Smith (NeurIPS 2019)
Perception is inverse optics informed by dynamics.

Worldt Worldt+1 Worldt+2

Imaget Imaget Imaget
perception optics

dynamics

It can be used to keep track of 3D objects nder occlu-
sion.

CvxNet: learnable convex decomposition
B. Deng et al. (NeurIPS 2019)

Vision is inverse graphics: a complex shape can be de-
scribed using simple primitives, e.g., boxes, ellipsoids
or, more generally, convex shapes, defined implicitly as
intersections of half-spaces

Φ(x) = LogSumExp
(
δ(Nx+ d)

)
(softmax).

A (union) of convex shapes can be learnt with a (multi-
headed) auto-encoder.
To convert the implicit representation into an explicit
one (extreme points), compute the convex hull in the
dual (cf. F-Rep, function representation)

→

dual

→

convex hull

→

primal

Article and book summaries by Vincent Zoonekynd 364/1044

Variational graph convolutional networks
E.V. Borilla (NeurIPS 2019)

Graph convolutional networks (GCN) are not robust
to noise in the graph structure:
– Add a prior on the graph structure;
– Use a low rank parametrixation of the variational
posterior

q(A) =
∏
ij

q(Aij)

qij = Bernoulli(Aij , ρij)
ρ: low rank

– Relax the discrete Bernoulli distribution into a “bi-
nary concrete” distribution.

Representation and generation
of molecular graphs

W. Jin (NeurIPS 2019)
(Permutation-invariant) graph neural nets (GNN) are
not expressive enough: they cannot predict girth, cir-
cumference, diameter, total number of cycles, etc. In
practice, we add cycle-related features, e.g., whether
an atom is in an aromatic ring.
View molecules at multiple levels, using a dictionary of
structures,

N S N

N N

N

N

N O
etc.,

which define a coarser graph, and use message pass-
ing, e.g., to forecast molecule properties (data from
the ZINC database).
For de novo molecule optimization, modify an existing
molecule into a new one, usable as a drug, using an
encoder-decoder network, and incrementally construct
the hierarchical graph of the output. Use the EM algo-
rithm to satisfy the specifications: the E step generates
candidates and reweights them, the M step maximizes
the weighted log probability.

input
molecule

target
specification

latent
representation

noise
(for diversity)

output
molecule

Proposal for an open graph benchmark
J. Leskovec (NeurIPS 2019)

PyTorch code available (dgl, pytorch_geometric):
http://ogb.stanford.edu/.

Graph representation learning
for optimization on graphs
B. Dilkina (NeurIPS 2019)

1. Machine learning components can be used inside
optimization algorithms, in particular when we have to

repeatedly solve the same problem with new data. For
instance, one can use reinforcement learning to learn
the scoring function (Q-value function) of a greedy al-
gorithm to solve combinatorial optimization problems
on graphs such as minimal cover (the degree is often
used as a score, but one can do better), maximum cut
or TSP, from the features of the graph – the graph
representation (features) is learnt by structure2vec.
2. Two-stage processes are often suboptimal:

data prediction decision.predict optimize

A pure end-to-end approach is possible, but combi-
natorial optimization complicates things. A simpler
approach is to find a related problem, easier to solve,
and learn a mapping from the original problem to the
simpler one.

incomplete
graph graph graph

partitioningadd missing
edges

community
detection

incomplete
graph

graph
representation

graph
partitioningnode

embedding
k-means

(For the backward pass, only unroll one of the k-means
iterations.)

Deep graph library
Z. Zhang (NeurIPS 2019)

PyTorch library for (message-passing) neural nets.
Also check pytorch_geometric.

Graph networks for learning physics
P. Battaglia (NeurIPS 2019)

Graph networks are a formalism for graph neural net-
works based on learned message passing.

vi, vj : node features
eij : edge features
φ : neural networks
e′ij = φ(eij , vi, vj) edge function

ei =
∑
j

eji aggregation

v′i = φ(ei, vi) node function

They can learn physical systems from observations,
e.g., n-body problems, balls bouncing in a box, springs;
the learned model generalizes to larger systems.
Once they have learned thephysical laws, onee can re-
place the Euler integrator (computing the state of the
system at the next time) with a better one.
Code: graph_net; also check dgl, pytorch_geometric.

Article and book summaries by Vincent Zoonekynd 365/1044

http://ogb.stanford.edu/

Learning DAGs and trees with box embeddings
and hyperbolic embeddings

A. McCallum (NeurIPS 2019)
Knowledge can be represented as raw (indexed) text,
a trained deep learning model (BERT – type 1 reason-
ing) or a knowledge base (KB – type 2 reasoning).
From text, extract entities and relations; put them in
an entity pair × relation matrix, and use classical ma-
trix completion, or “multi-hop reasoning” to infer the
missing relations.
Instead of using actual entity pairs and relations as
rows and columns, use a latent representation: it will
accommodate entities and relations not seen during
training.

entity
pairs

encoder

latent representation

LSTM

relations

Add types to those entities, with a hierarchical struc-
ture (e.g., president⇒ human), learned with a bilinear
model (c′1Ac2 > 0 iff 1⇒ 2, i.e., 1 is_a 2, i.e., 1 ⊂ 2).
To add probabilities to those hierarchical relations
(e.g., P [president ⇒ writer] = .8), do not represent
concepts as points in a vector embedding, but as Gaus-
sian densities, cones or boxes.

herbivore
deer

rabbit

mammal

herbivore

mammal

not closed under
intersections

not disjoint

herbivore

mammal

Those boxes can be transformed with a neural net once
you define addition and multiplication of boxes.

⊕ =

⊗ =

To learn those hierarchies from scratch, embed con-
cepts in Poincaré space: this gives a continuous repre-
sentation of trees.

Representation learning and fairness
S. Koyejo (NeurIPS 2019)

Fairness can be ensured by
– Pre-processing: representation learning, feature ad-
justment, metric learning;

– In-processing: learning with fairness penalties;
– Post-processing: adjustments.
For the preprocessing approach, clearly separate the
roles:
– The data regulator defines the fairness criteria and

audits the sanitized data and the final model;
– The data producer turns the ra data into a fair rep-
resentation;

– The data user uses the sanitized data to fit a model.
There are many, often incompatible, fairness crite-
ria. Individual fairness requires that “similar” indi-
viduals be treated “similarly” – this requires a met-
ric. Group fairness asks that some statistics be equal-
ized across predefined groups, e.g., statistical parity
(TP+FP), equalized odds (TP, FP), equality of op-
portunity (TP). To choose the statistics to equalize,
present the end user with several confusion matrices
and ask her which ones she prefers (metric elicitation).
Group fairness does not imply individual fairness; fair-
ness for attributes A and B does not imply joint fair-
ness for (A,B).
For individual fairness, the regulator can provide sets
of examples which should be treated in the same way,
and the data producer trains a model using

x1 ∼ x2, x1 6∼ x3 =⇒ ‖x1 − x2‖ ⩽ ‖x1 − x3‖ .

For group fairness one can replace the observations
with prototypes ensuring statistical parity.
Disentanglement trains a VAE which separates the
sensitive attributes from the non-sensitive ones.

latent
non sensitive

latent
sensitive

data
non sensitive

data
sensitive

There is a trade-off between accuracy and fairness.
Pay attention to inappropriate data, e.g., feedback ef-
fects.

Synthetic control
A. Abadie et al. (NeurIPS 2019)

To estimate the effects of an intervention from obser-
vational data, in particular when the intervention is
applied to large units (cities, countries) – this is some-
times needed because of fairness considerations or pos-
sible interactions – match each treated unit, not with a
single control, but with a weighted average of controls.
The synthetic control is computed by constrained op-
timization, matching the features of the unit and the
pre-intervention values.

Article and book summaries by Vincent Zoonekynd 366/1044

It may be useful to denoise the time series first,
e.g., with a low-rank approximation, minimizing∥∥∥Ŷ − Y ∥∥∥2

2,∞
rather than

∥∥∥Ŷ − Y ∥∥∥2
F
. This can be gen-

eralized to multiple interventions (“what if unit i had
received intervention j instead of i?”), with a low-rank
tensor decomposition.
Examples include: German GDP after reunification,
smoking regulations in California, UK GDP after
Brexit, cricket results if it had not rained.

Machine learning
for computational biology and health

A. Goldenberg and B. Engelhardt (2019)

Imitation learning
and natural language generation

K. Cho and H. Daumé (NeurIPS 2019)
One can generate text in a non-monotonic order.

The
cat

sat

on

the
mat

.

Deep learning with Bayesian principles
M.E. Khan (NeurIPS 2019)

Deep learning scales well with data and model com-
plexity; Bayesian learning estimates uncertainty and
can be incrementally updated. Bayesian updates are
global; deep learning updates are local.
Consider an exponential family,

q(θ) = exp
[
λ′T (θ)

]
µ = E

[
T (θ)

]
where λ are the natural parameters, T the sufficient
statistic, and µ the expectation parameters. Deep
learning

Minimize
θ

`(θ)

θ ← θ − ρH−1θ ∇θ`(θ)

and Bayesian learning are eerily similar.

Minimize
q

E
θ∼q

[
`(θ)

]
−H(q)

λ← λ− ρ∇µ
(

E
θ∼q

[`(θ)]−H(q)

)
For instance, Bayesian learning with q(θ) = N(m, 1)
and a “global-to-local” approximation E

[
`(θ)

]
≈ `(θ),

gives gradient descent; q(θ) = N(m,S−1) gives New-
ton’s method.

Interpretable comparison
of distributions and models

A. Gretton et al. (NeurIPS 2019)
1. Integral probability metrics (IPM) compare mea-
sures p, q by looking at their difference

IPM(p, q) = sup
g∈H

∣∣∣ E
x∼p

g(x)− E
y∼q

g(y)
∣∣∣

while φ-divergences look at their ratio

D(p, q) =

∫
q(x)φ

(
p(x)

q(x)

)
dx.

If H is the unit ball in a RKHS, the IPM is a maximum
mean discrepancy (MMD)

f(x) =
〈
f, φ(x)

〉
=
∑

fkφk(x)

E
x∼p

[
f(x)

]
=
〈
f, E
x∼p

[
φ(x)

]〉
= 〈f, µp〉

MMD(p, q) = sup
∥f∥⩽1

E
x∼p

f(x)− E
x∼q

f(x)

= sup
∥f∥⩽1

〈f, µp − µq〉

= ‖µp − µq‖

2. To test if two datasets (e.g., cifar-10 and cifar-
10.1) come from he same distribution, compute their
MMD.

MMD(p, q) = ‖µp − µq‖2

= 〈µp, µp〉 − 2〈µp, µq〉+ 〈µq, µq〉
= E

[
〈φX, φX ′〉 − 2〈φX, φY 〉+ 〈φY, φY ′〉

]
= E

[
k(X,X ′)− 2k(X,Y) + k(Y, Y ′)

]
.

When p 6= q, the distribution of M̂MD(p, q) is asymp-
totically Gaussian, but when p = q, it depends on the
kernel and the distribution of the data. Use permuta-
tion testing to select the test threshold; for the kernel,
use a relevant representation ϕ : X → Rd, e.g., a late
hidden layer of a pretrained related classifier,

k(x, y) = ktop
(
ϕ(x), ϕ(y)

)
;

train the kernel to maximize the power
MMD2(p, q)/σH1

(p, q).

nM̂MD2

p = q
p ̸= q Cα

α

Cα power

A classifier to predict if a sample comes from p or q is
a special case.

k(x, y) =
1

4
1f(x)>01f(y)>0

f : X → {±1} classifier
MMD(p, q) =

∣∣accuracy− 1
2

∣∣
Article and book summaries by Vincent Zoonekynd 367/1044

3. The witness function (difference between kernel den-
sity estimates of the two distributions) defines the un-
normalized mean embedding

µp(v) = Ex∼q
[
k(x, v)

]
µq(v) = Ey∼q

[
k(y, v)

]
witness(v) = µq(v)− µp(v)

UME(p, q)2 =
1

J

∑(
µq(vj)− µp(vj)

)2
.

Choose the vj ’s to maximize the (normalized) mean
embedding.
4. The Stein operator

[Tpf](x) =
1

p(x)

d

dx

[
f(x)p(x)

]
E
p
[Tpf] = 0

defines the kernel Stein discrepancy

KSDp(q) = sup
∥f∥⩽1

∣∣∣∣Eq [Tpf]− E
p
[Tpf]

∣∣∣∣
= sup
∥f∥⩽1

E
q
[Tpf],

which can be computed as the norm of the Stein wit-
ness function

g(v) = E
x∼q

[
1

p(x)

d

dx

[
k(x, v)p(x)

]]
which gives a goodness-of-fit test between a model p,
known up to a normalization factor, and samples from
a distribution q.

KSD2
p(q) = ‖g‖

2
= E
q∼q

E
y′∼q

hp(y, y
′)

hp(x, y) = sp(x)
′sp(y)k(x, y)

+ sp(x)
′∇yk(x, y) + sp(y)

′∇xk(x, y)
+ tr∇xyk(x, y)

sp(x) = ∇x log p(x) score function

To select the test threshold, use the wild bootstrap

1

n2

∑
ij

wiwjhp(yi, yj)

where wi = ±1 is Bernoulli(12).
5. The finite set Stein discrepancy test evaluates the
Stein witness function at several points.

FSSD2 =
1

d

1

J

∑
‖g(vj)‖2

Geometric algebra
E. Chisolm (2012)

Vector algebra, i.e., vector manipulations in R3, with
scalar and cross products, looks unsatisfactory: it
seems limited to dimension 3 (what about space-time?)
nd some operations look unnatural (the cross-product

needs a “handedness” convention and is not associa-
tive). Geometric algebra (Clifford algebras) can replae
and generalize it.
A geometric algebra is a graded k-vector space G =
G0 ⊕G1 ⊕ · · · with a (non-graded, non-commutative)
k-algebra structure satisfying properties (i) to (iv) be-
low. A scalar is an element of G0. A vector is an
element of G1. An r-blade is a product of r anti-
commuting vectors. An r-vector is a sum of r-blades.
An r-versor is a product of r vectors. A rotor is a
product of two invertible vectors.
(i) G0 = k.
(ii) The square of every vector is a scalar.
(iii) The symmetrized product of two vectors (u, v) 7→
1
2 (uv+ vu) =

1
2 ((u+ v)

2−u2− v2) is a non-degenerate
bilinear form.
(iv) Gr = span{r-blades}, i.e., the r-vectors are the
homogeneous elements of degree r.
Let 〈·〉r : G→ Gr denote the projection. The product
of Ar ∈ Gr and Bs ∈ Gs is a sum of terms of degrees
|r − s|, |r − s| + 2,…,r + s. One can define inner ad
outer products as the first and last terms:

Ar ⌟ Bs = 〈ArBs〉s−r
Ar ⌞ Bs = 〈ArBs〉r−s
Ar ∧Bs = 〈ArBs〉r+s

Those operations have a simspler form form vectors, or
vectors and versors.

a ⌟ b = b ⌞ a = 1
2 (ab+ ba)

a1 ∧ · · · ∧ ar =
1

r!

∑
σ

sign(σ)aσ(1) · · · aσ(r)

aAr = 〈aAr〉r−1 + 〈aAr〉r+1 = a ⌟ Ar + a ∧Ar
a ⌟ Ar = 1

2

(
aAr − (−1)rra

)
a ∧Ar = 1

2

(
aAr + (−1)rra

)
Ar ⌞ a = (−1)r−1a ⌟ Ar
Ar ∧ a = (−1)ra ∧Ar

Those operations have geometric interpretations:
– a1 ∧ · · · ∧ ar 6= 0 iff a1,…,ar are linearly independent;
– a ∈ Span{a1, . . . , ar} iff a ∧ a1 ∧ · · · ∧ ar = 0;
– a ⊥ Span{a1, . . . , ar} iff a ⌟ (a1 ∧ · · · ∧ ar) = 0;
– Span{a1, . . . , ar} = Span{b1, . . . , br} iff ∃λ a1 ∧ · · · ∧
ar = λb1 ∧ · · · ∧ br;

– Span{a1, . . . , ar} ⊂ Span{b1, . . . , br} iff ∃c c ∧ a1 ∧
· · · ∧ ar = b1 ∧ · · · ∧ br.

Blades correspond to subspaces:
– A ⌟ B = 0 iff ∃a ∈ A a 6= 0, a ⊥ B;
– A ⌟ B is the orthogonal complement of A in B;
– A2 ∈ k;
– A−1 = A/A2;
– A ⊂ B iff AB = A ⌟ B;
– A ⊥ B iff AB = A ∧B.

Article and book summaries by Vincent Zoonekynd 368/1044

One can define many more operations (I is the volume
element).

Grade involution a∗ = −a
A∗r = (−1)rAr

Reversion a† = a

(AB)† = BA

Clifford conjugation A‡ = A∗†

Scalar product A ∗B = 〈A†B〉

Norm ‖A‖2 = A ∗A (can be negative)
Dual A⊥ = A ⌟ I−1 = AI−1

Commutator A×B = 1
2 (AB −BA)

Geometric algebra for computer science
L. Dorst et a. (2009)

Geometric algebra represents geometric objects
(points, lines, planes, circles spheres) and their trans-
formations (translations, rotations, symmetrices, Eu-
clidean transformations, and even conformal transfor-
mations) as elements of a single set endowed with a
dizzying array of products corresonding to geometric
operation. There are three flavours, based on R3, for
linear geometry, on R4, for affine geometry, on R4,1,
for conformal geometry.
The book refuses to give clear, concise definitions of
the operations and sets it uses and only provides ver-
bose lists of special cases from which you are expected
to get the general picture.
The geometric product is defined on

∧
Rn by

x2 = G(x, x) if x is a vector
αβ if α, β are scalars
αx if α is a scalar and x a vector

and extended by distributivity, linearity and associa-
tivity (it is not commutative). For vectors, one can re-
cover the scalar and external products as the symmet-
ric and anti-symmetric parts of the geometric product,

xy = x · y + x ∧ y.

Contrary to the outer product, the geometric product
produces elements of mixed grade.
A k-vector is an element of

∧k
Rn. A k-blade is an

outer product of k vectors (a k-vector is alinear combi-
nation of k-blades). A versor is a product of invertible
vectors. A rotor is the product of and even number of
unit vectors (i.e., reflexions); inRn,0 andRn,1, it is the
exponential of a bivector. Reflexions are x 7→ ax̂a−1;
rotations are x 7→ RxR−1, where R is a rotor, e.g.,
R = b/a.
For affine geometry, let e0, e1, . . . , en be a basis ofRn+1

and use the embedding{
Rn −→ Rn+1∑

i⩾1

aiei 7−→ e0 +
∑
i⩾1

aiei.

For conformal geometry, let e, e1, . . . , en, ē be a basis
of Rn+1,1, set o = 1

2 (e + ē), ∞ = e − ē and use the
embedding{

Rn −→ Rn+1,1

p =
∑
i⩾1

aiei 7−→ o+ p+ p2∞.

Points in Rn are represented by null vectors in Rn+1,1

(i.e., p ·p = 0; o and∞ are also null vectors), and their
product corresponds to the Euclidean distance

p

−∞ · p
· q

−∞ · q
= −1

2
(p− q)2.

A vector v ∈ Rn+1,1 can be interpreted in a dual way,
{x : v · x = 0}: null vectors are points; vectors with
no o component are (dual) planes; in general, they are
(dual) spheres.
Euclidean transformations are versors preservinf ∞.
Lines are elements of the form point ∧ point ∧ ∞
or point ∧ direction ∧ ∞. Planes are of the form
point ∧ point ∧ point ∧ ∞; replacing ∞ with a finite
point gives circles and spheres.

A primer on reproducing kernel Hilbert spaces
A.H. Manton and P.O. Amblard (2015)

A finite-dimensional RKHS is a subspace V ⊂ Rn

endowed with an inner product. Its kernel is the
unique matrix k = (k1, . . . , kn) ∈ Rn×n satisfying the
following three equivalent properties.
(i) The ki are in V and ∀v ∈ V 〈v, ki〉 = e′iv, i.e.,
〈v, ki〉 is the ith coordinate of v;
(ii) k = u1u

′
1 + · · · + uru

′
r where u1, . . . , ur is an or-

thonormal basis of V ;
(iii) The ki’s span V and kij = 〈ki, kj〉.
[Note that we do not need the scalar product of Rn,
only the coordinates.]
Graphically, a RKHS can be represented as the ellip-
soid {v ∈ V : 〈v, v〉 = 1}.
The columns of the kernel can be recovered as follows:
– LetHi = {z ∈ Rn : e′iz = 1} = {z ∈ Rm : zi = 1};
– If V ∩Hi = ∅, let ki = 0;
– Otherwise, let k̃i = Argmin

z∈V ∩Hi
and ki = 〈k̃i, k̃i〉−1k̃i.

A RKHS is a subspace V ⊂ RX , with an inner prod-
uct making it complete (a Hilbert space), such that the
evaluation functionals

evx :

{
V −→ R
f 7−→ f(x),

for x ∈ X, be bounded (i.e., continuous). Since
f 7→ f(y) is continuous, from the Riesz represen-
tation theorem, there exists k(·, y) ∈ V such that
f(y) = 〈f, k(·, y)〉. The kernel k : X × X → R is
positive semidefinite (often, when V is large enough, it
is positive definite). Conversely, a positive semidef-
inite function k : X × X → R defines a RKHS
V = Span{k(·, y), y ∈ X} ⊂ RX .
Here are a few examples.

Article and book summaries by Vincent Zoonekynd 369/1044

– The Paley-Wiener space is the space of band-
limited functions R→ R,

f(t) =
1

2π

∫ a

−a
F (ω)eiωtdω,

F ∈ L2, for the scalar product 〈f, g〉 =
∫∞
−∞ fg; the

kernel is
k(s, t) =

sin
(
a(s− t)

)
π(s− t)

.

– The space of absolutely continuous functions f :
[0, 1]→ R, with f(0) = 0, whose derivative is square
integrable, with the inner product 〈f, g〉 =

∫ 1

0
f ′g′;

the kernel is k(s, t) = Min(s, t);
– The Bregman space is the space of analytic and

square-integrable functions on a domain Ω ⊂ C with
the inner product 〈f, g〉 =

∫
Ω
fḡ; if Ω is the unit disk,

the kernel is

k(z, w) =
1

π

1

(1− zw̄)2
.

The Ramanujan machine:
automatically generated conjectures

on fundamental constants
G. Raayoni et al. (2019)

Given a fundamental constant (e.g., π, e, etc.), find 4
polynomials α, β, γ, δ such that

γ(c)

δ(c)
= GCF(α, β),

where the generalized continued fraction is

GCF(α, β) = α+
β1

α1 +
β1

α2 + · · ·

.

The meet-in-the-middle algorithm estimates the RHS
at low precision, puts the result in a hash table, and
check which LHS match; the precision is progressively
increased.
Surprisingly, gradient descent to minimize∥∥∥∥γ(c)δ(c)

−GCF(α, β)
∥∥∥∥

can also lead to a solution:
– The minima are not isolated points but (d − 1)-

dimensional manifolds;
– All the minima seem to be global, and their error is
zero;

– Start with a large number of point (500);
– Alternate gradient descent steps and “Coulomb re-
pulsion” steps [?]

– To arrive at grid points, use gradient descent for the
function sin2(πx).

One can also allow α and β to be interlaced polynomi-
als (e.g., different polynomials for even and odd terms)
or transform the continued fraction with a simple func-
tion (e.g., x 7→ 1/x).

Algorithms for reinforcement learning
C. Szepesvári (2009)

2. Known MDP. A Markov decision process
(MDP) (X,A, P0) is the datum of a state space X,
a set of actions A, and a mapping P0 : X × A →
P(X ×R) from state-action pairs to probability dis-
tributions on the next state and the reward. If
(Xn+1, Rn+1) ∼ P0(·|Xt, At), the discounted reward
is R =

∑
t⩾0 γ

tRt+1.
An episodic MDP has a terminal (absorbing) state.
A bandit is an 1-state MDP.
A deterministic (resp. stochastic) policy is the choice
of an action for each state, At = π(Xt), resp. At ∼
π(·|Xt).
A Markov reward process (MRP) is an MDP with-
out actions – or, equivalently, with a stationary policy.
The value function of a MRP

V π(x) = E
[∑

γtRt+1

∣∣ X0 = x
]

Qπ(x, a) = E
[∑

γtRt+1

∣∣ X0 = x,A0 = a
]

satisfies the Bellman equation

V π(x) = r(x, π(x)) + γ
∑
y∈X

P (x, π(x), y)V π(y)

= (TπV π)(x).

Likewise, the optimal value function V ∗ (or Q∗) of an
MDP satisfies

V ∗(x) = sup
a∈A

r(x, a) + γ
∑
y∈X

P (x, a, y)V ∗(y)

= (T ∗V ∗)(x).

It can be obtained by value iteration, Vk+1 = T ∗Vk,
or Qk+1 = Q∗Vk.
Policy iteration uses the state-action value function
Q instead of the state value function V and iterates
the following two steps:
– Compute the value Qπk of the policy πk;
– Compute the greedy policy πk+1 for this value func-
tion Qπk .

3. Unknown MDP. The value of a state can be of
independent interest: probability of reaching a state,
or expected time until we reach a state.
TD(0) moves the estimation of the value of the current
state Xt towards a target.

target = Rt+1 + γVt(Xt+1)

δt+1 = target+ γVt(Xt+1)

Vt+1(x) =

{
Vt(Xt) + αδt+1 if x = Xt

unchanged otherwise

The step size αt should satisfy the Robbins-Monroe
condition, e.g., αt ∝ t−η, 1

2 < η ⩽ 1, with η = 1 for
good asymptotic behaviour, and η close to 1

2 for good
small sample properties – and η = 0 in practice.

Article and book summaries by Vincent Zoonekynd 370/1044

TD(0) can be used for off-policy learning.
Every-visit-Monte-Carlo is similar, but the target
is the discounted reward until the end of the episode.
TD(0) converges faster, but struggles with delayed re-
wards.
It is actually not necessary to wait until the end of
the episode: one can keep track of the eligibility f each
state for the next rewards; the eligibility is increased
by 1 eachd time the state is reached and then expo-
nentially decays. TD(λ) lets it decay faster than the
discounting faster; TD(1) is every-visit MC.

δt+1 = Rt+1 + γVt(Xt+1)− Vt(Xt)

zt+1(x) = 1x=Xt + γλzt(x)

Vt+1(x) = Vt(x) + αδt+1zt+1(x)

z0(x) = 0

Variants of the eligibility traces include zt+1(x) =
Max

(
1x=Xt , γλzt(x)

)
, corresponding to first-visit

Monte Carlo – it may perform better. The optimal
value of λ is determined by trial and error.
For large state spaces, the value function can be ap-
proximated from state features, φ(x), e.g., Vθ(x) =
θ′φ(x), with

– φi(x) = exp−η
∥∥x− x(i)∥∥2 for manually-chosen

points x(i) (if these points are model parameters, this
is an RBF network);

– φi’s rescaled so that
∑
φi ≡ 1 (averager);

– Kernel smoothing, spline smoothing, Gaussian pro-
cess (GP) regression, regression tree.

With function approximation, the eligibility traces are
for the coordinates of θ instead of the states, and they
use the gradient ∇θVθ instead of the indicator function
1Xt=x.

δt+1 = Rt+1 + γVθt(Xt+1)− Vθt
zt+1 = ∇θVθ(Xt)|θ=θt + γλzt

θt+1 = θt + αtδt+1zt+1

There is no convergence guarantee for TD(λ) with
function approximation if the model is not linear or
for off-policy learning.
Gradient TD learning directly mininizes the loss func-
tion

J(θ) = ‖Vθ −ΠTVθ‖22
where T is the Bellman operator and Π the best ap-
proximation of its argument in the set of functions con-
sidered. The gradient of J is complicated: write it
using θ and some other quantity w(θ); successively up-
date θ (assuming w fixed) and w. There are several
ways of choosing such a decomposition (GTD2, TDC,
LS, etc.).
4. There are several types of reinforcement learning
problems:
– No interaction: the data has already been collected;

– Active: we can explore freely – the system is running,
but not live yet;

– Online: we already want good rewards – the system
is already live – we can explore, but not as freely as
we want.

For online learning of bandits, ε-greedy (with decreas-
ing ε) or Boltzman exploration π(a) ∝ expβQ(a) are
popular.
UCB1 takes the action with the best upper confidence
bound.

U(a) = r(a) +R

√
2 log t

n(a)

r(a) = average reward for action a
n(a) = number of times action a was chosen
R = variance or range of the rewards for a

For Bernouli rewards, we can explicitly compute the
policy maximizing the expected reward (Gittins index).

R(a) ∼ Bernoulli(pa)
pa ∼ Beta(αa, βa)

αa, βa ∼ some prior

For activelearning of bandits, compute upper and lower
bounds for each action and discard an action a if

Ut(a) < Max
a′∈A
a′ ̸=a

Lt(a
′).

While it is possible to recover a deterministic MDP
(find the closest state with an unexplored action),
there is no known (reasonable) algorithm to recover
a stochastic MDP.
The UCRL2 algorithm, for online learning n MDPs,
constructs confidence intervals for the transition prob-
abilities and the reward function, defining a set Ct of
plausible MDPs, and updates the policy when those es-
timates are precise enough, to maximize the discounted
reward.

π∗,M∗ = Argmax
π policy
M∈Ct

ρπ(M)

4.3 Q-learning is TD(0) for Q instead of V , for off-
policy learning (TD(λ) is on-policy), for ε-greedy or
Boltzman exploration. The MDP can sometimes be
simplified by separating the deterministic effects of an
action from its stochastic effect (“after-effect”).
Q-learning with function approximation is not guaran-
teed to converge for non-linear approximation or off-
policy learning.
4.4 Actor-critic methods generalize policy iteration
(the actor is the policy, the critic the value function):
they update the policy before it has been completely
evaluated; they may oscillate: they keep track of the
best performing policy. SARSA is an extension of

Article and book summaries by Vincent Zoonekynd 371/1044

TD(0) to Q instead of V .

target = Rt+1 + γMax
a′∈A

Q(yt+1, a
′) Q-learning

target = Rt+1 + γQ(yt+1, A
′
t+1) SARSA

The other value estimation algorithms for V can be
extended to Q: TD(λ), LSTD(λ), etc.
The actor is updated less often, either as a greedy
policy (which can be computed on the fly) or, for
parametrized stochastic policies, e.g., Boltzman

πω(a|x) ∝ expw′ξ(x, a),

where ξ are features, or Gaussian,

πω(a, x) ∼ N(gω(x, a), βω(x, a)
2I),

with gradient ascent

∇ωρ = E[G(ω)]

G(ω) =
(
Qπω (X,A)− h(X)

)
ψω(X,A)

ψω = ∇ω log πω score function
h(X) = V (X) or an arbitrary function,

for variance reduction

Reinforce updates the parameters at the end of the
episodes.
The score function can be used as features,

Qθ(x, a) = θ′ψω(x, a).

The natural actor-critic uses the natural gradient but
has simpler updates.

Distral:
robust multitask reinforcement learning

Y.W. Teh et al.
For multitask learning, learn the tasks separately, with
a penalty to make them closer to an average task, com-
puted by distillation.

Large-scale optimal transport
and mapping estimation

V. Seguy et al.
The dual of the regularized Kantorovich relaxation

Minimize
π

pr1∗ π=µ
pr2∗ π=ν

E
(X,Y)∼π

c(X,Y) + εR(π)

with R(π) =
∫ (

log
pπ

d(µ× ν)
− 1

)
dπ

or R(π) =
∫ (pπ

d(µ× ν)

)2

dµdν

is an unconstrained optimization problem

Maximize
u,v

E
X∼µ
Y∼ν

u(X) + v(Y)− Fε
(
u(X), v(Y)

)

which can be solved by stochastic gradient descent, if
u and v are modeled by neural nets (the Sinkhorn al-
gorithm is quadratic and only works with discrete dis-
tributions); the coupling π can then be turned into a
map f (modeled with a neural net and estimated by
SGD) by barycentric projection

f(x) = Argmin
y∈Y

E
Y∼π(X,·)

[
d(z, Y)

]
.

Machine learning applications include domain adapta-
tion (transfer nearning: aligning different datasets),
shape matching, colour transfer, data assimilation
(aligning biased model(s) and data).

Sliced Gromov-Wasserstein
T. Vayer et al.

The sliced Wasserstein distance is the average of
the Wasserstein distance of projections on random 1-
dimensional subspaces.
The Gromov-Wasserstein distance between µ =∑
aiδxi ∈ P(Rp) and ν =

∑
bjδyj ∈ P(Rq) for the

dissimilarity measures

cX : Rp ×Rp −→ R+

cY : Rq ×Rq −→ R+

is

GW2 = Min
π∈Π(a,b)

∑
ijkℓ

|cX(xi, xk)− cY (yj , yℓ)|2 πijπkℓ.

The 1-dimensional uniform case, with squared Eu-
clidean distances, is easy: sort the xi’s and yj ’s (in
increasing or decreasing order, whichever is better).

Pushing the right boundaries matters!
Wasserstein adversarial training

for label noise
B.B. Damodaran et al.

For an observation (y, x), virtual adversarial train-
ing adds a regularization term D

(
pθ(x)‖pθ(x + r)

)
where pθ are the predicted class probabilities (when
computing the gradient wrt θ, fix the first argue-
ment and only differentiate the second) and r, with
‖r‖ ⩽ ε, is the direction in which the divergence in-
creases the most (the dominant eigenvector of the Hes-
sian, D

(
p(x)‖p(x + r)

)
∼ 1

2r
′Hr, obtained by power

iteration – one step is enough).
Replace the KL divergence with the Wasserstein dis-
tance (with entropic regularization), with a cost reflect-
ing similarities between classes (e.g., from word2vec).
The regularization is then more important for classes
that should not be confused, that are less likely to be
affected by noise.
Other ways of dealing with noisy labels include robust
methods, data cleaning (with another network), adding
a noise layer on top of the softmax, and learning the
noise transition matrix.

Article and book summaries by Vincent Zoonekynd 372/1044

The Wasserstein transform
F. Mémoli et al (2019)

A point cloud X ⊂ Rn can be seen as a uniform dis-
tribution α on the metric space (X, d). The local ε-
truncation of α is the probability measure

mε
α(x) ∝ α|Bε(x).

The Wasserstein transform is a new distance on X

dεα(x, y) = dW,1
(
mε
α(x),m

ε
α(y)

)
where dW,1 is the `1 Wasserstein distance. The iter-
ated Wasserstein transform generalizes the mean-shift
algorithm and has a denoising effect.

An introduction to topological data analysis:
fundamental and practical aspects

for data scientists
F. Chazal and B. Michel (2017)

To turn persistence diagrams into features, use persis-
tence landscapes, or build a persistence diagram kernel.

Information-geometric
optimization algorithms:

a unifying picture via invariance principles
Y. Ollivier et al. (2017)

Gradient descent on F (θ) = EX∼pθ
[
f(θ)

]
(where the

pθ are, e.g., Gaussians) converges to a Dirac mass at
the minimum of f :
– Rewrite f using quantiles, to make the algorithm

invariant to monotonic transformations;
– Use the natural gradient;
– Approximate the expectation using quantiles (as
CMA-ES or CEM).

Riemann manifold Langevin
and Hamiltonian Monte Carlo

M. Girolami et al.
The Metropolis-adjusted Langevin algorithm is a
Metropolis-Hastings Markov chain with a drift term
(the Langevin diffusion is unbiased when the step size
tends to zero – for finite step sizes, a MH accept-reject
step isneeded – HMC has the same problem).
One-step HMC updates are Langevin updates.
On a Riemannian manifold, one can leverge the metric:

dθ = 1
2∇θ`(θ) dt+ db flat

dθ = 1
2∇̃` dt+ db̃ Riemann

∇̃` = G−1∇` Natural gradient
db̃ = · · · dt+G−1/2db.

In the Riemannian Brownian motion, the second term
accounts for the curvature, and the first for the change
in curvature.

The Hamiltonian is simpler,

H(θ, p) = −`(θ) + 1
2 log(2π)

D |G|+ 1
2p
′G−1p

dθi
dτ

=
∂H

∂pi
dpi
dτ

= −∂H
∂θi

but the naive discrete integrator is not volume-
preserving: use an implicit integrator instead.

Topological denoising:
strengthening the topological signal

J. Kloke and G. Carlsson (2018)
A few steps of the mean-shift algorithm have a denois-
ing effect on a point cloud X. If there is more noise,
take a subset S0 ⊂ X (e.g., 10%) and progressively
move them in the direction of the gradient of

Fn(x) = fD(x) + ωfSn(x)

where fD and fSn are density estimators (Gaussian,
with the same bandwidth σ) of D and Sn and ω ∈
[.1, .5]. The first term is from the mean-shift algorithm;
the second keeps the points of Sn away from each other.

A topological regularizer for classifiers
via persistent homology

C. Chen et al. (2019)
The topological complexity of the decision bound-
ary f−1(0) of a classifier f : X → R is

∑
c ρ(c)

2

where the robustness ρ(c) of connected component
c of f−1(0) is

Min
{
|f(pc)| , |f(qc)|

}
,

where pc and qc are the critical points corresponding to
the birth and death of the comonent (0th dimensional
persistent homology – the persistence is f(qc)−f(pc)).
It can be used as a regularizer (TDA usually yields
features); to compute its gradient, use a piecewise ap-
proximation of the classifier function.

1 2 3

q1, q2

q3

p1

p2
p3

Connectivity-optimized representation learning
via persistent homology

C.D. Hofer et al. (2019)
Use connectivity-optimized representation learning via
persitent homology.

Article and book summaries by Vincent Zoonekynd 373/1044

On characterizing the capacity of neural
networks using algebraic topology
W.H. Gus and R. Salakhutdinov

The minimum number of neurons depends on the “ge-
ometric complexity” of the dataset. Conversely, the
“topological capacity’ of a neural net can be estimated
with topological data analysis (TDA).

Neural persistence: a complexity measure for
deep neural networks using algebraic topology

B. Rieck et al. (2019)
The neural persistence of a layer is the Lp norm of the
0th homology persistence diagram of the correspond-
ing bipartite graph for the filtration induced by the
weights. Regularized networks (batchnorm, dropout)
have a higher (normalized) persistence.

Weisfeiler-Lehman graph kernels
N. Shervashidze et al. (2011)

The Weisfeiler-Lehman test for graph isomorphism
between G and G′

– Augments the node labels with the (sorted) labels of
the neighbours;

– Compresses the label multisets into shorter labels
(e.g., with a hash function, or with a bijection withJ1, kK);

– Repeats until the label sets of G and G′ differ or a
timeout is reached.

Those new labeled graphs G0, G1, G2, . . . , G′0, G′1, , . . .
can be used to define graph kernels as

h∑
i=0

k(Gi, G
′
i) or k(Gh, G

′
h),

where k is an easy-to-compute kernel, e.g., the number
of matching node labels, or the number of edge pairs
whose extremities have matching labels.

A persistent Weisfeiler-Lehman procedure
for graph classification

B. Rieck et al. (2019)
Label propagation (Weisfeiler test) defines a distance
between adjacent vertices

dh(u, v) = 1ℓh−1
u ̸=ℓh−1

v
+ d(`hu, `

h
v) + 1

where `hu is the label multiset of node u after h steps
and the distance between multisets is the Lp distance
between their count vectors. The distance dh defines
a filtration on the graph, for which we can compute
the persistence diagram, which can be added (at each
step) to the WL features (to define a graph kernel).

A tutorial on variational Bayesian inference
C. Fox and S. Roberts

We want to approximate a probability distribution
P (x), e.g., from a graphical model, P (x) =

∏
I Φ(xI),

with a mean-field approximation, i.e., Q(x, θ) =∏
iQi(xi, θ), by minimizing KL(Q‖P).

KL(Q‖P) =
∫
Q log

Q

P

=

∫
Q(x) log

Q(x)

P (x|data)dx

=

∫
Q(x) log

Q(x)P (data)
P (x, data) dx

=

∫
Q(x) logQ(x)dx−

∫
Q(x) logP (x, data)dx+∫

Q(x)dxP (data)

= −H(Q)−
∫
E(x, data)Q(x)dx+ P (data)

H(Q) = −
∫
Q(x) logQ(x)dx Shannon entropy

E(x, data) = logP (x, data) Energy
L = 〈E〉+H Lower bound on P (data)

Since Q(x) =
∏
iQ(xi), we have H(Q) =

∑
iH(Qi)

and

〈E〉 =
∫
Q(xi)

∫
Q(x̄i)E(x, data)dx̄idxi

=

∫
Q(xi) logZQ

∗(xi)dxi

=

∫
Q(xi) logQ

∗
i (xi)dxi + logZ

where

Q∗i =
1

Z
exp

∫
Q(x̄i)E(x, data)dx̄i.

Therefore,

L = 〈E〉+H

=

∫
Q(xi) logQ

∗
i (xi)dxi + logZ −

∑
j

∫
Q(xj) logQ(xj)dxj

=

∫
Q(xi) log

Q∗i (xi)

Qi(xi)
+ logZ −

∑
j ̸=i

H(Qj)

= −KL(Qi‖Q∗i) + logZ −
∑
j ̸=i

H(Qj).

The lower bound L is maximal when KL(Qi‖Q∗i) = 0,
i.e., when Qi = Q∗i . This gives an EM-like algorithm

Qi(xi)←
1

Z
exp
〈
logP (xi, x̄i|data)

〉
Q(x̄i)

where x̄i = xI\{i} or x̄i = MarkovBlanket(xi).

Article and book summaries by Vincent Zoonekynd 374/1044

Automatic differentiation
variational inference
A. Kucukelbir et al.

Variational inference (VI) requires model-specific
derivations and implementations, but the gradient of
the VI objective can be written as an expectation (in-
volving ∇θpθ(x), which can be computed by auto-
matic differentiation (AD)) over the variational distri-
bution qϕ and approximated with Monte Carlo meth-
ods (ADVI). ADVI is not limited to mean-field ap-
proximations: full-rank approximations do not under-
estimate the posterior variance as much.
Examples include nonnegative matrix factorization,
e.g., Gamma-Poisson

θuk ∼ Gamma(a, b)
βik ∼ Gamma(c, d)
yui ∼ Poisson(θ′uβi)

or Dirichlet-exponential-Poisson

θu ∼ Dir(α)
βik ∼ Exp(λ)
yui ∼ Poisson(θ′uβi)

and models with a sparsifying automatic relevance de-
termination (ARD) prior, e.g., a linear model

σ ∼ InvGamma(a, b)
αi ∼ Γ(c, d)

wi ∼ N(0, σ2/αi)

ε ∼ N(0, σ2)

y = w′x+ ε

or probabilistic PCA (PPCA), or supervised PPCA.

Deep set prediction networks
Y. Zhang et al.

To provide sets as input to a neural network, use an
invarint function {xi}i 7→

∑
i g(xi), where g is a neural

net.
To compare sets, use an optimal alignment

`(ŷ, y) = Min
σ∈Sn

‖ŷ − σ · y‖2 .

To output sets, decode the latent representation into
the set whose encoding is closest to the desired la-
tent representation (this requires an optimization). For
variable-sized sets, pad the sets to a fixed size and add
a mask feature.
This can also be used for an autoencoder.

{xi}i 7−→ z =
∑
i g(xi) 7−→ Argmin{yi} ‖x−

∑
g(yi)‖2

x =
∑
i g(yi) ←− [{yi}i

Provably robust deep learning
via adversarially trained smoothed classifiers

H. Salman
Randomized smoothing transforms a classifier to
retain the most likely class in a neighbourhood of the
query

g(x) = Argmax
c

P
ε∼N(0,σ2I)

[
f(x+ ε) = c

]
;

it makes the classifier robust to random (non-
adversarial) perturbations.
It can be generalized to soft classifiers, which output a
probability distribution on classes rather than a single
class.
Adversarial training uses the gradient at adversarial
perturbations instead of the actual observations; It can
be applied to smoothed (soft) classifiers.

Kervolutional neural networks
C. Wang et al.

The convolution f(x) = x ∗w = (〈x(i), w〉)i, where x(i)
is the circular shift of x by i elements, can be kernalized

g(x) = x⊛ w =
(
〈φ(x(i)), φ(w)〉

)
i
=
(
κ(x(i), w)

)
i

where κ is a fixed kernel (polynomial or RBF).

DeepRED: deep image prior powerd by RED
G. Mataev et al. (2019)

The deep image prior (DIP) addresses inverse imag-
ing problems (denoising, deblurring, inpainting, super-
resolution, tomographic reconstruction) with a neural
net Tθ:

Find x reconstructed image
θ model parameters

To minimize ‖Hx− y‖22
Such that x = Tθ(z)

where H is the (known) corruption (the identity for
denoising, a convolution for deblurring, etc.), y is the
corrupted image and z a fixed random vector.
While this already provides an implicit regularization,
one can add an explicit regularization and minimize

‖Hx− y‖22 + λx′(x− f(x))

where f is a fixed denoiser (for a reasonable choice of
f , the gradient of the regularizer has a simple form,
x− f(x)).

Visualizing and measuring
the geometry of BERT

A. Coenen et al.
BERT provides contextual word embeddings whose
(squared) distance matches the distance on the parse

Article and book summaries by Vincent Zoonekynd 375/1044

tree; the attention matrices contain similar infor-
mation. Any tree has a power-2 embedding (i.e.,
‖f(x)− f(y)‖2 = d(x, y)) in Rn−1:

f(t0) = 0

f(ti) = e1 + f
(
parent(ti)

)
where the ei’s form an orthonormal basis (or are ran-
dom unit vectors in a high-dimensional space). The
semantic information of the embeddings and the pol-
ysemy of the words can be visualized by selecting a
word, picking 1000 Wikipedia sentences containing it,
computing the embeddings, and plotting them with
UMAP.

MixMatch: a holistic approach
to semi-supervised learning

D. Berthelot et al.
To leverage unlabeled data, semi-supervised learning
can use
– Consistency regularization, to ensure the output
of the classifier remains the same after data aug-
mentation (image patches, orientation, defrmations,
noise, etc.),

– Entropy minimization, to prevent the decision
boundary from going through high-density regions,
by minimizing the entropy pmodel(y|x) for unlabeled
data,

in addition to the traditional (supervised) regulariza-
tions:
– L2 regularization, often implemented as a weight

decay, to prevent the model from memorizing the
training data;

– MixUp, which trains the model on convex combi-
nations of inputs and labels.

MixMatch combines those ideas:
– Data augmentation on both labeled and unlabeled
data;

– Label distribution geuss for unlabeled observations
by averaging the predicted distributions after data
augmentation;

– Distribution sharpening, qi ∝ p1/Ti , T < 1;
– Train the model on convex combinations of labeled
and/or unlabeled observations, but with a different
loss function depending on whether the labeled or
unlabeled observation is closer.

Phase transitions of spectral initialization
for high-dimensional nonconvex estimation

Y.M. Lu and G. Li
Phase retrieval is the problem of estimating ξ given
noisy measurements yi = (a′iξ)

2 + εi; more gener-
ally, one may want to estimate ξ from measurements
yi ∼ f(·|a′iξ).
Spectral initialization suggests to initialize ξ to the
first eigenvector of the variance matrix of the ai’s [i.e.,
where the information is the “densest”: that is not

where the solution is, but that is where you will see
the most clearly where to go – provided there is enough
data].

Stochastic bouncy particle sampler
A. Pakman et al.

The Bouncy particle sampler (BPS) samples from
p(w) ∝ e−U(w), w ∈ Rf , by adding a random velocity
vector v ∈ Sd−1

– w follows the direction v (straight lines);
– v is relected along∇U⊥, following an inhomogeneous
Poisson process of intensity λ = (v · ∇U)+:

v ← v − 2
v · ∇U
‖∇U‖2

∇U ;

– Occasionally resample v to ensure ergodicity.
With noisy gradients, the Poisson intensity becomes
stochastic (doubly stochastic process, aka Cox process)
– the bounces are more frequent and mixing is slower.
To sample from it, find an upper bound on λ, e.g.,
using a local regression λ ∼ t.
(Zig-zag Monte Carlo is similar, with v ∈ {±1}d,
andonly changes one coordinate at a time.)

The bouncy particle sampler:
a nonreversible rejection-free

Markov chain Monte Carlo method
A. Bouchard-Côté et al. (2018)

Adaptive hard thresholding
for near optimal consistent robust regression

A.S. Suggala et al. (2019)
Robust linear regression by discarding observations
with “large” residual:
– Iteratively estimate the regression coefficients on the
set of uncorrupted observations;

– Use an adaptive threshold to detect outliers;
– Add some noise when decising whether to include an
observations.

The (slower) Huber loss also works well.

The cult of statistical significance
S.T. Ziliak and D.N. McCloskey (2009)

The p-value is easy to compute, but it is not the loss
function you want – prefer something involving the ef-
fect size. For instance, X1 ∼ N(µ = 5, σ = 0.5) has
a better p-value than X2 ∼ N(µ = 20, σ = 10), 10−23
versus 10−1 (for H0 : X > 0), but P (X1 > X2) =
0.07...

Uncertainty propagation
with functionally correlated quantities

M. Giordano (2016)
The Mesurements.jl uncertainty propagation package
handles functional correlations, i.e., deterministic rela-
tions y = f(x); for instance, given x = x0 ± σ, it
estimates x− x = 0± 0, not x− x = 0± 2σ.

Article and book summaries by Vincent Zoonekynd 376/1044

On cross-validation
for sparse reduced-rank regression

Y. She and H. Tran (2018)
Consider a jointly sparse and low-rank linear model

Yn

m

= Xn

p

× Bp

m

+ ε

where B is both low-rank and row-sparse (some of the
rows are zero).
To choose the regularization parameters, e.g., λ for the
lasso, one can use cross-validation
– On λ, the scale of the penalty λ ‖β‖1, but a different

number of variable may be selected in different folds;
– Or on c, the corresponding constraint ‖β‖1 ⩽ c, but
this is difficult to solve.

Instead, use cross-validation on both
– Which variables are retained by the model;
– The (low-rank) subspace spanned by the coefficient
matrix

(each can be encoded as a matrix, S and U , which can
be ecovered from their product SU).
[I am not sure how to use that in practice: with λ, we
can just try a few values, on a grid, but here, we have
a combinatorial choice (p! subsets of predictors) and a
subspace.]
The optimal rank and sparsity can be estimated using
– Some information criterion (AIC, BIC, etc. – but it
is not clear which one to use);

– Or cross-validation.

Natural analysts in adaptive data analysis
T. Zrnic and M. Hardt

Data analysis is no longer limited to 1- or 2-step
procedures (statistical tests, post-selection inference):
by progressively interrogating the data, the analyst’s
knowledge evolves – it is a discrete dynamical system.
Differential privacy can help limit overfitting.

Minimax optimal rates
for Mondrian trees and forests

J. Mourtada et al. (2018)
A Mondrian process is a distribution on infinite nested
trees (partitions of [0, 1]d) defined from iid sequences
of random variables e ∼ Exp(1) used to select the di-
mension to split, by comparing it with the side lengths
of the box to split

τi =
ei

lengthi
i = Argmin

i
τi τ = Min

i
τi,

and u ∼ U(0, 1) usd to choose the threshold to split. A
Mondrian forest is a purely random forest whose trees
are sampled from a Mondrian process.

Implicit generation and modeling
with energy-based models

Y. Du and I. Mordatch
Energy-based models, p(x) ∝ e−E(x), E unknown, can
be estimated by MCMC

`(θ) = E
x∼data

[
− log pθ(x)

]
= E
x∼data

[
Eθ(x)− logZ(θ)

]
∇`(θ) = E

x+∼data

[
∇θEθ(x+)

]
− E
x−∼pθ

[
∇θEθ(x−)

]

Meta-learning how to forecast time series
T.S. Talagala et al. (2018)

Train a random forest to forecast the best time series
forecasting algorithm (SARIMA, exponential smooth-
ing, random wallk) using time series features (length,
trend, seasonality, linearity, curvature, spikiness, au-
tocorrelation, stability, lumpiness, spectral entropy,
Hurst exponent, nonlinearity test, ETS model param-
eters, unit root tests). Implementation: seer.

On fast convergence of proximal algorithms
for SQRT-lasso optimization:

don’t worry about its nonsmooth loss function
X. Li et al.

The optimal regularization parameter for the lasso re-
gression depends on the noise variance

Argmin
θ

1

n
‖y −Xθ‖22 + λ ‖θ‖1 λ ≈ σ

√
log d

n

while that for the sqrt-lasso (whose loss function is
the unsquared `2 norm) does not

Argmin
θ

1√
n
‖y −Xθ‖2 + λ ‖θ‖1 λ ≈

√
log d

n
.

The proximal Newton algorithm solves this problem
by using a second order expansion of the loss function
(leaving the penalty intact)

`(θ) =
1√
n
‖y −Xθ‖2 + λ ‖θ‖1

Q(θ, θt) = `(θt) +∇`(θt)′(θ − θt) + 1
2 (θ − θt)

′∇2`(θt)(θ − θt)
θt+0.5 = Argmin

θ
Q(θ, θt) (coordinate descent)

θt+1 = θt + ηt(θt+0.5 − θt) (line search)

where the line search halves ηt until `(θt+1) ⩽ `(θt).
The proximal gradient algorithm uses a coarser
quadratic approximation

`(θ) = `(θt) +∇`(θt)′(θ − θt) + 1
2L ‖θ − θt‖

2
2 + λ ‖θ‖1

where L is obtained by line search.
Pathwise optimization, i.e., a decreasing sequence
of regularization parameters ending at the desired one,
helps yield sparse solutions.

Article and book summaries by Vincent Zoonekynd 377/1044

Two-player games for efficient
non-convex constrained optimization

A. Cotter et al. (2018)
To solve a constrained, non-convex optimization prob-
lem, with non-differentiable (step function) constraints
(e.g., in fair machine learning)

Find θ
To minimize f(θ)
Such that ∀i gi(θ) ⩽ 0,

consider the Lagrangian

L (θ, λ) = f(θ) +
∑
i

λigi(θ) (λi ⩾ 0)

and a diferentiable proxy

L̃ (θ, λ) = f(θ) +
∑
i

λig̃i(θ)

and alternate

θ ← Argmin
θ

L̃ (θ, λ)

λ← Argmin
λ⩾0, ∥λ∥⩽R

L (θ, λ)

(we can compute the partial gradient ∂L /∂λ of the
originalLagrangian, even if the gi’s are not differen-
tiable: only ∂L /∂θ is problematic).
Keep the whole optimization history:

E
θ∼Unif({θ1,...,θT })

[
g(θ)

]
is close to the minimum of g (there is no pure Nash
equilibrium: all we canhope for is an approximation of
a mixed Nash equilibrium).
(It is possible to reduce the number of points to m+1,
where m is the number of constraints, with a siimple
linear program.)
Implementation in Tensorflow

Accelerated extra-gradient descent:
a novel accelerated first-order method

J. Diakonikolas and L. Orecchia
Nesterov accelerated gradient descent can be inter-
preted as an explicit Euler discretization followed by
a correction of the discretization error; insted, one can
use an implicit Euler discretization.

Learned primal-dual reconstruction
J. Adler and O. Öktem

In the primal-dual optimization used to solve ill-posed
problems (such as tomography) with a regularizing
prior (total variation, TV), replace the proximal op-
erator with a learned reconstruction operator, thereby
combining deep-learning and model-based reconstruc-
tion.

Bridging the gap between constant step size
stochastic gradient descent and Markov chains

A. Dieuleveut et al.
Averaged (Cesàro) constant-step-size stochastic gra-
dient descent (SGD, Robins-Monro) benefits from
Richardson-Romberg extrapolation.

Provable certificates for adversarial examples:
fitting a ball in the union of polytopes

M. Jordan et al.
The pointwise robustness of a classifier is the radius of
the largest `p ball centered at an input point x0 for
which the model output reains unchanged.
The Chebychev center of a polytope is the cener of the
largest `p ball fitting inside it.

Spectral normalization
for generative adversarial networks

T. Miyato et al. (2018)
Ensure the gradient of the discriminator remains
bounded by normalizing each layer: divide each weight
matrix W by its largest singular value (spectral norm,
σ(W)); the Lipschitz constant of the nonlinearities is
often 1.

Face aging
with conditional generative adversarial

networks
G. Antipov et al.

– Train a conditional GAN,

(age category, noise) 7−→ image

(they use 6 age categories);
– Train an auto-encoder to learn the inverse mapping

(age, latent) 7−→ image 7−→ (age, latent)

minimizing the Euclidean distance between the la-
tent representations;

– Improve the latent representation by minimizing
the distance between the embedding of the original
and reconstructed image for a face recognition net
(FaceNet);

– Change the age and re-generate the image.

Boosted generative models
A. Grover and S. Ermon

Boosting (multiplicative rather than additive) applied
to the generator and/or the discriminator of a GAN.

GANSynth: adversarial neural audio synthesis
J. Engel et al. (2019)

Divide time into frames and generate, for each of them,
a spectrogram, with log-amplitudes and (unwrapped)
phases (the phase is needed to ensure a continuous
signal; the unwrapped phase is smooth); train on the
NSynth dataset (musical notes).

Article and book summaries by Vincent Zoonekynd 378/1044

Harmonizing maximum likelihood with GANs
for multimodal conditional generation

S. Lee et al. (2019)
Conditional GANs are often trained with a loss com-
bining minimax

Min
G

Max
D

E
x,y∼data

logD(x, y)+ E
x∼label
y∼noise

log
(
1−D(x,G(x, z))

)
and reconstruction

E
x,y∼data
z∼noise

‖y −G(x, z)‖pp

which worsens mode collapse.
Replace the reconstruction loss with a moment re-
construction loss: have the generator generate a set
of samples, compute its moments µ, σ, and use a Gaus-
sian (or Laplace) MLE loss

E

[
(y − µ)2

σ2
+

1

2
log σ2

]
.

Adversarial examples are not bugs,
they are features

A. Ilyas et al.
The usefulness and robustness of a features f are

ρ(f) = E
x,y

Cor
(
y, f(x)

)
γ(f) = E

x,y
Cor

(
y, f(x+ δx)

)
where δ)x is an adversarially chosen perturbation,

δx = Argmin
δ∈∆

y · f(x+ δ)

and y ∈ {0, 1}.
A robust model can be trained by minimizing the dver-
sarial loss

E
x,y

Max
δ∈∆

Loss(x+ δ, y)

instead of Ex,y Loss(x, y).
Build a dataset of similar images using only useful ro-
bust features

x 7→ xr ∈ Argmin ‖g(xr)− g(x)‖

where g is the penultimate layer f a robust model and
the optimization starts with noise.
Build a dataset of similar images using only useful non-
robust features

x 7→ xa = Argmin
x′ : ∥x′−x∥≤ε

Loss(x′, y′)

where the loss is non-robust and the new class y′ is
chosen at random.
Non-robust models trained on those datasets have good
performance: the existence of adversarial examples is
a property of the dataset, not of the model – adver-
sarial examples often transfer to other, independently-
trained models.

The Riemannian geometry
of deep generative models

H. Shao et al.
Stochastic gradient descent can compute (discretized)
geodesics (and parallel transport) of the data manifold
of variational autoencoders (VAE) (the gradient of the
decoder is expensive to compute, but that of the en-
coder suffices): it appears flat.

Optimizing the latent space
of generative networks

P. Bojanowski et al.
Learn a GAN without a discriminator (or an autoen-
coder with an unconstrained encoder):

Argmin
θ

Mean
x∈Data

Min
z∈Ball

Loss
(
gθ(z), x

)
.

To avoid blurry images, use the Laplacian pyramid
Lap1 loss.

Good semi-supervised learning
that requires a bad GAN

Z. Dai et al. (2017)
GANs can be used for semi-supervised learning: the
discriminator tries to forecast the class the sample
comes from for labeled or unlabeled data, and a (k +
1)st class for generated samples – the objective function
has three terms, labeled, unlabeled and generated.

E
(x,y)∼labeled

logPD[y|x, y ⩽ k] +

E
x∼unlabeled

logPD[y ⩽ k|x] +

E
x∼PG

logPD[y = k + 1|x]

With a perfect generator, the GAN performs no better
than supervised learning. Instead, use a discriminator
of the form PD(k|X) ∝ exp

(
wkf(x)

)
for some features

f , with support in {z : ∀k pk(z) ⩽ εk} where pk is the
distribution, on feature space, of class k.

Approximation and convergence properties
of generative adversarial learning

S. Liu et al. (2017)
GAN-style algorithms are of the form

inf
ν

sup
f∈F

E
x∼µ
y∼ν

[
f(x, y)

]
,

i.e., infν τ(µ‖ν) for an adversarial divergence on X

τ(µ‖ν) = sup
f∈F

E
µ⊗ν

[f],

for some F ⊂ Cb(X2).
For limited-capacity discriminators, the set of distribu-
tions µ∗ minimizing τ(µ‖µ∗) is the set of distributions
with generalized moments (depending on τ) matching
those of µ.

Article and book summaries by Vincent Zoonekynd 379/1044

Learning to discover cross-domain relations
with generative adversarial networks

T. Kim et al.
To convert images from one domain to another(e.g.,
bags to shoes), without paired data:

Dom1 G12 Dom2 G21 Dom1

D1 adversarial loss
D2 adversarial loss

Dom2 G21 Dom1 G12 Dom2

reconstruction loss

The measure of intelligence
F. Chollet

Intelligence is not “skill”, but “skill-acquisition effi-
ciency”: the ability to turn prior knowledge and train-
ing data into skill.
For humans, priors (Core Knowledge) include object-
ness (elementary physics: the world is made of objects),
agentness (goal-directedness), numbers and geometry.
Intelligence could be defined, for a fixed level of skill,
as

Intelligence = Skill×Generalization Difficulty
Prior× Experience ,

averaged over training datasets (curriculum) and tasks.
The factors can be defined from information theory
(Kolmogorov complexity).

Difficulty =
H(Solution |Optimal solution)

H(Solution)

Prior = 1− H(Solution)
H(Solution | Initial State)

Experience = H(Solution | IS)−H(Solution |Data).

The abstraction and reasoning corpus (ARC) contains
1000 tasks, each with 3 or 4 examples, one test, and
allows for 3 trials. The task is to complete a grid, using
geometric principles not explicitly stated, from a few
examples. Humans can solve the problems without any
training – the geometric prior suffices.
Alternatives include video games (train on a level and
test on others, train on a gome and test on other simi-
lar games) or data science competitions (train on a few
Kaggle dataset, test on others).

Universal intelligence:
a definition of machine intelligence

S. Legg and M. Hutter (2007)
Definite the intelligence of a reinforcement learning al-
gorithm π as its expected value,

Υ(π) =
∑
µ∈E

2−K(µ)V πµ ,

where E is the set of environments to test and K(µ)
the Kolmogorov complexity (approximated by the min-
imum description length and the running time) of en-
vironment µ (simple environments are more probable)

Deep lattice networks
and partial monotonic functions

S. You et al (2017)
Lattices (interpolated lookup tables, which can easily
enforce monotonicity constraints) and calibrators (1-
dimensional lattices) can be used as layers and activa-
tion functions.

Scaling limits of wide neural networks
with weight sharing: Gaussian process

behaviour, gradient independence
and neural tangent kernel derivation

G. Yang
Infinitely large, 1-layer neural nets with random
weights are Gaussian processes.

Identity crisis:
memorization and generalization

under extreme overparametrization
C. Zhang

When asked to reconstruct a single example,
– Some networks (FC) learn the constant function
(memorization);

– Some (shallow CNN) learn the identity function
(generalization).

Spectrally-normalized margin bounds
for neural networks
P.L. Bartlett et al.

The spectral complexity of a network is

R =
(∏

ρi ‖Ai‖σ
)(∑ ‖A′i −M ′i‖

2/3
2,1

‖Ai‖2/3σ

)3/2

where ρi is the Lipschitz constant of the nonlinearity of
layer i, ‖Ai‖σ is the spectral norm of the weight matrix
Ai, Mi is a reference matrix (e.g., Mi = 0, or Mi = I
for ResNets), ‖A‖p,q is the (p, q) matrix norm∥∥∥(‖A•1‖p , . . . , ‖A•m‖p

)∥∥∥
q
.

It is lower for networks that generalize better. For mul-
ticlass classification, we expect the normalized marin

f(x)y −Max
i ̸=y

f(x)i

R · ‖x‖2 /n

to increase as generalization improves.

Article and book summaries by Vincent Zoonekynd 380/1044

Not all samples are created equal:
deep learning with importance sampling

A. Katharopoulos and F. Fleuret
When training a neural net, importance sampling helps
focus the computations on informative examples, but
the importance, the per-sample gradient, is expensive
to compute – try

∥∥∇xLi Loss∥∥ instead, where i is the
sample and xL the activation of the last layer.

Deep, skinny neural networks
are not universal approximators

J. Johnson (2019)
Skinny networks (the dimension of the hidden layers
never exceeds that of the input) cannot approximate
functions with a level set containing a bounded con-
nected component.

PaperRobot:
incremental draft generation of scientific ideas

Q. Wang et al.
Extract entities (gene, disease, chemical) and relations
(marker, therapeutic, increased expression, etc.) from
research papers to build a knowledge graph (KG); use
both graph structure and contextual (text) embed-
dings of the nodes to forecast missing links; use them
to automatically write papers: entities+relations→ ti-
tle → abstract → conclusion and future work → next
article → etc.

Attention is not explanation
S. Jain and B.C. Wallace

Attention weights need not be correlated with impor-
tance measures: it is possible to change them to mean-
ingless ones without impacting performance.

Are sixteen heads really better than one?
P. Michel et al.

Multiple attention heads (in transformer networks,
e.g., BERT) are useful during training but most layers
can be pruned to a single head without a significant
drop in performance.

Fair is better than sensational:
man is to doctor as woman is to doctor

M. Nissim et al. (2019)
The code used to compute analogies of the form
“doctor + woman −man = nurse” excludes one of the
inputs (“doctor”) and even similar items (“gynecolo-
gist”, etc.).

A kernel for time series
based on global alignments

M. Cuturi at al. (2006)
Dynamic time-warp (DTW), Smith-Waterman local
alignments and edit distance do not readily lead to a
positive definite kernel.

Gaussian and polynomial kernels are not satisfactory
either: they cannot deal with time series of different
lengths and ignore the time series structure.
Taking the best alignment (with no gaps but possible
repetitions: gaps make more sense for biological se-
quences, repetitions for time series, e.g., speech) does
not give a positive definite kernel, but combining them
all often does:

S(π) = score of alignment π

κ(x, y) =
∑
π

eS(π)

=
∑
π

exp
∑
i

φ(xπ1(i), yπ2(i))

=
∑
π

∏
i

expφ(xπ1(i), yπ2(i)).

The kernel can be computed in |x| · |y| iterations by
dynamic programming (as for DTW).

Natural language understanding
C. Potts et al. (2019)

Vector space models require several choices:
– Design matrix: word×document, word×word,
word×context, etc.;

– Reweighting, to “de-emphasize the mundane and the
quirky”: probabilities, length normalization, TF-
IDF, PMI, PPMI, T-test (prefer PMI);

PMI = log
observed
expected = log

Xij

Xi•X•j/X••

– Dimension reduction: PCA, LSA, PLSA, LDA,
NMF, etc.

– Vector comparison: Euclidean, cosine, Dice, Jac-
card, KL, etc. (prefer cosine).

Large, flat windows capture semantic information,
small, scaled windows syntactic (collocational) infor-
mation.
GloVe learns word vectors such that

〈u | v〉 ∝ P (u, v);

more precisely, they minimize∑
ij

f(Xij)(w
′
iw̃k + bi + b̃k − logXik)

where f(x) = Min{(x/xmax)
α, 1}, xmax = 100, α =

.75.
Word2Vec learns word embedings such that

P (b|a) ∝ exp(wawb).

Maximizing the likelihood is problematic because of
the denominator,

Argmax
x,w

∑
a∼b

log
exp(xawb)∑
c exp(xawc)

.

Article and book summaries by Vincent Zoonekynd 381/1044

Instead, use noise contrastive estimation∑
a∼b

− log σ(xawb) +
∑
a,b

log σ(xawb).

Retrofitting modifies the word vectors to incorporate
information (e.g., sentiment, WordNet) from a knowl-
edge graph.

Minimize
q

∑
i∈V
‖qi − q̂i‖2 +

∑
(i,j)∈E

βij ‖qi − qj‖2

To compare models, use the Wilcoxon signed rank test,
if you run several experiments, or the McNemar, to
compare confusion matrices, if you cannot.
Features for sentiment analysis could include: bag of
subparts (subtrees with at most k leaves), negation
(add _neg to all the tokens until the end of the sub-
tree – idem for other modifiers: might, etc.), lexicon-
derived features, modal adverbs (totally, quite possi-
bly, etc.), non-literal language, character n-grams, tf-
idf, part-of-speech, sentence length, GloVe, etc. Use
BERT (pretrained and fine-tuned) or a BiLSTM with
subtree labels, or manual features
Distant supervision builds training data for the relation
extraction problem from a knowledge base (database of
known relations), assuming that, for each known rela-
tion, any sentence mentioning both entities expresses
that relation.
For natural language inference (entailment), try the
following features: words tat appear in both clauses,
words that appear in either clause, wordnet features
(pairs of words, in the first and second clause, with
w1 ≽ w2 or w1 ≼ w2, edit distance, negation, models,
quantifiers (every, some), named entities.
Given the hidden states for the words in the first, resp.
second, clause, h1, h2, h3, resp. hA, hB , hC , the at-
tention mechanism is

Scores α̃ = [h′Ch1;h
′
Ch2;h

′
Ch3]

Attention α = softmax α̃

Context κ = mean(α1h1, α2h2, α3h3)

Combination h̃ = tanh
(
[κ;hC]W

)
Classifier y = softmax(h̃W + b).

Other score functions are possible: h′Chi, h′CWhi or
W [hC ;hi].
Language understanding requires grounding: many ut-
terances depend on the context (“there aren’t any”), so
do answers (“Where are you from?”) and even modals
(is “The door must be open” a rule or a deduction?).
In the rational speech act (RSA) model, the listener
has a model of how the speaker thinks, and conversely.

`0(world|text) ∝ language(text,world) · P (world)

s1(text|world) ∝
(

`0
C(word)

)λ
`1(world|text) ∝ s1(text|world)P (world)

literal listener = lexicon× prior
pragamatic speaker = literal speaker−message costs
pragamatic listener = pragmatic speaker× prior

Semantic parsing transforms text into a formal lan-
guage, suitable for constraint satisfaction solvers.
Thr Fβ evaluation metric is a weighted harmonic aver-
age of recall (weight β2) and precision (weight 1); use
β = 1 or 0.5; for multiclass classification, the macro Fβ
is the (unweighted) average of the Fβ ’s for each class.
Check if your model perfroms well in an adversarial
setting:
– Add a misleading sentence to the input;
– Replace a word with synonym, a more general word,
a comparable word (co-hyponym);

– Swap subject and object;
– Move an adjective to another noun phrase;
– Add negations; add a negation and swap subject and
object (contrapositive).

Easy data augmentation uses simple changes:
– Synonym replacement;
– Random insertion: take a word in the sentence and
put another copy of it somewhere else;

– Random swap;
– Random deletion.
Back-translation also provides data augmentation.
Language models provide contextual embeddings:
– ELMo, a biLSTM with highway layers to forecast
the next word

– Transformers use muti-headed self-attention, poition
embedding, dropout, residual connections and layer
normalization

– BERT is a masked language model, with a small
vocabulary (subwords), position embedding, using
CNNs with several perceptive fields and max pool-
ing.

To probe black-box models, take the word or sen-
tence representation and check if you can predict, with
a shallow network: sentence length, which word is
present, tense, POS, named entities, semantic informa-
tion (anything from WordNet, sentiment, entailment,
etc.), tense. Alternatively, change something in the
sentence (tense, word order by swapping two consecu-
tive words) and see how the representation changes.

Linear algebraic structure of word senses, with
applications to polysemy

S. Arora et al.
Use sparse coding (and alternating minimization) to
decompose a given word embedding w 7→ vw into dis-
ambiguated embeddings, αw,iAi,

vw =
∑
i

αw,iAi + noise

where the αw,· are sparse; the Ai’s are the contexts
(“atoms of discourse”).

Article and book summaries by Vincent Zoonekynd 382/1044

Contextual string embeddings
for sequence labelings

A. Akbik et al.
A character-level (BiLSTM) language model provides
contextualized word embeddings (somehow aggregate
the hidden states corresponding to the word letters),
which can be fed to another BiLSTM for named entity
recognition (NER) or some other labeling task.

Machine translation
with weakly paired bilingual documents

(2019)
Use weakly-aligned documents (e.g., matching
Wikipedia articles) to train a machine translation
model: find matching sentences from the cosine simi-
larity of their bag-of-word embeddings, from a multi-
lingual word embedding (muse).

A syntactic neural model
for general-purpose code generation

P. Yin and G. Neubig
When translating natural language into code, do not
directly use a sequence-to-sequence model: translate
into an AST (abstract syntax tree) instead, to ensure
the code is syntactically correct.
Data from manually-annotated Django code, a card
game, and an automation app.

Neural machine translation
and sequence-to-sequence models: a tutorial

G. Neubig (2017)
Tutorial, with exercises, covering count-based n-gram
language models

P [e1:n] =
∏
i

P [ei|e1:i−1]

≈
∏
i

P [ei|ei−k:i−1],

with modified Kneser-Ney smoothing, log-linear mod-
els (with features φ and a softmax)

P [e1:n] ≈
∏
i

P [ei|φ(ei−k:i−1)],

neural networks (idem, but non-linear), RNNs, Seq2seq
and attention.

A regularized framework for sparse
and structured neural attention

V. Niculae and M. Blondel
The maximum

Max∗ y =

{
0 if y ∈ ∆
∞ otherwise

Maxx = Max∗∗ x = sup
y∈∆

y′x

can be regularized

Max∗Ω y =

{
γΩ(y) if y ∈ ∆
∞ otherwise

MaxΩ x = Max∗∗Ω x = sup
y∈∆

y′x− γΩ(y).

The softmax can be generalized to

ΠΩ(x) = Argmax
y∈∆

y′x− γΩ(y) = ∇MaxΩ(x).

The softmax attention mechanism yields dense
weights: sparsemax gives sparse weights, fusedmax
sparse continuous weights, oscarmax clustered weights
regardless of position.

Ω(y) =
∑

yi log yi negentropy

ΠΩ(x) =
exp(x/γ)∑
exp(xi/γ)

softmax

Ω(y) = 1
2 ‖y‖

2
2

ΠΩ(x) = Argmin
y∈∆

‖y − x/γ‖2 spacemax

Ω(y) = 1
2 ‖y‖

2
2 + λ

∑
‖yi+1 − yi‖ fused lasso

ΠΩ(x) = Argmin
y∈∆

‖y − x/γ‖2 + λ
∑
‖yi+1 − yi‖

Ω(y) = 1
2 ‖y‖

2
2 + λ

∑
i<j

Max
{
‖yi‖ , ‖yj‖

}
ΠΩ(x) = Argmin

y∈∆
‖y − x/γ‖2 + λ

∑
i<j

Max
{
‖yi‖ , ‖yj‖

}

Softmax (rescale) Sparsemax (project)

Searching for activation functions
P. Ramachandran et al.

Automated search for new activation functions, by
combining 30+ common unary and binary functions,
using an RNN trained with RL to explore the search
space, suggests swish(x) = x · sigmoid(x).

Learning explanatory rules from noisy data
R. Evans and E. Grefenstette (2017)

Inductive logic programming (ILP) turns a set of
positive and negative examples, e.g.,

P = {0, 2, 4, 6, 8, . . . }
N = {1, 3, 5, 7, 9, . . . }

Article and book summaries by Vincent Zoonekynd 383/1044

into rules, e.g.,

even(X)← zero(X)

even(X)← even(Y) ∧ succ2(Y,X)

succ2(X,Y)← succ(X,Z) ∧ succ(Z, Y).

The consequences of a set of rules can be obtained by
breadth-first search (forward chaining).
The top-down approach to ILP, which generates pro-
grams and tests them on the positive and negative ex-
amples, can be turned into a satisfiability problem, and
relaxed into a continuous one (replace boolean val-
ues with number in [0, 1]), amenable to gradient de-
scent (forward chaining is differentiable: only perform
T steps of it).

Image search using multilingual texts:
a cross-modal learning approach

between image and text
M. Portaz et al.

Embed text (muse, a multilingual FastText extension)
and images in the same latent space.

Deep learning for image super-resolution:
a survey

Z. Wang et al.
The different approaches include pre-upsampling (up ·
convk), post-upsampling (convk · up), progressive
upsampling ((convk · up)n), iterative up-and-down-
sampling ((conv · up · down)n · up).
The upsampling can be nearest-neighbour, linear, bi-
linear, or a fractionally-strided convolution (“deconvo-
lution”).
The network can have residual connections, dense con-
nections, and parallel paths (as in inception modules).
Loss functions include pixel loss, content loss (hidden
layer of some classifier), texture loss (Gram matrix of
such a layer, as in style transfer), adversarial loss, cycle-
consistency loss.

EfficientNet: rethinking model scaling
for convolutional neural networks

M. Tan and Q.V. Le (2019)
Scale your network as

depth d = αϕ

width w = βϕ

resolution r = γϕ

where α, β, γ are determined by grid search and satisfy
α2β2γ2 = 2, α, β, γ ≥ 1.

Interactive sketch & fill: multiclass
sketch-to-image translation

A. Ghosh et al. (2019)

GAN to convert partial sketches to complete sketches,
and then complete sketches to images. The desired
object class is enforced using channel-wise gates – con-
ditional GANs tend to forget the input class. The data
comes from occluded contours, automatically extracted
from images.

Measuring the tendency of CNNs to learn
surface statistical regularities

J. Jo and Y. Bengio
CNNs to not recognize high-level features, but focus
on statistical regularities: for instance, they are not
robust to Fourier filtering.

Deep normal estimation for automatic shading
of hand-drawn characters

M. Hudon et al.
Use a CNN (U-net) to infer normals from (and auto-
matically shade) hand-drawn 2D characters; training
data from Blender’s FeeStyle (an edge- and line-based
non-photorealistic (NPR) rendering engine).

Deformable convolutional networks
J. Dai et al.

Deformable convolution networks use deformed
grids as filters (like active convolution), whose offsets
are position-dependent, computed from the features of
the previous layer.
When a neural net generates both a list of regions of in-
terest (ROI) and (localized) features, ROI pooling pools
the features in each ROI (the pooling regions do not
have a fixed size), usually dividing the ROI into a regu-
lar grid. It can be deformed: deformable ROI pooling.

In defence of the triplet loss
for person re-identification

A. Hermans et al.
Person re-identification often uses the triplet loss∑

i,j,k
yi=yj
yi ̸=yk

(
m+ dij − dik

)
+
,

but since the number of triplets grows quadratically,
hard triplet mining is necessary. Instead,
– Build a batch of P classes, with K images in each,
and compute the loss for all resulting triplets, or only
for the hardest positive and hardest negative for each
anchor;

– Use the (non-squared) Euclidean distance;
– Use a soft margin (softplus).

Variational image compression
with a scale hyperprior

J. Ballé et al. (2018)

Article and book summaries by Vincent Zoonekynd 384/1044

Variational autoencoders (VAE)

x y x

p(y)

can be used for image compression

x y ŷ x̂

p(ŷ)

quantization

and trained by replacing the quantization with uniform
additive noise

x y ỹ x̃

p(ỹ)

+noise

Have the variational distribution p(ỹ) depend on the
image x (or on the latent representation y).

x y ỹ x̃

ψ pψ(ỹ)

SegNet: a deep convolutional encoder-decoder
architecture for image segmentation

V. Badrinarayanan et al. (2016)
SegNet performs pixel-wise image segmentation by us-
ing
– An encoder (VGG16);
– Followed by a decoder, which upsamples the features
using the pooling indices from the encoder’s pooling
layers;

– Followed by a pixelwise classification layer.

ENet: a deep neural network architecture
for real-time semantic segmentation

A. Paszke et al. (2016)
The EfficientNet (ENet) combines the following ideas
to reduce the number of floating point operations
when compared with VGG16: SegNet (pooling in-
dices), early downsampling. decoder smaller than the
encoder, PReLU instead of ReLU, pooling and convo-
lution in parallel, factorizing filters (5 × 1 and 1 × 5
instead of 5× 5), dilated convolutions, spatial dropout

(dropout all channels at random locations).

input

3× 3 MaxPool

Concat

1× 1

3× 3

1× 1

Spatial dropout
+

MaxPool

Padding

ShuffleNet: an extremely efficient
convolutional neural network

for mobile devices
X. Zhang et al. (2017)

The 1 × 1 convolutions are dense matrix multiplica-
tions: they are costly and can be replacced with block-
diagonal matrices (“pointwise group convolutions”)
and (random) permutation matrices (“channel shuf-
fle”).

ShuffleSeg:
real-time semantic segmentation network

M. Gamal et al. (2018)

RepPoint point set representation
for object detection

Z. Yang et al. (2019)
Rectangular bounding boxes do not account for an
object’s shape and pose. Instead, use a set of (9)
points, inside the object, computed with a feature
pyramidal network (FPN) with deformable convolu-
tions, trained with a localization loss (it should give
the samae bounding box) and a recognition loss.

Complex-YOLO: an Euler-region-proposal
forreal-time 3d object detection on point clouds

M. Simon et al. (2019)
To feed Lidar data to a yolo network to find 3D
bounding boxes, discretize the cloud of points into a
top-view image, with 3 channels: maximum height,
maximum intensity, number of points. For the orienta-
tion of the boxes, output a complex number of modulus
2 instead of an angle to avoid singularities.

Oriented response networks
Y. Zhou et al.

To detect rotation-invariant patterns, and keep track
of their orientation, consider N rotations of a given
filter (sharing the same parameters).

Article and book summaries by Vincent Zoonekynd 385/1044

Limitations
of the empirical Fisher approximation

F. Kunstner et al.
The empirical Fisher∑

n

∇θ log pθ(yn|xn)∇θ log pθ(yn|xn)′

is not a good approximation of the Fisher information
matrix∑

n

E
y∼pθ(·|xn)

[
∇θ log pθ(yn|xn)∇θ log pθ(yn|xn)′

]
Do not use it for natural gradient descent [but it is still
better than plain gradient descent].

Model compression
by entropy penalized reparametrization

D. Oktay et al.
To compress the weights of a neural net, scalar quan-
tization discretizes each coordinate independently,
while vector quantization uses some clustering al-
gorithm (e.g., k-means).
Learn another network to generate weights from a
low-dimensional, discrete (scalar quantization) latent
representation (hypernetwork) with a penalty for the
length of the Shannon-encoded latent representation
(entropy).

Learning relational representations
with auto-encodding logic programs

S. Dumančic et al.
An auto-encoder, with (Prolog) facts as input and la-
tent representation, and (inverse) logical (Prolog) pro-
grams as encoder and decoder can be learnt using con-
straint satisfaction tools (large neighbourhood search:
BUSL learner for Markov logic networks (MLN)), min-
imizing the reconstruction error with constraints on
– The average number of facts per predicate;
– Redundancy (if c1 ⊨ c2, include at most one);
– Coverage (reconstruct at least one of each predicate).

Joint semantic analysis and
morphological analysis of the derived word

R. Cotterell and H. Schütze
Estimate word embeddings by modeling the derivation
of words, e.g,

questionably = question:stem + able:suffix + ly:suffix.

Relational knowledge distillation
W. Park et al.

To distill a (teacher) model (into a student model), do
not just try to reproduce the individual outputs, but
also the distances and angles.

Interacting conceptual spaces I:
grammatical composition of concepts

J. Bolt (2016)
Many grammars can be modeled as a monoial category
G, with reduction rules (e.g., noun ⊗ verb ⊗ noun →
sentence) as morphisms. To model the meaning of sen-
tences from that of wors, learn:
– A word embedding Words→ V ;
– A monoidal functor G→ Vect.
The category of vector spaces can be replaced by that
of convex sets and relations (more generally: convex
algebras and convex relations).

Byzantine-tolerant machine learning
P. Blanchard et al.

Distributed stochastic gradient descent is not tolerant
to Byzantine failure: use the vector closest to the av-
erage of its n− k neighbours.

Solving ill-posed inverse problems
using iterative deep neural networks

J. Adler and O. Öktem (2017)
Use deep neural networks to find an approximate in-
verse of T : X → Y , minimizing

E
x∼data
y=Tx

[
Loss(TT−1θ y, y) + Penalty(T−1θ y)

]
.

Snapshot ensembles: train 1, get M for free
G. Hunag et al. (2017)

Use a cyclic learning rate and ensemble the local min-
ima found during the optimization.

Personalized re-ranking for recommendation
C. Pei et al. (2019)

Reranking models, to transform a list of search re-
sults, sorted by their closeness to a query (or the
estimated probability that the user will click on it),
should be reranked to account for interaction (e.g., to
ensure diversity and avoid redundant results). The
reranking model takes, as input, features of the items,
their positions, possibly user-specific item features (a
learned user-specific linear transformation of the item
features). It is often an RNN generating a sequence
of scores, along which to sort the items, but it can be
replaced with a transformer with attention.

FreezeOut: accelerate training
by progressively freezing layers

A. Brock et al.
Freeze the first layers of the network after a while: they
converge faster, to simple configurations (e.g., edge de-
tectors).
Stochastic depth, in a resnet, drops whole layers at
a time.

Article and book summaries by Vincent Zoonekynd 386/1044

On connected sublevel sets in deep learning
Q. Nguyen (2019)

If there are enough hidden neurons (half as many in
the first hidden layer as training samples), then the
sublevel sets of the loss function are connected – in
particular, the set of global minima is connected.

A constructive approach
for one-shot training of neural networks

using hypercube-based topological coverings
W.B. Daniel and E. Yeung

Decision trees are special cases of neural nets (and
canbe usd to unitialize them or choose their topology):
decision boundaries are ReLU operations.

Anchors:
high-precision model-agnostic explanations

M.T. Ribeiro et al. (2018)
To explain a model forecast, find a single rule of thr
form a1 ∧ · · · ∧ ak, with beam search, which applies
to the observation of interest (local), but with high
(global) precision and decent coverage.
Contrary to purely local explanations (lime), anchors
give correct forecasts with high probability whenever
they apply.

Axiomatic attribution for deep neural networks
M. Sundararajan et al. (2017)

Attribution of the output of a neural net to input fea-
tures should be
– Sensitive: if x1 and x2 only differ by one feature
and f(x1) 6= f(x2), then this feature’s contribution
should be non-zero;

– Implementation-invariant: two different neural nets
computing the same function should have the same
contributions.

Integrated gradients (along a rectilinear path, be-
tween a baseline input, e.g., a black image, and the
image of interest) satisfy those conditions.

BOHB: robust and efficient
hyperparameter optimization at scale

S. Falkner et al. (2018)
Hyperband uses successive halving for hyperparameter
tuning:
– Pick N configurations at random;
– Train them for a while;
– Discard the worst half;
– Train the remaining models for a while;
– Continue until only one is left.
BOHB uses Bayesian optimization to replace the con-
figurations at the begining of each HB iteration.

Fixup initialization:
residual learning without normalization

H. Zhang et al. (2019)
Initialize the classification layer, the last layer of the
residual branches, and the biases to zero; rescale the
other residual layers by

√
L, where L is the number

of layers (or L1/2(m−1), if there are m layers in the
residual blocks).

+

Multiplier

Conv

ReLU

Conv

Initialization

1

0

·/
√
L

Geometric matrix completion
with recurrent multi-graph networks

F. Monti et al. (2017)
Matrix completion is often done with a low-rank ap-
proximation, or its relaxation with the nuclear nurm
(sum of the singular values)

Minimize
X

rank(X) + λ ‖Ω� (X − Y)‖2F
Minimize

X
‖X‖∗ + λ ‖Ω� (X − Y)‖2F .

Given a user-item matrix, consider the corresponding
row (user) and column (item) similarity graphs, and
their Laplacians

∆r = ΦrΛrΦ
′
r

∆c = ΦcΛcΦ
′
c.

The geometric completion problem is

Minimize
X

‖X‖2∆r + ‖X‖
2
∆r

+ λ ‖Ω� (X − Y)‖2F

where the Dirichlet norm is ‖X‖∆ = trace(X ′∆X).
Define the Fourier transform and the convolution as

X̂ = Φ′rXΦc

X ∗ Y = Φr(X̂ � Ŷ)Φ′c

and approximate the filter Y with Chebychev polyno-
mials

X̃ =
∑

0⩽i,j⩽p
θijTi(∆̃r)XTj(∆̃c)

where ∆̃ = 2λ−1n ∆−I are the rescaled Laplacians, with
eigenvalues in [−1, 1].
Train such a multi-graph CNN (MGCNN) for geomet-
ric matrix completion, and feed its features to an RNN.

Article and book summaries by Vincent Zoonekynd 387/1044

Probabilistic matrix factorization
for automated machine learning

N. Fusi et al.
AutoML can be framed as a recommendation prob-
lem, matching datasets (users) to ML pipelines (items),
with matrix factorization to recommend pipelines, or
with probabilistic matrix factorization to optimize an
acquisition function (as in Bayesian optimization).

Probabilistic matrix factorization
R. Salakhutdinov and A. Mnih

Matrix factorization R ≈ U ′V can be made Bayesian

Argmax
U,V,σ

∏
i user
j item
i rated j

φ(Rij , µ = U ′iVj , σ
2)

Graph2Seq: graph to sequence learning
with attention-based neural networks

K. Xu et al.
Estimate a node embedding by
– Aggregating neighbour features (with mean, LSTM
on random permutations of the neighbours, separat-
ing inbound and outbound neighbours, or element-
wise max of a 1-layer neural net);

– Concatenate with the node features;
– Feed to a 1-layer neural net to get new node features;
– Iterate 3 to 5 times (with different aggregators and
neural nets).

Convert it to a graph embedding with an elementwise
max/min/mean, and feed this graph representation to
a sequence generator with attention.

CayleyNets: graph convolutional neural
networks with complex rational spectral filters

R. Levie et al. (2017)
In the (spectral) graph convolution f 7→ Φg(Λ)Φ′f ,
where ∆ = ΦΛΦ′ is the eigen decomposition of the
Laplacian ∆ and f 7→ f̂ = Φ′f the Fourier transform,
do not model g with Chebychev polynomials (a high
degree is needed to produce narrow-band filters – in
presence of communities, eigenvalues tend to cluster)
but with Cayley “polynomials” λ 7→ ReC(hλ)k where
the Cayley transform is R −→ eiR \ {1}

λ 7−→ λ− i
λ+ i

and h a zoom parameter.

Amplifiers and suppressors of selection
for the Moran process in undirected graphs

G. Giakkoupis (2018)
The Moran process models the spread of genetic mu-
tations on a graph:

– Start with a single mutant node;
– Pick a node at random, with probability propor-
tional to its fitness (1 for non-mutants, r > 1 for
mutants);

– The node copies itself to one of its neighbours.
There exist families of (directed or undirected) graphs
for which
– The probability of fixation tends to 1 (strong ampli-
fier);

– The probability of extinction tends to 0 (strong sup-
pressor).

A unified framework
for structured graph learning

via spectral constraints
S. Kumar et al.

Using the Laplacian, add constraints to the graphical
lasso (for graph reconstruction from a covariance ma-
trix) to make the graph bipartite, regular, or to specify
the number of connected components.

Multi-dimensional count sketch:
dimension reduction

that retains efficient tensor operations
Y. Shi and A. Anandkumar

The count sketch

CS(x) =
(∑
h(i)=j

sixj

)
j

= (s� x)′H

can be generalized to tensors

MS(T) =
(
(s1 ⊗ · · · ⊗ sp) ◦ T

)
(H1, . . . , Hp)

where T ∈ Rn1×···×np , si ∈ {±1}ni , Hi ∈ {0, 1}ni×mi
with exactly one 1 in each row.

Gorilla: a fast, scalable, in-memory
time series database

T. Pelkonen et al. (2015)
In 2013, Facebook moved from an HBase-backed
OpenTSDB-like time series database to an in-memory
one (for the last 26 hours, HBase for the rest), using
– Delta of delta (variable length encoding) compres-
sion for timestamps: observations are almost equally
spaced;

– XOR encoding (and VLE compression) for numeric
values: nearby values are often close, and share the
begining of the mantissa, the exponent, and some-
times the precision.

Also check InfluxDB (no Hadoop required, distributed,
metadata), OpenTSDB (HBase, metadata), Whisper
(aka Graphite, regularly-spaced data, RDD, on-disk),
M3DB (from Uber).

Article and book summaries by Vincent Zoonekynd 388/1044

Towards understanding generalizations
of deep learning: perspective of loss landscapes

L. Wu et al.
Minima whose bassins of attraction have a larger
volume generalize better (and are more likely to be
reached after random initialization).

Loss landscapes
of regularized linear autoencoders

D. Kunin et al. (2019)
Linear autoencoders are GLk-invariant: they learn the
subspace spanned by the first k principal directions,
but not the separate directions. L2-regularized linear
encoders do.

A PCA-like autoencoder
S. Ladjal et al. (2019)

To make the coordinates of the latent space of an au-
toencoder more interpretable and independent:
– Iteratively increase the dimension of the latent space,
keeping the already learned dimensions fixed (dis-
card and learn the decoder anew each time);

– Add a penalty for the (off-siagonal) covariances.

Fader networks:
manipulating images by sliding attributes

G. Lample et al. (2018)
To train an autoencoder some of whose latent space
coordinates have a pre-specified interpretation (e.g.,
presence of glasses, beard, etc.), add the interpretable
feature to the latent space, and ensure it is not present
in the rest of the latent representation with a discrim-
inator D : z 7→ y and an adversarial loss.

x x
y

z

Early visual concept learning
with unsupervised deep learning

I. Higgins et al.
In the latent factor model

Maximize
ϕ,θ

E
z∼qϕ(z|x)

[
log pθ(x|z)

]
the β-VAE adds a constraint or penalty to make the la-
tent representation qϕ close to a prior, e.g., p ∼ N(0, 1),
to “disentangle” it.

Maximize
ϕ,θ

E
z∼qϕ(z|x)

[
log pθ(x|z)

]
− β ·KL

(
qϕ(z|x)‖p(z)

)
The original VAE corresponds to β = 1.

CorrGAN: sampling realistic financial
correlation matrices usinggenerative

adversarial networks
G. Marti (2019)

GAN to generate reordered (with hierarchical cluster-
ing) correlation matrices.

Estimation of theory-implied
correlation matrices

M. López de Prado (2019)
A hiearchical classification (e.g., GICS) can improve
the estimation of the correlation matrix:
– Compute the sample correlation matrix;
– Represent the hierarchy as a tree and use the cor-
relations to define distances between nodes, using
d =

√
1
2 (1− ρ);

– Compute the distances between all pairs of leaves,
and convert them back to “correlations”, using ρ =
1− 2d2;

– Clean the resulting matrix (it may not even be pos-
itive definite) using random matrix theory (RMT).

DeepTrax:
embedding graphs of financial transactions

C.B. Bruss et al. (2019)
Project the credit card (bipartite) transaction graph
to only keep merchants and compute a random-walk
based vector embedding (DeepWalk, Node2vec); use
as additional features in fraud detection systems.

Testing for multiple bubbles 1:
historical episodes of exhuberance

and collapse in the S&P 500
P.C.B. Phillips et al. (2013)

The SADF test,

SADF = sup
0<t0⩽t⩽1

ADF[t0,1],

to detect bubbles (explosive behaviour: bubble-less
log-prices should be I(1), not more) can be general-
ized to account for multiple bubbles by using a moving
window (reset after each bubble) instead of an expand-
ing one.

Decomposing value
J. Gerakos and J.T. Linnainmaa (2016)

Decompose the B/P into a component explained by
past (5-year) size changes, and a esidual – only the
former leads to excess returns.

Time-dependent Black-Litterman
M. van der Schans and H. Steehouwer (2016)

Black-Litterman and Kalman filter can be combined:
both are (linear, Gaussian) Bayesian updates.

Article and book summaries by Vincent Zoonekynd 389/1044

Listening to chaotic whispers:
a deep learning framework

for news-oriented stock trend prediction
Z. Hu et al (2017)

Attention-based RNN, not for sequences of words, but
for sequences of news (bags of (vector embeddings of)
words), to forecast trends.

Practical volume computation of structured
convex bodies, and an application to modeling

portfolio dependencies and financial crises
L. Calès et al. (2018)

The cross-sectional score of a portfolio is the probabil-
ity that a random (uniform in ∆d) portfolio has worse
returns (or is worse for some other potfolio metric). It
can be computed with a quasi Monte Carlo method.
[This is a special vase of P.Burns’s random portfolios,
which also account for portfolio constraints; the uni-
form distribution dodes not give insightful results if
there are too many assets.]

Notes on Fano ratio and portfolio optimization
Z. Kakushadze and W. Yu

Daily and monthly Sharpe ratios are not comparable
(because of the square root of time rule), but the mean-
to-variance ratios (Fano ratios) are comparable accross
investment horizons. Fano-optimal portfolios are more
diversified.

Nonlinearity in stock networks
D. Hartman and J. Hlinka (2018)

Differences between stock networks computed from
correlation matrices and mutual information (which re-
quires joint density estimation) may not come from
nonlinearities but from non-stationarity and non-
Gaussian margins.

Conic CPPI
I. Marquet and W. Schoutens (2017)

A 1-asset investment strategy can be seen as a rein-
forcement learning problem in which the state is de-
scribed by the VIX and the current wealth. Insead of
maximizing the expected future reward, for the real or
the risk-free measure, one can maximize

inf
Q∈M

EQ[future rewards]

which can be computed as the expectation under a con-
cave distortion function

ψ : [0, 1]→ [0, 1], ψ(0) = 0, ψ(1)

(Choquet expectation, expectation under a non-additive
probability, to emphasize tail loss events and de-
emphasize tail gain events)

Eψ[Y] = −
∫ 0

−∞
ψ
(
FY (y)

)
dy +

∫ ∞
0

(
1− ψ

(
FY (y)

))
dy.

The min-max-var family of distortion functions is

ψ(u) = 1− (1− u1/(1+λ))1+λ.

Equity portfolio risk (volatility) estimation
using market information and sentiment

L. Mitra et al. (2008)
Implied volatility and change in news sentiment
(Ravenpack) have a predictive power in future volatil-
ity, and can be used as part of a factor risk model.

Indirect influences in international trade
R. Díaz and L. Gómez

To compute the influence of a country on the trade
network, use
– PageRank
– The incidence matrix D (direct influence);
– MicMac: Dk;
– The heat kernel: expλ(D − I);
– PWP: expm1(λD)/expm1(λ)
with the trade network

DA→A =
ExportsA→B + ImportsB→A

ExportsA + ImportsA

or the offer network

DA→A =
ExportsA→B + ImportsB→A

GDPA + ImportsA.

Dissecting characteristics nonparametrically
J. Freyberger et al. (2017)

Spline regression, with a group lasso penalty, performs
better than a linear model (with a lasso penalty) on
uniformized variables. [I use GAM boosting to the
same effect.]

Taming the factor zoo
G. Feng et al. (2017)

To check if a new factor adds value, to forecast returns,
to an already large set of factors (fj)j , use the double-
selection lasso:
– Select a small set of factors using the lasso, (gi)i;
– For each selected factor gi, select factors f whose
covariance with the returns r is correlated with
Cov(gi, r), using the lasso: Cov(gi, r) ∼ Cov(f, r);

– Use all those factors to test the new candidate.

The cross-section of risk and return
K. Daniel et al. (2018)

Separate the priced from the unpriced components of
the Fama-French portfolios – removing the industry is
sufficient.

Article and book summaries by Vincent Zoonekynd 390/1044

A review of portfolio choice
based on stochastic dominance

T. Post (2017)
The integrated cdf, used to define stochastic domi-
nance, is the expected shortfall (seen as a function of
the threshold): a portfolio λ dominate a portfolio τ
if its expected shortfall is better, for all threhsolds –
equivalently, if it is better for all (increasing, concave)
utility functions.

The dynamic factor model
with an application to global credit risk
F. Bräuning and S.J. Koopman (2016)

Model the financial network (Granger causality tests
for CDSs of US and European banks) as

ft : factors (global, not observed)
zij : factor loadings (constant)
θijt = z′ijft

φijt = logistic(θijt)
yijt ∼ Bernoulli(φijt) incidence matrices

γi ∼ N(µ,Σ)

πi ∝ exp(γi) k-dimensional
δij = πi ⊗ πj k2-dimensional
zij ∼ Multinomial(δij)

ft+1 = Φft + ξt

ξt ∼ N(0,Σ)

f1 ∼ N(0, V)

V = ΦV Φ′ +Σ

Using dynamic model averaging in state space
representation with dynamic Occam’s window
and applications to the stock and gold market

M. Risse and L. Ohl (2016)
A time-varying regression can be modeled with a state
space model and estimated with a Kalman filter; one
can make some empirical changes to the variance ma-
trix updates to simplify the computations (scalar vari-
ance matrix) or account for stochastic volatility.
Dynamic model averaging (DMA) estimates those
models for subsets of the variables, whose forecasts
can then be averaged (as in Bayesian model averaging,
BMA), with weights depending on the previous weights
(shrunk towards uniform weights) and the predictive
density of each model.
The dynamic Occam window (DOW) does not consider
all 2K models but only a subset, updated at each time
step, obtained by adding/removing variables to/from
the cirrent model and by keeping only the best ones
(as with particle filters).

Multiperiod portfolio selection
and Bayesian dynamic models
P. Kolm and G. Ritter (2014)

Assume the transaction-cost-aware portfolio xt and the
ideal portfolio (TC=0) yt are the hidden and observed
states of a hidden Markov chain (HMM) with transi-
tion and emission probabilities

− log p(xt|xt−1) = ct(xt−1, xt)

− log p(pt|xt) = 1
2λ(yt − xt)

′Σ(yt − xt).

Treat one asset at a time, in a Gibbs fashion, until
convergence (blockwise coordinate descent).
For time, either treat the periods one at a time, or use
a particle filter.

Volatility trading
E. Sinclair (2013)

2. There are many measures of volatility (standard de-
viation of the Brownian motion (with drift and jumps)
modeling log-prices): standard deviation of the log-
returns (the sample variance gives a biased estimator
of volatility: E[

√
s2] <

√
E[s2], but it can be corrected

if we assume Gaussian log-returns), from the absolute

returns σ =

√
π

2
E[|r|], from OHLC data (they can ac-

count for drift and jumps, but the true high and low are
not observed: these estimators under-estimate volatil-
ity), or from high-frequency data (by looking at the
time τ needed to achieve a fixed change in price ∆ – it
is biased, but the bias can be corrected).
There is microstructure noise if the frequency is too
high.
Volatilty varies through the day.
3. Stylized facts include: volatility clustering, mean re-
version (σdaily > σweely), leverage (Cor(σ, r) < 0, with
an even lower value if r < 0), Cor(σ, volume) > 0,
σ ∼ LogGaussian.
4. Volatility can be forecasted with a GARCH(1,1)
model, or its many variants. It can also be compared
with the volatility cone, the quantiles of the realized
volatility as a function of the window size. Overlap-
ping windows give biased estimators, but the bias can
be corrected (Hodges-Tompkins).
Fundamental data has some predictive power on
volatility: R&D, cash flow volatility, accruals, size,
ROA, leverage.
Implied volatility is usually above the volatility fore-
casts (by 30%): this variance premium can sometimes
be explained by higher moments.(
IV
RV

)2

≈ 1−γσskew+ 1
2γ

2σ2(κ−3), γ = risk aversion

5. PCA suggests that 60% to 80% of the changes in the
volatility surface are due to parallel shifts: it suffices
to look at ATM IV (but it is tricky to compute: there

Article and book summaries by Vincent Zoonekynd 391/1044

is no ATM strike, there is no exact 1-month maturity,
there are calls and puts, there are bid and ask prices –
interpolate or use the VIX).

volatility surface : IV ∼ strike+ expiry
volatility smile (skew) : IV ∼ strike |, expiry
volatility term structure : ATM IV ∼ expiry

The VIX is mean reverting (if it were tradable, we
could make a profit).
Implied volatility rises before earnings accouncements
and falls afterwards: buy a front-month straddle 10
days before, sell 1 day before; this is more profitable if
analyst dispersion is high (but also look at other firm
characteristics). More generally, regardless of the un-
derlying, volatility rises before (planned) news. The
expected jump size can be estimated by comparing the
Iv of the front and second months,
The movement of the IV smile is ofen described heuris-
tically, as a sticky strike (fixed skew: the IV, as a func-
tion of the strike, does not change) or a sticky delta
(floating skew, swimming skew: the IV, as a function of
delta, does not change). Each gives rise to an arbitrage:
delta-neutral call spread, and delta-neutral OTM call
minus put.
The smile, which can be rescaled as IV/IVATM ∼ ∆,
can be explained by differences in supply and demand,
presence or absence of hedging (market makers vs other
actors), correlation (for indices), skewness, Kurtosis.
The Corrado-Su formula extends the Black-Scholes
model to include skewness and kurtosis and explain
the smile; it can be used to compute implied skewness
and kurtosis.
Back-month IV often over-reacts (Stein effect).
6. Continuous hedging, to ensure ∆ = 0, it too costly
(the transaction costs are non-zero) and impossible
(because of the bid-ask spread). Heuristics include:
hedging at regular intervals, hedging to a delta band,
hedging when the spot changes.
The trade-off between cost and risk can be measured
with a utility function, e.g., U(w) = −e−γw, which has
a constant risk aversion γ = U ′′/U ′.
The Hodges-Neuberger model does not price the op-
tion, but the replication strategy, and includes trans-
action costs; it only hedges so that the trader be in-
different between the risk of the mis-hedged position
and the hedging cost – it re-hedges when ∆ leaves a
band around/near the Black-Scholes delta. There is
no closed-form solution, but an asymptotic, incorrect
(centered, symmetric) formula (Whalley-Wilmott) if
the transaction costs are small. Zakamouline provides
a heuristic (fitted) approximation of the HN bands.
Market impact is

F (n) = volatility×
√
proportion of the ADV.

To reduce costs, try to hedge a position on a stock with
an index, using β, after aggregating all positions.
To account for jumps, consider static hedging (with
other options) rather than dynamic hedging,
7. The P&L is path-dependent.

P&L = 1
2 (IV

2 − RV2)

∫
e−rtS2

t Γ dt

We do not know the volatility, but prefer it to be bi-
ased upward or downward, depending on the market
and Γ.

Γ < 0 Γ > 0
trend low high

no trend high low
We do not hedge continuously.

E[P&L] = Vega× (σimplied − σrealized)

Sd[P&L] ≈
√
π

4
Vega σ

number of hedges

8. Trade sizing is often done heuristically (fixed trade
size, fixed fraction size).
The Kelly criterion can help: take successive iid bets
on a fraction of your wealth, win (resp. lose) with re-
turns w (resp. `) with probability p; after n wins and
m losses, yur wealth is w0(1+fw)

n(1−f`)m; maximize
the expected utility, assuming logarithmic utility:

f =
pw + (1− p)`

w`
.

This can be generalized to continuous outcomes: f ≈
r/σ2.
While optimal in the long term, trading at the Kelly
rate is a very volatile strategy, which can take cen-
turies or millenia to beat other strategies – many sug-
gest trading a fraction of the Kelly rate (never more:
both returns and volatility would be worse).
There are many progressive betting systems: positive
(increase your bet after you win, e.g., Kelly), negative
(increase your bet after you lose) or mixed (Oscar: bet
one unit; if you lose, bet the same amount; when you
win, increase the amount by 1; stop when you have
won one unit).
Browne dynamic sizing maximizes the probabiliy of
reaching a target wealth within a specified time (Kelly
sizing is constant).
Optimal sizing for an OU process is −wσ/2, where w is
the wealth and σ the distance (in standard deviations)
to the long-term mean.
9. The variance of the Sharpe ratio is high.

Var[IR] = 1√
T
(1 + 1

2 IR
2)

Also consider other performance ratios: Sortino,
Omega.
Measure the persistence of the performance, e.g., by
comparing different periods, or with the Hurst expo-
nent.

Article and book summaries by Vincent Zoonekynd 392/1044

11. To profit from the variance premium (IV > RV),
short index volatility, by selling 20-∆ straddles or
strangles on QQQ, second month, ∆-hedged, reblanced
monthly, when VIX < 35.
To profit from the correlation premium (short corre-
lation, dispersion trading): sell index vol, buy compo-
nent vol.
To profit from the skewness premium, sell 30-∆ risk
reversals (sell the put, buy the call, ∆-hedge), or sell
skew swaps (the payoff is the difference between real-
ized and implied skew).
12. A model-free implied variance can be computed
from all the calls and puts,

Var[T1,T2] =
2

T2 − T1

∫ ∞
0

CT2
(XerT2)− CT1

(XerT1)

X2
dX

Var[0,T] =
2

T
erT

[∫ F

0

PT (X)

X2
dX +

∫ ∞
F

CT (X)

X2
dX

]

where F is the forward price.
The (cash) VIX is a finite sum approximation of those
integrals; it is not tradable, but there are VIX futures;
the cash VIX is a good predictor of VIX futures.
There are short- and long-term volatility ETNs (VXX,
VXZ). The implied volatility term structure is

IVTS =
VIX
VXV ,

where VIX and VXV are estimating the 1- and 3-month
IV. A calendar strategy uses the IVTS to combine VXX
and VXZ.
A calendar put spread, in contango, buys the front
month ATM put and sells the second month put with
the same strike.
13. Leveraged ETFs are computed using daily returns,
compounded (if you expect to get λ times the monthly
performance, you will be disappointed): they exhibit
volatility drag (a rise of 10% and a drop of 10and the
effect is amplified as the leverage increases. To use it,
buy one dollar of L and sell λ dollars of S.

L = L0

(
S

S0

)λ
exp
[
− 1

2λ(λ− 1)σ2t
]

Deep analytics
B. Huge and A. Savine (2019)

Pricing options often requires lengthy Mote Carlo sim-
ulations: this is not scalable. Replace those com-
putations with a trained deep learning model. The
Longstaff-Schwartz model is an early example, but uses
a linear model. Use differential regularization: two loss
terms, one for the value of the option, the other for
its gradient (sensitivities, Greeks); this has the added
advantage of improving extrapolation. With code ex-
amples.

Modern Computational Finance: AAD and
Parallel Simulations with professional

implementation in C++
A. Savine (2019)

C++ book on parallel processing, with applications to
automatic differentiation (with xVA computations in
mind).

Edgeworth trading on networks
D. Cassese and P. Pin

Pure exchange model (no production and consump-
tion), with n goods, in which each agent has a utility
function determining how he trades.

Kernels and regularization on graphs
A.J. Smola and R. Kondor (2003)

The graph Laplacian L = D −W is defined by

f ′Lf = 1
2

∑
i−j

(fi − fj)2 for f ∈ Rn.

The pseudo-norm ‖f‖L = 〈f, Lf〉 is a discrete analogue
of

‖f‖∆ = 〈f,∆f〉 = 〈∇f,∇f〉 =
∫
‖∇f‖2 .

Up to row/column/sum operations, the graph Lapal-
cian (or the normalized graph Laplacian, L̃ =
I −D−1/2WD−1/2, whose spectrum is in [0, 2]) is the
only permutation-invariant linear operator.
By analogy with radial basis function regularization

Ω(f) =
〈
f, r(∆)f

〉
=

∫ ∣∣f̂(ω)∣∣r(‖ω‖2)dω
k(x, y) =

〈
k(x, ·), r(∆)k(y, ·)

〉
one can define regularization for functions on a graph,
f : V → R, i.e., f ∈ R|V |,

Ω(f) =
〈
f, r(L̃)f

〉
regularizer

K = r(L̃)−1 kernel.

For instance,

r(λ) = 1 + σ2λ regularized Laplacian
r(λ) = exp(σ2/2λ) diffusion
r(λ) = (a− λ)−1 1-step random walk, a ⩾ 2

r(λ) = (a− λ)−p p-step random walk
r(λ) = cos(λπ/4)−1 inverse cosine.

To compute Ω or K, use a low-degree polynomial
approximation of r(λ) or r(λ)−1: Taylor expansion
around zero, exp(B) ≈ (I+B/n)n, Chebychev polyno-
mials on [0, 2], etc. (more simplifications are available
for product graphs).

Article and book summaries by Vincent Zoonekynd 393/1044

https://github.com/asavine/CompFinLecture/tree/master/MLFinance
https://github.com/asavine/CompFinLecture/tree/master/MLFinance

Geodesics in heat
K. Crane et al.

The Eikonal equation

|∇φ| = 1

φ|γ = 0

computes the distance to a subset γ ⊂M of a Rieman-
nian manifold but, being nonlinear and hyperbolic, it
is difficult to solve (fast marching algorithm).
Varadhan’s formula gives the distance from the heat
kernel,

φ(x, y) = lim
t→0

√
−4t log kt,x(y)

(interpreting the heat equation with random walks: af-
ter a small time t, a walk reaching y from x has not
had time to deviate much from the geodesics), but it
is very sensitive to errors in the kernel (especially if t
is small).
The heat method
– Integrates the heat flow u̇ = ∆u for some fixed time
t;

– Evaluates the vector field X = −∇u/ |∇u| – we only
keep the direction: the amplitude is imprecise and,
for geodesics, is known to be one;

– Find the corresponding distance by solving ∇φ = X,
i.e., Argminϕ

∫
|∇φ−X|, i.e., ∆φ = ∇·X (Poisson).

The emergence of spectral universality
in deep networks

F. Pennington et al.
To study the spectrum of the Jacobian doutput/dinput
of a neural net (if all the singular values are close to 1,
learning is faster), use free probability theory.

ρX(λ) =
〈 1

N

n∑
i=1

δ(λ− λi)
〉
X

Limiting spectral density

GX(z) =

∫
R

ρX(t)

z − t
dt Stieltjes transform (z 6∈ R)

MX(z) = zGX(z)− 1 Moment generating function
M−1X Its inverse

sX(z) =
1 + z

zM−1X (z)
S-transform

SAB(z) = sA(z)sB(z)

In the other direction, use

ρX(λ) = − 1

π
lim
ε→0+

ImGX(λ+ iε).

Spherical CNNs
T.S. Cohen (2018)

Convolutional layers are translation-invariants; they
could be computed with a fast Fourier transform (FFT)
– in practice, they are not, because the FFT is slow for

small filters. The Fourier transform can be general-
ized to signals on the sphere S2 (drone vision, molecu-
lar structure, weather modeling) and rotation-invariant
transformation, but since S2 is not a group, the Fourier
transform yields a signal on SO(3) (in further layers,
we stay in SO(3): it is already a group.)
For signals f, g on the sphere, one can define a “corre-
lation” f ∗ g.

x ∈ S2

f, g : S2 −→ Rk

Q,R ∈ SO(3)

〈f, g〉 =
∫
S2

〈
f(x), g(x)

〉
Rkdx

(LRf)(x) = f(R−1x) action of SO(3) on S2

(f ∗ g)(R) = 〈LRf, g〉 = 〈f, LR, g〉 correlation

Those definitions extend to functions on SO(3).

f, g : SO(3) −→ Rk

〈f, g〉 =
∫

SO(3)

〈
f(x), g(x)

〉
Rkdx

(LRf)(Q) = f(R−1Q)

(f ∗ g)(R) = 〈LRf, g〉

Spherical convolution can be computed with the gen-
eralized FFT.

L4: practical loss-based stepsize adaptation
for deep learning

M. Rolínek and G. Martius (2018)
Choose the step size to have the same forecasted loss
improvement at each step. If the loss were linear, we
could go to the minimum in one step:

loss(θ0 + ηv) = loss(θ0) + ηg′ · v = Lmin

η = − loss(θ0)− Lmin
g′ · b

.

In practice, the step can be αηv, where g is the gra-
dient, v the direction (gradient, momentum, etc.),
α = 0.15 and where Lmin is some fraction (say, 0.9)
of the lowest loss seen so far.

Stochastic hyperparameter optimization
through hypernetworks

J. Lorraine and D. Duvenaud
Learn the function w∗(λ) = Argminw loss(w, λ), where
λ are the hyperparameters and w the parameters.

Reordering rows for better compression:
beyond the lexicographic order

D. Lemire et al.
Lexicographic order does not give the optimal RLE
compression: pick random elements close in Hamming
distance (i.e., get close to a Gray code).

Article and book summaries by Vincent Zoonekynd 394/1044

Geometric properties of local dynamics
in Hamiltonian systems: the generalized

alignment index (GALI) method
C. Skokos et al. (2018)

The generalized alignment index (GALI), in a Hamil-
tonian system, is the volume of a parallelepiped of k
initially orthogonal unit vectors, whose magnitude is
normalized to 1 at each time step; for chaotic orbits,
it tends exponentially fast to zero, with exponents re-
lated to Lyapunov exponents.

Constant-step-size least-mean-square
bias-variance trade-offs

and optimal sampling distributions
A. Défossez and F. Bach (2014)

Average (Cesàro) constant-step-size stochastic gradient
descent.

A practical tutorial on autoencoders
for nonlinear feature fusion:

taxonomy, models, software and guidelines
C. Charte et al. (2018)

A contractive autoencoder has a penalty on the
Frobenius norm of the Jacobian of the encoder.
Corentropy (minus a Gaussian kernel), as a loss
function,

loss(u, v) = −
∑
k

φ

(
uk − vk

σ

)
gives robust autoencoders.
Feature fusion is a synonym for dimension reduction
(PCA, LDA, kernel PCA, MDS, Isomap, Laplacian
eigenmaps, RBM)

Analysis of multivariate time-series
using the MARSS package
E.E. Holmes et al. (2018)

hidden xt = Bxt−1 + u+ Cct + wt wt ∼ N(0, Q)

observed yt = Zxt + a+Ddt + vt vt ∼ N(0, R)

Matrix profile I:
all pairs similarity joins for time series:

a unifying view that includes motifs,
discords and shapelets

C.C.M. Yeh et al. (2016)
The matrix profile of a time series is the time series
of distances to the nearest neighbour.

mpt = Min
|t−s|>a

d(xt:t+n, xs:s+n)

It summarizes the information in the distance matrix(
d(xt, xs)

)
t,s
.

To be robust to outliers, take the kth nearest neigh-
bour.
To convert DNA to a numeric sequence, add 2, 1, −1,
−2 for A, G, C, T.
Use weights to account for prior information (regions
more or less likely to contain interesting motifs).

cmpi = mpi + (1− avi)Max(mp)

Applications include:
– Motif detection: low values;
– Discords (outliers): high values;
– Segmentation, by looking at where the nearest neigh-
bours are and finding the point with the fewest cross-
ings.

The matrix profile can be computed efficiently (n log n,
thanks to the FFT, if we use the z-normalized Eu-
clidean distance, i.e., the correlation).
Implementations in Python (stumpy, etc.) and R
(tsmp); 14 more papers in the series.

A complexity-invariant distance measure
for time series

G.E. Batista et al.
Pairs of complex objects tend to be more distant, for
most distance measures, than pairs of simple objects.
There are already distance measures invariant to offset,
scale (correlation), warping (DTW), phase, occlusion
(missing subsequence):

CID(f, g) = ‖f − g‖2
Max

{
‖f ′‖2 , ‖g′‖2

}
Min

{
‖f ′‖2 , ‖g′‖2

}
is invariant to complexity changes, if the complexity of
f is measured as ‖f ′‖2.

A brief introduction to machine learning
for engineers

O. Simeone (2017)
1. There are several approached to statistics:
– Frequentist (no prior; point estimate);
– Bayesian (prior; posterior distribution);
– MAP (prior distribution, i.e., regularization; point
estimate);

– MDL (penalty for complexity; point estimate).
2. No free lunch theorem. One cannot learn rules
that generalize to unseen examples without making as-
sumptions (inductive bias) about the data generation
mechanism.
Supervised learning looks for a predictive algorithm
minimizing generalization loss.
Discriminative models directly model p(y|x).
Generative models model p(x, y) (sometimes by sep-
arately modeling p(y) and p(x|y)), from which we can
compute p(y|x) – there is a higher risk of incorrect as-
sumptions, but it is easier to deal with missing values.

Article and book summaries by Vincent Zoonekynd 395/1044

The Bayesian approach allows model selection without
validation, with the marginal likelihood.

fα prior
θ ∼ fα parameters
gθ model likelihood
x ∼ gθ data
g(x) := Eθ

[
gθ(x)

]
marginal likelihood

Empirical Bayes estimates the parameter prior from
the data.
The Kullback-Leibler divergence is the expectation
of the log-likelihood-ratio between two distributions,
log p(x)/q(x), wrt the distribution in the numerator. It
is non-negative; it is zero iff p = q. The log-likelihood
is KL(data‖model).

KL(p‖q) = E
x∼p

[
log

p(x)

q(x)

]
H(p‖q) = E

x∼p

[
− log q(x)

]
cross-entropy

H(p) = E
x∼p

[
− log p(x)

]
entropy

3. Exponential family (or log-linear) models are
of the form

p(x|η) ∝ exp
(
η′u(x)

)
m(x)

log p(x|η) = η′u(x) + logm(x)−A(η)

where

η natural parameters
u sufficient statistics
m base measure
µ = E

x∼p(·|η)

[
u(x)

]
mean parameters.

The Gaussian model N(µ, σ2) is exponential, with

u(x) =

(
x
x2

)
η =

(
µ/σ2

−1/2σ2

)
m = 1.

The natural and mean parameters are related through
the gradient of the partition function.

∇ηA(η) = µ

∇2
ηA(η) = Cov u(x) = Iη

The exponential family p(x|η) is the maximum en-
tropy distribution under the constraints E

[
u(x)

]
= µ

(and the natural parameters are the corresponding La-
grange multipliers).
The gradient of the log-likelihood is ∇η` = µ̂− µ.
In Bayesian models, one often chooses conjugate priors,
i.e., priors such that priors and posteriors belong to
the same family (Beta-Bernoulli, Dirichlet-Categorical,
Gaussian-Gaussian, etc.).
One can vary the prior, to see, for instance, how strong
it should be to change the MAP estimator.

Energy-based models are of the form

p(x|η) ∝ exp−
∑
c

Ex(xc|η);

they generalize the exponential families (for which Ec
is linear). For instance, E(x|η) = log

(
1+ (η′x)2

)
gives

a Student T distribution; Markov models are another
example.
A generalized linear model (GLM) is a model from
an exponential family whose parameter η depends lin-
early on the predictors, η =Wx or η =Wφ(x).
4. Classification
Discriminative deterministic (classification) models
(SVM, k-NN) output binary results.
Discriminative probabilistic models (GLM) output
probabilities P [label|feature].
Generative probabilistic models model the joint prob-
ability P (label, feature), often separating P (label) and
P [features|label]; examples include QDA

t ∼ Bernoulli(π)
x|t = k ∼ N(µk,Σk)

or LDA (when Σk does not depend on k).
5. Statistical learning theory. We want to mini-
mize the generalization error

E
(x,y)∼p

loss
(
t, t̂(x)

)
but the data distribution p is not known. Instead, we
can use the sample distribution and minimize the em-
pirical risk

E
(x,y)∼Data

loss
(
y, t̂(x)

)
.

A learning rule is probably approximately correct
(PAC) if

∀p ∈H P
Data∼p

size(Data)⩾N

[
lossp(t̂) ⩽ lossp(t∗)+ ε

]
⩾ 1−α

where N , the sample complexity, only depends on ε
and α (not p).
Finite hypothesis classes H are PAC-learnable via
empirical risk minimization (ERM) with sample com-
plexity

N =
2 log |H |+ 2 log(2/δ)

ε2

N =
log |H |+ log(1/δ)

ε
(?)

N = Θ

(
dimVC H + log(1/δ)

ε2

)
.

Dimension-d (quantized) models have sample complex-
ity proportional to d+ 1.
The minimax redundancy is another measure of model
capacity.

∆R(H) = Min
q∈H

Max
p∈H

KL(p‖q)

Article and book summaries by Vincent Zoonekynd 396/1044

Structural risk minimization combines model selection
and hypothesis testing by minimizing an upper bound
on the generalization loss

lossp(t̂) ⩽ lossData(t̂) +

√
log 2 |H | /δ

2N
.

6. The EM algorithm

x : observed
z : latent
θ : parameters

alternates between two steps
– M step: point estimate of θ|x, z;
– E step: distribution estimate of z|x, θ;
It can also be motivated using the evidence lower
bound(ELBO)

log p(x|θ) = log
∑
z

p(x, z|θ)

= log
∑
z

q(z)
p(x, z|θ)
q(z)

Importance
sampling

>
∑
z

q(z) log
p(x, z|θ)
q(z)

Jensen

= L (q, θ)

– E step: q ← ArgmaxL (q, θ) (with θ fixed), i.e.,
q(z) = p(z|x, θ);

– M step: θ ← Argmaxθ L (q, θ).
Probabilistic PCA (PPCA) can be estimated with the
EM algorithm.

z ∼ N(0, 1)

x|z ∼ N(Wx+ µ, σ2I)

In unsupervised learning, the loss is often the diver-
gence between the model and the data. The Kullback-
Leibler divergence is not always the best choice: min-
imizing KL(data‖model) tends to produce blurry esti-
mates.
Generative adversarial networks (GAN) general-
ize generative directed models: they learn at the same
time a divergence and a generative model,

Min
θ

Max
T

E
x∼p

[
T (x)

]
− E
x∼qθ

[
g
(
T (x)

)]
with T a neural net and g fixed

g(t) = − log(1− et) GAN
g(t) = 1− t WGAN.

Helmoltz machines are multilayer extensions of gener-
ative directed models.
7. Probabilistic graphical models, directed (Bayesian
networks) or not (Markov random fields, MRF) encode
conditional independence relations.

8. Variational inference (VI) approximates the pos-
terior as an I-projection.

p(z|x) = Argmin
q(z)

KL
(
q(z)

∥∥ p(z|x))
= Argmin

q(z)

KL
(
q(z)

∥∥ p(z, x))+ log p(x)

= Argmin
q(z)

KL
(
q(z)

∥∥ p(z, x))
= Argmin

q(z)

− E
z∼q

[
log p(z, x)

]
−H(q)

= Argmin
q(z)

−L (q)

≈ Argmin
q∈F

−L (q)

The I-projection is mode-seeking, the M-projection
zero-avoiding.

prI(p) = Argmin
q∈F

KL(q‖p)

prM (p) = Argmin
q∈F

KL(p‖q)

The α-divergence

Dα(p‖q) =

∑
x

αp(x) + (1− α)q(x)− p(x)αq(x)1−α

α(1− α)

interpolates between KL(p‖q) (for α = 1) and KL(p‖q)
(α = 0).

Most likely transformations: the mlt package
T. Hothorn (2018)

The regression function of Y |X is often defined as
f(x) = E[Y |X = x], without any distributional assum-
tion, but it could be written, with a Gaussian model,

Y |X = x ∼ N
(
f(x), σ2

)
or (this immediately allows censored data)

P [Y ⩽ y|X = x] = F

(
y − f(x)

σ

)
or, more generally

P [Y ⩽ y|X = x] = F
(
h(y)− f(x)

)
where h(y) = θ′a(y), with θ to be estimated and a basis
functions.

Adaptive gradient methods
with dynamic bound of learning rate

L. Luo et al. (2019)
Adaptive optimization algorithms (Adam, RMSProp,
etc.) can choose extreme learning rates, leading to
poor performance – instead, bound the learning rates
to a shrinking interval, i.e., progressively move towards
plain stochastic gradient descent.

Article and book summaries by Vincent Zoonekynd 397/1044

The Bloom clock
L. Ramabaja

The vector clock provides a partial order on the events
in a distributed system:
– Each node keeps a vector of size n, with one coordi-
nate for each node;

– When a node sends an event, it increments its coor-
dinate and broadcasts its vector;

– When a node receives a vector, it increments its co-
ordinate and replaces its vector with the elementwise
maximum of the two.

The vector clock can be bloomified.

f-GAN: training generative neural samplers
using variational divergence minimization

An f -GAN looks for a generator gθ minimizing the f -
divergence

Df (pdata‖qθ) = E
x∼q

[
f

(
p(x)

q(x)

)]
.

Since

Df (p‖q) ⩾ sup
T

E
x∼p

[
T (x)

]
− E
x∼q

[
f∗
(
T (x)

)]
= E
x∼p

[
T (x)

]
− E
x∼q

[
f∗
(
T (x)

)]
for T (x) = f ′

(
p(x)/q(x)

)
, we can instead try the saddle

points of

F (ω, θ) = E
x∼pdata

[
Tω(x)

]
− E
x∼qθ

[
f∗
(
Tω(x)

)]
which can be approximated with samples from p and
q.

Holographic embeddings of knowledge graphs
M. Nickel et al.

Knowledge graphs (RDF triples, SVO triples) can be
embedded in a vector space by learning vector repre-
sentations of subject, object and predicate,

score(s, p, 0) = −d(es + rp, eo)

or P [s, p, o] = σ
(
r′(es ◦ eo)

)
.

The composition operator · ◦ · can be one of

a ◦ b = a⊗ b

a ◦ b = ψ
(
W (a⊕ b)

) concatenation, projection,
non-linearity

a ◦ b = a ? b =

(∑
i

aibi+k mod d

)
k

(for the tensor product, since r′(a⊗ b) = a′Rb, one can
ask that R be diagonal, but this makes all relations
symmetric).
The circular correlation ? can be seen as a “com-
pression” of the tensor product.

Distributed convex optimization
with many non-linear constraints

J. Giesen and S. Laue
ADMM

Find x, z
To minimize f(x) + g(z)
Such that Ax+Bz = c,

often used (on a distributed infrastructure) to minimize
separable functions f(θ) =

∑
i fi(θ),

Find x, z
To minimize

∑
i fi(xi)

Such that ∀i xi = z

can also handle nonlinear convex inequalities (they
keep the problem convex).

Link prediction based on graph neural networks
M. Zhang and Y. Chen (2018)

Link prediction heuristics (common neighbours, Katz
index) make strong assumptions on when two nodes
are linked; instead, learn a function mapping subgraph
patterns to link existence (SEAL).

Discovering and deciphering relationships
across disparate data modalities

Y.T. Vogelstein et al.
To test if X ⊥⊥ Y :
– Compute the distance matrices (between observa-
tions) for X and Y ; center them: A, B;

– Compute the corresponding k-NN graphs: Gk, Hk

(binary matrices);
– Compute the local correlations

tkℓ =
∑
ij

AijBijGkijHℓij ;

– Smooth (k, `) 7→ tkℓ and compute its maximum t∗;
– Use a permutation test to see if it is significant.

Minimum Rényi entropy portfolios
N. Lassance and F. Vrins (2018)

Rényi entropy combines variance, skewness and kurto-
sis (as shown by a Gram-Charlier expansion): it can
be used as a risk measure.

DGM: a deep learning algorithm
for solving partial differential equations
J. Sirignano and K. Spiliopoulos (2018)

Deep learning tools can provide mesh-free solutions to
PDEs – meshes quickly become unusable as dimension
increases.

Statistical inference
using the Morse-Smale complex

Y.C. Chen et al. (2015)
The Morse-Smale complex of a function f : X → R
decomposes the space X with the intersections of the

Article and book summaries by Vincent Zoonekynd 398/1044

ascending and descending manifolds, i.e., the basins of
attractions of the gradients of f and −f .
Mean-shift clustering (or mode clustering) uses
the ascending manifolds as clusters.
Morse-Smale regression estimates a linear model in
each cell of the Morse-Smale complex of a kernel esti-
mator f(x) = E[Y |X = x].
The Morse-Smale signature graph (of a density
estimate, a regression function, or a difference of den-
sities) has maxima and minima as nodes, Morse-Smale
cells as edges, the slope of a linear approximation as
edge weights, and uses multidimensional scaling (MDS)
for node coordinates.
The Morse-Smale energy test compares two proba-
bility distributions, using half the data to estimate the
Morse-Smale complex of the difference of densities, and
the other half to perform an energy (distance correla-
tion) test in each cell, with a Bonferroni correction.

Morse-Smale regression
S. Gerber et al. (2013)

The Morse-Smale complex of a function f : X → R
known on a finite set of points can be computed from
the k-nearest neighbour graph, following the paths of
steepest descent or ascent (quick-shift algorithm).
The cell of a new point can be predicted using a kernel
density estimator or a support vector machine (SVM).
Morse-Smale regression fits a linear model in each cell,
either with discontinuities

f̂(x) = ai + bi if x ∈ Ci

or with weights from the cell prediction model

f̂(x) =
∑
i

P [x ∈ Ci](ai + bix).

The persistence of a critical point x is
Miny ‖f(x)− f(y)‖, where the minimum is over the
set of critical points y in cells adjacent to x; this de-
fines a filtration of Morse-Smale complexes (use the
BIC to select the persistence level, i.e., the number of
cells).

Visual exploration
of high-dimensional scalar functions

S. Gerber et al. (2011)
Dimension reduction can help understand high-
dimensional clouds of points. For functions (scalar
fields) defined on an intrinsically high-dimensional
cloud of points (or models with many variables inter-
acting in complicated ways):
– Build the k-nearest graph of the cloud of points (k

should increase with dimension);
– Compute the corresponding Morse-Smale complex;
one can fine-tune the level of detail – start at the
coarsest level;

– For each Morse-Smale crystal, estimate an (inverse)
local (kernel) regression X ∼ y: it is a path from
minimum to maximum;

– For each such path r, compute a few geometric sum-
maries: sensitivity dr/dy, average distance to the
curve, sampling density – these form bands around
the curves;

– Project those curves onto the first principal compo-
nent of the extrema.

Data analysis with the Morse-Smale complex:
the msr package for R

S. Gerber et al.
Implementation of Morse-Smale regression and inverse
regression.

Link prediction in complex networks: a survey
L. Lü and T. Zhou (2010)

Predict missing links in an (undirected, homophilic)
network using local or global similarity measures:
– The number of common neighbours, |Γ(x) ∩ Γ(y)|,

divided by 1, kx + ky, kxky,
√
kxky, Max{kx, ky},

Min{kx, ky}, |Γ(x) ∪ Γ(y)|;
– kxky (preferential attachment – this uses too little
information);

– The number of common neighbours, with less weight
for the more promiscuous ones,∑

z∈Γ(x)∩Γ(y)

1

kz
,

∑
z∈Γ(x)∩Γ(y)

1

log kz

– PageRank (random walk with restarts);
– SimRank;
– Katz: (I − βA)−1;
– The average commute time (L†)xx+(L†)yy−2(L†)xy,
L = D −A;

– Matrix forest” (I + αL)−1;
– Cosine: (L†)xy/

√
(L†)xx(L†)yy.

Statistical models are another (slow, inaccurate, not
scalable) option:
– Hierarchical structure model: the nodes are the
leaves of a dendrogram; each internal node x is as-
signed a number px ∈ [0, 1], and thee link probability
is P [x–y] = Px∧y, where x∧ y is the lowest common
ancestor of the leaves x and y;

– Stochastic block model.

The link prediction problem
for social networks

D. Liben-Nowell and J. Kleinberg (2004)
Forecast new links in a (co-authorship network using
node similarity (Katz, Adamic-Adar, etc.), computed
from the adjacency matrix, or a low-rank approxima-
tion, or a cleaned version (pruned of low-similarity
edges).

Article and book summaries by Vincent Zoonekynd 399/1044

Link prediction in evolving networks
based on popularity of nodes

T. Wang et al.
To predict links in (homophilic) evolving networks,
use the popularity of the nodes (proportion of recent
edges): active nodes attract more links.

Link prediction in complex networks:
a mutual information perspective

F. Tan et al.
Nodes whose neighbours tend to be connected tend to
be connected.

Γ(x) = {neighbours of x}
kx = |Γ(x)|
M = Number of edges

N∆z = # of connected pairs of neighbours of z
NΛz = # of disconnected pairs of neighbours of z

pxy =
1−

(
M−ky
kx

)(
M
kx

)
Ixy = −pxy log pxy

Iz = Mean
x,y∈Γ(z)

log

(
M
kx

)(
M
kx

)
−
(
M−ky
kx

) + log
N∆z

N∆x +NΛz

S(x, y) =
∑

z∈Γ(x)∩Γ(y)

Iz − Ixy

Supervised random walks: predicting
and recommending links in social networks

L. Backstrom and J. Leskovec (2011)
Personalized-PageRank-like measure of similarity com-
puted from a weighted graph, where the (learned) edge
weights are computed from edge and node features;
train with a hinge loss on Pi→j < Pi→k, where i → k
is an edge and i→ j is not.

DeepWalk:
online learning of social representations

B. Perozzi et al. (2014)
Apply word2vec (skipgram with negative sampling) to
random walks on a graph to get a vertex embedding.
Use a Huffman-coding-based hierarchical softmax to
deal with the large number of nodes.

node2vec:
scalable feature learning for networks

A. Grover and J. Leskovec (2016)
Random walks on a graph (depth-first search, DFS)
provide an alternative to the traditional notion of
neighbourhood (breadth-first search, BFS). Use a bi-
ased random walk with different probabilities for going
back, moving to a neighbour common to the previous
node, moving to another neighbour.

Structural deep network embedding
D. Wang et al. (2016)

Learn an autoencoder xi 7→ yi 7→ x̂i where xi is the ith
row of the adjacency matrix, with

loss =
∑

(ij)∈E

‖yi − yj‖2+
∑

(ij)∈E

‖x̂ij − xij‖2+regularizer;

the hidden layer y provides a node embedding.
LLE, IsoMap, Laplacian eigenmaps provide other
(shallower) embeddings.

LINE:
large-scale information network embedding

J. Tang et al.
Find a low-dimensional embedding ui of the nodes to
minimize

−
∑

(ij)∈E

wij log
1

1 + e−u
′
iuj

or wij log
eu

′
iuj∑

k e
u′
iuk

(KL divergence between the probability distributions
inside the logarithms and p̂ij = wij/

∑
kℓ wkℓ or p̂ij =

wij/
∑
k wik.)

Link prediction via subgraph embedding-based
convex matrix completion

Z. Cao et al. (2018)
Compute node representations using word2vec (on ran-
dom walks) or GloVe (on PPMI = (A+A2)/2) on the
graph whose nodes are egonets (of radius r) and with
edges between egonets in the radial context (of radius
R) of a node.

GraRep: learning graph representations
with global structural information

S. Cao et al.
Word2vec for node embedding cannot distinguish be-
tween and (the contexts are the same): replace
the center word and the context with the first and last
vertices of a length-k random walk; setting the gradient
of the loss function to zero yields a matrix factorization
problem,

WiCj = log
(Ak)ij
(Ak)·j

− log β

(replace negative values with zero, to reduce noise);
and concatenale all k-step representations, k ∈ J1,KK.

New perspectives and methods
in link prediction

R.N. Lichtenwalter et al. (2010)
Use ensembles of classifiers to reduce variance (C45,
J48, naive Bayes, random forests). Try the following
features:
– A variant of rooted PageRank: the probability that a
random walk with no duplicates, starting at x, visits
y in at most k steps;

Article and book summaries by Vincent Zoonekynd 400/1044

– The maximum flow that can travel from x to y in at
most 5 steps.

Computationally efficient link prediction
in a variety of social networks

M. Fire et al. (2013)
Use a decision tree (J48) with node features (degree,
Katz, number of paths of length 3, shared communi-
ties, etc.) to forecast missing links.

Link prediction
with personalized social influence

Z. Huo et al. (2018)
Given a directed social network (e.g., Twitter), prune
it to keep only significant connections, measured by
the mutual information between the timing of user j’s
tweets and the timing of user i’s retweets of user j’s
tweets, and find node embeddings S and T (source and
target) to model the link probability as

P [i→ j] =
eS

′
iTj∑

k

eS
′
iTk

.

Link prediction in social networks:
the state of the art

P. Wang et al. (2015)
Broken English

Connected patterns inspire
link prediction in complex networks

M.Y. Zhou et al. (2017)
Do not use a raw node similarity score to predict miss-
ing links: learn a nonlinear transformation of the score.
[Better: learn a nonlinear way of combining several of
those scores.]

Link prediction via matrix factorization
A.K. Menon et al. (2011)

Model the link probabilities as

P [i→ j] = σ(u′iΛuj + bi + bj + w′zij + x′iV xj)

where σ is the logistic function, u′iΛuj is a matrix fac-
torization, xi are the node features, wij the edge fea-
tures and x′iV xj a bilinear model (which works bet-
ter than a linear one, v′xi + v′xj); add a regularizing
penalty for U , V , Λ, W .
To overcome class imbalance, directly optimize the
AUC by training on pairs of positive and negative sam-
ples – indeed, AUC = P

[
f(i) > f(j) | yi = 1, yj = 0

]
(either arbitrary pairs, or pairs that share a node).

Link prediction based on graph neural networks
M. Zhang and Y. Chen (2018)

Graph neural networks can approximate node similar-
ity measures and forecast missing edges.

Link prediction through deep learning
X.W. Wang et al. (2018)

Consider the adjacency matrix of a network as an im-
age; reorder the nodes to make patterns more visible,
using
– (Multiresolution) community detection;
– Consensus-based relabeling, which minimizes∑

i

1

ki

∑
j

|ri,j+1 − ri,j − 1|

where rij is the index of the jth neighbour of node
i;

– Or any matrix reordering algorithm;
apply a deep generative model (convolutional VAE or
GAN – the latter works better) on perturbed copies of
the adjacency matrix (obtained by removing 5% of the
edges).

Link prediction: fair and effective evaluation
R. Lichtenwalter and N.V. Chawla

When the data is unbalanced, prefer the area under
the precision-recall curve to that under the TPR-FPR
one (ROC).

Evaluating link prediction methods
Y. Yang et al. (2013)

Idem

Link propagation: a fast semi-supervised
learning algorithm for link prediction

H. Kashima et al.
Given a node similarity matrix W and a matrix in-
dicating the presence (+1) or absence (−1) of edges
F ∗ (unknown edges are left at 0, and the weights can
be |E| / |E+| and − |E| / |E−| if the classes are un-
balanced), link propagation completes the graph by
minimizing∑
ijkℓ

wijkℓ(fij − fkℓ)2 + λ
∑

(ij)∈E

(fij − f∗ij)2 + µ
∑

(ij) ̸∈E

f2ij

where the edge similarities areW⊗W ; this can be gen-
eralized to multiple edge types (we then have order-3
tensors), expressed with linear algebra operations, and
optimized with gradient descent.

Link prediction in very large directed graphs:
exploiting hierarchical properties in parallel

D. Garcia-Gasulla and U. Cortés
To infer missing links in directed graphs, generalize the
neighbourhood-based similarity measures by separat-
ing ancestors and descendants, N(x) = A(x) t D(x),
e.g.,

‖A(x) ∩D(y)‖
‖A(x)‖

+
‖D(x) ∪D(y)‖
‖D(x)‖

.

Article and book summaries by Vincent Zoonekynd 401/1044

Modeling relational data
with graph convolutional networks

M. Schlichtkrull et al.
Graph convolutional networks (GCN) can be aug-
mented with node and edge attributes or types (rela-
tional GCN).

Graph convolutional neural networks
for web-scale recommender systems

R. Ying et al.
To scale graph convolutional networks to large graphs,
use samples of the neighbourhoods instead of the whole
Laplacian.

Probabilistic relational models
L. Getoor et al.

A probabilistic relational model (PRM) is a tem-
plate for Bayesian networks, linking node types rather
than nodes (it can be seen as a Bayesian network on a
graph with typed nodes, and parameters (or Bayesian
priors on those parameters) shared among all nodes of
the same type). Links can also be probabilistic and
modeled from node attributes.

Probabilistic entity-relationship models,
PRMs and plate models

D. Heckman et al.
Probabilistic relational models (PRM) probabilistic
entity-relation (ER) models (DAPER – contrary to
PRMs, they distinguish between entities and relations)
and plate models are equivalent.

Relational learning with Gaussian processes
W. Chu et al.

Model links as P [i−j] = σ
(
f(xi)

′f(xj)εij
)
, where i, j

are nodes, f ∼ GP, ε ∈ {±1} and estimate P [ε | links].

Stochastic relational models
for discriminative link prediction

K. Yu et al.
In a user-movie recommendation problem, the rat-
ings are a function Users × Movies → R which can
be modeled by a tensor Gaussian process, i.e., a
Gaussian process whose kernel is a Kronecker product
ΣUsers ⊗ ΣMovies.

Dependency networks for inference,
collaborative filtering and data visualization

D. Heckerman et al. (2000)
Dependency networks, in which the parents of a node
are its Markov blanket,

∀Y 6∈ pa(X) X ⊥⊥ | pa(X),

are a potentially cyclic alternative to Bayesian net-
works, which do not lead to causal misinterpretations.

Discriminative probabilistic models
for relational data

B. Taskar et al.
Undirected graphical model template, i.e., graphical
model with shared parameters.

BPR: Bayesian personalized ranking
from implicit feedback

S. Rendle et al. (2009)
The classification problem with three types of items,
known positives, unknown positives and unknown neg-
atives, is sometimes tackled by learning to separate
known positives from the rest. Instead, one can look
for a total order such that known positives dominate
unknown items. This is similar to AUC optimization,
but with the Heaviside objective∑

i positive
j unknown

1xi(θ)>xj(θ)

replaced with a differentiable (penalized) likelihood∑
i positive
j unknown

log σ
(
xi(θ)− xj(θ)

)
+ λ ‖θ‖2 ,

corresponding to a logistic model

P [i > j] = σ
(
xi(θ)− xj(θ)

)
.

For the item recommendation problem (one more in-
dex, for users, xui), the model can be a low-rank ma-
trix factorization X = WH ′ or an adaptive k-nearest
neighbour model,

xui =
∑

u likes ℓ
ℓ ̸=i

ciℓ, C = HH ′.

Optimizing area under the ROC curve
using gradient descent

A. Herschtal and B. Raskutti (2004)
Replace the Heaviside loss 1xi(θ)>xj(θ) with a differen-
tiable approximation σ

(
xi(θ)− xj(θ)

)
.

Naive Bayes for regression
E. Frank et al. (1999)

Naive Bayes does not work well for regression, unless
there is really a lot of data.

P (Y |X1, . . . , Xn) ∝ P (X1, . . . , Xn, Y)

= P (X1|X2 · · ·)P (X2|X3 · · ·) · · ·P (Y)

≈ P (X1|Y) · · ·P (Xn|Y)P (Y)

Article and book summaries by Vincent Zoonekynd 402/1044

Neural variational inference
for text processing

Y. Miao et al. (2016)
Variational autoencoders can model topics (neural
variational document model).

X

h

X

P (h|X)

P (X|h)

i.e., noise

bag of words

bag of words

topic

Discovering discrete latent topics
with neural variational inference

Y. Miao et al. (2018)
Replace the Dirichlet prior for word distributions in
LDA with neural-network-friendly distributions, e.g.,
– Gaussian softmax

x ∼ N(0, I)

p = softmax(Ax)
– Gaussian stick-breaking (η ∼ Beta would give a
Dirichlet distribution)

x ∼ N(0, I)

η = sigmoid(Ax)

pk = ηk

k−1∏
1

(1− ηi)

pn =
∏

(1− ηi)

– Recurrent stick-breaking
x ∼ N(0, I)

η = RNN(x)
p = StickBreaking(η)

TopicRNN: a recurrent neural network
with long-range semantic dependency

A.B. Dieng et al.
Use a Gaussian distribution instead of a Dirichlet prior
for the topic distribution of each document.
Instead of modeling each topic as a distribution on
words, use a language model parametrized by the topic
vector (RNN).
Model stopwords (problematic, in topic models, be-
cause they do not carry any information) using a mix-
ture between the topic model and a distribution of
stopwords (from a list).

Deep learning for assessing banks’ distress
from news and numerical financial data

P. Cerchiello et al.
Feed the 600-dimensional doc2vec embedding and 12 fi-
nancial ratios to a binary classifier (with one 50-neuron
hidden layer).

Empath:
understanding topic signals in large-scale text

E. Fast et al.
MIT-licensed replacement for LIWC, with 200 cate-
gories selected from ConceptNet and the words ob-
tained using cosine similarity with a skipgram embed-
ding trained on amateur fiction (Wattpad – fiction is
better for sentiment) and manually reviewed.

Automatic keyword extraction
from individual documents

S. Rose et al. (2010)
To extract multi-word keywords from an isolated doc-
ument (not in a corpus), the rake algorithm proceeds
as follows:
– Split the text on punctuation and stopwords to get
keyword candidates (but allow candidates with one
stopword if they are frequent enough);

– For each word, compute the frequency (number of
occurrences), degree (number of words in the same
candidates) and degree/frequency ratio;

– Define the keyword score by summing the word
scores.

Also check TextRank.
To find stopwords from (manually generated) key-
words, look for words at the boundary of keywords and
rarely inside.

Interpretable machine learning
C. Molnar (2018)

Interpretability is needed:
– The problems we are solving are not completely spec-
ified – we do not really want to optimize a single met-
ric but several, and the model output is not the final
goal, just an intermediate step before some decision;

– We want to convince stakeholders that the model is
safe, robust unbiased and fair.

But interpretability may make the system gamable.
Interpretability methods can be:
– Intrinsic (how the model actually works) or post hoc
(as human explanations are);

– Local (only valid for observations similar to a given
one) or global.

The output can be:
– Some feature summary (importance, contribution,
visualization);

– Model internals (weights);
– Data points (prototypes, counterfactuals);
– An interpretable model.
Good explanations should
– Be contrastive, i.e., explain why we got an output
and not another;

Article and book summaries by Vincent Zoonekynd 403/1044

– Be short (1 to 3 reasons, even of the model is more
complex);

– Highlight abnormal or unusual inputs (outliers);
– Be consistent with prior beliefs (e.g., monotonicity);
– Be general (apply to a large number of instances).
1. Interpretable models include linear models (with a
sparsity constraint), logistic regression, decision trees,
decision rules, regression trees, naive Bayes, k-nearest
neighbours.
2. Model-agnostic methods include:
– Individual conditional expectation (ICE) plots,

f(x, x2, . . . , xn) ∼ x, for (x1, . . . , xn) ∈ Data;

– Partial dependency plots (PDP),

E
[
f(X1, . . . , Xn) |X1 = x

]
∼ x,

i.e., the average of the ICE curves; it can also be
used for pairs of variables;

– Friedman’s H statistic looks for interactions by com-
paring the partial dependency functions of X1, X2,
X12, X−1,

PDI(x) = E[f̂(X)|XI = xI]

H2 =
E[PD12(X)− PD1(X)− PD2(X)]

E[PD12(X)2]

H2 =
E[f̂(X)− PD1(X)− PD−1(X)]

E[f̂(X)2]

– Feature importance: permute the feature’s values,
and check the drop in performance;

– Global surrogate model;
– Local surrogate model (LIME), e.g., with a sparse
linear model:
· For text, randomly remove some of the words;
· For images, segment them them into superpixels;

– Shapley values

φj =
∑

I⊂J1,pK
j ̸∈I

(
p

|I|

)(
v(I ∪ {j})− v(I)

)
v(I) = E

[
f̂(X)|XI = xI

]
− E

[
f̂(X)

]
.

3. Example-based explanations include
– Counterfactual explanations: smallest changes to
the features to change the outcome to a predefined
value;

– Adversarial examples: small, insignificant perturba-
tions of the input which nonetheless change the out-
put;

– MMD critic: greedily select prototypes to reduce the
maximummean discrepancy between prototypes and
data,

MMD(X,Y) = E
[
κ(X,X)− 2κ(X,Y) + κ(Y, Y)

]
,

where κ is an RBF kernel, then greedily
select criticisms where the prototypes and

the data distributions differ, i.e., maximizing
|witness(x, prototypes, data)|

witness(x,X, Y) = E[κ(x,X)− κ(x, Y)],

with a diversity-inducing submodular penalty

log det
(
κ(xi, xj)

)
i,j
∈ criticism;

– Influential instances (dfbeta, Cook’s distance, in-
fluence function).

Peeking inside the black box:
visualizing statistical learning

with plots of individual conditional expectation
A. Goldstein et al. (2014)

The partial dependency plot integrates outX2, . . . , Xn,

E
X2,...,Xn

[
f(x1, X2, . . . , Xn)

]
while the ICE plots fix x2, . . . , xn (one curve for each
observation)

f(x1, . . . , xn) ∼ x1.

Visualizing the effects of predictor variables
in black box supervised learning models

D.W. Apley
The partial dependency plot

E
X2

[
f̂(X1, X2)

∣∣ X1 = x1
]

uses the marginal distribution of X2, and estimates the
predictor f̂ very far away from the data, where it is un-
likely to extrapolate well.
The marginal plot

E
X2|X1=x1

[
f̂(X1, X2)

∣∣ X1 = x1
]

uses the conditional distribution X2|X1 = x1 instead,
but it suffers from the omitted variable bias: if X2

plays a role, its impact will be included in the model
intercept.
The accumulated local effects (ALE) plot∫ x1

−∞
E

X2|X1=x1

[∂f
∂x1

(X1, X2)
∣∣∣ X1 = x

]
dx

has the same interpretation without bias. For non-
differentiable models (e.g., trees), use differences and
sums instead of derivatives and integrals.

A unified approach
to interpreting model predictions

S.M. Lundberg and S.I. Lee (2017)
Shapley values estimate all models on a subset of the
variables I ⊂ S and compares those with and without
variable i.

Article and book summaries by Vincent Zoonekynd 404/1044

The separation plot: a new visual method
for evaluating the fit of binary models

B. Greenhill et al. (2011)
To assess the quality of a logistic model, look at the
ROC curve, the AUC, the Brier score

1

n

∑
(p̂i −Xi)

2,

the pseudo-R2 (likelihood ratio), the expected propor-
tion of correct predictions

EPCP =
1

n

[∑
y1=1

p̂i +
∑
y1=0

(1− p̂i)
]
,

the separation plot (1-dimensional tile plot, with one
colour for each outcome, the cells ordered by the fore-
cast, with the forecasted probability curve overlaid,
and the expected number of events

∑
p̂i highlighted).

Deep learning: a critical appraisal
G. Marcus

Deep learning
– Needs infinite data;
– Cannot leverage background data, integrate prior
knowledge, or learn abstractions from explicit ver-
bal descriptions;

– Has limited transfer learning capabilities;
– Struggles with hierarchical structures;
– Is a black box;
– Cannot distinguish causation from correlation;
– Assumes the world is stationary;
– Has (frightening) non-human “failure modes”.
We need more unsupervised learning and hybrid
symbolic-statistical systems.

Understanding and simplifying
one-shot architecture search

G. Bender et al. (2018)
Learn a single large model, from which all the models
to test can be obtained (an exponentially large number
of them) by switching off some of the connections, à la
dropout.

Efficient neural architecture search
via parameter sharing

H. Pham et al.
Search for an optimal subgraph in a large computa-
tional graph, seen as an ensemble of models sharing
parameters.

You only search once:
single-shot neural architecture search

via direct sparse optimization
X. Zhang et al. (2019)

Learn a complete DAG with a sparsity penalty.

Convolutional neural fabrics
S. Saxena and J. Verbeek

To choose the hyperparameters of a CNN, represent
possible architectures as paths in a large network
(dropout uses subgraphs instead of paths).

layers

scales

output

input

FBNet:
hardware-aware efficient ConvNet design

via differentiable neural architecture search
B. Wu et al.

Consider a “supernet” whose operators execute
stochastically and look for the optimal architecture as
a distribution (rather than a subnet).

Mixed-precision quantization of convnets
via differentiable neural architecture search

B. Wu et al.

Neural architecture optimization
R. Luo et al. (2018)

Use an autoencoder to map the discrete search space
to a continuous one and predict the performance of an
architecture from that continuous representation.

Discrete search space

Continuous space

Discrete search space

Performance
encoder

decoder
predictor

Neural architecture search with
Bayesian optimization and optimal transport

K. Kandasamy et al. (2018)
Gaussian-process-based Bayesian optimization can be
used for network architecture search, with optimal
transport to define a kernel to compare architectures
(align the two networks and add penalties for mis-
matches) and an evolutionary algorithm to optimize
the acquisition function.

Neural architecture search: a survey
T. Elsken et al. (2018)

Article and book summaries by Vincent Zoonekynd 405/1044

Neural architecture search
with reinforcement learning

B. Zoph and Q.V. Le (2016)

Visualizing the loss landscape of neural nets
H. Li et al.

Plot the loss landscape of a neural net using one or
two random directions in weight space, after filter nor-
malization (normalize the weights in each filter (or
each layer, for non-CNNs) to make them comparable
– BatchNorm or ReLU units make the network scale-
invariant).
– Small batch sizes lead to wider minima and better
generalization;

– The loss landscape has a central convex region
around the minimum, but is chaotic and non-convex
beyond it – it is important to initialize the network
in the convex region;

– Skip connections, small batches and wide networks
(many filters) enlarge this region;

– The optimization path is very low-dimensional: use
PCA rather than random dimensions to examine it.

Multi-dimensional graph Fourier transform
T. Kurokawa et al.

The graph Fourier transform (GFT) decomposes a
signal f : V → R on the eigenvectors of the Lapla-
cian matrix L = D − W . It can be generalized to
cartesian product graphs (e.g., time series for sensor
networks, which have space and time dimensions), for
which eigenvalues tend to be multiple: the eigenval-
ues (eigenvector) of the Kronecker sum L1 ⊕ L2 are
the sums (products) of those of L1 and L2. It can be
used, for instance, for signal filtering, to remove some
frequencies in some directions:

f̂out(λ1, λ2) = h(λ1, λ2)f̂in(λ1, λ2).

PassGAN: a deep learning approach
for password guessing

B. Hitaj et al.
GAN to learn the distribution of real passwords from
password leaks, to replace or complement rule-based
password crackers (hashcat, johntheripper).

WESPE: Weakly supervised photo enhancer
for digital cameras

A. Ignatov et al.
GAN-based style transfer for photo enhancement,
trained with highly liked Flickr images.

Multi-dimensional sparse super-resolution
C. Poon and G. Peyré (2017)

The total variation norm of a measure µ,

sup
η∈C (X)
∥η∥L∞⩽1

∫
X

η(x) dµ(x)

generalizes the `1 and L1 norms of vectors and func-
tions. The corresponding penalty (BLASSO) can be
used for sparse superresolution, i.e., to recover (posi-
tion and amplitude of) spikes.

StarGAN:
unified generative adversarial networks

for multi-domain image-to-image translation
Y. Choi et al.

To translate images between domains (gender, hair
colour, mood, age, etc.), use a single (conditional) gen-
erator G : (image, domain) 7−→ image, separate dis-
criminators for the source and target domains, and a
cycle loss to preserve image contents.
Datasets: CelebA (40 labels), RaFD (8 labels).

DeblurGAN: blind motion deblurring using
conditional adversarial networks

O. Kupyn et al.
To remove motion blur, use a Wasserstein conditional
GAN

Dataset 1

Noise

Dataset 2

x

z

y

G
D

with gradient penalty and perceptual loss (L2 norm of
the difference of CNN features).

Improved training of Wasserstein GANs
I. Gulrajani et al.

Replace the weight clipping used to make the WGAN
critic Lipschitz with a penalty on the norm of its gra-
dient.

Non-local neural networks
X. Wang et al.

Self-attention, for images, is a generalization of non-
local means,

yi ∝
∑
j

w(xi, xj)g(xj)

with, e.g., w(xi, xj) = exp(Axi)
′(Bxj).

Constructing unrestricted adversarial
examples with generative models

Y. Song et al. (2018)
Train a GAN to model the class-conditioned distribu-
tion over inputs, then search its latent space (condi-
tional on the desired class) for an adversarial example
(of the desired class according to the GAN, but mis-
classified by the target classifier).

Article and book summaries by Vincent Zoonekynd 406/1044

MolGAN: an implicit generative model
for small molecular graphs

N. De Cao and T. Kipf
Use a GAN (WGAN with gradient penalty) to gener-
ate molecules (a vector for the atom types, a matrix for
the link types, for a fixed number of atoms) and add
a loss to force the generator to output molecules with
desirable properties (e.g., easy to synthesize, using the
RDKit chemoinformatics software).

GAIN: missing data imputation
using generative adversarial nets

J. Yoon et al. (2018)

Incomplete data

Imputation

Complete data

Discriminator

Which variables were imputed

Twin networks: matching the future
for sequence generation

D. Serdyuk et al. (2018)
To encourage planning in a RNN, train (indepen-
dently) a forward and a backward RNN to the same
task, and add a penalty to match their hidden states.

Fraternal dropout
K. Żołna et al. (2018)

Train two identical copies of a RNN, with shared pa-
rameters, with different dropout masks, while minimiz-
ing the difference between their outputs.

Dilated recurrent neural networks
S. Chang et al. (2017)

Slight variant on the skip connection.

vs

A universal music translation network
N. Mor et al.

To change the instrument or style of a piece of music,
use a WaveNet autoencoder, with one encoder and one
decoder per style.

input encoder latent

decoder

decoder

decoder

output (instrument 1)

output (instrument 2)

output (instrument 3)

EraseReLU: A simple way to ease the training
of deep convolutional networks

X. Dong et al.
There might be too many nonlinearities in some neural
nets: removing the last ReLU of all basic modules may
improve performance.

Shifting mean activation towards zero
with bipolar activation functions

L.H. Eidner and A. Nøkland (2018)
Replace the nonlinearity x 7−→ σ(x) with x 7−→
(σ(x),−σ(−x)) or with

xi 7−→

{
σ(xi) if i ≡ 1 (mod 2)

−σ(−xi) if i ≡ 0 (mod 2)

The orthogonal partition linear unit (OPLU) partitions
the coordinates into pairs and sorts them.

(xi)1⩽i⩽2n 7−→
(
Max(x2i−1, x2i)
Min(x2i−1, x2i)

)
1⩽i⩽n

SMASH: one-shot model architecture search
through hypernetworks

A. Brock et al.
Encode neural network topologies as binary vectors,
from a few building blocks (ResNet, FractalNet, etc.),
and map them to weights.

+ResNet

+FractalNet

DenseNet

DARTS: differentiable architecture search
H. Liu et al.

Search for computation cells with two inputs (previous
two layers in a non-RNN, input and previous state in
an RNN) by modeling them as DAGs on n nodes (n
fixed), each connected to the previous ones, where the
edges implement a linear combination of simple opera-
tions (zero, convolution, max pooling, etc.). Alternate
between gradient steps in the architecture and weight
spaces; for each edge, keep the most likely operation.

Differentiable learning-to-normalize
via switchable normalization

P. Luo et al.
Successive normalization layers need not be identical:
try linear combinations of normalizations (batch, layer,
channel) with learned weights.

Article and book summaries by Vincent Zoonekynd 407/1044

Efficient neural architecture search
with neural morphism

H. Jin et al.
Search for a good network architecture “morphing” it,
by adding or removing layers or skip-connections, by
changing the layer sizes, etc. (training is fast if we start
from the previous, trained architecture).
For Bayesian optimization with Gaussian processes,
use a kernel of the form κ(a, b) = exp−d(a, b), for some
measure of distance d between the candidate architec-
tures.

Regularization learning networks
I. Shavitt and E. Segal

Use a different regularization coefficient for each weight
and replace the loss Loss(w, λ) = Loss[w] + exp(λ)′ |w|
with

Loss
[
w − η∇wLoss(w, λ)

]
.

AutoAugment:
learning augmentation policies from data

E.D. Cubuk et al.
Parametrized data augmentation procedures can be
learnt.

Explainable neural networks
based on additive index models

J. Vaughan et al. (2018)
Generalized additive models f(x) =

∑
fi(xi) and ad-

ditive index models

f(x) =
∑

gi(β
′
ix)

are interpretable and can be modeled by neural net-
works.

g1

g2

gk

+

x1

x2

xn

β′
1x

β′
kx

Training deep autoencoders
for collaborative filtering

O. Kuchaiev and B. Ginsburg
Use an autoencoder, with SELU units, tied weights
(the decoder’s weights are the transpose of the en-
coder’s) and masked mean square error loss, for col-
laborative filtering. Since the input is sparse and the
output f(x) dense, re-feed the output to the autoen-
coder to have f(f(x)) ≈ f(x).

A meta-learning perspective on cold-start
recommendations for items

M. Vartak et al. (2017)
Meta-learning can replace matrix factorization for rec-
ommendation systems, when new items arrive contin-
uously (tweet recommendation):

user 7−→ (tweet 7−→ score).

The meta-learning learns, for a user’s history (items
liked or not), the weights of a neural network (either
all the weights of a linear network, or the biases of a
nonlinear one, the other weights being shared across
users).

Tropical geometry of deep neural networks
L. Zhang et al.

Neural networks with ReLU activations are just tropi-
cal rational maps.

Deep learning works in practice.
But does it work in theory?

L.N. Hoang and R. Guerraoui (2018)
At equivalent Kolmogorov complexity, deeper neu-
ral networks compute functions with larger “non-
parallelizable logical depth”.

Generalizing Hamiltonian Monte Carlo
with neural networks
D. Levy et al. (2018)

Neural networks can learn a reparametrization to speed
up HMC, maximizing the expected squared jumped
distance.

Backpropagation through the void:
optimizing control variates

for black-box gradient optimization
W. Grathwohl et al. (2018)

To minimize a function of the form

Loss(θ) = E
b∼pθ

[
f(b)

]
,

SGD needs gradients ĝ such that

E[ĝ] =
∂Loss
∂θ

and (ideally) Var ĝ small. Common choices include

ĝreinforce = f(b)
∂

∂θ
log pθ(b)

ĥreparam =
∂f

∂b

∂b

∂θ
, where b = b(θ, ε), ε ∼ pε.

Control variates can reduce variance:

ĝnew(b) = ĝ(b)− c(b) + E
b∼pθ

[
c(b)

]
.

Article and book summaries by Vincent Zoonekynd 408/1044

They can also deal with non-differentiable f and dis-
crete b,

ĝlax = ĝreinforce[f]− ĝreinforce[cϕ] + ĝreparam[cϕ]

=
[
f(b)− cϕ(b)

]∂ log pθ(bv)
∂θ

+
∂cϕ(b)

∂θ

where cϕ is a neural network approximating f .

ĝdlax = f(b)
∂

∂θ
log pθ(b)−cϕ(z)

∂

∂θ
log pθ(z)+

∂

∂θ
cϕ(z)

ĝrelax =
[
f(b)−cϕ(z̃)

] ∂
∂θ

log pθ(b)+
∂

∂θ
cϕ(z)−

∂

∂θ
cϕ(z̃)

b = H(z), z ∼ pθ(z), z̃ ∼ pθ(z|b)

Beyond power calculations: assessing type S
(sign) and type M (magnitude) errors

A. Gelman and J. Carlin (2014)
Besides the p-value and the power, also consider the
type S error rate, i.e., the probability that the sign is
incorrect given that the parameter is significantly dif-
ferent from zero, and the exaggeration ratio, i.e., the
expectation of the absolute value of the estimate over
the effect size, given it is significantly different from
zero. (R code provided)

Implicit causal models
for genome-wide association studies

D. Tran and D.M. Blei

X Y

Z

P (Y |X)

conditional
probability

X Y

Z

P
(
Y | do(X)

)

do-calculus

(remove all arcs to X)

How many random seeds?
Statistical power analysis

in deep reinforcement learning experiments
C. Colas et al.

The significance (often, α = 0.05) of a statistical test
only controls the type I errors. Compute the sample
size needed to achieve the desired power (e.g., type II
error β = 0.20), for the desired effect size ε, and the
estimated variances.
In practice, to compare deep learning or reinforcement
learning algorithms, run them at least 20 times with
different random seeds.

Measuring scientific broadness
T. Price and S. Hossenfelder

To measure the “broadness” of a researcher:
– Retrieve Arxiv abstracts using the API;

– Extract “keywords”: sequences of at most 10 words
appearing in at least 20 papers; clean them (remove
s’s, spaces; stem);

– Compute the “rank” of the keywords:

KL
(
P [category|keyword = k] ‖P [category]

)
×(

1− exp−P [keyword]
r

)
– Estimate an LDA model on the top 40,000 keywords
(50 topics, 5 passes);

– Define the “broadness” of an author as the entropy
of the topic distribution of her papers.

A network approach to topic models
A. Gerlach et al.

Topic modeling is similar to community detection on
the bipartite graph of documents and words. The
stochastic block model (DBM) is equivalent to pLSI
(frequentist LDA, i.e., LDA without a prior), but has
too many parameters to be used without a prior. The
hierarchical SBM provides such a prior and removes
the unimodality assumption inherent in LDA.
Implementation in graph-tool and TopSBM.

A high-reproducibility and high-accuracy
method for automated topic classification

A. Lancichinetti et al.
TopicMapping is an initialization method for LDA:
– Eliminate non-discriminative words by looking at all
the pairwise cosine similarities;

– Run a clustering (community detection) algorithm,
e.g., InfoMap, on the bipartite graph of words and
documents (if the vocabularies used by the topics
were disjoint, the topics would be the connected com-
ponents);

– Use the clusters to estimate a PLSA model;
– Use this model as a starting point to estimate an
asymmetric LDA model (LDA with a penalty for
topic distribution entropy).

Robust PLSA performs better than LDA
A. Potapenko and K. Vorontsov (2013)

Variants of LDA can be estimated in the same way:
– LDA uses a Dirichlet prior and defines topics as dis-
tributions on words and documents as mixtures of
topics;

– PLSA replaces the Bayesian priors with maximum
likelihood estimation (the priors can be seen as a
penalty);

– SWB (specific words and background) is similar, but
models documents as a mixture of topics, a corpus-
wide background word distribution, and a document-
specific distribution.

Article and book summaries by Vincent Zoonekynd 409/1044

The map equation
R. Rosvall et al. (2009)

Infomap looks for a community decomposition of a
graph minimizing the Huffman encoding of a random
walk using community×node pairs. The code length is
easy to compute.

α : node
pα : node visit probability
i : community

qiy : exit probability

qy =
∑
i

qiy

pi⟳ = qiy +
∑
α∈i

pα

L(M) = qyH(Q) +
∑
i

pi⟳H(Pi)

To minimize it, start with each node in its own com-
munity; at each iteration, move a random node to the
community decreasing the description length the most;
when nothing can be improved, collapse each commu-
nity into a node, and start again.

Community detection and visualization
of networks with the map equation framework

L. Bohlin et al.

Incorporating lexical priors into topic models
J. Jagarlamudi et al.

To force some (rarer) topics to appear, model each
topic as a mixture of a regular topic (a distribution
on words) and a seed topic, i.e., a distribution on a
user-specified set of words (SeededLDA).

Paper abstract writing
through editing mechanism

Q. Wang et al.
Use seq2seq with attention to generate an abstract
draft from a title, and then a final abstract from the
draft.

A simple method for commonsense reasoning
T.H. Trinh and Q.V. Le

To disambiguate pronouns, substitute them with all
possible candidates and use a language model (trained
on a massive amount of unlabeled data) to choose the
most probable sentence.

Unsupervised neural machine translation
M. Artetxe et al. (2018)

Use a pre-trained, frozen, shared embedding and
attention-based denoising decoders, trained with back-

translation.

any language

latent representation

language 1 language 2

shared embedding,
pre-trained, frozen

attention + denoising

Unsupervised machine translation
using monolingual corpora only

G. Lample et al. (2018)
Use denoising autoencoders.

Language A Latent
space Language B

Word translation without parallel data
A. Conneau et al. (2018)

To align word embeddings for two different languages,
given a dictionary of 5000 pairs of words, find an or-
thogonal transformationW that maps one to the other
(Procrustes problem),

W ∗ = Argmin
W∈O

‖WX − Y ‖F = UV ′,

where Y X ′ = UΣV ′ is the SVD.
With no bilingual dictionary, learn an orthogonal
transformation W and a discriminator to distinguish a
random sample from {Wx1, . . . ,Wxn} from one from
{y1, . . . , ym}. The orthogonality constraint can be en-
forced by alternating the gradient updates with

W ← (1 + β)W − βWW ′W, β = 10−2.

The alignment can be improved by selecting the most
frequent words, assuming their nearest neighbour is the
correct translation and using the Procrustes method.
The notion of nearest neighbour is not symmetric:
some points are the nearest neighbour of many points
(hubs), others of no points (anti-hubs).
The similarity between source and target words can be
measured as

CSLS(Wx, y) = 2 cos(Wx, y)−
〈
cos(Wx, ·)

〉
−
〈
cos(·, y)

〉
,

where the average cosine similarities are computed over
neighbourhoods of Wx and y in the bipartite graph of
k-nearest neighbours.

Article and book summaries by Vincent Zoonekynd 410/1044

On the tree-likeness of hyperbolic spaces
M. Hamann

An R-tree is a topological space X such that there
exists a unique arc between any two points.
Two geodesic rays (unbounded geodesics, isometric
images of (0,∞)), π1, π2 are equivalent if, for all
sequences (xn)n in π1, there exists M such that
lim d(xn, π2) ⩽ M . The hyperbolic boundary ∂X of X
is the set of equivalence classes of geodesic rays. There
are geodesic (double) rays between boundary points
and between boundary points and interior points.
Given a proper hyperbolic space X (the closed balls
are compact and there is a geodesic between any two
points), there exists a topological R-tree T whose rays
are quasi-geodesics and such that every geodesic ray in
X lies eventually close to a ray of T ; the embedding
T ↪→ X extends to ∂T ↪→ ∂X (no longer an embed-
ding).
The Assouad dimension is defined by

S(α, β) = {#V : ∀x 6= y ∈ V α ⩽ d(x, y) ⩽ β}
dimA(X) = inf

{
s ⩾ 0 : ∀ 0 < α ⩽ β ∃c ⩾ 0

S(α, β) ⩽ c(β/α)s
}
.

Hyperbolic deep learning
for Chinese natural language understanding

M.V. Micic and H. Chu
The hyperbolic skipgram character embedding replaces
the Euclidean product with the Lorentzian product in
the hyperboloid model Hn ⊂ R(n,1)

〈x, y〉L =

n∑
i=1

xiyi − xn+1yn+1

Hn = {x ∈ R(n,1) : 〈x, x〉L = −1 and xn+1 > 0}

(with an additive shift 〈x, y〉⇝ 〈x, y〉L + θ).
Transform the character embedding from the hyper-
boloid model to the Poincaré model and apply a hy-
perbolic transformer to an intent classification dataset
(text-based commands to an Alexa-like machine).
Train the character embedding on the linguistic data
consortium corpus and the word embedding (form com-
parison) on the People’s daily corpus (both commer-
cial).
Analytic hyperbolic geometry defines a scalar prod-
uct and a (non-commutative, non-associative) sum be-
tween points in a hyperbolic space (gyrovectors):

λ⊗ x = exp0
(
λ log0 x

)
x⊕ y = expx

(
P0→x log0 y

)

State-of-the-art Chinese word segmentation
with bi-LSTMs

J. Ma et al.

Stacked biLSTM, with characters and bigrams as in-
puts, pre-trained embeddings, dropout (for the LSTM
parameters) and hyperparameter tuning; data from
the Chinese Penn treebank, Chinese universal treebank
and SIGHAN2005.

non-stacking stacking

Long short-term memory neural networks
for Chinese word segmentation

X. Chen et al.
1- or 2-layer LSTM, with character of n-grams as in-
puts, and character embeddings.

Hyperbolic neural networks
O.E. Ganea et al.

Logistic regression

P
[
y = 1 |x

]
∝ exp

(
〈a, x〉 − b

)
can be generalized to hyperbolic space by noticing

〈a, x〉 − b = sign
(
〈a, x〉 − b

)
‖a‖ d(x,Ha,b)

= sign
(
〈−p+ x, a〉

)
‖a‖ d(x,Ha,b)

where b = 〈a, p〉 and

Ha,b =
{
x : 〈a, x〉 = b

}
Ha,p =

{
x : 〈−p+ x, a〉 = 0

}
= p+ {a}⊥

and replacing + with ⊕.
The linear (and affine, non-linear) transformations x 7→
Ax used in neural networks can be generalized to hy-
perbolic space as x 7→ exp0(A log0 x).
There is no Riemannian Adam: use Riemannian SGD
(projected SGD is less stable).

Hyperbolic attention networks
C. Gulcehre et al.

Using millions of emoji occurrences to learn
any-domain representations for detecting

sentiment, emotion and sarcasm
B. Felbo et al.

DeepMoji is a 2-layer LSTM network with attention
trained to forecast the presence of 64 common emojis
from the text of tweets; use it for transfer learning or
provide sentiment-aware sentence embeddings.
Pretrained model available.

Article and book summaries by Vincent Zoonekynd 411/1044

PlusEmo2Vec at SemEval-2018 task 1:
exploiting emotion knowledge

from emoji and hashtags
J.H. Park et al.

Use a biLSTM to forecast (emotion-related) emoji clus-
ters. Use the resulting sentence representation to fore-
cast emotions, using a training set built from hashtags
(from a sentiment lexicon).
This gives an emotional word embedding, very differ-
ent from the traditional ones (word2vec, glove), which
struggle to distinguish sentiment – indeed, positive and
negative words are used in the same context (e.g., “a
good/bad movie”).

日本語単語の難易度推定の試み
Y. Mizutani et al.

Measure the difficulty of a word by that of its context,
initially estimated from vocabulary lists for middle, ju-
nior high and senior high school.

What is... a spectrahedron?
C. Vinzant

A spectrahedron is a set of the form

{x ∈ Rn : A0 + x1A1 + · · ·+ xnAn ≽ 0}

where the Ai’s are symmetric matrices; they generalize
polytopes.
Semidefinite programming maximizes a linear function
over a spectrahedron; it generalizes linear program-
ming.
The elliptope is the spectrahedron of correlation matri-
ces of size n.
Spectrahedra are not closed under projections.

Fréchet distance based approach
for searching online handwritten documents

R. Sriraghavendra et al.
The Fréchet distance between two curves P and Q is

Min
α,β

Max
t∈[0,1]

‖P ◦ α(t)−Q ◦ β(t)‖2

where the reparametrizations α, β : [0, 1] → [0, 1] are
nondecreasing and surjective. (Think of a man and his
dog, walking along P and Q, never going backwards –
the distance is the minimum leash length.)
The discrete Fréchet distance can be computed with
dynamic programming.
The prefix Fréchet distance can be used to retrieve
handwriting, i.e., time series (t, x, y).

R Journal (2018-2)
The generalized autoregressive score (GAS) model
models time-varying distributions p(·, θt) whose pa-
rameters θt follow an AR(1) procecss driven by the

score function

∇t =
∂ log p(y, θ)

∂θ

∣∣∣∣
yt,θt

θt+1 = κ+A(Vart−1∇t)−γ∇t +Bθt, γ ∈ {0, 12 , 1}.

The maximum likelihood estimation is straightforward.
The dynamac package estimates and tests autoregres-
sive distributed lag models (ARDL)

y or ∆y ∼ f(time) + x+∆x+ lag(y) + lag(x) +
lag(∆y) + lag(∆x),

where the series can be stationary or (co)integrated.
In a semi-Markov model, sojourn times are arbitrar-
ily distributed (in a Markov model, they are exponen-
tial or geometric). Check SMM (discrete-time SMMs),
semiMarkov, hsmm, mhsmm.
The lmridge package provides ridge regression diag-
nostics.
The BNSP and bamlss packages provide Bayesian
GAMLSS with spike-and-slab priors for variable selec-
tion.
Differential item functioning looks for unfairness
in item response theory (IRT) models: eveb if they
have the same ability, different groups may respond
differently to the same distractor.
The nsROC package provides confidence bands for the
ROC curve (ROCbands) and compares ROC curves
(compareROCdep). Also check pROC, ROCR (estimators,
with smoothing, and confidence intervals for the AUC);
plotROC; fbroc (bootstrap); etc.
The k-means algorithm, can be generalized to mixed
data types (k-prototypes):

d(x, y) =
∑

i continuous
(xi − yi)2 + λ

∑
i discrete

1xi=yi .

Check clustMixType, gower, cluster (daisy,
hclust, agnes), CluMix, flexclust fpc, clustMD,
kamila, klaR.
Instead of forward or backward variable selection, the
feasible solutions algorithm (FSA) starts with a random
set of variables and replaces them, one at a time, to in-
crease the criterion (AIC, etc.), until this is no longer
possible (repeat several times with different starting
points).
There are several implementations of FastICA in fICA,
fastICA, ica.
The testforDEP package provides more independence
tests, beyond correlation, rank correlation, Kendall’s τ
and Hoeffding’s test (comparing FX,Y and FXFY), not
limited to linear or monotonic dependence.
The clikcorr estimates bivariate correlation with cen-
sored or missing data. The revengc package estimates
the parameters of a Poisson or binomial distribution
from censored data.

Article and book summaries by Vincent Zoonekynd 412/1044

Two-dimensional density estimation is available in
kde2d, bkde2D (binned – significantly faster),
pointdensityP.
Uncertainty can be propagated using Monte Carlo sim-
ulations or Taylor expansions: errors, propagate,
metRology.
The wrapr package generalizes matrittr’s pipe.
The qqplotr package provides confidence intervals for
quantile plots (computed from normal approximation,
a KS test, bootstrap, etc.).
The utilml and mldr packages deal with multilabel
classification (each observation can have several la-
bels); the algorithms are built using decision trees,
k-nearest neighbours, naive Bayes classifiers, support
vector machines (SVM) or xgboost.
Many packages provide interpretations of complex,
black-box models: lime (simple, interpretable model
estimate on similar observations), iml (Shapley values,
i.e., contributions of a (local) linear model on binary
variables), DALEX, live (locally interpretable visual ex-
planations, i.e., lime after perturbing the instance one
coordinate at a time), breakDown (additive contribu-
tion of each variable,

f(x, y) = 〈f(·, ·)〉+
〈f(x, ·)〉 − 〈f(·, ·)〉+
〈f(x, y)〉 − 〈f(x, ·)〉,

ordering the variables from the least to the most impor-
tant, as measured by 〈f(x, ·)〉 − 〈f(·, ·)〉), pdp (partial
dependency plots, ICE), ALEPlot, FactorMerger.
The bnclassify package learns (structure and param-
eters of) Bayesian network classifiers (augmented
naive Bayes models); it is similar to bnlearn, but fo-
cuses on p(c|x) rather than p(c, x), and drops variables
irrelevant for the classification task.

c

x1 x2 x3 x4 x5 x6

Naive Bayes

c

x1 x2 x3 x4 x5 x6

Augmented naive Bayes

Vertex bootstrap resamples the vertices of a graph,
with replacement, and returns a new adjacency matrix;
for duplicated vertices, since there are no self-edges,
take a random element of the initial adjacency matrix.
Patchwork bootstrap uses the subgraph of nodes
at most n steps away from a random set of seed ver-
tices (egonets); for bootstrap estimates of the degree
distribution, adjustments are needed for the degrees
of the vertices and the time(s) at which they enter the
patch (use each directed edge exactly once). Check the
snowboot package.

NetworkToolbox:
methods and measures for brain, cognitive

and psychometric network analysis in R
A.P. Christensen (R Journal 2018)

A correlation (or partial correlation) matrix can be
turned into a graph using the graphical lasso (bootnet,
glasso, IsingFit) or information filtering (maximum
spanning tree, planar/triangulated maximally filtered
graph (PMFG/TMFG)), e.g.,
– Start with the tetrahedron with the largest sum of
weights;

– Add the node and 3 edges maximizing the sum of
weights;

– Iterate until all the nodes have been added.
The (asymmetric) dependency matrix is

D(i, j) = Mean
k ̸=j

Cor(i, k)− pCor(i, k|j).

The randomized shortest path betweenness centrality
has fewer outliers than the betweenness centrality.
The node impact is the difference between the aver-
age shortest path length without and with it – if pos-
itive, its presence makes communities closer together.
Community detection can be used as a replacement
for PCA. Measures of centrality can also be computed
within each community. Also check EGA.

Two betweenness centrality measures
based on randomized shortest paths

I. Kivimäki et al. (2016)
The randomized shortest path betweenness is the ex-
pected number of visits of a node, for the probability
distribution on paths between two given modes

P [path] ∝ exp− path length
temperature .

UMAP: uniform manifold approximation
and projection for dimension reduction

L. McInnes et al. (2018)
A set is a functor ∗ → Set. A fuzzy set is a functor
([0, 1],⩽) → Set (the classical definition of fuzzy sets,
as maps X → [0, 1] measuring “membership strength”,
only provides subsets).
A simplicial set is a functor ∆op → Set. A fuzzy sim-
plicial set is a functor ∆op → Fuzz.
Extended pseudometric spaces (they allow d(x, y) =∞
and do not require d(x, y) = 0 =⇒ x = y) and non-
expansive maps form a category EPMet.
There is an adjunction between (finite) simplicial fuzzy
sets and (finite) EPM spaces

sFuzz

a

EPMet

metric
realization

singular
complex

which allows us to glue, as fuzzy simplicial sets , metric
spaces that cannot be glued together in the category
of metric spaces.

Article and book summaries by Vincent Zoonekynd 413/1044

The UMAP algorithm computes the weighted k-
nearest neighbour (the 1-skeleton of the fuzzy simpli-
cial set obtained by glueing the local neighbourhoods
of all points), with exponentially decaying weights (the
weights are given by the adjunction), and applies a
force-directed graph layout algorithm (the repulsive
forces are only applied to a sampling of the vertices).

Efficient k-nearest neighbour graph
construction for generic similarity measures

W. Dong et al. (2011)
The nearest neighbour descent algorithm builds an ap-
proximate k-nearest neighbour graph by starting with
a random neighbourhood for each point and improving
the estimate by looking at neighbours of neighbours.

Visualizing large-scale
and high-dimensional data

J. Tang et al. (2016)
LargeViz computes an approximate k-nearest neigh-
bour graph, using a few random projection trees (built
from hyperplanes equidistant from two random points
in each non-leaf node), refines it by looking at neigh-
bours of neighbours, assigns t-SNE weights to the
edges, and lays out the graph by maximizing∏

(i,j)∈E

f
(
‖yi − yj‖

)wij ∏
(i,j) ̸∈E

[
1− f

(
‖yi − yj‖

)]γ
using gradient descent and edge sampling (propor-
tionally to the weights), with f(x) = (1 + ex

2

)−1 or
f(x) = (1 + ax2)−1.

Homology-preserving dimensionality reduction
via manifold landmarking and tearing

L. Yan et al. (2018)
Isomap reduces the dimension of a point cloud
by computing its k-nearest neighbour (k-NN) graph
and applying mutidimensional scaling (MDS) to the
geodesic distance.
L-Isomap (landmark isomap) only applies MDS to a
set of (often randomly selected) “landmarks”; the other
points are added using the geodesic distance to the
landmarks.
The Reeb graph of a function f : X → R from a
manifold X is obtained by contracting each connected
component of the level sets f−1({a}) to a point. From
a cloud of points, use the inverse image of intervals
f−1((a, b)) instead (Mapper algorithm) and some clus-
tering algorithm (e.g., dbscan) to approximate the
connected components. The centroids of the compo-
nents can be used as landmarks. The function f is
often the distance to some fixed point.
Try to cut the K-NN graph with a plane orthogonal
to one of the edges of the Reeb graph, and check if
this preserves more of the topology by looking at the
Wasserstein distance, or the bottleneck distance, be-
tween the persistence diagrams of the original point
cloud and the dimension-reduced one.

A physical model
for efficient ranking in networks

C. de Bacco et al.
To estimate a hierarchy (to assign a real-valued rank
to each node) from a directed graph (in which most
edges are top-down or between nodes of similar rank),

Find (si)i∈V (G) ∈ R|V (G)|

To minimize
∑

(i→j)∈E(G)

(si − sj − 1)2

The social bow tie
H. Mattie et al.

Use the Jaccard similarity of the neighbourhoods of the
ends of an edge as a measure of its “strength”.

Ctrl+Z: Recovering anonymized social graphs
Y. Zhang et al.

To anonymize graphs, one can add edges to ensure that
nodes cannot be identified by their degree (there are
at least k other nodes with the same degree), or add
edges to add noise to the dk2 series (number of edges
between nodes of degree i and j).
Word2vec on random walks on the graph provide a
node embedding. The cosine similarity between the
embeddings of the ends of an edge measures its plau-
sibility, and can be used to deanonymize the graph.

Few-shot learning with graph neural networks
V. Garcia and J. Bruna (2018)

A graph neural network (GNN) takes an input sig-
nal on its vertices, learns a linear combination of local
linear operators (e.g., the adjacency matrix and its first
powers), and applies a non-linearity – the output is an-
other weighted graph.
Message-passing algorithms suggest to also learn edge
features, e.g., φ(xi, xj) = MLP(|xi − xj |) for i ∼ j.

Towards gene expression convolutions
using gene interaction graphs

F. Dutil et al.
To take gene interactions into account, use a network-
regularized sparse regression, with penalty λ |w|′ L |w|,
where L is the graph Laplacian, or a graph convolution
network.

Graph convolutional neural networks
for web-scale recommender systems

R. Ying et al. (2018)
To train graph convolutional networks (GCN) on large
graphs, do not use the whole neighbourhood bonds,
but use random walks to sample them (rather than
random neighbours)

Feedback networks

Article and book summaries by Vincent Zoonekynd 414/1044

A.R. Zamir et al.
Add feedback in (otherwise non-recurrent) networks.

input

LSTM

output

information
from the previous

iterations

Increasingly
more precise
information

LSTM

input

output

Dilated residual networks
F. Yu et al.

Remove striding and (to keep large receptive fileds)
use dilated convolutions. It is possible to remove the
gridding artefacts by removing the remaining pooling
layers and adding more convolutional layers, without
residual convolutions, at the end.

⇝

Learning scalable deep kernels
with recurrent structure

M. Al-Shedivat et al. (2017)
To get a deep Gaussian process (GP) kernel with a re-
current structure, transform the input with an LSTM
and build a kernel in the transformed space. The loss
function no longer factorizes over the data: either pre-
train the network separately and fine-tune with full
batches, or use semi-stochastic alternating gradient de-
scent.

Unsupervised neural machine translation
M. Artetxe et al.

Denoising autoencoders can provide decent transla-
tions even in the absence of any crosslingual data.

language 2 language 1 language 2
language 1 language 2 language 1

Differentiable plasticity: training plastic
neural networks with backpropagation

T. Miconi et al. (2018)
In a Hebbian network, connections between neurons
that tend to fire together are reinforced. Allow for both
baseline and plastic (Hebbian) behaviour,

weightij = wij + αijHebbij

where the Hebbian trace, reset at the beginning of each
episode, (when switching to a new problem) is one of

Hebbij(t+1) = EWMAη[xi(t)xj(t)]
Hebbij(t+1) = EWMAη[xi(t− 1)xj(t)]

Hebbij(t+1) = Hebbij(t)+ηxj(t)[xi(t−1)−xj(t)Hebbij(t)]

and wij , αij and η are learnt by gradient descent.

Variance networks: when expectation
does not meet your expectations

K. Neklyudov et al.
Stochastic neural nets (e.g., Bayesian neural nets) re-
place deterministic weights with probability distribu-
tions; often, at test time, only the means are used. Try
a variance layer, i.e., stochastic weights with zero
mean and learned variances.

neuron 1

neuron 2

neuron 1

neuron 2
class 1

class 2

Tensor regression networks with various
low-rank tensor approximations

X. Caoi et al.
Constrain the weights of a layer to have low rank or
low tensor rank by parametrizing them as a product
of rectangular matrices, or as a tensor decomposition
(CP, Tucker, TensorTrain).

Independently recurrent neural network
(IndRNN): building a longer and deeper RNN

S. Li et al.
Replace the RNN updates

ht = σ(Wxt + Uht−1 + b)

with
ht = σ(Wxt + u� ht−1 + b).

vs

Max-Mahalanobis
linear discriminant analysis networks

T. Pang et al. (2018)
The last layer of a neural net for classification is usu-
ally a (multi)logistic regression: try linear discriminant
analysis (LDA) instead .

Article and book summaries by Vincent Zoonekynd 415/1044

A flexible approach to automated RNN
architecture generation

M. Schrimpf et al.
A DSL for automated RNN architecture search with
reinforcement learning suggests an alternative (BC3)
to LSTM and GRU cells.

Progressive neural architecture search
C. Liu et al.

Bayesian optimization (SMBO), on a hierarchical cell-
based search space, to choose the structure of a CNN.

Learning to
learn by gradient descent

by gradient descent
A. Andrychowicz et al.

Momentum-like learning rules of the form

θt+1 ← θn + RNN
(
∇f(θt)

)
,

where f is a random function, can be learnt by stochas-
tic gradient descent. Use coordinate-wise LSTM units,
with a few “global averaging cells”, whose output is
averaged across all dimensions.

Neural optimizer search
with reinforcement learning

I. Bello et al. (2017)
Idem.

Learning to optimize
K. Li and J. Malik

Gradient-descent-like optimization algorithms can be
learnt by reinforcement learning (guided policy search):
the state space contains the previous 25 gradients and
improvements in the objective; the action is the step
size.

Guided policy search
S. Levine and V. Koltun (2013)

The gradient of the policy can be estimated from sam-
ple trajectories (“likelihood ratio methods”). Impor-
tance sampling (with some regularization) allows off-
policy learning. A guiding distribution can be obtained
as the Gaussian i-projection of the Boltzmann distri-
bution ρ on trajectories ζ with the negative reward as
energy,

Argmin
q Gaussian

KL(q‖ρ) = Argmin
q Gaussian

E
ζ∼q

[−r(ζ)]−H(q)

twisted with the current policy r̄(x, a) = r(x, a) +
log πθ(a|x).

Learning neural network policies with guided
policy search under unknown dynamics

S. Levine and P. Abbeel
Sample trajectories from the current policy; use them
to compute a linear Gaussian approximation of the
model; compute the corresponding optimal policy (“it-
erative linear Gaussian regulator”, iLGR), but con-
strain them to be close (for the KL divergence) to the
previous ones.

An intriguing failing of convolutional neural
networks and the CoordConv solution

R. Liu et al.
Add the coordinates to the inputs of a convolutional
layer.

IGLOO: slicing the feature space
to represent long sequences

V. Sourkov
To achieve long-term memory with a CNN, compress
the output of a convolutional layer with sparse reser-
voir computing (L times, pick a channel and p = 4
points in time, concatenate, feed to a fully-connected
layer).

K-beam minimax: efficient optimization
for deep adversarial learning

J. Hamm and Y.K. Noh (2018)
When f(·, ·) is convex in its first argument and con-
cave in the second, saddlepoints coincide with minimax
points:

f(u∗, v∗) = Max
v

Min
u
f(u, v) = Min

u
Max
v

f(u, v).

Use alternating gradient descent, but track k candi-
date solutions, to account for the discontinuities and
multiple solutions to the maximization problem.

Averaging weights leads to wider optima
and better generalization

P. Izmailov et al.
A cyclical, linearly decreasing learning rate
yields an ensemble of solutions: one can average their
forecasts or, since they tend to be dispersed on the
edge of a low-cost region, their weights – wider optima
generalize better (cf. entropy-SGD).

Cyclical learning rates
for training neural networks

L.N. Smith (2015)
The learning rate (LR) range test estimates minimum
and maximum values for the learning rate by comput-
ing the accuracy of the model for various learning rates
(e.g., from 0 to 5 – you may go beyond 1) after just a
few epochs.
The cyclical learning rate schedule linearly increases
and decreases the learning rate between those bounds,

Article and book summaries by Vincent Zoonekynd 416/1044

with 2 to 10 epochs per half-period: the learning rate
will be close to the optimal value most of the time,
but higher values will help escape saddle points (as in
simulated annealing).
The idea is very similar to stochastic gradient de-
scent with restarts, and related to adaptive learning
rate methods (AdaDelta, AdaGrad, RMSProp, Adam,
etc.).

Super-convergence: very fast training
of neural networks using large learning rates

L.N. Smith and N. Taupin
The cyclical learning rate method can speed up train-
ing by up to an order of magnitude.
The optimal learning rate can be estimated as

ε∗ = ε
θi+1 − θi

2θi+1 − θi − θi+2
.

Constant step size stochastic gradient descent
for probabilistic modeling
D. Babichev and F. Bach

Stochastic gradient descent with constant step size
does not converge but, for exponential families, av-
eraging the moment parameters (e.g., the probability
p ∈ [0, 1] for a Bernoulli distribution, i.e., a logistic
regression), rather than the natural parameters (the
log-odds ratio) restores convergence.

Dropout is a special case of the stochastic delta
rule: faster and more accurate deep learning

N. Frazier-Logue and S.J. Hanson
The stochastic delta rule (SDR) represents the weights
of a neural net as Gaussian random variables wij ∼
N(µij , σ

2
ij), sampled on each forward iteration, whose

parameters are updated. Dropout uses (fixed-
parameter) Bernoulli distributions.

Measuring the intrinsic dimension
of objective landscapes

C. Li et al. (2018)
Train your model on a random subspace of the space of
weights (the model remains the same, but the weights
are constrained to a linear subspace) and progressively
increase the dimension: that at which the performance
reaches 90% of the full network is the intrinsic dimen-
sion. It may depend on the network structure: for
images, CNNs give a lower dimension.
Those random projections can also be used to compress
networks.

Neural networks should be wide enough to
learn disconnected decision regions

Q. Nguyen et al. (2018)
If no hidden layer (in a network with ReLU activa-
tions) is wider than the input, the decision regions are
connected.

The lottery ticket hypothesis:
finding small, trainable networks

K. Frankle and M. Carbin
A large network is an ensemble of smaller overlap-
ping networks: some of those subnetworks have won
the “initialization lottery” and, once pruned, can be
trained – they work better than the initial, large net-
work.

Harmonic analysis of neural networks
E.J. Candès (1996)

Continuous and discrete wavelets can be seen as (infi-
nite and finite) 1-layer neural networks – they model
functions as

f =

∫
〈f, ψγ〉ψγ µ(dγ)

or f =
∑

αγψγ , where ψγ(x) = α−1/2ψ

(
〈u, x〉 − b

a

)
.

Manifold regularization with GANs
for semisupervised learning

B. Lecouat et al. (2018)
GANs can be leveraged for semi-supervised learning:
have the discriminator determine the class of the in-
put or whether it was generated. (Self-training is also
sometimes used: label the unlabeled data with a clas-
sifier trained on the labeled data, then re-train on the
expanded dataset.)
Manifold regularization ensures the classifier does
not change as we move away from the data (orthogo-
nally), with a penalty of the form∫

‖∇Mf‖ dp ≈ 1

n

∑
i

∇zf(g(z(i)))

z(i) : latent generator variables
g : generator
f : discriminator, classifier
M : data namifold
p : distribution of the data on M .

The relativistic discriminator: a key element
missing from standard GAN

A. Jolicoeur-Martineau
The generator and discriminator of a GAN minimize
their loss functions

lossD = E
x∼Data

[
f1(D(x))

]
+ E
z∼noise

[
f2(DGz)

]
lossG = E

x∼Data

[
g1(D(x))

]
+ E
z∼noise

[
g2(DGz)

]
,

often with g1 = f1, g2 = −f2, i.e., the loss is the
same, up to the sign (saturating GAN) or with g1 = f2,

Article and book summaries by Vincent Zoonekynd 417/1044

g2 = f1, i.e., the loss is the same, but the real and sim-
ulated data have been swapped (non-saturating GAN).
The “relativistic GAN” uses

lossD = − E
x∼Data
z∼Noise

[log σ(Dx−DGz)]

lossD = − E
x∼Data
z∼Noise

[log σ(DGz −Dx)]

to ensure that the probability of real data decreases as
that of the fake data increases.

χ2 generative adversarial network
C. Tao et al. (2018)

GANs can be trained with:
– f -divergences

P (p‖q) =
∫
f

(
p(x)

q(x)

)
p(x)dx

where p is the data and q the generator – but this is
numerically unstable;

– Integral probability metrics (IPM), such as Wasser-
stein 1 (earth mover’s distance)

sup
∥D∥⩽1

E
X∼Data

D(X)− E
X∼q

D(X)

– RKHS distances,

MMD(p, q) =

∥∥∥∥ E
X∼p

κ(·, X)− E
X∼q

κ(·, X)

∥∥∥∥
H

.

The χ2 GAN is a special case of all three.

First order generative adversarial networks
C. Seward et al.

An adversarial divergence between probability distri-
butions p, q on X is a function of the form

τ(p‖q) = sup
g∈G

Ep⊗q[g]

for dome G ⊂ C 0(X ×X).
A critic-based adversarial divergence is of the form

τ(p‖q) = sup
f∈F

Ep⊗q[mf − rf]

where F ⊂ C 0(X) (e.g., 1-Lipschitz), mf (x, y) =
m1(f(x)) −m2(f(x)), m1,m2 : R → R and r : F →
C 0(X ×X).
The Wasserstein divergence between Dirac masses

τ(δa‖δb) = sup
f∈F

f(a)− f(b) = |a− b|

can be written

4τ(δa‖δb) = sup
f∈F

f(a)− f(b)−|a− b|
(
f(a)− f(b)

a− b

)2

;

this motivates the penalized Wasserstein divergence,

τ(p‖q) = sup
f∈F

E
x∼p

f(x)− E
y∼q
f(y)− λ E

x∼p
y∼q

(
f(x)− f(y)

)2
‖x− y‖

(one can also add another penalty, involving ∇f).

Evolutionary generative adversarial networks
C. Wang et al.

Evolve a population of generators to adapt to the en-
vironment (discriminator), mutating them by running
a few gradient descent steps for the following loss func-
tions

loss(G) = E
z∼noise

log(1−DGz)

loss(G) = E
z∼noise

− log(DGz)

loss(G) = E
z∼noise

(DGz − 1)2

where the first (second) minimizes (maximizes) the
log-probability of the discriminator being correct (mis-
taken).
To promote diversity and avoid mode collapse, note
that the discriminator labels collapsed points as fake,
with obvious counter-measure, i.e., big gradients, and
use those gradients as a diversity measure.

Large scale GAN training for high-fidelity
natural image synthesis

A. Brock et al.
To train large-scale GANs:
– Increase the batch size;
– Train with Gaussian noise but sample using a trun-
cated Gaussian;

– Use orthogonal regularization, ‖W ′W − I‖2F , with-
out the diagonal ‖W ′W � (1− I)‖2F .

Synthesizing programs for images
using reinforced adversarial learning

Y. Ganin et al.
GAN to generate programs (sequences of graphical
primitives) to generate images, instead of raw pixels
(deep reinforced adversarial learning).

Globally and locally consistent
image completion

S. Iizuka et al. (2017)
Use a GAN for image completion, with both a global
and a local discriminator.

Learning to see in the dark
C. Chen et al.

Instead of using separately learned algorithms for de-
noising, deblurring, etc., learn an end-to-end image
processing pipeline.

Article and book summaries by Vincent Zoonekynd 418/1044

DeepMasterPrints: generating MasterPrints
for dictionary attacks

via latent variable evolution
P. Bontrafer et al.

Use a GAN to generate fingerprints, then explore the
latent space with CMA-ES to find a master print.
Small fingerprint sensors (on mobile phones), which
only image part of the finger, are very vulnerable to
that attack.

Learning deep generative models of graphs
Y. Li et al. (2018)

To sequentially generate random graphs (molecules,
parse trees, graphical model structures), use a GRU
graphnet to decide, at each step, where to add an edge
or a node.

Meta-learning for semi-supervised
few-shot classification

M. Ren et al. (2018)
A prototypical network, for a classification prob-
lem, learns an embedding, defines prototypes as the
averages of the embeddings of the observations in each
class, and uses the squared distances to the prototypes
in a softmax, p ∝ exp(−d2).
For semi-supervised learning, compute the prototypes
from the labeled data, estimate the class of the unla-
beled items (soft-k-means, with a “distraction cluster”
for potential unknown labels, or soft-masking of far-
away observation) and refine the prototypes.

Learning to generate classifiers
N. Guttenberg and R. Kanai

Meta-learning (i.e., learning a mapping from datasets
of predictors and labels to classifiers) with attention
outperforms SVM, random forests, k-NN, or xgboost.

Fastfood – approximating kernel expansions
in loglinear time

Q. Le et al.
The decision function, in an SVM, is of the form

f(x) =

N∑
1

αik(xi, x),

where N is the number of observations and the nonzero
αi correspond to the support vectors. We usually
prefer to compute the kernel directly, without explic-
itly computing the embedding, k(x, y) = 〈φ(x), φ(y)〉,
but, for large datasets, a random embedding (random
kitchen sink) may be preferable:

Zij ∼ N(0, σ−2)

φj(x) =
1√
n
exp[i(Zx)j]

is an approximation of a RBF (radial basis function)
kernel. Instead of a fully Gaussian kernel, consider

Z =
1

σ
√
d
SHGΠHB

where H =

(
1 1
1 −1

)⊗d
, B is a random diagonal ma-

trix with entries ±1, G is a random diagonal Gaussian,
and S is diagonal.

Using matrices to model symbolic relationships
I. Sutskever and G. Hinton

A linear relational embedding (LRE) learns vec-
tor and matrix representations of objects and rela-
tions such that xRy corresponds to a matrix product
Rx = y; a matrix relational embedding uses matrices
for both objects and relation: the relation matrices are
smaller, and one can also consider higher-order rela-
tions (relations between relations).

Monotonic calibrated interpolated
look-up tables

M. Gupta et al. (2016)
Lattice regression approximates a function by inter-
polating it on a grid – the values on the vertices are
chosen to minimize the loss, after interpolation, at the
points already observed. Multilinear interpolation uses
2D points, e.g.,

f(x, y)=(1−x)(1−y)θ00+x(1−y)θ10+(1−x)yθ01+xyθ11

(forD = 2), where the weights xδ(1−x)1−δyε(1−y)1−ε,
δ, ε ∈ {0, 1}, are known, and the model is linear in
its parameters θ. Monotonicity is easy to check. One
could use any other way of writing (x, y) as a barycen-
ter of (0, 0), (1, 0), (0, 1), (1, 1). Simplex inter-
polation uses only D + 1 vertices, corresponding to
a partition of the hypercube along the hyperplanes
xk = xℓ. The simplex containing a point can be ob-
tained by sorting its coordinates (in O(D logD) time).
The model is not rotationally invariant: all the sim-
plices contain (0 · · · 0) and (1 · · · 1); for a better fit, en-
sure all the constraints go in the same direction, e.g.,
everything increasing.
Add penalties such as∑(

∂f

∂xi

)2

,
∑(

∂2f

∂x2i

)2

, or
∑(

∂2f

∂xi∂xj

)2

to make the function flatter or more linear.
Add coordinatewise, piecewise (but still monotonic)
transformations, with k knots, at equally spaced quan-
tiles.
To deal with missing values, replace the lattice {0, 1}D

with {0, 1,na}D and interpolate on
(
[0, 1] t {na}

)D.
There are many constraints and penalties: try sam-
pling from them at each iteration to speed up the com-
putations.

Article and book summaries by Vincent Zoonekynd 419/1044

Lattice regression
E.K. Garcia and M.R. Gupta

Fast and flexible monotonic functions
with ensembles of lattices

K. Canini et al. (2016)
Build an ensemble of (monotonic) lattice regression
models, each using a small number of variables:
– Train lattices on all pairs of features and compute
their “torsion”, [(x11 − x10) − (x01 − x00)]2, a mea-
sure of nonlinear interaction;

– Assign the features to the different models, with each
feature used at least once, and the feature count oth-
erwise proportional to the median torsion, and max-
imize the weighted torsion of the ensemble (where
the weight decreases as a pair is repeated).

Deep gradient compression:
reducing the communication bandwidth

for distributed training
Y. Lin et al. (2018)

Most of the gradient exchanges in distributed stochas-
tic gradient descent are not needed:
– Only send large gradients;
– Accumulate them locally, and clip them, before send-
ing;

– Do not use momentum for old (unsent) gradients –
it would be stale;

– During training, use little sparsification and a low
training rate.

meProp: sparsified backpropagation
for accelerated deep learning

with reduced overfitting
X. Sun et al. (2017)

Sparsified backpropagation, i.e., only backpropagating
the k largest gradients (1% to 4%) does not slow down
training.

Deep image prior
D. Ulyanov et al.

Use untrained networks (reservoir computing, random
projections).

Secure ML: a system for scalable
privacy-preserving machine learning

P. Mohassel and Y. Zhang
Machine learning models can be trained even if the
data is (and should remain) on separate servers (e.g.,
financial and medical data).

Trainable calibration measures for neural
networks from kernel mean embeddings

A. Kumar et al. (2018)

Neural networks for classification problems are not cal-
ibrated: the scores cannot be interpreted as probabil-
ities – we would like P [correct] = Maxk pk(x). The
calibration error could be added to the loss function,
but it is discontinuous. Instead, use

MMCE =
∑
ij

(ci − si)(cj − sj)κ(si, sj)
N2

where ci = 1correct = 1yi=Argmaxk pk(xi)
and si =

Maxk pk(xi).

Machine learning for trading
G. Ritter (2017)

Reinforcement learning on simulated data can help de-
vise trading strategies with arbitrary transaction cost
models (e.g., given by an algorithmic blackbox).

Algorithms for inverse reinforcement learning
A.Y. Ng and S. Russell

The reward function of a known, finite-state MDP can
be recovered from its (deterministic) optimal policy,
via a linear program; to avoid degenerate solutions,
e.g., R ≡ 0, maximize the difference between the opti-
mal policy and the others,∑

s∈S
Q
(
s, π(s)

)
− Max
a ̸=π(s)

Q(s, a).

For large state spaces, approximate the reward func-
tion as a linear combination of basis functions, R(s) =∑
αiφi(s), φi fixed. This approach is still applicable

if the optimal policy is only known through sample
trajectories (but requires iteratively solving linear pro-
grams, to progressively improve the fit).

Solving the Rubik’s cube
without human knowledge

S. McAleer et al.
Only one state, the final state, has a reward: start
there and estimate the value and optimal policy for
states farther and farther away from it.

Independent interpretable lasso:
a new regularizer for sparse regression

with uncorrelated variables
M. Takada et al. (2018)

To avoid selecting correlated variables, ease interpre-
tation, and recover correct signs, use a penalty of the
form λ ‖β‖1 +µ |β|′R |β| , where Rij ⩾ 0 measures the
similarity between i and j.

λ = 1, µ = 1
2 , R =

(
0 1
1 0

)

Article and book summaries by Vincent Zoonekynd 420/1044

High-dimensional regression in practice:
an empirical study of finite-sample prediction,

variable selection and ranking
F. Wang et al. (2018)

Prefer the lasso. Other penalized regression, variable
selection and variable ranking algorithms include the
elastic net, ridge regression, SACD (an `1 penalty for
small values,), the Dantzig selector

Argmin
β:∥X′(Y−Xβ)∥∞⩽λ

‖β‖1 ,

stability selection (run a variable selection on resam-
pled datasets and keep the variables selected at least
τ% of the time).
R implementations in glmnet, ncvreg (SACD), flare
(Dantzig), c060 (stability selection).

Identifying groups
of strongly correlated variables

through smoothed ordered weighted `1 norms
R. Sankaran et al. (2017)

The ordered weighted L1 norm (OWL) is

Ω(w) =
∑

ci |w|(i)

where |w|(i) is the ith largest absolute value of the co-
ordinates of w and ci is a fixed non-increasing sequence
(e.g., an arithmetic sequence: oscar).
As a penalty, it has a sparsifying effect, selecting
groups of variables with the same coefficients

It is the Lovász extension of the cardinality-based mod-
ular function P (A) = f(|A|), where f(i) = c1+ · · ·+ci.
The `2 relaxation is similar, but does not force the co-
efficients to be exactly equal.

Finite-time analysis
of the multiarmed bandit problem

P. Auer et al. (2002)
For the multiarm bandit problem, UCB1, which plays
the machine j maximizing

xj +

√
2 log n

nj
,

UCB2 (similar, with a division in epochs), and ε-
greedy, with ε ∝ 1/n, achieve logarithmic regret.

Multi-fidelity blackbox optimization
with hierarchical partitions

R. Sen et al. (2018)
UCB-style multi-arm bandit algorithms can be applied
to black-box optimization of expensive functions for

which cheap, coarse approximations (early stopping)
are available, by hierarchically partitioning the do-
main.

Contextual memory trees
W. Sun et al.

Store key-value pairs in the leaves of a (balanced, bi-
nary) tree, with a classifier at each node; at query time,
update the classifiers to improve retrieval.

The case for learned index structures
T. Kraska et al.

Many data structures can be replaced by learned mod-
els, leveraging GPUs/TPUs.
B-trees (range indices, in databases) map a key to a
position in a sorted array, i.e., estimate a cummula-
tive distribution function (CDF); they can be replaced
with a neural net. The maximum error measured on
the whole dataset defined the size of the window to
examine (the B-tree is actually similar: it retrieves a
whole “page”, instead of the single value it actually
needs). It is possible to replace only part of the data
structure with a neural net, or arrange several neural
nets in a tree.
Hash functions can also be replaced by learning the
CDF of the key, and dilating it to get a hash map.
A good hash function for a Bloom filter would have
many key/key and non-key/non-key collisions, but few
key/non-key collisions. Bloom filters can be replaced
by a key/non-key classifier, with a smaller Bloom filter
for the set of false negatives, to keep the false negative
rate to zero.

Clustering by passing messages
between data points

B.J. Frey and D. Dueck
Use exemplars:

sij : similarity
rik ← sik −Max

k′ ̸=k
aik′ + sik′

aik ← Min
{
0, rkk +

∑
i′ ̸=i,k

(rik)+

}
akk ←

∑
j′ ̸=k

(rik)+

exemplar(i) = Argmax
k

aik + rik

with damping (i.e., updates of the form x← (1−λ)x+
λxnew) and only exchanging messages between nearby
or similar points.

Article and book summaries by Vincent Zoonekynd 421/1044

Distributional regression forests
for probabilistic precipitation forecasting

in complex terrain
L. Schlosser et al.

Linear regression models the mean of the response vari-
able as a function of the predictors.
Non-homogeneous Gaussian regression (NGR) models
both mean and variance.
GAMLSS uses a GAM for location, scale and shape
(gamlss, gamboostLSS).
To account for interactions and non-smooth dependen-
cies, one can use a random forest of regression trees
with GAMLSS leaves (disttree).

Statistical detection
of systematic election irregularities

P. Klimek et al. (2012)
Ballot stuffing (only one type of election irregularity)
can be detected by looking at:
– The winner votes vs turnout density plot, which
should not show an abnormal high-turnout, high rate
cluster;

– The cumulative number of votes as a function of
turnout, which should end with a plateau.

A fast and objective multidimensional
kernel density estimation method: fastKDE

T.A. O’Brien et al. (2016)
The choice of kernel and bandwidth, for kernel density
estimation (KDE), is often arbitrary. Use κ, where

κ̌(t) =
n

2(n− 1)

[
1 +

√
1− 4(n− 1)

n2 |C (t)|2
I(t)

]

C (t) =
1

n

∑
eixj ·t empirical characteristic function

κ̌ = F−1κ inverse Fourier transform

and I filters out frequencies t with |C (t)| ⩽
2
√
n− 1/n = Cmin and possibly a few more (e.g., out-

side [−t∗, t∗], where for half the t in [−t∗, t∗], C (t) ⩾
Cmin. The optimal kernel can be computed with the
nuFFT (non-uniform FFT).
This can be generalized to multivariate KDE.

Controllable conformal maps
for shape deformation and interpolation

O. Weber and C. Gotsman (2010)
To deform a (simply-connected) shape Ω, use a confor-
mal transformation f . It suffices to specify the angular
factor θ = (log f ′)|∂Ω. the conformal transformation
can be recovered as follows:
– Extend θ harmonically on Ω;
– Compute its harmonic conjugate φ (Hilbert trans-

form);
– Consider the holomorphic function g = φ+ iθ;

– Solve f ′ = exp g – since f ′ does not vanish, f is
conformal.

Generalized Cauchy coordinates use the Cauchy for-
mula, a polynomial discretization of ∂Ω, a quadratic
approximation of f on each edge, with two values at
each corner.

An invitation to noncommutative algebra
C. Walton

Noncommutative algebra studies representations of
noncommutative algebras, e.g., the quaternions, or the
Weyl albebra

k〈x, y〉
(yx− xy − 1)

(which models differential operators, with y = d/dx,
and does not have finite-dimensional representations –
to see it, take the trace), deformations of commutative
structures, e.g.,

Cq[x, y] =
k〈x, y〉
yx− qxy

, q ∈ C×,

and deformations of group actions (into Hopf algebra
actions), e.g.,

Hq =
C〈g, g−1, h〉

(gg−1 − 1, g−1g − 1, gh− q2hg)

(as q → 1, g, g−1 → 1, h→ ∂y).

An empirical evaluation of
generic convolutional and recurrent networks

for sequence modeling
S. Bai et al. (2018)

Use temporal convolutional networks (TCN) to model
sequences: no pooling, causal dilated convolutions and
residual connections.

Detecting malicious PowerShell commands
using deep neural networks

D. Hendler et al.
To detect malicious commands in the logs, use an en-
semble of:
– 3-grams tf-idf logistic regression;
– bag-of-words tf logistic regression;
– (CNN,MaxPool)2CNN4MaxPool(FC,Dropout)4FC;
– CNN, MaxPool, (FC, Dropout)2,
on a dataset of 100,000 commands, 10% malicious.

Article and book summaries by Vincent Zoonekynd 422/1044

BERT: pre-training of deep bidirectional
transformers for language understanding

J. Devlin et al.
Most language models only rely on the left context, i.e.,
model P [wn+1|w1:n]; BERT uses transformers (i.e.,
attention-based networks) conditioned on both the left
and right context, P [wn|w1:n−1, wn+1:N]. ELMo is
similar, but uses separate left-to-right and right-to-left
LSTMs, which are only concatenated at the end.

Are distributional representations ready
for the real world? Evaluating word vectors

for grounded perceptual meaning
L. Lucy and J. Gauthier

Word embeddings cannot recover semantic norms, i.e.,
entailments such as aligator→ is green, animal, reptile,
eats people, has teeth, etc.

Morph-fitting: fine-tuning word vector spaces
with simple language-specific rules

I. Vulić et al.
To modify a trained word embedding to account for
known synonym and antonym pairs (e.g., different
word endings in morphologically rich languages), use
the following loss function∑
xℓ∼xr

ReLU(δ + xℓtℓ − xℓxr) + ReLU(δ + xrtr − xℓxr)

+
∑
xℓ ̸∼xr

ReLU(δ + xℓtr − xℓxℓ) + ReLU(δ + xℓtr − xrxr)

+ λ
∑
x

∥∥xinit − x
∥∥2
2

where ti is the word closest to xi (in the current mini-
batch).

BLEU: a method for automatic evaluation
of machine translation

K. Papineni et al.

TextRank: bringing order into texts
R. Mihalcea and P. Tarau

To extract keywords from a text, apply undirected
PageRank to the cooccurrence graph (vary the win-
dow size) between words or sequences of words (try
different POS, e.g., nouns and adjectives).
For sentence extraction (summarization), use sentences
as nodes and similarity (number of common words, di-
vided by the log of the lengths) as weights.

Multimodal word distributions
B. Athiwaratkun and A.G. Wilson

Extend the skipgram model by replacing the point rep-
resentation of words with Gaussian mixtures, allowing
for both polysemy and entailment (e.g., jazz ⊂ music).

Enriching word vectors
with subword information

P. Bojanowski et al.
FastText fits a skipgram model to n-grams and repre-
sents words as the sum of their n-grams – it is aware of
word morphology and can deal with unknown words.

A simple but tough-to-beat baseline
for sentence embeddings

S. Arora et al. (2017)
Turning word embeddings into sentence embeddings
by naively averaging the embeddings of the words in
the sentence does not work that well; try the following
simple modification:

– Use a weighted average, w =
a

a+ P (word) ;

– Remove the first principal component (it contains
stopwords and other non-informative words).

In the word2vec (cbow) model

P [w|w1 · · ·w5] ∝ exp

(
vw ·

1

5

∑
i

vwi

)
frequent words are under-sampled when computing the
gradient, to speed up training and give more regular
embeddings.

Supervised learning
of universal sentence representations
from natural language inference data

A. Conneau et al. (2018)
InferSent uses a supervised task, natural language in-
ference (recognizing if a sentence entails, contradicts
or is unrelated to another) with a bidirectional LSTM
RNN with max pooling to compute sentence embed-
dings.

Skip-thought vectors
R. Kiros et al.

To compute sentence embeddings, forecast a sentence
from nearby sentences (as in word2vec’s cbow) using
a GRU RNN trained on the BookCorpus dataset (un-
published authors).
For out-of-vocabulary words, learn a mapping from the
word2vec space (using unpenalized least squares).

Vader: a parsimonious rule-based model
for sentiment analysis of social media text

C.J. Hutto and E. Gilbert (2014)
Vader is an MIT-licensed sentiment lexicon, targeted
at short, Twitter-like sentences, augmented with a
few simple rules for all-caps, punctuation (exclamation
marks), degree modifiers (extremely, marginally, etc.),
contrastive conjuctions (but) and negations, available
in NLTK.

Article and book summaries by Vincent Zoonekynd 423/1044

Deep contextualized word representations
C. Clark et al. (2018)

ELMo uses, as sentence embedding, all the internal lay-
ers (not just the first and the last ones) of a deep bidi-
rectional LSTM network trained as a language model
(i.e., to predict the next/previous/missing word).

Universal sentence encoder
C. Cer et al. (2018)

Train a model, e.g., a transformer (attention-based
network, instead of an LSTM) or a deep averaging
network (DAN: the embeddings of the inputs words
and bigrams are averaged and fed to a deep neural net-
work – the word embeddings are trained so that their
averages be useful as sentence embeddings) on several
tasks (skip-thought, conversation input-response, clas-
sification).
Pretrained models are available on TFHub.

Semantic specialization of distributional
word vector spaces using monolingua

l and cross-lingual constraints
N. Mrkšić et al. (2017)

Attract-Repel modifies a word embedding to account
for synonyms and antonyms (some come from cross-
lingual sources, which can also provide multilingual
embeddings) using a margin loss on positive (actual
synonyms or antonyms) or negative pairs.

Morph-fitting: fine-tuning word vector spaces
with simple language-specific rules

I. Vulić et al. (2017)
Modify a vector embedding to account for synonyms
(inflections, e.g., V, V-ed, V-ing, in English) and
antonyms (derivations, e.g., negative English prefixes:
dis, un, in, im, il, ir, mis, non, anti) with margin loss.

Concatenated power mean word embeddings
as universal cross-lingual
sentence representations

A. Rückle et al. (2018)
To compute a sentence embedding, concatenate sev-
eral “averages” (arithmetic, maximum, minimum) of
several pretrained word embeddings (GloVe, word2vec,
Attract-Repel, MorphSpecialized).

A neural probabilistic language model
J. Bengio et al. (2003)

The first layer of an n-gram neural language model
(predicting the next work from the previous n) can be
used as a word embedding.

Deep-learning-based
cryptocurrency sentiment construction

S. Nasekin and C.Y.S. Chen (2018)

Word2vec and RNN-based sentiment index, trained
with StockTwits data – users often label their messages
with “bullish” or “bearish”.

Modeling snow crystal growth I
J. Gravner and D. Griffeath (2006)

Packard’s digital snowflake model is a cellular automa-
ton on a hexagonal lattice in which a site with one
(or at least one, or between 1 and 3, etc.) occupied
neighbour becomes occupied.

A deep learning framework for financial
time series using stacked autoencoders

and long-short-term memory
W. Bao et al. (2016)

Try to forecast six equity indices from prices, volumes,
technical indicators and macro variables, denoised with
a wavelet transform [doesn’t this introduce some look-
ahead bias?], dimension-reduced with an auto-encoder,
and fed to an LSTM.

Optimal timing and tilting of equity factors
H. Dichtl et al. (2018)

To time factors,
– Take
· Some (US) macroeconomic indicators;
· Some technical indicators of those factors;
· Some cross-sectional factor characteristics, e.g.,
earning yields of the long-short quintile portfolios,
momentum, volatility [these are technical indica-
tors],. centrality in the (weighted) complete corre-
lation graph [they use the MST], distance to mar-
ket [just a beta];

– Perform some dimension reduction (only keep the
first principal component) in each group;

– Find the solution of the mean-variance optimization
problem of the form w = θz′ where w are the (un-
known) portfolio weights, z are the principal compo-
nents (and an intercept) and θ are the new unknowns
(Brandt–Clara parametric portfolio policy).

Big data and AI strategies:
ML and alternative data approach to investing

M. Kolanovic (JPM, 2017)
The big data revolution is made possible by the com-
bination of data, algorithms and hardware. Alterna-
tive data can be classified from their origin: humans,
business processes or machines (sensors). Beware of
seasonality, sampling bias and short history. Exam-
ples include sentiment (for instance, stocks, regions,
sectors, indices), Twitter, news, Wikipedia, company
websites, web traffic (Alexa), search (Google trends),
job postings (Glassdoor, LinkedIn), purchase receipts.
– Twitter sentiment, for 100 stocks in the S&P 500, ag-
gregated every minute and smoothed with a 10-day
exponential moving average, to forecast the S&P 500
returns for the next 2 days, with time-changing betas
(Kalman), for a long-short strategy;

Article and book summaries by Vincent Zoonekynd 424/1044

– Ravenpack news data, average daily sentiment score
(ESS) for currencies, commodities, countries, where
relevance> 75, for a daily long-short strategy;

– Email receipts, for 30 companies in the S&P 500:
weekly change of dollar spent, number of orders,
number of buyers;

– Mobile phone location, assuming sales are propor-
tional to traffic, to predict if a company will beat
expectations;

– Satellite images to monitor retail traffic, real estate
traffic, metal production and storage, factory em-
ployment (Bollinger bands on quarterly traffic);

– Penalized regression to forecast S&P, 10y, DXY, gold
returns (daily), from their 1m, 3m, 6m, 12m lagged
values, on a 2-year window;

– k-NN to forecast risk premia from macro indicators
– Kalman filter (time-varying beta) for pairs trading;
– Xgboost to forecast daily sector returns from macro
factors;

– Logistic regression to forecast if call overwriting will
outperform a long-only strategy, from 10 investment
factors;

– SVM to forecast if the P&L of a rolling long 1m
ATM EURUSD will be > 20bp, or < −20bp, from
the first 50 to 200 principal components of 400 pre-
dictors (volatility, skew, spot, basis, interest rate,
equity/commodity/bond indices, economic activity,
IMM position; their levels and 1w, 1m changes);

– Random forest to forecast 1-month returns from in-
vestment factors;

– 2-class hidden Markov model (HMM) to identify up
and down states (low and high volatility): buy the
S&P 500 in up markets, keep cash in down markets;

– Hierarchical risk parity;
– PCA on daily changes in the USDJPY implied
volatility to help describe its variations;

– Statistical risk models;
– Multilayer perceptron to forecast next day sector
returns from 8 macro factors (just 8 predictors:
oil, gold, dollar, bonds, economic surprise, 10y-2y
spread, IG and HY credit spreads);

– LSTM to forecast monthly returns from the past 3
years (does not work);

– SVM to forecast daily FX returns from 20 features,
obtained by dimension reduction with a restricted
Boltzman machine (RBM) using 10 days of daily re-
turns for 10 commodities (100 predictors);

– Reinforcement learning (combined with supervised
learning to forecast returns), for trading.

The report also includes R and Python sample code
(web scraping and simple models), a long list of data
providers, and 16 pages of references.

Essentially no barriers
in neural network energy landscape

F. Draxler et al. (2018)
Neural networks have many local minima. Linear in-
terpolation between them suggests they are separated
by high-loss barriers, but the AutoNEB algorithm can
find paths of almost constant loss.

The elastic band model finds points minimizing∑
loss(pi) + 1

2

∑
k ‖pi+1 − pi‖2 (where k is the spring

stiffness). In the nudged elastic band model, the loss
force only acts perpendicularly to the path, and the
spring force parallelly, g = ∇loss|⊥ + ∇spring|//, so
that the spring force redistribute the points on the path
without straightening it. Instead of choosing the spring
stiffness k, one can remove the springs altogether and
simply redistribute the points on the path at each iter-
ation. The AutoNEB algorithm progressively increases
the number of points.
While the algorithm finds local minimum energy paths,
the loss may increase too much: this may be remedied
by considering a graph of low-energy paths between
several local minima.

Quickshift++: provably good initializations
for sample-based mean shift

H. Jiang et al. (2018)
The MeanShift clustering algorithm is a gradient as-
cent on a kernel density estimator f .
The QuickShift algorithm is a discretized variant, mov-
ing each sample to the closest one with a higher density
in a radius τ ball.
The QuickShift++ algorithm is a variant stopping
when it reaches a cluster core, rather than a local mode.
A cluster core M of a topological space X is a con-
nected component of{

x ∈ X : f(x) ⩾ (1− β)Max
y∈M

f(y)
}
.

The k-NN density estimator in Rd is f(x) ∝ dk(x)
−d,

where dk(x) is the distance to the kth nearest neigh-
bour.

Representation tradeoffs
for hyperbolic embeddings

C. De Sa et al. (2018)
To embed a tree in the Poincaré ball (Sarka’s construc-
tion), start by placing the root a at the origin,
– Apply a reflection, if needed, to put a at the origin;
– Add a’s children on a radius τ circle centered on a,
equally-spaced, but as far away from a’s parent as
possible;

– Apply the reflexion to go back to the original posi-
tion (we still have a circle and equal angles, but the
circle is no longer centered on a);

– Iterate with a’s children.
In higher dimensions, use spherical encoding to put the
points on the sphere (e.g., using vertices of a hyper-
cube).
For a general graph, add Steiner nodes.

⇝

Article and book summaries by Vincent Zoonekynd 425/1044

Reconstructing approximate tree metrics
I. Abraham et al. (2007)

Instead of embedding your data (e.g., a graph) in a
Euclidean space, try embedding it in a tree.
To embed a graph in a tree:
– Choose a “root” node r;
– Find nodes p, q maximizing the Gromov product

(p|a)r = 1
2

(
p(p, q) + d(q, r)− d(p, q)

)
and add a Steiner node ⇝ at distances
(q|r)p, (p|r)q, (p|q)r of p, q, r;

– Remove q and iterate.

Learning continuous hierarchies
in the Lorentz model of hyperbolic geometry

M. Nicket and D. Kiela (2018)
Graphs, especially trees, are more naturally embedded
in hyperbolic spaces, e.g., the Poincaré disk, or the hy-
perboloid model.

Anonymous walk embeddings
S. Ivanov and E. Burnaev (2018)

An anonymous walk on a graph is a random walk (of
length `) with the nodes replaced with numbers (for
instance, both ABCBC and CDBDB map to 12323).
They give a sparse embedding and, with word2vec
(anonymous walks are words, sets of walks starting at
the same node sentences, graphs documents), a dense
one.

Bayesian optimization
of combinatorial structures

R. Baptista and M. Poloczek (2018)
To maximize a function f on {0, 1}d, model it using
only interactions of order up to k, e.g.,

f(x) = α0 +
∑
i

αixi +
∑
i<j

αijxixj (k = 2),

estimate α from the points already evaluated with a
sparse Bayesian regression (and a Horseshoe prior),
sample a value for α, and approximately maximize fα
(with an L1 or L2 penalty) with a SDP relaxation.

Accurate uncertainties for deep learning
using calibrated regression
V. Kuleshov et al. (2018)

Bayesian uncertainties are often inaccurate (varia-
tional inference is an approximation): to recalibrate a
Bayesian deep learning model, i.e., a model x 7→ Fx =
cdf of y, learn an auxiliary model (isotonic regression)
R : [0, 1]→ [0, 1] such that R ◦ Fx be calibrated.

Large-scale sparse inverse covariance
estimation via thresholding

and max-det matrix completion
R.Y. Zhang et al. (2018)

The graphical lasso

Minimize
X≻0

trCX − log detX + λ
∑
ij

|Xij |

to find a sparse concentration matrix X from a sam-
ple covariance matrix C can be approximated with a
simple heuristic, first soft-thresholding the covari-
ance C 7→ Cλ, then solving the maximum determinant
matrix completion (MDMC) problem.

Find X � 0
To minimize trCλX − log detX
Subject to Xij = 0 if (Cλ)ij = 0, i.e., if |Cij | ⩽ λ
(There is a recursive closed form solution if the graph
is chordal but, in practice, that rarely happens unless
it is a tree.)

Conditional neural processes
M. Garnelo et al. (2018)

Neural nets can replace Gaussian processes to model
functions y = f(x):

hθ :

{
RN×R → Rd

(x, y) 7→ r
a :

{
Rd × · · · ×Rd → Rd

(r1, . . . , rd) 7→ r

gθ :

{
RN×Rd → Rp

(x, r) 7→ φ

where hθ and gθ are neural nets, a is some aggregation
function, r summarizes the information so far, φ are the
parameters of the distribution of y, e.g., φ = (µ, σ2) for
a Gaussian.

Optimization, fast and slow:
optimally switching between

local and Bayesian optimization
M. McLeod et al. (2018)

– Use Bayesian optimization, with predictive entropy
search (PES: maximize the expected change in in-
formation content), to find a convex region likely to
contain the global minimum;

– Use Bayesian optimization, with a different acquisi-
tion function, to ensure the region indeed contains a
global minimum;

– Find the minimum, using local search (L-BFGS).

Adaptive three operator splitting
F. Pedregosa and G. Gidel (2018)

To minimize a function of the form f + g+ h, where f
is smooth (with a known gradient), and g and h have a
closed form proximal operator (even though g+h does
not), use the three operator splitting (TOS) method,

x← proxγg
(
z − γu− γ∇f(x)

)
z ← proxγh(x+ γu)

u← u+ γ−1(x− z)

Article and book summaries by Vincent Zoonekynd 426/1044

where the step size γ is sufficiently small:

f(x) ⩽ f(z) + 〈∇f(z), x− z〉+ 1

2γ
‖x− z‖2

(i.e., such that the rhs be a quadratic majorizer of f).

Shampoo:
preconditioned stochastic tensor optimization

V. Gupta et al. (2018)
Preconditioning ignores the matrix or tensor struc-
ture of the parameters; Shampoo is a generalization
of AdaGrad (a diagonal preconditioner) using a sepa-
rate (dense) preconditioning matrix for each dimension
of the gradient tensor. For matrices:

W1 = 0 L0 = εI R0 = εI

Gt = ∇f(Wt) gradient
Lt ← Lt−1 +GtG

′
t preconditioners

Rt ← Rt−1 +G′tGt

Wt+1 ←Wt − ηL−1/4t GtR
−1/4 parameters

Fairness without demographics
in repeated loss minimization
T.B. Hashimoto et al. (2018)

Minority groups contribute less to the loss function
and suffer higher loss and higher attrition – disparity
increases. robust optimization (minimizing the worst
case risk over distributions close to the empirical ones
for the χ2 divergence,

Dχ2(P‖Q) =

∫ (dP
dQ
− 1
)2
dQ,

using the dual formulation) prevents disparity amplifi-
cation.

Augmented CycleGAN: learning
many-to-many mappings from unpaired data

A. Almahairi et al. (2018)
CycleGAN learns 1-to-1 mappings. For 1-to-many
mappings, add a latent space

Zb
A

Za
B

and consider two generators and two encoders

A× Zb −→ B

B × Za −→ A

A×B −→ Za

A×B −→ Zb

Is generator conditioning
causally related to GAN performance?

A. Odena et al. (2018)
To evaluate the quality of a GAN, check the inception
score

exp E
image∼generator

KL
(
p(label|image) ‖ p(label)

)
or the Fréchet inception distance, i.e., the Wasserstein
distance W2 between Gaussian fits of the activations,

W2 = ‖µ1 − µ2‖22 + tr
(
V1 + V2 − 2(V1V2)

1/2
)
.

Poor quality is linked to the condition number of
the Jacobian of the generator. Jacobian clamping
feeds two minibatches to the generator, differing by
small perturbations, computes the relative changes
‖∆G(z)‖ / ‖∆z‖, and adds a penalty if they are not
all in some predefined interval [λmin, λmax].

MAGAN: aligning biological manifolds
M. Amodio (2018)

To align two domains, use two GANs

Domain 1 Domain 2

data generated

generated data

G12

G21

discriminator discriminator

and add reconstruction losses for G12 ◦ G21 ≈ Id and
G21 ◦G12 ≈ Id.

Learning longer-term dependencies in RNNs
with auxiliary losses

T.H. Trinh et al. (2018)
To have RNNs learn longer-term dependencies, use
truncated BPTT with auxiliary losses, to forecast past
(and/or future) observations.

Attention-based deep multiple instance learning
M. Ilse et al. (2018)

In multiple instance learning (MIL), labels are not as-
signed to instances but to bags of instances (labels may
exist for instances, though, aggregated in each bay with
a max or a sum). A function S : P(Data)→ R is sym-
metric if it can be written S(X) = g(

∑
x∈X f(x)), for

some functions f and g; it can then be approximated
arbitrarily close as S(x) ≈ g

(
Maxx∈X f(x)

)
. For a

binary output, model f and g as neural nets and max-
imize the Bernoulli likelihood.

Mixed batches and symmetric discriminators
for GAN training

T. Lucas et al. (2018)
To reduce mode collapse in GANs, feed the discrimina-
tor a batch of true and generated samples and have it
forecast the proportion of true samples.

Article and book summaries by Vincent Zoonekynd 427/1044

Equivariant and invariant layers can be obtained as

(x1, . . . , xn) 7−→ (fx1, . . . , fxn)

(x1, . . . , xn) 7−→ Aρ(fx1, . . . , fxn)

where ρ is the (elementwise) mean, standard deviation
or maximum (or a basis of symmetric polynomials).
The following layers suffice:

(x1, . . . , xn) 7→
(
σ(β+Ax1+Bx̄), . . . , σ(β+Axn+Bx̄)

)
.

CoVeR: learning covariate-specific vector
representations with tensor decompositions

K. Tian et al. (2018)
The GloVe vector embedding can be generalized to deal
with covariates

A : co-occurrence matrix
i, j : words
k : covariates (context)

f : weight function, e.g., 1 or
(
Min(100, x)

100

).75
Argmin
v,c,b

∑
i,j,k

(
(ck � vi)′(ck � vj) + bik + bjk − logAijk

)2
Learning in integer latent variable models

with nested automatic differentiation
D. Sheldon et al. (2018)

The forward algorithm, for hidden Markov models,

k : time
nk : population size
zik : offspring of individual i ∈ J1, nk−1K
mk : immigration

nk =

nk−1∑
i=1

zk,i +mk (hidden)

yk ∼ Binomial(nk, p) (observed)

can be formulated with probability generating func-
tions.

Born-again neural networks
T. Furlanello et al. (2018)

Knowledge distillation trains a small (student) net-
work to mimic a larger (teacher) network; try with two
similarly-sized networks.

Differentiable dynamic programming
for structured prediction and attention

A. Mensch and M. Blondel (2018)
To make dynamic programming (Viterbi, dynamic
time warp (DTW)) differentiable, replace the (Max,+)
semiring with (MaxΩ,+)

MaxΩ(x) = Max
q∈∆D

〈q, x〉 − Ω(q)

∇MaxΩ(x) = Argmax
q∈∆D

〈q, x〉 − Ω(q)

where Ω is the negentropy −H (MaxΩ = log sum exp,
∇MaxΩ = softmax), or the squared `2 norm (∇MaxΩ
is then sparse).

Analysis of minimax error rate
for crowdsourcing and its application

to worker clustering model
H. Imamura et al. (2018)

The Dawid and Skene model of crowdsourcing uses
the EM algorithm to estimate the confusion matrix of
the workers P [worker i gives label k instead of `] and
the true labels.

Neural networks should be wide enough
to learn disconnected decision regions

Q. Nguyen et al. (2018)
If no layer has more units than the input, the decision
regions are connected (for ReLU activations).

A hierarchical latent vector model
for learning long-term structure in music

A. Roberts et al. (2018)
The second term in the ELBO

E[log p(x|z)]−KL
(
q(z|x) ‖ p(z)

)
⩽ p(x)

can be seen as a penalty and replaced with λ · KL or
(KL− τ)+.

biLSTM

Conductor
RNN

output

input

Learning long-term dependencies
via Fourier recurrent units

J. Zhang et al.
Statistical recurrent units (SRU) keep moving averages
of past hidden states; Fourier recurrent units keep their
(truncated) Fourier transform.

Learning in reproducing kernel Kreĭn spaces
D. Oglic and T. Gärtner (2018)

A Kreĭn space is a vector space H with a non-
degenerate symmetric but indefinite bilinear form ad-
mitting a decomposition H = H+ ⊕ H− into orthog-
onal Hilbert spaces such that 〈f, g〉H = 〈f+, g+〉H+

−
〈f−, g−〉H− . The inner product 〈·, ·〉H+ + 〈·, ·〉H− makes
H a Hilbert space; its topology does not depend on the
choice of decomposition.
A reproducing kernel Kreĭn space is a Kreĭn space
K ⊂ RX for which the evaluation is continuous. If
k : X ×X → R is a difference of positive kernels (not
every non-degenerate symmetric kernel is), it defines a
reproducible kernel Kreĭn space.

Article and book summaries by Vincent Zoonekynd 428/1044

Goodness-of-fit testing for discrete
distributions via Stein discrepancy

J. Yang et al. (2018)
To characterize convergence in distribution towards p,
the Stein method uses a “Stein operator” Ap, usually
defined from the score function of p (which can be com-
puted from an unnormalized probability distribution),
e.g.,

Apf(x) = ∇ log p(x)f(x) +∇f(x),
and a set of test functions F , e.g., W 2,∞, or the unit
ball of a RKHS, such that

∀f ∈ F E
x∼q

[
Apf(x)

]
= 0 iff q = p.

The Stein discrepancy

sup
f∈F

E
x∼q

[
Apf(x)

]
can be used as a goodness of fit statistic for unnormal-
ized distributions.
For discrete distributions, use

∆if(x) = f(x)− f(σix)
∆∗i f(x) = f(x)− f(σ−1i x)

si(x) =
∆ip(x)

p(x)

Apf(x) = s(x)f(x)′ −∆∗f(x)

where x ∈ Xd, X is finite, σ is a cyclic permutation of
X, σi only acts on the ith component, f : Xd → Rm,
p is a distribution on Xd. For the unit ball of a RKHS,

D(q ‖ p) = sup
f

E
x∼q

[
trApf(x)

]
can be computed as

D(q ‖ p) = E
x,y∼q

[
κp(x, y)

]
.

A spline theory of deep networks
R. Balestriero and R.G. Baraniuk (2018)

To make the features learned by a neural net more or-
thogonal, add a penalty

λ ·
∑
i ̸=j

|〈wi·, wj·〉|2 .

Non-overlap-promoting variable selection
P. Xie et al. (2018)

The multilogistic model has a vector of parameters wi
for each class i. Easy-to-interpret sparse vectors with
little overlap can be obtained with an `1 penalty and
a penalty encouraging the vectors wi to be orthogo-
nal or orthonormal, i.e., encouraging the Gram matrix
Gij = w′iwj to be close to the identity.
The log-determinant divergence measures how
close two matrices are.

D(X,Y) = tr(XY −1)− log det(XY −1)

Variable selection via penalized neural
network: a drop-out-one loss approach

M. Ye and Y. Sun (2018)
Variant of backward elimination (stepwise regression),
with a neural network, for variable selection: fit a com-
plete model, drop one variable without re-fitting, dis-
card it if the change in loss is small.

Nonparametric variable importance
using an augmented neural network

with multitask learning
J. Feng et al. (2018)

To estimate (local) variable importance(
E[Y |X]− E[Y |X−i]

)2
in a neural network, augment its input with a mask
indicating which variables to use.

Accelerated spectral ranking
A. Agarwal et al. (2018)

Pairwise or multiway comparisons (sports ranking, rec-
ommendation systems, social choice) can be aggre-
gated: the Bradley-Terry model weights

P [i � j] = wi
wi + wj

are the centralities of a graph, and can be estimated
with random walks.

Ranking distributions based on noisy sorting
A. El Mesaoudi-Paul et al. (2018)

Define a probability distribution of Sn by using a sort-
ing algorithm (insertion, quicksort) with comparisons
replaced by Bernoulli trials; the Bernoulli parameters
are pairwise preferences. Other distributions on Sn

include:
– Mallows: P [σ] ∝ exp−kτ(σ), where τ is Kendall’s
tau (it can be centered on a permutation σ0 6= Id by
using τ(σ0σσ−10));

– Generalized Mallows: P [σ] ∝ exp−
∑
kidi(σ),

where di(σ) =
∑
j>i 1σ−1(j)<σ−1(i) (it can be further

generalized to account for a hierarchical structure onJ1, nK);
– Plackett-Luce: P [σ(i) = k|σ(1), . . . , σ(i−1)] ∝ θk,
i.e.,

P [σ] =
∏
i

θσ−1(i)

θσ−1(i) + θσ−1(i+1) + · · · θσ−1(n)

– Babington-Smith: the orderings of pairs are inde-
pendent Bernoulli trials, rejected if they do not give
an order relation,

P [σ] ∝
∏
i<j

Pσ−1(i),σ−1(j),

Article and book summaries by Vincent Zoonekynd 429/1044

A probabilistic theory of supervised similarity
learning for pointwise ROC curve optimization

R. Vogel et al. (2018)
Pointwise ROC optimization maximizes the TPR (true
positive rate) for a fixed FPR (false positive rate).
Pairwise bipartite ranking learns to recognize if two ob-
servations x, x′ have the same label y = y′ (e.g., if two
photographs are of the same person), (x, x′) 7→ 1y=y′ .

Fast stochastic AUC maximization
with O(1/n) convergence rate

M. Liu et al. (2018)
The AUC is often maximized using a surrogate square
loss

AUC = P [f(x1) < f(x2) | y1 = +1, y2 = −1]

Loss(f) = E
[(
f(x1)− f(x2)− 1

)2 | y1 = +1, y2 = −1
]
;

this can be turned into a saddle point problem.

Accelerated stochastic mirror descent:
from continuous-time dynamics

to discrete-time algorithms
P. Xu et al. (2018)

Stochastic mirror descent (SMD)

yk+1 ← ∇h(xk)− η∇f(xk)
xk+1 ← ∇h∗(yk+1)

minimizes E[f], where h is convex on X, e.g., h(x) =
‖x‖22 on R2 or h(x) =

∑
xi log xi on ∆n, and h∗(y) =

supx∈X〈y, x〉 − h(x).

Batch Bayesian optimization
via multi-objective acquisition ensemble

for automated analog circuit design
W. Lyu et al. (2018)

Multiobjective optimization of multiple acquisition
functions leads to (single-objective) batch optimization.

Subspace embedding and linear regression
with Orlicz norm

A. Andoni et al. (2018)
Orlicz norms generalize `p norms and (when used for
losses rather than penalties) provide robust estimators
(not unlike `p, 1 ⩽ p < 2).

f(x) =

{
1
2x

2 if |x| ⩽ δ
δ(|x| − 1

2δ) otherwise
(Huber)

G(x) = f
(
f−1(1)x

)
‖x‖G = inf

{
α > 0 :

∑
G(|xi| /α) ⩽ 1

}

Differentiable compositional kernel learning
for Gaussian processes

S. Sun et al. (2018)
Since linear combinations and products of Gaussian
process kernels are still kernels, a neural network, start-
ing with primitive kernels and alternating those two op-
erations, can be used to model them – this replaces the
automated statistician’s discrete search on a context-
free grammar with an end-to-end differentiable opti-
mization problem.

x1
x2

y

product

linear

primitive
kernels

Network global testing by counting graphlets
J. Jin et al. (2018)

The degree-corrected mixed membership model gener-
alizes the stochastic block model (SBM)

P [Aij = 1] = θiθj
∑

1⩽k,ℓ⩽K
πikπjℓPkℓ,

where θ is the degree heterogeneity and π measures the
mixed membership of the K communities; it can be
written as A = Ω−diagΩ+noise, with Ω = ΘΠPΠ′Θ.
The graphlet count statistic tests for H0 : K = 1.

Lm : density of length-m self-avoiding paths
Cm : density of length-m self-avoiding cycles
χm = Cm = (Lm−1/Lm−2)

m (m ⩾ 3)

Online convolutional sparse coding
with sample-dependent dictionary

Y. Wang et al. (2018)
Sparse coding is a sparse matrix decomposition.

Given X ∈ Rn×N (columns = observations)
Find Y ∈ Rn×d (columns = filters)

W ∈ Rd×N (columns = weights)
To minimize ‖X − YW‖22 + λ

∑
i

‖W·i‖1

GAIN: missing data imputation
using generative adversarial nets

J. Yoon et al. (2018)
GANs can be used to impute missing data: the genera-
tor fills in missing values, while the discriminator tries
to find which values were imputed.

Article and book summaries by Vincent Zoonekynd 430/1044

Inter and intra topic structure learning
with word embeddings
H. Zhao et al. (2018)

Hierarchical topic models generalizing Poisson fac-
tor analysis model texts as mixtures of subtopics,
subtopics as mixtures of topics, and topics as distri-
butions on words.

X ∼ Poisson(Φ1Θ1) (words)
Θ1 ∼ Gamma(Φ2Θ2)

Θ2 ∼ Gamma(Φ3Θ3)

...
Φi ∼ Dir(βi)

They can also use a vector embedding f :

β ∼ Gamma(α, ef
′w).

Improving regression performance
with distributional losses

E. Imani and M. White (2018)
Do not forecast values E[y|x] but distributions y|x,
e.g., forecast the histogram density qx to minimize
D(py||qx), where py = N(y, σ2), with σ fixed.

Comparison-based random forests
S. Haghiri et al. (2018)

A comparison tree is a decision tree whose bound-
aries are obtained by choosing two points x1, x2 with
different labels and splitting the data with d(x, x1) <
d(x, x2).
To use a comparison random forest, one only needs to
be able to actively tell if the new item A is closer to
items B or C.

QuantTree: histograms for change detection
in multivariate data streams

G. Boracchi et al. (2018)
To detect distributional changes in multivariate time
series, use histogram statistics, but build those his-
tograms on kd-trees rather than grids.

Deep learning
I. Goodfellow et al. (2016)

3. The probability theory needed to deal with proba-
bilistic graphical models boils down to two rules.

Sum rule P (x) =
∑
y

P (x, y)

Product rule P (x, y) = P (x)P (y|x)

The Kullback-Leibler divergence is the extra amount
of information needed to send a message from P using

a code for Q.

Information I(x) = − log p(x)

Entropy H(X) = E[− log p(X)]

KL divergence D(P‖Q) = E
x∼P

log
P (x)

Q(x)
⩾ 0

Cross-entropy H(P,Q) = E
x∼P

[
− logQ(x)

]
= H(P) +D(P‖Q)

Log-likelihood and cross-entropy are the same thing,
and the Kullback-Leibler divergence only differs by a
constant: minimizing D(data‖model) is equivalent to
minimizing H(data,model).

Minimizing KL(p,.) Minimizing KL(.,p)

4. Gradient descent fails to exploit the curvature in-
formation in the Hessian – it “wastes time repeatedly
descending canyon walls because they are the steepest
feature”.

5. Balancing over- and under-fitting requires to both
make the training error small and the gap between
training and test error small.
The Bayes error is the error made by the best pre-
dictor possible, i.e., that knowing the true data gener-
ation process (the error is not zero because of the error
in the data generation process): it is the minimum test
set error.
To fight the no free lunch theorem, incorporate pref-
erences into the learning algorithm (prior, regulariza-
tion).
There are implicit priors in many machine learning al-
gorithms: locally constant (k-means), locally smooth,
but deeper algorithms allow for more complex priors –
non-local generalization, hierarchical structures.
6. You may need to clip gradients for mixture den-
sity networks (MLP with Gaussian mixtures in their
output).

Article and book summaries by Vincent Zoonekynd 431/1044

From the universal approximation theorem, one layer
is enough, but deeper networks require fewer units.
7. Regularization trades bias for variance. Neural net-
works may use a separate penalty for each layer.
L2 regularization shrinks towards zero, but more in the
“imprecise” directions (where the Hessian eigenvalues
are large). Early stopping, for a linear model, is equiv-
alent to L2 regularization.

L1 regularization has a sparsifying effect.
You can add noise to:
– Input (denoising auto-encoder);
– Activations (dropout corresponds to multiplicative
noise);

– Weights (this makes the network Bayesian);
– Output (label smoothing replaces 0 and 1 with
ε/(k − 1) and 1− ε).

Parameter sharing forces parameters to be equal
(CNN) or close (transfer learning).
To predict with dropout, you could average over several
masks; alternatively, just rescale the weights (there is
no theoretical justification for nonlinear models: it is
an approximation, but it works well). Multiplying the
weights by a random number µ ∼ N(1, 1) is another
form of dropout, but since E[µ] = 1, no rescaling is
necessary.
If you do not have enough data, prefer Bayesian neural
nets or semisupervised learning.
To generalize well, neural nets should be locally con-
stant around (orthogonally to) the data manifold – in-
stead, they tend to be linear. Try data augmentation
with adversarial examples, or a penalty for ‖∇θf‖.
8. The ideal objective function, the expected loss
over the data generation process, is not available: in-
stead, we minimize the empirical risk, i.e., the average
loss over the training set. Non-differentiable loss func-
tions (e.g., 0-1 loss) are often replaced by differentiable
surrogates (e.g., negative log-likelihood). Optimiza-
tion algorithms often converge faster with mini-batches
(n ⩾ 100 for gradient-based methods, n ⩾ 10, 000 for
Hessian-based ones), i.e., with frequent though impre-
cise updates. The mini-batches should be selected ran-
domly.
Gradient descent may not arrive at a critical point –
plot the gradient norm: it often fails to decrease. The
concern that we may end up at a local minimum or a
saddle point is moot.

Models with latent variables are not identifiable: they
have many (sometimes uncountably many) local min-
ima – but most minima have a low cost value.
Cliffs in the loss function landscape can be avoided with
gradient clipping.
Momentum addresses the high variance of the stochas-
tic gradient and bad conditioning of the Hessian. Nes-
terov momentum computes the gradient after the mo-
mentum step.
Weight initialization is usually random (to break sym-
metries) and normalized.
AdaGrad and RMSProp decrease the learning rate us-
ing the sum or exponential moving average of past gra-
dient norms; Adam combines momentum and RMS-
Prop.
Second-order methods often assume the Hessian is pos-
itive definite, which is not the case around saddle
points: the Hessian can be regularized, H ⇝ H + λI
(Levenberg-Marquardt). With gradient descent (and
line search), each gradient direction is perpendicu-
lar to the previous one, resulting in a zigzag mo-
tion. Conjugate gradient (CG) replaces this orthog-
onality condition d′tdt−1 = 0 with d′tHdt−1 = 0, where
dt = ∇J + βtdt−1 (βt = 0 gives the gradient). Some
approximations of βt do not require the Hessian, e.g.,

β =
current (∇J)′(∇J)
previous (∇J)′(∇J)

or β =
(change in ∇J)′(current ∇J)

previous (∇J)′(∇J) .

The gradients tell how to update each parameter if the
others remain fixed; batch normalization helps decou-
ple the layers.
Polyak averaging (Cesàro summation) can help conver-
gence.
Greedy supervised pretraining builds up an increasingly
deeper network.

⇝

x

h1

y

⇝

x

h1

h2

y

⇝ · · ·

FitNets train a wide and shallow “teacher” network,
and then a deeper “student” network, to forecast both
the output and the middle layer of the teacher network,
providing hints for its middle layers.
Gradients flow more easily through linear functions:
ReLU are easier to train than sigmoids.
Skip-connections (ResNets) reduce the length of the
shortest path to the output.
Auxilliary heads are an alternative to pre-training.

Article and book summaries by Vincent Zoonekynd 432/1044

input

output

output

output

Continuation methods use a sequence of increasingly
more difficult loss functions (blurring non-convex func-
tions makes them more convex); curriculum learning
(e.g., stochastic curriculum learning, with a mixture of
easy and hard samples), is an example.
9. Convolution (same notion as in math, but without
flipping the kernel) can be expressed as multiplication
by a structured matrix (circulant and sparse). CNNs
are sparsely conected: each neuron is only linked to
nearly neurons (small receptive field – but it grows with
depth).

Max pooling can be interpreted as a summary statistic
of nearly inputs, or as a prior that the output of the
layer should be invariant under small translations.
Locally-connected layers are sparsely connected, but
do not share weights. Tiled convolutions only share
weights locally.

“Recurrent” convolutional networks are progressively
refined.

x

h1

y1

⇝

x

h1

y1

h2

y2

⇝

x

h1 h2 h3

y1 y2 y3

⇝ · · ·

For separable kernels, the convolution can be computed
separately in each dimension.
To speed up training, skip it, and use random features,
hand-crafted features, features from k-means cluster-
ing of image patches, greedy layer-wise pretraining.
Real-world convnets use more branching.
10. One-dimensional convolution provides parameter
sharing, but it is shallow: each output only depends
on the recent past. Recurrent neural nets (RNN) use

a different form of sharing. Back-propagation through
time (BPTT) is backpropagation on the unrolled net-
work.

input

hidden

output

input

hidden

output

Instead of feeding ŷt to the network at time t + 1,
teacher forcing uses yt (during training – otherwise it
is not available) and progressively switches to actual
forecasts.
Deep recurrent networks can stack layers vertically or
horizontally, use skip connections, or remove connec-
tions.

Echo state networks (reservoir computing) are similar
to kernel machines.
The linear maps x 7→Wx can be replaced with bilinear
(product) or multilinear (tensor) ones.
Recursive neural nets are tree-shaped neural nets.
Attention and bidirectional RNNs can help.
To deal with exploding gradients, clip them (or take
a random step when they are too large); for vanishing
gradients, use LSTMs. Try adding a penalty to keep
the gradient norm approximately constant.
To improve memory, add skip connections, remove
some short connections, and use leaky memory, mt ←
(1− λ)mt−1 + λvt, with different time scales λ.
If LSTMs and attention do not provide enough mem-
ory, add explicit memory (neural Turing machine,
NTM).
11. Learning rate is the most important parameter.
Increase capacity to reduce training error; increase reg-
ularization to reduce the gap between training and test-
ing errors.
Visualize the worst mistakes; fit a tiny dataset; moni-
tor histograms of activations and gradients (parameter
updates should be around 1% of the parameter values).
Allow the model to refuse to make a decision if it is too
uncertain.

Article and book summaries by Vincent Zoonekynd 433/1044

12. Cascades (using a fast high-recall model followed
by a more expensive high-precision one) are a form of
hard attention.
In an expert network, a top-level model decides which
expert (model) or, better, combination of experts to
use.
Beware of low-contrast, uninformative images when us-
ing contrast normalization.
NLP inputs can be preprocessed with n-grams,
smoothing, or word embeddings. The hierarchical soft-
max can help generate high-dimensional outputs.
The gradient of a language model can be decomposed
as

∂

∂θ
log

exp ay∑
i exp ai

=
∂ay
∂θ
−
∑

pi
∂ai
∂θ

=
∂ay
∂θ
− Ei

[
∂ai
∂θ

]

(positive and negative phases) and the second term, a
huge sum, can be approximated by sampling (but this
requires knowing all the pi = P [Y = i]), importance
sampling (but this still requires the pi/qi) or biased im-
portance sampling (normalize the importance weights
to sum to 1).
If the output is a bag of words, minimize the loss for the
positive words and an equal number of negative words
(sampled randomly, with a focus on words likely to
be mistaken, and importance weights). Alternatively,
forecast a score rather than a probability, and make
that of the correct output at least one more than those
of the incorrect ones.
Recurrent neural nets (RNNs) for translation first learn
a sentence embedding, and then generate a translation,
often with an attention mechanism.

Use t-SNE to plot word embeddings.
Collaborative filtering is a low-rank matrix factoriza-
tion (SVD with missing values), Content-based recom-
mentation systems address the cold-start problem by
learning an embedding of user and/or item features.
Recommender systems are contextual bandits.
Other applications include embeddings (of words,
phrases, relations, etc.), and learning structured data
(knowledge base) for link prediction and question an-
swering.
13. Nor all learning problems are supervised: genera-
tive models, outlier/anomaly detection, missing values,
semi-supervised learning, unsupervised learning.

PCA has many variants.

PCA X ∼ N(b,WW ′)

Probabilistic PCA X ∼ N(b,WW ′ + σ2I)

Factor analysis X ∼ N(b,WW ′ +∆)

Equivalently,

h ∼ N(0, I) h ∼ N(0, I) h ∼ N(0, I)

X = b+Wh ε ∼ N(0, σ2I) ε ∼ N(0,∆)

X = b+Wh X = b+Wh

h ∼ p non-Gaussian
X = b+Wh W orthogonal (ICA)

Nonlinear variants replace h 7→ b+Wh with h 7→ f(h),
a nonlinear mapping given by, e.g., a neural net.
Slow feature analysis generalizes PCA

Find u ∈ Rn

To maximize E(u′X)2

Such that u′u = 1

to time series
Find u ∈ Rn

To maximize E(u′xt+1 − u′xt)2
Such that E[u′xt] = 0

E(u′xt)
2 = 1.

The mapping x 7→ u′x can be replaced with an affine
transform x 7→ u′x+b. To learn several features, add a
constraint E[(u′ixt)(u

′
jxt)] = δij . Apply on a nonlinear

transform (e.g., a quadratic kernel) of x.
Sparse coding generalizes PPCA by using a prior with
a sharp peak at 0 (not sparse, but still sparsifying).

h ∼ Laplace, Cauchy or Student
ε ∼ N(0, σ2I)

X = b+Wh+ ε

Sparse coding can learn good features, but not how to
combine them.
14. Autoencoders are nonlinear generalizations of
PCA.

x h r
f g

input code, reconstructioncode,
latent representation

encoder decoder

One can add a regularizer on the local features. To
avoid trivial solutions (f = εId, g = ε−1Id), impose
g = fT .
Contrastive autoencoders (CAE) add a penalty on
‖∇inputlatent‖2 – large derivatives will only be kept
if they are tangent to the data manifold.
In a stochastic autoencoder (SAE), the decoding func-
tion is replaced by a probability distribution

input latent outputf pθ(output|latent)

Article and book summaries by Vincent Zoonekynd 434/1044

(f and pθ are learnt). Both steps could be stochastic.

encoder: pθ1(h|x)
decoder: pθ2(x|h)

Denoising autoencoders (DAE) try to reconstruct their
input from a noisy version of it:

Maximize
p,f

E
x∼data

E
ε∼noise

p
[
x|h = f(x+ ε)

]
.

It is not possible to remove the noise if x+ ε is still on
the data manifold, but if it is away from it, the denois-
ing autoencoder will project it onto the data manifold:
it learns a vector field that moves towards the manifold,
∇x log pdata(x).

Predictive sparse decomposition (PSD)

x 7→f(x)
h 7→ g(h)

minimizes (alternatively h and f, g in)

‖x− g(h)‖2 + λ ‖h‖1 + γ ‖h− f(x)‖2 .

15. Unsupervised (greedy, layerwise) pretraining is
sometimes helpful (e.g., when there is not enough
data), but often detrimental (it assumes some features
useful for the unsupervised task are also useful for the
supervised one; it relies on a regularizing effect of the
chice of starting point to avoid “bad local minima” –
but those are extremely rare and this could drastically
reduce exploration). Prefer dropout and batchnorm
(big data) or Bayesian methods (small data) – unsu-
pervised pretraining is only still useful in NLP.
Transfer learning (same input, different tasks) and
domain adaptation (different inputs, same tasks) are
forms of supervised pretraining. One-shot learning uses
a single labeled example for the new task. Zero-shot
learning uses none, e.g.:
– Given textual descriptions of animals and pho-
tographs of some of them, learn to recognize those
you have never seen;

– Given models for languages A and B and a bilingual
A↔ B lexicon, learn to translate sentences.

Semi-supervised learning looks for a representation of
the input x that disentangles its causes, in the hope
that the output y is one of them – this will not work if
there is no structure in x, e.g., x ∼ N(0, 1).

16. An energy-based model (or Boltzman machine) is a
probability distribution of the form p(x) ∝ exp−E(x)
(a Boltzman distribution – it just says that ∀x p(x) 6=
0). In a product of experts, the energy is a sum of
“experts”, each checking if some constraint is satisfied,
using a subset of the variables.
Undirected models cannot represent “immoral” de-
pendencies; directed models cannot represent “non-
chordal” dependencies.

⇝ ⇝

Undirected models are ambiguous: does
1 2

3

represent

f12f23f13

or
f123

, i.e., in terms of factor graphs

12

13 23 or 123 ?

Directed models can be sampled by ancestral sampling
(after choosing a topological ordering of the nodes).
Undirected models can be sampled, approximately, by
Gibbs sampling. Introducing hidden variables can re-
place many dependencies.

⇝

In general, computing the marginal probability of a
probabilistic graphical model is #P-hard (NP prob-
lems are decision problems, #P problems are the cor-
responding counting problems); they can be approxi-
mated by variational inference.
Loopy belief propagation is not supposed to work
with arbitrary graphs (non-trees), but works well
with sparsely-connected graphs – neural networks are
densely connected.

vs

Restricted (i.e., bipartite) Boltzman machines (RBM)
can be efficiently sampled from (block Gibbs sam-
pling).
17. Expectations can be approximated with averages:

E
x∼p

f(x) ≈ 1

n

∑
xi∼p

f(xi)

or weighted averages (importance sampling)

E
x∼p

f(x) =

∫
f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx

= E
x∼q

f(x)p(x)

q(x)

≈ 1

n

∑
xi∼q

f(xi)p(xi)

q(xi)

Article and book summaries by Vincent Zoonekynd 435/1044

whose variance can be lower (it is minimal for q ∝ p·|f |)
or biased importance sampling

E
x∼p

f(x) ≈
∑
xi∼q

p̃(xi)

q̃(xi)
f(xi)

/∑
xi∼q

p̃(xi)

q̃(xi)

(with unnormalized probabilities, p ∝ p̃, q ∝ q̃ – the
estimator is only asymptotically unbiased).
For MCMC, use 100 chains. Mixing time is deter-
mined by the second eigenvalue (the first is 1 – Perron-
Frobenius).
Gibbs sampling has mixing problems in presence of
several modes: increase the temperature (tempering).
MCMC is less useful when the distribution has a man-
ifold structure: good learning leads to high MI(h, x),
low entropy p(x|h), which is hard to sample from and
leads to bad mixing
18. To compute the gradient of the likelihood, we
need that of the partition function (negative phase –
the other tem, the unnormalized log-likelihood, is the
positive phase).

p =
p̃

Z
∇θ log p = ∇θ log p̃−∇θ logZ

It can be estimated with Monte Carlo:

∇θ logZ =
∇θZ
Z

=

∑
∇θp̃(x)
Z

=

∑
∇θ exp log p̃(x)

Z

=
∑

p(x)∇θ log p̃(x)

= E
x∼p
∇θ log p̃(x).

The positive phase increases p̃ for x drawn from the
data; the negative phase decreases p̃(x) for x drawn
from the model.
While ∇θ logZ = E∇θ log p̃(x) could be estimated with
MCMC, with a burn-in period, this would have to be
done anew at each gradient step. Contrastive diver-
gence (CD) uses k Gibbs steps, with no burn-in, after
initialization from the data – but it is unaware of high-
probability regions away from the data. It only works
for shallow models (e.g., RBM) – the latent variables
are not in the data and require a burn-in period. CD is
not the gradient of any function (there could be cycles)
Stochastic maximum likelihood is CD, but it initial-
izes the chain from the previous gradient; the gradient
steps should be small and/or the chain long. Parallel
tempreing can help.
Pseudo-likelihood uses

log p(x) =
∑

log p(xi|x1 · · ·xi−1) ≈
∑

log p(xi|x−i)

(generalized pseudo-likelihood puts the variables in
groups).

Score matching minimizes the expectation of

L(x, θ) =
1

2
‖∇x log pmodel(x, θ)−∇x log pdata(x)‖22

=
∑
i

∂2

∂x2i
log p(x, θ) +

1

2

(
∂

∂xi
log p(x, θ)

)2

(Z does not depend on x and disappears; pdata is not
known).
For binary data, ratio matching minimizes the average
of

L(x, θ) =
∑
i

(
1 +

p(x, θ)

p
(
fj(x), θ

))2

where fi flips the ith bit.
Noise contrastive estimation (NCE) log p(x) =
log p̃θ(x) + c considers the partition function c =
− logZ as another parameter to estimate, not with
maximum likelihood, but with a binary classifier, data
vs noise (e.g., word2vec). For self-contrastive estima-
tion, the noise samples are generated from the model
– the model learns to distinguish reality from its own
evolving beliefs.
To evaluate or compare models, with the likelihood
or the BIC, the whole likelihood, with the partition
function, is needed. The partition function can be es-
timated by importance sampling,

Z1

Z0
=

1

Z0

∫
p̃1 =

1

Z0

∫
p0
p̃1
p0

=

∫
p0
p̃1
p̃0

= E
x∼p0

p̃1(x)

p̃0(x)

≈ 1

N

∑
xi∼p0

p̃1(xi)

p̃0(xi)
.

If the distributions are very different, annealed impor-
tance sampling (AIS) adds more distributions between
p0 (tractable) and p1 (interesting), e.g., weighted geo-
metric averages pηi0 p

1−ηi
1 , and computes the successive

ratios of partition functions.
19. The evidence lower bound (ELBO) is

L (v, θ, q) = E
h∼q

[
log p(h, v)

]
+H(q)

= log p(v)−DKL
(
q(h|v)‖p(h|v)

)
⩽ log p

where v are the observed variables, h the latent vari-
ables, q some distribution on h and DKL ⩾ 0.
MAP estimation is equivalent to variational inference
(VI) with q Dirac.
The mean field approximation uses a factorized q,
q(h|v) =

∏
i q(hi|v) (it is easy for discrete variables but

requires calculus of variations for continuous ones).
20. Learning in a Boltzman machine

E(v, h) = −
(
v
h

)′(
R 1

2W
1
2W S

)(
v
h

)
−
(
b
c

)′(
v
h

)

Article and book summaries by Vincent Zoonekynd 436/1044

is local. Conditional distributions for RBM are facto-
rial and easy to compute and sample from.

p(h|v) =
∏
j

σ
(
(2h− 1)� (c+W ′v)

)
j

p(v|h) =
∏
i

σ
(
(2v − 1)� (b+Wh)

)
i

A deep belief network is a RBM with additional di-
rected layers; a deep Boltzman machine only has undi-
rected connections.

RBMs can be generalized to continuous variables: with
Gaussian-Bernoulli RBMs, the mean (or both the
mean and the variance) of the Gaussian output de-
pends on the binary latent variables. The mean-
product of Student’s T distribution (mPoT) model re-
places the Bernoulli latent variables with Gamma ones.
To compute the gradient in presence of random opera-
tions, e.g., ∂µ or ∂σ in y ∼ N(µ, σ2), rewrite the model
as a transformation of samples from a fixed distribu-
tion, e.g.,

ε ∼ N(0, 1)

y = µ+ σε

and consider the random Gaussian input as other
inputs (“reparametrization trick”, “stochastic back-
propagation”). For discrete distributions, it is trickier,
but doable with reinforcement learning’s reinforce
algorithm.
Variational autoencoders (VAE) combine a generator
with an inference network.

z ∼ N(0, 1) (µz,Σz) x ∼ N(µz,Σz)
code data

decoder

encoder

Generative adversarial networks (GAN) combine a gen-
erator with a discriminator.
Neural autoregressive networks reuse their features.

outputs

features
inputs

P (x1) P (x2|x1) P (x3|x1:2) P (x4|x1:3)

Variants of auto-encoders differ in where they add
noise.

DAE generalized
DAE

contrastive
DAE

generative
stochastic
network

R in Finance 2018
Bitcoin. Random forests and gradient boosting can
help forecast Bitcoin prices from price, volume, users,
FX, VIX and search data.
Dynamic model averaging (DMA) combines sev-
eral models (here, univariate cryptocurrency forecasts,
from stock indices, commodities, interest rates, CDS,
volatility), with time-varying weights. Implementation
in eDMA.
Bittrex is the 10th largest bitcoin exchange (4th in
terms of number of trades or number of currencies),
with a 2% market share it has a REST API and an
R package. There are almost 300 cryptocurrencies (on
this exchange), but their cointegration dimension
is at most 4.
The rbtc package lets you run a Bitcoin node from R.
Time series models. The finite tick size makes prices
discrete: they can be modelled with a Skellam pro-
cess (a difference of Poisson processes) or, more gener-
ally, an integer-valued Lévy process. An integer-valued
trawl process can be sampled as follows:
– Take points at random on R× [0, 1] (Lévy basis – it
could be a random signed measure, instead, if you
are familiar with Lévy processes);

– Progressively move the “trawl” (a shape, e.g., a rect-
angle, or an exponential) and return the number of
points in it.

The non-rectangular trawl makes changes more fleet-
ing.

Avoid the Hodrick-Prescott (HP) filter:
– It creates spurious dynamic relations (autocorrela-
tion, predictability), not only in the “trend” compo-
nent (that is intended and desirable), but also in the
“cycle” (noise) one;

– The results at the extremities of the interval are not
usable – problematic if we want to use it on a moving
or expanding window;

Article and book summaries by Vincent Zoonekynd 437/1044

– It is often estimated with a Kalman filter

xt = yt + εt Observation
yt − 2yt−1 + yt−2 = ηt Evolution

but the estimated smoothing parameter is at odds
with common practice.

Instead, just estimate a linear regression

yt+h ∼ yt + yt−1 + yt−2 + yt−3

(with h = 8 for quarterly data).
The time evolution of the value-at-risk (VaR) can be
modeled directly, in an autoregressive way to account
for volatility clustering, e.g.,

VaRt = β0 +
∑
i

βiVaRt−i +
∑
j

γi |xt−j |

(or some other function of VaRt−i, xt−j and exogenous
variables) and estimated by quantile regression.
The correlated idiosyncratic volatility shock model is
yet another multivariate GARCH (factor) model.
A tidyverse for time series may be emerging:
tidyquant (stock and portfolio analysis), anomalize
(anomaly detection), tibbletime (collapse_by,
rollify, filter_time, as_period), timek (time se-
ries machine learning), sweep, furrr (future +
purrr), flyingfox (Quantopian’s Zipline Python li-
brary via reticulate).
The stationary bootstrap is a block bootstrap with ran-
dom block lengths.
Robust statistics. We may want to try to replace
some of our location and dispersion estimators with
those in the RobStatTM package:
– RobStatTM::MLocDis(x)$mv (location and disper-
sion),

– RobStatTM::lmrobdetMM,
– RobStatTM::lmrobdetDCML (regression),
– RobStatTM::MultiRobv(x, type="auto") (covari-

ance matrix).
Replacing the Fama-French cross-sectional regressions
with robust regressions:
– Confirms the relation between B/P, earnings, size
and future returns;

– Reveals a negative relation between beta and future
returns;

– Suggests interactions (especially with size) are
stronger than earlier thought.

Given a robust estimator θrob, with high break-
down point and good asymptotic efficiency
Var[MLE]/Var[θrob] but poor finite-sample efficiency,
the distance-constrained maximum likelihood
(DCML) estimator shrinks it towards the maximum
likelihood estimator.

Find θ
To minimize KL(data‖fθ) log-likelihood
Such that KL(fθrob‖fθ) ⩽ δ

Shrinkage estimators of the variance matrix are
not robust: instead of shrinking the sample vari-
ance matrix towards the identity, shrink the (ro-
bust) MCD variance matrix (the variance ma-
trix estimated on the 50% or 75% of the data
giving the lowest determinant), just enough for
the matrix to be well-conditioned (λmax/λmin <
1000). Implementation in robustbase::covMcd,
rrcov, RiskPortfolios::covEstimation.
Error estimation. The influence function of an
estimator T on a distribution F is

IF(r, T, F) = d[(1− γ)F + γδr]

dγ

∣∣∣∣
γ=0

The variance of the estimator can be estimated as

Var[T (Fn)] ≈
1

n

∑
IF2(rt, T, Fn)

The Newey-West standard error estimator gives the
standard error of the sample mean in presence of au-
tocorrelation

σ̂n[µ̂n] =
1√
n

[
C2

0 + 2
∑
k⩾1

(
1− k

n

)
Ck

]
where Ck is the lag-k autocovariance (C0 is the vari-
ance); the sum is often truncated to

m∑
k=1

(
1− k

m

)
Ck,

for m� n. These results can be combined:

VarT (Fn) = E[IF2(r0)] + 2
∑
k⩾1

E[IF(r0)IF(rk)].

Applying this formula to get an approximate finite-
sample standard error of performance measures (value-
at-risk, expected shortfall, Sharpe ratio) is problem-
atic, but it turns out to be the spectral density at fre-
quency zero,

VarT (Fn) = SIF(0),

which can be estimated from the periodogram, as the
intercept of a polynomial regression with exponential
noise (the periodogram is exponentially-distributed),
with a sparsity penalty (elastic net).
To test if a risk (VaR) model is correct, test if the
probability integral transform (PIT)

Pt = Ft(Losst),

i.e., the running quantile, is U(0, 1). Since accuracy in
the “bad tail” (losses) is more important, test instead

H0 : ν(Pt) ∼ ν(U(0, 1)),

where ν is monotonic. Implementation in
spectralBacktest.
The negative effects of errors in mean returns on the
mean-variance efficient frontier increase with risk tol-
erance and number of assets.

Article and book summaries by Vincent Zoonekynd 438/1044

Bayesian statistics. Hamiltonian Monte Carlo
(HMC) cannot sample from discrete variables, but
Stan is flexible and lets you implement the forward
(filtering), forward-backward (smoothing) and Viterbi
(MAP) algorithms yourself. A hierarchical hidden
Markov model (HHMM) is a HMM with two types of
nodes, emitting and non-emitting, arranged in layers.

start here

bullish bearish

negative
zigzag

positive
zigzag

positive
zigzag

negative
zigzag

An input-output hidden Markov model is an HMM
whose transition and emission probabilities depend on
an input (“control”) signal. Useful features, to fore-
cast prices with a HHMM, include the presence of a
local maximum or minimum, trends (xn−4 < xn−2 <
xn ∧ xn−3 < xn−1), volume changes (log(vn/vn−1),
log(vn−1/vn−2), log(vn/vn−2), · > α, · < −α, |·| ⩽ α).
Stan can fit Gaussian processes.
Jags can estimate vine copulas.
Multilevel Monte Carlo (MLMC) combines Monte
Carlo simulations with different timesteps 2−kT :

E[fn(T)] = E[f0(T)] +

n∑
k=1

E[fk(T)− fk−1(T)].

IT. The partools package provides MPI-like dis-
tributed computing with a higher-level interface.
The foreach package can not only parallelize
your code via multicore or parallel, but
also HPC schedulers (LSF, OpenLava, Slurm,
with foreach::registerdoFuture) or Azure
(registerAzureParallel).
Postgres lets you define functions (Γ), aggregate func-
tions (Weibull distribution fit, Shapiro-Wilk test,
moments::skewness, GARCH fit, etc.) and window
functions (ARIMA forecast) in R.
The hdf5r package replaces the h5 package presented
two years ago [which did not work well].
Besides the obligatory Rcpp tutorial, there was also a
Tensorflow one. The ecosystem around Tensorflow is
growing. For instance, it is possible to write statis-
tical models in R (rather than Stan/Jags/Bugs) and
estimate them by MCMC via TensorFlow.
It is possible to launch CUDA kernels from Rcpp.
Options and trading. Here are a few volatility in-
vesting strategies:
– Long vol (VXX) when SMA(VIX/VXV, 10) > 1,
short vol (XIV/SVXY) otherwise

– Switch between the highest 83-day momentum be-
tween XIV/SVXY, ZIV, VXZ, and VXX

– Long XIV/SVXY when SMA(VIX − 10day SPY vol,
5) > 0, long VXX otherwise

– Long XIV/SVXY when VIX/VXV < .917; long
VXX when VIX/VXV > 1.083

– Long XIV/SVXY when ratio < SMA(ratio, 60)
and ratio < 1, idem for VXX, where ra-
tio=VIX6M=VIX3M/VXMT.

To trade variance and jump risks around macroeco-
nomic announcements, use long VIX positions and
SPX straddles.
The present value of an uncertain stream of cash flows,
for an investor with time-separable power utility,∑

t⩾0

δt E

[
X1−γ
t

1− γ

]
is (Rubinstein’s model, stochastic discount factor)

PV =
∑
t⩾1

E
[
Xt/(1 + rmkt

t)γ
]

E
[
(1 + rmkt

t)1−γ
]

This can help price options on illiquid assets, such as
private equity.
To build an ESG strategy:
– Survey Americans to identify the most important
issues (workers, customers, products, environment,
community, US jobs, management, shareholders);

– Collect 100 company-level ESG metrics (customer
reviews, fines, emissions, etc.);

– Build a portfolio (top half in each industry, market
capitalized).

Daily fund flows depend on the Morningstar click rate
(raw, trend, change) for some funds, even after control-
ling for Net asset, Benchmark return, Excess return,
Alpha, Market beta, Size beta, Value beta, Momentum
beta [but they did not control for multiple testing].
Seasonality. [Several empty talks]
Default models. The Q-Gaussian distribution
maximizes the Tsallis entropy (the Gaussian maximizes
the Shannon entropy); its fatter tails lead to a more re-
alistic Merton distance to default for investment-grade
companies.
Bayesian additive regression trees (BART) are
forests of regression trees, with a prior on tree struc-
ture – monotonicity complicates the definition of the
prior and the sampling procedure. Monotonically-
constrained BART can help forecast bankruptcies.
The mvord package fits models of the form

rating ∼ firm+ rater+ time

accounting for correlation between raters and autocor-
relation over time.
Graphs. Country modularity, in the graph of non-US
companies and directors / analysts / news mentions
is higher than sector modularity. Companies sharing
directors/analysts/news mentions tend to be more cor-
related.

Article and book summaries by Vincent Zoonekynd 439/1044

Stochastic block models are an alternative to modu-
larity for community detection; they can be generalized
to bipartite graphs. Implementation in dbisbm.
Text. The sentometrics and quanteda packages pro-
vide lexicon-based sentiment analysis.
To estimate the sentiment (or “tone”) of a document
(10k filings) from lists of positive and negative words,
one can
– count them;
– weigh them using tf-idf weights;
– weigh them using weights estimated from subsequent
market returns.

Abnormal tone is defined by analogy with abnormal
returns, as the residuals of

tone ∼ market tone+ industry tone.

Exploring and measuring
non-linear correlations: copulas,

lightspeed transportation and clustering
G. Marti et al.

Many measures of correlation can be seen as a “dis-
tance” between the data copula and some reference
copula, e.g., the Fréchet-Hoeffding bounds (comono-
tonic and counter-monotonic) or the independence cop-
ula.
Common divergences (KL, etc.) are not very rele-
vant when dependence is high (given two probabil-
ity densities, with disjoint supports, they can just tell
that the supports are disjoint, not how far apart they
are). The Wasserstein distance (optimal transport,
earth mover’s distance (EMD)) addresses this. Its ex-
act computation is cumbersome, O(m3 logm), but its
entropic relaxation, the Sinkhorn distance (an upper
bound of the EMD) can be computed in linear time.
The Sinkhorn distance can also be used to compute
barycenters of copulas, or to cluster copulas (k-means).
The target-forget dependence coefficient of a copula is
computed from its Sinkhorn distance to a set of target
(e.g., independence) copulas (C+

k)k, and a set of forget
(e.g., Fréchet-Hoeffding) copulas (C−ℓ)ℓ.

TFDC(C) = Min d(C−ℓ , C)

Min d(C−ℓ , C) +Min d(C+
k , C)

The mutual information MI(X,Y) is the Kullback-
Leibler divergence between the joint distribution
(X,Y) and the corresponding independent distribution
pXpY ,

MI(X,Y) = KL(pXY ‖pXpY).

Equitability, mutual information
and the maximal information coefficient

J.B. Kinney and G.S. Atwal
Mutual information satisfies the data processing in-
equality: I(X;Z) ⩽ I(Y ;Z) if X ↔ Y ↔ Z is a

Markov chain (i.e., information is lost, never gained,
when transmitted through a noisy channel).
A dependence measure D(X;Y) is self-equitable if
D[X;Y] = D[f(X);Y] whenever X ↔ f(X) ↔ Y is a
Markov chain (in particular, if f is bijective).
Mutual information is self-equitable, MIC is not.

A robust-equitable copula dependence measure
for feature selection

Y. Chang et al. (2016)
A dependence measure D(X;Y) is robust equitable if
D(X;Y) = p when (X,Y) has copula pC + (1 − p)Π,
where C is a singular copula and Π the indepen-
dence copula (self-equitability deals with additive noise
rather than mixture noise; both try to be agnostic to
the type of relation they detect).
The robust copula dependence CD1 is the L1 distance
between the copula density and the uniform density

CDα =

∫∫
[0,1]2

|c(u, v)− 1|α dudv;

it can be estimated with a kernel density estimator. It
is robust equitable; mutual information and CD2 are
not.

Copula correlation:
an equitable dependence measure

and extension of Pearson’s correlation
A.A. Ding and Y. Li

More details on the copula correlation (aka robust cop-
ula dependence), with comparisons with other mea-
sures of dependence.

Sinkhorn distances: lightspeed computation
of optimal transportation distances

M. Cuturi (2013)
The optimal transport distance (earth mover’s distance
(EMD), Wasserstein distance)between two histograms
r, c ∈ ∆d, wrt a cost matrix M ∈ Rd×d, is

d(r, c) = Min
p∈U(r,c)

〈P, 〉M

where the transportation polytope U(r, c) is the set of
joint probabilities whose margins are r and c,

U(r, c) = {P ∈ Rd×d
+ : P1d = r, P ′1 = c}

The Sinkhorn distance only considers the joint prob-
abilities close to the independence one rc′

dα(r, c) = Min
P∈Uα(r,c)

〈P,M〉

Uα(r, c) = {P ∈ U(r, c) : KL(P‖rc′) ⩽ α }.

The dual problem (obtained by replacing the hard con-
straint with a penalty) can be solved efficiently with a
fixed point algorithm.
In R: Barycenter::SinkhornDistance (buggy).

Article and book summaries by Vincent Zoonekynd 440/1044

Fast computation of Wasserstein barycenters
M. Cuturi and A. Doucet (2014)

The Sinkhorn distance (entropic regularization of
the Wasserstein distance) makes the computation of
Wasserstein barycenters efficient.

The randomized dependence coefficient
D. Lopez-Paz et al.

The Hirschfeld-Gebelein-Rényi maximum correla-
tion coefficient is

hgr(X,Y) = sup
f,g

Cor(fX, gY).

To estimate it, uniformize X and Y , transform them
in several random ways (e.g., cos(w′X + b)) and com-
pute the corresponding canonical correlation (i.e., the
maximum correlation between a linear combination of
the transforms of X and one of those of Y).

Estimating optimal transformations
for multiple regression and correlation
L. Breiman and J.H. Friedman (1985)

The alternating conditional expectation (ACE) algo-
rithm looks for transformations φ, θ of random vari-
ables X, Y maximizing the correlation Cor(φX, θY)
(not unlike generalized additive models).

While E[θY − φX]2 decreases:
φ(X)← E[θ(Y)|X]

θ(Y)← E[φ(X)|Y]

‖E[φ(X)|Y]‖

A kernel two-sample test
A. Gretton et al. (2012)

A reproducing kernel Hilbert space (RKHS) is Hilbert
space of functions X → R (for some unspecified scalar
product) such that the evaluation functions

evx :

{
H −→ R
f 7−→ f(x)

be continuous; they are then (Riesz) of the form f(x) =
〈f, k(x, ·)〉, for some function (“kernel”) k. Conversely,
a symmetric positive definite kernel k on X defines a
unique RKHS.
For universal RKHS (k continuous and H dense in C 0

b

for L∞), each probability distribution p has a mean
embedding

E
x∼p

[f(x)] = 〈f, µp〉,

and the maximum mean discrepancy (MMD) dis-
tance is the distance between those embeddings.

MMD(p, q) = sup
∥f∥⩽1

E
x∼p

f(x)− E
y∼q

f(X) = ‖µp − µq‖

The plugin estimator of MMD2 (from the kernel) is bi-
ased, but it is easy to obtain an unbiased one, and even

a linear-complexity one

MMD2 =
1

m/2

m/2∑
1

h(z2i−1, z2i)

h(zi, zj) = k(xi, xj) + k(y1, yj)− k(xi, yj)− k(xj , yi);

those estimators lead to statistical tests to determine
if two samples come from the same distribution.

Optimal copula transport
for clustering multivariate time series

G. Marti et al.
Replace d-dimensional time series by their copulas, and
use the earth mover’s distance to cluster them.
Define a measure of dependence as the relative distance
between the independence copula and one or more tar-
get copulas; this also reveals which type of dependence
was detected.

t

1− t

> 1− t

A proposal of a methodological framework
with experimental guidelines to investigate
clustering stability on financial time series

G. Marti et al.
To check the stability of a clustering algorithm for
time series, look at how the adjusted Rand index (ARI)
changes under perturbations:
– Sliding windows of different sizes;
– Odd vs even observations;
– Economic regime (for some regime detection algo-
rithm);

– Whether market returns are in the interquartile
range or not;

– Different sampling frequencies;
– Different universes;
– For fixed income: different maturities, or all the
maturities together (Hellinger distance between the
probability distribution functions ∂PD/∂t).

On clustering financial time series: a need for
distances between dependent random variables

G. Marti et al.
The hierarchical clustering correlation matrix estima-
tor is consistent for the hierarchical correlation block
model (HCBM).

Cluster analysis for portfolio optimization
V. Tola et al.

Original paper on the ultrametric correlation matrix
from hierarchical clustering.

Article and book summaries by Vincent Zoonekynd 441/1044

Toward a generic representation of random
variables for machine learning

G. Marti et al.
The L2 distance between random variables d2(X,Y) =
E(X − Y)2 mixes dependence and distribution infor-
mation: it is often unsuitable to cluster iid sequences.
Instead, use a convex combination of the correlation
distance (of the copula (X,Y), for the dependence side)
and of the Hellinger distance (between the marginals,
for the distribution side).

Copula-based kernel dependency measures
B. Póczos et al. (2012)

The maximum mean discrepancy (MMD) between
two probability distributions P , Q is

M = sup
f∈F

E
X∼P

[f(X)]− E
Y∼Q

[f(Y)]

where F is the unit ball in a universal reproducing
kernel Hilbert space (RKHS) (universal means dense
in C 0

b , e.g., with the Gaussian or Laplace kernels); M2

can be estimated as

E
X,X′∼P

[k(X,X ′)]− 2 E
X∼P
Y∼Q

[k(X,Y)] + E
Y,Y ′∼Q

[k(Y, Y ′)].

The dependence I2 between random variables
X1, . . . , Xd is the MMD distance between their joint
copula and the uniform distribution; it can be esti-
mated as

1

m(m− 1)

∑
i,j

k(Zi, Zj)+k(Ui, Uj)−k(Zi, Uj)−k(Ui, Zj)

or
1

m2

∑
ij

k(Zi, Zj)+
1

n2

∑
k(Ui, Uj)−

2

mn

∑
k(Zi, Uj)

where Ui ∼ U(0, 1)d and Zi is the empirical copula of
the data Xi.
This dependence measure can be used for feature se-
lection:

Find S ⊂ J1, dK
To minimize |S|
And maximize I(Xs ∪ Y)

Optimal transport vs Fisher-Rao distance
between copulas

for clustering multivariate time series
G. Marti et al.

The Fisher-Rao metric and its tractable approxima-
tions (Kullback-Leibler and other divergences – com-
puting geodesics requires solving ODEs) are unsuitable
to compute distances between copulas, especially when
the dependence is high: the Gaussian copula with cor-
relation 0.99 appears closer to that with correlation
0.50 than to that with correlation 0.9999 – the mono-
tonic copula, ρ = 1, does not have a density and is

not on the manifold – it is at infinity. The Wasserstein
distance is preferable.
Cluster multivariate time series by replacing them with
their copulas.

Autoregressive convolutional neural networks
for asynchronous time series

M. Bińkowski et al. (2018)
Irregular time series can be made regular by consider-
ing yn = (xtn , tn−tn−1); for multivariate asynchronous
time series (e.g., quotes for the same asset from differ-
ent market makers), put all the values together and
add a 1-hot encoding of the source.
The significance-offset CNN (SOCNN)

xn =

M∑
m=1

W·,m�[xn−m+ε(xn−m)]�σS·,m(xn−1, . . . , xn−m)

where ε is dense, shallow, S convolutional and σ the
softmax, combines autoregression (for σ = 1, ε = 0,
the recent observations are remembered and used as is)
and gated RNN (older observations are summarized, in
a nonlinear way).

Hausdorff clustering of financial time series
N. Basalto et al. (2005)

The Hausdorff distance gives an alternative to single
and complete linkage clustering.

d(A,B) = inf
a∈A

sup
b∈B

d(a, b)

d(A,B) = sup
a∈A

sup
b∈B

d(a, b)

d(A,B) = Max
{
sup
a∈A

inf
b∈B

d(a, b)

sup
b∈B

inf
a∈A

d(a, b)
}

One could also switch Sup and Inf (minimax cluster-
ing).

Hierarchical clustering with prototypes
via minimax linkage

J. Bien and R. Tibshirani (2011)
The minimax radius of a cluster C is

r(C) = Min
x∈C

Max
y∈C

d(x, y);

the minimizer is a prototype of C. Minimax linkage
hierarchical clustering uses d(A,B) = r(A ∪B).

HCMapper: an interactive visualization tool
to compare partition-based flat clustering

extracted from pairs of dendrograms
G. Marti et al.

Compare the partitions implied by two dendrograms
with a Sankey diagram (D3) going from the root of the
first one, to the leaves, to the root of the second one,
displaying the size of the intersections.

Article and book summaries by Vincent Zoonekynd 442/1044

NetGAN: generating graphs
via random walks

A. Bojchevski et al. (2018)
Consider random walks of length T on a graph as se-
quences and train a Wasserstein GAN on them: stop
training when the (validation set) link prediction per-
formance drops, or when the edge overlap between the
generated graph and the data reaches a user-specified
threshold.

Geometry score: a method for comparing
generative adversarial networks

V. Khrulkov and I. Oseledets (2018)
To assess the quality of a GAN, compare the data man-
ifold and the generated manifold using:
– The Wasserstein distance between the birth-death
diagrams;

– The distance between the persistence landscapes;
– The proportion of time β1 = i [they do not seem to
notice this discards the persistence].

Unsupervised representation learning with deep
convolutional generative adversarial networks

A. Radford et al. (2016)
To train deep convolutional GANs (DCGAN),
– Replace the pooling layers with strided convolutions;
– Use batch normalization;
– Remove the fully-connected layers;
– Use ReLU in the generator (and tanh for the output)
and leaky ReLU in the discriminator.

StackGAN:
text to photo-realistic image synthesis

with stacked generative adversarial networks
H. Zhang et al.

To generate high-resolution images from text descrip-
tions using GANs, stack two of them. If there is not
enough training text data, add noise to the sentence
embedding.

AlignedReID: surpassing human-level
performance in person re-identification

X. Zhang et al.
To detect of two pictures (from surveillance cameras, to
track visitors in a mall) are of the same person, com-
pute both global and local features, where the local
features are from horizontal bands in the image, and
are aligned between the two pictures.

Re-ranking person re-identification
with k-reciprocal encoding

Z. Zhong et al.
Retrieval systems return a ranking, but do not always
use all the information available: in particular, true
positives are more similar among themselves. Replace
the original distance with a linear combination of the

original distance and the (weighted) Jaccard distance
between the set of k-reciprocal neighbours (x and y are
k-reciprocal neighbours if each is among the k nearest
neighbours of the other), which can be computed on
binary vectors, with the 1s replaced with e−d, where d
is the distance to the probe.

Deep mutual learning
Y. Zhang et al.

Model distillation first trains a deep neural net on data,
then a shallow one to mimic it.
Deep mutual learning uses an ensemble of shallow net-
works, trained with two losses, a supervised one, and
a mimicry one.

Deep learning
A. Ng (Coursera, 2017)

1. With big data, the dev and test sets can be much
smaller: 10,000 observations is more than enough, but
that can be less than 1% of the data.
High bias is bad performance on the training data; high
variance is bad performance on the test set.
Early stopping is a crutch to prevent overfitting: it
mixes two objectives, reducing bias (improving in-
sample performance) and reducing variance (avoiding
overfitting) – other regularization methods (penalties,
dropout, etc.) give more control on the bias-variance
tradeoff.
Rather than opposing bias and variance, we should op-
pose “avoidable bias” (or “Bayes error”: the difference
between the error and the lowest possible error, esti-
mated, e.g., with the human-level error) and variance.
If the training and dev sets do not come from the same
distribution, the difference in performance can come
either from an excessive variance or the difference it-
self. To disentangle those effects, use a “training-dev
set” – another dev set, carved out of the training set, to
measure variance (i.e., whether the model generalizes
to unseen data from the same distribution).
2. Auto-encoders can be used for anomaly detection:
for anomalies (inputs from a never-seen class), the re-
construction error is higher.
End-to-end learning needs more data (10 to 100 times
more) than traditional multi-step pipelines. Do not use
if you have more data for the individual steps than for
the whole pipeline.
ResNets can easily learn the identity function (while
deep “plain” nets cannot): that is why we can make
them as deep as possible. We can also increase their
depth by adding new residual layers, initialized as the
identity, in the middle.
3. For images, prefer Inception-v4 – VGG16 and
VGG19 are larger and have a slightly lower accuracy.
In a CNN, the size progressively decreases, but the
number of channels increases.

Article and book summaries by Vincent Zoonekynd 443/1044

Average pooling is rarely used, except sometimes at
the end, to reduce the size of the final result, e.g.,
7 × 7 × 1000 → 1 × 1 × 1000. Max-pooling is more
common.
1 × 1 convolution (aka “network in network”) is ac-
tually a fully-connected network acting on each pixel
(the same network for each pixel). (It should not be
written 1 × 1 but 1 × 1 × n, where n is the number
of input channels.) There are usually several of them:
they are specified by a 1 × 1 × n × m tensor, where
m is the number of filters, i.e., the number of output
channels. Those bottleneck layers (1× 1 convolutions)
are often used to reduce the number of channels before
a convolution, to reduce the number of operations (and
parameters). For instance, the inception units have a
1× 1 convolution before their 5× 5 convolutions.
If you do not know if a 1× 1, 3× 3, 5× 5 convolution
or a maxpooling operation is better, you can do them
all, and concatenate the results (inception module: in
Keras, merge([a,b,c,d],mode='concat')). To re-
duce the computations, you may want to first reduce
the number of layers with a 1 × 1 convolution. In-
ception modules also have a maxpool operation (which
does not change the number of channels): the 1×1 con-
volution comes after. The inception network also has
a few side outputs, trying to forecast the same output
– this helps learning and has a regularizing effect.
To recognize faces with neural nets, feed the neural
network pairs of images (faces, extracted from wider
images) and have it predict if the two images are of
the same person.
To recognize faces, learn a dissimilarity function
d(img1, img2) (siamese network – deepface).
The triplet loss (facenet) tries to enforce d(xi, xj) −
d(xi, xk) + α ⩽ 0 (with a margin, α, as for SVMs), us-
ing the positive part of the lhs as loss. Choose triplets
that are hard to train on; train on 1m to 100m images.
For object localization, have the convnet output: a
boolean indicating if an object is present, a 1-hot en-
coding of the object class, the coordinates of the center
of the object bounding box, its width and height (if no
object is present, the loss function ignores the predicted
class and bbox).
For object detection (there can be several objects), use
a sliding window. It can be implemented as a single
convolutional neural net (keep the same weights, just
change the input size – and rewrite the FC layer as a
convolutional one, outputing a 1× 1× 1 tensor).
YOLO is similar, with no overlap between the win-
dows, and a localization network (not just a classifica-
tion one).
For object detection, the ratio of intersection over
union (IoU) is a possible loss function.
To avoid detecting the same object in nearby locations,
keep the object with the largest object presence proba-
bility (non-max suppression), discard the detected ob-

jects with a large overlap (it is the same object), and
iterate with the remaining (different) objects; do this
independently for each class.
To deal with overlapping objects, predict the presence
of several objects with different bbox aspect ratios (an-
chor boxes): if there are k aspect ratios, the output is
k times larger.
Do not run the object detection on the whole region
but only on “promising” regions (R-CNN) identified as
“blobs” by some segmentation algorithm (classical or
CNN – “faster R-CNN”).
To do well in ML competitions use ensembling, and
multi-crop at test time (useless in production).
4. The BLEU (bilingual evaluation understudy) score,
for machine translation, counts the number of 1-, 2-
and 3-grams in the computer-generated sentence that
are also present in one of the reference translations; it
also includes a brevity penalty.
When generating a sequence with an RNN, one needs
to select words one by one. The greedy algorithm
is suboptimal – it will favour common words. Beam
search takes the b best words at each step. Use b = 10
in production, b = 100 to 10,000 for research.
Beam search is biased towards shorter sentences: use
the average instead of the sum of the conditional log-
probabilities of the successive words (length normaliza-
tion).
To analyze the error, compare the score of a correct
(human-generated) sentence with that of the sentence
actually generated, to check if the problem comes from
beam search (increase b) or the RNN.

Non-convex multi-objective optimization
P.M. Pardalos et al. (2017)

A multiobjective optimization problem

Find x
To minimize f1(x), . . . , fn(x)
Such that g(x) ⩾ 0

asks for the Pareto set (non-dominated solutions –
the Pareto front is the set of corresponding values).
For convex problems, local Pareto optimality implies
global optimality, and the solutions are the minimizers
of
∑
αifi for some α, for various values of α.

Scalarization replaces the objective functions with a
single function (this need not give all solutions, and
may also produce non-solutions):
– Weighted sum:

∑
wifi(x) (for convex problems);

– Weighted sum after transformation into a convex
problem;

– Tchebychev: minimize Maxi wi(fi(x)− ui), where u
is a utopian point, ui < Min fi; the problem can be
reformulated as

Minimize
x,t

t such that wi
(
fi(x)− ui

)
⩽ t,

Article and book summaries by Vincent Zoonekynd 444/1044

and one can add a penalty for the Manhatan distance
to the utopian point;

– Achievement scalarization: idem, but with an arbi-
trary point instead of a utopian one;

– Minimize only one objective and use the others as
constraints; the constraints may combine several ob-
jective functions (normalized normal constraint, nor-
mal boundary intersection);

– Pascoletti and Serafini Scalarization

Minimize
t,x

t such that u+ tv − f(x) ⩾ 0

where u and v are arbitrary vectors.
The parameters in those methods can rarely be cho-
sen beforehand: select them adaptively – for instance,
with two objectives, and weights (w1, w2) as parame-
ters, start with uniformly-distributed weights, and se-
lect which interval to refine/subdivide/bisect.
The bi-objective shortest path problem on a graph
(with two weightings) can be reduced to the 0-1 knap-
sack problem: it is NP-complete. The size of an ε-
solution is polynomial, but it may be exponential in
the number of objectives.
Global optimization methods include Bayesian op-
timization (under other names: P-algorithm, π-
algorithm, efficient global optimization (EGO), krig-
ing) and branch-and-bound (under a Lipschitz assump-
tion, one can find lower bounds of the objectives in
each region, and progressively refine promising regions
– probabilistic variants use extreme value theory to es-
timate the minimum in each region).

Generative adversarial nets
I.J. Goodfellow et al.

Generative models can be estimated via an adversarial
process, corresponding to a minimax two-player game,

Min
G

Max
D

E
x∼Data

[
logD(x)

]
+ E
z∼noise

[
log
(
1−D(G(z))

)]
.

Replacing log(1−DGz) with − log(DGz) helps learn-
ing early on.
The objective function is related to the Jensen-
Shannon metric:

E
x∼Data

[
logD(x)

]
− E
z∼noise

[
logD

(
G(z)

)]
⩽

2JS
(
Data, G(noise)

)
− 2 log 2

Image-to-image translation with conditional
adversarial networks

P. Isola et al.
The adversarial approach of GANs

random fake data
real data

generator
discriminator

can be merged with autoencoders (with skip-
connections) for image translation.

input latent
representation output

desired
output

encoder decoder

discriminator
i.e., loss

Wasserstein GAN
M. Arjovsky et al.

The Wasserstein distance is more relevant than
the Kullback-Leibler divergence for distributions sup-
ported by low-dimensional manifolds: KL just informs
us that the supports are disjoint, while Wasserstein
also tells us how far apart they are.

TV(P,Q) = sup
A
|P [A]−Q[A]|

KL(P,Q) =

∫
p log

p

q

JS(P,Q) = KL
(
P,
P +Q

2

)
+KL

(
Q,

P +Q

2

)
W (P,Q) = sup

γ
pr1γ=P
pr2γ=Q

E
(x,y)∼γ

[
‖x− y‖

]

If X and Z and random variables, and gθ(z) is con-
tinuous in θ, then W (gθ(Z), X) is continuous in θ; if
g is locally Lipschitz, then W is differentiable almost
everywhere.
The Wasserstein distance is weaker (it has more con-
verging sequences): on compact spaces,

KL JS

TV

W

D .

The Kantorovich-Rubinstein duality

W (P,Q) = sup
∥f∥Lipschitz⩽1

E
x∼P

[
f(x)

]
− E
x∼Q

[
f(x)

]
leads to a GAN-like optimization problem

Min
G

Max
D

E
x∼Data

[
D(x)

]
− E
z∼Noise

[
D
(
G(z)

)]
where the discriminator D should be 1-Lipschitz (oth-
erwise, the objective is unbounded); this can be en-
forced, for instance, by using neural nets with clipped
weights.
Contrary to traditional GANs, the gradient remains
meaningful: the discriminator can be trained to op-
timality, and the corresponding Wasserstein distance
can help monitor convergence. WGANs do not seem
to suffer from mode collapse, but they are unstable
when trained with momentum – prefer RMSProp.
The same idea can be used for integral probability met-
rics (IPM):

Article and book summaries by Vincent Zoonekynd 445/1044

– Bounded functions give the total variation (TV) dis-
tance and energy-based GANs (EBGAN);

– The L∞ ball in a reproducible kernel Hilbert space
H = {k(x, ·) : x ∈ X} for some kernel k : X × X →
R gives the maximum mean discrepancy (MMD)
metric and generative moment matching networks
(GMMN).

Improved training of Wasserstein GANs
I. Gulrajani et al.

Replace the weight clipping with a penalty on the gra-
dient, ensuring its norm is close to 1 (rather than be-
low 1) on straight lines between the data and the gen-
erated data,

λEx
(∥∥∇D|x∥∥− 1

)2
, λ = 10.

Fully convolutional networks
for semantic segmentation

J. Long et al.
To turn a classification network into a segmentation
one,
– Start with a classifier;
– Replace the fully-connected layers with 1× 1 convo-

lutions;
– Add up-sampling and skip-layer connections.

Time series modeling with undecimated fully
convolutional neural networks

R. Mittelman
Remove the max-pooling and upsampling layers from
the FCN, but use “upsampled filters” instead (i.e., re-
place an FCN filter F with with F ⊗1k×k: it is larger,
but has the same number of parameters).

+

+

Tiled convolutional neural networks
Q.V. Le et al. (2010)

A topological independent component analysis
(TICA) network is a 2-layer network whose first layer
weights are local and learned, whose second layer is a
pooling layer, with square and square root activations
respectively, loss function

∑
t∈Training

∑
i∈Output

√√√√√ ∑
k∈Hidden

(∑
i∈Input

wkjxjt

)2

and an orthogonality constraint WW ′ = I.

input

square

square root

learned: w

pooling

The hidden layer is a sparse representation of the data.
One can obtain an over-complete representation of the
data (hidden layer larger than the input) by using lo-
cal receptive fields (each hidden node only depends on
a few input coordinates) and imposing orthogonality
only for hidden nodes sharing the same input.
In a tiled convolutional neural net, hidden units k steps
away share their weights (for a CNN, k = 1). They can
be pre-trained with TICA, and capture invariances be-
yond translation (rotation, etc.).

A closed-form solution
to photorealistic image stylization

Y. Li et al.
For style transfer, start with an autoencoder with un-
pooling layers

and VGG19 as the encoding part, apply a whitening
and colouring transform (WCT) to the VGG features

Hc 7→ H = PsPcHc

Pc = EcΛ
−1/2
c Ec

Ps = EsΛ
+1/2
s Es

where Λc, Λs are the eigenvalues of HcH
′
c and HsH

′
s

and Ec, Es their eigenvectors, which makes the cor-
relations of the transformed features HH ′ match the
style ones, HsH

′
s, and smooth the result

Argmin
r

∑
ij

wij

∥∥∥∥∥ ri√
w′i•1

− rj√
w′j•1

∥∥∥∥∥
2

+ λ
∑
i

‖ri − yi‖2

where y is the WCT image, r the final image, and wij
the matting affinity of pixels i and j (based on the
means and variances of the pixels in a local window)
– it is a quadratic optimization problem, with a closed
form solution.

Metric learning
with adaptive density discrimination

O. Rippel et al. (2016)
To help separate the classes in distance metric learn-
ing (DML), do not only use a triplet loss, model the
distribution of each class in the new space and use a
magnet loss to pull them apart.

Article and book summaries by Vincent Zoonekynd 446/1044

Pixel recurrent neural networks
A. van den Oord et al. (2016)

Recurrent neural networks can be generalized to 2-
dimensional structures – for instance, a bidiagonal bi-
LSTM combines two grids of LSTMs, one going right
and down, the other left and down.

Using natural language processing techniques
for stock return predictions

M.L. Chew et al. (2017)
Many studies use a vector embedding and a CNN to
forecast post-event price movements [one could also
use a bidirectional LSTM with attention, instead of
a CNN].
– Use the Stanford NER tool in NLTK to identify com-
pany names in news headlines;

– Heuristically map them to tickers (for each company,
build a list of possible names, but remove frequent
words);

– Infer the structure of the sentence with textacy
(Spacy) of StanfordPOStagger;

– Compute Glove embeddings of verb-object pairs;
– Cluster them into 100 event types.

An interpretable
and sparse neural network model

for nonlinear Granger causality discovery
A. Tank et al. (2017)

Adding a group lasso (or a hierarchical lasso) penalty
to the first layer weights of a neural net xi,t ∼ x•,<t can
help detect (nonlinear) causality and select the number
of lags.

Clustering correlated, sparse data streams
to estimate a localized housing price

Y. Ren et al.
House prices can be modeled at the census level.

gt : global market trend
xit : value of census tract i
yitℓ : value of house `
Uℓ : hedonics (house features)
xit = gt + ai(xi,t−1 − gt−1) + εit

yitℓ = xit + fi(U`) + ηitℓ

ε ∼ N(0,Σ), Σ block diagonal

A unified framework for missing data and cold
start prediction for time series data

C. Xie et al.
Matrix factorization (for time series) can be combined
with matrix completion (from collaborative filtering):

Yi = LRi +HUφi + b+ εi

where Ri are latent time series, φi features, Uφi
dimension-reduced features.

Quasi-recurrent neural networks
J. Bradbury et al. (2017)

Model sequential data withmasked convolutions ∗ (i.e.,
convolutions using only past data) outputting LSTM
elements

Z = tanh(Wz ∗X)

F = σ(Wf ∗X)

O = σ(Wo ∗X)

combined as ht = ft � ht−1 + (1− ft)� zt or

ct = ft � ct−1 + (1− ft)� zt
ht = ot � ct.

Add skip connections (dense convolution), dropout (zo-
neout), attention.

Lie access neural Turing machine
G. Yang (2016)

In addition to random access, allow translations from
one memory cell to another, or the action of some other
Lie group (R2, SO(2), R2 o SO(2) acting on R2).

Learning to optimize
K. Li and J. Malik

Optimization algorithms can be learnt as reinforcement
learning policies, with guided policy search.

Extrapolation and learning equations
G. Martius and C.H. Lampert (2016)

To learn small, interpretable analytical expressions,
amenable to extrapolation, use a neural network whose
activation functions are the desired building blocks (the
identity, sin, cos, sigmoid – one could also add prod-
ucts and divisions) with a sparsity constraint.

Adversarially learned inference
V. Dumoulin et al. (2017)

Combine generative adversarial networks (GAN, i.e.,
generator and discriminator) and variational autoen-
coders (VAE, i.e., inference and generation):
– Encoder, from real data x to latent representation z:
p(x, z) = p(x)p(z|x);

– Decoder (generator), from a latent representation
z to simulated data x: p(x, z) = p(z)p(x|z), with
p(z) ∼ Gaussian;

– Discriminator to guess if (z, x) is real or simulated.

Learning to discover sparse graphical models
E. Belilovsky (2017)

Incorporating a prior (e.g., small world) into the graph-
ical lasso can be difficult: instead, use a neural net
(CNN, for an arbitrary order on the nodes) to recover
the graph from the sample correlation matrix, trained
on synthetic data generated by the desired prior.

Article and book summaries by Vincent Zoonekynd 447/1044

Deep learning with sets and point clouds
S. Racanbakhsh et al. (2017)

If the input of a layer is a set (if its order is irrelevant).
use equivariant transformations, e.g.,

f(x) = σ
(
λx+ γ(1′x)1

)
f(x) = σ

(
λx− γ(Maxx)1

)
f(x) = σ

(
β + xΓ− 1(Maxx)Γ

)
Applications include MNIST digit summation (the or-
der of the digits is irrelevant) and point cloud classifi-
cation, or situations with an existing clustering.

Normalizing the normalizers: comparing and
extending network normalization

M. Ren et al. (2017)
Batch normalization, layer normalization (for RNNs)
and divisive normalization (normalize neurons’ activi-
ties by their neighbours’) are the same operation along
different dimensions of a tensor.

Regularizing CNNs
with locally constrained decorrelation

P. Rodrígez et al. (2017)
To ensure the features learnt are as diverse as possible,
add a penalty Cor(θi, θj)

2 if i and j are neurons in the
same layer. To preserve negative correlations, replace
Cor2 with softplus(Cor) or softplus

(
λ(Cor−1)

)
.

Orthogonal weights are also sometimes used (with
Xavier scaling) to initialize neural nets. Multibias neu-
ral nets have neurons sharing weights but with different
biases.

Hierarchical multiscale
recurrent neural neuworks

J. Chung et al. (2017)
LSTM with sparse updates, triggered by a boundary
detector.

Geometry of polysemy
J. Mu et al.

Using traditional word embeddings, represent a con-
text (10 words before and after the target word) as a
cloud of (20) points. The span of the first n = 4 prin-
cipal components form a subspace, i.e., a point in the
Grassmanian G4,300. The different senses of a word
can be recovered by clustering (the k-means algorithm
can be generalized to the Grassmanian) its contexts;
each cluster corresponds to a line – a point in G1,300.

Exponential machines
A. Novikov et al. (2017)

A d-dimensional tensor A has tensor train (TT) rank
at most r if its elements can be written

Ai1···id = G1[i1] · · ·Gd[id]

where G1[i1] is 1×r, Gk[ik], for 1 < k < d, is r×r, and
Gd[id] is r×1. Operations on tensor trains are efficient
and return other tensor trains.

A2423 =
i1=2

×

i2=4

×

i3=2

×

i4=3

The linear model

find w, b

To minimize
∑
`
(
〈x,w〉+ b, y

)
+ λ ‖w‖22

can be generalized to account for interactions

Find W

To minimize
∑
`
(
〈X ,W 〉, y

)
+ λ ‖W ‖12

Such that TT-rankW = r

Where Xi1···id =
∏
k x

ik
k

and estimated with Riemannian optimization (tensor
trains of fixed rank form a Riemannian manifold).

Decoupled neural interfaces
using synthetic gradients

M. Jaderberg et al.
To avoid backpropagating the gradients all the way
down the computation graph, use neural networks to
forecast them from local information.

Why and when can deep (but not shallow)
networks avoid the curse of dimensionality:

a review
T. Poggio et al. (2017)

Convolutional neural networks (CNNs) work well, not
because of weight sharing, but because they are hier-
archical compositions of local (i.e., low-dimensional)
functions.

Improved variational inference
with inverse autoregressive flow

D.P. Kingma et al. (2016)
Variational inference looks for a simple distribution
q approximating the posterior distribution p minimiz-
ing DKL(q‖p). Normalizing flows allow more flexibil-
ity through reparametrization z0 ∼ q, zt = ft(zt−1),
where the ft’s combine a linear transformation and a
nonlinearity.

Convolutional neural networks on graphs
with fast localized spectral filtering

M. Defferrard et al. (2016)
Convolutional neural nets can be generalized from reg-
ular grids to arbitrary networks:
– Consider the Laplacian L = D−W or the normalized
Laplacian L = I −D−1/2WD−1/2;

– Diagonalize it, L = UΛU ′;
– Define the Fourier transform as x 7→ U ′x and the
convolution as x ∗ y = U

(
(U ′x)� (U ′y)

)
;

Article and book summaries by Vincent Zoonekynd 448/1044

– Consider filters of the form x 7→ gθ(L)x, where
gθ(L) =

∑
θkL

k or gθ(L) =
∑
θkTk(L) (Chebychev

polynomials).

Seven neurons memorizing sequences
of alphabetic images

via spike-timing dependent plasticity
T. Osogami and M. Otsuka

A dynamic Boltzman machine (DyBM) is a Boltz-
man machine unrolled through time.

Learning dynamic Boltzman machines
with spike-timing dependent plasticity

T. Osogami and M. Otsuka (2015)
Although a DyBM can be interpreted as an RNN with
memory, it can be learnt using only local information
(no vanishing gradient problem).

Nonlinear dynamic Boltzman machines
for time series prediction

S. Dasgupta and T. Osogami (2016)
A Gaussian Boltzman machine is a Boltzman ma-
chine (BM) in which the Bernoulli distributions

Ej = bj +
∑
i ̸=j

wijxi P [Xj = 1] ∝ e−Ej

have been replaced with Gaussian distributions

µj = bj +
∑
i ̸=j

wijxi Xj ∼ N(µj , σj).

A Gaussian dynamic Boltzman machine (DyBM) is an
unfolded Gaussian BM. It can be interpreted as a VAR
model, with eligibility traces (exponentially weighted
moving averages) as additional variables. The input
of a Gaussian DyBM can be preprocessed by an echo
state RNN (i.e., an RNN with random, rather than
learnt, weights).

Dynamic Boltzman machines
for second order moments

and generalized Gaussian distribution
R. Raymond et al. (2017)

Gaussian dynamic Boltzman machines can be general-
ized, by making the variance time-dependent, as in a
GARCH model (but using eligibility traces); and/or by
replacing the Gaussian distribution, e.g., with p(x) ∝
exp[−β|x− µ|ρ].

Training deep and recurrent networks
with Hessian-free optimization

J. Martens and I. Sutskever (2015)
Hessian-free (HF) optimization (or truncated
Newton) approximates the objective function with a
quadratic

h(θ + δ) ≈ h(θ) +G′δ + 1
2δ
′Hδ

but computes the update θ ← θ − H−1G using a few
conjugate gradient (CG) steps: there is no need to in-
vert the curvature matrix, or even to compute it.
– Hessian-vector multiplications are directional deriva-
tives of the gradient: they can be computed with
forward differentiation.

– Replace the Hessian with the generalized Gauss-
Newton matrix (GGN), which assumes f ′′ = 0, (i.e.,
replaces f with its first order approximation); for
scalar functions:

h(θ) = L
(
f(θ)

)
h′(θ) = f ′(θ)L′

(
f(θ)

)
h′′(θ) = f ′′(θ)L′

(
f(θ)

)
+ f ′(θ)L′′

(
f(θ)

)
f(θ)

≈ f ′(θ)L′′
(
f(θ)

)
f(θ);

for supervised learning:

h(θ) =
1

|S|
∑

(x,y)∈S

L
(
y, f(x, θ)

)
h′′(θ) ≈ 1

|S|
∑

(x,y)∈S

J ′HLJ, J = ∇zL, HL = ∇zzL;

– Use Tikhonov damping (L2 regularization) and make
it scale-sensitive by using the diagonal of the Hessian
(Levenberg-Marquardt);

– Use structural damping, i.e., a penalty, not just to
changes in the parameters, but to some intermediate
quantities (e.g., hidden activations – just add them
to the output of the network and feed them to the
loss function);

– Increase or decrease the scale of the penalty by look-
ing at the ratio ∆objective/∆penalty (Levenberg-
Marquardt heuristic);

– Instead of a penalty, use a trust region;
– Use early CG stopping;
– As a last resort, use a line search;
– Initialize CG with the previous direction (slightly
scaled down) rather than 0;

– Use a preconditioner: diagonal preconditioners are
effective with deep neural nets, because the scale of
the gradients can grow/shrink exponentially between
layers – but less so for RNNs, because the weights
are reused. You may want to blend the diagonal ma-
trix with the identity, P =

(
diag(d) + κI

)ξ. There
is no efficient algorithm to compute the diagonal of
the Hessian: use the diagonal of the empirical Fisher
information

F̄ =
1

|S|
∑

(x,y)∈S

∇L
(
y, f(x, θ)

)
∇L
(
y, f(x, θ)

)′
d = diagF̄ =

1

|S|
∑

sq∇L
(
y, f(x, θ)

)
sq = elementwise square

(but it is biased) or, for an unbiased estimator,

d = E
v∼N(0,1)

[
sq J ′H

1/2
L v

]
Article and book summaries by Vincent Zoonekynd 449/1044

– If possible, estimate the gradient and the Hessian on
the same (large) minibatch.

Sparse portfolios
for high-dimensional financial index tracking

K. Benidis et al. (2017)
Passive investors try to reproduce the performance of
some reference index with a simpler portfolio: fewer
and more liquid assets. This can be formulated as an
optimization problem:

Find w Portfolio weights
To minimize TE[w, b] Tracking error
Such that w ⩾ 0, w′1 = 1

For a sparse portfolio, one can add an L0 penalty, but
the resulting problem is too difficult to be solved ex-
actly – there are heuristics, but they do not provide
good guarantees on the quality of the results. To make
it easier to solve, one can relax the constraint. The
usual L1 relaxation does not work here: the L1 norm
is already constrained to be 1: ‖w‖1 = w′1 = 1. In-
stead, one can use a finer relaxation:

ρp,γ(w) =
log(1 + |w| /p)
log(1 + γ/p)

;

it is not convex, but the optimization problem can be
solved by majorization-minimization (MM), which re-
duces non-convex optimization problems to sequences
of convex optimization problems. Those optimization
problems can be reformulated (again using MM) into a
sequence of quadratic programs with a closed form so-
lution – we are left with a simple and very fast iterative
algorithm, which no longer requires a solver.
The use of MM to deal with cardinality constraints is
more general: for instance, adding a minimum weight
constraint (either the weight is zero, or it is above a
threshold) leads to a similar algorithm. One can also
use other tracking errors, e.g., only pay attention to
the downside risk.
To find the minimum of a function f , majorization-
minimization (MM) looks for a simpler function g
such that

∀x, y g(x, y) ⩾ f(x)
∀y g(y, y) = g(y)

and iterates xn+1 ← Argminx g(x, xn).

f(x)

 (x0, f(x0))

g(x, x0)

 (x1, f(x1))

Successive convex optimization methods
for risk parity portfolio design

Y. Feng and D.P Palomar (2015)
Investors usually have to choose between risk parity
portfolios and Markowitz-efficient portfolios, but it is
possible to combine both loss functions into the same
objective, yielding a portfolio close to risk parity, with
high returns, with low risk.

Regularized robust estimation
of mean and covariance matrix
under heavy-tailed distributions

Y. Sun et al. (2014)
Estimate variance matrices, in the presence of outliers,
fat tails and/or insufficient data, with M-estimators
(several of them) and a majorization-minimization al-
gorithm.

Minimal criterion coevolution:
a new approach to open-ended search

J.C. Brant and K.O. Stanley (2017)
Open-ended evolution (non-objective search) forgoes
the objective function and only uses a minimum cri-
terion, which should be satisfied for reproduction. The
idea extends to coevolution, e.g., with mazes and maze-
solving neural nets, the criteria being that each maze
is solved by at least one neural net and each neural net
solves at least one maze.

Stochastic dual coordinate ascent methods
for regularized loss minimization

S. Shalev-Shwartz and T. Zhang (2013)
Instead of solving the primal problem with (stochas-
tic) gradient descent, solve the dual problem – with
(stochastic) coordinate ascent (SDCA).

Submodular risk allocation
S. Ghamami and P. Glasserman (2017)

The problem of choosing which counterparty to use is
of the form

Minimize
A⊂S

F (A) +G(S \A)

where S is the set of trades to execute, F and G are the
collateral costs for counterparties 1 and 2, and A and
S \ A the trades sent to them. The costs could be of
the form σ(A) = Sd

(∑
i∈AXi

)
, which is submodular if

VarX is close to diagonal.

A hitchhiker’s guide
to automatic differentiation

P.H.W. Hoffmann (2016)

Article and book summaries by Vincent Zoonekynd 450/1044

Non-reversible Metropolis-Hastings
J. Bierkens

A Markov chain on a discrete space S, with transition
probabilities P , and a probability distribution π on S,
satisfy the detailed balance equation if Γ = 0, where
Γ(x, y) = π(x)P (x, y)− π(y)P (y, x); the Markov chain
is then said to be reversible and π is an invariant dis-
tribution. But the condition for π to be invariant is
more general: Γ1 = 0 (global balance).
A vorticity matrix is a skew-symmetric matrix Γ such
that Γ1 = 0. Given a reversible chain k with invariant
distribution π and a vorticity matrix Γ,

P (x, y) = k(x, y) +
Γ(x, y)

2π(x)

defines a (non-reversible) chain with invariant distribu-
tion π (provided P ⩾ 0: since Γ has negative entries,
this is not guaranteed).
The non-reversible Metropolis-Hastings (NRMH) chain

R(x, y) =
Γ(x, y) + π(y)Q(y, x)

π(x)Q(x, y)

A(x, y) = Max
{
1, R(x, y)

}
P (x, y) = Q(x, y)A(x, y) if x 6= y

provided Q(x, y) = 0 ⇔ Q(y, x) = 0 and Γ(x, y) ⩾
−π(y)Q(y, x), can be generalized to continuous spaces.
Non-reversible chains have better theoretical properties
(lower variance, fewer large deviations).
The Langevin diffusion dX = ∇ log πdt +

√
2dW

(for instance, the OU diffusion, dX = −V −1Xdt +√
2dW , which samples fromN(0, V)) can be made non-

reversible

dX = (I + S)∇ log π +
√
2dW,

where S is skew-symmetric; the MH acceptance step
to correct the discretization error can be replaced by a
NRMH step.

DeepWalk:
online learning of social representations

B. Perozzi et al. (2014)
Embed the vertices of a graph in Rn (e.g., for auto-
mated text layout, or community discovery) as you
would words (with skipgrams), considering random
walks (of vertices) as “sentences” (or words).

Modeling dependence with C- and D-vine
copulas: the R package CDVine

E.C. Brechmann and U. Schepsmeier (2013)
A multivariate distribution f(x1, x2, x3) can be decom-

posed as

f(x1, x2, x3) = f(x1)f(x2|x1)f(x3|x1, x2)

f(x2|x1) =
f(x1, x2)

f(x1)

=
c12(F1(x1), F2(x2))f(x1)f(x2)

f(x1)

= f(x2)c12(F1(x1), f2(x2))

f(x3|x1, x2) =
f(x2, x3|x1)
f(x2|x1)

=
c23|1(F (x2|x1), F (x3|x1))f(x2|x1)f(x3|x1)

f(x2|x1)
= c23|1(F (x2|x1), F (x3|x1))f(x3|x1)
= c23|1(F (x2|x1), F (x3|x1))f(x3)c13(F (x1), F (x3))

f123 = f1f2f3c12c13c23|1

where F (x2|x1) and F (x3|x1) are known from c12 and
c13, and we assume that the copula density c23|1 does
not depend on x1.
There are many such decompositions. The d(d − 1)/2
factors in those formulas can be arranged into d − 1
trees – a vine. Special cases include stars (C-vines)
and chains (D-vines), both defined by an ordering of
the variables.

C-vine

1

2
3

4
5

12
13

14
15

12

13

14

15

23|1

24|1
25|1

23|1
24|1

25|1

34|12

35|12

34|12 35|12
45|123

D-vine

1 2 3 4 512 23 34 45

12 23 34 4513|2 24|3 35|4

13|2 24|3 35|414|23 25|34

14|23 25|3415|234

f1 c12 c13 c14 c15
f2 c23|1 c24|1 c25|1

f3 c24|12 c35|12
f4 c45|123

f5

f1 c12 c13 c14 c15
f2 c23|1 c24|1 c25|1

f3 c24|12 c35|12
f4 c45|123

f5

The CDVine package provides functions for BB copu-
las (which allow both upper and lower tail dependence,
contrary to most archimedian copulas), bivariate cop-
ula analysis (BiCop* for contoutrlot, Kendall’s plot,
χ-plot, λ function, independence tests, gof tests, esti-
mators (MLE, method of moments using Kendall’s τ)),
and C- and D-vine estimators (but you need to provide
the variable order and the copula family).

Article and book summaries by Vincent Zoonekynd 451/1044

Maximum likelihood estimation of mixed
C-vines with applications to exchange rates

C. Czado et al. (2012)
To select the variable ordering in a C-vine copula, start
with the most correlated variable,

i∗ = Argmax
i

∑
j

|τij | ,

renumber them so that i∗ = 1, estimate the corre-
sponding copulas Cij , transform the variables vj|1 =
F (u1|uj), where F (u|v) = ∂Cuv/∂v and iterate.

Social media mining: an introduction
R. Zafarani et al. (2014)

2. The Steiner tree problem, finding the smallest tree,
in a graph, containing a given subset of nodes, is NP-
hard.
Signed graphs can model friend-foe relations; signed
directed graphs are used in social status theory.
3. There are many node centrality measures:
– Eigenvector: ci = λ−1

∑
aijcj , i.e., c is an eigen-

vector for eigenvalue λ (from the Perron-Frobenius
theorem, the largest eigenvalue gives positive cen-
tralities);

– Katz and PageRank are variants of eigenvector cen-
trality;

– Betweenness: number of shortest paths a node is on;
– Closeness: (harmonic) average distance to the other
nodes.

There are a few more node metrics:
– Clustering: proportion of triangles (for signed
graphs, one can distinguish between balanced and
unbalanced triangles);

– Reciprocity (for directed graphs).
There are many node similarity measures:
– Number of nodes in common, |Nx ∩Ny|;

– Jaccard similarity, |Nx ∩Ny|
|Nx ∪Ny|

;

– Cosine similarity, |Nx ∩Ny|√
|Nx| |Ny|

;

– Regular similarity, σij = α
∑
kℓ

AikAiℓσkℓ;

– Adamic-Adar,
∑

z∈Nx∩Ny

1

log |Nz|
;

– Preferential attachment, |Nx| |Ny| ;
– Katz (weighted average path length);
– Hitting time (average time a random walk takes to
reach y from x), commute time;

– Rooted PageRank;
– SimRank, σxy = λ

1

|Nx| |Ny|
∑
x′∈Nx

∑
y′∈Ny

σx′y′ .

4. Network models try to reproduce the following styl-
ized facts:
– Power law degree distribution (scale-free network);
– High clustering coefficient;

– Low average path length (small world).
Random graphs models, G(n, p) (n nodes, edge proba-
bility p) and G(n, k) (n nodes, k edges) show a phase
transition (apparition of a giant component) when the
average degree reaches 1. The degree distribution is
binomial (asymptotically Poisson – not a power law)
and the clustering coefficient, p, is low. The average
path length is log#nodes/ log〈degree〉.
The small world model starts with a regular (ring) lat-
tice and rewrites each edge (replaces one extremity at
random) with probability β. The degree distribution
is still incorrect, but the clustering coefficient and the
average path length are fine.
The preferential attachment (Barabási-Albert) model
adds one node at a time, connects it tom nodes, chosen
with probabilities proportional to their degrees. The
resulting graph is scale-free, i.e., its degree distribu-
tion is a power law, but its exponent is always the
same (3); the average path length is small enough, but
the clustering coefficient is too low.
The stochastic block model was not mentioned.
5. The weighted vote relational neighbour (wvRN) clas-
sifier is similar to k-NN:

P [yi = 1] =
1

|Ni|
∑
j∈Ni

P [yi = 1]

(since not all yi’s are observed, iterate to find a fixed
point).
To evaluate the result of a clustering algorithm:

– Cohesiveness:
∑

i∈Clusters

∑
j∈Ci

‖xj − ci‖2

– Separateness:
∑
i

‖ci − c‖2

– Silhouette: 1

n

∑
x

b(x)− a(x)
Max{b(x), a(x)}

, where a(x) is the

average distance to the other elements of the clus-
ter and b(x) the minimum average distance to the
elements of another cluster.

6. Communities could be defined as cliques, (but they
are rare in real networks), k-plexes (subgraph with
n nodes, each of degree at least n − k) or k-cliques
(subgraphs in which all shortest paths have length at
most k).
The clique percolation method (CPM) uses cliques as
seeds: communities are the connected components of
the clique graph, whose vertices are cliques of size k
and with edges when cliques share k − 1 nodes.
Classical clustering algorithms can be used with node
similarity.
Minimum cuts tend to generate singletons. Instead,
one can look for partitions P = (P1, . . . , Pk) minimiz-

Article and book summaries by Vincent Zoonekynd 452/1044

ing

RatioCut(P) = 1

k

∑ Cut(Pi, P̄i)
|Pi|

or NormalizedCut(P) = 1

k

∑ Cut(Pi, P̄i)
vol(Pi)

where the volume is the sum of the degrees. Those
problems are NP-hard, but can be relaxed (spectral
clustering).
The modularity of a community is the difference be-
tween the number of edges inside it and the expected
number of edges for a random graph with similar de-
grees,

Modularity(P) =
∑
i

∑
j,k∈Pi

Ajk −
djdk
2m

.

The Girwan-Newman divisive hierarchical communi-
ties are obtained by progressively removing edges with
the largest edge betweenness.
Evolving networks have a few more stylized facts:
– Segmentation into giant component, stars and sin-
gletons;

– Densification: the number of edges increases faster
than the number of nodes, |Et| ∝ |Vt|α, α > 1 (often,
α ≈ 1.6);

– Diameter shrinkage.
To find evolving communities, consider a single opti-
mization problem, for the communities of Gt for all
t’s, with a penalty to keep the communities of Gt and
Gt+1 close.
7. The information cascade model (ICM) models in-
formation diffusion on a known network, in a sender-
centric fashion: at each time step, each activated node
(potential client who has already heard of our product)
activates nearby nodes (talks to them and succeeds if
his conviction pij exceeds their threshold tj). Choos-
ing the seed nodes to maximize the speed of cascades
is a submodular optimization problem.
The diffusion of innovation (on a complete or unknown
network) can be modeled as

A′ = (α+ βA)(Population−A)

(where A is the number of adopters, α the external
influence and β the internal influence) or with epi-
demic models (SIRS – SI, SIR, SIS are obtained with
λ = γ = 0, λ = 0 and λ = γ, R = 0)

S′ = λR− βIS
I ′ = βIS − γI
R′ = γI − λR
N = S + I +R

8. Assortativity measures the propensity of similar
nodes to be linked. For categorical features, it can
be assessed by modularity; for continuous ones, by co-
variance or correlation.

It can be explained by influence (the presence of links
changes node attributes) or homophily (feature simi-
larity creates edges).

Gt Gt+1 Gt Gt+1

Xt Xt+1 Xt Xt+1

influence homophily

graph

features

Influence can be measured by centrality, or the size of
the cascade (in the ICM or SIR model), e.g., the num-
ber of nodes affected, the average number of hops, or
the rate at which the population is infected. Specific
examples include the number of in-links, the inverse of
the number of outlinks (novelty), the number of com-
ments, the length for blogposts, or the number of fol-
lowers (popular but imprecise), retweets and mentions
for Twitter.
Contrary to sender-centric cascade (epidemic) models,
influence (or threshold) models are receiver-centric.
In the linear threshold model (LTM, e.g., Schelling’s
model of racial segregation), node i becomes active if∑
j∈Ni wji ⩾ θi.

The linear influence model (LIM)

|Pt| =
∑
u∈Pt

I(u, t− tu) population influenced

I(u, t− tu) = cu(t− tu)−αu influence function

|Pt| =
∑
u,t

AutIut, I ⩾ 0

can be solved with nonnegative least squares.
Several tests disentangle influence and homophily:
– Shuffle test: compare the social correlation (the

slope in the logistic regression activation = α + β ×
#active friends + ε) before and after shuffling the
activation times;

– Edge reversal test: the social correlation should not
change when reversing the edges;

– Randomization test: look at the assortativity gain

Gaininfluence(t) = A(Gt, Xt+1)−A(Gt, Xt)

Gainhomophily(t) = A(Gt+1, Xt)−A(Gt, Xt).

9. Recommendation engines can average the scores
for similar items and/or users, but most rely on ma-
trix factorizations, finding embeddings U (for users)
and I (items) such that similarity(i, j) ≈ cos(Ui, Ij),
sometimes with a penalty sim(i, j) ‖Ui − Uj‖2 to en-
sure nearby nodes have nearby feature vectors.
10. Link prediction can be based on node similarity.
User migration can be forecasted from user activity,
network size and rank (in-degree).

Article and book summaries by Vincent Zoonekynd 453/1044

Error correcting codes
F. Lemmermeyer (2005)

Given a finite set A (alphabet, e.g., {0, 1}), a code is a
subset C ⊂ An.
A linear code is a linear subspace of Fnq .
The Hamming [7, 4] code, in F7

2, adds 3 parity bits to
a 4-bit message.

1 2
3

4
5 6 7

A code of type [n, k, d]q is a subset of Fnq of size qk,
with minimum distance d.
The minimum distance of a code is the minimum Ham-
ming distance between any two codewords. The mini-
mum distance of a linear code is the minimum number
of non-zero bits in a codeword (the minimum weight).
A code with minimum distance d can detect d−1 errors
and correct b(d− 1)/2c.
[The linear algebra notation for linear codes often uses
row vectors.] A generator matrix of a linear code C is
a matrix G whose rows form a basis of C; it can be
used to encode messages,{

Fkq −→ Fnq
x 7−→ xG.

A parity matrix of C is a generator matrix H of C⊥;
it can be used to detect the presence of errors:

C = {c ∈ Fnq : cH ′ = 0}.

Codewords are elements c whose syndrome cH ′ is zero.
The Hamming code Ham(r) is defined by a parity ma-
trix whose columns are the nonzero vectors in Fr2; it
has type [2r − 1, 2r − 1− r, 3]2.
For a code C ⊂ Fnq with minimum distance 2t+1, the
sphere packing bound is

|C|
t∑
i=0

(
n

i

)
(q − 1)i ⩽ qr.

For a perfect code, it is an equality. The perfect codes
are Hamming (t = 1), repetition codes of odd length
n = 2t+ 1 and the binary Golay code G23.
For linear codes of type [n, k, d], the singleton bound is
d ⩽ n− k + 1.
If the generator matrix is in standard form, G = (I|A),
a corresponding parity check matrix is H = (−A′|I).
To decode a message c encoded with a general linear
code C ⊂ Fnq , notice that two words x, y are in the
same coset v + C iff they have the same syndrome.
The coset leader e of a coset v + C is the word in it
with minimal weight: subtracting it from the encoded
message corrects the errors (for efficient decoding, one
can store a mapping table from syndromes to coset
leaders).

The Plotkin product of two codes C1, C2 ⊂ Fn2 of the
same length is

C1 ∗ C2 = { (u, u+ v) : u ∈ C1, v ∈ C2 }.

Cyclic linear codes are linear codes stable by cyclic per-
mutations

(c1c1 · · · cn−1) 7−→ (cn−1c0c1 · · · cn−2);

they correspond to ideals of Fq[X]/(Xn − 1). Those
ideals are principal and generated by the divisors g of
Xn − 1. If Xn − 1 = gh, then h is a parity check poly-
nomial. To decode a message, compute its euclidean
division by h: the syndrome polynomial s(X) is the
remainder. The error is the word of minimum weight
among the cyclic shifts Xis(X) mod g(X).
If r consecutive powers of an nth root of unity are roots
of g(X), then d ⩾ r + 1.
Golay’s G23 code, of type [23, 12, 7]2, corresponds to

X11 +X9 +X7 +X6 +X5 +X + 1 | X23 − 1.

A tutorial on conformal prediction
G. Shafer and V. Vovk (2013)

Conformal prediction regions are defined by y ∈ Rε if

py =
#{I : αi > αn}

n
> ε

where αi = d
(*z1, . . . , zn+ \ *zi+, zi), zk = (xk, yk) for

k < n, zn = (xn, y), d is some non-conformity measure
and * · · · + denotes multisets.
They are valid, i.e., they contain the true value the ad-
vertized proportion of the time, provided the sequence
of random variables is exchangeable.
The bags of observations can be seen as an online com-
pression model, with summarizing and updating oper-
ators,

{z1, . . . , zn} 7−→ *z1, . . . , zn+*z1, . . . , zn+, zn+1 7−→ *z1, . . . , zn, zn+1+ .
Relaxations of exchangeability include within-label ex-
changeability or the online Gaussian linear model.

Advances in financial machine learning
M. Lopez de Prado (2018)

2. Financial data is often irregularly-spaced and
should be transformed into tabular format, often as
bars, i.e., summaries (open, high, low, close, VWAP)
over intervals: time bars, tick bars (every 1000 ticks),
volume bars (number of shares), dollar bars (value
traded), tick/volume/dollar imbalance bars (cumu-
lated order imbalance),

bt =

{
bt−1 if ∆price = 0

sign(∆price)

Article and book summaries by Vincent Zoonekynd 454/1044

tick/volume/dollar runs bars (length of the longest run
in bt).
[The book tends to use ratio returns instead of log-
returns (ratio returns are skewed and have extreme
positive values) and cumulated products instead of cu-
mulated sums of logarithms (this is numerically prob-
lematic).]
3. Instead of forecasting the returns, or their sign, or
whether they will excess some threshold, h bars ahead
(with dollar bars, otherwise h should vary), use a triple
barrier: forecast whether the price with go above or
below (stop-loss) a threshold before time h – there are
three outcomes: profit-taking, stop-loss and time-loss.
Consider using a cascade of models: a first model with
high recall, followed by another with high precision
(e.g., separately predicting the sign of the returns and
whether the time barrier will be hit) [he calls that “met-
alabeling”].
4. Using bars leads to overlaps: weigh the observations
accordingly.
5. Returns may not be the only way of turning log-
prices into stationary time series, as required by many
statistical procedures: fractional integration, which ac-
counts for long memory, may be a better choice.
6,7. Use ensemble methods, cross-validation (with no
overlap, and perhaps even an embargo).
8. Feature importance can be assessed by mean de-
crease impurity (in-sample) or mean decrease accuracy
(out-of-sample). These are single-feature importance
measures: to limit the substitution effect, try to or-
thogonalize the features.
9. [The discussion of hyperparameter tuning only men-
tions grid and random search, not low-discrepancy se-
quences or Bayesian optimization.]
10. Size your position to account for the possibility
that the signal will strengthen further using, e.g., an-
other model to estimate the probability of a correct
forecast.
11. Backtesting can be dangerous: compute the prob-
ability of backtest overfitting.
12. While k-fold cross-validation suffers from look-
ahead bias, it should not be completely discarded: a
model able to predict the future from the past but not
the past from the future would be suspicious.
Account for multiple testing with FWER or FDR.
13. Backtesting on synthetic data, and comparing the
strategy with a random one, can help check if the model
overfits.
14. Backtest statistics should include time (differ-
ent regimes should be present), capacity, leverage,
frequency of bets, average holding period, annual
turnover, correlation to the underlying (to check if the
strategy is just long or short); usual performance mea-
sures, P&L from hits, from misses; Herfindahl index
of the time between bets, size of the tails (e.g., 〈r+〉,

〈r−〉); Sharpe ratio variants (correction for short time
series, skewness, kurtosis, multiple testing); attribu-
tion.
15. The strategy risk is the sensitivity of the Sharpe
ratio of a strategy (say, paying π with probability p
and −π with probability 1 − p, with n bets per year)
to the hit ratio p, or by how much the hit ratio should
drop to wipe out the profit.
17. Structural breaks can be detected with cusum
tests, looking if the cumulated normalized residuals of
y ∼ x are consistent with a constant slope, or Dickey-
Fuller-like tests.
– To test for explosive behaviour in yt = ρyt−1 + εt,
i.e., ρ = 1 if t ⩽ t0 and ρ > 1 if t > t0, test for a
non-zero slope in ∆yt ∼ yt−11t>t0 ;

– The ADF test uses more lags ∆yt ∼ yt−11t>t0 +∑
ℓ∆yt−ℓ;

– The supremum ADF test uses supt0 ADFt0,t, but
there are quantile and “conditional” (cf. CVaR) vari-
ants.

Sub- and super-martingale tests test H0 : β = 0 versus
H1 : β 6= 0 on

y = α+ γt+ βt2 + ε

log y = α+ γt+ βt2 + ε

log y = α+ βt+ ε

log y = α+ β log t+ ε

and use supt0

∣∣∣β̂/σβ∣∣∣.
19. There have been three generations of microstruc-
ture features: first-generation models assume the mid-
price is a random walk, or use high and low values
to estimate volatility, spread or imbalance; second-
generation models focus on illiquidity,

Kyle ∆price ∼ signed volume
Amihud |∆log price| ∼ volume
Hasbrouk ∆log price ∼ ±

√
volume;

third-generation models (PIN, VPIN) focus on trades.
Other microstructural features include the distribution
of order sizes, cancellation rates, limit orders, market
orders, presence of TWAP traders, options markets
(option quotes contain little information, but option
trades are informative), serial correlation of the signed
order flow.
Microstructural information can be defined by building
a model to forecast a market maker’s profit from those
features and looking at its performance (e.g., cdf of the
log-likelihood).
22. To process big data, scientists tend to use HPC
clusters rather than the cloud: the cloud has dis-
tributed storage, relies on virtualization (flexible, but
with a performance impact), and is less scalable (be-
cause of IO and network virtualization) and more ex-
pensive than HPC.

Article and book summaries by Vincent Zoonekynd 455/1044

Convergence
of the stochastic six-vertex model to the ASEP

A. Aggarwal
In the asymmetric simple exclusion process (ASEP)
model, particles are initially placed on the integers (not
all of them) and move left or right, if the new position
is not occupied, at times given by random exponential
clocks with rates 0 ⩽ L < R.
The six-vertex model is a probability distribution on
the set of paths in the first quadrant Z2

⩾0 starting from
a set of points on the x or y axis, obtained by extend-
ing the paths from Tn = [x + y ⩽ n] to Tn+1 with
probabilities

•

1

•

δ1

•

1− δ1

•

δ2

•

1− δ2

•

1.

A numerical study of the F-model
with domain-wall boundaries

R. Keesman and J. Lamers
The six-vertex model on a square lattice demands ex-
actly two ingoing and two outgoing edges at each ver-
tex.

e−βa e−βb e−βc

Modified profile likelihood inference
and interval forecast

of the burst of financial bubbles
V. Filimonov et al. (2016)

The LPPL model can be justified by a geometric ran-
dom walk with jumps

dp

p
= µtdt+ σtdW − κdJ

where the hazard rate of the jumps J grows exponen-
tially with log-periodic oscillations

h(t) = α(tc − t)m−1
[
1 + β cos

(
ω log(tc − t)− φ′

)]
.

If the excess return µt is proportional to the hazard
rate, then the expected log-price is

E[log p] = A+B(tc−t)m+C(t−tc)mcos
(
ω log(tc−t)−φ

)
.

We expect

0.1 ⩽ m ⩽ 0.9, 6 ⩽ ω ⩽ 13, B < 0, D =
m |B|
ω |C|

⩾ 0.8.

In the likelihood L, one can separate the critical time
tc from the nuisance parameters η,

t̂ = Argmax
t

Max
η

L(t, η)

where Lp(t) = Maxη(t, η) is the profile likelihood.
The likelihood can sometimes be factored intomarginal
and conditional likelihoods, L(t, η) = L(t)L(η), but not
here.
The profile likelihood ignores the uncertainty on the
nuisance parameters. The modified profile likelihood
adds a penalty using the Fisher information matrix of
the nuisance parameters.

t : parameter of interest
η : nuisance parameters
L(t, η) : likelihood
`(t, η) = logL(t, η) log-likelihood
`p(t) = Max

η
`(t, η) profile log-likelihood

η̂t = Argmax
η

`(t, η)

t̂, η̂ = Argmax
t,η

`(t, η)

I(η̂t) = −
∂2`

∂η∂η′

∣∣∣∣
η=η̂t

Fisher information

|A| = |detA|
`m(t) = − 1

2 log |I(η̂t)|+ log J(t) + `p(t)

J(t) : Jacobian term, to make the modified profile
likelihood invariant to a reparametrization of
the nuisance parameters (difficult to evaluate)

J(t) ≈ |I(η̂t)|∣∣Σ(t, η̂t; t̂, η̂)∣∣
Σ(t1, η1; t2, η2) = E2

[
∂`

∂η

∣∣∣∣
t1,η1

∂`

∂η′

∣∣∣∣
t2,η2

]
∂`

∂η
: score function

E2 : expectation wrt the distribution
of the error term ε(t2, η2)

The multiscale modified profile likelihood plots those
confidence intervals in the t2− t1 vs tc− t2 space, high-
lighting when the constraints are satisfied.

Dissection of Bitcoin’s
multiscale bubble history

J.C. Gerlach et al. (2018)
To identify Bitcoin bubbles ex post:
– Look for “drawups”, successions of positive returns
interrupted by negative returns no larger than ε, im-
mediately followed by a similarly-defined drawdown,
with ε = ε0σ, where σ is the volatility over the past
w days, and keep dates identified as a peak by 95%
of the parameters (ε, w) ∈ [0.1, 5]× [10, 60] (“epsilon
drawdown method”);

– Define the begining of the bubbles by fitting an
LPPL model with various starting points, and keep-
ing that with the lowest root mean square error, de-
trended by removing the effect of the estimation pe-
riod t2 − t1 (“Lagrange regularization”);

Article and book summaries by Vincent Zoonekynd 456/1044

– Define the end of the post-bubble correction as the
minimum before the next bubble.

For real-time bubble prediction, fit the LPPL model on
different window sizes and cluster the (t2 − t1, tc − t1),
with k-means and the silhouette to choose the number
of clusters, to have one or several scenarios.

Blockchain: data malls,
coin economies and keyless payments

Z. Kakushadze and R.P. Russo (2018)
The Iota data marketplace is a decentralized data lake
whose coin allows users to buy and sell data from
each other. Augur is a decentralized prediction mar-
ket based on Ethereum, using a “reputation” token.
Golem is a network to rent spare computing power. Mi-
croRaiden provides off-blockchain micropayments on
Ethereum. The Everipedia (a Wikipedia competitor)
token is mined by editors by making valuable contri-
butions.
Data provenance, keyless payments (sending BTC to
an email address, in a decentralized way) and voting
are other applications.

Cryptocurrency portfolio management
with deep reinforcement learning

Z. Jiang and J. Liang
End-to-end portfolio construction to find the weights
maximizing the after-cost returns, on 12 (liquid) cryp-
tocurrencies, from the prices on 50 30-minute periods,
with a convolutional network (conv+fc). [There is no
“reinforcement learning”; the convolution kernels are
12×4, i.e., they also convolve in the “asset” direction.]

Are Bitcoin bubbles predictable?
Combining a generalized Metcalfe’s law

and the LPPLS model
S. Wheatley et al. (2018)

Metcalfe’s law states that the value of a network is
proportional to the square of its number of nodes. The
Bitcoin market value is proportional to some power
(1.7) of the number of users (or the number of transac-
tions, from bitcoininfocharts.com, smoothed): de-
viations from this generalized Metcalfe’s law is a bubble
signal; it can be combined with the LPPL model.

Classification of crypto-coins and tokens
from the dynamics

of their power law capitalization distributions
K. Wu et al. (2018)

The distribution of the market capitalization of coins
(resp. tokens), from coinmarketcap.com, is well-
described by a Pareto (power law) distribution with ex-
ponent 0.6 (resp. 1.1). This can be explained by mod-
eling the market capitalization of each coin with inde-
pendent geometric Brownian motions (with the same
parameters), with new coins created by a Poisson pro-
cess with exponentially growing intensity, and existing
coins dying with a constant hazard rate.

Pricing options
with exponential Levy neural network

J. Huh (2018)
For Fourier-transform-based option pricing, model the
Lévy density

dν

dx
(x) = e−xF−1[h(w)](x)

with a 1-hidden-layer neural net h whose hidden nodes
are in two groups, whose outputs are multiplied.

w

×
×
×

Generating virtual scenarios
of multivariate financial data

for quantitative trading applications
J. Franco-Pedroso et al. (2018)

Simulated returns from traditional models are not real-
istic (Gaussian returns) and/or not scalable (multivari-
ate GARCH, e.g., BEKK). To reproduce “multivariate
stylized facts” (kurtosis, skewness, volatility clustering,
increased correlation in periods of high volatility, num-
ber of “trends”, distribution of the “trend ratios” µ/σ),
take a more empirical approach:
– Split the data into up- and down-trends for the mar-
ket index;

– In each of those trends, estimate the variance matrix
on a moving window;

– Sample Gaussian returns from those distributions [I
suspect they reject the samples disagreeing with the
trend].

Forecasting directional changes
in financial markets

A. Bakhach et al (2015)
An upward or downward trend can be defined as a
price change beyond a threshold θ; trends go from one
extreme to another; a confirmation point is the first
point, after an extreme, exceeding the threshold. The
overshoot is the difference between an extreme and the
previous confirmation point (rescaled by θ). One can
predict of the overshoot of the current trend will exceed
some threshold d using decision trees and three vari-
ables: the Aroon up and down indicators, i.e., the num-
ber of up (or down) trends ago the maximum (or min-
imum) extremum (or confirmation point) was (among
the past n = 20 up/down trends) and the difference
between the last two confirmation points.

The role of the dynamic conditional
quartic beta and the capital markets

G. Corvasce
Define a (cross-sectional, time-varying) quartic beta
from the quartic loss

∑
(yi − βxi)4.

Article and book summaries by Vincent Zoonekynd 457/1044

Imaging time series
to improve classification and imputation

Z. Wang and T. Oates (2015)
Convert a time series to an image, using a Gramian
angular field:
– Rescale x to [−1, 1];
– Let φt = arccosxt;
– Consider cos(φt + φs) or sin(φt − φs)
or a Markov transition field
– Bin the observations, y = discretize(x);
– Compute the transition matrix P ;
– Spread it out to preserve the temporal dependence
Mt→s = Pyt→ys

and use a (tiled) CNN.

Deep reinforcement learning bootcamp
P. Abbeel et al. (2017)

1. Planning or optimal control is the search of the
optimal policy on a known Markov decsion problem
(MDP).
Value iteration iterates the Bellman equation

V0(s) = 0

Vk+1(s) = Max
a

E
s′

[
R(s, q, s′) + γVk(s

′)
]

= Max
a

∑
s′

P (s′|a, s)
[
R(s, a, s′) + γVk(s

′)
]

Q-value iteration is similar, but computes Q(s, a),
the expected value, if we start in state s, take action
a, and act optimally thereafter.

Qk+1(s, a) =
∑
s′

P (s′|a, s)
[
R(s, a, s′)+γMax

a′
Q(s′, a′)

]
These are just systems of equations but, because of the
maximum, they are not linear. If the policy π is fixed,
however, it is just a linear system, which can be solved
iteratively or directly (policy evaluation).

V π(s) =
∑
s′

P (s′|a, s)
[
R(x, a, s′) + γV π(s′)

]
Policy iteration alternates two steps:
– Compute the value V π of the policy πk;
– Improve the policy by taking the best 1-step action

πk+1(s) = Argmax
a

P (s′|a, s)
[
R(s, a, s′) + γV π(s′)

]
2. If the MDP is not known, we can act at random and
estimate the expected Q-value (tabular Q-learning).

Q(s, a)← (1− α)Q(s, a) + α · target
target = R(s, a, s′) + γMax

a′
Q(s′, a′)

This is off-policy learning: the first term comes from
the policy actually followed (e.g., ε-greedy), the second

from the optimal policy found so far. The learning rate
α should satisfy

∑
αt =∞,

∑
α2
t <∞.

Approximate Q-learning replaces the table Q(s, a)
with a function (e.g., a linear combination of hand-
selected features), and a gradient update

θ ← θ − 1

2
α∇θ

(
Qθ(s, a)− target

)2
.

3. Deep Q networks (DQN) use a neural network
to model Qθ, but
– The target is not stationary;
– The data is not iid;
To address those concerns:
– Use batches (experience replay);
– Use an older set of weights for the target (target net-
work);

– Use Huber loss instead of square loss;
– Use RMSProp instead of standard SGD;
– Anneal the exploration rate.
Neural fitted Q-iteration is a batch version of DQN:
generate a lot of ε-greedy episodes; fit the resulting
target for a while; iterate.
Double DQN uses two sets of weights, to select the best
action, and to estimate it (otherwise MaxaQθ(s, a) is
biased upwards)
Prioritized experience replay uses the Bellman error as
transition weights.

∣∣∣r + γMax
a′

Qθ1(s
′, a)−Qθ2(s, a′)

∣∣∣

In a duelling DQN, the neural network adds structure
to the Q-value and separately forecasts state value and
advantage, Q(s, a) = V (s) +A(s, a).

Noisy nets add noise to the parameters for better ex-
ploration.
4. Policy gradient methods directly look for an opti-
mal stochastic policy πθ(s) (a deterministic policy is a
combinatorial object, more difficult to optimize). This
is on-policy (less exploration) and less sample-efficient,
but can deal with large action spaces (with Q-learning,
ArgmaxaQ(s, a) can be difficult to compute).
Consider a whole episode and let

τ = (s0, u0, s1, u1, . . . , sN , uN)

be a state-action sequence. We want to maximize the

Article and book summaries by Vincent Zoonekynd 458/1044

expected utility U(θ) =
∑
Pθ(τ)R(τ).

∇θU =
∑
∇θPθ(τ)R(τ)

=
∑

Pθ(τ)
∇θPθ(τ)
Pθ(τ)

R(τ)

=
∑

Pθ(τ)∇θ logPθ(τ)R(τ)

= E
[
∇θ logPθ(τ)R(τ)

]
≈ 1

m

∑
i

∇θ logPθ(τi)R(τi)

∇θ logPθ(τ) = ∇θ log
∏
t

P (st+1|st, at)πθ(st|st)

=
∑
t

∇θ logP (st+1|st, at) +∇θ log πθ(at, st)

=
∑
t

∇θ log πθ(at|st)

This can also be derived using importance sampling:

U(θ) = E
τ∼θ

[
R(τ)

]
= E
τ∼θold

[
pθ(τ)

pθold(τ)
R(τ)

]
∇U(θ)|θ=θold

= E
τ∼θold

[
∇θpθ(τ)|θ=θold

pθold(τ)
R(τ)

]
= E
τ∼θold

[
∇θ logPθ(τ)|θ=θoldR(τ)

]
To reduce variance, one can add a baseline

∇U(θ) ≈ 1

m

∑
i

∇θ logPθ(τi)R(τi)

≈ 1

m

∑
i

∇θ logPθ(τi)
(
R(τi)− b

)
and discard terms that do not depend on the current
action

∇U(θ) ≈ 1

m

∑
i

∑
t

∇θ log πθ(ait, sit) (R(τi)− b)

=
1

m

∑
i

∑
t

∇θ log πθ(ait, sit)
(∑
k⩾t

R(sik, aik)− b
)
.

The difference Ait =
∑
k⩾t

R(sik, aik)− b is the advan-
tage.
Here are possible choices for the baseline:

– Constant: b = E
[
R(τ)

]
≈ 1

m

∑
R(τi);

– Optimal constant,

b =

∑(
∇ log p(τi)

)2
R(τi)∑(

∇ log p(τi)
)2 ;

– Time-dependent:

b = E
[
R(τ⩾t)

]
≈ 1

m

∑
i

∑
k⩾t

R(sik, aik);

– State-dependent (actor-critic – in particular, if the
current state is hopeless, regardless of the actions
taken, there is no valuable information and the gra-
dient is zero):

b(st) = E[rt + rt+1 + · · ·] = V π(st).

To estimate the value function V π(s), we can use su-
pervised learning, e.g.,
– Monte-Carlo: minimize[

V πϕ (sit)−
∑
k⩾t

R(sik, uik)
]2

(we end up with two neural nets: one for the policy,
one for the value function);

– Temporal difference (TD): use the Bellman equation
for V π

φi+1 = Argmin
ϕ

∑∥∥R+ γV πϕi(st+1)− V πϕ (st)
∥∥2
2
+

λ ‖φ− φi‖2

(there are now two hyperparameters, γ and λ).
To reduce the variance:
– Discount more;
– Use function approximation:

Qπ(s, u) = E[r0 + γr1 + γ2r2 + · · ·] = Q0

= E[r0 + γV π(s1)] = Q1

= E[r0 + γr1 + γ2V π(s2)] = Q2

= E[r0 + γr1 + · · ·+ γ4r4 + γ5V π(s5)].

The Async advantage actor critic (A3C) uses Q5;
the generalized advantage estimation (GAE) averages
all of those:

Qπ = (1− λ)
∑
n⩾0

λnQπn.

5. Notice that the policy gradient step is also the gra-
dient step of some optimization problem: we can re-
place that step with a few iterations of an optimiza-
tion algorithm solving that problem, with a constraint
or penalty to limit the step size.
More precisely, the gradient Et[∇θ log π(a|s)A] could
come from the surrogate loss Et[log π(a|s)A] or to the
importance sampling loss

Et

[
πθ(a|s)
πθold(a|s)

A

]
.

Trust region policy optimization (TRPO) uses
a constraint to define the “trust region” (the region
where we trust our approximation to be close enough)

E
[
KL
(
πθold(·|s), πθ(·|s)

)]
⩽ δ.

In practice, use a linear approximation of the objec-
tive, a quadratic approximation of the constraint (the
Kullback-Leibert divergence becomes the Fisher infor-
mation matrix – it is a natural gradient) and solve

Article and book summaries by Vincent Zoonekynd 459/1044

using the conjugate gradient (Hessian-free optimiza-
tion).
Proximal policy optimization (PPO) uses a
penalty instead of a constraint – but adjusting the level
of the penalty is harder than adjusting the size of the
trust region – a constant value does not work.
Those methods do not work well with CNNs, RNNs
and complicated architectures.
Variants include:
– KFAC: Natural policy gradient blockwise approxi-
mation of the Fisher information matrix;

– ACKTR: A2C + KFAC natural gradient;
– PPO with clipped objective.
6. Practical advice:
– Use several baselines: cross-entropy, policy gradient,
Q-learning SARSA;

– Use more samples per batch;
– Check the sensitivity to all parameters – the method
should be robust;

– Try different random seeds;
– Standardize: clip

(
(x− µ)/σ,−10, 10

)
;

– Use KL(πold, πnew) as diagnostic; spikes indicate a
drop in performance.

7. When computing the gradient of an expectation,
the parameter can be in the distribution, or in the in-
tegrand, or in both.

∇θ E
s∼pθ

[
f(X)

]
= E

[
f(x)∇θ log pθ(x)

]
∇θ E

x∼N(0,1)

[
fθ(x)

]
= E

[
∇θfθ(x)

]
A stochastic computation graph is a DAG some of
whose nodes are stochastic, i.e., of the form “sample x
from pinput” instead of “x = f(input)”; we want the
gradient of the expectation of the final output.
Examples include dropout or hard attention.
8. The cross-entropy method (CEM, aka CMA-ES)
works well for Tetris (for a small number of parame-
ters: 22). It is a generalization of the finite difference
method, obtained with a 2-element population, defined
with mirrored (antithetic) noise.
In practice, transform the reward R(τ) to its percentile
or to an indicator variable for the best k% policies.
Derivative-free methods are not sample-efficient,
but very easy to parallelize.
9. Model-based reinforcement learning is
sample-efficient, and can even be used on real (physi-
cal) robots: model p(s′|s, a) using Gaussian processes,
neural nets of Gaussian model mixtures; optimize
πθ(a|s); iterate a few times (otherwise the distribution
of states can be very different).
The global (DP, NN, GMM) can use used as a prior,
with a local (Bayesian linear) model in the neighbour-
hood of the current trajectory, using a constraint

KL
(
p(τ) ‖ pold(τ)

)
< ε.

For high-dimensional data (e.g., the goal could be spec-
ified by an image, with no explicit reward), learn in
latent space.
10a. If an agent has rational preferences (i.e., it can-
not be taken advantage of), its preferences can be sum-
marized by a utility function, and its behaviour de-
scribed by expected utility maximization (von Neuman
and Morgenstern theorem).
Humans are not rational (Allais’s paradox).
10b. Inverse reinforcement learning (IRL) infers
a reward function from demonstrations – but it is not
uniquely defined, and the demonstrations are ont tru-
ely optimal. Do not learn a single reward function, but
a distribution of reward functions – the maximum en-
tropy one (the partition function is problematic, but
the corresponding gradient descent algorithm can be
seen as a generative adversarial network (GAN)).
11. The main challenges in RL are sample efficiency
and exploration (we are still relying on random ac-
tions).
Distributional RL (C51) does not learn a value func-
tion but value distributions.
Unsupervised RL deals with sparse rewards by
learning more about the environment through aux-
illiary prediction and control tasks (e.g., predicting
that some pixels will change colours, or inducing those
changes – for images, use CNN features instead of pix-
els).
Imagination-augmented agents learn an imperfect
model, and use samples from that model as additional
trajectories to learn from.
Hierarchical RL improves exploration by learning
subtasks and combining them to reach the desired goal.
Feudal networks use two agents, a manager, who de-
cides on the subtasks (and is rewarded if they help get
close to the goal), and a worker, who tries to perform
the subtasks (and is not aware of the ultimate goal).
For real robots, train the agent in a simulated environ-
ment, and fine-tune it in thee physical world. One-
shot imitation learning can then learn a new task
from a single example.
12. Current reinforcement learning focuses on a single
task, in contrast to machine learning, where general-
ization matters.
To improve generalization, train on different physical
robots.
If the problem has some structure, if you can decom-
pose the task into different “modules”, have separate
neural nets learn them, and only combine them at the
end (we already saw that with duelling DQNs).
Given a single demonstration, decompose it into in-
termediate steps (e.g., the latent representation from a
CNN), and use them as intermediate goals. Translation
from the demonstration context to the current context
(e.g., the position of the objects) may be needed.

Article and book summaries by Vincent Zoonekynd 460/1044

Model-based RL learns about the physical world and
can use that knowledge to forecast the outcome of an
action and act towards a new goal.
Multi-task learning is a form of regularization and data
augmentation – some aspects of the world, useful to
plan a task, may be easier to learn when performing
another task.
Model-agnostic meta learning looks for a policy
that can easily be adjusted to new tasks by policy
gradient – for instance, a robot that could be steered
in any direction after just one gradient step (one-shot
learning).
13. The programming exercises use Chainer.

Can’t decide? Undecide!
C. Goodman-Strauss (2010)

Turing machines can be encoded in seemingly innocu-
ous mathematical objects – the undecidability of the
stopping problem leads to more concrete undecidable
problems:
– Given a finite collection of tiles and a “seed” pattern,
can we tile the whole plane?

– Collatz-like functions, in particular Fractran pro-
grams – given a list of fractions and a starting integer
n, multiply it with the first fraction p/q in the list
so that np/q is integer; continue with that integer –
for instance

3

11

847

45

143

6

7

3

10

91

3

7

36

325

1

2

36

6

generates all prime powers of 10, in order;
– Post’s tag production systems: start with a sequence
of zeroes and ones, remove the first three digits and
add 00 or 1101 at the end, depending on whether the
first digit was 0 or 1;

– SAT (with statements such as “the kth cell contains
a at time t”, “the machine is reading cell k at time t
in state s”, etc.

– Conway’s game of life;
– Wolfram’s rule 110.

Facets of entropy
R.W. Yeung (2012)

The entropy function of a collection of discrete random
variables (Xi)1⩽i⩽n is

H :

{
P(J1, nK) → R

α 7→ H(Xα)

where H(Xα) is the joint entropy of (Xi)i∈α. It satis-
fies the polymatroidal axioms

H(∅) = 0

α ⊂ β =⇒ H(α) ⩽ H(β)

H(α) +H(β) ⩾ H(α ∩ β) +H(α ∪ β).

In addition to entropy, the Shannon information mea-

sures are

H(X|Y) = H(X,Y) = H(Y)

I(X;Y) = H(X) +H(Y)−H(X,Y)

I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(Z, Y, Z)−H(Z).

Joint entropy and mutual information behave like set
intersection and union.

H(X) A

H(Y) B

H(X,Y) A ∩B
I(X;Y) A ∪B

The polymatroidal axioms are equivalent to the basic
inequalities:

entropy ⩾ 0

conditional entropy ⩾ 0

mutual information ⩾ 0

conditional mutual information ⩾ 0

Those inequalities are not sufficient to describe entropy
functions:

Hn = {H : P(J1, nK)→ R}
Γ∗n = {H ∈Hn : H is entropic}
Γn = {H ∈Hn : H polymatroidal}
Γ∗n ⊂ Γn

Γ∗2 = Γ2

Γ∗3 Γ3 but Γ∗3 = Γ3

For n ⩾ 3, Γ∗n is neither closed nor convex, but Γ∗n is
a cone; for n ⩾ 4, there are many more non-Shannon-
type inequalities: Γ∗4 Γ4.

Nonlinear time series analysis with R
R. Huffaker et al. (2017)

Given a dynamical system, i.e., a system of differential
equations, we can study its orbits – they are sometimes
chaotic, in the sense that
– Nearby trajectories diverge exponentially fast
(chaos);

– The trajectories tend to accumulate around an “at-
tractor” with non-integral dimension (strangeness).

For continuous (autonomous) systems, chaotic be-
haviour is only possible in dimension at least 3, but
discrete systems (e.g., the Poincaré map of a contin-
uous system, i.e., the intersections of its trajectories
with a plane) in dimension 1 or 2 can be chaotic.
Conversely, given just one coordinate of one of those
trajectories, observed with noise, is it possible to re-
construct the other coordinates, the whole attractor,
and the original dynamical system? This is the goal of
nonlinear time series analysis.

Article and book summaries by Vincent Zoonekynd 461/1044

The embedding of a univariate time series (xt)t⩾0 with
delay τ and dimension m is the multivariate time se-
ries (xt, xt+τ , . . . , xt+(m−1)τ)t⩾0. Under reasonable as-
sumptions, it can be used to describe the dynamics of
the system: one coordinate is indeed enough (Takens).
To estimate the delay τ , use the first minimum of the
automutual information (AMI – but there is no theo-
retical justification, and even no guarantee that a min-
imum exists).
To estimate the embedding dimension, look at the pro-
portion of false near neighbours (FNN), i.e., the pro-
portion of points close, in phase space, at time t, but
not at time t+1 – sign that some information has been
left out. PCA can also be used.
For this (and for the Lyaponov exponent), we want the
points to be close in phse space, but not because they
are close in time – they should be somehow “intepen-
dent”. The Theiler window specifies a minimum time
separation. To estimate it, plot the proportion of FNN
as a fuction of both space and time separation, or use
the first zero of the autocorrelation function (ACF).
The dimension of the attractor can be defined using
box counting

lim
ε→0

logN(ε)

log(1/ε)

where N(ε) is the number of balls (or boxes) of size ε
needed to cover the set or the correlation dimension

D2 = lim
ε→0

logC(ε)

log ε

C(ε) = lim
n→+∞

1

n2
#
[
|yi − yj | ⩽ ε

]
(this is a different notion: it gives more weight to areas
visited more often). The embedding dimension should
be at least 2D + 1.
The recurrence plot shows the distance (in phase space)
between the observation at time t and that at time s; it
can be thresholded to give a binary image, and reduced
to a few numeric quantities: emphrecurrent quantita-
tive analysis (RQA) looks, among other things, at the
proportion of points in vertical or diagonal segments.
Singular spectrum analysis (SSA) can help separate
signal from noise – but it is manual, and some of the
components have to be grouped.
To test for stationarity, use Schreiber’s nonlinear cross-
prediction stationarity test (divide the time series into
non-overlapping segments; fit a nonlinear model on
each, e.g., k-NN on an embedding; measure the per-
formance of model i on segment j 6= i versus that on
segment i).
A linear system is a differential equation of the form
ẏ = Ay. With real eigenvalues, there can be a sta-
ble, unstable or saddle point; with complex eigenval-
ues, it can be a stable or unstable focus equilibrium,
or a centre point. If you see exponentially damped or

exploding trajectories, use a linear model.

To test for nonlinearity, use the BDS test, or
the Hellinger distance Sρ(k) between fXt,Xt+k and
fXtfXt+k (which can be seen as a “nonlinear correla-
tion”) or the moving block bootsrap (in a time series
of 0s and 1s, estimate p̂ and check if its variance is√
p̂(1− p̂)/n as it would for an iid sequence).

Non-linearity can also be assessed using surrogate data,
i.e., time series with the same “linear properties”, e.g.,
– ARMA surrogates: Fourier-transform the time se-
ries, randomize the phases, transform it back;

– Amplitude-adjusted Fourier transforms (AAFT) sur-
rogates: idem, but transform the output to recover
the same distribution;

– PPS surrogates (for aperiodic oscillations): (first co-
ordinate of a) random walk on the reconstructed
shadow attractor

and looking at some statistic, e.g., correlation dimen-
sion, maximum Lyapunov exponent, nonlinear predic-
tion error or permutation entropy.
Granger causality only works for stochastic systems.
For deterministic ones, try to predict future values
of y using x’s attractor (convergent cross-mapping,
CMM): if x(ta), x(tb), . . . are neighbours of x(t0), then
y(ta), y(tb), . . . should be close to y(t0), and increas-
ingly so as more data arrives. Delayed cross-mapping
check how the forecast skill changes with the lag be-
tween x and y.
To detect changepoints, compute the SSA decomposi-
tion before and after a possible changepoint, compute
the scalar product (i.e., correlation) between the first
eigenvectors, and compare with surrogate data to have
a p-value.
To detect changepoints, one can also estimate the dis-
tribution of values on a moving window: it will usually
have one peak, but may have two (or be a mixture
distribution) during transition periods
Phenomenological modeling estimates the coefficients
of an ODE from data, e.g., with regression, assum-
ing the coefficients are polynomial, approximating the
derivatives with high (4th) order centered finite differ-
ences, with the lasso or adaptive lasso (|β|ν penalty,
0 < ν < 1) to deal with multicolinearity.
Implementations in tseriesChaos (mutual, d2,
false.nearest, lyap_k), nonlinearTseries (RQA),
tseriesEntropy (Srho.test.ts, surrogateAR,
Trho.test.AR, Trho.test.SA), Rssa, fractal
(surrogate), multispatialCCM, MESS, extRemes.

A differential equation for modeling
Nesterov’s accelerated gradient method:

Article and book summaries by Vincent Zoonekynd 462/1044

theory and insight
E. Su et al.

Nesterov momentum

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)

by a can be modeled by an ODE

ẍ+
3

t
ẋ+∇f(x) = 0.

The O(1/t2) convergence rate is guaranteed if the
damping term 3

t ẋ is sufficiently large: 3 is the small-
est constant guaranteeing it but, for large t, the sys-
tem is over-damped. This suggests resetting t when-
ever 〈ẋ, ẍ〉 = 0 or, for Nesterov momentum, resetting
k whenever ∆x starts decreasing.

Learning gradient descent:
better generalization and longer horizons

K. Lv et al. (2017)
The optimization algorithm can be added to the model,
to have the computer choose the best stochastic gra-
dient descent variant. For instance, one can use the
gradient as input and the updates as output of a
coordinate-wise LSTM cell whose latent variables are
the first and second moments of the previous gradients
(momentum and AdaDelta’s normalizing factors). To
help make the algorithm scale-invariant:
– Randomly scale the functions to minimize at train-
ing time;

– Add a random convex function, g(x) = 1
n

∑
(xi−vi)2

to make the objective better-behaved;
– Do not feed the raw gradient and momentum to the
LSTM, but rescale them with the AdaDelta factor.

Fighting biases with dynamic boosting
A.V. Dorogush et al.

Boosting uses the same model to build the data and to
compute the gradient: this data reuse introduces bias
in the gradient. CatBoost avoids it.
Oblivious decision trees use the same criterion
across an entire level of the tree.

Escaping from saddle points – online
stochastic gradient for tensor decomposition

R. Ge et al.
Even for non-convex functions, SGD converges to a lo-
cal minimum in a polynomial number of iterations.

Failures of gradient-based deep learning
S. Shalev-Shwartz et al

Gradient-based optimization fails when:
– The gradient is too flat and/nor not informative
enough about the position of the minimum;

– The sample gradient gas a low signal-to-noise ratio;
– The condition number is high.
Possible solutions include:
– Preconditioning;
– Intermediate losses in end-to-end architectures;
– “Forward-only update rule”: if a derivative is zero,
in intermediate computations, replace it with 1.

An overview of gradient descent
optimization algorithms

S. Ruder

A tutorial on Bayesian optimization
of expensive cost functions,

with applications to active user modeling
and hierarchical reinforcement learning

R. Brochu et al. (2010)
Illustrated introduction to Bayesian optimization fol-
lowed by non-trivial examples:
– Bayesian modeling of preferences

P [X � Y] = Φ
(
f(X)− f(Y)

)
f ∼ GP

(the Bradley–Terry model assumes f is linear and
uses a logit instead of the probit Φ);

– Hierarchical reinforcement learning.

Batched high-dimensional Bayesian
optimization via structural kernel learning

Z. Wang et al. (2017)
Bayesian optimization can scale to high-dimensional
functions by assuming a latent additive structure, and
learning it with Gibbs sampling (Dirichlet prior for the
mixing proportions: θ ∼ Dir(α), zj ∼ Multi(θ)). Func-
tion evaluations can be batched using a determinantal
point process (DPP) and processed in parallel.

Distribution-free predictive inference
for regression

J. Lei et al. (2017)
Conformal inference provides distribution-free,
finite-sample prediction sets. With a naive approach,
fitting the model on (x1, y1), . . . , (xn, yn) and using the
quantiles of the residuals to form a prediction interval
µ̂(xn+1)± qα, the prediction intervals are too small.
Instead, fit the model on (xn, y1) . . . , (xn, yn), (xn+1, y),
for all values of y: the prediction set is the set of y’s in
their µ̂(xn+1)± qy,α interval.
To reduce the computations, do not refit the model
for all values of y, but split the data into equal-sized
parts, use the first to fit the model, and the second to
estimate the residual quantiles. Using N splits, each
at level α/N , and taking the intersection of the cor-
responding intervals, reduces randomness but enlarges
the interval – the Bonferroni effect dominates. The

Article and book summaries by Vincent Zoonekynd 463/1044

Jackknife (using quantiles of the leave-out-one residu-
als) relies on a similar idea, but is more fragile, unless
we impose strong conditions on the estimator.

Multivariate quantiles
and multivariate L-moments

A. Decurninge (2014)
Univariate L-moments can be defined from order
statistics:

λ1 = E[X]

λ2 = 1
2E[X(2) −X(1)]

λ3 = 1
3E[X(3) − 2X(2) +X(1)]

· · ·

λr =
1

r

∑
(−1)r

(
r − 1

k

)
E[Xr−k:k]

or by projecting the quantile function Q on the
shifted Legendre polynomials (an orthogonal basis of
L2([0, 1];R) for the scalar product 〈f, g〉 =

∫ 1

0
fg –

Legendre polynomials use
∫ 1

−1 fg).
Multivariate L-moments can be defined using:
– The monotone transport between the distribution
of interest and Unif[0, 1]d to define the quantiles,
Q(F (u)) = T (u);

– The basis of products of univariate Legendre poly-
nomials.

Other target distributions (the min-copula, a standard
Gaussian) and other transports (e.g., Rosenblatt), or
other orthogonal polynomials (Hermite) can be used.
The monotone transport from µ to ν is the only
measurable map T such that T#µ = ν and T = ∇φ,
for some convex function φ (it is guaranteed to exist
if µ = Unif[0, 1]d or, more generally, if it gives zero
measure to sets of Hausdorff measure at most d − 1)
[Brenier’s theorem].
The Rosenblatt transport is

T (x1, . . . , xd) =

FX1

(x1)
FX2|X1=x1

(x2)
FX3|X1=x1,X2=x2

(x3)
...

 .

The power Voronoi diagram is defined using the
“distance”

d(xi, u) = ‖u− xi‖2 + wi.

The convex piecewise linear function

φh(u) = Max
i
u · xi + hi,

for hi = − 1
2 (‖xi‖

2
+ wi) has constant gradient xi on

each Voronoi cell. The monotone transport between µ
and the empirical distribution of a sample x1, . . . , xn
is T = ∇φh with

h = Argmin

∫
φh(u)du−

1

n

∑
hi

(which can be computed by Newton’s method).

Forecaster’s dilemma:
extreme events and forecast evaluation

S. Lerch et al.
Forecasts are often only evaluated when an extreme
event occurs (earthquake, financial crisis, etc.): this en-
courages forecasters to always predict disaster – when-
ever they will be examined, they will be right. There
is no fix for point forecasts, but probability forecasts
are more flexible. The joint distribution of forecast F
and observation Y can be decomposed as

[F, Y] = [F][Y |F] = sharpness× calibration.

The quality of a forecast distribition F for an observa-
tion y can be measured by the logarithmic score

LogS(F, y) = − log f(y)

or by the continuously ranked probability score

CRPS(F, y) =
∫ +∞

−∞

(
F (y)− 1y⩽z

)2
dz.

There are weighted variants:

CL(F, y) = −w(y) log f(y)∫
wf

twCRPS(F, y) =
∫
w(z)

(
F (z)− 1y⩽z

)2
dz.

The Cramér distance
as a solution to biased Wasserstein gradients

M.G. Bellemare et al.
In machine learning, the Kullback-Leibler divergence
(relative entropy) is often used to measure the “dis-
tance” between the data and the fitted model. Instead,
one can use the Wasserstein metric, which does not
only consider probabilities, but also proximities.
It is scale-invariant

d(cX, cY) ⩽ |c|β d(X,Y)

and sum-invariant

d(A+X,A+ Y) = d(X,Y)

but does not have unbiased sample gradients

∇θ d(P,Qθ) 6= E
x1,...,xm∼p

∇θ d
(∑

δxi , Qθ

)
.

Prefer the Cramér distance

d2(P,Q) =

(∫ (
FP (x)− FQ(x)

)2
dx

)2

,

which is scale-invariant, sum-invariant, and has unbi-
ased sample gradients.

Article and book summaries by Vincent Zoonekynd 464/1044

A note on the evaluation of generative models
L. Theis et al. (2016)

The Jensen-Shanon divergence (JSD) is a symmetrized
KL divergence:

JSD(p, q) =
1

2
KL
(
p
∥∥∥ p+ q

2

)
+

1

2
KL
(
q
∥∥∥ p+ q

2

)
The maximum mean discrepancy (MMD) id

MMD(p, q) = E
x,x′∼p
y,y′∼q

[
k(x, x′)− 2k(x, y) + k(y, y′)

]1/2
.

Random projection
through multiple optical scattering:

approximating kernels at the speed of light
A. Saade et al.

Analogue, optical devices can efficiently compute ran-
dom projections.

Alpha-beta divergences discover
micro and macro structures in data

K. Narayan et al. (2015)
The Kullback-Leibler divergence

D(P‖Q) =
∑
i≠j

Pij log
Pij
Qij

minimized by t-SNE can be replaced by the α-β-
divergence

D(P‖Q) =
1

αβ

∑
i ̸=j

−PαijQ
β
ij+

α

α+ β
Pα+βij +

β

α+ β
Qα+βij .

Different values of (α, β) focus on macro-structures,
micro-structures or hard-to-classify observations (α ≈
1, β ≈ 0, α+ β ≈ 1).

Entropic graph-based posterior regularization
M.W. Libbrecht et al. (2015)

To encourage variables associated to nodes in a graph
to have similar posterior distributions when those
nodes are linked, add a penalty for their KL divergence.
More precisely, posterior regularization introduces an
auxiliary joint distribution q, adds a regularizer to it,
and a penalty to make it close to the the posterior p,

Penalty(p) = Max
q
−D(q‖p) + Penalty(q).

Persistence topology of syntax
A. Port et al.

Persistence homology shows that language evolution
cannot be summarized by a tree, but often needs
a more general phylogenetic network – for Indo-
European, the first homology generator comes from
ancient Greek.

Spin class models of syntax
and language evolution

K. Siva et al.
Spin model to model and forecast the evolution of a
weighted graph with binary feature vectors at each
node.

Graph grammars, insertion Lie algebras
and quantum field theory
M. Marcolli and A. Port

Graph grammars generalize context-free and context-
sensitive grammars, and model parallelism: the pro-
duction rules replace a subgraph (a single, non-
terminal node, in the case of context-free grammars)
with a new graph.

Prevalence and recoverability of syntactic
parameters in sparse distributed memories

J.J. Park et al.
A Kanerva network (or sparse distributed memory)
learns a mapping FN2 → {±1} from a dataset (xi, yi)i
as follows:
– Pick k points x̂i, · · · x̂k ∈ FN2 , each associated with a

count variable ŷ1, . . . , ŷk, initialized at 0;
– For each observation (xi, yi), find the points within
distance d of xi, and increment/decrement their
counts.

Here, they are used to check which language features
(SVO order, etc. – from the SSWL (now TerraLing) or
WALS databases) can be recovered. They can also
learn the identity map FN2 → {±1}N , i.e., learn a
dataset.
Implementation in msbrogli/sdm.

Submodularity in data subset selection
and active learning

K. Wei et al. (2015)
To select a small sample of data on which to train a
classifier with minimal performance loss, consider the
data log-likelihood,

`(S) =
∑
i∈V

log p
(
xi, yi|θ(s)

)
i.e., the likelihood of the whole data V when the model
is estimated on a subset S ⊂ V . For the naive Bayes
or the nearest neighbour classifiers, this is a difference
of submodular functions but, under the constraints
|S| = k and S balanced (same label distribution as V),
it reduces to a modular function, which can be approx-
imately maximized with the lazy greedy algorithm.

Article and book summaries by Vincent Zoonekynd 465/1044

Langevin diffusions and
the Metropolis-adjusted Langevin algorithm

T. Xifara et al.
Given a diffusion dXt = µ(Xt)dt + σ(Xt)dWt, the
probability density function p(x, y) satisfies the Fokker-
Plank equation

∂p

∂t
= −∂(µp)

∂x
+

1

2

∂(σ2p)

∂x2

or
∂p

∂t
= −1′∇x(µp) +

1

2
1′∇2

x(σσ
′p)1

in dimension n. One can therefore build a diffusion
with a prescribed stationary distribution, e.g.,

dXt =
1

2
∇ log πdt+ dWt

or
dXt =

1

2
A∇ log πdt+ Γdt+

√
AdWt

(with Γ(x) = 0 if A(x) does not depend on x).

FairTest: discovering unwarranted
associations in data-driven applications

F. Tramèr et al.
Unwarranted associations are statistically signifi-
cant associations, in a subpopulation, between a pro-
tected attribute and an output, with no accompanying
explanatory factor. Examples include
– Unintended side effects (e.g., discounted prices if
there is a competitor nearly exclude low-income ar-
eas);

– Large errors affecting a subpopulation (e.g., future
health prediction for the elderly).

The dual-sparse topic model: mining focused
topics and focused terms in short text

T. Lin et al. (2014)
Spike-and-slab prior for sparse topic mixtures and
sparse word usage.

A unified model
for unsupervised opinion spamming detection

incorporating text generality
Y. Xu et al.

Hierarchical Bayesian model for spam detection, com-
bining text, user and item features, estimated with
Gibbs-EM, i.e., alternating between collapsed Gibbs
sampling and variational inference gradient descent.

Bayesian post-selection inference
in the linear model
S. Panigrahi et al.

In selective inference (adaptive data analysis), the ana-
lyst looks at the data before deciding which question to
ask. This can be modeled by conditioning on selection,
i.e., by using a truncated log-likelihood, for a sequence

model (k largest statistics, BY correction) or a (gener-
alized) linear model (through a convex approximation
of the truncated likelihood).

Learning the nonlinear geometry of
high-dimensional data: models and algorithms

T. Wu and W.U. Bajwa (2015)
Union-of-subspace (UoS) models have trouble when
the subspaces are close: constrain the subspaces to
be close, using a distance on the Grassmanian, e.g.,
d(S1, S2) = ‖D1 − PS2D1‖F where Di is an orthonor-
mal basis of Si and PS2

is the projection on S2 – it
can also be defined from the principal angles θk as
d(S1, S2) =

√
s−

∑
cos2 θk12, where s is the subspace

dimension (for nonlinear data, use a kernel).

Scalable Gaussian processes for characterizing
multidimensional change surfaces

W. Herlands et al. (2015)
Mixture models

f(x) =
∑

pifi(x), p = softmax(w(x)),

with a Gaussian process prior on w, can be seen as
generalizations of changepoint models.

Deterministic independent component analysis
R. Huang et al.

Variants of the HKICA algorithm (FastICA, i.e.,
finding directions maximizing some measure of non-
Gaussianity, only has theoretical guarantees in the
noiseless case):
– Sample φ, ψ ∼ N(0, I);
– Compute mp(η) = E[(η′X)p], f = 1

12 (m4 − 3m2
2),

∇2f̂ ;
– Compute the eigenvectors of (∇2f̂φ)(∇2f̂ψ)−1, A =

(µ1| · · · |µd);
– We then have x ≈ As+Gaussian noise.

On restricted nonnegative matrix factorization
D. Chistikov et al. (2016)

The nonnegative rank of an n×m nonnegative matrix
M is the smallest d for which we can find nonnega-
tive n × d and d × m matrices W and H such that
M =WH. If M is rational, W and H need not be so,
i.e., rankQ+ > rankR+ in general (in dimensions beyond
3). The restricted NMF requires rankM = rankW ,
defining a restricted nonnegative rank.

Distributional rank aggregation
and an axiomatic analysis

A. Prasad et al. (2015)
Rank aggregation is the problem of combining several
rankings (e.g., from search engines) into one. Distri-
butional rank aggregation only uses the distribution
(histogram) of the rankings. The normative axioms of
“social welfare theory”, non-dictatorship, universality,

Article and book summaries by Vincent Zoonekynd 466/1044

transversality, Pareto efficiency and independence to
irrelevant alternatives (Arrow’s impossibility theorem)
can be relaxed and satisfied.

Parallel resampling in the particle filter
L.M. Murray et al. (2015)

The propagation and weighting steps of sequential
Monte Carlo (SMC, particle filters) are easy to par-
allelize, but the resampling step is less so – try:
– Rejection sampling, if an upper bound on the weights
is known:

j ∼ UnifJ1, NK while Unif(0, 1) > w1/wmax;

– Metropolis: run N identical Markov chains in paral-
lel, for B steps, sampling from Multinom(w) – only
the weight ratios wi/wj are needed.

Scalable nearest neighbor algorithms
for high-dimensional data

M. Muja and D.G. Lowe (2014)
The FLANN library for approximate nearest neighbour
search automatically selects the algorithm among:
– Randomized k-d forests: multiple k-d trees searched
in parallel, in which the split dimension is chosen
randomly from the top 5 with highest variances –
non-axis-aligned variants exist but do not perform
significantly better;

– Priority search k-means trees: find k clusters and
process each cluster recursively until they reach a
minimum size – it is just another way of hierarchi-
cally partitioning the space.

Six myths
of polynomial interpolation quadrature

L.N. Trefethen
Equispaced interpolation may diverge (Runge phe-
nomenon) but Chebychev interpolation, i.e., interpo-
lation on [−1, 1] at xk = cos(jπ/n), converges for Lip-
schitz continuous functions.
It can be numerically evaluated with the barycentric

formula

`j(x) =
∏
i ̸=j

x− xi
xj − xi

`(x) =
∏

(x− xi)

`′(xj) =
∏
i ̸=j

(xi − xj)

`j(x) =
`(x)

x− xj
1

`′(xj)
=

`(x)

x− xj
wj

g(x) =
∑

`j(x)yj = `(x)
∑ wj

x− xj
yj

1 = `(x)
∑ wj

x− xj
1

g(x) =
g(x)

1
=

∑ wj
x− xj

yi∑ wj
x− xj

The monomials xk are well-suited to find roots on the
circle; for roots on [−1, 1], prefer Chebychev polynomi-
als.

Fixed points of belief propagation
an analysis via polynomial continuation

C. Knoll et al.
Homotopy continuation is a way of numerically
finding the solutions of a system of equations, by fol-
lowing a homotopy from an easy-to-solve system to the
desired one. In the case of a polynomial system, the
polyhedral homotopy method finds all the solutions (it
scales better than Gröbner bases).
Non-free implementation in Hom4PS-3.

Transfinite game values in infinite chess
C.D.A. Evans and J.D. Hamkins

A position has value (at most) n if there is a strategy
leading to a check-mate in (at most) nmoves, whatever
the opponent does.
A position with value ω, the first infinite ordinal, is
a position with Black to play resulting in a mate-in-n
position for White, with n a large as Black wants.
A position with value ω + n is n moves away from a
position with value ω.
A position with value nω is a position in which Black
can announce n times “I will make an announcement in
ki moves” or, for the last one, “I will lose in kn moves”,
with the ki’s as large as desired.
In a position with value kω, Black can play to be in a
position with value kω, with k as large as desired.

A position in infinite chess with game value ω4

C.D.A. Evans et al.

Article and book summaries by Vincent Zoonekynd 467/1044

What is a Leavitt path algebra?
G. Abrams

Given a momoid M , it is possible to find a ring R so
that (ModR,⊕) 'M .

Highly comparative time-series analysis:
the empirical structure of time series

and their methods
B.F. Fulcher et al. (2013)

The hctsa Matlab library (GPL) provides 1000 time
series features for classification, clustering and biclus-
tering, to be used with the UCR time series dataset for
nearest neighbour search.

FATS: Feature analysis for time series
I. Nun et al. (2015)

The fats Python library computes 30 time series fea-
tures (to classify astronomy time series).

Feature-based time series analysis
B.D. Fulcher (2017)

Look at global features:
– Distribution of the values (µ, σ, etc.);

– Stationarity, e.g., StatAv =
sd(x̄1:w, x̄w+1:2w, . . .)

sd(x)
– ACF, Fourier and wavelet coefficients;
– Nonlinear time series analysis: Lyapunov coeffi-
cients, correlation dimension, correlation entropy;

– Entropy: approximate entropy, sample entropy, per-
mutation entropy;

– Scaling (fractality): Hurst exponent (DFA);
– Time series models: parameters and goodness-of-fit
statistics, properties of the residuals;

and subsequence features:
– If the time series are aligned, consider Mean(xi:j),
Sd(xi:j), Slope(xi:j) – these are families of features:
select them greedily, using the entropy gain (as in
decision trees);

– Shapelets are small patterns that may appear in a
time series,

Min
i
d(xi−w:i+w, shapelet)

selected by genetic algorithms – you can also look at
their position or the number of occurrences.

Automatic time series phenotyping
using massive feature extraction

B.D. Fulcher and N.S. Jones (2016)
Normalize the time series with a “robust sigmoid”,

x←
(
1 + exp−x−median

1.35× IQR

)−1

Large-scale unusual time series detection
R.J. Hyndman et al. (2015)

A few more time series features:
– Lumpiness: variance of the variances in 24-
observation blocks;

– Spikiness: variance of the l.o.o. variances of the STL
residuals;

– Level and variance change: maximum change in
mean or variance in consecutive 24-observation
blocks;

– KL score: maximum Kulback-Leibler divergence be-
tween kernel density estimates of consecutive 48-
observation blocks;

– Flat spots: maximum run length of the (10-value)
quantized time series.

Some features are not defined: peak, trough, curvature.

Forecastable component analysis
G.M. Goerg (2013)

Find orthogonal directions, maximizing forecastability,
measured by Ω = 1−H/ log 2π, where H is the spec-
tral entropy, i.e., the entropy of the spectral density
(the spectrum, rescaled to be a probability density on
S1). Implementation in ForeCA::Omega.

A scalable method for time series clustering
X. Wang et al. (2004)

Cluster time series using the following features:

– Trend = 1− Var(detrended)
Var(raw)

– Seasonality = 1− Var(deseasoned)
Var(raw)

– Periodicity: position of the first peak in the ACF, it
it is positive, and significantly higher than the pre-
vious trough;

– Serial correlation: Box-Pierce statistic;
– Non-linearity: Teräsvirta test statistic;
– Skewness, kurtosis, Hurst exponent, maximum Lya-
punov exponent.

All those features have values in [0,+∞): rescale them
parametrically

q 7→ eaq − 1

b+ eaq

so that quantiles 10% and 90% correspond to time se-
ries with and without the features (respectively an ex-
ample from the literature, and white noise).

TSClust: an R package
for time series clustering

P. Montero and J.A. Vilar (2014)
The TSclust package defines the following dissimilar-
ity measures:
– Lp distance;
– Dynamic time warp (DTW) distance,

d(x, y) = Min
r

∑
(i,j)∈r

|xi − yj | ;

Article and book summaries by Vincent Zoonekynd 468/1044

– Fréchet distance,

d(x, y) = Min
r

Max
(i,j)∈r

|xi − yj | ;

– Correlation:√
2(1− Cor(x, y)),

(
1− Cor(x, y)

1 + Cor(x, y)

)β/2
;

– L2 distance between the ACF, with constant or ex-
ponentially decaying weights;

– L2 distance between the periodograms, the nor-
malized periodograms, the integrated periodograms
(Cramér–von Mises distance between the spectral
densities);

– Distance between the wavelet coefficients, the
AR(∞) coefficients or the cepstral coefficients;

– Statistics from ARMA tests checking if the two time
series come from the same model;

– Distance between the SAX representations (obtained
by aggregating, and then quantizing with quantiles);

– Divergence between the distributions of the permu-
tations induced by an m-dimensional embedding;

– Normalized compression distance and variants:

C(xy)−Min{C(x), C(y)}
Max{C(x), C(y)}

,
C(xy)

C(x)C(y)
;

– Distance between the k-step-ahead forecast distribu-
tions, from a sieve bootstrap (i.e., bootstrap on the
residuals of an AR or similar model).

Those measures can be corrected, for correlation or
complexity, by multiplying by

1

1 + exp kCor(∆x,∆y)
or Max{CE(x),CE(y)}

Min{CE(x),CE(y)} ,

where CE(x) = ‖∆x‖22.

pdc: an R package
for complexity-based clustering of time series

A.M. Brandmaier (2015)
To cluster time series, use an m-dimensional embed-
ding, replace the m-dimensional vectors with the cor-
responding permutation (their ranks), and use the
Hellinger distance (a metric approximation of the KL
divergence) between the permutation distributions as
a dissimilarity measure. Choose the embedding dimen-
sion m and the delay τ to minimize the (average) nor-
malized permutation entropy

− 1

m!

∑
σ∈Sn

pσ log pσ.

Visualising forecasting algorithm performance
using time series instance spaces

Y. Kang et al. (2016)
Time series features (spectral entropy, trend and sea-
sonality strength from the STL decomposition, period
(if known), ACF, optimal Box-Cox transformation to
make the time series linear) can be used to

– Check how diverse the M3 dataset (in the MComp
package) is;

– Add synthetic time series in its gaps, using a genetic
algorithm;

– Visualize which forecasting algorthms perform well
with which type of time series.

JIDT: an information-theoretic toolkit
for studying the dynamics of complex systems

J.T. Lizier (2014)
The JIDT Java library provides several information-
theoretic measures for time series, centered on transfer
entropy, and several estimators.

Entropy rate H(Xn+1|Xn)

Active information storage I(Xn;Xn+1)

Transfer entropy I(Yn+1;Xn+1|Xn)

Conditional TE I(Yn+1;Xn+1|Xn, Zn)

(you can replace Xn with (Xn, . . . , Xn+k−1)).

Multiscale entropy analysis
M. Costa et al. (2000)

Compute the average of the datapoints on non-
overlapping windows of size τ , and then the sample
entropy; plot the sample entropy versus τ – for 1/f
noise, it is flat.

Introducing nonlinear time series analysis
in undergraduate courses

M. Perc (2004)
Nonlinear time series analysis studies stationary, de-
terministic time series, from data alone, i.e., without
knowledge of the underlying dynamical system.
The dynamical system can often be recovered from
the Takens embedding, i.e., the cloud of points
(xt, xt+τ , . . . , xt+(m−1)τ) ∈ Rm. To choose the delay
τ , check when the ACF decreases to 1/e, or when the
AMI (auto-mutual information) reaches its first min-
imum – though there is no reason such a minimum
should exist. To choose the embedding dimension m,
notice that two points close in the embedding should
remain close at the next time step – if not, i.e., if

‖pt − ps‖ ⩽ σ but |xt+mτ − xs+mτ |
‖pt − ps‖

> 10,

they are false nearest neighbours (FNN) – we are miss-
ing some information about them. Plot the proportion
of FNN as a function of m to help select m.
To test for stationarity, split the time series into non-
overlapping segments and compare the mean and stan-
dard deviation on each segment, or look at the cross-
prediction error δij when forecasting the next obser-
vation in segment j with a k-NN model fitted on seg-
ment i.
To recover the dynamical system,

Article and book summaries by Vincent Zoonekynd 469/1044

– Split the embedding space into boxes;
– Whenever a trajectory crosses a box, compute its
average direction, as a unit vector;

– Average the vectors in each (non-empty) box – if the
directions are consistent, the average will still have
unit norm.

The Lyaponov exponent measures how fast nearby tra-
jectories diverge; it can be estimated by choosing a
point ps close to pt and averaging

1

ν
log
‖pt+ν − ps+ν‖
‖pt − ps‖

with ν = mτ , and replacing the point ps at each step,
trying to keep the same direction.

Nonlinear time series analysis revisited
E. Bradley and H. Kantz (2015)

Nonlinear time series analysis reconstructs the state
space of a dynamical system, from data alone, to com-
pute fractal dimension, Lyapunov exponents (instabil-
ity), Kolmogorov-Sinai entropy (unpredictability), etc.
– but noise and the finiteness of the data call for cau-
tion.
– The fraction of pairs of data points at distance at
most ε (the correlation sum) scales as εD2 , where
D2 is the fractal (Renyi) dimension.

– The time series should be long enough: as a rule of
thumb, N > 42D2 .

– To test if the values are significantly different from
a null model, use surrogate time series: Fourier
transform the data, randomize the phases, transform
back, map onto the original values (only keeping the
rank), and somehow recover the correlations.

– Permutation entropy.
– Recurrence plots and recurrence quantitative anal-
ysis (RQA): proportion of black points in the plot,
in diagonals, in vertical lines, length distribution of
those lines.

– Network characteristics: interpret the recurrence
matrix as a graph and look at some of its metrics:
centrality, shortest paths, clustering coefficients, etc.

Distinguishing noise from chaos is difficult.

Complex network approach
for recurrence analysis of time series

N. Marwan et al. (2009)
The following five RQA features
– Maximum diagonal length;
– Laminicity: proportion of points in vertical lines;
– Link density (for the network whose adjacency ma-
trix is the recurrence plot);

– Clustering coefficient;
– Average minimum path length
can identify different regimes of the logistic map
xn+1 ← αsn(1−xn) as α varies, or (when estimated on
a moving window) the different regimes of a real-world
time series.

Characterizing the structural diversity
of complex networks across domains

K. Ikehara and A. Clauset (2016)
To compare networks, look at scale-invariant features:
clustering coefficient, degree assortativity and network
motifs (compared with a random graph with the same
degree distribution).

Time series classification with COTE: the
collective of transformation-based ensembles

A. Bagnall et al. (2014)
Classify time series using ensemble methods (ran-
dom forests or rotation forests – random forests
with a PCA on a random subset of the variables
at each node), on data transformed into the time
(shapelets), frequency (periodogram) or autocorrela-
tion (ACF, PACF, AR coefficients) domains.
The shapelet features are the distances to smaller
time series s (“shapelets”),

d(s, x) = Min
y⊂x

len(x)=len(s)

d(s, y);

those smaller time series are taken from subsequences
of the training data, pruned to retain only the most
discriminating ones (small distances to one class, large
distance to the others) and to avoid redundancy.

Forecasting at scale
S.J. Taylor and B. Letham

To forecast time series, Facebook uses a GAM-like
model, with trend, seasonality (Fourier) and (irregu-
lar) holiday components – curve fitting is easier than
time series modeling. The trend is either piecewise lin-
ear (with a large number of potential changepoints, but
a Laplace prior keeps them sparse), or a logistic growth
model, with changepoints accounting for changes in
market size (e.g., using the population from the World
Bank).
R/Python implementation, via Stan, in fbprophet.

Distributed and parallel time series feature
extraction for industrial big data applications

M. Christ et al. (2017)
Select time series features (from hctsa) using tests
for feature ⊥⊥ outcome (Fisher, Kolmogorov-Smirnov
or Kendall rank, depending on whether the variables
are binary or continuous) and the Benjamini-Yekutieli
(BY) procedure to control the false discovery rate
(FDR).

The all-relevant feature selection
using random forest

M.B. Kursa and W.R. Rudnicki (2010)
To find all the relevant features (instead of just a non-
redundant set), add a “shadow” variable for each fea-
ture, by shuffling its values, fit a random forest, and

Article and book summaries by Vincent Zoonekynd 470/1044

mark as relevant the features more important than the
best random one; remove them, and iterate until noth-
ing left is relevant.
R implementation in Boruta.

Surrogate time series
T. Schreiber and A. Schmitz (1999)

To test if a time series is linear, e.g.,
– H0: iid;
– H0: ARMA (“Gaussian linear”);
– H0: Nonlinear transformation of an ARMA process;
(these are composite null hypotheses), look at statistics
such as time reversibility E[(Xn−Xn−τ)

3] or the non-
linear prediction error (nlpe). The p-value can be com-
puted with simulations. The bootstrap would estimate
an ARMA model on the data and generate new data
from the fitted model. Constrained randomization
generates data with the same ARMA estimates, i.e.,
with the same ACF. For instance, one can Gaussian-
ize the data, compute its FFT, randomize the phase,
transform back, and restore the distribution, but this
tends to give a flatter power spectrum. Instead, start
with a shuffled time series and iterate:
– Force the spectrum to be correct, by rescaling it to
the correct amplitudes, keeping the phases;

– Force the distribution to be correct (resampling).
Conserving the Fourier amplitudes preserves the peri-
odic ACF, not the ACF: to limit the problem, measure
the corresponding artefacts and remove a few observa-
tions at the beginning or the end to minimize them.
Alternatively, use simulated annealing to find a per-
mutation of the original time series with a small dis-
crepancy between the ACFs (not exactly the minimum
discrepancy: that would be the original time series).

A large set of audio features for sound
description (similarity and classification)

in the Cuidado project
G. Peeters (2004)

Audio features include:
– Spectral shape (linear or exponential fit; properties
of the spectral density);

– ACF, zero crossing rate;
– Length of the ADSR (envelope) phases;
– Fundamental frequency, inharmonicity (weighted
average distance between successive spectral peaks
and multiples of the fundamental), harmonic devi-
ation (deviation of the harmonics from the spectral
envelope), odd/even harmonic ratio, tristimulus (rel-
ative energy in harmonics 1, 2–4 and 5+).

Time-varying market beta:
does the estimation methodology matter?

B. Nieto et al. (2014)
Comparison of several time-varying beta estimators
(prefer Kalman or GARCH):

– Regression on a moving window, with constant or
decreasing weights;

– Multivariate GARCH
BEKK: Ht+1 = C ′C +A′εtε

′
tA+B′HtB

DCC: Ht = DtRtDt

(where Dt is a diagonal GARCH model) and asym-
metric variants;

– Kalman filters
random walk: βt+1 = βt + noise

random observations: βt = β0 + noise

Arbitrated ensemble for time series forecasting
V. Cerqueira et al.

To combine time series forecasts, model how each
model performs for different types of inputs and how
this performance changes with time (the metamodel
forecasts the model error).

Graph-theoretic properties of the darkweb
V. Griffith et al.

The Darkweb is only loosely connected: most sites
have no outgoing links. Data from the tor2web proxy
onion.link, crawled with scrapinghub.com (com-
mercial), starting from directoryvi6plzm.onion and
ahmia.fi/onions.

A divide-and-conquer framework
for distributed graph clustering

W. Yang and H. Xu (2015)
The generalized stochastic block model divides the
nodes into clusters and outliers; the edge probability
is p for notes inside the same cluster and q < p other-
wise (edges between clusters or involving an outlier).
It can be fitted, in parallel, with a divide-and-conquer
approach:
– Randomly partition the nodes into groups;
– Find clusters in each of those subgraphs;
– Build a “fused” graph, whose nodes are the subgraph
clusters, and with an edge between two clusters if the
edge density exceeds some threshold t (q < t < p);

– Find clusters in the fused graph.

Real-time community detection
in large social networks on a laptop

B. Chanberlain et al.
The minhash of a subset A ⊂ J1, nK is hσ(A) =
Min{σ(a), a ∈ A} for a (fixed) random permutation
σ ∈ Sn. The Jaccard similarity can be approximated
with minhashes:

J(A,B) =
|A ∩B|
|A ∪B|

= P
σ∈Sn

[hσ(A) = hσ(B)].

Given a large graph, the neighbours of a node can
be compressed (lossily) using minhash signatures (e.g.,
1000 hash functions for 1,000,000 nodes), and locality-
sensitive hashing (LSH) can be used to find approxi-
mate nearest neighbours: with the Jaccard similarity,

Article and book summaries by Vincent Zoonekynd 471/1044

they form a weighted graph, on which we can compute
(local) communities. The Jaccard similarity also helps
solve coverage problems (“find the smallest number of
athletes that have influence over half of Twitter”) –
|A ∪B| = |A|+|B|−|A ∩B| links the number of neigh-
bours of a community and of a node and their Jaccard
similarity.

Querrying k-truss community
in large and dynamic graphs

X. Huang et al. (2014)
The k-truss of a graph G is the largest subgraph in
which each edge is in at least k − 2 triangles.
A k-truss community is a maximal k-truss subgraph in
which any two edges are reachable through a series of
adjacent triangles.
After putting the k-truss subgraphs in a suitable index,
one can retrieve the k-truss community of a vertex in
linear time.

Bayesian dynamic modeling and analysis
of streaming network data

X. Chen and K. Irie (2015)
To model the flow of visitors on a graph (website), con-
sider a non-Gaussian state space model

i : node
t : time

nit : number of occupants of node i at time t
xijt : flow from i to j between t− 1 and t
x0it ∼ Poisφit new visitors
xi·t ∼ Mult(ni,t−1, θi·t) movement between nodes
φit : arrival rate
θijt : transition probabilities

θijt =
φijt∑
φi·t

φijt = µtαijβjtγijt

βjt : attractivity of node j at time t

Unpaired image-to-image translation
using cycle-consistent adversarial networks

J.Y. Zhu et al.
CycleGAN translates (unpaired) images between two
domains (paintings and photographs, horses and ze-
bras, summer and winder, aerial photographs and
maps, etc.) by learning two mappings

X Y
G

B

with an adversarial loss to make the distribution of
G(X) indistinguishable from that of Y , and to ensure
F ◦G ' id (cycle-consistency).

InfoGAN: interpretable representation
learning by information maximizing

generative adversarial nets
X. Chen et al.

To make the latent space of GANs more interpretable
(in an ICA-like way), split the noise into an incom-
pressible part z and a “code” c, and solve the minimax
problem

Min
G

Max
D

VGAN(D,G)− λI
(
c;G(z, c)

)
VGAN(D,G) = E

x∼Data
[logD(x)] +

E
(c,z)∼Noise

[
log
(
1−DG(c, z)

)]
after replacing the mutual information with a (varia-
tional) lower bound.

Adversarial feature learning
J. Donahue et al. (2017)

The BiGAN has an encoder, converting the data to
features, and its discriminator uses both the data and
the latent representation.

noise generator generated
data

discriminator

features encoder real
data

Texture networks: feed-forward synthesis
of textures and stylized images

D. Ulyanov et al (2016)
To generate a texture (target), find a CNN f generat-
ing similar VGG features, i.e., minimizing

‖VGG f(noise)−VGGtarget‖ .

For style transfer, use

‖VGG f(noise, content)−VGGtarget‖ ,

where the target is fixed.

Rethinking the inception architecture
for computer vision

C. Szegedy et al.

5× 5 ⇝
3× 3

3× 3
n× n ⇝

1× n

n× 1

Article and book summaries by Vincent Zoonekynd 472/1044

X-CNN: cross-modal convolutional neural
networks for sparse datasets

P. Veličković et al.
Process the input layers separately, mix them, and
merge them.

R
G
B

softmax
FC

conv layers

Multiplicative LSTM for sequence modelling
B. Krause et al.

Tensor RNNs have character-specific hidden-to-hidden
weights

h(t) =W xt
hhht−1 +Whxxt.

Multiplicative RNNs use a sparse description of those
weight matrices

W xt
hh =Whm · diag(Wmxxt) ·Wmh.

This idea can be combined with LSTMs (which already
contain a multiplication).

Google’s multilingual
neural machine translation system:

enabling zero-shot translation
M. Johnson et al.

The same network can translate into many languages:
just add a token, at the begining of the sentence, spec-
ifying the target language.

Skip-thought vectors
R. Kiros et al.

Compute sentence embeddings by reconstructing the
surrounding sentences, using a seq2seq RNN with GRU
units, trained on the BookCorpus dataset.

AudioSet: an ontology and human-labeled
dataset for audio events

J.F. Gemmeke et al.
AudioSet is the audio equivalent of ImageNet: 600
classes, 2 million 10-second samples, from YouTube.

Unsupervised machine translation
using monolingual corpora only

G. Lample et al.
Learn embedding of two languages into the same latent
space, initialized with a bilingual lexicon (only words –
no sentences), and learn to reconstruct a sentence from
language A from a noisy version of its embedding. Add
an adversarial regularization, with a discriminator to
recognize the language from the latent space.

The translation loop is an example of noise.

Asentence

Alatent = Blatent

Alatent = Blatent

Bsentence

Neural architecture search
with reinforcement learning

B. Zoph and Q.V. Le (2017)
Reinforcement learning can help improve existing net-
work architectures (number of layers, dimension, filter
size, stride, etc.) and devise new LSTM-like cells.

Self-critical sequence training
for image captioning

S.J. Rennie et al.
Reinforcement learning deals with non-differentiable
rewards: it maximizes the expected reward wrt a base-
line to reduce minibatch variance. Those ideas can
be used for the non-differentiable evaluation metrics
commonly used in natural language processing (BLEU,
etc.) instead of cross-entropy.

Learning options in reinforcement learning
M. Stolle and D. Precup

Use frequently-visited states as subgoals for your rein-
forcement learning system to easily adapt to different
goals.

Effect of reward function choices
in risk-averse reinforcement learning

S. Ma and J.Y. Yu
Given a Markov decision process (MDP), one can max-
imize the value-at-risk (VaR) or the expected shortfall
(ES, CVaR) instead of the expected discounted reward.

Hyperband: a novel bandit-based approach
to hyperparameter optimization

L. Li et al. (2016)
To tune hyperparameters, successive halving uniformly
allocates resources (number of training sets, number of
features, iterations) to n random configurations, evalu-
ates their performance, throws away the botttom half,
and continues, improving the precision on the perfor-
mance of the remaining configuration, until there is
only one left. For a given time budget B, Hyperband
tried different trade-offs between n and B/n.

Learning concept embedding
with combined human-machine expertise

M.W. Wilber
Add triplet constraints dij ⩽ dik to t-SNE (from Me-
chanicalTurk).

Article and book summaries by Vincent Zoonekynd 473/1044

The high-dimensional geometry
of binary neural networks

A.G. Anderson and C.P. Berg
In high dimensions, binarization approximately
preserves directions and batch-normalized weight-
activation dot products – but keep continuous weights
for the first layer: it is very different.

Exploring loss function topology
with cyclical learning rates

L.N. Smith and N. Topin (2017)
Repeatedly increasing and decreasing the learning rate
(e.g., 0.1 → 1 → 0.1) allows the optimization to find
several different minima, often better than a constant
learning rate.

Generating focused molecule libraries for drug
discovery with recurrent neural networks

M.H.S. Segler et al.
Fit a recurrent neural net (3 stacked LSTM layers, 1024
dimensions, dropout=0.2) on the Smiles description of
1,000,000 molecules (a 1-dimensional, textual descrip-
tion of molecules) and use it to generate new molecules
for further (in silico) testing.

Kernel approximation methods
for speech recognition

A. May et al.
Random features approximate the kernel trick. They
can be selected iteratively: generate random features,
fit the model, keep the best features; start again with
a new set of random features.
The following loss functions do not penalize incorrect
forecasts as much as cross-entropy:

−
∑
i,y

(
1y=yi + βp(y|xi)

)
log p(y|xi) entropy-penalized

−
∑
i

log
(
p(yi|xi) + λ

)
capped

−
∑

1⩽i⩽k
log p(yi|xi) top-k.

World literature according to Wikipedia:
introduction to a DBpedia-based framework

C. Hube et al. (2017)
DBpedia extracts data from Wikipedia infoboxes, us-
ing hand-written (crowd-sourced) rules. The data is
not as clean as we would like: for instance, there is no
single, reliable way of identifying “writers”.

PathNet: evolution channels gradient descent
in super neural networks

C. Fernando et al.
To learn different tasks on the same network (“evolu-
tionary dropout”): pick a random set of paths through

the network, train the corresponding subnet, for the
first task; freeze the corresponding weights; proceed to
the second task.

Deep forest: towards an alternative
to deep neural networks

Z.H. Zhou and J. Feng (2017)
Deep models need not be limited to neural nets: use a
random forest for a classification problem; concatenate
its input and its output (class probabilities) and feed
them to another random forest; iterate a few times.
Those layers could be convolution-like, taking patches
of an image or sequence as input.

Batch renormalization:
towards reducing minibatch dependence

in batch-normalized models
S. Ioffe

When using batch normalization with small or non-iid
batches, add a (non-learned) affine transform to ac-
count for the difference in mean and variance between
the minibatch and the population.

PixelNet: representation of the pixels,
by the pixels, and for the pixels

A. Bansal
For pixel-level predictions (semantic segmentation,
edge detection, surface normal extraction), use a
spatially-invariant (convolutional) model, with multi-
scale features (“hypercolumns”, i.e., connections from
earlier, more detailed layers) and only sample a few
(2000) pixels per image (to reduce the dependence,
which could harm stochastic gradient descent).

Cosine normalization: using cosine similarity
instead of dot product in neural networks

L. Chunjie et al.
Replace the dot product x 7→ w · x in neural networks
with the cosine similarity (i.e., correlation)

x 7→ w · x
‖w‖ ‖x‖

.

Neural audio synthesis of musical nodes
with WaveNet autoencoders

J. Engel et al.
The NSynth dataset contains 300,000 4-second notes,
from 1000 instruments, from commercial sample li-
braries, with different pitches and velocities.

Learning character-level compositionality
with visual features

F. Liu et al.
For alphabetical languages, character-level models can
understand word morphology and deal with unknown
words. For more complex writing systems (Chinese,

Article and book summaries by Vincent Zoonekynd 474/1044

Japanese, Korean), convert the characters to 36 × 36
images and feed them to a CNN + GRU-CNN.

Tacotron: towards end-to-end speech synthesis
Y. Wang et al.

End-to-end speech synthesis by combining convolution
(n-grams), batch normalization, residual connections,
highway networks, bidirectional GRUs and attention
to produce spectrogram frames.

A study of complex deep learning networks
on high-performance, neuromorphic

and quantum computers
T.E. Potok et al.

Adiabatic quantum computers can fit (non-restricted,
i.e., non-bipartite) Boltzmann machines – networks
with intra-layer connections are becoming tractable.
Neuromorphic computers (spiking neural nets, SNN),
built with memristors, may make computations more
efficient.

Opening the black box of deep neural networks
via information

R. Schwartz-Ziv and N. Tishby
Representing a learning (deep) neural net in the in-
formation plane

(
I(input; hidden), I(hidden; output)

)
where the mutual information I(X,Y) =
KL(px,y‖pxpy) measures the information the input
variable X has on the output Y , reveals two phases:
– Compressing the information, i.e., increasing
I(hidden; output) while preserving I(input; hidden);

– Discarding irrelavant information, i.e., decreasing
I(input; hidden), which helps generalization.

Database learning: towards a database
that becomes smarter every time

Y. Park et al.
The answer to each database query can help fine-tune a
probabilistic model of the data, used to speed up future
queries and/or provide faster approximate results.

Active convolution: learning the shape
of convolution for image classification

Y. Jeon and J. Kim
Active convolution units have no fixed shape and allow
for fractional pixel coordinates.

−→

A simple neural network module
for relational learning

A. Santoro et al.

Relation networks (RN) are built from modules of the
form

x 7−→ fϕ

(∑
ij

gθ(xi, xj)

)

where f and g are multi-layer perceptrons (but it is the
same gθ for all pairs).

Fast algorithms
for convolutional neural networks

A. Lavin and S. Gray
The Winograd minimal filtering algorithm computes
1- or 2-dimensional filters with the minimal number of
multiplications – for the small filters used on CNNs, it
is faster than the FFT.

HyperNetworks
D. Ha et al.

Hypernetworks are networks generating the weights
of another network; they can be trained end-to-end
with backpropagation. They can generate non-shared
LSTM (or CNN) weights.

Deep feature interpolation
for image content changes

P. Upchurch et al.
Deep neural networks can describe images with fea-
tures in a linear (not curved) space: linear interpola-
tion in a direction (age, gender, glasses, smile, etc.)
produces high-resolution image transforms.

Fitted learning:
models with awareness of their limits

N. Kardan and K.O. Stanley
For classification problems, use k neurons for each class
in the output layers (instead of 1), train to set their val-
ues to 1, but use their product at test time – this limits
overly-confident generalizations.

Unsupervised learning for physical interaction
through video prediction

C. Finn et al.
Predict motion, at the pixel level, assuming that pixels
do not move large distances, and that pixels are only
transformed in a small number of ways (pixels belong-
ing to the same object move in the same way).

Residual networks behave like
ensembles of relatively shallow networks

A. Veit et al.

Article and book summaries by Vincent Zoonekynd 475/1044

Aggregated residual transformations
for deep neural networks

S. Xie

1× 1 1× 1

3× 3 3× 3

1× 1 1× 1

+

· · ·

Input convex neural networks
B. Amos et al.

Neural nets can be constrained to be convex functions
of their input, by requiring the weights to be positive

y z1 z2 z3 · · · zk

(skip connections are useful for the network to remain
expressive), or of part of the input,

zi+1 ∼ zi � ui + zi � y + ui

by requiring part of the input (the z � u term) to be
positive.

y z1 z2 · · · zk−1 zk

x u1 u2 · · · uk−1

Such networks can be used in optimization problems,

Argmin
y

f(x, y; θ).

Wide and deep learning
for recommender systems

H.T. Cheng et al.

Self-normalizing neural networks
G. Klambauer

No batch normalization is needed for the activation
function

selu(x) = λ

{
x if x > 0
α(ex − 1) if x ⩽ 0.

Aggregated residual transformations
for deep neural networks

S. Xie et al.
Put the non-linearity (purple) before or after aggregat-
ing.

+

vs

+

Memory networks
J. Weston et al. (2015)

Add (classical) memory cells to a neural network: at
each time step, the neural network decides which cells
to update and how, using their contents together with
the new data.

DeepCoder: learning to write programs
M. Balog et al.

Inductive program synthesis (IPS) for a simple array
manipulation language (only linear control flow: head,
last, take, drop, access, min, max, rev, sort, sum;
map, filter, count, zip, scan; (+1), (−1), (×2), (/2),
(×− 1), (2), (> 0), (< 0), odd, even). The neural net-
work is only used to guide more traditional approaches:
stochastic local search, depth-first search, etc.

mixup: beyond empirical risk minimization
H. Zhang et al.

To help the network generalize better to examples
slightly outside the training distribution, augment
the data with convex combinations (1 − λ)(x1, y1) +
λ(x2, y2) (use one-hot-encoding for y).

Coherent line drawing
H. Kang et al.

The edge tangent flow of an image I is computed iter-
atively:

tx ← ∇I(x)⊥

tx ←
1

k

∑
∥x−y∥⩽r

σ
(
‖∇I(x)‖ − ‖∇I(y)‖

)
(tx · ty)ty.

Applying a difference of Gaussians (DoG) in the di-
rection orthogonal to the edge flow gives a nice line
drawing.

Simplex noise demystified
S. Gustavson (2005)

Simplex noise is similar to Perlin noise, but replaces
hypercubes with simplices, which facilitates interpola-
tion.

Article and book summaries by Vincent Zoonekynd 476/1044

SATGraf: visualizing the evolution
of SAT formula structures in solvers

Z. Newsham et al. (2014)
To visualize how SAT solvers transform a boolean for-
mula, look at the clause-variable incidence graph – its
community structure is related to the running time.

Network risk and financial crisis
Y.A. Chen (2015)

Build a parametric portfolio from the Katz centrality

x = γAx+ β1

of the weighted network defined by the variance of
residual returns.
Compute the beta of each stock wrt that portfolio;
decompose the idiosyncratic volatility into “network
volatility” and a remainder.

Media network and return predictability
L. Guo and Y. Tao (2017)

The connection score of two stocks i, j, is

CSij =
∑
k

toneik × tonejk

where the sum if over all news mentioning both i and
j and the tone is in [−1, 1].
The media connection index∑

i ̸=j CSij∑
ij CSij

can be used as a risk measure.

Deep stock representation learning: from
candlestick charts to investment decisions

G. Hu et al.
Feed candlestick charts (i.e., images), for the FTSE
100 stocks, to a convolutional autoencoder; cluster
them using the resulting latent representation, with
a community detection algorithm (no need to specify
the number of clusters); invest in the stocks with the
largest Sharpe ratio in the cluster.

Local explosion modelling
by noncausal processes

C. Gouriéroux and J.M. Zakoian (2016)
Non-causal AR(1) processes can model bubbles grow-
ing and bursting; aggregating them allows for different
rates of increase (e.g., a continuous distribution); one
can also add a (causal, Gaussian) AR(1).

The myths and limits
of passive hedge fund replication

N. Amenc et al. (2007)
There are two approaches to replicate hedge funds (nei-
ther works well):

– Compute the exposure of hedge fund returns to a set
of pre-selected factors;

– Build an option, on a reference asset (anything, e.g.,
S&P 500) and choose the payoff function giving the
desired payoff distribution (“moment matching”).
The price of that option can be used as a measure of
performance. This “replicating” strategy has com-
parable returns, but not at the same times. The
first moment is not captured: the returns are lower.
[There is a bivariate, copula-based variant but it only
models (portfolio, underlying), not (portfolio, fund).]

Possible improvements to capture nonlinearities, dy-
namic trading, non-stationarity and time series prop-
erties include:
– Heuristic dynamic (rule-based) strategies;
– Instrumental variables for time- and state-
dependence;

– Future factor loading forecasts;
– Time-varying models (Kalman filter, particle filter,
Markov switching);

– Ad hoc options portfolios (e.g, ATM and OTM puts
and calls on S&P500);

– Statistical techniques to estimate the options (and
underlyings) needed.

An alternative approach to alternative beta
T. Toncalli and J. Teïletche (2007)

Use the Kalman filter to estimate time-dependent fac-
tor exposures. It also decomposes the returns (for one
period) into traditional (i.e., average) beta, alternative
(difference with the average) beta and alpha (residual,
intercept).

Tracking problems, hedge fund replication
and alternative beta

T. Roncalli and G. Weisang (2008)
The Kalman filter provides (Gaussian, linear) factor
exposures. The unscented Kalman filter (UKF) allows
for non-Gaussian innovations. One can add non-linear
assets to the list of factors; if they depend on a pa-
rameter (say, a strike), it can be modeled as a random
walk, as part of the hidden state, but the model be-
comes nonlinear – use a particle filter (PF, sequential
Monte Carlo, SMC). Hedge fund performance can be
decomposed into: traditional beta, alternative beta,
lag (alternative beta one period ahead), alternative al-
pha (the rest – this includes illiquid assets).

Regular(ized) hedge fund clones
D. Giamouridis and S. Paterlini (2009)

Use the lasso for factor-based hedge fund replication
[the resulting weights are biased towards zero].

Article and book summaries by Vincent Zoonekynd 477/1044

Can hedge fund returns be replicated?
The linear case

J. Hasanhodzic and W. Lo
Replicate individual hedge funds using in-sample or
24-month rolling window regressions against USD, AA
bonds, BAA−treasury, S&P500, commodities (GSCI)
and VIX monthly changes, with no intercept, weights
summing to 1, and using leverage to match the tar-
get’s volatility. The clones have lower autocorrelation
(a proxy for illiquidity).

Hedge fund replication:
putting the pieces together

V. Weber and F. Peres (2013)
Do not only use static factors, but also dynamic ones
(carry, momentum). Correct hedge fund returns for
illiquidity:

R̂t =
Rt − αRt−1

1− α
(Gettner)

Rt = observed returns
α = Cor(Rt, Rt−1).

Send in the clones?
Hedge fund replication using futures contracts

N.P.B. Bollen and G.S. Fisher (2012)
Replicating hedge fund indices [many people invest in
funds of funds] with futures (USD, 10-year, gold, oil,
S&P500) using 1 to 4 year rolling window regressions
gives poor performance and shows no sign of market
timing, r ∼

∑
fi+

∑
1fi>0fi; the clone-target correla-

tion is high, but mostly due to market exposure.

Hedge fund replication:
a model combination approach

M.S. O’Doherty et al. (2016)
Instead of directly estimating a linear replication
model, estimate separate replication models, using do-
mestic equities (S&P500, S&P Midcap 400), interna-
tional equities (FTSEE 100, Nikkei 225), currencies
(GBP, CHF, JPY) and commodities (gold, corn, oil)
and average using “log-scale” weights (BMA).

A primer on alternative risk premia
R. Hamdan et al. (2016)

Five concerns with the five-factor model
D. Blitz et al.

The two factors added to the Fama-French model (mar-
ket, size, value, profitability, investment) are not ro-
bust, lack an economic rationale, and still ignore mo-
mentum.

Bayesian Poisson Tucker decomposition
for learning the structure
of international relations

A. Schein et al. (2016)
Model international relations (country i takes action
a on country j at time t) using country-community,
action-topic and time-regime factor matrices:

yti
a−→j ∼ Poisson

(∑
c

θic
∑
d

θjd
∑
k

φak
∑
r

ψtrλ
r
c
k−→d

)
with Gamma priors, estimated with MCMC.

A gentle introduction to value at risk
L. Ballotta and G. Fusai (2017)

The idiosyncratic momentum anomaly
D. Blitz et al. (2017)

Use idiosyncratic momentum (rather than total mo-
mentum) to forecast future returns.

Deep learning for forecasting stock returns
in the cross-section

M. Abe and H. Nakayama (2018)
Deep neural networks, with 1 to 6 fully-connected hid-
den layers, 50% dropout, tanh activations, to forecast
(uniformized) 1-month ahead stock returns for MSCI
Japan, from 25 (uniformized) investment factors, both
current and past values (3, 6, 9 and 12 months), trained
for 100 epochs on universe-sized minibatches, on a 10-
year window.

Proofs are programs:
19th century logic and 21st century computing

P. Wadler (2000)
Frege’s logic considers judgments (e.g., ` A), axioms
(e.g., ` A→ A) and deduction rules, e.g.,

` B → A ` B
` A

.

Gentzen’s logic adds assumptions to the judgments
(e.g., B1, . . . , Bn ` A instead of ` A) and to the de-
duction rules, e.g.,

Γ ` B → A ∆ ` B
Γ,∆ ` A

.

While this may look more complex (in particular, the
three if-then notions: → for propositions, ` for judg-
ments and ·

· in the inference rules), the deduction
rules end up simpler and more intuitive.
Typed λ-calculus has typing judgments (e.g.,

x1 : B1, . . . , xn : Bn ` t : A,

meaning that if the xi’s have types Bi, then t has type
A) and the same deduction rules as Gentzen’s system,
e.g.,

Γ ` t : B → A ∆ ` u : B

Γ,∆ ` t(u) : A
.

Article and book summaries by Vincent Zoonekynd 478/1044

(Unless we explicitly add recursion, all functions termi-
nate and the calculus is not Turing-complete.) Term
reduction corresponds to proof simplification (Curry-
Howard correspondance).

Physics, topology, logic and computation:
a Rosetta stone

J.C. Baez and M.M. Stay (2009)
Variants of monoidal categories

– braided:
– symmetric: =
– cartesian: ⊗ = ×
– closed: ⊗ a Hom
– compact: Hom(X,Y) = X∗ ⊗ Y
– dagger (with a functor † : C → Cop, the identity on
ObC, with f†† = f)

appear in many domains, e.g.,
– cobordisms
– tangles in Rn

– finite-dimensional Hilbert spaces (the inner product
gives a dagger structure)

– finite-dimensional representations of a Lie (resp.
quantum) group form a compact symmetric
(braided) monoidal category.

Propositional calculus forms a monoidal category
with propositions as objects, a single morphismX → Y
whenever X ⇒ Y , and ⊗ = ∧, Hom(X,Y) = X ⇒ Y .
It is a Heyting algebra, i.e., a preorder C such that
C and Cop be cartesian closed.
Linear logic replaces ∧, ⇒, > with ⊗, ⊸ and I and
only requires a symmetric monoidal category, not a
cartesian closed one: there are no natural morphisms
X → X ⊗ X or X → I, i.e., we cannot duplicate or
delete information (as in quantum physics or chem-
istry).
Alternatively, one can consider propositions as ob-
jects and proofs as morphisms, where the proofs are
obtained from inference rules, i.e., natural or dinat-
ural transformations, most of which come from the
monoidal/braided/cartesian structure.
In λ-calculus, everything is a function. For instance,
Church numerals are

0 = λf 7→ λx 7→ x f 7→ id
1 = λf 7→ λx 7→ f(x) f 7→ f

2 = λf 7→ λx 7→ f(f(x)) f 7→ f2

and addition and multiplication are

times = λa λb λf a(b(f))

plus = λa λb λf λx a(f)
(
b(f)(x)

)
.

(I write λx 7→ t or λx t instead of (λx.t) and dispense
with many of the parentheses.)
Typed λ-calculus, where every term has a type,
forms a cartesian closed category with types as objects
and equivalence classes of terms as morphisms (if we

do not focus on what is computed but how it is com-
puted, we get a 2-category, with terms as morphisms
and equivalence classes to rewrites as 2-morphisms).
Linear type theories correspond to symmetric
monoidal categories. They can also be described by
combinators. The usual ones

I = λx 7→ x

K = λx 7→ λy 7→ x

S = λx 7→ λy 7→ λz 7→ x(z)
(
y(z)

)
cannot do because K forgets information and S du-
plicates it. Each term t is equivalent to cp(t) vp(t),
where cp(t) is the combinator part and vp(t) the vari-
able part.

Internal set theory
E. Nelson (2002)

There are two ways of presenting non-standard anal-
ysis: either explicitly, by constructing the hyperreals,
or by tweaking the ZFC axioms (internal set theory):
– The subset axiom, to define {x ∈ X : A(x)}, is only
valid for internal formulas A (those which do not use
the “standard” predicate);

– Transfer: ∀stt1 · · · ∀sttn (∀stxA ⇔ ∀xA), for any in-
ternal formula A;

– Idealization: ∀stfinX ∃y ∀x ∈ X A ⇔ ∃y ∀stx ∈ X A
(for A internal);

– Standardization:

∀stX ∃stY ∀stz (z ∈ Y ⇐⇒ z ∈ X ∧A(z))

for any formula A (internal or external), which al-
lows us to define S{z ∈ X : A(z)} the standard set
whose standard elements are the standard elements
z of X such that A(z).

The “standard” predicate is no longer limited to real
numbers, but applies to sets, functions, topological
spaces, points in topological spaces, etc.
Includes exercises. Check Radically elementary proba-
bility theory, by the same author, on probability theory
with non-standard finite probability spaces.

Division by three
P.G. Doyle and J.H. Conway (1994)

Proving A × 3 ≈ B × 3 =⇒ A ≈ B does not require
the axiom of choice.

Developing bug-free machine learning systems
with formal mathematics

S. Selsam et al. (2017)
The lean theorem prover tries to combine program
verification (à la Coq) and formal mathematics (à la
Mizar). Here, it is used for a provably correct gradient
descent implementation.

Article and book summaries by Vincent Zoonekynd 479/1044

The ring of algebraic functions
on persistence bar codes
A. Adcock et al. (2013)

To turn a barcode [x1, y1], . . . , [xn, yn] into features,
for machine learning, use multisymmetric polynomials
pab =

∑
i x

a
i y
b
i , for instance∑

xi(yi − xi)∑
(ymax − yi)(yi − xi)∑
x2i (yi − xi)4∑
(ymax − yi)2(yi − xi)4.

Barcodes form an affine (semi)algebraic ind-
variety, with ring of algebraic functions Λ2 =
lim−→ k[x1, y1, . . . , xn, yn]

Sn (multisymmetric polynomi-
als), quotiented by an ideal D = lim−→Dn corresponding
to the identification of intervals of length zero. Λ2 is
freely generated by the multisymmetric power sums
pab =

∑
i x

a
i y
b
i , and D by the pa+1,b − pa,b+1.

An alternative is to use the bottleneck or Wasserstein
distance.

Persistent homology
H. Edelsbrunner and D. Morozov

(Handbook of discrete
and computational geometry, 2017)

The implementation details are not that complicated.

High-dimensional topological data analysis
F. Chazal (Handbook of discrete

and computational geometry, 2017)
1. A subset X ⊂ Rn can be represented by its distance
function

φ :

{
Rn → R+

x 7→ d(x,X)

(it is proper and x 7→ ‖x‖2 − φ(x)2 is convex). To
increase the robustness to outliers, consider measures
instead of subsets, e.g., µ =

∑
x∈X δx if X is discrete,

and the functions

δµ,ℓ :

{
Rn → R+

x 7→ inf
{
r > 0 : µ

(
B(x, r)

)
> `
}

They are not smooth, but the distance to measure
d2µm is

d2µm :

 Rn → R+

x 7→ 1

m

∫ m

0

δµ,ℓ(x)
2d`

(it is the average of the squared distances from x to
its k nearest neighbours). If two measures µ and ν are
close (for the Wasserstein distance), then the sublevel
sets of their distance-to-measure functions are homo-
topy equivalent (reconstruction theorem).
2. For many tasks, full reconstruction is not needed
and a few homotopy or homology invariants suffice.

In particular, the nerve of an open cover X =
⋃
i Ui

all of whose finite intersections are contractible is ho-
motopy equivalent to X (nerve theorem).
3. Persistent homology keeps track, not only of the
dimensions of the homology groups (Betti numbers)
of
⋃
x∈X B(x, ε) as ε increases, but also of individual

connected components, cycles and cavities – the result,
the (birthi, deathi) pairs, forms the persistence dia-
gram. The bottleneck distance between two per-
sistence diagrams D and D′ is the smallest δ > 0 for
which we can match all points of D at distance at least
δ from the diagonal with a point of D′ at distance at
most δ. It is bounded by twice the Gromov-Hausdorff
distance.
4. The Mapper algorithm visualizes a dataset X ⊂
Rn and a function f : X → R by choosing an open
cover

⋃
Ii of f(X) ⊂ R by intervals, clustering the

points in each f−1(Ii) into a (finite) cover, and plot-
ting the 1-skeleton of the corresponding cover of X.

Topological analysis of financial time series:
landscapes of crashes

M. Gidea and Y. Katz (2017)
The persistence landscape is obtained from the
(birth, death) persistence diagram by flipping it 45°,
associating a piecewise function to each birth-death
pair, and considering the sequence of functions given
by the kth largest values. While persistence diagrams
form a (non-complete) metric space for the Wasserstein
distance, persistence landscapes form a Banach space
for the Lp norm. (Measure theory on an infinite di-
mensional Banach space is a little more complicated:
for instance, the notions of weak (Pettis) and strong
(Bochner) integrability differ.)

A[,1]

A
[,2

]

birth

death

f(A[, 1], A[, 2])

g(
A

[,
1]

, A
[,

2]
)

Index

N
A

The L1 or L2 norm of the persistence landscape of the
daily returns of a few indices (S&P 500, DJIA, Nasdaq,
Russel 2000) on a 50-day window may help forecast
crises.

Statistical topological data analysis
using persistence landscapes

P. Bubenik (2015)
Initial paper on persistence landscapes.

A persistence landscapes toolbox
for topological statistics

P. Bubenik and P. Dłotka
Standalone, file-based C++ implementation (comput-
ing persistence landscapes, their averages, their Lp dis-
tances). Also check the TDA R package.

Article and book summaries by Vincent Zoonekynd 480/1044

Topology-based data analysis identifies
a subgroup of breast cancers with a unique
mutational profile and excellent survival

M. Nicolau et al. (2011)
The mapper algorithm takes a cloud of points X and
a (Morse) function f : X → R (e.g., a random projec-
tion, a measure of density, a distance to a baseline, an
eccentricity measure), applies a clustering algorithm to
the points in each fa = f−1(]a− ε, a+ ε[), and builds a
graph with those clusters as nodes and edges between
x ∈ fa and y ∈ fb if x ∩ y 6= ∅ (partial clustering,
discrete Morse theory). In R, check TDAmapper.
It is another way of “filtering” a cloud of points into a
graph, keeping most of its features (loops, appendages,
etc.).

Topological methods for the analysis of high
dimensional datasets and 3D object recognition

G. Singh et al.
In the Mapper algorithm, using several Morse func-
tions defines a simplicial complex instead of a graph –
and letting ε vary leads to persistence homology.

The Topology Toolkit
J. Tierny et al.

Topological data analysis (TDA) is not a single al-
gorithm (Mapper, or persistence homology, depend-
ing in who you ask), but a smogasbord of techniques.
TTK is a library (C++, BSD, accessible from Python)
and graphical toolkit (built on Paraview) using low-
dimensional TDA (mostly discrete Morse theory) to vi-
sualize scientific data (PDE solutions and other scalar
fields).
The data is given as a Morse function f : M → R,
i.e., a scalar field (or several of them); in contrast with
high-dimensional TDA, the PL manifold M is often
uninteresting (R2 or R3).
TDA studies the transitions of the Betti numbers
βkf

−1{x} or βkf
−1]−∞, x] or βkf

−1 [x,+∞[as x
varies.
A point is critical if one of

Link+(p) = {q ∈ Neigh(p) : f(q) > f(p)}
Link−(p) = {q ∈ Neigh(p) : f(q) < f(p)}

is not simply connected. Critical points can be paired
into birth-death pairs, defining a persistence diagram.
To simplify f , one can prune short-lived pairs (those
whose persistence, f(death) − f(birth) is small). The
persistence curve is the plot of the number of critical
points with persistence at least x, as x increases.
The Reeb graph segments M into regions where π0f−1c
does not change.
The Morse complex is defined by the attraction bassins
of f .

Subsampling methods for persistent homology
F. Chazal et al. (2015)

Compute the persistence landscape on several subsam-
ples and average them.

Equilibrated adaptive learning rates
for non-convex optimization

Y.N. Dauphin et al.
In the presence of different curvatures, in particular
around a saddle point, gradient descent oscillates a lot.
Preconditioning uses a change of variables,

θ = D−1/2θ̂

f̂(θ̂) = f(D−1/2θ̂) = f(θ)

∇f̂ = D−1/2∇

∇2f̂ = D−1/2′(∇2f)D−1/2

θt+1 ← θt − ηD−1∇f(θt).

The absolute Hessian (defined from the eigen-
decomposition of the Hessian, by taking the absolute
value of the eigenvalues) gives a perfect conditioner
(the curvature is the same in all directions), D = |H|,
but it is computationally expensive.
The Jacobi conditioner is the diagonal of the Hessian.
It could be estimated as

diagH = E
v∼Unif({±1}n)

[v �Hv].

AdaGrad, AdaDelta, RMSProp are other diagonal con-
ditioners.
The equilibrium conditioner is the diagonal of the ab-
solute Hessian; it can be defined as the L2 norm of the
rows of the Hessian; it can be estimated as

‖Hi·‖2 = E
vi∼N(0,1)

[(Hv)2].

A smart stochastic algorithm
for nonconvex optimization

with applications to robust machine learning
A. Aravkin and D. Davis

Machine learning minimizes
∑

1⩽i⩽n
fi(x). Trimmed ma-

chine learning minimizes
∑

1⩽i⩽k
f(i)(x), where f(i)(x)

are the order statistics of
(
fi(x)

)
i
.

The problem can be formulated as

Find w ∈ Rn, x ∈H

To minimize 1

n

∑
i wifi(x) + r1(w) + r2(x)

Where r1 = 1∆h

∆h = {w ∈ [0, 1]n : w′1 ⩽ h}.

and solved by proximal alternating minimization (w ←
proxr1(· · ·), x← proxr2(· · ·)). With mini-batches, use
variance reduction (SVRG).

Article and book summaries by Vincent Zoonekynd 481/1044

Model calibration with neural networks
A. Hernandez (2016)

Given enough training data, optimization can be re-
placed with a trained neural net.

Pymanopt: a Python toolbox for optimization
on manifolds using automatic differentiation

J. Townsend et al. (2016)
Automatic differentiation can also compute (first and
second) derivatives on Riemannian manifolds.

Learning to learn
for global optimization of black box functions

Y. Chet et al.
A recurrent neural network (RNN: LSTM or differ-
entiable computer) can learn to reproduce what a
Bayesian blackbox optimizer does (it uses its memory
to store information about the previous function eval-
uations). It is much faster than GP-based algorithms,
and competitive in case of model mis-specification.

Understanding deep learning requires
rethinking generalization

C. Zhang et al.
We still do not know why deep neural networks work
well: VC dimension, Rademacher complexity, uniform
stability, explicit/implicit regularization, model capac-
ity fail to explain why they generalize so well in some
cases (real data) but not others.

A tutorial on Bayesian optimization
of expensive cost functions, with applications

to active user modeling and hierarchical
reinforcement learning

E. Brochu et al. (2010)

An entropy search portfolio
for Bayesian optimization

B. Shahriari et al.
Use a portfolio of acquisition functions and follow that
giving the largest decrease in the uncertainty of the
location of the minimizer (or sample accordingly).

A theoretical analysis of
optimization by Gaussian continuation

H. Mobahi and J.W. Fisher (2015)
Optimization by continuation [or mollifying] starts to
optimize an easy simplification (e.g., a convex relax-
ation) of the problem, and progressively transforms it
into the actual task.

The irace package: iterated racing
for automatic algorithm configuration

M. López-Ibáñez et al.
Implementation of the iterated F-race algorithm, with
a few extensions (other statistical tests, restarts, etc.).

Guaranteed non-convex optimization:
submodular maximization
over continuous domains

A.A. Bian et al. (2016)
The notion of submodularity can be generalized to con-
tinuous domains: for f : Rn → R, the following con-
ditions are equivalent.
(i) f(x) + f(y) ⩾ f(x ∧ y) + f(x ∨ y), where ∧ and
∨ are the coordinate-wise min and max;

(ii) ∀x ∀i 6= j
∂2f

∂xi∂xj
⩽ 0;

(iii) f(λei + a) − f(a) ⩾ f(λei + b) − f(b), whenever
a ⩽ b, ai = bi, λ ⩾ 0, where ei is the ith basis
vector.

Best subset selection
via a modern optimization lens

D. Bertsimas et al. (2015)
Best subset selection for linear regression can be done
exactly for p ⩽ 30 (leaps), with the lasso, or with
non-convex penalized regression; the minimax con-
cave penalty (MCP), implemented in Sparsenet, is
quadratic for β small and then constant; the smoothly
clipped absolute deviation (SCAD) penalty is linear,
then quadratic, then constant.
Progress in mixed integer programming makes solving
the exact problem reasonable for p = 100, n = 1000.
Hard thresholding computesHk(x) = Argmin

∥β∥0⩽k
‖β − c‖22 .

If g is Lipschitz and convex,

g(η) ⩽ g(β) + L

2
‖η − β‖22 + 〈∇g(β), η − β〉.

To solve

Minimize
β

g(β) subject to ‖β‖0 ⩽ k

for g lipschitz and convex, iterate

βm+1 ← Hk

(
βm −

1

L
∇g(βm)

)
(discrete projected gradient) until ‖∆β‖2 ⩽ ε; then
solve the continuous problem for the corresponding
non-zero coordinates.
A line search βm+1 = (1 − λ)βm + λH gives better
empirical performance.

Article and book summaries by Vincent Zoonekynd 482/1044

Subgroup discovery
M. Atzmueller (2005)

Subgroup discovery (SD) is a frequent-itemset-based su-
pervised clustering technique: after extracting frequent
association rules for the target variable, select a small
number of them with good quality (measured by some
statistical test: χ2, gof, etc.) so that they hardly over-
lap and have good coverage.

Anytime discovery of a diverse set of patterns
with Monte Carlo Tree search

G. Bosc et al.
Pattern mining is a form of structured learning (pro-
gressively build patterns, one element at a time):
Monte Carlo Tree Search (MCTS) produces more di-
verse rules than greedy approaches.

On b-bit min-wise hashing for large-scale
regression and classification with sparse data

R.D. Shah and N. Meinshausen (2016)
Large-scale datasets (large p, large n, but sparse) can
be tackled with random projections (X 7→ XA, A ran-
dom) or sketches (X 7→ AX). b-bit min-wise hashing
reduces a large sparse binary matrix X as follows:
– Pick a random permutation of the columns;
– In each row, find the index (in the permuted matrix)
of the first non-zero value;

– Use the last b bits of those indices as b new columns
in the compressed matrix;

– Repeat a few times with more permutations.
“Similarity” between rows is preserved.

Sparse solutions to nonnegative linear systems
and applications

A. Bhaskara et al.
To solve Ax = b, where A, x, b have nonnegative coeffi-
cients and ‖b‖1 = 1, increment x coordinatewise while
keeping the “potential” Φ(x) =

∑
j bj(1 + δ)(Ax)j/bj

small; a small number of iterations leads to a sparse
approximate solution.

Phase recovery from a Bayesian point of view:
the variational approach

A. Drémeau and F. Krzakala
The phase recovery problem, finding x ∈ Cn such that
y = |Dx|, can be solved by alternating projections,
convex relaxation, or variational Bayes.

Katyusha: the first direct acceleration
of stochastic gradient methods

Z. Allen-Zhu (2016)
Katyusha momentum combines variance reduction and

momentum.

xn+1 ← λzn + µx∗ + (1− λ− µ)yn
i ∼ U(J1, nK)

∇n+1 ← ∇f(x∗) +∇fi(xn+1)−∇fi(x∗)
yn+1 ← xn+1 − β∇n+1

zn+1 ← zn − α∇n+1

x∗ updated from time to time

Incorporating Nesterov momentum into Adam
T. Dozat

Adding gradient noise improves learning
for very deep networks

A. Neekakantan et al. (2015)

Exploiting the structure:
stochastic gradient methods using raw clusters

Z. Allen-Zhu et al. (2016)
(LSH-based) approximate clustering transforms “big
data” into “data”; the clusters can improve variance
reduction in SVRG.

Lip reading sentences in the wild
J.S. Chung et al.

Curriculum learning.

Machine teaching:
an inverse problem to machine learning

and an approach toward optimal education
X. Zhu

Machine teaching is the inverse problem of machine
learning (ML): not going from training data to fitted
model, but manufacturing a training dataset for which
the ML algorithm of interest would derive the desired
model.

Training sets Fitted modelML algorithm (e.g., SVM)

machine teaching (e.g., SVM−1)

Unitary evolution recurrent neural networks
A. Arjovsky et al. (2016)

To avoid exploding or vanishing gradients, use (real)
unitary weight matrices (all eigenvalues have modu-
lus 1). Unitary matrices are not easy to parametrize:
model them as products of
– (Complex) diagonal matrices);
– Reflexions: R = I − 2vv∗/ ‖v‖2, v ∈ Cn;
– Permutation matrices (use a single, fixed one);
– Fourier and inverse Fourier transforms.

Article and book summaries by Vincent Zoonekynd 483/1044

Full-capacity
unitary recurrent neural networks

S. Wisdom et al. (2016)
Unitary matrices can eliminate the vanish-
ing/exploding gradient problem in RNNs. Instead
of using a parametrization of some of those matrices,
consider them as points on the (Stiefel) manifold of
unitary matrices.

Self-normalizing neural networks
G. Klambauer et al.

Batch/layer/weight normalization may not be needed:
scaled exponential linear units (SELU)

f(x) =

{
λx if x ⩾ 0

α(ex − 1) if x < 0

with λ > 1 (e.g., λ = 1.0507, α = 1.7581) are self-
normalizing, in the sense that if X ∼ N(0, 1) then
Ef(X) = 0 and Var f(X) = 1 and if X is close to
standardized, then f(X) is more so.

Understanding the difficulty of training
deep feedforward neural networks

X. Glorot and Y. Bengio (2010)
Xavier initialization suggests to select the random
initial weights so that the activations of all layers have
zero mean and unit variance.

Modeling temporal dependencies in
high-dimensional sequences: applications to

polyphonic music generation and transcription
N. Boulanger-Lewandowski et al. (2012)

Restricted Boltzman machines (RBM) economically
model high-dimensional discrete distributions. A re-
current temporal RBM (RTRBM) is a sequence of
RBMs whose parameters are a (fixed) linear function
of the previous hidden state. An RNN-RBM is a se-
quence of RBMs whose parameters are given by a re-
current neural net (RNN). They can be used as a prior
to improve the accuracy of polyphonic transcription.

WaveNet: a generative model for raw audio
A. can den Oord et al.

To generate raw audio samples (16 000Hz), use dilated
causal convolutions, gated units, residual and skip con-
nections.

Strongly-typed recurrent neural networks
D. Balduzzi and M. Ghifary (2016)

Physicists’ dimension analysis suggests RNN, LSTM,
GRU variants.

Learning scalable deep kernels
with recurrent structure

M. Al-Shedivat et al.
Adding a Gaussian process (GP) layer to a recurrent
neural net (RNN) and using the negative log-marginal
likelihood as objective is problematic: the objective no
longer factorizes over the data and stochastic optimiza-
tion cannot be used – but semi-stochastic alternating
gradient descent (full gradient for the GP parameters,
stochastic gradient for the RNN) is good enough.

Professor forcing: a new algorithm
for training recurrent networks

A. Lamb et al. (2016)
Recurrent neural networks (RNN) generate sequences
one character at a time, each conditional on the previ-
ous ones. During training, one can use:
– The previous characters of the ground truth se-
quence (“teacher forcing”, maximum likelihood);

– The previous outputs;
– A mixture of both;
– An adversarial approach, training another model to
distinguish between true and generated sequences,
and using its performance as a penalty.

Improved semantic representations
from tree-structured

long short-term memory networks
K.S. Tai et al.

LSTMs can be generalized from chains to trees.

Deep recursive neural networks
for compositionality in language

O. İrsoy and C. Cardie

the movie was great
Recursive

the movie was great
Deep recursive

AtomNet: a deep convolutional neural network
for bioactivity prediction in structure-based

drug discovery
I. Wallach et al.

CNNs can leverage molecule shapes (on a 3-
dimensional grid) for drug discovery.

Article and book summaries by Vincent Zoonekynd 484/1044

Unsupervised representation learning with deep
convolutional generative adversarial networks

A. Radford et al. (2016)
– Replace pooling layers with strided convolutions
(discriminator) or fractionally strided convolutions
(generator);

– Remove fully-connected layers;
– Use batch normalization;
– Use ReLU (generator), tanh (generator output) and
leaky ReLU (discriminator).

Convolutional networks on graphs
for learning molecular fingerprints

D. Duvenaud et al.
To fingerprint molecules (or graphs), for each node,
compute a hash of its neighbours, then a hash of the
neighbours’ hashes, and so on (circular fingerprints).
Alternatively, use a graph convnet with large random
weights and tanh activations.

Geometric deep learning on graphs
and manifolds using mixture model CNNs

F. Monti et al.
CNNs can be defined on arbitrary graphs or manifolds,
not just lattices in Euclidian space. For instance, for
each vertex x, and each neighbouring vertex y ∈ N (x),
define pseudo coordinates u(x, y) (e.g., geodesic po-
lar coordinates (ρ, θ) on a surface, or the degree on
a graph), apply a weight function w

(
u(x, y)

)
(e.g., a

Gaussian or triangular kernel, possibly with a learnable
parameter) and set

Dj(x)f =
∑

y∈N (x)

w
(
u(x, y)

)
f(y).

Graph stream algorithms: a survey
A. McGregor

Many graph problems can be solved, at least approxi-
mately, with streaming data, i.e., without storing the
whole graph in memory (but you still need Ω(#V) stor-
age):
– Test connectivity by building a spanning forest (a
set of edges): add the next edge {u, v} if there is
currently no path from u to v;

– Approximate distances by building a subgraph: add
the next edge {u, v} if the current d(u, v) is above
some threshold (i.e., if the new edge closes a small
loop);

– Minimum spanning tree (MST);
– Approximately count triangles by considering the
vectors with coordinates xT = #edges in T where
T ∈P3(V);

– Greedy matching;
– Random walks (

√
t passes on the data suffice: stitch√

t walks of length
√
t).

Many streaming algorithms use a linear sketch, i.e., a
random projection (of the adjacency or some related

matrix). Algorithms for sliding window graphs (the
last w edges in an infinite stream) often keep the k
most recent edges satisfying some property.

Darwini:
generating realistic large-scale social graphs

S. Edunov et al.
To generate a (large) graph with prescribed degree and
clustering coefficient distributions (conditional on de-
gree):
– Assign a target degree and clustering coefficient to
each node;

– Group the nodes in clusters, according to cd(d− 1);
– Build and Erdös-Rényi graph on each cluster, choos-
ing the probability (and cluster size) to get the de-
sired expected clustering coefficient (and a degree
inferior to the target);

– Add edges between clusters to get the desired degree
distribution [tricky for large-degree nodes], trying to
keep the joint degree distribution.

How to partition a billion-node graph
L. Wang et al. (2014)

To partition a graph (for distributed processing, or
sparse matrix ordering):
– Coarsen it by finding a maximum match (a set of
edges sharing no vertices) and collapsing its edges,
until the graph is sufficiently small;

– Assign a unique label to each vertex; set the label
of each vertex to the majority label in its neighbour-
hood;

– If there are too many labels, collapse vertices with
the same label, and propagate labels anew.

Graphons, mergeons and so on
J. Eldridge et al. (2016)

A graphon is a symmetric measurable function w :
[0, 1]2 → [0, 1]. It can be seen as a weighted graph
on the uncountable vertex set [0, 1]. It defines a se-
quence of random graphs (graph-valued random vari-
able) (Gn)n, where Gn samples n points xi uniformly
in [0, 1] and then an edge i–j with probability w(xi, xj).
It is consistent (the random graph obtained by re-
moving the (n + 1)st vertex from Gn+1 has the same
distribution as Gn) and local (if S, T ⊂ [n] are dis-
joint, then Gn|S ⊥⊥ Gn|T); these properties charac-
terize graphons. A subset A ⊂ [0, 1] is disconnected at
level λ if there exists S ⊂ A such that 0 < µ(S) < µ(A)
and w < λ on S×(A\S). Define an equivalence relation
∼ on the set Aλ of λ-connected subsets by A1 ∼ A2

iff ∃A ∈ Aλ A ⊃ A1 ∪ A2. The clusters at level λ
are the (essential) largest elements in each equivalence
class. A mergeon describes how clusters merge as λ
decreases: it is a graphon M such that

M−1[λ, 1] =
⋃

C λ-cluster
C × C.

Article and book summaries by Vincent Zoonekynd 485/1044

GraphChi-DB: simple design for a scalable
graph database system – on just a PC

A. Kyrola and C. Guestrin
Adapt the log-structured merge tree (LSM tree) to store
edges: partition them on the destination vertex, but
sort each partition along the source vertex.

Time series analysis of the S&P 500 index:
a horizontal visibility graph approach

M.D. Vamvakaris et al. (2017)
The horizontal visibility graph is a variant of the visi-
bility graph:
– Fit the degree distribution with a power law: if the
exponent is greater than log 3/2, the time series is
auto-correlated; if it is less, it is chaotic;

– The Hellinger distance between the in- and out-
degree distributions measures irreversibility.

Process systems engineering
as a modeling paradigm for analyzing systemic

risk in financial networks
R. Bookstaber et al. (2015)

The financial system can be modeled as a signed-
directed graph (SDG): the directed arcs represent
causal relations, and the sign of x → y is that of
∂y/∂x. Process hazard analysis can help identify feed-
back loops, which amplify shocks – many agents act in
a locally stabilizing but globally destabilizing way.

Diffusion-convolutional neural networks
J. Atwood and D. Towsley (2016)

On a graph, one can forecast node labels Y from node
features X by using the AnX as predictors, where A is
the adjacency matrix. Averaging over the nodes, this
can be generalized to edge or graph labels.

A machine learning perspective
on predictive coding with PAQ

B. Knoll and N. de Freitas (2011)
Prediction by partial matching (PPM) is a lossless com-
pression algorithm well-suited to text:
– Start with a prior probability distribution on the let-
ters;

– Encode the first character with the Huffman code or
the arithmetic code for this distribution;

– Somehow update the probability distribution; iter-
ate.

For instance, one could use an n-gram model, i.e.,
keep track of all the substrings seen so far, and use

the longest matches to predict (the probability) of the
next letter. With noisy inputs, approximate matching
helps. For images, scan by row or column, or along a
space-filling curve (Hilbert) – you can beat jpeg but
not jpeg2000.
PAQ8 uses 500 such models, for bit-level predictions,
ensembled with a mixture of experts (implemented as
a neural net).
Compression can be used to define distances

dC(x, y) =
C(x|y) + C(y|x)

C(xy)

dCDM(x, y) =
C(xy)

C(x) + C(y)

de(x, y) =
1

2

[
E[x|y] + E[y|x]

]
dNDM(x, y) =

C(x, y)−Min{C(x), C(y)}
Max{C(x), C(y)}

where C(x) is the compressed size of x (approxima-
tion of its Kolmogorov complexity), C(x|y) is the com-
pressed size of x if the compressor is trained on y,
E[x|y] is the corresponding cross-entropy of x.
Arithmetic coding encodes a text given a sequence
of probability distributions on letters, as a single ra-
tional number: divide the interval [0, 1] into segments,
one for each possible letter, of length their probabil-
ities; pick the segment corresponding to the current
letter; repeat the process on that segment, with the
next letter; iterate and return any rational number in
the final segment.

A brief review
of the ChaLearn AutoML challenge

I. Guyon et al. (2016)
AutoML is a competition for automated (black-box,
with no human intervention) supervised learning, com-
bining the following ideas:
– Decision trees, k-NN, naive Bayes, neural nets;
– Uniformize, replace missing values, group modalities
of categorical variables, feature selection, dimension
reduction (PCA, kPCA, ICA, MDS, LLE, Laplacian
eigenmaps), clustering (k-means)

– Hyperparameter tuning (SMAC, hyperopt)
– Model selection (k-fold cross-validation, l.o.o, o.o.b.,

bilevel optimization).

Structure discovery in nonparametric
regression through compositional kernel search

D. Duvenaud et al. (2013)
The “automated statistician” performs a search in a
space of kernel structures, built from sums and prod-
ucts of linear, square exponential, periodic, etc. bricks,
in a Gaussian process.

Article and book summaries by Vincent Zoonekynd 486/1044

Machine learning techniques: reductions
between prediction quality metrics

A. Beygelzimmer et al.
Reduction is the set of techniques converting a loss-
minimization problem into a well-studied machine-
learning one, typically binary classification or regres-
sion. Examples include:
– Importance-weighted classification (different cost for
false positives and negatives) by reweighting the
training set;

– Multiclass classification with one-against-all (incon-
sistent), error correcting codes (ECOC, inconsis-
tent), probabilistic ECOC, all-pairs;

– Cost-sensitive multiclass classification, with
weighted all-pairs;

– Quantile regression with importance weighted clas-
sification;

– Ranking (of binary data).

Multi-view machines
B. Cao et al.

Sparse variant of factorization machines.

FastDBT: A speed-optimized
and cache-friendly implementation

of stochastic gradient-boosted decision trees
for multivariate classification

T. Keck
May be faster than XGBoost. Also check LightGBM
and CatBoost.

Coresets for scalable
Bayesian logistic regression

J.H. Higgins et al. (2016)
Replace large datasets with a coreset, i.e., a weighted
(smaller) subset (obtained, e.g., from an approxi-
mate streaming clustering algorithm) to approximate
Bayesian posterior likelihood (for logistic regression).

Domain-adversarial training
of neural networks

Y. Ganin et al. (2016)
Domain adaptation (DA) is the transfer of a model
from one domain to another, sometimes by a mapping
(alignment) between the two domains.

X1 Y

X2

source
domain

target
domain

One can also use an adversarial approach to build
domain-invariant features.

source domain

target domain

features

features

output

no training data
discriminator

Progressive neural networks
A.A. Rusu et al.

To learn a task related to an already-learnt one, con-
sider a new neural net, parallel to the first one, ini-
tialized with random weights, with lateral connections.
To keep the model scalable (task n + 1 has connec-
tions from tasks 1, 2, · · · , n), use dimension reduction
(single-layer network) for those lateral connections.

input

output1 output2

Net2Net: accelerating learning
via knowledge transfer

T. Chen et al. (2016)
Transform an already trained network into a deeper
one by inserting a layer initialized as the identity func-
tion, or into a wider one by duplicating some of the
nodes (keep their input weights and halve their output
weights).

Sampling generative networks
T. White (2016)

In high dimensions, linear interpolation goes through
atypical points (too chose to the origin): prefer spher-
ical interpolation.
To study analogies, e.g., king−man+woman, generate
images in a grid having those three points as corners.
In the latent space, find the directions corresponding
to “smile”, “open mouth”, “gender” or even “blurry”
and generate a 1- or 2-dimensional grid of images by
moving along those directions.

Efficient convolutional auto-encoding
via random convexification

and frequency-domain minimization
M.C. Oveneke et al. (2016)

Use random projections for the non-linear encoding
part of the auto-encoders, and only learn the (linear)
decoding part. [cf echo networks, reservoir learning]

Universal adversarial perturbations
S.M. Moosavi-Dezfooli et al.

There exist almost universal adversarial perturbations:
a small perturbation which, when added to almost any
image, tricks a neural network into misclassifying it.

Article and book summaries by Vincent Zoonekynd 487/1044

Matrix neural networks
J. Gao et al. (2016)

If your neural network has matrices as input (instead
of vectors), try bilinear layers: Y = σ(UXV ′ +B) (U ,
V and B are matrices).

FastText.zip:
compressing text classification models

A. Joulin et al.
Product quantization decomposes the space into k or-
thogonal subspaces Rn =

⊕k
i=1 Vi, computes 2b (with

b = 8) k-means centroids in each of them, and approx-
imates points as sums of those centroids x ≈

∑
qi(x).

Use when you want to approximate scalar products –
e.g., for vector embeddings.

Tensorizing neural networks
A. Novikov et al.

Dimension reduction (TensorTrain) for dense weight
matrices (of fully-connected layers).

Neural network based clustering
using pairwise constraints

Y.C. Hsu and Z. Kira (2016)
Cluster data by training a (softmax) network on simi-
lar and dissimilar pairs.

Composing graphical models
with neural networks for structured
representations and fast inference

M.J. Johnson et al.
Use neural nets to add non-linear transformations
to your graphical models; inference is tricky: SVAE
(structural variational encoders) use stochastic gradi-
ents of a variational approximation.

mgm: Structure estimation
for time-varying mixed graphical models

in high-dimensional data
J.M.B. Haslbeck and L.J. Waldorp

To estimate a Gaussian graphical model, identify the
neighbourhood of each nodel with a lasso regression.
For mixed data (exponential family), use GLMs. For
time-varying models, use (Gaussian) weights.

Inference compilation
and universal probabilistic programming

T.A. Le et al.
Neural networks can be trained to provide better pro-
posal distributions for sequential importance sampling
(SIS).

Memory efficient kernel approximation
S. Si et al. (2014)

Approximate large kernel matrices as a direct sum of
low-rank matrices, where the blocks correspond to clus-
ters.

Multi-class generative adversarial networks
with the L2 loss function

X. Mao et al.
Replace the sigmoid cross-entropy loss in the discrimi-
nator with an L2 loss.

GANs for sequences of discrete elements
with Gumbel-softmax distribution

M. Kusner and J.M. Hernández-Lobato
The Gumbel softmax distribution is the distribution of

y = softmax 1

τ(h+ g)

where gi
iid∼ Gumbel(0, 1). When τ → 0, this be-

comes the one-hot encoding of hi + gi, i.e., y ∼
Multinomial(p), where p = softmaxh, i.e., pi ∝ exphi.
It can be used as a differentiable approximation of the
multinomial distribution, e.g., in GANs.

Augmenting supervised neural networks
with unsupervised objectives

for large-scale image classification
Y. Zhang et al. (2016)

Augment supervised networks with autoencoder losses.

input

output target

input

output target

input

output target

Infinite-dimensional word embedding
E.T. Nalisnick and S. Ravi (2016)

Make word embeddings “infinite dimensional” by ini-
tializing them with high-dimensional (not really infi-
nite) vectors, using only the first z components, with a
penalty for z, and a sparsity penalty on the vectors [un-
related to Dirichlet processes, iHMM and other finite-
dimensional models].

Pointer networks
O. Vinyals et al.

Attention-based networks for TSP, convex hull, Delau-
nay triangulation.

Article and book summaries by Vincent Zoonekynd 488/1044

Structured prediction energy networks
D. Belanger and A. McCallum (2016)

Structured prediction can be performed indirectly, by
learning an energy function and minimizing it.

x

y ∈ {0, 1}n

vs

x y

E(x, y) energy

y = f(x) y = ArgminE(x, y)

For instance, the model could use a 2-layer neural net
to compute features and combine them, linearly and
bilinearly, with the label. The problem can be relaxed
from y ∈ {0, 1}n to y ∈ [0, 1]n.

x y

2-layer NN

linear bilinear label prior

Energy

To learn the model, notice that we want ∀y E(xi, y) ⩾
E(xi, yi), with a larger difference if y and yi are far
apart, e.g., ∀y E(xi, y)−E(xi, yi) ⩾ d(y, yi) ⩾ 0. This
suggests minimizing a structured SVM (SSVM) loss∑

i

Max
y

[
d(y, yi)− E(xi, y) + E(xi, yi)

]
+
.

Machine learning techniques
for Stackelberg security games: a survey

G. De Nittis and F. Trovò (2016)
In the Stackelberg security game (SSG), a defender
protects T targets from an attacker, by allocating re-
sources R < T . The strategies are {x ∈ RT : 0 ⩽ x ⩽
1, x′1 ⩽ R}. If the adversary attacks t, both receive a
penalty and a reward:

Attacker : xtP at + (1− xt)Rat
Defender : (1− xt)P dt + xtR

d
t

Boundedly rational adversaries attack a target at ran-
dom, with a probability depending on their (poten-
tially incorrect) subjective utility. The subjective util-
ity function can be estimated from data (poaching and
illegal fishing provide real-world data). The defender’s
strategy should be robust to suboptimal adversaries.

Apprenticeship learning using inverse
reinforcement learning and gradient methods

G. Neu et al. (2007)
Inverse reinforcement learning (IRL) learns a pol-
icy (a map from state features to actions) from an ex-
pert’s observed behaviour. Instead, one can learn the

reward function for which the optimal policy is as close
to the expert’s as possible.

Dueling network architectures for deep
reinforcement learning

Z. Wang et al.
In deep reinforcement learning, separately learn the
state value function and the state-dependent action ad-
vantage function.

Deep successor reinforcement learning
T.D. Kulkarni et al.

Successor reinforcement learning learns the value func-
tion as the inner product between a reward predictor
and a successor map.

Convexified convolutional neural networks
Y. Zhang et al. (2016)

Training a 1-hidden-layer CNN with linear activations
is an optimization problem with a low-rank constraint
(corresponding to weight sharing) which can be relaxed
into a nuclear norm constraint. For non-linear activa-
tions, use a kernel (RKHS). For deeper networks, this
no longer works, but greedy layer-wise training seems
a good heuristic.

End-to-end kernel learning
with supervised convolutional kernel networks

J. Mairal (2016)
A convolutional kernel network uses the kernel trick to
increase the dimension and add non-linearities

Rn ϕ−→ RN projection−−−−−−→ Rm, N � n,m

without explicitly computing the high-dimensional co-
ordinates. The kernel parameters can be learnt as
usual.

Network in network
M. Lin et al.

CNNs slide simple masks over an image, to detect fea-
tures. Instead, one could slide slightly deeper networks
(“micro-networks”).

Towards a mathematical theory
of super-resolution

E.J. Candès and C. Fernandez-Granda (2012)
It is possible to recover a spike train (i.e., a dis-
crete complex measure, x =

∑
i aiδti) from low-

resolution measurements or, equivalently, from a trun-
cated Fourier transform x̂ = Fnx, by solving a convex
problem

Find y, a complex measure
To minimize ‖y‖TV
Such that Fny = x̂

Article and book summaries by Vincent Zoonekynd 489/1044

provided the spikes are sufficiently separated, where
the total variance of a measure µ on [0, 1] is a contin-
uous analogue of the `1 norm:

‖µ‖TV := |µ| ([0, 1]).

Multiscale Retinex
A.B. Petro et al. (2014)

The retinex algorithm is a local contrast enhance-
ment algorithm. Consider random walks from a point,
x0, x1, . . . , xn; compute

L =
∑

δ

(
log

I(xk)

I(xk+1)

)
,

where δ(u) = u1|u|⩾t is a thresholding function, and
use 〈L〉 as the new luminance.
Alternatively, use the ratio of a pixel value to the aver-
age of its neighbours (with Gaussian weights); repeat
for several scales (σ = 15, 80, 250), and average. Re-
store the colours to their original range, or apply the
algorithm to the intensity channel only.

A point set generation network for 3D object
reconstruction from a single image

H. Fan et al.
To reconstruct a 3D scene as a cloud of points (union of
balls – this eliminates overlap and connectivity prob-
lems), learn a neural net consuming an image and ran-
dom data. The resulting shape eampler also accounts
for ground truth ambiguity.

Spatial transformer networks
M. Jaderberg et al.

Add a transformation layer, to help align images – it is
differentiable, so it will go through gradient descent.

StackGAN: text to photorealistic image synthesis
with stacked generative adversarial networks

H. Zhang et al.
Stack several GANs, generating images of increasing
resolution.

The more you know:
using knowledge graphs for image classification

K. Marino et al.
LSTMs can be generalized to arbitrary DAGs (instead
of time,).
Propagating over the “promising” subset of the graph
may be sufficient.

A deep and autoregressive approach
for topic modeling of multimodal data

Y. Zheng et al. (2016)

Represent images as bags of visual words (e.g., SIFT
features) to use topic models (LDA, DocNADE).

v1, . . . , vd words

p(v) =
∏

p(vi|v<i) or a balanced binary tree

hi(v<i) = g
(
c+

∑
k<i

W•,vk

)
p(vi = w|v<i) ∝ exp

(
bw + Vw,•hi(v<i)

)
Simplicial mixtures of Markov chains:

distributed modelling of dynamic user profiles
M. Girolami and A. Kabán

Variant of latent Dirichlet allocation (LDA: a docu-
ment is a mixture of topics, a topic is a distribution on
words) for mixtures of Markov chains: user activity is
a mixture of behaviours, a behaviour is a distribution
on sequences (Markov chains).

Solving heterogeneous estimating equations
with gradient forests

S. Athey et al. (2016)
Random forests are (high-dimensional) adaptive near-
est neighbour functions: they can be used as an alter-
native to kernel-based weighting, where the weight of
an observation is the proportion of trees in which it is
in the same leaf as the point of interest. The choice
of the splits can be taylored to the model (quantile
regression, etc.) by minimizing the after-cut squared
error, or some gradient-based approximation.
Implementation in gradientForest, ranger.

bartMachine: machine learning
with Bayesian additive regression trees

A. Kapelner and J. Bleich
Forests of regression (not classification) trees, with a
prior on tree structure and leaf parameters:
– Nodes at depth d are non-terminal with probability
α(1 + d)−β , α = .95, β = 2,

– Splitting variables are selected uniformly at random,
– Splitting values are sampled from the multiset of val-
ues taken,

– The parameters are Gaussian,
– The noise is inverse Gamma,
estimated with Metropolis-withing-Gibbs sampling
(Metropolis for the tree structure, Gibbs for the rest),
in Java.

On the generalized ratio of uniforms
as a combination of transformed rejection
and extended inverse of density sampling

L. Martino et al.
Let p be a monotonic probability density (e.g., a half-
Gaussian) and

A =
{
(u, v) ∈ R2 : 0 ⩽ u ⩽

√
p(v/u)

}
,

If (U, V) ∼ Unif A , then V/U ∼ p.

Article and book summaries by Vincent Zoonekynd 490/1044

This can be generalized: let g : R+ → R, C 1, strictly
increasing, g(0) = 0,

Ag =

{
(u, v) ∈ R2 : 0 ⩽ u ⩽ g−1

[
c · p

(v

ġ(u)

)]}
,

if (U, V) ∼ Unif Ag, then V/ġ(U) ∼ p.
Inverse of density sampling, for monotonic probability
density functions, uses

(X,Y) ∼ Unif
{
(x, y) : 0 ⩽ y ⩽ p(x)

}
or, if it is easier to sample from p−1,

Y ∼ p−1, X ∼ Unif [0, p−1Y].

In both cases, X ∼ p.
For non-monotonic densities, decompose them into in-
tervals on which they are either increasing or decreas-
ing.

Pareto smoothed importance sampling
A. Vehtari et al. (2016)

Importance sampling estimates∫
fdP =

∫
f
dP

dQ
dQ ≈ 1

N

∑
f(xi)

p(xi)

q(xi)
,

where xi ∼ Q, when it is easier to sample from Q than
P . If p is only known up to a normalization factor,

∫
fdP ≈

∑
f(xi)

p(xi)

q(xi)∑ p(xi)

q(xi)

.

To stabilize this ratio estimate, one can truncate the
weights wi = p(xi)/q(xi), but this introduces bias. Al-
ternatively, one can fit a Pareto distribution to their
tail and replace the tail values with the corresponding
Pareto quantiles.

Constrained maximum correntropy
adaptive filtering

S. Peng et al. (2016)
Maximum correntropy estimators use a kernel as a loss
function, e.g.,

Loss(ŷ, y) = −
∑

κ(ŷ, y)

κ(x, y) = exp−1

2

(x− y
σ

)2
Learning design patterns

with Bayesian grammar induction
J.O Talton et al. (2012)

It is not possible to learn a (deterministic) grammar
from positive examples, but it is possible for proba-
bilistic languages (grammar induction). A Bayesian
approach would be:
– Build a grammar that recognizes all exemplars and
nothing else;

– Modify it (MCMC), to reduce its length while keep-
ing the likelihood high.

A case for robust Bayesian priors
with applications to binary clinical trials

J.A. Fúquene et al.
Conjugate Bayesian analysis is not robust to the prior.
The Cauchy prior (for the normal log-odds model, or
the binomial model for binary data) is robust but does
not lead to a closed form posterior. Berger’s prior (a
continuous mixture of Gaussians) is also robust and
does.

RUSBoost: a hybrid approach
to alleviating class imbalance

C. Seiffert et al. (2010)
Class imbalance can be addressed by:
– Adding more samples to the minority class: over-
sampling, boosting, extrapolating (SMOTE);

– Removing samples from the majority class: under-
sampling (RUS).

Those methods can be combined.

Orthant probabilities for robust correlation
and structural performance enhancement

M. Anderson et al. (2015)
To capture non-linear effects with correlations, notice
that if (X,Y) is Gaussian

Pij = P [(−1)iX > 0 ∧ (−1)jY > 0] i, j ∈ {0, 1}

=
1

4
+

(−1)i+j

2π
arcsin ρ

and convert those orthant probabilities into 4 quad-
rant correlations.

Efficient thresholded correlation using
truncated singular value decomposition

J. Baglama et al. (2016)
To find all pairs of variables (Xi, Xj) with correlation
above a threshold 0 < t < 1 without examining them
all, notice that, if ∀i ‖xi‖ = 1,

‖xi − xj‖2 > 2(1− t) =⇒ Cor(xi, xj) < t

and ‖Pxi − Pxj‖ ⩽ ‖xi − xj‖ if P is a projection.
Only examine pairs of vectors whose projections on the
first few singular vectors are sufficiently close.

A survey of discretization techniques:
taxonomy and empirical analysis

in supervised learning
S. García et al. (2013)

Comparison of 80 discretization algorithms (equal
width, equal frequency, χ2, etc.), without any detail.

Article and book summaries by Vincent Zoonekynd 491/1044

Efficient thresholded correlation using
truncated singular value decomposition

J. Baglama et al. (2016)
To find the most correlated (i.e., the closest) pairs of
unit vectors, project them on the first singular value
dimensions.

Model selection for Gaussian process
regression by approximation set coding

B. Fischer et al.
Approximation set coding (ASC) is a model selection
procedure maximizing the posterior agreement ηθ

θ : hyperpatameters
α : parameters

pθ(α) : prior
D = D1 tD2 random partition of the data

ηθ =

∫
pθ(α|D1)pθ(α|D2)pθ(α)dα.

The likelihood can be:

p(α|D) ∝ pθ(D|α)pθ(α) Bayesian
(α|D) ∝ pθ(D|α)β Entropy (β = 1).

It can be used to select the kernel of a Gaussian process:
square exponential e−x2 , rational quadratic (1+x2)−α,
exponential e−|x|, periodic e− sin2 x.

Counterfactual prediction
with deep instrumental variable networks

J. Hartford et al.
Instrumental variables can be added to deep neural
networks.

Z X y

ε

Doubly stochastic
neighbor embedding on spheres

Y. Lu et al.
Normalizing the t-SNE similarity matrix to make it
doubly stochastic limits the crowding around the ori-
gin. The resulting approximately spherical embedding
can be plotted on S2.

Causal inference and the data-fusion problem
E. Bareinboim and J. Pearl (2016)

The rules of do-calculus (for causal inference) can be
expressed in terms of conditional independence and
graphical models.

Principled detection of out-of-distribution
examples in neural networks

S. Liang et al.
To help detect out-of-distribution observations, in-
crease the temperature of the softmax

pi(x) ∝ exp
fi(x)

T

and add noise x← x− ε · sign−∇x log pŷ(x).

HiCS: high contrast subspaces
for density-based outlier ranking

F. Keller et al.
Outlier detection algorithms often compare the den-
sity of a point with that of its neighbours – they suffer
from the curse of dimensionality. Instead, compute
the LOF (local outlier factor) for high-contrast sub-
spaces, defined as axis-aligned subspaces on which the
conditional distributions Y |X = x (estimated on slices
Y |x1 ⩽ Xx2) and the marginal distribution Y are sig-
nificantly different, as measured by a Welsh test (T
test with unequal variances) or a Kolmogorov-Smirnov
test.

Programming with models:
writing statistical algorithms

for general model structures with Nimble
P. de Valpine et al.

Nimble lets you describe a computational graph in R,
and compiles it into C++, for use in Bugs; it also lets
you change how the data is sampled (importance sam-
pling, Metropolis Hastings).

sgof: an R package
for multiple testing problems

O. Castro-Conde and J. de Uña-Álvarez
For a large number of tests, SGoF (sequential good-
ness of fit, which compares #{p : p < γ} with its ex-
pected value γ under H0) is more powerful than FDR
or FWER approaches. Also check: qvalue (the q-value
is the proportion of false positives), HybridMTest,
multtest, mutoss, multcomp, stats::p.adjust.

conting: an R package for Bayesian analysis
of complete and incomplete contingency tables

A.M. Overstall and R. King (2014)
Log-linear models, for contingency tables, are of the
form

y1 ∼ Poissonµi
µi = x′iθ

where i is a multiindex and x a design matrix describ-
ing which interactions the model allows. For instance,
µijk = a + b + i + cj + dk or µijk = a + b + i + cj +
dk + eij + fik + gjk. In a Bayesian context, the model
x is also unknown. The generalizaed hyper-g-prior for
θ|x is the posterior from a locally uniform prior and an
imaginary sample of size 1/σ2.

Article and book summaries by Vincent Zoonekynd 492/1044

Counterfactual:
an R package for counterfactual analysis

M. Chen et al.
Given two populations 0 and 1 (e.g., men and women),
counterfactual analysis tests if the differences in the
distributions of the same variable y (e.g., salary) comes
from different characteristics x (are the marginal dis-
tributions x the same?) or a different treatment (are
the conditional distributions y|x the same?).

F⟨ij⟩(y) =

∫
Xj

FYi|Xj (y|x)dFXj (x), i, j ∈ {0, 1}

F−1⟨11⟩ − F
−1
⟨00⟩ =

(
F−1⟨11⟩ − F

−1
⟨01⟩
)
+
(
F−1⟨01⟩ − F

−1
⟨00⟩
)

Multilabel classification with R package mlr
P. Probst et al.

Multiple label classification assigns several labels (or
“tags”) to each observation. One could train a clas-
sifier for each label, sepeartely, but this assumes they
are independent. Instead, one can add all or some of
the labels, either the true or forecasted values, to the
predictors.

coxphMIC: an R package for sparse
estimation of Cox proportional hazards models

via approximate information criteria
R. Nabi and X. Su

Best subset selection models add a penalty of the form
λ
∑

1βi ̸=0, with λ = 2 (AIC) or λ = log n (BIC).
It can be relaxed by replacing 1β ̸=0 with tanhβ2 (or
tanh(aβ2)), but since it is smooth in 0, it does not
give sparse solutions. Instead, replace β = β1β ̸=0 with
β = γ tanh γ2 and use tanh2 γ as a penalty.

tanh(β2)

x

ta
nh

(x
)^

2

tanh(γ2)

x

ta
nh

(y
)^

2

GsymPoint: an R package to estimate
the generalized symmetry point,

an optimal cut-off point
for binary classification

in continuous diagnostic tests
M. López-Ratón et al.

To find the best cutoff point on a ROC curve, one can
use the symmetric point, i.e., the intersection with the
diagonal y = 1 − x, if the costs of false positives and
negatives are the same or, more generally, the solution
of ρ(1− specificity) = 1− sensitivity, where

ρ =
cost FP
cost FN ,

which corresponds to E[cost FP] = E[cost FN]. If the
scores are Gaussian,

Yhealthy ∼ N(µ0, σ0)

Ydiseased ∼ N(µ1, σ1),

then ROC(x) = Φ
(
a+bΦ−1(x)

)
, a = (µ1−µ0)/σ1 > 0,

b = σ0/σ1. If there is uncertainty on µi, σi, ρ, one can
also compute confidence intervals for the generalized
(ρ 6= 1) symmetry point.

spcadjust: an R package for adjusting
for estimation error in control charts

A. Gandy and T. Kvaløy
Use the bootstrap to estimate the threshold to use
in control charts to spot a move from N(µ, σ2) to
N(µ+∆, σ2).

Shewhart St =
Xt − µ̂
σ̂

CUSUM St = Max

{
0, St−1 +

Xt − µ− 1
2∆

σ

}

Weighted effect coding
for observational data with wev

R. Nieuwenhuis et al.
With unbalanced classes, consider weighted effects to
put categorical variables into the design matrix.

IsoGeneGUI: multiple approaches
for dose-response analysis

of microarray data using R
M. Otava et al.

Isotonic regression estimates means µ1, . . . , µn under
a monotonicity constraint. The corresponding test is
H0 : ∀i 6= j µi = µj versus H1 : ∀i < j µi ⩽ µj or
H1: ∀i < j µi ⩾ µj . The constraint can also be applied
to clustering (e.g., by using the isotonic means instead
of the raw data).

milr: multiple-instance logistic regression
with Lasso penalty

P.Y. Chen et al.
Multiple instance learning considers bags of observa-
tions rather than observations:

i : bag of instances
(i, j) : instance
xij : covariates
pij = g(x′ijβ) defect rate of instance (i, j)

Yij ∼ Bernoulli(pij)
πi : defect rate of bag i

πi ∝
∑
j

pije
apij or 1−

∏
(1− pij)

or h
(∑

h(Yij = 1)
)
.

Article and book summaries by Vincent Zoonekynd 493/1044

phtt: Panel data analysis
with heterogeneous time trends in R

O. Baba and D. Liebl (2014)
Panel models are usually of the form

yit =
∑
j

xijtβj + νt + εit.

Big data allows the time-varying component νt to be
subject-specific and described by a factor model

yit =
∑
j

xijtβj + νit + εit

νit =
∑
ℓ

λiℓfℓt;

neither λ nor f is observed, the f•t are orthonormal, so
are the λi•. The factors can be assumed to be smooth
(splines, KSS) or ARIMA (Eup)

Bayesian state-space modelling
on high-performance hardware using LibBi

L.M. Murray
LibBi is a BUGS-like language for parallel (multicore
CPU, GPU) Bayesian estimation of state space models,
using particle filters (sequential Monte Carlo, SMC)
instead of Gibbs sampling (as Jags) or Hamiltonian
Monte Carlo (HMC, as Stan).

GPflow: a Gaussian process library
using TensorFlow

A.G.G. Matthews et al.
Also check: GPy (Python), GPML (Matlab), GPstuff
(Matlab).

Visualizing dependence
in high-dimensional data:

an application to S&P 500 constituent data
M. Hofert and W. Oldford (2016)

Scatterplot matrices contain each plot twice; it is pos-
sible to show each plot only once, while ensuring that
each plot shares its vertical (resp. horizontal) axis with
a neighbour. This is implemented in the zenplot pack-
age.
Given a measure of interestingness, one can reduce the
number of plots further, and arrange them along an
Eulerian path (PairViz package).
This can be applied to stock returns, de-GARCHed
(ARMA-GARCH residuals, from qrmtools::fit_
ARMA_GARCH, rugarch::ugarchfit) and their tail de-
pendence indices (copula::fitCopula(tCopula...,
method="itau.mpl")).

Probabilistic data analysis
with probabilistic programming

F. Saad and V. Mansinghka
Composable generative population models (CGPM)
are a generalization of CrossCat for probabilistic mod-
eling in BayesDB (and its Bayesian query language,

BQL); they can be written VentureScript (a probabilis-
tic programming language) or even Stan.

Edward: a library for probabilistic modeling,
inference and criticism

D. Tran et al. (2016)
Edward is a Python probabilistic programming library,
built on TensorFlow, based on variational inference:
describe the model, the priors, a family of posterior
approximations, and find the posterior approximation
minimizing the KL divergence with the true posterior –
this also includes MAP (the posterior approximation of
a point mass) and MCMC (an empirical distribution).

RankPL: a qualitative
probabilistic programming language

T. Rienstra
Spohn’s ðrank theory is a qualitative alternative to
probability theory, replacing probabilities with degrees
of surprise (ranks). A ranking function κ : Ω →
N∪{∞} is extended to P(Ω) as κ(A) = Min{κ(a), a ∈
A}. (One usually assumes κ(Ω) = 0: replace κ with
A 7→ κ(A) − κ(Ω) if needed.) The conditional rank is
κ(A|B) = κ(A ∩ B) − κ(B) if κ(B) 6= ∞. There is a
formal similarity:

Probability 0 1 + / ×
Rank ∞ 0 Min − +

TRX: A formally verified parser interpreter
A. Koprowski and H. Binsztok (2010)

PEGs (parsing expression grammars) are very similar
to context-free grammars (CFG) but
– The choice operator e1|e2 is prioritized: e2 is only

tried if e1 fails;
– The repetition operators e∗ and e+ are greedy;
– (There are also predicates, &e and !e, which do

not consume any input, and provide unlimited look-
ahead and limited backtracking).

PEGs are unambiguous; they formalize what recursive
descent parsers do (packrat parsers are recursive de-
scent parsers with memoization).

Is there an optimal forecast combination?
C. Hsiao and S.K. Wan (2011)

There are many ways of combining forecasts
f1t, . . . , fnt of a time series yy into β′f•t.
With a small sample, the (unweighted) simple average
ȳt works well. With more data, one can correct the
bias µ+ yt, or both bias and scale µ+ cȳt.
Minimizing the mean square error

φ(β) = E[(β′x− y)2]
= E[β′xβ′x]− 2E[β′xy] + E[y2]

= E[β′xx′β]− 2E[β′xy] + E[y2]

= β′E[xx′]β − 2β′E[xy] + E[y2]

φ(β + h) = φ(β) + 2h′
(
E[xx′]β − E[xy]

)
+O(‖h‖2)

Article and book summaries by Vincent Zoonekynd 494/1044

gives β = E[xx′]−1E[xy]. There are many variants:
– Linear regression;
– Linear regression with no intercept;
– Constrained linear regression, imposing β′1 = 1, i.e.,

a convex combination of the forecasts;
– Inverse-mean-square combination (Bates-Granger),
i.e., using a diagonal estimator of E[xx′];

– Best subset regression, using the AIC, AICC or BIC
to select the subset of forecasts to use;

– Bayesian model averaging, i.e., wi ∝ exp− 1
2∆BICi,

where ∆BICi is the difference between in BIC be-
tween model i and the best model.

One can try to replace the constraint β′1 = 1 with
‖β‖2 = 1. This gives the eigenvector ei for the smallest
eigenvalue λi, but it has to be rescaled to give an un-
biased estimate: ei/e′i1. The paper suggests to use the
eigenvector minimizing λi/(e

′
i1)

2 instead of the first.
It is possible to improve the resulting estimator by es-
timating and correcting for the bias, and by discarding
the worst performing forecasts (half of them, if the per-
formance looks stable, or just a quarter), based on their
variance or their mean square error.

Prediction with expert advice
N. Cesa-Bianchi and G. Lugosi (2006)

1. Sequence prediction tries to forecast the future val-
ues of a sequence without any underlying stochastic
model: the sequence could be deterministic, stochastic,
or even devised by an adversary, dynamically adpting
to our behaviour.
Consider the following setup.

N : number of experts
n : number of observations
i : expert
t : time
yt : time series to forecast
fit : forecast of yt by expert i
p̂t : combination of the experts’ forecasts

`(fit, yt) : loss for expert i
`(p̂t, yt) : loss for the forecaster
h(f, y) : payoff, − `(f, y)

The regret of not having followed expert i is

rit = `(p̂t, yt)− `(fit, yt)

Rin =

n∑
t=1

rit (cummulated regret).

We want to minimize the cummulated regret wrt the
best expert,

L̂n − Min
1⩽i⩽N

Lin.

2. Here are a few weighted average predictors,

p̂t ∝
N∑
i=1

wi,t−1fit.

Polynomial wit ∝ (Rit)
p−1
+

Exponential wit ∝ exp ηRit ∝ exp−ηLit
η =

√
8 logN/n

Gradient wit ∝ exp−η
∑
s<t

∇p̂s`(p̂s, ys) · fis

Multilinear wit ←
(
1 + η · h(fit, yt)

)
· wi,t−1

The polynomial and exponential predictors can be
written wit ∝ ∇Φ(R•t)i, for some potential Φ(u) =
ψ(
∑
φ(ui)) or, equivalently, wit ∝ φ′(Ri,t−1). (While

ψ does not affect the weights, different choices lead to
different inequalities.)
The multilinear predictor increases or decreases the
weights depending on the sign of the payoff.

Methods for pastcasting, nowcasting and
forecasting using Factor-MIDAS,

with an application to Korean GDP
H.H. Kim and N.R. Swanson (2016)

Given two (or more) time series with different frequen-
cies, Y (slow) and X (fast), the MIDAS model is a
regression

Yy+k = β0 +

ℓ∑
i=0

βiXt−i + noise

where the βi have a sparse parametrization, e.g., the
exponential Almon lag model βi ∝ exp[θ1i+ θ2i

2].
Given a large number of time series, “diffusion indices”
are latent factors. To estimate them (by PCA), the
time series have to be aligned, e.g., by AR interpo-
lation – other methods are available (and preferable):
EM, state space model, etc.
A factor-MIDAS model is a MIDAS model with those
latent factors as predictors.
The many revisions the data undergoes (the prelimi-
nary GDP is revised several times, often drastically)
complicate the picture – each value has two times-
tamps: when it was published, and the period it refers
to.

Deep symbolic representation learning
for heterogeneous time series classification

S. Zhang et al.
To classify heterogeneous (continuous and categorical)
time series, discretize them, consider the values at a
point in time as a word, and learn (end-to-end) word
embeddings – or character embeddings, representing
words as the direct sums of their characters.

PSF: introduction to R package for pattern
sequence based forecasting algorithm

N. Bokde et al.
The pattern sequence-based forecasting (PSF) algo-
rithm forecasts time series by clustering (k-means) his-
torical data into “patterns”. Only use if patterns are
actually present (weather, energy, etc.).

Article and book summaries by Vincent Zoonekynd 495/1044

Interpreting finite automata
for sequential data

C.A. Hammerschmidt et al. (2016)
Finite automata can model sequence data (model each
word with an automaton; progressively merge them, se-
lecting the “best” merge each time; stop when no good
merge can be found); even large ones may be inter-
pretable (use some graph layout algorithm and domain
knowledge to interpret the clusters, bridges, etc.).

Comparison of pattern detection methods
in microarray time series
of the segmentation clock

M.L. Dequéant et al. (2008)
To detect patterns: uniformize the data and compute
– σ/(σ1+ · · ·+σ4), where σi is the standard deviation

of the ith quarter of the data;
– The number (or proportion) of permutations with
the same total variation;

– The persistence diagram of the sublevel sets [x ⩽ a],
for 0 ⩽ a ⩽ 1.

Detecting periodic patterns
in unevenly spaced gene expression time series

using Lomb-Scargle periodograms
E.F. Glynn et al. (2005)

The Lomb-Scargle periodogram generalizes the
discrete Fourier transform to unevenly spaced obser-
vations.

2σ2P (ω) =

∑
(yi − ȳ) cos2(ω(ti − τ))∑

cos2(ω(ti − τ))
+∑

(yi − ȳ) sin2(ω(ti − τ))∑
sin2(ω(ti − τ))

τ =
1

2ω
arctan

∑
sin 2ωti∑
cos 2ωti

H0 : P (ω) ∼ Exp

The cyclohedron test for finding periodic genes
in time course expression studies

J. Morton et al. (2007)
The cyclohedron test tests if a time series (v1, . . . , vn)
looks cyclic by computing its signature {σ1, . . . , σn−1}

σ1 = {index of the largest element}
σi = {index of the ith largest element} ∪ σkleft ∪ σkright

where σkleft is the latest σk containing δi − 1(mod n).
The test statistic is the permutation count, the number
of permutations with the same signature.

Factor models for matrix-valued
high-dimensional time series

D. Wang et al. (2016)
Time series of matrices Xt (e.g., country × variable ×
time) can be described by a factor modelXt = RFtC

′+

Et (it is not identifiable, but the column spaces of R
and C are).

On the relation between Gaussian process
quadratures and sigma-point methods

S. Särkkä et al.
Sigma-point quadrature approximates integrals as∫

g(x)p(x)dx ≈ wig(xi),

where the wi are predefined (from p) and the xi’s are
chosen according to some criterion, e.g., giving exact
results on low-degree polynomials or minimizing the
error on some class of functions. They are used in non-
linear Kalman filters and can be interpreted as Gaus-
sian process (GP) quadratures.

Lattice methods for multiple integration
I.H. Sloan and S. Joe (1994)

The Fibonacci rule estimates a 2-dimensional integral
by evaluating it on a lattice

∫∫
[0,1]2]

f(x, y) dxdy ≈ 1

Fk

Fk−1∑
j=0

f
({ j

Fk
(1, Fk−1)

})
where Fn is the nth Fibonacci number and {x} is the
fractional part of x. In dimension 2, they are the lat-
tices with the best convergence rate.

Monte Carlo
with determinantal point processes
R. Bardenet and A. Hardy (2016)

Determinantal point processes (DPP) can be used to
build repulsive particle systems, and give an alterna-
tive to quasi-Monte-Carlo integration or scrambled sets
(randomized QMC). A point process is a random vari-
able S whose values are finite subssets [−1, 1]d. It may
have an n-correlation function ρn, such that for all
bounded measurable φ : [−1, 1]d → R,

E

[∑
x1,...,n∈S

all different

φ(x1, . . . , xn)

]
=

∫
[−1,1]d

φ(x1, . . . , xn)ρn(x1, . . . , xn)µ(dx1) · · ·µ(dxn).

It is determinantal if the n-correlation functions exist
and are given by a kernel,

ρn(x1, . . . , cn) = det k(xi, xj)1⩽i,j⩽n.

For the orthogonal polynomial (OP) ensemble, the ker-
nel is given by

kN (x, y) =

N−1∑
k=0

φk(x)φk(y),

Article and book summaries by Vincent Zoonekynd 496/1044

where the φk are the Gram-Schmidt orthonormaliza-
tion of xα1

1 · · ·x
αd
d , where the monomials are in the

sup-graded lexicographic order.∫
fdµ = E

[N∑
i=1

f(xi)

kN (xi, xi)

]
(However, as N increases, the φk become difficult to
compute and sampling from the DPP time-consuming.)

Why interval arithmetic is so useful
Y. Hijazi et al.

Affine arithmetic is a generalization of interval arith-
metic.

a ⩽ x ⩽ b
c ⩽ y ⩽ d vs

a ⩽ αx+ βy ⩽ b
c ⩽ γx+ δy ⩽ d

Applications in computational geometry include com-
puting surface intersections (ensuring that no bit of
the intersection is lost), ray tracing, implicitly-defined
surfaces.

A comparison of three high-precision
quadrature schemes

D.H. Bailey et al. (2005)
The author’s ARPEC C++/F90 multiprecision library
also contains an implementation of PSLQ and quadra-
ture schemes,

∫ 1

−1 f ≈
∑
wjf(xj):

Gauss : xj = Roots of Legendre polynomials

wj =
−2

(n+ 1)P ′n(xj)Pn+1(xj)

Erf : xj = erf(hj)

wj =
2√
π
e−h

2j2

Tanh-Sinh : xj = tanhu2

wj =
u1

cosh2 u2

u1 =
π

2
cosh(hj)

u2 =
π

2
sinh(hj)

Dynamic trading
with predictable returns and transaction costs

N. Gârleanu and L.H. Pedersen (2013)
In presence of transaction costs:
– Do not rebalance all the way to the target portfolio;
– The target portfolio is not the current optimal port-
folio, but that in a few periods: the weights of all
assets are shrunk, with that of those present because
of fast signals shrinking faster.

The dynamic optimization problem can be solved ex-
actly (Bellman equation).

Weighted elastic net penalized mean-variance
portfolio design and computation

M. Ho et al. (2015)
Add an elastic net penalty to portfolio optimization
problems to control overfitting and portfolio size.

Portfolio optimization based on stochastic
dominance and empirical likelihood

T. Post and S. Karabati (2017)
The empirical likelihood (EL) tweaks the empirical
distribution (from uniform on the sample to multino-
mial) to ensure some known properties of the popula-
tion not satisfied by the sample (moment conditions)
or add some prior information.

Find π1, . . . , πn
To maximize

∑
log πi (MaxEnt)

Such that
∑
πi = 1

∀j
∑
i πigj(xi) = 0 (Moments)

The moment conditions can also be inequalities; the
maximum entropy objective is the multinomial log-
likelihood. It is often used in econometrics, as an al-
ternative to the generalized method of moments, when
the moment conditions depend on a parameter θ, to be
estimated with the πi’s.
To account for dynamic patterns (ARMA, GARCH),
blockwise empirical likelihood (BEL) uses overlapping
data blocks instead of individual observations.
The resulting distribution can be used for second-order
stochastic dominance portfolio optimization (a big lin-
ear problem). For instance, one can build a sector
rotation strategy, maximizing the expected returns,
using the 12-month momentum as an estimate of fu-
ture returns, and moment conditions truncating the
Fama-French-Cahart factors to their long-term 25%–
75% quantiles.

All that glitters is not gold: comparing
backtest and out-of-sample performance
on a large cohort of trading algorithms

T. Wiecki et al.
The in-sample information ratio (IR) of a maximim IR
strategy is not a good predictor of the out-of-sample
IR, but other measures of performance fare better
(volatility, maximum drawdown).
Instead of using the in-sample IR as an estimate, let
machine learning build one, using a long list of perfor-
mance and risk measures as features.

Dynamic quantile models of rational behavior
L. de Castro and A.F. Galvao (2017)

Instead of expected utility, maximize quantile utility.

Article and book summaries by Vincent Zoonekynd 497/1044

The capacity of trading strategies
A. Landier et al. (2015)

Using the Garleanu-Pedersen model, i.e., an AR(1) in-
vestment signal with persistence parameter φ,

∆st+1 = −φst + εt+1

st+1 = (1− φ)st + εt+1

with quadratic transaction costs 1
2λ(∆w)

′Σ(∆w) and
trading rate τ

xt = (1− τ)xt + τx∗t

and with a few approximations, one can compute the
relation between portfolio size and Sharpe ratio

Size = SR
λφ2

[(
SR∗

SR

)2/3

− 1

]2
.

For instance, if you are willing to accept a 30% drop
in the Sharpe ratio, i.e., SR = 0.7 × SR∗, Size =
SR∗/10λφ2.

A Sharpe ratio neutral prior
for Bayesian portfolio selection

R. Croessmann
In Bayesian portfolio selection,

Maximize
w

E
X∼N(µ,Σ)
(µ,Σ)∼Prior

[
U(w′X)

]
,

the uninformative (improper) Jeffrey prior p(µ,Σ) ∝
|Σ|−(N+1)/2 does not account for known information:
– Very high Sharpe ratios are unlikely, while Jeffrey’s
prior gives

SRmax =
√
µ′Σ−1µ

p(SRmax) ∝ SRN−1max

– High returns are a compensation for higher risks,
while the prior assumes µ ⊥⊥ Σ.

Instead, use

X ∼ N(βλ, ββ′ +Σ)

Σ = diag(τ)Ω diag(τ)

p[Ω] ∝ |Ω|N(N−1)/2∏
i

|Ω−i,−i|−(N+1)/2

β, λ, τ flat;

this gives uniform marginal posteriors for Cor(Xi, Xj).

Optimal selection of large portfolios:
aggregation is better than

ignoring the return constraint
G.Y. Ban and C. Chen

The out-of-sample Sharpe ratio deteriorates as the
number of assets increases. Instead of optimizing a
portfolio with all assets, group them, randomly, into

“super-assets”; replace each group with the equal-
weighted portfolio of its constituents; optimize.
Instead of randomly grouping the assets, group them
in pairs with high correlation (or low covariance) and
put the elements of each pair in separate super-assets.

Optimizing optimal portfolio choice
Y. Jin (2017)

Instead of looking for better estimates of Σ, Σ−1,
or µ, one can directly look for better estimates of
the optimal (unconstrained) weights, Σ−1µ. Since
they can be defined by an optimization problem,
Argminw ‖Σw − µ‖

2
2, one can add an L1 penalty to get

a sparse portfolio,

ŵ = Argmin
w

1

2

∥∥∥Σ̂w − µ̂∥∥∥2
2
+ λ ‖w‖1 .

Under reasonable assumptions (e.g., a shrinkage esti-
mator for Σ̂, ‖ŵ − w∗‖ = Op(

√
S log(N)/T), where

S = Min{T,N} and Op(·) means O(·) with high prob-
ability – the best possible bound is O(

√
S log(N)/T).

Bayesian emulation
for multi-step portfolio decisions

K. Irie and M. West (2016)
Optimization problems can often be recast as esti-
mation problems, by interpreting the loss function
as a log-likelihood and the penalties as priors. For
instance, multi-period optimization problems become
state space models, which can be estimated with a “for-
ward filtering backward smoothing” (FFBS) algorithm
(e.g., Kalman filter, Viterbi algorithm).

Portfolio construction by mitigating error
amplification: the bounded-noise portfolio

L. Zhao et al.
Eigenvectors can only be reliably estimated if their
eigenvalues are isolated (eigengap): this is only the case
for large eigenvalues.
The minimum variance portfolio is a linear combina-
tion of that for large eigenvalues (“signal”) and that
for small ones (“noise”), w = αwS + (1 − α)wN . The
noise portfolio can be replaced with a robust alterna-
tive, minimizing an upper bound on volatility. The re-
sulting optimization problem has the usual form, with
the variance Σ replaced with Σ + mNN ′, where the
columns of N are the noise eigenvectors (the number
of noise eigenvectors is estimated by bootstrap).

Dynamical system theory
of periodically collapsing bubbles

V.I. Yukalov et al.
Interactions between a stock and a bond can be mod-
eled as

ẋ = x− x2e−bxz

ż = z − z2e−ax,

Article and book summaries by Vincent Zoonekynd 498/1044

with a ∈ [−.5, .5], b ∈ [0, 1]. The presence of bifurca-
tions explains periodically exploding bubbles.

Measuring uncertainty
K. Jurado et al. (2015)

Measure the uncertainty of a macroeconomic series as
the standard deviation of the forecasted error,

Yt ∼
∑
i

Xit factors

Xit ∼ Time series model factor evolution

and use a stochastic volatility model for the innovations
in both models. Finally, aggregate (weighted average)
the uncertainties of several series.

Multivariate geometric expectiles
K. Herrmann et al. (2017)

Univariate quantiles can be defined from an asymmet-
ric absolute value loss; they generalize the median.

ρα(t) =

{
αt if t ⩾ 0

(1− α)t if t ⩽ 0

F−1(α) = Argmin
c∈R

Eρα(X − c).

The univariate expectiles are defined from an asym-
metric square loss; they generalize the mean.

λα(t) =

{
αt2 if t ⩾ 0

(1− α)t2 if t ⩽ 0

E(α) = Argmin
c∈R

Eλα(X − c).

In higher dimensions (implementation in qrmtools):

Φu(t) = ‖t‖2 + 〈u, t〉 u ∈ B(0, 1)

VaRαX = Argmin
c∈Rd

EΦα(X − c)

Λu(t) = ‖t‖2
(
‖t‖2 + 〈u, t〉

)
eα(X) = Argmin

c∈Rd

EΛα(X − c).

A generalized contagion process
with an application to credit risk

A. Dassios and H. Zhao (2016)
A Cox process (doubly stochastic model) is a Poisson
process in which the intensity λ(t) is itself stochastic.
A dynamic contagion process with diffusion (DCPD)
is a Hawkes process (Ti)i⩾0 with both self-excited and
external jumps, with noise.

λ(t) = a mean-reverting level

+
∑
Ti<t

Yie
−δ(t−Ti) internal jumps

+
∑
Si<t

Xie
−δ(t−Si) external jumps

+ σ

∫ t

0

e−δ(t−s)
√
λ(s)dWs noise

Data-driven partition-of-unity copulas
with applications to risk management

D. Pfeifer et al. (2017)
The following procedure defines a bivariate density:
– Take two 1-parameter families φ, ψ of (discrete) dis-
tributions on N, indexed by [0, 1], e.g., negative bi-
nomial or Poisson;

– Take a discrete distribution on N × N whose
marginals are the averages of φ and ψ:

pi,· =
∫ 1

0

φi(u)du p·j =
∫ 1

0

ψi(v)dv;

– Set c(u, v) =
∑
ij

pij
φi(u)

pi·

ψj(u)

p·j
.

Robust return risk measures
F. Bellini et al. (2016)

The Orlicz premium of a positive random variable X
is the only solution HΦ(X) of

E

[
Φ
(X

HΦ(X)

)]
= 1,

where Φ : [0,+∞) → [0,+∞) is convex, Φ(0) = 0,
Φ(1) = 1, Φ(∞) =∞.
The utility-based shortfall risk of a real random vari-
able Y is ρℓ(Y) = inf{m : E[`(Y − m)] ⩽ 0} where
` : R→ R is non-decreasing and `(−∞) < 0 < `(+∞).
These notions are related:

Φ(x) = 1 + `(log x)

HΦ(X) = exp
(
ρℓ(logX)

)
ρℓ(Y) = log

(
HΦ(expY)

)
.

They can be robustified, e.g., by replacing E[·] with
supQ∈S EQ[·] (one can also consider a set of Young
functions Φ).
The Hazendonck-Goovaert risk measure is

ΠΦ(X) = inf
x∈R

x+HΦ

(
(X − x)+

)
.

Multifactor risk models and heterotic CAPM
Z. Kakushadze and W. Yu (2016)

Build your own risk model:
– Separately model variances and correlations;
– Use a factor model for the correlation;
– Use (6-digit) industries as factors, but estimate the
model in a russian-dolls fashion.

Multiportfolio time consistency for set-valued
convex and coherent risk measures

Z. Feinstein and B. Rudloff
Intuitively, a set-valued risk measure is a collection of
portfolios covering the risk of the asset of interest. A
risk measure is time-consistent if a portfolio covering
the risk at time t also covers the risk at any earlier time
s < t.

Article and book summaries by Vincent Zoonekynd 499/1044

Latent common return volatility factors:
capturing elusive predictive accuracy gains

when forecasting volatility
M. Cheng et al. (2017)

Stock volatility forecasts are usually computed inde-
pendently for each stock, ignoring dependencies. In-
stead:
– Compute the realized volatility (RV: multipower,
multiscale, etc.) of each stock;

– Use the lasso to find stocks whose RV is close to that
of the target;

– Compute a sparse PCA on them, to extract “volatil-
ity factors” (or just use a factor model);

– Fit a heteroskedastic autoregressive (HAR) model
y[t,t+1] ∼ y[t−1,t] + y[t−4,t] + y[t−21,t] to the RV of
the stock of interest, with the factors as exogenous
variables.

Introduction to noise-reduced correlations
using singular spectrum analysis

J.W. Dash et al. (2017)
The signal-to-noise ratio of a correlation matrix can be
defined as

SNR =

∑
i<ic

λi∑
i⩾ic

λi

where the cutoff ic is determined by finite (not asymp-
totic) random matrix theory (RMT).
To estimate a correlation matrix, start with log-prices,
normalize them, smooth them with singular spectrum
analysis (SSA), compute the returns, and then the cor-
relations.

The 7 reasons
most machine learning funds fail

M. López de Prado (2017)
Do not compute returns by differentiating prices: frac-
tional differentiation (α = .5) is sufficient to yield a
stationary process.
Do not use clock time but market time (subordinated
process using, not time, but volume or dollar bars).
Do not forecast “up” or “down” for a fixed horizon, but
use three barriers: up and down thresholds, and a time
limit; the labels to forecast may overlap: weigh them
accordingly.
To avoid overfitting, make sure there is no overlap
between training and test sets, and use the deflated
Sharpe ratio.

A tug of war:
overnight versus intraday expected returns

D. Lou et al. (2014)
Some investment signals realize their profits overnight
(momentum, reversal), some intraday (the rest).

101 formulaic alphas
Z. Kakushadze (2015)

101 technical indicators.

Extracting consumer demand:
credit card spending and post-earnings returns

S. Agarwal et al. (2017)
Consumer spending (credit card data, email invoice
data (Slice)) and spending surprises predict future
earnings, sales surprises and future returns

What makes stock prices move?
Fundamentals vs investor recognition

S. Richardson et al. (2012)
Stocks with low investor recognition (number of insti-
tutional shareholders) have a lower price and higher
expected returns; realized returns as higher when they
gain more recognition.

Facts about formulaic value investing
U.W. Kok et al. (2017)

Formulaic value investing (P/E and other financial ra-
tios) only highlights companies with temporarily high
inflated earnings.

A framework for value investing
S. Chee et al. (2013)

The discounted dividend model computes an intrin-
sic value from dividend forecasts and an “appropriate
discount rate”. Instead, the Ohlson model estimates
this discount rate (prospective yield) so that the value
equals the current market price,

P =
∑
t⩾1

E[Divt]
(1 + y)t

.

Estimating the dividends as Divt = Earningst−∆BVt,

y ≈
[
E[ZT]

P
+ 1

]1/T
− 1

where ZT is the expected aggregate cum-dividend earn-
ings for the next T periods.

Accounting anomalies, risk and return
S.H. Penman and J. Zhu (2011)

Cash accounting recognizes revenue when it is actually
received.
Accrual accounting recognizes revenue when it becomes
certain.
One could go one step further and recognize revenue
when it can be forecasted: this explains many account-
ing “anomalies” – higher returns are a compensation
for the uncertainty of future profits.

Article and book summaries by Vincent Zoonekynd 500/1044

A dynamic model of characteristic-based
return predictability

A. Alti and S. Titman (2017)
Model firms as a combination of assets and projects,
each project yielding a deterministic cash flow from in-
ception to termination and liquidation cash flows (sal-
vage value), with younger firms having more, and more
profitable projects.

zi ∈ {early,mature, dying, dead} state
dkit = kzi(1− λ)(dt+ dMt) capital
dfit = (azikzi − λfit)(dt+ dMt) profitability
dMt = µtdt+ σMdω

M
t systematic disruption

dµt = −ρµtdt+ σdωµt disruption climate (hidden)
dst = ηdωMt +

√
1− η2dωst soft interaction signal

Investors’ overconfidence on the precision of their esti-
mates creates mispricing.
Having a model of the economy (knowing the soft infor-
mation s instead of just the performance of the sorted
portfolios) helps (it doubles the information ratio).

Structure in the Tweet haystack: uncovering
the link between text-based sentiment signals

and financial markets
A. Groß-Klußmann et al. (2015)

Manually identify 200 “expert” Twitter users (from
web pages: “top 50 Twitter influencers”, “who to fol-
low”, etc.); measure tweet sentiment using the Harvard
general inquirer and Loughran-McDonald lists (in the
latter, adapted to finance, “tax” is no longer negative),
without stemming (this can mix up some positive and
negative words). Sentiment and sentiment disagree-
ment have some predictive power on market returns
and volatility.

Stock return predictability:
consider your open options

F. Farazmand and A. de Souza (2017)
The put-call open interest ratio (aggregated put open
interest, divided by aggregated call open interest, for
liquid options, i.e., K/S ∈ [.8, 1.2] and maturity ∈
[30d, 90d]), for high-volatility (arbitrage-constrained)
stocks is a good predictor of future market returns.
This can be explained by investors’ limited attention.

Beta dispersion and market timing
L.C. Kuntz (2016)

After an exogenous shock to the market, stocks with
a high beta are in trouble; if there are many of them,
i.e., in markets with high beta dispersion (measured by
the 10%-90% interquantile range), this could trigger a
second, endogenous shock.

Investor attention and sentiment:
risk or anomaly?

M.C. Bucher (2017)
Google searches to measure investor attention (index,
stock tickers) and sentiment (panic words, Fears in-
dex).

Algorithmic differentiation in finance
explained

M. Henrard (2017)

R in Finance 2017
1. GAS (generalized autoregressive score) models gen-
eralize GARCH models (a Gaussian GAS is a GARCH)
but can be made less sensitive to outliers, leading to
better VaR estimation.
Markov switching GARCH models (implementated in
MSGARCH) give better VaR forecasts than single-regime
ones. Prefer GJR, with skewed Student innovations;
prefer MCMC to MLE to account for parameter un-
certainty.
Continuous GARCHmodels (COGARCH) generalize
GARCH models to non-regularly-spaced observations.
In high dimensions, they can be combined with ICA
(independent component analysis).
The yuima package estimates and simulates SDEs; it
now has an HTML GUI.
Two time series X, Y are partially cointegrated
if some linear combination Y − βX is partially auto-
regressive, i.e., the sum of a random walk and an AR
process.
For many multivariate diffusions, an arbitrarily close
approximation (in terms of Hermite polynomials) of
the transition function is known in closed form: the
MLE is easy to compute. (If not all components are
observed, further approximations are available.) The
MLEMVD package implements this for many for many 1-
or 2-dimensional diffusions

dXt = µ(Xt)dt+Σ(Xt)dWt

µ : Rm → Rn

Σ : Rn → Rn×n

2. The standard error of performance measures T
(Sharpe, Sortino, etc.) can be estimated from the sam-
ple cumulative distribution function Fn by bootstrap
(or block bootstrap, in presence of serial correlation)
or with influence functions

IF(r, T, Fn) =
d

dγ
T
(
(1− γ)Fn + γδr

)∣∣∣∣
γ=0

(for many performance measures, they can be explic-
itly computed) since the asymptotic variance is

Var[T (Fn) ∼
n→∞

E
[
IF(r1, T, F)

]
.

Article and book summaries by Vincent Zoonekynd 501/1044

With serial correlation,

Var
[
T (Fn)

]
=
∑
ℓ∈Z

E
[
IF(r1, T, Fn)IF(r(1 + `), T, Fn)

]
=
∑
ℓ∈Z

C(`) autocovariance density

= S(0) spectral density

and S(0) can be estimated from a polynomial fit to the
periodogram of the IF time series IF(rt, T, Fn).
Whenever possible, use the two-scale estimator
(TSRV) of volatility.
The (block) rearrangement algorithm (BRA) takes a
matrix and reorders the elements within each column
to minimize the variance of row sums. It can be used
to estimate the worst-case portfolio VaR when only
the asset return distributions are known (and not their
copula). When applied to (X1, . . . , Xn,−S), where
S = X1 + · · · + Xn, it gives a dependence structure
close to the maximum entropy one (the correlation ma-
trix of the reordered (X1, . . . , Xn) has maximum de-
terminant), i.e., answers the question: “if we know the
marginal distribution of X1, . . . , Xn and S, what is the
most likely dependence structure?”
When estimating sample comoment tensors, do not
re-compute entries already computed (the tensors are
symmetric), and use shrinkage, towards a factor model

X = BF + ε

Σ = BΣFB
′ +∆

Φ = BΦF (B ⊗B)′ +Ω

Ψ = BΨF (B ⊗B ⊗B)′ + Γ.

Covariance matrix estimators can be more or less struc-
tured:

(1) Rt ∼ N(0,Σt) (3) Rt = Ftβ
′
t + εt

βt = βt−1 + ηt

(2) Rt = Ftβ
′
t + εt εt ∼ N(0,Σt)

εt ∼ N(0,Σt) εt ∼ N(0,Γt)

3. Do not just prefer the “best” strategy: also look
at its sensitivity to parameter estimation. This is the
usual bias-variance tradeoff: you may prefer a slightly
worse performance is it is more certain.
It is difficult to select a good manager, especially if
there are many of them and/or there is not enough
history. Prefer ensemble methods: instead of selecting
a single manager, select several.
The following stochastic, continuous-time model of
private equity cash flow and value, which can ac-
commodate fees, should replace the Yale model (deter-

ministic, with no fees).

dV = V (µdt+ βσdB + σdB) + dD − dR Value
dD = δ(I −D)dt Cumulative drawdowns
dR = vV dt Cumulative distributions
δ = δ0 + σB Drawdown rate
v = v0t+ σB Distribution rate
B Different Brownian motions
σ Different volatilities

dC = Crdt− dD +Rdt Cash flow

This leads to several measures of risk:
– Market: VaR[P&L], where

P&L[t,t+h] = d[t,t+h]Pt+h − Pt,

d is the discount factor and P = V + C;
– Liquidity: VaR of the liquidity-adjusted P&L,

(1− πt+h)Vt+h + Ct+h − Pt,

where dπ = κ(θ− π) + σdB is the secondary market
discount rate;

– Cash flow: VaR[Ct+h − Ct].
4. For a sparse solution to your portfolio optimization
problems, add an L1 constraint; this also improves per-
formance and can be generalized to structured sparsity.
Risk parity can be generalized to higher moments.
The mrcp package minimizes the discrepancy between
the contribution to second-, third- or fourth-order risk
or the assets, or some linear combination of those dis-
crepancies.

v = E(rp − µp)2

= E
[
rp − µp)⊗ (rp − µp)

]
= E

[∑
wi(ri − µi)⊗ (rp − µp)

]
s = E

[∑
wi(ri − µi)⊗ (rp − µp)⊗2

]
κ = E

[∑
wi(ri − µi)⊗ (rp − µp)⊗3

]
∂v

∂w
= 2M2w,

∂s

∂w
= 3M3(w⊗w),

∂κ

∂w
= 4M4(w⊗w⊗w)

Mi = E
[
(r − µ)⊗i

]
Find w

To minimize λ1 Varw ⊗
∂v

∂w
+ λ2 Varw ⊗

∂s

∂w
+

λ3 Varw ⊗
∂κ

∂w
Such that w′1 = 1, w ⩾ 0

PortfolioAnalytics can optimize (small) portfolios
and generate random portfolios.
5. The score difference, in a soccer match, can be
modeled as a difference of Poisson processes (a Skel-
lam process) and calibrated using the odds provided
by the bookie (dynamically); one can also define an
“implied volatility”

√
λAt + λBt

√
1− t, t ∈ [0, 1].

Article and book summaries by Vincent Zoonekynd 502/1044

Ratings (credit ratings, Morning Star stars, etc.) are
often estimated independently in different categories,
on a curve (i.e., not calibrated) and therefore not com-
parable. Yet, people compare them.
The overnight gap on ex-div date is different from the
dividend, because of taxes.
The obmodeling package models the order book
(VPIN, etc.).
Not all brokers are liquidity providers; high-frequency
traders seem to be liquidity-takers.
6. The sn package provides a skew-T distribution.
The risk-neutral density can be modeled as a piecewise
constant function, generating the correct call and put
prices (minimizing the squared relative error).
7. MXNet is available from R; it also works on Windows
and can leverage your GPU.
Email length, and perhaps also sentiment was a better
predictor of future returns than new sentiment in the
two years leading to Enron’s demise. Topic analysis
(LDA) may also be interesting.
The mlr package now provides the same interface for
machine learning (regression, etc.) and time series fore-
casting (ARIMA, GARCH, etc.)
Several talks compared ML algorithms (Adaboost,
MARS, Neural networks and error correcting models
(ECM) are very similar – prefer Adaboost and MARS).
Projection methods turn big data into data. A ran-
dom orthogonal projection on a 1-dimensional subspace
gives a lower bound for pairwise distances; random
projections can be used to find the most correlated
columns in a large matrix (tcor). Sparse SVD (irlba)
can help compute the most central nodes of a large
graph or bicluster large matrices (s4vd).
8. If the prior is not a single distribution but a family
of distribution, then so is the posterior: it is a regu-
larization path, and can be used to choose the “best”
prior and also for prior sensitivity analysis.
To model the time evolution of multivariate yield
curves ymarket,t(tenor), write them as linear combina-
tions of a few “principal” yield curves, modeled with
splines, with weights changing as random walks. This
is implemented in the FDLM package [but this could
probably be implemented in Stan, and HMC should
be better than Gibbs sampling].
9. Microsoft R server lets you expose your code as an
API (not unlike OpenCPU). You can also put your R
code in a stored procedure (as with Postgres).
The roll package provides a few (fast, parallelized
with RcppParallel) rolling statistics: regression,
PCA, correlation matrices, etc.
ztsdb is a time series database (C++, either file-based
or client-server), append-optimized, with an R inter-
face, and an R-like language.
Syberia is a workflow framework for data science in R.

The rTRNG package provides random numbers for par-
allel MCMC computations
You do not have big data. If you want speed, try Vow-
palWabbit and xgboost. If you really want something
distributed, try H2O (it often turns out to be faster
than Spark).
10. Some of the presentations showcased analy-
ses with plotly, shiny, flexdashboard, dygraph,
rnaturalearth, etc.
The tidyverse assumes data is in dataframes, while fi-
nancial data tends to be in xts objects. The tidyquant
package provides a “tidy” interface to manipulate data
in xts objects.

Five stages
of accepting constructive mathematics

A. Brauer (2016)
1. Constructive mathematics is mathematics with-
out the law of the excluded middle (and, therefore,
without the axiom of choice):
– There are still proofs by negation (P ⇒ ⊥ is the def-
inition of ¬P), but no proofs by contradiction (prov-
ing ¬P ⇒ ⊥ only gives ¬¬P , not ¬P).

– The notions of non-empty set (A 6= ∅) and inhabited
set (∃x ∈ A) are different.

2. Since we have removed an axiom, we can add more,
which sometimes leads to surprising consequences, e.g.,
– All functions are continuous;
– Subsets of finite sets need not be finite (i.e., in bi-
jection with some J1, nK);

– There is an injection NN ↪→ N;
– There is an unbounded continuous map [0, 1]→ R;
– R has zero measure;
– There is an unbounded, increasing sequence without
an accumulation point.

3. Models of constructive mathematics include:
– Classical mathematics;
– Computer programs (realizability);
– Sheaves on a topological space X (the truth values

are the open sets of X), a topos;
– Locales (partially-ordered sets with properties simi-
lar to those of the open sets of a topological space;
points are not needed: the regular open subsets ofR,
i.e., subsets U such that U = ˚̄U , is a sublocale of R
with no points).

4. Some results need to be adapted (e.g., the interme-
diate value theorem remains true with altered conclu-
sions or additional assumptions, e.g., an approximate
solution, a monotonic function, or isolated roots) and
new objects can be defined: for instance, the set of ran-
dom reals of R minus all subsets of measure zero – it
has full measure, but no points.

What is the best fractional derivative
to fit data?
R. Almeida

Article and book summaries by Vincent Zoonekynd 503/1044

Phenomena traditionally modeled by differential equa-
tions such as
y′ = k, y′ = ky, y′ = k(y − a), y′ = f(t)

may be more accurately described by fractional differ-
ential equations
Dαy = k, Dαy = ky, Dαy = k(y−a), Dαy = f(t)

for some α ∈ (0, 1). The fractional differential and
integral are, for α ∈ (n− 1, n),

Dαf(x) =
1

Γ(n− α)

∫ x

a

(x− t)n−α−1f (n)(t) dt

Dα,ψf(x) =
1

Γ(n− α)
×∫ x

a

ψ′(t)
(
ψ(x)− ψ(t)

)n−α−1(1

ψ′(t)

d

dt

)n
f(t)dt

Iα,ψf(x) =
1

Γ(α)

∫ x

a

ψ′(t)
(
ψ(x)− ψ(t)

)α−1
f(t)dt.

Bayesian inference of log determinants
J. Fitzsimons et al.

To compute log-determinants of large kernel matrices
as a Bayesian inference problem, use

log detA = tr logA

log(I −A) =
∑
k⩾1

Ak

trA = E
r∼N(0,1)

r′Ar

and use probabilistic numerics for the stochastic trace
estimation.

Exploiting gradients and Hessians in Bayesian
optimization and Bayesian quadrature

A. Wu et al.
In Bayesian optimization, if the gradient or the Hessian
is readily available, use it: the joint process (f,∇f) is
still Gaussian, with covariance function(

k(x, y) ∇xk(x, y)
∇yk(x, y) ∇x∇yk(x, y)

)
.

The algorithms do not change, they no not use directly
the derivatives, but conditioning on this additional in-
formation helps.
The kernel becomes ill-conditioned much more quickly:
if the bandwidth is small, rescaling can help; if it is
large, try moving to the spectral domain:

f ∼ GP =⇒ Ff ∼ GP.

On the construction of probabilistic
Newton-type algorithms

A.G. Wills and T.B. Schön
Model the Hessian as a Gaussian process, updated
with 1-dimensional information at each step (quasi-
Newton), and use this expectation for the Newton step
in optimization problems.

No spurious local minima in nonconvex low
rank problems: a unified geometric analysis

R. Ge et al.
Many nonconvex optimization problems (even asym-
metric ones) have a well-behaved loss landscape: local
minima are also global (and saddle points have at least
one negative eigenvalue in their Hessian).

A probabilistic linear genetic programming
with stochastic context-free grammar

for solving symbolic regression problems
L.F. Dal Piccol Sotto and V.V. de Melo

Use a stochastic grammar as prior for symbolic regres-
sion.

Strucural change in (economic) time series
C. Kleiber (2016)

To test for the presence of structural change

Univariate signal yt = µt + εt µt = constant?
Regression yt = x′tβt + εt βt = constant?

one can look at the cummulated residuals (empirical
fluctuation process, EFP, Rec-Cumsum)

µ̂k =
1

k

k∑
1

yt

et = yt − µ̂t−1

ST =
1

σ̂
√
T

∑
et

which can be approximated by a Brownian motion, and
look for excessive fluctuations (crossing certain bound-
aries).
Instead, one can look at the OLS-Cumsum process

et = yt − µ̂T

Sk =
1

σ̂
√
T

k∑
1

et

which can be approximated by a Brownian bridge; fluc-
tuations can be identified by looking at Maxt |St|.
The location of the breakpoints can be estimated by
minimizing the sum of squared residuals, with dynamic
programming; the BIC can help choose the number of
breakpoints.
In R, check the strucchange, ecp and wbs packages.

Article and book summaries by Vincent Zoonekynd 504/1044

A nonparametric approach for multiple
changepoint analysis of multivariate data

D.S. Matteson and N.A. James (2013)
To detect a changepoint in a multivariate time series
X1:n, compute

Argmax
k

k(n− k)
n

E (X1:n, Xk+1:n)

where

E (X,Y) = 2E |X − Y |α − E |X −X ′|α − E |Y − Y ′|α

is the distance correlation (which can be seen as a di-
vergence between characteristic functions).
In presence of multiple changepoints, prefer

Argmax
k,ℓ

k`

k + `
E (X1:k, Xk+1:k+ℓ)

and proceed recursively. In R: ecp::e.divisive.
Use permutation tests to asses the significance of the
breakpoints and decide when to stop.
The agglomerative variant of the algorithm, merging
the adjacent clusters minimizing

|Ci| |Ci+1|
|C1|+ |Ci+1|

E (Ci, Ci+1),

is faster.

Wild binary segmentation
for multiple change-point detection

P. Fryzlewicz (2014)
Binary segmentation splits a time series at the point
maximizing the Cusum statistic (equivalently, it fits
a piecewise constant function with exactly one jump
to the data), and proceeds recursively to find more
changepoints. It does not work well in presence of sev-
eral breakpoints.
Wild binary segmentation is similar, but works
on randomly-selected subsequences, of various lengths.
R implentation in wbs.

Optimal detection of changepoints
with a linear computational cost

R. Killick et al. (2012)
Optimal partitioning uses dynamic programming to
find the breakpoints minimizing some criterion, with
a penalty β to control this number

F (s) = Min
τ partition

of 1:s

∑
i

Cost(yτ1+1:τi+1
) + β

= Min
t<s

F (t) + Cost(yt+1:s) + β.

The computations can be pruned (pruned exact linear
time, PELT) using the fact that, under reasonable as-
sumptions, if F (t) + Cost(yt+1:s) + k ⩾ F (s), then t
cannot be the last optimal changepoint for any T > s.

Local extremes, runs, strings
and multiresolution

P.L. Davies and A. Kovac (2001)
After smoothing a time series, one expects the resid-
uals to be similar to white noise; in particular, their
signs should not present long runs.
To detect extrema in a noisy time series (to approxi-
mate a time series with a function with few extrema),
one can try to minimize the number of extrema among
approximations of the time series for which the max-
imum length of the runs is below some threshold.
This can be generalized to a multiresolution condition,
where 2k consecutive residuals are aggregated, for all k.
Given upper and lower bounds on the unknown val-
ues of a time series observed with noise, the taut
string method looks for the shortest curve between
those bounds (it can be computed in linear time, see
ftnonpar::mintvnorm(..., method=1)).

Dynamic Bayesian combination
of multiple imperfect classifiers

E. Simpson et al. (2012)
Consider k judges infering the labels of N objects:

κ : label distribution (multinomial)
ti : label of object i
cik : label assigned to object i by judge k
πkℓj : P [judge k says ` when the true label is j]

α : Dirichlet prior on π
ν : Dirichlet prior on κ

The IBCC (independent Bayesian combination of
classifiers) model can be estimated by MAP (maxi-
mum a posteriori), Gibbs sampling or, better, varia-
tional Bayes (VB).

Bayesian classifier combination
H.C. Kim and Z. Ghahramani (2012)

Contrary to IBCC, Bayesian model averaging (BMA)
assumes the classifiers are somewhat correct (unbi-
ased).
Stacking is an alternative to ensembling in which we
do not simply average the classifiers, but learn how to
combine them – for IBCC, the combiner is a graphical
model.

input

model1 model2 · · · modeln

combiner

output

Article and book summaries by Vincent Zoonekynd 505/1044

Correlation and
large-scale simultaneous significance testing

B. Efron
Multiple testing procedures assume the tests are inde-
pendent: if not, they can be too conservative or liberal.
– Convert the test statistic to z scores;
– Fit a Gaussian to the middle of the distribution;
– Use this empirical null distribution instead ofN(0, 1)

to compute the p-values.
In R, check the locfdr package.

Homotopy parametric simplex method
for sparse learning

H. Pang et al. (2017)
Many sparse learning problems,

Argmin
θ

L(θ) + λ ‖θ‖1

or Argmin
θ

‖θ‖1 st ‖∇L(θ)‖∞ ⩽ λ

(Dantzig selector, sparse regression, etc.) can be for-
mulated as linear optimization problems. The para-
metric simplex method (PSM, or homotopy optimiza-
tion) generalizes the simplex algorithm to solve those
problem, while keeping the regularization parameter λ
unspecified – the result is not a single solution, but a
whole regularization path.

Voronoi treemaps
M. Balzer and O. Deussen (2005)

In a centroidal Voronoi tessellation (CVT), the genera-
tors are the centers of mass of their Voronoi cells. The
“distances”

d(pi, q) = ‖pi − q‖ − wi
d(pi, q) = ‖pi − q‖2 − wi

define weighted Voronoi tessellations; the latter
(power-weighted Voronoi diagram) has straight bound-
aries. To build a Voronoi tree map, start with a CVT
(replace each generator with the center of mass of its
cell and iterate a few times), adjust the weights in the
direction suggested by the desired and current areas,
and iterate.

Computing Voronoi treemaps
A. Nocaj and U. Brandes (2012)

The power (weighted Voronoi) diagram can be com-
puted using a 3-dimensional convex hull algorithm.

Certification of approximate roots of exact
polynomial systems

A. Szanto (2016)
Bertini (non-free, but Bertini2, in development, will be
GPL) solves large systems of algebraic equations (nu-
merical algebraic geometry). An approximate zero z of

f is a point such that Newton’s iteration started at z
converges to a root ξ ∈ Cn of f , with an upper bound
R on ‖z − ξ‖ and the guarantee that there is no other
root in B(z,R).
As an application, one can prove that, in R3, seven
(infinite) cylinders can touch each other.

Level set method
T.H. Colding and W.P Minicozzi (2016)

If the level sets of v : R2 → R flow by mean curvature,
then

vt = |∇v| div
(
∇v
‖∇v‖

)
.

Hodge theory of matroids
K. Adiprasito et al. (2016)

The coefficients of the chromatic polynomial of a graph
χG(q) (number of proper colourings of G using q
colours form a log-concave sequence

a2i ⩾ ai−1ai+1.

More generally, the number fi of independent subsets
of size i in a matroid is log-concave – this can be proved
by defining a Hodge theory for matroids.

TimescaleDB:
SQL made scalable for time series

Postgres extension to store time series as ta-
bles (time, id1, . . . , idn, v1, . . . , vm), partitioned on
(time, id).

Implementing operational calculus
on programming spaces

for differentiable computing
Ž. Sajovic (2017)

Automatic differentiation (AD) in C++, using tem-
plates.

High-dimensional discriminant analysis
C. Bouveyron et al.

Quadratic discriminant analysis (QDA) requires esti-
mates of the variance matrix for each class: in high
dimension, use regularized estimators, or make further
assumptions, e.g., that the variance matrix only has
two distinct eigenvalues.

Persistent topology of syntax
A. Port et al. (2015)

Application of TDA to language classification.

Article and book summaries by Vincent Zoonekynd 506/1044

Spin glass models of syntax
and language evolution

K. Siva et al. (2015)
Modeling language interactions (from the number of
bilingual editors for each pair of languages) using a
spin glass model (aka Potts model, i.e., the Ising model
with more than two states).

Prevalance and recoverability of syntactic
parameters in sparse distributed memories

J.J. Park et al. (2015)
Features to classify human languages (e.g., SVO order)
can be found in:
– SSWL: syntactic structures of the world’s language;
– WALS: world atlas of language structures.

Manopt, a matlab toolbox
for optimization on manifolds

N. Boumal et al. (2014)
Describe the manifold (from a few predefined ones and
a few operations: projection, quotient, product); pro-
vide the (Euclidean) derivatives; choose the method
(trust region or conjugate gradient).

Langevin and Hamiltonian based sequential
MCMC for efficient Bayesian filtering

in high-dimensional spaces
F. Septier and G.W. Peters (2015)

Sequential Monte Carlo (SMC, particle filters) does not
work well in high dimensions: instead of using impor-
tance weights, apply a few MCMC moves after each
step.

Information-geometric
Markov chain Monte Carlo methods

using diffusions
S. Livingstone and M. Girolami (2014)

The Metropolis adjusted Langevin algorithm (MALA)
can be generalized to Riemannian manifolds.

Fast Langevin based algorithm
for MCMC in high dimension

A. Durmus et al. (2016)
Other discretizations of the Langevin diffusion (SDE)
give variants of MALA (Metropolis-adjusted Langevin
algorithm) with faster convergence in higher dimen-
sions.

Langevin-Euler moves
If π(x) ∝ exp−U(x) then the solution of the Langevin
diffusion SDE

dx = −1

2

∂U

∂x
dt+ dW

follows the target distribution π.

PyCaMa: Python for cash management
F. Salas-Molina et al. (2017)

Given a set of bank accounts, desired transactions
(from customers to suppliers), and transaction costs
(A → B → C may be cheaper than A → C), finding
the cheapest path is a linear problem.

Downside risks
and the cross-section of asset returns

A. Farago and R. Tédongap (2017)
The cross-section of returns can be explained with
the covariance between stock returns and: market re-
turns, change in market volatility, down times (boolean
variable indicating either a fall in price or a rise in
volatility), market returns × 1down, change in mar-
ket volatility × 1down. Contrary to the Fama-French-
Cahart model (which works better for stocks), this ap-
plies to all asset classes, including options and curren-
cies.

Systematic tail risk
R.D.F. Harris et al. (2017)

The beta β = Cov(R,Rm)/VarRm and the corre-
lation Cor(R,Rm) can be turned into downside risk
measures by conditioning on Rm ⩽ µm, or replac-
ing market returns Rm with their below-average part
Min{Rm−µm, 0}, or by replacing both asset and mar-
ket returns with their below-average parts.
The extreme downside betas (EDB) and correlation
(EDC) are obtained by replacing the means µ, µm with
the 5% quantile. The extreme downside hedge (EDH)
is the sensitivity of the forthcoming change in market
value at risk, β(Rt ∼ ∆VaRmarket, 5%

t→t+1), estimated from
an AR(1)-GJR-GARCH(1,1) model with skewed Stu-
dent innovations, on a 5-year moving window. There is
a tail risk premium, visible if you compare the returns
in [t, t+ 1] and the risk estimated at time t+ 1, but it
is not investible.

Conditional asset pricing
in international equity markets

T. Huynh (2017)
The returns of an equal-weighted momentum-value
portfolio can be esplained using the “lagged compo-
nent” betas as instrumental variables.
The time-varying betas of a portfolio (on a moving
window) can be estimated directly, by considering the
portfolio as a single asset (“lagged portfolio” betas)
or as a portfolio-weighted average of stock-level betas
(“lagged component” betas).

Contagion in financial systems:
a Bayesian network approach

C. Chong and C. Klüppelberg (2017)
Tightly interconnected firms are robust to small
shocks, but the network amplifies large ones (phase

Article and book summaries by Vincent Zoonekynd 507/1044

transition, non-monotonic effect). Model firms as:

Xi ∼ N(µi, σ
2) assets

Lij liabilities

Ei = Xi +
∑

j survives
Lij −

∑
j

Lji equity.

If the redemption graph has no cycles, the defaulting
and surviving firms are well-defined but, if not, there
are multiple solutions with non-zero probability. For
instance, with

$5 $5
$10

$10

both survive if netting is possible, but both default if
not.
Two solutions are obtained by progressively building
the list of defaulting (resp. surviving) firms. Using
those rules, one can extend the redemption graph into
a directed acyclic graph (DAG), by creating N copies
of each vertex, corresponding to the iterations of the
algorithm. Bayesian network tools are then available:
independence detection, systemic impact measures, de-
fault probabilities, etc.

Instrumented principal component analysis
B. Kelly et al. (2017)

Factor models combine stock-specific but constant
loadings β with common, dynamic factors f :

ynt =
∑
k

βnkfkt + εnt.

Dynamic factor models usually assume a simple model
for the changes of β, e.g., a random walk:

ynt =
∑
k

βnkfkt + εnt

βn,k,t = βn,k,t−1 + ηn,k,t

Instead, one can use additional data (time-changing,
stock-specific “instrumental” variables Z) to predict β:

ynt =
∑
k

βnkfkt + εnt

βn,k,t =
∑
ℓ

Zkℓ,tΓℓ,k + ηn,k,t.

The model can be estimated as follows:
– Orthonormalize the instruments so that, for each t,
N−1Z ′tZt = IL;

– Set xℓ,t = N−1
∑
n Zn,ℓ,t−1yn,t;

– Let Γ·,1, . . . ,Γ·,k be the k eigenvectors of N−1X ′X
for theK largest eigenvalues, normalized (Γ′Γ = IK)
and signed (so that the first non-zero entry of each
column be positive);

– Set fk,t =
∑
ℓ Γℓ,kxℓ,t.

If yn,t are stock returns and zn,ℓ,t stock characteris-
tics, then xℓ,t are the returns of portfolios defined using
the (raw) instrumental variables Z as weights – factor-
mimicking portfolios usually discretize them first.

Second-order optimization
over the multivariate Gaussian distribution

L. Malagò and G. Pistone (2016)
On a Riemannian manifold, the gradient and the Hes-
sian, used in first- and second-order optimization al-
gorithms (e.g., gradient descent, Newton) become the
natural gradient and the Riemannian Hessian. For sta-
tistical manifolds and their three connections (Levi-
Civita, exponential, mixture), there are actually three
Hessians.
Stochastic relaxation replaces

x∗ = Argmin
x∈Rn

f(x)

with
(x∗, 0) = Argmin

µ,V
E

X∼N(µ,V)

[
f(X)

]
.

The landscape of empirical risk
for non-convex losses

S. Mei et al. (2016)
Given enough observations (Ω(d log d) in dimension d),
non-convex loss functions, e.g.,

1

n

∑(
yi − σ〈w, xi〉

)2
for binary classification, have a unique minimizer.

Not enough observations Enough observations Population

Information geometry of neural networks
S.I. Amari

Natural gradient descent, for neural nets, with an
approximation of the Riemannian metric, avoids
plateaus.

Hyperparameter optimization
with approximate gradient

F. Pedregosa (2016)
Hyperparameter optimization is a bilevel optimization
problem

Find λ, β∗

To minimize f(λ) = g(β∗, λ)
Such that β∗ = Argminβ h(β, λ)

where

λ : hyperparameters
β : parameters
h : loss
g : cross-validation loss.

Article and book summaries by Vincent Zoonekynd 508/1044

It can be reformulated as a constrained optimization

Find λ, β
To minimize f(λ) = g(β, λ)

Such that ∇βh(β, λ) = 0.

The gradient can be computed:

df

dλ
=
∂β

∂λ

∂g

∂β
+
∂g

∂λ

∂

∂β

[
∇βh(β, λ)

]
= 0

∇f = ∇λg − (∇β,λg)
′(∇β,βg)

−1∇βg.

Approximations for β∗, ∇g and ∇2g are good enough.

Mapping estimation
for discrete optimal transport

M. Perrot et al. (2016)
Optimal transport, in particular the Wasserstein
distance, is used in machine learning, as a divergence
to compare distributions, to interpolate between dis-
tributions, to compute means, barycenters or PCA in
spaces of probabilities.
Given probability spaces (X,µ) and (Y, ν) and a cost
function c : X × Y → R, the Monge problem asks
for a function T : X → Y such that T#µ = ν (T# is
the push-forward) minimizing

∫
X
c(x, Tx)dµ(x). The

Kantorovitch relaxation asks instead for a probabil-
ity distribution γ on X × Y with marginals µ and ν
minimizing

∫
X×Y c(x, y)dγ(x, y). For discrete distri-

butions, in particular, for empirical distributions, this
is a linear program.
Jointly learn the probabilistic coupling γ (from the em-
pirical distributions) and the barycentric mapping T
(in a limited set of functions, e.g., linear, or using some
kernel) with a penalty (e.g., to ensure T is close to the
identity).
While transfer learning transforms a model X → Y
into a model X → Y ′ with a new target (codomain),
domain adaptation transforms it to a modelX ′ → Y
with a different source space (domain).
In image processing, before inpainting (Poisson image
editing), one can force the gradient distribution of the
source image to match that of the target image (using
a random sample of 500 gradients on each side).

Learning to learn, from transfer learning
to domain adaptation: a unifying perspective

N. Patricia and B. Caputo

Supervised word mover’s distance
G. Huang et al. (2016)

Combine the word mover’s distance (the distance be-
tween two documents is the cost of the optimal trans-
port between their (vector-embedded) bags of words)
with metric learning (use the distance minimizing the

leave-out-one (LOO) k-nearest neighbour error when
predicting document labels).

SAGA: a fast incremental gradient method
with support for non-strongly convex

composite objectives
A. Defazio et al. (2014)

To minimize a smooth convex function f(x) =
1
n

∑
i f(x), variance-reduced stochastic gradient descent

uses updates of the form

x← x− γ 1
n

[
f ′i(x)− f ′i(x∗) +

∑
f ′j(x

∗)
]

(SAG)

or x← x− γ
[
f ′i(x)− f ′i(x∗) +

1

n

∑
f ′j(x

∗)
]

(SVRG)

where x∗ and
∑
f ′i(x

∗) are updated once in a while.
SAGA keeps track of n points (xi)1⩽i⩽n and the deriva-
tives of the corresponding terms:

x← x− γ
[
f ′i(x)− f ′i(x∗) +

1

n

∑
f ′j(xj)

]
;

one of them is updated at each step with the current
value of x.

Accelerating stochastic gradient descent
using predictive variance reduction

R. Johnson and T. Zhang (2013)
To reduce variance in stochastic gradient descent
(SVRG), approximate the gradient of f =

∑
fi as

∇f(x) ≈ ∇f(∗)−∇fi(x∗) +∇fi(x).

Faster asynchronous SGD
A. Odena

Distributed stochastic gradient descent (SGD) ignores
synchronization problems, but keeps track of gradient
staleness, either with the number of updates skipped,
or with the difference between the gradient computed
and the gradient that would have been computed (on
the same minibatch) with the latest parameters, and
uses it to fine-tune the learning rate (not unlike RMS-
prop).

Fast and provably good seedings for k-means
O. Bachem et al. (2016)

Kmeans++ seeding does not scale to large datasets.
Instead of sampling each point exactly from p(x) ∝
d(x,C)2, use MCMC, with the exact distribution after
the first point (mixed with the uniform distribution)
as proposal distribution, instead of a uniform distribu-
tion.

Phased LSTM: accelerating recurrent network
training for long or event-based sequences

A. Neil et al. (2016)
By allowing neurons to update at different frequen-
cies (by adding a “time gate”), LSTMs can deal with
irregularly-spaced signals, e.g., event streams.

Article and book summaries by Vincent Zoonekynd 509/1044

Sequential neural models with stochastic layers
M. Fraccaro et al. (2016)

Recurrent neural nets (RNN) and state space models
(SSM) are eerily similar.

RNN, deterministic
hidden nodes

SSM, stochastic
hidden nodes

Stochastic RNNs stack them – not unlike a variational
auto-encoder (VAE) at each step.

deterministic

stochastic

Improved techniques for training GANs
T. Salimans et al. (2016)

Training a GAN is a Nash equilibrium problem

θD ∈ Argmin JD(θD, θG)

θG ∈ Argmin JG(θD, θG) :

gradient descent can fail to converge.
– To prevent the generator from overfitting the dis-
criminator, have the generator generate data whose
statistics match those of the real data, e.g., the ex-
pected values of the features on an intermediate layer
of the discriminator (feature matching);

– Include a term for historical averaging∥∥∥∥∥θ − 1

t

∑
1⩽i⩽t

θi

∥∥∥∥∥
2

;

– To prevent the generator from always emitting the
same point, allow the discriminator to look at several
examples (minibatch discrimination);

– Replace the 0 and 1 targets with smoothed values
(label smoothing);

– Batch normalize using the statistics of a fixes refer-
ence batch (virtual batch renormalization).

DeepMath – deep sequence models
for premise selection

A.A. Alemi et al. (2016)
Using the Mizar mathematical library (the library is
free, the theorem prover is not) of formal proofs (of
real-world theorems: Hahn-Banach, Brouwer, Borsuk-
Ulam, Gödel, etc.), train a RNN and/or a CNN, with
LSTM/GRU, from character or word embeddings, to
select which axioms will be useful in proving a given
conjecture, to guide automated theorem provers.

Learning to pivot with adversarial networks
G. Louppe et al.

To make a model f of Y ∼ X robust to a latent pa-
rameter Z (e.g., model specification),

Find f
Such that Y ≈ f(X)
and f(X) ⊥⊥ Z

using an adversarial network:
– Learn f so that y ≈ f(x) and g performs poorly;
– Learn g to predict z from f(x).

Deep networks with stochastic depth
G. Huang et al. (2016)

During training, randomly drop a subset of layers.

Exponential family embeddings
M. Rudolph et al. (2016)

Dimension reduction with word vector embedding
looks for a map f : Words → Rn minimizing
Loss(f(word), f(surrounding words)). One can replace
the word and the surrounding words, and their dis-
crete distributions, with exponential distributions con-
ditioned on a “context”, for instance:
– A Gaussian embedding can be used to model neu-
ron activity, conditioned on the activity of nearby
neurons;

– A Poisson embedding can model items conditioned
on other items from the same shopping basket.

On the expressive power
of deep neural networks

R. Raghu et al.
To measure the expressivity of a neural net, check how
the length of a 1-dimensional trajectory in the input
space changes as it propagates through the network;
for instance, for the output node, look at the number
of sign changes.
The regimes in which the neurons are (ReLUs have two
regimes, zero and linear; hard-tanh have three, linear
and saturated at ±1) define the “activation patterns”
of a network (binary strings, for ReLUs). For ReLU
networks, the activation patterns subdivide the input
space into convex polytopes.

Article and book summaries by Vincent Zoonekynd 510/1044

Matrix factorization using
window sampling and negative sampling

for improved word representations
A. Salle et al.

Let Mwc be the cooccurrence matrix between words w
and context words c,

PMIwc = log
MmwM·,·
Mw,·M·,c

the pointwise mutual information matrix and PPMI
the positive semidefinite matrix obtained by zeroing
out negative eigenvalues. These matrices have been
used to define word embeddings as follows:
– PPMI-SVD factorizes PPMIwc ≈ WwW

′
c using a

truncated SVD, PPMI = UΣV ′, W = UΣ1/2;
– GloVe factorizes logM by minimizing∑

w,c

f(Mwc)(WwW
′
c + bw + b̃c − logMwc)

2;

where the weights are

f(x) =

{
(x/xmax)

β if x ⩽ xmax
1 otherwise;

– Skipgram with negative sampling factorizes PMI by
minimizing∑
w,c

(WwW
′
c − PMIwc)2 − Ew′(WwW

′
w′ − PMIww′)2;

– LexVec is similar but factors PPMI.

On multiplicative integration
with recurrent neural networks

Y. Wu et al.
Replace the computational blocks φ(Wx+Uz+b) with
φ(Wx � Uz + b). [This is one of the ideas behind
LSTMs, but it can be used separately.]

Tagger: deep unsupervised perceptual grouping
K. Greff et al.

To segment an image, look for groupings of pixels for
which denoising autoencoders easily reconstruct the
image withing each group.

Neural networks with differentiable structure
T. Miconi

To select network structure via gradient descent, make
it differentiable by multiplying the output of each neu-
ron with a scalar factor (e.g., one for each layer), and
add an L1 penalty for those new parameters to encour-
age sparsity.

Progressive neural networks
A.A. Rusu et al.

To learn a task related to an already-learnt one, con-
sider a new neural net, parallel to the first one, ran-
domly initialized, with lateral connections. To keep
the model scalable (task n + 1 has connections from
tasks 1 through n), use dimension reduction (single-
layer network) for those lateral connections.

input

output1 output2

Visualizing deep convolutional neural networks
using natural pre-images

A. Mahendran and A. Vedaldi (2016)
To understand what a neural network (CMM for com-
puter vision or image recognition) sees:
– Compute the inverse of a representation, i.e., look
at images sharing the same representation;

– Maximize a certain component (cf. the “cat neu-
ron”);

– Exagerate the patterns present in an image (deep
dream).

Inception-v4, Inception-ResNet and the impact
of residual connections on learning

C. Szegedy et al.
Adding residual connections to Inception networks
speeds up training.

Question answering via integer programming
over semi-structured knowledge

D. Khashabi et al.
Factoid question answering systems just look for an
already written answer in a large corpus, but cannot
combine separate pieces of information to create a new,
never-seen sentence. Given tables of knowledge (65, for
a total of 5000 rows, origin unknown), integer program-
ming can find a way to join them to best answer a given
question.

Do deep convolutional nets really
need to be deep (or even convolutional)?

G. Urban et al.
The results of a deep convolutional network can be re-
produced by a shallower network, but it still needs to
be deep (one hidden layer is not enough) and convolu-
tional.

Article and book summaries by Vincent Zoonekynd 511/1044

Tweet2vec: character-based distributed
representations for social media

B. Dhingra et al.
Character-level bidirectional LSTMs or GRUs can
learn vector embeddings that generalize well to rare,
abbreviated or misspelt words, frequent on Twitter.

Detecting relative anomaly
R. Neuberg and Y. Shi

To detect anomalies:
– From the distance matrix, compute a similarity ma-
trix via a Gaussian kernel and use its first eigenvec-
tor as a measure of centrality (similar to PageRank);
with the normalized similarity matrix, this is actu-
ally equivalent to a kernel density estimator.

– Consider an observation highly normal if its degree
is in the top α%; label an observation anomalous if
the length of the shortest path to the highly normal
observations is high (in the top β%)

Unifying count-based exploration
and intrinsic motivation

M.G. Bellemare et al.
Practical applications of reinforcement learning still
rely on ε-greedy policies for exploration. Intrinsic mo-
tivation (IM) achieves exploration using novelty sig-
nals, e.g., prediction error or value error. Sequential
density models (probability distributions on the set
of sequences of states) can be used to define pseudo-
counts: count-based reinforcement learning algorithms
then apply (experience replay, actor-critic, etc.).

Model-free episodic control
C. Blundell et al.

Gradient-based reinforcement learning is slow: to
speed it up, remember (not learn) successful strategies
and re-enact them when the agent encounters a similar
state. (In humans, the hippocampus does that.)

Resnet in Resnet:
generalizing residual architectures

S. Targ et al.

resnet

conv

+

residual
stream

transient
stream

conv conv conv conv

+ +

Combination of two-dimensional cochleogram
and spectrogram features

for deep learning-based ASR
A. Tjandra et al. (2015)

The cochleogram, a convolution with the gammatone
filter

g(t) = tn−1e−2πbt cos(2πωt)

n : filter order
b = 110ω + 25.2 : bandwidth

is an alternative to MFCC (Mel frequency cepstral co-
efficients) features.

Visually identifying rank
D.F. Fouhey et al.

Can CNNs (or SVMs with VLFeat features) recognize
the rank of a matrix? Results are not as disastrous as
you may think.

High-dimensional probability estimation
with deep density models

O. Rippel and R.P. Adams
Dimension reduction of a dataset Y in Y to a simpler
space X can be obtained by two functions f : X → Y
and g : Y → X (neural nets with sigmoid functions)
minimizing the divergence between the marginals of
g(Y) and the desired marginals (Beta distribution with
α � 1) with a penalty for poorly conditioned f (we
want it invertible) and another one to ensure g ≈ f−1.

FractalNet:
ultra-deep neural networks without residuals

G. Larson et al.
Fractal networks are defined recursively,

f1 = fn+1 =
fn

fn

where f is, for instance, a convolutional layer, and
trained with drop path (each join drops each input with
some probability, but keeps at least one) and global
(keep only one path, with layers in the same column).

Random rotation ensembles
R. Blaser and P. Fryzlewicz (2016)

To reduce the artifacts (and the number of trees
needed) in ensembles of decision trees, randomly rotate
the feature space before training the base learners.

Article and book summaries by Vincent Zoonekynd 512/1044

Accelerating Eulerian fluid simulation
with convolutional networks

J. Tompson et al.
Machine learning and convolutional nets can help solve
PDEs.

Compressing deep convolutional networks
using vector quantization

Y. Gong et al. (2014)
Compress dense weight matrices with:
– Matrix factorization;
– Scalar quantization, by replacing the matrix entries
with their signs, or by clustering them with k-means;

– Product quantization: split the matrix into blocks
of columns; for each block, cluster the rows with k-
means;

– Residual quantization: cluster the rows, then the
residuals, and iterate a few times.

The sketchy database:
learning to retrieve badly drawn bunnies

P. Sangkloy et al.
A siamese network is a pair of convnets detecting if
two inputs are similar or not; they use a contrastive
loss.

Loss = λd(S, I+) + (1− λ)
(
m− d(S, I−)

)
+

λ = 0 or 1
S : source image
I+ : matching image
I− : non-matching image
m : margin

conv conv

S I+ or I−

embedding embedding

Triplet networks are similar, but their loss is of the
form “S is closer to I+ than to I−”.

Loss =
(
d(S, I+)− d(S, I−)

)
+

conv conv conv

S I+ I−

embedding embedding embedding

For a dataset of sketch-photo pairs, the two (or two of
the three) convnets are different.

Interaction networks for learning
about objects, relations and physics

To design a data-driven physics engine, learn:
– Object-centric functions, which map teh state of an
object at time t to its state at time t+1 (or, rather,
a state increment);

– Relation-centric functions, which map the states of
two objects and the characteristics of the relation
(e.g., the spring constant) to their state increments;

– An aggregation function, which combines the state
increments.

On the modeling of musical solos
as complex networks

S. Ferretti (2016)
From a piece of music, create a network, with pitch-
duration pairs as nodes (you can also add rests and
chords), and directed arcs to denote succession; the
usual graph statistics (degree distribution, centralities,
etc.) can help classify the piece.

A first look at music compositing using LSTM
recurrent neural networks

D. Eck and J. Schmidhuber
LSTMs can generate the global structure RNNs cannot
capture.

DeepBach: a steerable model
for Bach chorales generation

G. Hadjeres and F. Pachet
Represent the data as 6 sequences, corresponding to
the 4 voices (either the midi pitch or a “hold” symbol),
the beat (12341234 · · ·) and the presence of a fermata;
the last two are fixed.
Model the data as vi = f(v<i, v>i), where f is a neural
net, processing v<i and v>i with LSTMs (in opposite
directions).
Generate new chorales with Gibbs sampling.
The pseudo-log-likelihood is a Gibbs-inspired ap-
proximation of the log-likelihood.

Log-likelihood : logP (V1, . . . , Vn | θ)

Pseudo-log-likelihood :
∑
i

logP (Vi |V ̸=i, θ)

An information-theoretic approach
to machine-oriented music summarization

F. Raposo et al.
Text summarization extracts relevant and diverse (bits
of) sequences; for music, this can create harsh disconti-
nuities. Compute MFCC features on a moving window,
model them as a (mixture of) multivariate Gaussians,
use this distribution as a (machine-oriented) summary,
and somehow turn it into a human oriented summary.
Implementation in C++ using opensmile (feature ex-
traction) and Marsyas (synthesis).

Article and book summaries by Vincent Zoonekynd 513/1044

Text extraction from the web
via text-to-tag ratio

T. Weninger and W.H. Hsu
To detect relevant text in the midst of today’s HTML
pages tag soup:
– Remove empty lines, comments, <script> and
<style> blocks;

– In each line, count the number of (non-tag) charac-
ters, the number of tags, the ratio text/max(1,tag);

– Apply k-means on smoothed ratios and pick the clus-
ter with the largest average ratio,

– Or pick lines whose smoothed ratio is above a one
standard deviation thereshold,

– Or apply some technical analysis indicator.
This could be combined with
– Other line metrics, e.g., entropy;
– Template detection (often, pages on the same web
site belong to the same or a few templates);

– Machine learning algorithms to detect boilerplate
(not unlike span detection).

CETR: content extraction via tag ratios
T. Weninger et al. (2010)

Instead of clustering the 1-dimensional text-to-tag ra-
tio x, cluster (x, |ẋ|) (after smoothing).

A machine learning approach
to webpage content extraction

J. Yao and X. Zuo
After discarding <nav> and <aside> elements (con-
tents should be in <article>), consider blocks rather
than lines and train a machine learning classifier (SVM,
naive Bayes) using the following features: number of
words, average sentence length, text density, link den-
sity (and the ratios wrt the previous block), block num-
ber (rescaled to [0, 1]), id and class attributes.

CrossCat: a fully Bayesian nonparametric
method for analyzing heterogeneous,

high-dimensional data
V. Mansinghka et al.

CrossCat is a hierarchical nonparametric Bayesian
model for tabular data, used by BayesDB, whose gen-
erative process looks like:
– Partition the columns, using a Chinese restaurant
process (CRP);

– Likewise partition the rows;
– Sample the parameters for each column (variable) in
each intersection;

– Sample the rows in each intersection.

BayesDB: a probabilistic programming system
for querying the probable implications of data

V. Mansinghka et al.
When you insert data in a table, BayesDB estimates a
model that allows it to:

– Sample new rows from the resulting joint or condi-
tional distribution;

– Compute the likelihood of each row, to detect out-
liers;

– Retrieve similar rows;
– Compute the mutual information (MI) between pairs
of variables (or, rather, the probability that the pos-
terior MI is nonzero), which is better than correla-
tion at detecting dependencies;

– Infer missing values.
The univariate models (“data types”) are:
– Numeric: normal-gamma;
– Count: Poisson-gamma;
– Binary: asymmetric Beta-Bernoulli;
– Categorical: multinomial with symmetric Dirichlet
prior.

Identifying almost identical files using
context-triggered piecewise hashing

J. Kornblum (2006)
To check if two files are almost identical:
– Compute a hash on a rolling window of moderate
size and note the positions at which it takes a spe-
cific value (trigger); discard the hashes;

– Compute a hash for the parts between two triggers.
[One could also compute a longer rolling hash and only
keep the values if the first bytes have a specified value.]
This is implemented in ssdeep; similar algorithms in-
clude tlsh and sdhash. Some use CTPH as features in
machine learning algorithms to detect or cluster spam,
malware, bot control centers, etc.

An introduction to topology
M.J. Dominus (2010)

A valuation for classical logic is a map

v : {formulas} −→ {>,⊥}.

Instead of {>,⊥}, one can use (P(X),∩,∪) or any
other boolean algebra. Tautologies are formulas whose
value is > (or X ∈P(X)).
For intuistionistic logic, where ¬p∨p is not a theorem,
one replaces Boolean algebras with sufficiently large
Heyting algebras, e.g., P(R):

A ∨B = A ∪B
A ∧B = A ∩B
A→ B = (Ac ∪B)◦

¬A = Ac◦.

The compactness principle (i.e., Tychonov’s theorem)
says that if any finite subset of a set of axioms has a
model, then so does the whole set – for instance, with
the real numbers axioma and ε < 1, ε < 1/2, ε < 1/3,
…, ε > 0, this allows for infinitesimals.

Article and book summaries by Vincent Zoonekynd 514/1044

Tensor rank and the ill-posedness
of the best low-rank approximation problem

V. de Silva and L.H. Lim (2006)
Many properties of the rank of a matrix do not gener-
alize to tensors of order k ⩾ 3:
– The outer product rank

rank⊗A = Min
{
n : ∃xij A =

n∑
i=1

x1i ⊗ · · · ⊗ xki
}

and the multilinear rank rank⊞ (k-tuple of the di-
mensions of the spaces spanned by the columns of
the k matricizations of the tensor) do not coincide.

– A tensor in Rd1×···×dk can have rank greater than
Min(d1, . . . , dk).

– Tensor rank is not upper semi-continuous; many ten-
sors (a non-negligible set) do not have a best rank r
approximation: for instance, the rank-3 tensor
A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3

can be approximated arbitrarily close by the rank-2
tensors

An = n
(
x1 +

1

n
y1

)
⊗
(
x2 +

1

n
y2

)
⊗
(
x2 +

1

n
y2

)
− nx1 ⊗ x2 ⊗ x3.

Scalable latent tree model
and its application to health analytics

F. Huang et al.
The multivariate information distance

d(X,Y) = − log

∏
σi[Cov(X,Y)]√

detCov(X,X) detCov(Y, Y)

where the σi are the top-k singular values generalizes
the correlation to multivariate random variables (on a
tree, this distance is additive).
To learn a latent tree graphical model (an undirected
graphical model, with no loops, and both observed and
unobserved variables), compute the matrix of multi-
variate information distances; build the corresponding
minimum spanning tree; find triplets of nodes for which
the distance is additive: this indicates the presence of
a hidden node; add it and iterate. To estimate the
model parameters, compute a low rank tensor decom-
position of the third moment of triplets of variables
E[X1 ⊗X2 ⊗X3].

High-dimensional neural spike train analysis
with generalized count

linear dynamical systems
Y. Gai et al.

The Poisson distribution p(k) ∝ λ−ke−k/k! is a spe-
cial case of the generalized count (GC) distribu-
tion, p(k) = eθk+g(k)/k! which can account for over-
or under-dispersion.
It can be used in latent variable models yij |xj ∼
Poisson(exp c′ixj+d) where the state xj is modeled by a
Gaussian dynamic system xj,t+1|xj,t ∼ N(Axjt+b,Q).

Large scale unusual time series detection
R.J. Hyndman et al. (2015)

To detect outliers in a dataset of time series: com-
pute features for each time series (mean, variance, au-
tocorrelation, trend, linearity, curvature, seasonality,
peakedness, troughiness, spectral entropy, lumpiness,
spikiness, level shift, variance change, flat spots, cross-
ing points, Kullback-Leibler, etc. – scagnostics), re-
duce the dimension (PCA), and use 2-dimensional out-
lier detection algorithms (alpha-hull or density-based).

Topology data analysis of critical transitions
in financial networks

M. Gidea (2017)
Compute the correlation matrix of asset returns on
a moving window, convert it to a distance dij =√
1− cij , compute the persistence diagram of the cor-

responding Rips filtration (with TDA::ripsDiag) and
look at the Wasserstein or bottleneck distance between
two dates: they may help forecast crises.
[How different is it from the L2 distance between the
correlation matrices?]

Network-based anomaly detection
for insider trading
A. Kulkarni et al.

Build a network with insiders (of the same company) as
nodes and an edge whenever the length of the longest
common subsequence (LCS) of ordered trade dates ex-
ceeds some threshold (5 for sales, 10 for purchases).
Look at the egonets, i.e., the subgraphs induced by the
nodes at distance at most one from a given node. Iden-
tify outliers by the residuals of log#E ∼ log#V for the
egonets, and the local outlier factor (LOF) comparing
the density of a node with that of its neighbours; they
are hubs or bridges between highly connected compo-
nents.
The same approach applies to hypergraphs (a hyper-
edge between a set of insiders if the length of the LCS
of trade dates exceeds some threshold); the profit of the
transactions in those hyperedges tends to be positive.

Graph-based anomaly detection
C.C. Noble and D.J. Cook (2003)

To detect repetitive patterns (substructures) in a
graph, compare the description length of the graph be-
fore and after contracting this substructure

DL(G)−
(
DL(G|S) +DL(S)

)
.

Compress the most frequent substructure and iterate
(“Subdue” algorithm).
To detect anomalies in a graph. compute

A = 1− 1

n

n∑
1

(n− i+ 1)
DLi−1(S)−DLi(S)

DL0(S)

Article and book summaries by Vincent Zoonekynd 515/1044

for each substructure S, where DLi(S) is the descrip-
tion length of S after i steps of the algorithm.
To detect anomalies in a graph, one could also find
substructures S such that

size of S × number of instances of S

be small.

RolX: Structural role extraction
and mining in large graphs
K. Henderson et al. (2012)

To identify “roles” in a network (e.g., star center, clique
member, peripheral node, etc.), compute node features
(degree, number of within-egonet edges, average and
maximum neighbour degree, number of triangles, etc.)
and soft-cluster them with nonnegative matrix factor-
ization (NMF).

It’s who you know: graph mining
using recursive structural features

K. Henderson et al. (2010)
Recursive graph features are built as follows:
– Number of within-egonet edges;
– Number of edges leaving or entering the egonet;
– Mean or sum of a feature over the egonet.
Prune the features by discarding those similar to pre-
vious ones; prune them further by focusing on those
with good predictive power on node attributes.
Applications include graph de-anonymization, graph
isomorphism, graph-based anomaly detection.

Graph-based anomaly detection
and description: a survey

K. Akoglu et al.

Statistical industry classification
Z. Kakushadze and W. Yu (2017)

To cluster stocks, use excess returns, normalized by the
squared volatility (rather than the volatility, to reduce
the influence of volatile stocks – in practice, consider
something like r/σMax(σ̄, σ) to avoid creating a simi-
lar problem with low-volatility stocks).
To choose the number of clusters, use the effective rank
of the correlation matrix:

λ1, . . . , λn eigenvalues

pi =
λi∑
λj

H = −
∑

pi log pi (spectral) entropy

erankC = expH.

The effective rank:
a measure of effective dimensionality

O. Roy and M. Vetterli (2007)
Instead of minimizing the rank of a matrix, mini-
mize its effective rank: compute its singular values
σ1 ⩾ · · · ⩾ σm ⩾ 0, rescale them pi = σi/

∑
σj , com-

pute the spectral entropy H = −
∑
pi log pi and take

its exponential.

Statistical risk models
Z. Kakushadze and W. Yu (2017)

To estimate the number of factors in a statistical risk
model, use the effective rank: compute the eigenval-
ues, rescale them to have a probability distribution,
compute its entropy, and the corresponding effective
number of values.
Since the “market” factor dominates, the result is often
close to 1: if this is not desirable, remove the largest
eigenvalue and add 1 back at the end.
Optimization can be approximated with a weighted re-
gression on the first principal components, with the
inverse of the specific variances as weights.

Decoding Chinese stock market returns:
three-state hidden semi-Markov model

Z. Liu and S. Wang (2016)
The Taylor effect is yet another stylized fact:
Cor(|rt|θ , |rt−τ |θ) is maximum for θ = 1.
In a hidden Markov model (HMM), the sojourn time
follows a geometric distribution. Hidden semi-
Markov models (HSMM, estimated with the EM al-
gorithm) relax that restriction by separately modeling
the sojourn time and the state transitions.

Spatial dependence in asset pricing models
B. Zhu and S. Milcheva

To price real estate firms, add the physical distance
between their properties to the CAPM or the factor
model used.

ri = αi+ρ
∑
j ̸=i

wijrj+
∑
k

βikfk+εi, wij ∝ d−1ij or d−2ij

Time series copulas for heteroskedastic data
R. Loaiza-Maya et al. (2016)

In presence of heteroskedasticity, the dependence
structure of a time series (Xt−1, Xt) cannot be de-
scribed by the common parametric copulas: the ob-
servations gather in the four corners, or along an “X”,
instead of one or two corners and along a diagonal.
One can use mixtures of rotated copulas (or D-vines
(drawable vines) of them, in higher dimensions).

Article and book summaries by Vincent Zoonekynd 516/1044

DEA portfolio modeling
S.M. Gasser (2016)

Data envelopment analysis (DEA) is often used as a
screening step, to select stocks according to multiple
criteria, before portfolio optimization. Instead, one can
directly use the DEA efficiency score to compute the
portfolio weights (just rescale them).

Deep learning for finance: deep portfolios
J.B. Heaton et al. (2016)

Use autoencoders for non-linear PCA regression to
replicate an index, or to explain returns (as with the
CAPM or factor models).

The volatility of bitcoin
A. Urquhart (2017)

The heterogeneous auto-regressive (HAR) model is an
alternative to GARCH models with high frequency
data:

σ[t,t+1] ∼ σ[t−1,t] + σ[t−7,t] + σ[t−30,t].

Efficient algorithms for computing
risk parity portfolio weights

D. Chaves et al. (2012)
The risk parity portfolio can be computed using New-
ton’s method to solve

V w = λw−1

w′1 = 1

(the unknowns are λ and w),

J =

(
V + λ diag(w−2) −w−1

1′ 0

)
(
w
λ

)
←
(
w
λ

)
− J−1

(
V w − λw−1
1′w − 1

)
or by iterating

wi ←
β−1i∑
β−1j

βi ←
(V w)i
w′V w

.

These algorithms are not guaranteed to converge.

A fast algorithm for computing
high-dimensional risk parity portfolios

T. Griveau-Billion et al.
The usual algorithm to find long-only risk parity port-
folios, sequential quadratic programming (SQP) to
equalize the total contributions to risk, i.e., minimize∑

i<j

(TCTRi − TCTRj)2,

does not scale.

Use coordinate descent to minimize
√
w′V w −∑

bi logw (where the bi are the risk budgets): wi is
the positive solution of

σiw
2
i +

(∑
j ̸=i

wjρijσiσj

)
wi − bi

√
w′V w = 0.

Constrained Kelly portfolios
under α-stable laws

N. Wesselhöfft (2016)
Add a CVaR constraint to the growth-optimal strat-
egy, and assume α-stable returns.

Managing diversification
A. Meucci (2010)

The eigendecomposition E′ΣE = Λ of the variance
matrix Σ of asset returns X defines principal portfo-
lios, with returns E′X. Their contributions to port-
folio variance w′Σw are (E−1w) � (E−1w) � diag Λ;
dividing by w′Σw gives the diversification distribution
whose entropy defines the effective number of un-
correlated bets.
If market exposure is not under our control, remove the
first principal portfolio. If there are more constraints,
write them as Aw = b and compute the corresponding
conditional eigenvectors

ei = Argmax
e such that

e′e=1
Ae=0

∀j<i e′Σej=0

e′Σe.

They can be computed (using Lagrange multipliers) as

B =

A
e′1Σ
...

e′j−1Σ

P = I −B′(BB′)−1B
ei = Argmax

∥e∥=1

e′PΣP ′e.

We still have E′ΣE = Λ, with Λ diagonal, but E′ 6=
E−1.
One can then look at the mean-entropy frontier.

Building diversified portfolios
that outperform out-of-sample

M. López de Prado
Hierarchical risk parity (HRP) aims to circumvent
Markowitz’s curse: the more correlated the invest-
ments, the greater the need for diversification, and
yet the more likely we will receive unstable solutions.
Other approaches include: constraints, Bayesian pri-
ors, robust optimization, numerically stable variance
estimators (shrinkage, factor models, graphical lasso).
Compute the sample correlation matrix ρ, the corre-
sponding distances dij =

√
1− ρij and the distances

between those distances δij = ‖d·,i − d·,j‖2; perform

Article and book summaries by Vincent Zoonekynd 517/1044

single linkage hierarchical clustering and use it to re-
order the covariance matrix: it is now near-diagonal.
By analogy with the (unconstrained) minimal variance
portfolio, w = V −11/1′V −11, whose weights are the
inverses of the variances when the variance matrix is
diagonal:
– Start with the full set of assets L = {1, . . . , n} and

initial weights (1, . . . , 1)′;
– Split L in two, L = L1∪L2 [they use two halves, but
with a more balanced hierarchical clustering (e.g.,
complete linkage), it would make more sense to use
it];

– Compute the variances of the corresponding inverse-
variance-weighted portfolios

V =

(
V1

V2

)
wi ∝ (diag V1)

−1

vi = w′iV wi;

– Rescale the weights [this does not preserve the sum
of the weights]

wI1 ← αwI1

wI2 ← (1− α)wI2
α =

v2
v1 + v2

;

– Continue recursively.

Interconnectedness risk
and active portfolio management

E. Baitinger and J. Papenbrock (2016)
Peripheral stocks, for some measure of centrality (be-
tweenness, closeness, eccentricity, degree, eigenvector)
of the minimum spanning tree (or some other “strongly
filtered graph”) built from the correlation matrix of
daily returns, estimated on a 6-month moving win-
dow, have higher risk-adjusted returns. Build a port-
folio by minimizing the average centrality (with a few
constraints: w′1 = 1, ‖w − w0‖1 ⩽ ε – it is a lin-
ear problem); compare with minimum variance, min-
imum average correlation, maximum diversity, max-
imum entropy, hierarchical risk parity; measure the
performance with Jensen’s alpha, the upside capture
ratio

UC =
E[portfolio returns |market up]
E[market returns |market up] ,

the downside capture ratio, or the certainty equivalent
return for U(W) =W 1−γ/(1− γ) for γ ∈ {3, 5, 10}.

Interconnectedness risk
and active portfolio management:

the information-theoretic perspective
E. Baitinger and J. Papenbrock (2017)

Build minimum centrality portfolios from the mu-
tual information rather than the correlation [one
could also use the distance correlation]. In R check
entropy::mi.plugin or infotheo::mutinformation.

The real side
of the high-volume return premium

D. Israeli et al. (2017)
Abnormal volume around earnings announcements in-
creases investor recognition and firm visibility, de-
creases the cost of capital, and increases future invest-
ments. The effect remains after controlling for sales,
cash flow, current investments, legerage, Tobin’s Q,
earnings surprises, abnormal returns around earnings,
etc., but is more pronounced for financially-constrained
firms (low assets, low payout ratio) and has been de-
creasing as information becomes more readily available.
Tobin’s Q is

Q =
Market value of assets
Book value of assets

=
BV(assets) +MV(equity)− BV(equity)

BV(assets)

The limits of arbitrage and stock mispricing:
evidence from decomposing

the market to book ratio
N.M. Al-Shammasi (2017)

Stocks with easily-identified peers have a lower mis-
pricing. The nearest stock is that with the closest
propensity score, i.e., predicted value of a logistic re-
gression 1S&P 500 ∼ Fama-French. [Other measures of
proximity may be more meaningful: density (LOF),
correlation, mutual information, distance correlation,
cointegration test, etc.]

Programmed selection
of cyclical turning points

G. Bry and C. Boschan (1971)
To detect business cycles on a “clean” time series:
– Find local minima and maxima, with a 5-month or
2-quarter window;

– Prune them to ensure there are no consecutive min-
ima or maxima; keep the most extreme;

– Prune them to ensure “up” and “down” periods are
at least 5 months long, and the cycles (up-then-down
or down-then-up) 15 months;

– Remove extrema too close to or inconsistent with the
extremities.

For a real-world time series:
– Apply the procedure to the 12-month moving aver-
age;

– Pick the local extrema of the Spencer curve (a mov-
ing average with more weight at the center) best
matching those points (most extreme in a 5-month
radius);

– Pick the local extrema of the raw data best matching
those points.

Article and book summaries by Vincent Zoonekynd 518/1044

Dating the Euro area business cycle
M. Artis et al.

Markov switching models can help identify business cy-
cles.
The local maxima and minima of a price time series
give a set of candidate latent state sequences: we can
compute the likelihood of each of them and pick the
best. Duration constraints can be imposed by en-
larging the state space to contain the (S1, . . . , S15)
satisfying the constraints; the only transitions are
(S1, . . . , S15) → (S2, . . . , S15, ∗). For monthly data, it
may be necessary to filter the time series to remove low
frequency patterns, e.g., with a band-pass filter or an
HP filter.

Noise fit, estimation error
and a Sharpe information criterion

D. Paulsen and J. Söhl (2016)
The realized information ratio tends to be much lower
than the forecasted one: correct it.

IRout = IRin −
#parameters or assets

IRin ×#periods

Option-based benchmark indices – a review
of performance and (in)appropriate measures

M. Natter (2017)
Jensen’s alpha (the CAPM intercept) is inappropri-
ate to measure the performance of option strategies
(for which there are now many indices and even a few
ETFs):
– Let the CAPM beta vary with time (e.g., make it a
linear or 2-valued function of market returns);

– Add a straddle factor to the CAPM;
– Correct Jensen’s alpha for skewness (Leland):

x : market log-returns
y : strategy log-returns

b =
E[x]

Var[x]

β =
Cov(ex,−e−by)
Cov(ex,−e−bx)

α = E[y]− βE[x]

– Adjust the Sharpe ratio for higher moments (Stutzer
index):

I = Max
θ
− logE[eθy]

IR =
√
2I × signE[y].

Information geometry
and statistical manifolds

M. Suzuki (2014)
Consider a family of probability distributions indexed
by an open set Ω ⊂ Rn, S = {p(·, ξ) : ξ ∈ Ω}. The
Fisher information matrix

gij(ξ) = E[∂i`ξ∂j`ξ] = −E[∂i∂j`ξ]

where `ξ = log p(·, ξ) and ∂i = ∂/∂ξi, defines a Rie-
mann structure on S. For instance, the Gaussian (1-
dimensional) family is the Poincaré half plane

Ω = R×R×+

S = {N(µ, σ2) : (µ, σ) ∈ Ω}

gij(µ, σ) =

(
σ−2 0
0 2σ−2

)
The α-connection,

Γαijk = 〈∇α∂i∂j , ∂k〉

= E
[(
∂i∂j`ξ +

1− α
2

∂i`ξ∂j`ξ

)
∂k`ξ

]
,

for α ∈ {−1, 0,+1}, satisfies

Γβijk = Γαijk +
α− β
2

Tijk

Tijk = E[∂i`ξ∂j`ξ∂k`ξ]

∇α = (1− α)∇0 + α∇1 =
1 + α

2
∇1 +

1− α
2
∇−1

where
– ∇0 is the Levi-Civita connection (compatible with
the metric, torsion-free);

– ∇1 is called the exponential connection; it is flat if S
is an exponential family;

– ∇−1 is called the mixture connection; it is flat is S
is a mixture family.

Computations with ∇1 and ∇−1 are often easier than
those with ∇0: they involve divergences rather than
geodesic distances.

Information geometry for neural networks
D. Wagenaar (1998)

Families of distributions are often parametrized by an
open of Rn: this endows them with a geometric struc-
ture (differential manifold), but the Euclidean distance
is inappropriate. Fisher information gives a better
(parametriation-independent) Riemannian structure:

gµν = E[∂µ`∂ν`] = −E[∂µ∂ν`].

A parallel transport is a differentiable way of compar-
ing tangent spaces at different points, when they are
linked by a curve,

Φ
P
γ→P ′ : TP ′M −→ TPM,

with ΦP→P = Id. Its first Taylor expansion, for
P = γ(0), P ′ = γ(ε), γ̇(0) = ∂µ, can be written

Φ
P
γ→P ′(∂ν) = ∂ν + εΓρµν∂ρ + o(ε)

and defines a connection Γ.
Tangent vectors have several interpretations:
– 1-jets, i.e., equivalence classes of curves;
– Derivatives, ∂µ;

Article and book summaries by Vincent Zoonekynd 519/1044

– Random variables, ∂µ`, i.e., functions of X.
This last interpretation is specific to statistical mani-
folds and allows us to define two new connections. A
connection is a mappting between TθM and Tθ+δθM ,
whose bases are

∂µ`(θ)

∂µ`(θ + δθ) = ∂µ`(θ) + ∂µ∂ν`(θ)δθ
ν +O(δθµδθν).

We can modify the second term to make its expectation
disappear (this looks desirable since E[∂µ`(θ)] = 0) in
two ways

∂µ∂ν`(θ) + E[∂µ`∂ν`]

or ∂µ∂ν`(θ)− ∂µ`∂ν`.

Projecting the random variable onto TθM ,

proj : A 7−→ E[A∂ν`]g
µν∂µ`

gives

Γλµν = E[∂µ∂ν` ∂ρ`]g
ρλ

and Γλµν = E[∂µ∂ν` ∂ρ`+ ∂µ` ∂ν` ∂ρ`]g
ρλ.

This defines the family of α-connections

Γ(α)λ
µν = E

[
∂µ∂ν` ∂ρ`+

α− 1

2
∂µ` ∂ν` ∂ρ`

]
gρλ.

The metric connection

Γλµν = 1
2 [∂µgνρ + ∂νgµρ − ∂ρgµν]gρλ

is Γ(0).
Parallel transport does not usually preserve scalar
products. Two connections Γ and Γ∗ are dual if the
vector fields X and Y ∗, defined as the parallel trans-
port of X|γ(0) and Y |γ(0) wrt Γ and Γ∗ along a curve
γ satisfy

∀t 〈X(t), Y ∗(t)〉 = 〈X(0), Y (0)〉.

The α and −α connections are dual.
For dually flat connections, Γ, Γ∗, there exist local co-
ordinate systems θ, θ̃, such that Γ ≡ 0 and Γ∗ ≡ 0, and
potential functions Θ(θ), Θ̃(θ̃) such that θ̃µ = ∂µΘ(θ)
(and conversely). The divergence between two points
P and Q is

D(P,Q) = Θ(θP) + Θ̃(θ̃Q)− θµP θ̃Q,µ.

It behaves like a distance, but is easier to compute:
there is no need to integrate along a geodesic.

D(P,Q) ⩾ 0

D(P,Q) = 0 ≡ P +Q

∂D(P,Q)

∂θ

∣∣∣∣
P=Q

= 0

∂2D(P,Q)

∂θµ ∂θν
= gµν(P)

A computational approach
to Fisher information geometry

with applications to image analysis
W. Mio et al.

Given two probability density functions (pdf) on [0, 1],
how can we deform one into the other? Those pdfs
form an infinite dimensional statistical manifold (we
can represent a pdf p with its log-likelihood φ = log p):

P =
{
φ :

∫
eϕ = 1

}
TϕP =

{
f :

∫
feϕ = 0

}
〈f, g〉 =

∫
fgeϕ

(for the scalar product, use the Hessian of the Kulback-
Leibler divergence). Discretizing the pdf on an equis-
paced grid gives

Pn = F−1(1)

F :

{
Rn −→ R

φ 7−→
∑

eϕi

〈f, g〉ϕ =
∑

figie
ϕi

TϕPn =
{
f : 〈f,1〉ϕ = 0

}
dFϕ(f) =

∑
fie

ϕi = 〈f,1〉ϕ

Geodesics in a given direction can be computed by it-
erating the following steps (?).

φ0 : starting point
f0 : direction
φ1 ← φ0 + εf

φ1 ← φ1 + α1, with α s.t. Fφ1 = 1

f1 ← f0 − 〈f0,1〉ϕ11

f1 ← ‖f0‖
f1
‖f1‖

For the geodesic between two points, use the shoot-
ing method to find the correct direction to reach the
desired target in unit time.
Those geodesics can help compute Fréchet means, per-
form PCA or k-means.

Computational information geometry
for machine learning

F. Nielsen (MLSS 2015)
1. A statistic t is sufficient for a parameter θ if

P
(
X | t(X), θ

)
= P

(
X | t(X)

)
.

The probability can then be decomposed as (Fisher–
Neyman theorem)

P (x; θ) = g
(
t(x), θ

)
h(x).

Article and book summaries by Vincent Zoonekynd 520/1044

This motivates the exponential family:

p(x; θ) = exp
[
〈t(x), θ〉 − F (θ) + k(x)

]
t(x) : sufficient statistic
k(x) : auxiliary term
F (θ) : normalization constant.

Many common distributions are exponential (Uniform,
Cauchy and stable distributions are not exponential).
The normalizing constant

F (θ) = log

∫
exp
[
〈t(x), θ〉+ k(x)

]
dx

is convex. Its convex conjugate is

F ∗(η) = sup
θ∈Θ
〈η, θ〉 − F (θ),

for η ∈ H, H = {∇F (θ) : θ ∈ Θ}, and the supre-
mum is obtained for θ = ∇F ∗(η) = (∇F)−1(η). The
canonical divergence is (Fenchel–Young inequality)

AF (θ : η) = F (θ) + F ∗(η)− 〈η, θ〉 ⩾ 0.

Exponential families have two parametrizations.

natural expectation
θ ∈ Θ ←→ η ∈ H

θ = ∇F ∗(η) η = ∇F (θ) = E[t(X)].

The maximum likelihood estimator is easy to compute
in expectation coordinates: η = E[t(X)].
2. The Fisher information is the variance of the
score, i.e., the information a random variable X carries
about a parameter θ. It defines a metric on statistical
manifolds

gij(θ) = E[∂i` ∂j`] = −E[∂i∂j`] = 4

∫
∂i
√
p ∂j
√
pdx.

The exponential map maps (a star-shaped neighbour-
hood of the origin in) TxM to M : v 7→ expx(v) =
γv(1); its inverse is logx. Location-scale families (Gaus-
sian, Cauchy, Student, etc.) are hyperbolic (they have
negative curvature); the multinomial family is spheri-
cal.
On a statistical manifold, one can interpret tan-
gent vectors as random variables, e.g., ∂ip(x), ∂i`(x),
2∂i
√
p(x), or, more generally, ∂ifα(x), where

fα(u) =

2

1− α
u
1−α
2 α 6= 1

log u α = 1

For a univariate Gaussian, the Fisher information is

I(µ, σ) = σ−2
(
1 0
0 2

)
;

after rescaling, this is the Poincaré half plane. Positive
matrices are also hyperbolic spaces, e.g., the Poincaré
disk (conformal) or the Klein disk (not conformal).

Information geometric optimization uses the natural
gradient I−1∇f instead of the gradient ∇f .
Jeffrey’s prior, q(θ) ∝

√
|g(θ)|, is invariant under

reparametrization.
3. The Riemannian metric is not the only way of defin-
ing geodesics and “distances”. Given two probability
distributions p and q, one can consider curves between
them:

γm : r(x, t) = αp(x) + (1− α)q(x)
γe : log r(x, t) = α log p(x) + (1− α) log q(x) + c.

They are geodesics for the dual mixture (m) and ex-
ponential (e) connections. For the exponential fam-
ily, they are flat, and Γ ≡ 0, resp. Γ∗ ≡ 0, in the
θ = ∇F ∗(η) and η = ∇F (θ) coordinate. The metric
tensor can be recovered from the potential functions F
and F ∗:

gij(θ) =
∂2F (θ)

∂θi ∂θj
Γαijk =

1− α
2

∂3F (θ)

∂θi ∂θj ∂θk

gij(η) =
∂2F ∗(η)

∂ηi ∂ηj
κ =

1− α2

4

If p(x; θ) = exp
[
〈θ, x〉 − F (θ)

]
, F is the cummulant

dunction and F ∗ the negentropy. Since ∇(e) = ∇(1)

and ∇(m) = ∇(−1) are flat, the geodesics are easier
to compute than those for the Levi-Civita connection
∇(0).
4. If P and Q belong to the same exponential family,
the canonical and Bregman divergences are related.

AF (θ : η) = Fθ + F ∗η − 〈η, θ〉
BF (θ1 : θ2) = Fθ1 − Fθ2 − 〈θ1 − θ2,∇Fθ2〉
KL(P ||Q) = BF (θP : θQ) = BF∗(ηP : ηQ)

= AF (θQ : ηP) = AF∗(ηP : θQ)

p q

BF (p : q)

(The Bregman divergence is the residual of the first
order Taylor expansion.)
5. The maximum entropy distribution p with
prescribed moments E[t(X)] minimizes the Kullback-
Leibler divergence with the uniform distribution q =
(1n , . . . ,

1
n).

Find p

To maximize D(p : q) =
∑

pi log
pi
qi

Such that ∀j
∑
i

pitij = mj∑
pi = 1

∀i pi ⩾ 0

Using Lagrange multipliers, we see that this distribu-
tion is exponential p(x) ∝ q(x) exp〈θ, t(x)〉.

Article and book summaries by Vincent Zoonekynd 521/1044

The KL-Pythagoras theorem,

KL(p : q) = KL(p : p∗) +KL(p∗ : q)

holds if p and p∗ satisfy the moment constraints, the
submanifold defined by those constrains is m-flat, and
p∗ is the e-projection of q on it.

D(p : q)

m-geodesic
D(p : p∗)

e-projection

D(p∗ : q)

p p∗

q

m-flat

6. The maximum entropy estimator is the e-projection
of a prior onto the moment manifold.
The maximum likelihood estimator is the m-projection
of the empirical distribution pemp onto the model sub-
manifold M ,

pθ = Argmin
p∈M

D(pemp : p).

Those information projections are defined as

e-projectionM (q) = Argmin
p∈M

D(p : q)

m-projectionM (q) = Argmin
p∈M

D(q : p)

The e- (resp. m-) projection is unique ifM is m- (resp.
e-) flat.
7. The Riemannian distance (Rao distance) is diffi-
cult to compute explicitly (it is not known in closed
form for multivariate normals), but lets you use the
exponential (and logarithm) map between the tangent
space and the manifold.
One often switches between conformal models (e.g,
the Poincaré disk, good for visualization) and non-
conformal ones (e.g., the Klein disk, whose geodesics
are straight lines – good for computations).
8. Many geometric notions can be generalized to di-
vergences.
The cosine law (c2 = a2 + b2 − 2ab cos Ĉ) becomes

D(P : R) = D(P : Q) +D(Q : R)− ‖γ̇PQ‖
∥∥γ̇∗QR∥∥ cos θ

= D(P : Q) +D(Q : R)− 〈θP − θQ, ηR − ηQ〉

where θ is the angle between the ∇-geodesic γPQ and
the ∇∗-geodesic γQR.
The Bregman sphere is defined as follows.

F : Rd −→ R

F =
{ (
x, F (X)

)
: x ∈ Rd

}
hypersurface

Hp(x) = 〈x− p,∇Fp〉+ Fp x, p ∈ Rp

Hp =
{ (
x,Hp(x)

)
: x ∈ Rd

}
tangent space T(p,Fp)F

F ∩
(
Hp + (0, r)

)
Bregman sphere

Vantage point trees partition the space with Bregman
spheres to speed up nearest neighbour queries. One
can (algorithmically) compute the smallest Bregman
enclosing ball, test if a point is inside a Bregman ball
defined by n+1 support points (to compute Delaunay
triangulations), etc.
9. There are many divergences

Csiszár If (p, q) =
∑

qif
(pi
qi

)
KL KL(p : q) =

∑
pi log

pi
qi

Bregman BF (x, y) = Fx− Fy − 〈x− y,∇Fy〉
Canonical AF (θ : η) = Fθ + F ∗η − 〈η, θ〉
Skew-Jensen Jα(x, y) = αFx+ (1− α)Fy

− F
(
αx+ (1− α)y

)
and many divergence-based k-means generalizations.

Multiclass classification
Y. Keshet (2014)

The all-against-one and all-pairs multiclass classifica-
tion schemes reduce the problem to binary classifica-
tion

Argmax
i

P (X = i)

or Argmax
i

∑
j ̸=i

P (X = i |X ∈ {i, j});

they can be generalized to an arbitrary set of binary
comparisons P (X ∈ I |X ∈ J), I J with error cor-
recting codes (ECOC: error correction output codes).
Multiclass classifiers (softmax, SVM, etc.) are usually
of the form Argmaxi Score(X, i). (the formula is the
same, but there is only one model).

Multi-label classification
with error-correcting codes

C.S. Ferng and H.T. Lin
Error correcting codes (ECOC) can also be used for
multi-label classification (predicting a set of labels in-
stead of just one).
Here are the common error correcting codes.
– Repetition: repeat each bit 3 times.
– Hamming(7,4): 4 data bits and 3 parity bits.

p1 = d1 ⊕ d2 ⊕ d4
p2 = d1 ⊕ d3 ⊕ d4
p3 = d2 ⊕ d3 ⊕ d4

– Low-density parity check (LDPC) codes do not re-
ally specify how to encode a message (this is left as
an exercise for the user) but rather which messages
are valid. A binary vector x is valid if Px = 0, where
P is the binary matrix (parity matrix) defining the
code. It usually has the same number of 1s in each

Article and book summaries by Vincent Zoonekynd 522/1044

row, and the same number of 1s in each column. It
can be represented as a bipartite graph.

message (bit nodes)

constraints (parity nodes)

One can decode a message (i.e., find the closest valid
message) using message passing.

– BCH are the most commonly-used codes.

q = 2 prime number
n = qm − 1
d < n
α ∈ Fqm generator of Fqm
mi ∈ Fq[X] minimal polynomial of αi
g = lcm(m1, . . . ,md)
Code words =

{
P ∈ Fq[X] : degP < n and g|P

}
Stochastic portfolio theory:

a machine learning perspective
Y.L.K. Samo and A. Vervuurt

Stochastic portfolio theory shows that, under reason-
able assumptions, a (continuously-rebalanced) portfo-
lio with weights wi ∝ MCappi (diversity-weighted port-
folio), for p ∈ (0, 1), a.s. outperforms the market. The
amplitude of the performance and the time needed to
reach it depend on p: small, quick out-performance if
p is close to 1, larger, but more delayed if p is close to
0 (the 1/N portfolio).
To find the best p, empirically, i.e., that maximizing
the excess returns (after 10bp transaction costs), one
can use a grid search (p ∈ [−8, 8]) or a Bayesian ap-
proach (Metropolis-Hastings), with a uniform prior on
p, and Gamma(ExcessReturns(p); a, b) as likelihood,
where a and b reflect the investor’s risk appetite (e.g.,
a bullish investor could want mean= 7 and sd= .5).
A non-parametric approach,

wi ∝ f(MCapi)
log f ∼ GP(0, k),

where k is a rational quadratic kernel,

k(x, y) = a

[
1 +

(x− y)2

b

]c
,

prefers midcaps, and can be generalized to account for
other predictors, e.g., the ROA,

wi ∝ f(MCapi,ROAi)
log f ∼ GP(0, kMCap × kROA).

Diversity-weighted portfolios
with negative parameter

A. Vervuurt and I. Karatzas (2015)
Diversity-weighted portfolios wi ∝ MCappi , with p < 0,
are also worth considering.

Bayesian Lipschitz constant
estimation and quadrature

J.P. Calliess
Probabilistic numerics provides quadrature rules tai-
lored to a given prior: for instance, the trapezoidal rule
comes from a random walk prior and is suboptimal if
we know the function is smoother.

What works best when? A framework
for systematic heuristic evaluation

I. Dunning et al. (2015)
Use machine learning to select which heuristic (or ma-
chine learning algorithm) to use on a new problem
(MaxCut or quadratic unconstrained binary optimiza-
tion).

MaxCut: Maximize
y∈{±1}n

∑
ij

wij(1− yiyj)

QUBO: Maximize
x∈{0,1}n

x′Qx

Train on real (non-simulated) data, with the following
graph metrics as features: number of nodes, number
of edges, assortativity, approximate maximum inde-
pendent set, Laplacian eigenvalues, approximate chro-
matic number; mean, standard deviation, minimum,
maximum, skew, kurtosis of degree, weight, average
neighbour degree (as a function of the node degree),
clustering coefficient, core number.

Obtaining calibrated probability estimates from
decision trees and naive Bayesian classifiers

B. Zadrozny and C. Elkam
Machine learning classifiers may provide accurate class
forecasts and rankings, but rarely accurate probability
estimates.
– Since predictors, in a naive Bayes classifier, are of-
ten correlated, the probabilities are close to 0 or 1:
a histogram method can rescale them.

– Decision trees try to make leaves homogeneous:
observed probabilities are shifted towards 0 or 1;
probabilities in small leaves have high variance.
Laplace smoothing replaces probabilities k/n with
(k+1)/(n+2), i.e., shrinks them towards 1/2 – but
this need not be the base rate. Instead, shrink them
towards the base rate b, k/n 7→ (k + bm)/(n + m)
(m-estimation), with bm = 10, or towards the par-
ent node. Splitting criteria generating smaller trees
(e.g., h(p, 1− p) =

√
p(1− p)) may help.

Scalable inference
for structured Gaussian process models

Y. Saatçi (2011)
A structured Gaussian process (GP) is a GP whose
covariance matrices have a special structure, often al-
lowing more efficient computations:
– Bounded rank, as in linear regression;

Article and book summaries by Vincent Zoonekynd 523/1044

– Toeplitz, for 1-dimensional kernels evaluated on a
regular grid;

– Gauss-Markov processes, for some 1-dimensional
kernels (e.g., Matérn);

– Block structure, if there is a change point;
– Additivity, as in GAMs;
– Kronecker product, if the kernel is a tensor product
evaluated on a (not necessarily regular) grid).

Generalized GPs (i.e., non-Gaussian “GP”s, e.g., Pois-
son GPs for count data) can be estimated using the
Laplace approximation or expectation maximization.
1. A linear stochastic differential equation (SDE) with
constant coefficients

f (m)(x) + am−1f
(m−1)(x) + · · ·+ a0f(x) =W (x)

defines a GP with the Markov property

d

dx

f
f ′

...
f (m−1)

 =

0 1 0 0

0

0 0 1

−a0 −am

f
f ′

...
f (m−1)

+

0
...
0
1

W ;

it is a state space model: it can be estimated with a
Kalman smoother (after sorting the data along x). The
SDE can be seen as a linear time-invariant (LTI) sys-
tem, f = Tw, w = noise. It is characterized by its
impulse function h = Tδ:

Pφ = φ ∗ h
k(τ) = qδ(τ) ∗ h(τ) ∗ h(−τ).

Starting with

k(τ) = qδ(τ) ∗ h(τ) ∗ h(−τ)
Tw = w ∗ h∑

akf
(k)(x) = w(x)

and taking the Fourier transform

S(ω) = q |H(ω)|2

F (ω) =W (ω)H(ω)∑
ak(iω)

kF (ω) =W (ω)

gives

S(ω) = q |H(ω)|2 = a

∣∣∣∣ F (ω)W (ω)

∣∣∣∣2
=

1

|
∑
ak(iω)k|2

=
1

|polynomial in iω|2

=
1

polynomial in ω2 .

For the Matérn family,

Sν(ω) ∝
1

(λ2 + ω2)ν+1/2
.

For instance, ν = 7/2 gives

A =

0 1 0 0
0 0 1 0
0 0 0 1
−λ4 −4λ3 −6λ2 −4λ

(this also explains why the paths of a Matérn GP are
a.s. differentiable ν − 1/2 times).
For the square exponential kernel, S(ω) ∝ exp(−αω2)
is not the inverse of a polynomial, but can be approx-
imated using polynomials (it may be easier to use a
Matérn kernel, though).
Splines can also be expressed as GPs.
2. The Bayesian online change point detection
(BOCPD) algorithm combines a base model and a haz-
ard function; the parameters of the Bayesian model
change at each changepoint.

rt length of the current run
yt−r, . . . , yt−1, yt current run
P [yt|yt−r, . . . , yt−1] base model

The posterior P [rt|y1, . . . , yt−1] can be used to compute
predictions robust to regime changes (with a message
passing algorithm). For Gaussian processes, this is un-
tractable, but it can be approximated with a grid or
HMC; in both cases, prune highly unlikely run length
values.
3. Additive GPs are GAMs with GP components.
4. The covariance matrices of a GP with a product
kernel on a (not necessarily regular) grid are Kronecker
products and therefore amenable to efficient computa-
tions.xs

Bandit algorithms for searching large spaces
L.R.M. Dorard (2012)

A bandit game is a 1-state Markov decision process
(MDP).
The many-arm bandit problem has too many arms (ac-
tions) to explore them all,. but they are often arranged
in a tree: one can use a Gaussian process to model the
reward of a leaf, from the features of the path from the
root (explicit features are not needed – a kernel suffices,
e.g., that given by the number of nodes in common).
Both bandit problems and Bayesian optimization are
exploration/exploitation problems.

Sum-product networks:
a new deep architecture

H. Poon and P. Domingos
The network polynomial of an (unnormalized) prob-
ability distribution P on {0, 1}n is

∑
I⊂J1,nK P [xI =

1, xĪ = 0]xIxĪ ∈ R[x1, . . . , xn, x̄1, . . . , x̄n]. It can be
represented as a sum-product network, i.e., a network

Article and book summaries by Vincent Zoonekynd 524/1044

whose inputs are x1, . . . , xn, x̄1, . . . , x̄n and with two
types of nodes,

x1
x2

xn

+
∑
wixi and

x1
x2

xn

×
∏
xi.

(Not all sum-product networks represent network poly-
nomials, but there are simple sufficient conditions to
ensure it.)

Adversarial perturbations
of deep neural networks

D. Warde-Farley et al.
Deep neural networks are affected by adversarial ex-
amples: one can take a correctly classified input and
modify it slightly to produce a different output. Worry-
ingly, adversarial examples seem model-agnostic. The
problem is not with the excessive non-linearity of neu-
ral nets but their insufficient non-linearity: instead of
a linear situation

+++
++
+++

−−−
−−
−−−

not observed
but even
more posi-
tive

we would prefer

+++
++
+++

−−−
−−
−−− ???

?
???

?

Generative adversarial networks (GAN) simulta-
neously learn a generator, which transforms noise into
an adversarial example, and a discriminator, whose role
is to tell if the input came from the data or the gener-
ator – a minimax game.

A consistent multivariate test of association
based on ranks of distances

R. Heller et al. (2012)
To test the independence of two quantitative random
variables X and Y , a permutation test for∑

i ̸=j

χ2
[
X ∈ B(xi, d

X
ij) ⊥⊥ Y ∈ B(yi, d

Y
ij)
]

is an alternative to the distance correlation
(energy::dcov.test).

Stochastic gradient Riemannian Langevin
dynamics on the probability simplex

S. Patterson and Y.W. Teh
Langevin dynamics,

dθt = ∇ log π(θ)dt+ 2σdWy,

i.e., gradient updates plus noise

θn+1 ← θn + ε
[
∇θ log p(θ) +

∑
∇θ log p(xi|θ)

]
+ ζ

ζ ∼ N(0, ε)

(you can add a Metropolis-Hastings (MH) correction
for the discretization, i.e., only accept the proposal
with the MH probability) can be preconditioned by
using the Fisher information Riemannian structure (or
some approximation, if it is intractable) and used on
mini-batches.
Among the many parametrizations of the probability
simplex,

πn = 1−
n−1∑
1
θi

πk =
eθk

1 +
n−1∑
1
eθi

πk =
θk∑
θi

πk =
eθk∑
eθi

the expanded mean πk = |θk| /
∑
|θi|, G(θ) = diag θ−1

(Fisher information from a Gamma-Poisson model –
the parametrization is redundant) works better.

MCMC for continuous-time
discrete-state systems
V. Rao and Y.W. Teh

A semi-Markov (jump) process (sMJP) on N states is
defined by anN×N matrix of hazard functions describ-
ing the state transitions. When the hazard functions
are constant, it is a Markov jump process. To sample
from a sMJP, proceed as for non-homogeneous Poisson
processes.

Temporal disaggregation of time series
C. Sax and P. Steiner (2013)

The tempdisagg package disaggregates time series,
i.e., converts annual time series to monthly (or quar-
terly) ones, using auxilliary monthly series (countries
providing quarterly GDP estimates interpolate annual
numbers in this way). It is a 2-step process: first, inter-
polate the series using GLS and assuming it is AR(p);
then, tweak it, so that the sum, average, first or last
value of the monthly series be consistent with the an-
nual one.

Compressive spectral clustering
N. Tremblay et al.

Spectral clustering on large graphs using subsampling
(of matrix columns), random sampling (of graph sig-
nals, i.e., functions defined on the (finite) set of nodes)
or iterative node aggregation.

Article and book summaries by Vincent Zoonekynd 525/1044

A general framework
for updating belief distributions

P.G. Bissiri et al. (2013)
In Bayesian statistics, the belief update

Posterior(θ) ∝ Prior(θ) · Likelihood(Data|θ)
∝ Prior(θ) · exp−loss(Data; θ)

still makes sense for an arbitrary loss function (e.g.,
from robust statistics, instead of minus the log-
likelihood), which can have much fewer parameters
than a full model and is more robust to “model” mis-
specification. This can be theoretically justified by

Posterior(θ) = Argmin
ν

KL(ν‖prior)+
∫
Θ

loss(Data; θ)ν(dθ).

A survey on independence-based
Markov networks learning

F. Schlüter (2013)
Algorithms to learn the structure of a Markov network
are
– Either score-based: start with 1-variable potentials;
add merged potentials, if they improve the model
enough; iterate;

– Or independence-based: compute the Markov blan-
ket (MB) of each node with independence tests and
join them (or rule):
· The grow-shrink (GS) algorithm adds the variables
needed to the MB, and then removes those no
longer needed;
· The incremental association MB (IAMB) algo-
rithm is similar, but adds the best variables first;
· The GS inference Markov network (GSIMN) al-
gorithm uses the triangle theorem to reduce the
number of tests;
· etc. (prefer IAMB variants or IPC-MB).

Using Markov blankets
for causal structure learning

J.P. Pellet and A. Elisseeff (2008)
A random variable Xi is strongly relevant, weakly rele-
vant or irrelevant to a target Y if

(i) P (Y |X\i) 6= P (Y |X\i, Xi)

(ii) ∃S ⊂ X\i P (Y |S) 6= P (Y |S,Xi)

(iii) ∀S ⊂ X\i P (Y |S) = P (Y |S,Xi)

In a faithful Bayesian network, the Markov blan-
ket of a node (i.e., the children, parents and spouses
(children’s parents), i.e., the neighbours in the moral
graph) is the set of strongly relevant variables; fea-
ture selection algorithms can estimate them. It is pos-
sible to recover the Bayesian network up to observa-
tional equivalence (i.e., (unoriented) adjacencies and
(oriented) V-structures) by looking for spouse links
in triangles (i.e., finding d-separation sets), removing
them, and orienting the remaining two edges.

Numeric experiments
on the commercial quantum computer

R.H. Warren (2013)
Adiabatic quantum computers (D-wave – the only com-
mercial quantum computers available) solve uncon-
strained binary quadratic optimization problems

Argmin
s

s′Js+ h′s.

Many combinatorial optimization problems can be cast
in this form.
This looks unrelated to textbook quantum computers,
which do linear algebra in (C2)⊗n.

A unified framework for modeling and solving
combinatorial optimization problems:

a tutorial
G.A. Kochenberger and F. Glover (2004)

Many combinatorial optimization problems can be
reformulated as unconstrained quadratic binary pro-
grams. Most constraints can be recast as penalties,
e.g.,

x+ y ⩽ 1 ⇝ Pxy
x+ y ⩾ 1 ⇝ P (1− x− y + xy)
x+ y = 1 ⇝ P (1− x− y + 2xy)

x ⩽ y ⇝ P (x− xy)∑
xi ⩽ 1 ⇝ P

∑
i<j

xixj

with P sufficiently large.

Solving the optimal trading trajectory problem
using a quantum annealer

G. Rosenberg et al.
Small multi-period portfolio optimization problems can
be solved with a quantum computer (50 assets, 10 pe-
riods already require more than the 1152 bits D-Wave
offers).

Quantum algorithms for supervised
and unsupervised machine learning

S. Lloyd et al. (2013)
When data is stored in a qRAM (quantum RAM), com-
puting distances and inner products (e.g., for k-means)
of vectors in N -dimensional space takes time O(logN).
Quantum machine learning enhances privacy: the user
only accesses an exponentially small fraction of the
data.

Predicting the present with Bayesian
structural time series

S.L. Scott and H. varian (2013)
Nowcasting models a time series from its past values
and from contemporaneous easy-to-measure time se-
ries, yt ∼ yt−1 + xt. Combine a structural model for
the time series with spike-and-slab priors for the re-
gression coefficients.

Article and book summaries by Vincent Zoonekynd 526/1044

Cuckoo filter: practically better than Bloom
B. Fan et al. (2014)

A cuckoo hash table has two hash functions, h1 and
h2, and stores an element x, either in h1(x) or h2(x) –
if both are occupied, it displaces one of its occupants,
which moves to its other location, possible displacing
other elements – if this fails after 500 iterations, the
hash table is full.
They can be adapted to work as Bloom filters with
deletion (for the same space usage as a Bloom filter).

Model-based variable decorrelation
in linear regression

C. Theéry
To estimate a regression in the presence of correlated
variables, one can use
– Shrinkage (ridge, lasso), variable selection (spike-
and-slab);

– Clusters of variables with the same coefficients
or model the correlation structure, e.g., with a sparse
set of regressions between the predictors – the CorReg
package uses MCMC to find a set of linear relations in
which response variables are never predictors.

Resizable, scalable, concurrent hash tables
via relativistic programming

J. Triplett et al.
Hash tables can be resized while in use.

progenyClust:
an R package for progeny clustering

C.W. Hu and A.A. Qutub (2016)
To choose the number of clusters (in k-means, etc.),
look at their stability, rather than just their compact-
ness or how distinct they are. For instance:
– Cluster the data into C1, . . . , Ck;
– Sample N elements from each Ci
– Cluster the resulting data;
– Look at the cooccurrence matrix: let Qab indicate

whether a and b are in the same (new) cluster; we ex-
pect this matrix to be approximately block-diagonal;

– Repeat R times, average the Q matrices, and com-
pute

Stability =
P [a ∼′ b | a ∼ b]
P [a ∼′ b | a 6∼ b]

where a ∼ b (resp. a ∼′ b) indicates that a and b
were (are) in the same old (new) cluster.

Check the R packages: progenyCLust, cclust,
clusterSim, Nbclust, fpc, mclust.

mclust 4: clustering,
classification and density estimation
using Gaussian finite mixture models

L. Scrucca et al. (2016)

The mclust package provides EM clustering (Mclust)
with various variance structures; the best one and
the number of clusters can be selected with the BIC
(mclustBIC) or the integrated complete likelihood cri-
terion (ICL) to limit cluster overlap (mclustICL);
the data can be plotted after dimension reduc-
tion (MclustDR). The likelihood ratio test (with a
bootstrap-estimated p-value) can compare models with
k and k+1 clusters. Model-based hierarchical cluster-
ing merges the two clusters with the smallest likelihood
decrease; it can be used to initialize the EM algorithm./
Mixture models can also estimate densities
(densityMclust) or classify observations (mclustDA
– each class is a mixture of one (EDDA) or more
Gaussians).

Conditional fractional Gaussian fields
with the package FieldSim

A. Brouste et al. (2016)
The FieldSim package simulates fractional Gaussian
fields on the line, plane or sphere, and their variants
(fractional and multifractional Brownian fields, Brow-
nian sheets, anisotropic fields):

R(x, y) = 1
2 (‖x‖

2H
+ ‖y‖2H − ‖x− y‖2H)

R(x, y) ∝ ‖x‖H(x)+H(y)
+ ‖y‖H(x)+H(y)

− ‖x− y‖H(x)+H(y)

R(x, y) =
1

2d

d∏
i=1

(|x|2Hii + |y|2Hii − ‖xi − yi‖2Hi)

R(x, y) = v(x) + v(y)− v(x− y).

keyplayer: an R package for locating
key players in social networks

W. An and Y.H. Liu (2016)
There are many measures of centrality: degree, close-
ness (harmonic mean of pairwise distances), between-
ness (proportion of shortest paths that go through a
node i), eigenvector, M -reach degree, M -reach close-
ness (similar to degree and closeness, with the node
of interest replaced by the set of nodes at most M
steps away – there are two such neighbourhoods, {j :
d(i, j) ⩽ M} and {j : d(j, i) ⩽ M}: use both), frag-
mentation (harmonic mean after removing node i), dif-
fusion (

∑
k⩽T P

k)1.
Centrality measures can be aggregated for a group of
nodes: min, max, sum or 1 =

∏
G(1 − ci) if the cen-

tralities can be interpreted as probabilities.

CryptRndTest: an R package for testing
the cryptographic randomness

H. Demirhan and N. Bitirim (2016)
More tests of randomness for a sequence of bits, letters
or numbers:
– Adaptive χ2: divide the alphabet into subsets and
perform a χ2 test on them;

Article and book summaries by Vincent Zoonekynd 527/1044

– Birthday spacing: number of duplicated values of
spacings between ordered birthdays in a year of pre-
defined length

– Bookstack (?);
– gcd(x2n, xxn+1) should be iid;
– The number of steps to compute these gcd’s should
also be iid;

– Interpret the sequence of bits as a random walk and
look at the distribution of excursions, heights (in ex-
cursions) and expansions (max-min);

– Number of different bit patterns (just the number,
not their frequency).

clustering.sc.dp: optimal clustering
with sequential constraint

by using dynamic programming
T. Szkaliczki (2016)

The k-means optimization problem can be solved ex-
actly, in polynomial time, with dynamic programming,
in dimension 1 or in dimension n when only consecu-
tive items can form a cluster: let D[i,m] be the best
score when clustering x1, . . . , xi into m clusters.

Spatio-temporal interpolation using gstat
B. Gräler et al. (2016)

Spatial and temporal dependence structures can be
combined in many ways.

C(h, u) = Cs(h)Ct(u)

C(h, u) = kCs(h)Ct(u) + Cs(h) + Ct(u)

C(h, u) = C(
√
h2 + (κu)2)

C(h, u) = C(
√
h2 + (κu)2) + Cs(h) + Ct(u)

simplexreg: an R package for regression
analysis of proportional data using the simplex

distribution
P. Zhang et al.

The simplex distribution on [0, 1] is

p(y) ∝ yα−1(1− y)β−1 exp −dαβ(y;µ)
2σ2

dαβ(y;µ) = µ2α−1(1− µ)2β−1 y(1− y)
(y − µ)2

.

Special cases include the beta distribution (σ → ∞)
and the standard simplex distribution (α = β = 1

2).

PerMallows: an R package for Mallows
and generalized Mallows models

E. Iruruzki et al. (2016)
The Mallows model is a distribution on Sn, with
applications in recommender systems, information re-
trieval, preference elicitation:

p(σ) ∝ exp−θd(σ, σ0)

where σ0 is the mode, θ a dispersion parameter, and d
a distance, e.g.,

– Kendall’s τ (or bubble sort) distance: the number of
inversions;

– Cayley’s distance: the minimum number of transpo-
sitions;

– Hamming’s distance: the number of positions that
disagree;

– Ulam’s distance: the number of items not in the
longest common subsequence (LCS).

The generalized Mallows model (GMM) has a different
dispersion parameter θ for each position i, to give more
importance to some of them.
The Bradley-Terry model for pairwise comparisons
is

P [i > j] =
pi

pi + pj

where pi is the skill of i (it could depend on covariates).

FuzzyStatProb: an R package
for the estimation of fuzzy stationary

probabilities from a sequence of observations
of an unknown Markov chain

P.J. Villacorta and J.L. Verdegay (2016)
A subset A of X is determined by its indicator function
1A : X → {0, 1}.
A fuzzy subset of X is a function µ : X → [0, 1].
A fuzzy number is a function µ : R → [0, 1] such that
the α-cuts [µ ⩾ α] are compact, convex, non-emmpty
(for α ∈ [0, 1]), decreasing,

α ⩽ β =⇒ [µ ⩽ β] ⊂ [µ ⩾ α]
and continuous

[µ ⩾ α] =
⋂
β<α

[µ ⩾ β],

The estimated transition probabilities of a Markov
chain can be modeled as fuzzy numbers, by stacking
their confidence intervals, with a crisp constraint that
they add up to 1.

gramEvol: grammatical evolution in R
F. Noorian et al. (2016)

A derivation of a context-gree grammar (CFG) can
be encoded as a sequence of numbers, each indicat-
ing which (left-most) rule to apply (if the number if
larger than the number of applicable rules, use the
modulo operator). Canonical genetic algorithms (on
strings) can manipulate those derivations (add a length
limit, and ignore the end of the string, once no non-
terminals remain: all (sufficiently long) strings encode
valid derivations).
Application of grammatical evolution (GE) include
symbolic regression, feature generation, regular expres-
sion discovery, decision tree construction, ensembling
(with hyperparameters), etc.
Most other implementations (libGE, AGE, GEVA,
PonyGE, PyNevrGer, GEM, GERET) look unmain-
tained.

Article and book summaries by Vincent Zoonekynd 528/1044

Computation of graphlet orbits for nodes and
edges in sparse graphs

T. Hočevar and J. Demšar (2016)
To build a vector embedding of nodes in a graph
(“graphical n-grams”), count the graphlets (connected
induced subgraphs of size at most k containing the
node) and the orbits (position of the mode in the
graphlet, up to automorphism). The orca pack-
age computes those graphlet and orbit counts effi-
ciently (start with the smallest graphlets and notice
that graphlet inclusions induce linear relations between
graphlets and orbit counts). The embedding can be
used with the FNN package to find nodes with a neigh-
bourhood structure similar to that of a query node.

Copula regression spline sample selection
models: the R package SemiParSampleSel

W. Wojtyś (2016)
To model data missing not at random, try

x ∼ N(µ, σ) value
y ∼ N(ν, 1) missingness score
x1y>0 observed

and use a copula for (x, y).

Laplace’s rule of succession
in information geometry

Y. Ollivier
The sequential normalized maximum likelihood estima-
tor is the maximum likelihood estimator if the new
value y had already been observed

θML = Argmax
θ

∑
i

log pθ(xi)

θML+y = Argmax
θ

log pθ(y) +
∑
i

log pθ(xi)

pSNML(y) ∝ pθML+y (y)

(since θML+y depends on y, pθML+y (y) is not a proba-
bility and has to be normalized).
For exponential families, 1

2 (p
ML + pSNML) is close to

the Bayesian predictor obtained from the Jeffreys prior;
it generalizes the “add-one-half” rule (Laplace’s “add-
one” rule corresponds to a uniform prior on a Bernoulli
distribution).

On the chi square and higher-order chi
distances for approximating f-divergences

F. Nielsen (2013)
The Taylor expansion of a (convex) analytic function
f gives an expansion of the f -divergence as a series
of χ2 divergences. There are closed form formulas (no
integrals) for the (Pearson, Neymanm, Vajda) χ2 di-
vergences for exponential families.

Barycentric subspace analysis on manifolds
X. Pennec (2016)

There are many generalizations of principal component
analysis (PCA) to manifolds:
– Tangent PCA: start with the Fréchet mean and
do all the computations in its tangent space (this
only works if the distribution is sufficiently centered
around the mean);

– Principal geodesic analysis minimizes the least
squares distances to totally geodesic subspaces (it
is often approximated by tPCA);

– Geodesic PCA: find the geodesic best fitting the data
(it does not necessarily go through the mean); add a
second geodesic orthogonal to the first, etc.

A barycentric subspace is the locus of weighted means
of k − 1 points. The Fréchet (Karcher) mean is a
global (local) minimizer of

∑
wi d(x, xi)

2; the expo-
nential mean is a solution of

∑
wi

»xxi = 0 where
»xxi = logx(xi) is the Riemannian logarithm. A Fréchet
mean is a Karcher mean, which is an exponential mean.
Barycentric subspace analysis returns the flag (nested
subspaces of increasing dimensions) of barycentric sub-
spaces minimizing the unexplained variance.

Morphology, geometry and statistics
in nonstandard imaging

E. Chevallier (2015)
The pixels of an image are no longer limited to points
in a Euclidian space:
– Colours form a (non-flat) Riemannian space;
– With diffusion tensor imaging (DTI), voxels are 3×3
positive definite matrices (representing the distribu-
tion of the velocities of water molecules in this voxel).

Mathematical morphology is based on two operations:

Erosion ε(I)p = inf
q∈N(p)

Iq

Dilatation δ(I)p = sup
q∈N(p)

Iq

Opening γ = δε

Closing φ = εδ.

For arbitrary pixel values, e.g., elements of [0, 1]3, one
can try to impose a total order (not on all possible
values, but on the values actually taken):
– With space-filling curves;
– By solving the TSP on the set of pixel values;
– By solving a combinatorial optimization problem
looking for a total order avoiding pairs of points close
in in colour space by distant in the order, but al-
lowing problematic triplets of values provided they
occur in different regions of the space.

For pixel values in an unordered finite set of labels, one
can define a dilatation and an erosion for each label i,
extending or reducing the area occupied by this label
(for the erosion, fill in the blanks with, e.g., the nearest
value). For n > 2 labels, there are n dilatations and n

Article and book summaries by Vincent Zoonekynd 529/1044

erosions. This can be generalized to discrete probabil-
ity distributions on the set of labels (“fuzzy labels”).
To estimate a density (image histogram) on a Rie-
mannian space (e.g., a colour space, with the Rieman-
nian structure given by MacAdam ellipses, or Luo &
Rigg’s chromaticity discrimination ellipses (BFD-P), or
Berns’s colour difference tolerance (RIT-DuPont), or
spaces of Gaussian laws, with the Fisher or Wasser-
stein (earth’s mover’s) distance) only short geodesics
are needed: a local Euclidean approximation suffices.

Logarithmic time one-against-some
H. Daumé III et al.

For extreme multiclass classification (i.e., a very large
number of classes), build a decision tree, optimizing the
decrease in entropy of the label distribution (but only
for nodes whose recall is better than that of their chil-
dren, to ensure the counts are reliable), and use it to
select O(logK) candidates; then, use one-against-some
(instead of the reference, one-against-all).

Bag of tricks for efficient text classification
A. Joulin et al.

Use a linear classifier with Huffman-coding-based hier-
archical softmax, bag-of-words and n-grams, and the
hashing trick.

Optimizing non-decomposable performance
measures: a tale of two classes

H. Narasimhan et al. (2015)
Performance measures for unbalanced classification
problems are non-decomposable, and not amenable to
large scale optimization algorithms such as stochastic
gradient descent (SGD). Try to approximate the ob-
jective with a linear function of TPR and TNR (e.g.,
if it is a ratio of linear functions: F-mean, Jaccard co-
efficient) or use a primal-dual approach (for concave
functions of TPR and TNR: G-mean, H-mean).

Learning stationary time series
using Gaussian processes

with nonparametric kernels
F. Tobar et al.

Kernel choice encapsulates smoothness, stationarity
and periodicity assumptions on the function. The
model

k ∼ GP(0, k)
x ∼ GP(0, σ2δ) white noise
f = h ∗ x

is equivalent to

h ∼ GP(0, k)
f ∼ GP(0, k(·) ∗ k(−·))

i.e., it defines a prior on nonparametric models. Use a
decaying squared exponential kernel,

k(t, s) ∝ e−αt
2

e−αs
2

e−γ(t−s)
2

.

Local and global
sparse Gaussian process approximations

E. Snelson and Z. Ghahramani
Sparse Gaussian process approximations replace the
training set with a smaller set of “inducing points” (ei-
ther from the training set, or arbitrary points) and can
be global or local (for wiggly functions); the local and
global approaches can be combined.

Gaussian process kernels for pattern discovery
A.G. Wilson and R.P. Adams (2013)

Stationary kernels k are determined by their spectral
density S: k(t) =

∫
S(s)e2πis

′tds. The omnipresent
square exponential kernel has a Gaussian spectral den-
sity centered at the origin. Modeling the spectral den-
sity as a mixture of (non-centered) Gaussians gives a
larger variety of kernels.

Pseudo-marginal Bayesian inference
for Gaussian processes

M. Filippone and M. Girolami (2014)
To sample from p(f, θ|y), where θ are hyperparame-
ters, f latent variables, and y observed data, one can
alternatively sample from p(f |θ, y) and p(θ|f, y) – but
the distribution of the hyperparameters is too concen-
trated and leads to slow convergence and mixing. In-
stead, the pseudo-likelihood approach samples from
p(θ|y), using p(θ|y) ∝ p(y|θ)p(θ) and the unbiased es-
timator

p(y|θ) ≈ 1

N

∑ p(y|fi)p(fi|θ)
q(fi|y, θ)

fi ∼ q(·|y, θ) importance sampling.

Distributed Gaussian processes
A.P. Deisenroth and J.W. Ng (2015)

Train local experts on subsets of the data (e.g., using
KD-trees), and combine them, e.g., as a mixture of
experts, a product of experts, or a Bayesian commit-
tee machine (beware, many of those lead to over- or
under-confident forecasts).

Thoughts
on massively scalable Gaussian processes

A.G. Wilson et al.
Use inducing points and the structure of the covariance
matrix: Toeplitz (regular 1-dimensional grid), Kro-
necker (arbitrary n-dimensional grid) or block-Toeplitz
with Toeplitz blocks.

Article and book summaries by Vincent Zoonekynd 530/1044

Mollifying networks
C. Gulcehre et al.

To minimize a badly-behaved function f , mollify it,
i.e., minimize f ∗ kε, where kε is C∞, f ∗ kε is convex,
and f ∗ kε → f when ε → 0. If f ∗ kε is difficult to
compute, use a Monte Carlo approximation – this is
equivalent to adding noise to the input.
In addition, for neural nets:
– For each unit, either use the (noisy) activation func-
tion, or let the signal pass through, randomly (cf.
ResNet);

– Bound the activation function using its linear ap-
proximation (if the noise is high).

The concave-convex procedure (CCCP)
A.L. Yuille and A. Rangarajan (2003)

To minimize the sum of a convex and concave func-
tion, E = E+ + E−, the CCCP build a sequence
x0, x1, . . . such that ∇E+(xn+1) = −∇E−(xn); it
monotonically decreases E. If finding x such that
∇E+(x) = −∇E−(x0) is not obvious, iterate xn+1 ←
ArgminxE+(x)+〈x,∇E−(x0)〉 (these are convex prob-
lems).
Most functions are of this form: if the Hessian of E
is bounded, adding a sufficiently large strictly convex
function λF gives a convex function and a decomposi-
tion E = (E + λF) + (−λF).
Applying the CCCP to minimize E+(x) + E−(x) is
equivalent to minimizing E+(x)+ 〈x, y〉+E∗−(y) wrt x
and y alternatively, where E∗− is the Fenchel-Legendre
transform (aka convex conjugate) of E−.

Hyperparameter optimization
of deep neural networks

using non-probabilistic RBF surrogate model
I. Ilievski et al.

Non-probabilist alternative to Bayesian optimization
using radial basis function (RBF) surrogates.

Hyperbolic geometry of complex networks
D. Krioukov et al. (2010)

The curvature of a graph can be defined by looking at
how the number of nodes at distance (at most) d of a
given node changes with d, and comparing it with the
length (area) of a circle (disk) of radius r in the hyper-
bolic plane of constant curvature k. For instance, for
a b-ary tree, nd ∼ bd and aread ∼ ek

2d.

(The actual model is more complicated and considers
nested or overlapping disks in the hyperbolic plane.)

Fast generation of complex networks
with underlying hyperbolic geometry

M. von Looz et al.
A random hyperbolic graph is obtained by taking ver-
tices at random in the Poincaré disk and joining pairs

whose distance is below R. Naively computing all pair-
wise distances is quadratic: use a suitable data struc-
ture, e.g., a polar quad-tree.

Cryptographic secure pseudo-random bits
generation: the Blum-Blum-Shub generator

P. Junod (1999)
The BBS cryptographic RNG is defined by

p, q ≡ 3(4) large primes
n = pq

s ∈ Z/(n), s 6= 0

x0 = s2

xn = x2n−1

zn = parity(xn)

(for such n’s, squaring is a permutation of quadratic
residues (i.e., squares) modulo n).

Object spreadsheets: a new computational
model for end-user development
of data-centric web applications

M. McCutchen et al. (2016)
The spreadsheet computation model (data flow, graph
computations) is not adapted to spreadsheets: it con-
siders tabular or hierarchical data as unstructured and
has no relational operators to manipulate data.
Changing that computation model to focus on columns
rather than cells, and separating the tabular (devel-
oper) view from the user interface (UI) could help build
data-centric applications (which are often, currently,
shared Google spreadsheets).

Bayesian learning
via stochastic gradient Langevin dynamics

M. Welling and Y.W. Teh (2011)
Langevin dynamics can be seen as gradient descent
with added noise; it “converges” to the whole posterior
distribution instead of just its mode. Since stochastic
gradient descent is already a noisy gradient descent, it
can be modified, by adding the right amount of noise,
to sample from the posterior.

A piecewise deterministic scaling limit of lifted
Metropolis-Hastings in the Curie-Weiss model

J. Bierkens and G. Roberts (2016)
Given a Markov chain P (x, y) on a state space S, e.g., a
Metropolis-Hastings chain, and a function η : S → R,

(
T+ diag T+−

diag T−+ T−

)

Article and book summaries by Vincent Zoonekynd 531/1044

T+(x, y) = P (x, y)1ηy⩾ηx

T−(x, y) = P (x, y)1ηy⩽ηx

T+−(x) =

(∑
y ̸=x

T+(x, y)− T−(x, y)
)

+

T+−(x) =

(∑
y ̸=x

T−(x, y)− T+(x, y)

)
−

defines a (non-reversible, “lifted”) Markov chain on
S × {±1} with the same stationary distribution.

Irreversible Monte Carlo algorithms
for efficient sampling

K.S. Turitsyn et al. (2010)

Piecewise deterministic Markov processes,
applications in biology

R. Yvinec
Piecewise deterministic Markov processes (PDMP, an
example of a non-diffusion) are ODEs, switching at
random (Poisson) times, e.g., a cell growing (ODE) and
dividing (Poisson), or a gene, turned on or off (Poisson)
regulating some reaction (ODE).

Scalable MCMC for large data problems using
data subsampling and the difference estimator

M. Quiroz et al.
An approximate acceptance probability, computed
from a subsample (in a big data problem), is sufficient
to ensure a Metropolis-Hastings chain has the desired
stationary distribution.

Liftings of tree-structured Markov chains
T.P. Hayes and A. Sinclair

Lifting a markov chain (replacing each state with a set
of states) can improve mixing time. For instance, to
the diffusive behaviour of

one can add momentum.

The zig-zag process and super-efficient
sampling for Bayesian analysis of big data

J. Bierkens et al. (2016)
The zigzag process is a continuous-time piecewise de-
terministic Markov process (PDMP) on Rd × {±1}d:
ξ : R+ → Rd is piecewise linear, with ξ′ = θ,
θ : R+ → {±1}d; a single component of θ flips at ran-
dom times, at rates λi(ξt, θt); it can be sampled with
Poisson thinning. Adding momentum makes the chain

non-reversible (Hamiltonian Monte Carlo (HMC) also
adds momentum, but remains reversible) but aids mix-
ing. The bouncy particle sample is similar, but the mo-
mentum is arbitrary: θt ∈ R. If the rates are strictly
positive, the chain is ergodic.
Given a target probability density π, the canonical
zigzag process is defined by

ψ = − log π + constant
λi(ξ, θ) = [θi∂iψ(ξ)]+.

When ψ =
∑
j ψj (e.g., in big data applications), sub-

sampling (using a different ψi at each iteration) does
not change the invariant distribution (but mixing de-
teriorates); control variates, e.g., writing

ψ(ξ) = ψ(ξ∗) +
∑
j

ψj(ξ)− ψj(ξ∗),

(as in variance-reduced stochastic gradient) improves
mixing.

Bayesian linear mixed models using Stan:
a tutorial for psychologists, linguists

and cognitive scientists
T. Sorensen et al. (2016)

DehazeNet: an end-to-end system
for single image haze removal

B. Cai et al.
Use a convolutional neural net with convolutions of dif-
ferent sizes and bilateral ReLUs to estimate the
transmission map (the haze intensity – easy if you have
a depth map) and de-haze. Commonly-used features
include:
– Dark channel, D(x) = Min

y∈Nx
Min

x∈{r,g,b}
Ic(y), where x

is the pixel position and Nx its neighbourhood (in
haze-free patches, at least one colour channel is close
to zero – except the sky);

– Maximum contrast C(x) = Max
y∈Nx

∑
z∈Ny

‖I(z)− I(y)‖2;

– Colour attenuation A(x) = Ivalue(x)− Isaturation(x);
– Hue disparity H(x) =

∣∣Ihue
si (x)− Ihue(x)

∣∣ where
Icsi(x) = Max{Ic(x), 1− Ic(x)}, c ∈ {r, g, b}.

A hierarchical latent variable
encoder-decoder model for generating dialogues

I.V. Serban et al.
Add latent (stochastic, unobserved) variables to a RNN
to capture larger structures (in a usual RNN, the input
and the output are stochastic, but they only control the
local structure of the sentences).

Article and book summaries by Vincent Zoonekynd 532/1044

Cross-stitch networks for multi-task learning
I. Misra et al.

When using neural nets for different tasks on the same
input, one needs to choose when to split the two net-
works.

Instead, cross-stitch units use two representations at
each level, but blends them.

(
x̃A
x̃B

)
=

(
αAA αAB
αBA αBB

)(
xA
xB

)

LSTM-based deep learning models
for non-factoid answer selection

M. Tan et al. (2016)
Model questions with a CNN on top of a bidirectional
RNN with LSTM units and an attention model; use a
similar network for potential answers; compare them
with cosine similarity.

Bridging nonlinearities and stochastic
regularizers with Gaussian error linear units

D. Hendrycks and K. Gimpel
Dropout randomly sets the outs to zero: it is a stochas-
tic zero map.
Zero-out randomly lets the input pass through: it is a
stochastic identity map.
ReLU is a deterministic zero or identity map, depend-
ing on the sign of the input.
The stochastic zero-identity map applies the identity
with probability Φ(x) = P [Y ⩽ x], Y ∼ N(0, 1), and
the zero map otherwise; in expectation, it is the (non-
convex, non-monotonic) Gaussian error linear unit
GELU(x) = xΦ(x).

Very deep convolutional networks
for natural language processing

A. Conneau
On character streams, very deep CNNs outperform
(shallow) LSTM RNNs.

Decoupled neural interfaces
using synthetic gradients

M. Jaderberg et al.
Instead of waiting for the gradients in back-
propagation, try to predict them using local informa-
tion.

Surprisal-driven feedback
in recurrent networks

K. Rocki
Monitoring the discrepancy between forecasts and ac-
tual observations can improve RNNs.

Densely connected convolutional networks
G. Huang et al.

Connect each layer to each other layer (there are
1
2n(n− 1) connections instead of n).

input output

LIFT: learned invariant feature transform
K.M. Yo et al. (2016)

Three CNNs, in a sequential pipeline, image → de-
tector → crop → orientation estimator → rotate →
descriptor, trained on SIFT features.

XNOR-Net: ImageNet classification
using binary convolutional neural nets

M. Rastegari et al. (2016)
Binary networks (binary weights, or both binary
weights and inputs) are much faster (thanks to bitwise
operations) and sufficiently accurate.

Synthesizing the preferred inputs
for neurons in neural networks

via deep generator networks
A. Nguyen et al. (2016)

Activation maximization (finding the image that ex-
cites a neuron the most) yields uninterpretable results
unless one uses a natural image prior, e.g., from a GAN.

Virtual worlds as proxy
for multi-object tracking analysis

A. Gaidon et al.
Virtual worlds provide photo-realistic labeled data.

DeMo Dashboars: visualizing
and understanding genomic sequences

using deep neural networks
J. Lanchantin et al.

Interpreting deep neural nets is more important in
biomedical application, e.g., predicting transcription
factor binding sites (TFBS) using a CNN on top of
a bidirectional RNN with LSTM units:
– Saliency: importance of the nucleotide, i.e., deriva-
tive of the output wrt the input;

– Score, as a time series;
– Sequence that maximizes the TFBS probability.

Article and book summaries by Vincent Zoonekynd 533/1044

Faster training of very deep networks
via p-norm gates

T. Pham et al. (2016)
P-norm gates,

y = α1x1 + α2x2, αp1 + αp2 = 1, p ⩾ 1,

are between residual gates (p = ∞, α1 = α2 = 1) and
highway gates (p = 1).

Layer normalization
J.L. Ba et al.

Batch normalization normalizes the output of a single
neuron within a mini-batch; layer normalization nor-
malizes the outputs of all neurons in a layer, for a single
training case; it is applicable to RNNs.

RAISR: rapid and accurate
image super resolution

Y. Romano et al.
Image upscaling (“super-resolution”) algorithms used
to be simple interpolators (nearest neighbour, bilin-
ear, bicubic), but more recent algorithms use an image
prior and learn a non-linear map

low-resolution patch 7→ high-resolution patch

e.g., using sparse coding or CNNs. To speed up the
computations, one can instead learn a (linear) map

bilinear upscaled LR patch 7→ (sharpened) HR patch

refining a cheaply-upscaled image. To make the al-
gorithm more adaptive, cluster the image patches
(coarsely, by hashing the local gradient statistics, an-
gle, strength, coherence, from an eigen analysis) and
learn a filter for each cluster.

A+: adjusted anchored neighborhood
regression for fast super-resolution

R. Timofte et al.
Sparse coding for image super-resolution.

Image super-resolution
using deep convolutional networks

C. Dong et al.
CNNs for image super-resolution.

Enriching word vectors
with subword information

P. Bojanowski et al.
To compute word embeddings of rare words or in mor-
phologically rich languages, represent words as bags of
n-grams.

Charagram: embdedding words and sentences
via character n-grams

J. Wieting et al.
Character n-gram count vector embedding for sen-
tences, trained with the paraphrase pairs database (for
word or sentence similarity), or the Penn treebank (for
POS tagging).

Correlated topic models
B.M. Blei and J.D. Lafferty

Correlation between topics can be introduced in latent
Dirichlet analysis (LDA) by replacing the Dirichlet dis-
tribution

Yi
iid∼ Γ(αi, θ)

X = Y/(Y ′1) ∼ Dir(α1, . . . , αn)

with a logistic normal distribution

Y ∼ N(µ,Σ)

X = Y/(Y ′1).

Content-based recommendations
with Poisson factorization

P. Gopalan et al.
The collaborative topic Poisson factorization is
suited to sparse, long-tailed data, and amenable to
variational inference.

k : topics
v : words
d : documents
u : users

βvk ∼ Γ

θdk ∼ Γ

wdv ∼ Poisson(θ′dβv)
ηuk ∼ Γ

εdk ∼ Γ

rud ∼ Poisson
(
η′u(θd + εd)

)

Learning to search better than your teacher
K.W. Chang et al. (2015)

Structured prediction problems (e.g., building the
parse tree of a sentence) can be turned into reinforce-
ment learning problems by expressing the prediction as
a sequence of actions (e.g., growing the tree). Learn-
ing to search tries to replicate a reference policy (i.e.,
a map state features → action) instead of solving the
full reinforcement learning problem. Locally optimal
learning to search (LOLS) tries to modify the refer-
ence policy (no longer assumed optimal) to improve
the performance.

Article and book summaries by Vincent Zoonekynd 534/1044

Deep unsupervised learning
using nonequilibrium thermodynamics

J. Sohl-Dickstein et al. (2015)
To model a probability distribution (e.g., pixels in the
MNIST dataset), find a diffusion that transforms it
into a tractable one (e.g., Gaussian).

Stochastic differential equation
mixed effects models for tumor growth

and response to treatment
J.L. Forman and U. Picchini

Biological phenomena are often modeled by ODEs, but
SDEs may be a better choice; as state space models,
they can be estimated with particle filters (sequential
Monte Carlo, SMC). Mixed effects SDE (SDEMEM)
can be estimated with approximate Bayesian compu-
tations (ABC) or synthetic likelihood (similar to ABC,
but we assume the summary statistics are Gaussian,
i.e., we only look at the mean and variance: it is a
simulated method of moments).

A note on the validity of cross-validation
for evaluating time series prediction

C. Bergmeir et al. (2015)
Even in presence of auto-correlation, most estimators
remain consistent (the variance of the limiting distri-
butions and the resulting tests are affected, though);
likewise, cross-validation can be applied to time series
without any modification.

Faster principal component regression via
optimal polynomial approximation to sgn(x)

Z. Allen-Whi and Y. Li (2016)
To project a vector v ∈ Rn to the subspace spanned
by the eigenvectors of A with eigenvalues at least λ0,
without computing the eigenvectors, compute g(A) =
sign(λ− λ0− ε); use a polynomial approximation of g.

DART: dropouts meet
multiple additive regression trees

K.V. Rashmi and R. Gilad-Bachrach (2015)
Boosted regression trees, with dropout of complete
trees.

Tensors and their eigenvectors
B. Sturmfels (2016)

A symmetric n × n × · · · × n tensor T = (ti1···id) can
be seen as a homogeneous polynomial of degree d in
n variables T =

∑
ti1···idxi1 · · ·xid (symmetric matri-

ces correspond to bilinear forms) and, therefore, as a
hypersurface in Pd−1.
A vector v ∈ Rn is an eigenvector of T if (∇T)v = λv
for some λ. Algebraic geometry can help count the
number of eigenvalues or singular values of (symmet-
ric) tensors.

Code-based cryptography
I. Márquez-Corbella (FUN 2016)

Quantum computers can solve the integer factoriza-
tion and the discrete log problems in reasonable time.
Code-based cryptography relies on NP-completeness
and could form the base of post-quantum crypto-
systems. A linear code is a subspace of Fnq of dimen-
sion k, defined either as the kernel of a parity check
matrix H or as the image of a linear map G : Fkq → Fnq
of rank k. The syndrome of a received word x is Hx; it
is also the syndrome of the error In the McEliece cryp-
tosystem, the public key is a generator matrix G with
added noise, and the private key is an efficient decod-
ing algorithm for G. In the Niederreiter cryptosystem,
the public key is a parity check matrix and the private
key is an efficient syndrome decoder.
While promising, most code-based cryptosystems have
been broken – Goppa codes are the main exception.

Determinantal point processes
A. Kulesza and B. Taskar (2012)

Determinantal point processes (DPP) are distri-
butions over subsets Y ⊂ Y of the form

P (A ⊂ Y) = det(KA) 0 ≼ K ≼ I
P (Y = Y) ∝ det(LY) L ≽ 0

P (Y = Y) =
det(LY)

det(L+ I)
.

The two formulations are related by K = I− (L+I)−1

and the first one is slightly more general (it allows
P (Y = ∅) 6= 0).
DPPs favour diverse sets:

P (i, j ∈ Y) = KiiKjj −K2
ij

= P (i ∈ Y)P (j ∈ Y)−K2
ij

< P (i ∈ Y)P (j ∈ Y)

Applications of DPPs include ranking search results or
summarizing documents by extracting a few sentences.
They remain tractable until |Y | = 10, 000.
To sample from a DPP:
– Compute the eigen decomposition L =

∑
λnvnv

′
n;

– Select a subset V of eigenvectors, including vi with
probability λi/(λ1 + 1);

– Select i ∈ Y with probability
1

|V |
∑
v∈V

(v′ei)
2;

– Replace V with an orthonormal basis of e⊥i ∩SpanV ;
– Repeat until V is empty.
Finding the model of a DPP is NP-hard. The func-
tion logP is submodular (easy to minimize, hard to
maximize – the greedy algorithm for approximate max-
imization only works for monotone submodular func-
tions).
Alternatives to DPP include:

Article and book summaries by Vincent Zoonekynd 535/1044

– Matérn repulsive process: start with a Poisson point
process and remove points more than ε apart (either
both points, or just the last one)

– Pairwise Markov process

P (Y = Y) ∝
∏
i∈Y

ψ1(i)
∏
i,j∈Y

ψ12(i, j);

– Area interaction process

P (Y = Y) ∝ γ
−

∑
y∈Y

AreaB(y,ε)

;

– Determinants can be replaced with permanents, im-
manents, α-determinants or hyperdeterminants;

– Quasi-random (low discrepancy) processes.
The L matrix can be written L = B′B, B = U diag(q),
where q measures the (unary) quality of the items,
and the columns φi of U are (normalized) features for
item i.
DPPs are similar to Markov random fields (MRF), but
they allow negative interactions – inference for pair-
wise MRFs is tractable, approximately, provided the
potentials are associative, i.e., endpoints tend to have
the same value.
For sampling, normalization, marginalization, the dual
representation C = BB′, instead of the larger L =
B′B, is often sufficient (you still need B, though).
The likelihood can be expressed as a single determinant

P (Y) =
detLY

det(L+ I)

= det(IYK + IȲ (I −K))

= |det(K − IȲ)| .

To fit a DPP, use feature vectors φ for the items Lij =
qiqjφ

′
iφj , and parametrize the quality qi = exp 1

2θ
′φi

(one can use different features for the quality). Mix-
tures of DPPs are also easy to fit.
A k-DPP is a DPP constrained with |Y| = k (it is no
longer a DPP): we still have P (Y = Y) ∝ detLY , but
the normalization constant is different

P (Y = Y) =
detLY∑

|X|=k
detLX

=
detLY

ek(λ1, . . . , λn)

where λ1,…,λn are the eigenvalues of L and ek is the
elementary symmetric polynomial

ek(λ1, . . . , λn) =
∑

J⊂J1,nK
|J|=k

∏
i∈J

λi,

which can be computed recursively as enk = en−1k +
λne

n−1
k−1 . The sampling algorithm for DPPs can be

adapted to k-DPPs (use exactly k eigenvectors).
Structured DPPs (SDPP), i.e., DPPs whose quality
and diversity feature factor multiplicatively and addi-

tively,

q(y) =
∏
α∈F

qα(yα)

φ(y) =
∑
α∈F

φα(yα)

can be handled with message passing algorithms. They
can model paths, grammar derivations, etc.

Diversity networks
Z. Mariet and S. Sra (2016)

To reduce the number of neurons in a neural net, sam-
ple a diverse set of neurons using a determinantal point
process (DPP), P (Y) ∝ detLY , with a Gaussian RBF
kernel Lij = ε+exp−β ‖vi − vj‖2 and fuse the remain-
ing neurons.

Discriminants, resultants
and multidimenstional determinants

I.M. Gelfand et al. (1994)
Let A be a set of monomials. The discriminant of
f ∈ SpanA is an irreducible polynomial in the coef-
ficients of f that vanishes whenever f has a multiple
root (x1, . . . , xk) with ∀i xi 6= 0.
The resultant of polynomials f0, . . . , fk in k variables
is an irreducible polynomial in their coefficients, van-
ishing whenever they have a common root; it is the
discriminant of f0(x) +

∑
i⩾1 yifi(x).

The determinant of a matrix (aij)ij is the discriminant
of the bilinear form

∑
aijxixj . The hyperdeterminant

of a tensor (ai1...ir)i1...ir is the discriminant of the ho-
mogeneous polynomial

∑
ai1...irxi1...ir .

Learning with submodular functions:
a convex optimization perspective

F. Bach (2013)
1. Submodular functions are a combinatorial analogue
of concave functions, in an attempt to build a theory
of “combinatorial convex optimization”. Surprisingly,
they also have many convex aspects. They generalize
matroidal ranks. It turns out that both maximizing
(NP-hard) and minimizing (polynomial) submodular
functions are interesting problems.
There are three main uses of submodular functions in
optimization:
– As the objective of a combinatorial optimization
problem;

– To penalize the support of a vector: lasso, group
lasso, etc. (structured sparsity);

– To penalize the level set of a vector (clustering).
2. A set function f : 2V → R is submodular if

∀A,B F (A) + F (B) ⩾ F (A ∪B) + F (A ∩B);

it suffices to check (diminishing returns)

F
(
A ∪ {k}

)
− F (A) ⩾ F

(
A ∪ {k, `}

)
− F

(
A ∪ {`}

)
.

Article and book summaries by Vincent Zoonekynd 536/1044

The following operations preserve submodularity: re-
striction, extension (F (A) = G(B ∩ A)), contraction
(F (A) = G(A ∪ B) − G(B), on V \ B), partial mini-
mization.
Examples include |A|, 1A ̸=∅, #{i : A ∩ Gi 6= ∅}
where V =

∐
Gi is a partition, or the number of edges

from A to V \A in an undirected graph.
A vector s ∈ Rp defines a modular function

s(A) =
∑
i∈A

si, A ⊂ J1, nK.
The submodular and base polyhedron are

P (F) =
{
s ∈ Rp : ∀A ⊂ J1, pK s(A) ⩽ F (A)

}
B(F) =

{
s ∈ P (f) : s(V) = F (V)

}
B(F)

P (F)

A polymatroidal rank function is a non-decreasing
submodular function. A submodular function F can be
expressed as a sum of a modular and a polymatroidal
function (set sk = F (V) − F (V \ {k}): G = F − s is
polymatroidal).
3. A submodular function F is defined on the ver-
tices of the hypercube [0, 1]p. Its Lovász exten-
sion (or Choquet integral) is the linear interpolation
on the n! simplexes corresponding to the orderings of
(x1, . . . , xp) ∈ [0, 1]p.
A set function F is submodular iff its Lovász extension
is convex; they have the same minima.
The Lovász extension has a probabilistic interpreta-
tion:

f(w) = Eu∼U(0,1)

[
F{i : wi ⩾ ui}

]
The multilinear extension is neither convex nor con-
cave:

f̃(w) = EB∼w
[
F (B)

]
=
∑
A⊂V

F (A)
∏
i∈A

wi
∏
i ̸∈A

(1− wi).

4. A greedy algorithm can maximize linear func-
tions on the base polyhedron; in particular, this gives
its extreme points.
5. The convex closure fo F : 2V → R is the
largest convex function f : Rp → R ∪ {∞} such
that ∀A ⊂ V f(1A) ⩽ F (A). It can be obtained by
Fenchel biconjugation; it is an extension of F , i.e.,
f(1A) = F (A); it has the same minima. For submod-
ular functions, it is the Lovász extension.
A penalty Ω can add structural sparsity to machine
learning models,

Argmin
w

Loss(y, x, w) + λΩ(w).

For instance, Ω = #suppw = ‖w‖0 or Ω(w) =
F (suppw), for some set function F , e.g., a partition
count.
The convex envelope of w 7→ F (suppw), on the `∞
ball, for a non-decreasing submodular function F , is
Ω∞ : w 7→ f(|w|), where f is the Lovász extension
of F . For instance, the counting function gives the
lasso, and the partition count

∑
‖·‖∞, which is not

exactly the group lasso – the ball has spurious edges.
Those spurious edges can be removed by replacing
F (suppw) with

1

p
‖w‖pp +

1

q
F (suppw),

1

p
+

1

p
= 1, p ∈ (1,∞).

For Ω(w) = # suppw, this gives Ωp = ‖·‖p; for parti-
tion counting, this gives the group lasso Ωp =

∑
‖·‖p.

But those spurious edges can be used: they create clus-
tering of the components of w. For instance,

F (A) = 1A ̸=∅,V ,

f(w) = Max |wi − wj |

creates clusters for the largest and smallest values.
Similarly,

F (A) = Max{|A| , |V \A|},

f(w) =
∑
k

Min(n− k, k)
∣∣w(k+1) − w(k)

∣∣
creates a cluster in the middle and therefore highlights
outliers.
6a. Concave functions of cardinality, F (A) = φ(|A|)
are submodular.
6b. Cut functions,

F (A) =
∑
i∈A
j ̸∈A

dij

(for undirected graphs, they can also be written
F (A) = 1

21
′
AQ1A, where Q is the graph Laplacian) are

submodular, with Lovász extension f(w) =
∑
dij(wi−

wj)+. Examples include the total variation (in one di-
mension, for a chain , or in two dimensions, for a
grid) or the isotonic penalty (for the graph of an
order relation).
If G : 2V ∪W → R is submodular, then so is its partial
minimization

F :

{
2V → R
A 7→ Min

B⊂W
G(A ∪B)

A function is regular if it is the partial minimization of
a cut function.
6c. Given a non-negative function D : 2V → R+, the
set cover function

F :

{
2V → R
A 7→ F (A) =

∑
B∩A ̸=∅

D(B)

Article and book summaries by Vincent Zoonekynd 537/1044

is modular and its Lovász extension is

f(w) =
∑
B

D(B)Max
k∈B

wk.

The corresponding Ωp norm is an overlapping group
lasso penalty, with no double counting (contrary to∑
D(B) ‖wB‖p). Möbius inversion

F (A) =
∑
B⊂A

G(B)

G(A) =
∑
B⊂A

(−1)|A\B|F (B)

can recover D,

F (V)− F (V \A) =
∑
B⊂A

D(B)

D(A) =
∑
B⊂A

(−1)|A|−|B|
(
F (V)− F (V \B)

)
.

Set covers can also be defined as F (A) = µ
(⋃

k∈A Sk
)
,

where Sk ⊂ W , for a measure space (W,µ). Examples
include:
– Contiguous subsets of a chain;
– Contiguous 2-element subsets of a chain, to avoid
isolated points;

– Convex subsets of a 2-dimension grids, to prefer con-
vex supports;

– Tree structures, to ensure that if a variable is there,
then so are its ancestors (gene networks, wavelet
bases, models with interactions).

6d. Given a weighted directed graph W , consider flow
functions, with sources S ⊂W and sinks V ⊂W . The
maximum net flow out of A ⊂ V ,

F (A) = Max
ϕ flow

φ(W,A)− φ(A,W),

is submodular (from the maxflow-mincut theorem, it
is the partial minimization of a cut function).
6e. Given discrete random variables (X1, . . . , Xp), the
joint entropy F (A) of (Xk)k∈A defines a modular func-
tion. If (X1, . . . , Xn) is Gaussian, the joint entropy is
H(XA) =

1
2 log det(2πeQAA) and F (A) = log detQAA

defines a submodular function.
To cluster points x1, . . . , xn, compute their (Gaussian,
etc.) kernel kij = k(xi, xj) and try to approximate it
as two independent ones, i.e.,

K ≈
(
KA 0
0 KV \A

)
for some A ⊂ V = J1, nK. With a prior p(A) ∝∏
k∈A ηk

∏
k ̸∈A(1 − ηk) (i.e., each point has probabil-

ity ηk of being in A, and the point memberships are
independent), the negative likelihood becomes

`(A) = DKL

(
K

∥∥∥∥(KA 0
0 KV \A

))
−
∑
k∈A

log ηk −
∑
k ̸∈A

log(1− ηk).

The first term, the mutual information, is submodu-
lar, the second, modular. (Determinantal point pro-
cesses, used to ensure diversity in recommender system
results, rely on the same idea.)
6f. Given a positive semidefinite matrix Q and a func-
tion h : R+ → R, F (A) = trh(QAA) defines a sub-
modular function for some choices of h (concavity is
not enough), e.g., h(λ) = λp, p ∈ [0, 1].
7. To minimize a convex Lipschitz function on a con-
vex set:
– Projected gradient;
– Ellipsoid: if you cut an ellipsoid in half, it can be

circumscribed by a smaller one (slow in practice);
– Kelley’s method is a bundle method: it keeps the
information from all the previous iterations. The
points previously examines give a piecewise lower
bound of the objective function: Kelley’s method
minimizes this lower bound;

– The ellipsoid method creates a lot of empty space:
we can consider polytopes instead, and their cen-
ters of gravity; the center of gravity is not efficiently
computable, but can be replaced with the analytic
center. The analytic center of {w : ∀i a′iw ⩽ bi},
Argminw

∑
− log(bi − a′iw), can be computed with

Newton’s algorithm.
To minimize Ψ + h, where Ψ is smooth and strongly
convex, and h convex (non-smooth) and positively
homogeneous, notice that h can be written h(w) =
sups∈K s

′w, for some convex set K.
– Simplicial methods are bundle methods that replace
h with a piecewise approximation, inner (convex
hull) or outer,

p[,1]

p[
,2

]

p[,1]

p[
,2

]

and iterates

wt+1 ← Argmin
w

Ψ(w) + Max
1⩽i⩽t

s′iw, si = h′(wi).

– Proximal methods (aka proximal gradient, forward-
backward splitting, iterative shrinkage thresholding)
repalce Ψ with a first-order approximation and add
a further penalty to avoid moving too fast

Min
w

Ψ(w0) + (w−w0)
′Ψ′(w0) + h(w) + λ ‖w − w0‖22

(there is one optimization at each step (the prox-
imal operator) but, for many penalties, it can be
computed in closed form)

Quadratic programs can be solved with an active set
method, based on the following remarks: if the indices
of the non-zero components (“active set”) are known,
the problem is easy to solve; it is easy to check if a so-
lution is optimal and, if not, to find a variable to add

Article and book summaries by Vincent Zoonekynd 538/1044

to or remove from the active set. This applies, for in-
stance, to least squares with a polyhedral penalty (the
epigraph of h is a polyhedron – minimizing h amounts
to solving a linear program).
8. If f is the Lovász extension of a submodular func-
tion F , the separable optimization problem

Minimize
w∈Rp

f(w) +
∑

ψi(wi)

(proximal problem) has dual

Maximize
s∈B(F)

−
∑

ψ∗i (−si).

It can be solved by solving the family of submodular
optimization problems

Aα = Argmin
A⊂V

F (A) +
∑
i∈A

ψ′i(α)

(the second term is the modular function ψ′(α) ∈ Rp)
and setting

ui = sup{α ∈ R : i ∈ Aα}.

Since α < β =⇒ Aβ ⊂ Aα, solving the intial convex
optimization problem gives the solution to all those
submodular optimization problems (the solution is not
unique: {i : ui > α} and {i : ui ⩾ α} are the minimal
and maximal minimizers).
9. The divide-and-conquer algorithm solves the dual
problem

t← Argmin
t:t(V)=F (V)

∑
i

ψ∗i (−ti)

A← ArgminF − t
If F (A) = t(A), return t

sA ← Argmin
s∈B(FA)

∑
i∈A

ψ∗i (−si)

sV \A ← Argmin
s∈B(FA)

∑
i ̸∈A

ψ∗i (−si)

return (sA, sV \A)

where FA = F |A and FA(B) = F (A∪B)−F (A) (con-
traction).
For quadratic separable problems, i.e., ψi(wi) = 1

2w
2
i ,

the dual is Mins∈B(F)
1
2 ‖s‖

2
2. The Frank-Wolfe min-

imum norm point algorithm solves the optimization
problem

Find η

To minimize ‖
∑
ηixi‖22

Such that η ⩾ 0, η′1 = 1

(i.e., the point in the convex hull of the xi’s closest
to the origin) where the xi’s are the extreme points
of B(F) (they do not have to be explicitly computed),
using an active set algorithm.
To minimize a convex function on a convex polytope,
the conditional gradient approximates it with a lin-
ear function, finds the minimizer, and moves towards
it.

10. Combinatorial algorithms to minimize a submod-
ular function F use

Min
A⊂V

F (A) = Max
s∈B(F)

s−(V) = F (V)− Min
s∈B(F)

‖s‖1 ,

where (s−)k = Min{s, 0}: for instance, the simplex can
minimize s− on B(F).
Instead, one can use convex optimization algorithms to
solve Minw∈[0,1]p f(w):
– Ellipsoid method;
– Subgradient

st ← Argmax
s∈B(F)

w′ts

wt+1 ← Project[0,1]p(wt − γtst);

– Conditional gradient;
– Analytic center cutting plane (ACCP – in practice,
this performs best).

One could also solve Mins∈B(F)
1
2 ‖s‖

2
2 or, equivalently,

Minw∈[0,1]p f(w) +
1
2 ‖w‖

2
2 (minimum norm point).

11. Maximizing submodular functions is NP-hard,
but, for non-decreasing ones, the greedy algorithm
(start with A = ∅ and iteratively add k ∈ V \ A that
maximizes F (A ∪ {k})) has a performance guarantee:
F (A) ⩾ (1− e−1)F (A∗). In general, local search (look
at A ∪ {k} and A \ {k}) can help.
Submodular maximization can be expressed as a (non-
convex) continuous optimization

Max
A⊂V

F (A) =
1

2
F (V) +

1

2
Max
s∈B(F)

‖s‖1 .

Differences of submodular functions F −G can be min-
imized (locally) by iterating
– Find s ∈ Rp (i.e., a modular function) such that
s(A) = G(A) and ∀B s(B) ⩽ G(B);

– Update A← Argmin(F − s).
The minimum has a geometric interpretation, in terms
of Haussdorff distance

Min
A⊂V

F (A)−G(A) =

1

2

(
F (V)−G(V)

)
− 1

2
Min
s∈B(G)

Max
t∈B(F)

‖t− s‖1 .

Probabilistic topic models
M. Steyvers and T. Griffiths

Topic models can be expressed as matrix factorizations:

cooccurrences
word×document

= mixture components
word×topic

×mixture weights
topic×document

but, contrary to LSA (SVD), there are constraints on
the matrices (probabilities are non-negative and sum
to 1) and there is a prior. They can be estimated via
Gibbs sampling.

Article and book summaries by Vincent Zoonekynd 539/1044

prior topics in
document d

topic

word
word

distribution
for topic z

prior

topics
words

documents

Rethinking LDA: why priors matter
H.M. Wallach et al.

Prefer asymmetric Dirichlet priors for the document-
topic distribution.

Dynamic topic models
D.M. Blei and J.D. Lafferty (2006)

Time-dependent topic models, in which the logarithms
of the parameters of the Dirichlet distributions follow
random walks, can be estimated via variational infer-
ence. (The topics are constant, but their vocabulary
changes: for instance, in the “atomic physics” topic,
“matter” declined and “quantum” rose in the 20th cen-
tury.)

From word embeddings to document distances
M. J. Kusnet et al. (2015)

To compute the distance between two sentences or
texts, (e.g., to retrieve the document closest to a given
one), replace them with clouds of points using a vector
embedding and use the earth moving distance (EMD)
between the two clouds. Approximations of the EMD
include:
– The distance between the centroids (to quickly iden-
tify potential candidates);

– A relaxed (greedy) EMD, in which the whole mass
of each word is moved towards the closest word.

Trans-gram,
fast cross-lingual word embeddings

J. Coulmance et al. (2016)
The skipgram model can also deal with multilingual
aligned sentences by defining the context of a word as
the set of words in the aligned sentences.

Partially collapsed Gibbs samplers:
theory and methods

D.A. van Dyk and T. Park (2008)
In some of the steps of a Gibbs sampler, integrating out
(marginalizing) some of the variables instead of condi-
tioning on them can improve convergence. Care should
be taken to preserve the stationary distribution:
– Move some of the variables from being conditioned
to being sampled;

– Re-order the steps so that those new varaibles are
not used;

– Marginalize them.
Example:

W |XY Z
X|WXY
Y |WXZ
Z|WXY

⇝
W |XY Z
X|WXY

WY |XZ
WZ|XY

⇝
WY |XZ
WZ|XY
W |XY Z
X|WXY

⇝
Y |XZ
Z|XY
W |XY Z
X|WXY

Metropolis-Hastings
within partially collapsed Gibbs samplers

D.A. van Dyk and X. Jiao (2014)
Naive use of a Metropolis Hastings step in a PCG sam-
pler (when no closed form distribution is available) of-
ten changes the stationary distribution.

A field guide to forward-backward splitting
with a Fasta implementation

T. Goldstein et al. (2014)
To minimize f + g, where f is convex and smooth and
g convex, the proximal gradient (forward-backward
splitting, FBS) method is

x̂k+1 ← xk − τ∇f(xk)
xk+1 ← proxg(x̂k+1, τ)

where

proxg(x, τ) = Argmin
z

τg(z) + 1
2 ‖x− z‖

2
.

If g is differentiable, the second step is a “backward
gradient step”, xk+1 ← x̂n+1 − τ∇g(xk+1): the gradi-
ent is evaluated at the new point.
Applications include
– Constrained optimization Argminx∈C f(x); the
proximal operator of the indicator function of C is
the projection, and the algorithm is the projected
gradient;

– Lasso: Argmin
∥x∥1⩽λ

1
2 ‖Ax− b‖

2;

– Penalized regression

Argmin
x

1
2 ‖Ax− b‖

2
+ µ ‖x‖1 ;

the proximal operator is soft-thresholding,

prox∥·∥1(x, τ) = sign(x)(|x| − τ)+;

– Democratic representation

Argmin
x

1
2 ‖Ax− b‖

2
+ µ ‖x‖∞ ;

– Low rank approximation

Argmin
x

‖X − Y ‖F + µ ‖X‖∗ ;

the proximal operator of th nuclear norm is the soft-
thresholding of the singular values;

– Phase retrieval.
Implementation details are important:

Article and book summaries by Vincent Zoonekynd 540/1044

– To choose the step size, approximate f as a quadratic
function f(x) ≈ 1

2a ‖x‖
2
+〈x, b〉+x, and set τ = 1/a;

– Fista acceletation: after the proximal step, continue
to move the the same direction;

– Backtracking line search: if the objective does not
decrease (or if it increases more than some thresh-
old, for non-monotone line search), half the step size;

– Stop when the relative residual

‖∇f +∇g‖
ε+Max{‖∇f‖ , ‖∇g‖}

or ‖∇f +∇g‖
ε+ ‖∇f(x1) +∇g(x1)‖

is below some threshold.

The Frank-Wolfe algorithm
To minimize a convex function f on a bounded polyg-
onal region:
– Start in xk;
– Linearize the objective f at xk;
– Solve the resilting linear program: c∗k;
– The direction # »

xkx
∗
k is a descent direction: use a lin-

ear search to select the next point

xk+1 = Argmin
x∈[xk,x∗

k]

f(x);

– Iterate.

No free lunch theorems for optimization
D.H. Wolpert and W.G. Macready (1997)

Without any assumption on the function to be mini-
mized, no algorithm can be guaranteed to be good.

Copositive programming
J. Matoušek and B. Gärtner

Copositive matrices form a convex cone

X = {M symmetric : ∀x ⩾ 0 x′Mx ⩾ 0}.

Its dual is the set of completely positive matrices

P = {M : ∃xi ⩾ 0 M =
∑

xix
′
i}.

Copositive programming is NP-hard.

Extending formulations
in mixed-integer convex programming

M. Lubin et al.
To solve mixed integer convex programs, prefer poly-
hedral (but still integral) relaxations to branch-and-
bound non-linear programming (NLP): MILP solvers
are fast.

Unit tests for stochastic optimization
T. Schaul et al.

Build unit tests for stochastic optimization algorithms
(variants of stochastic gradient descent):

– Start with prototypes , , , , (Gaus-
sian), (Laplace);

– Concatenate them;
– Add noise to the gradient (additive Gaussian or La-
palce (for outliers), multiplicative, dropout);

– Compose them into higher-dimensional signals, e.g.,
with (x, y) 7→ (xp + yp)1/p, rotate;

– Add some curl (in reinforcement learning (RL), those
algorithms are fed non-gradients);

– Let the function slowly change with time (also com-
mon in RL).

Implementation in lua-torch.

A tutorial on spectral clustering
U. von Luxburg (2007)

Given a cloud of points, one can build similarity graphs
(prefer connected ones):
– ε-neighbourhood graph (set ε to the length of the
longest edge in the minimum spanning tree);

– k-nearest neighbour graph, k = log n;
– Mutual k-nearest neighbour graph, k > log n;
– Fully-connected graph, with Gaussian similarity,

s(xi, xj) = exp−‖xi − xj‖
2

2σ2

(set σ to ε, or to the mean distance to the kth nearest
neighbour, k = log n).

Given a graph, with weight and degree matricesW and
D, one can consider its Laplacians (there are three of
them):
– L = D −W ;
– Lsym = D−1/2LD−1/2;
– Lrw = D−1L.
Spectral clustering is k-means (or any other cluster-
ing algorithm) on the span of the first k eigenvectors
of L, Lsym (requires normalization) or Lrw; prefer Lrw.
The ratio and normalized cut problems, finding a graph
partition that minimizes

RatioCut(A1, . . . , An) =
1

2

∑ W (Ai, Āi)

|Ai|

or NCut(A1, . . . , An) =
1

2

∑ W (Ai, Āi)

volAi

where volA =
∑
i∈A di, are NP-hard, but their con-

vex relaxations are equivalent to spectral clustering
(for a partition V = A t Ā, consider the vector fi =√∣∣Ā∣∣ / |A| or √ vol Ā/ volA if i ∈ A, and the inverse
otherwise; notice that

f ′Lf = |V | · RatioCut(A, Ā) and f ⊥ 1

or f ′Lf = vol(V) · RatioCut(A, Ā) and Df ⊥ 1.

Both L and Lrw promote dissimilarity between clusters
(good cuts), but Lrw also promotes similarity within
clusters.
The transition matrix of a random walk on a graph is
P = D−1W = I − Lrw; random walks are related to
cuts: NCut(A, Ā) = P (Ā|A) + P (A|Ā).

Article and book summaries by Vincent Zoonekynd 541/1044

The commute distance cij is the expected time for the
random walk to go from i to j and back,

cij = vol(V)(ei − ej)′L†(ei − ej);

therefore √cij can be used as a Euclidian distance.
The commute time embedding and the unnormalized
spectral embedding (via L) are related but different;
for connected graphs, they are very similar.
The graph Laplacian is close to that of a graph in which
the communities are disconnected; therefore, the eigen-
values and eigenvectors are also close (Davis-Kahan
theorem – how close depends on the spectral gap). This
is more useful for L, Lrw than for Lsym, S (similarity
matrix) orW (weights), because the eigenvalues are or-
dered, bounded away from zero, and (contrary to Lsym,
the eigenvectors are unscaled.

The Laplacian spectrum of graphs
B. Mohar (1991)

The Laplacian of a graph is Q = diag(D) − A, where
A is the adjacency matrix and D = A1 is its degree
vector;

〈Qx, x〉 =
∑

(u,v)∈E

auv(xu − xv)2.

Equivalently, Q = CC ′, where C is the oriented inci-
dent |V | × |E|-matrix with entries

cve =

+1 if e = ∗ → v

−1 if e = v → ∗
0 otherwise.

On a lattice, C is a discretization of the gradient, Q of
the Laplacian.
Bounds on the eigenvalues 0 = λ1 ⩽ λ2 · · · ⩽ λn are
known. The second eigenvalue,

λ2 = Min
x⊥1
x ̸=0

〈Qx, x〉
〈x, x〉

is a measure of connectivity. It is related to (appears
in inequalities involving) expander graphs, diameter,
number of edges in a maximal cut, isometric number,
mean distance, independence number, genus, vertex
connectivity, edge connectivity, etc.
The eigenvectors y for λ2 can be used for 1-dimensional
dimension reduction (heuristically, they reduce the
length of the jumps |i− j| for edges i–j); {v : yv > c}
and {v : yv < c} are connected (if ∀v yv 6= c).
The number of spanning trees in G is the coefficient of
x in the characteristic polynomial of its Laplacian.

Spectral clustering of graphs
with the Bethe Hessian

A. Saade et al. (2014)
The non-backtracking matrix of a graph is the (sym-
metric) binary matrix, indexed by edges, identifying

patterns of the form i→ j → k with i 6= k: Bi→j,ℓ→k =
δjℓ(1− δik).
The Bethe Hessian, a smaller, symmetric matrix, is a
deformation of the Laplacian, H(r) = (r2−1)1− rA+
D.
The eigenvalues of B are the roots of detH(r). The
eigenspaces of B, and H(r), for r = ρ(B) (the spectral
radius of B can be approximated as 〈d2〉/〈d〉 − 1; the
approximation can then be refined by looking for the
closest root of detH(r)) can help separate communi-
ties.

An overview of low-rank matrix recovery
from incomplete observations

M.A. Davenport and J. Romberg (2016)
Low-rank matrix recovery can be approximated as fol-
lows.
MinimizeX ‖X −X0‖2F subject to rankX = r (SVD)
MinimizeX ‖X −X0‖2F + λ ‖X‖∗
MinimizeX ‖AX − y‖22 + λ ‖X‖∗
MinimizeL,R ‖ALR′ − y‖

2
2 +

1
2λ ‖L‖∗ +

1
2λ ‖R‖∗

MinimizeX ‖X‖∗ subject to AX = y

One can use iterative hard thresholding (IHT, projected
gradient: move in the direction of ∇‖AX − y‖22, use
the SVD to reduce the rank to r, iterate) or alternat-
ing projections

R← Argmin
R

‖ALR′ − y‖22

L← Argmin
L

‖ALR′ − y‖22

Instead of the nuclear norm ‖·‖∗, one can consider the
max-norm, or the log-determinant (it is not convex,
but it is a smooth rank proxy for positive semi-definite
matrices).
Solving systems of quadratic equations is equivalent
to finding a rank-1 matrix X = vv′ satisfying linear
constraints 〈X,Ai〉 = bi (lifting)

MinimizeX ‖X‖∗ subject to ∀i 〈X,Ai〉 = bi.

Applications include phase retrieval: recovering v from
the magnitudes |〈v, ai〉| = yi,

MinimizeX ‖X‖∗ subject to ∀i 〈X, aia′i〉 = y2i .

Compressive PCA
for low-rank matrices on graphs

N. Shahid et al.
Given a matrix Y ∈ Rp×n, build the k-nearest graph
on its columns (resp. rows), with Gaussian weights,
compute its Laplacian and its eigenvalue decomposi-
tion. The matrix Y is (kr, kc)-low rank on graphs if
its columns (resp. rows) are in the span of the first
kc (resp. kr) eigenvectors. (For big data, sample the
rows and columns of Y .) Low rank matrices on graphs
capture non-linear low-rank structures.

Article and book summaries by Vincent Zoonekynd 542/1044

Pursuits in structured
non-convex matrix factorizations

R. Khanna et al.
At each step, greedily add the best rank-1 matrix for
the linearized objective.

Riemannian pursuit for big matrix recovery
M. Tan et al. (2014)

The matrix lasso, for low rank matrix reconstruction

X = Argmin
X

1
2 ‖b−AX‖22 + λ ‖X‖∗

does not scale well, because of the high-dimensional
SVD needed to compute the nuclear norm ‖X‖∗. In-
stead, one can use fixed rank methods: rank r matrices
form a Riemannian manifold

Mn = {X ∈ Rn×n : rankX = r}
= {U diag(σ)V ′ : U ∈ Stmr , V ∈ Stnr , ‖σ‖0 = r}

Stmr = {U ∈ Rm×r : U ′U = I} (Stiefel manifold).

The rank r in unknown: progressively increase it.

Convex banding of the covariance matrix
J. Bien et al. (2014)

Banded covariance matrices can be recovered (if the or-
der on the variables is known) with a hierarchical group
lasso penalty (sum of weighted unsquared L2 norms –
the weights are needed to avoid overpenalizing overlap-
ping regions).

3D shape reconstruction from 2D landmarks:
a convex formulation
X. Zhou et al. (2014)

To reconstruct a 3D shape from a set of 2D landmarks
W , assume that the shape is an unknown linear combi-
nation of simpler shapes W = Π(R

∑
ciBi+T), where

Π is the camera matrix, R the rotation, T a transla-
tion, and Bi the simpler shapes. This can be simplified
to W = R̄

∑
cIBi, R̄R̄′ = I.

Since the convex hull of the Stiefel manifold {X :
X ′X = I} is the unit (spectral norm) ball, one can
consider the convex relaxation

Argmin
Ri

∥∥∥W −∑RiBi

∥∥∥2
F
+ λ

∑
‖Ri‖2 .

Multi-scale structure and topological anomaly
detection via a new network statistic:

the onion decomposition
L. Hébert-Dufresne et al.

To build the k-core decomposition of a network:
– Remove isolated nodes;
– Remove nodes connected to 1 (later, k) fewer nodes;

iterate (because this lowers the degree of the remain-
ing nodes);

– Increase k and iterate.
The onion decomposition keeps track of the nodes in
each inner iteration. The onion spectrum is the number
of nodes in each layer of the onion decomposition; var-
ious micro/meso/macro characteristics are visible on it
(assortativity, loops/trees, core/periphery, centrality).
It is easy to generate random graphs with prescribed
onion spectrum, and they have the same characteristics
(e.g., shortest path length distribution) as real-world
networks.

Statistical models for cores decomposition
of an undirected random graph

V. Karwa et al.
The k-core of a graph is the maximal subgraph in which
every vertex has degree at least k. The shell index of
a node indicates the highest core in which it is. Erdös-
Rényi random graphs specify the degree distribution,
but the degree is only a coarse measure of centrality:
instead, one can use the shell index distribution.

A fast quartet tree heuristic
for hierarchical clustering

R. Cilibrasi and M.B. Vitányi (2014)
In a tree, each subset of 4 nodes has one of 3 possible
layouts (“quartet topologies”),

1

2

3

4

1

3

2

4

1

4

2

3.

Randomized hill-climbing (C implementation in the
CompLearn library) can find the tree maximizing the
number of consistent quartet topologies.

Statistically-consistent k-mer methods
for phylogenetic tree reconstruction

E.S. Allman et al.
Hierarchical clustering of sequences from n-gram Eu-
clidean distance can be inconsistent: prefer model-
based distances.

Scalable force-directed graph layout algorithms
using fast multipole methods

E. Yunis et al.
Barnes-Hut is O(n log n) and considers particle-cluster
interactions; the fast multipole method (FMM) consid-
ers cluster-cluster interactions to reduce the computa-
tions and is O(n). The ExaFMM implementation can
also be used for graph layout.

Efficient and high-quality
force-directed graph drawing

Y. Hu
Force-directed graph-drawing algorithms include:
– Fruchterman-Reigold: edges are springs; there is a
repulsive force for each pair of nodes;

Article and book summaries by Vincent Zoonekynd 543/1044

– Kamada-Kawai: springs between all pairs of ver-
tices, with length proportional to the distance in the
graph;

– Walshaw: to avoid local minima, start with a coarse
graph and progressively refine it; only consider forces
from neighbouring vertices;

– Combine this multilevel approach with Barnes-Hut
oct-trees and progressive cooling.

The hidden hyperbolic geometry
of international trade:

world trade atlas 1870-2013
G. García-Pérez et al. (2016)

Plot the world trade map in the hyperbolic plane
(Poincaré disk), not the Euclidian one.

Kriging of financial term structures
A. Cousin et al. (2016)

Adding monotonicity constraints to a Gaussian process
makes it non-Gaussian but, after discretization, it re-
mains tractable.

Trading networks, abnormal motifs
and stock manipulation
Z.Q. Jiang et al. (2012)

The order book has the (encrypted) identity of the
trader: look for abnormal motifs such as (self-buy),

(stock pool) or (preferred counterparty).

Measuring nonlinear dependence
in time series, a distance correlation approach

Z. Zhou (2014)
The distance correlation can be applied to time series

V (X,Y) ∝
∫∫

fX(x)fY (y)

|x|p+1 |y|p+1 dxdy

Vk(X) = V (Xn, Xn+k)

Rk(X) =

√
Vk(X)

V0(X)

where fX is the characteristic function of X.
It can be estimated as

V̂k(X) ∝
∑

ArℓBrℓ

Arℓ = arℓ − ar• − a•ℓ + a••

arℓ = |xr − xl| .

The distance correlation tests need to be adjusted for
dependence.

Clustering of time series subsequences
is meaningless:

implication for previous and future research
E. Keogh and J. Lin

Before clustering 1-dimensional time series, one may be
tempted to embed them in a d-dimensional space (us-
ing a sliding window): the resulting clusters do not de-
pend on the dataset; they are just an artefact of the em-
bedding (the cluster centers are translation-invariant
and turn out to be (approximately) sine waves).

The ladder: a reliable leaderboard
for machine learning competitions

M. Hardt and A. Blum (2015)
Compare the new loss with the best loss so far, with a
1-sided paired T -test, and only update the performance
if it is significantly better (you need to remember the
whole loss vector).

How to scale up kernel methods
to be as good as deep neural nets

Z. Lu et al. (2014)
Kernel-based algorithms, e.g., support vector machines
(SVM), tend to scale quadratically with the num-
ber of observations, making them unsuitable for large
datasets.
Translation-invariant continuous positive definite ker-
nels, k(x, y) = k(x − y), transform the Dirac measure
into the Fourier transform of a non-degenerate proba-
bility density function, k(δ) = Fp, i.e.,

k(x− y) =
∫
p(ω)eiω

′(x−y)dω = Eω[e
iω′xe−iω

′y].

They can be approximated by random features

k(x− y) ≈ 1

D

D∑
i=1

φωi(x)φωi(y)

φω(x) = cos(ω′x+ bi)

ω ∼ N(0, σ−1I) for a rbf kernel
ω ∼ Cauchy(σ) for a Laplace kernel
bi ∼ U(0, 2π)

Computations can be parallelized: train a model on a
subset of 25,000 random features; combine the result-
ing models, e.g., by averaging the log-probabilities of
the classes.
Those kernels can be added (multiple kernel learning,
MKL: either concatenate the random features of all the
models, or fit the models separately and combine the
forecasts with non-negative weights), multiplied (just
add the corresponding ωi’s) and even sometimes com-
posed – the resulting kernel is then equivalent to a
neural net, with one hidden layer and random weights
(echo state network, extreme learning machine, reser-
voir learning, etc.).

Article and book summaries by Vincent Zoonekynd 544/1044

Deep residual learning for image recognition
K. He et al. (2015)

The skip-layer connections in a residual net lead to
additive (rather than multiplicative) gradient back-
propagation, thereby avoiding vanishing or exploding
gradients.

x

x+ f(x)

3× 3× 64

3× 3× 64

+

relu

f

They are also easy to initialize: f = 0 or f small.

Deconstructing the ladder network architecture
M. Pezeshki et al. (2016)

Ladder networks, for semi-supervised learning, com-
bine a denoising auto-encoder (for the unsupervised
part) with a neural net (for the supervised part), with
the decoder and the neural net constrained (or penal-
ized) to share weights.

input input input

output

Semi-supervised learning with ladder networks
A. Rasmus et al. (2016)

A ladder network is a (denoising) auto-encoder that
tries to reconstruct, not only the input, but all the in-
termediate reconstructions.

Binary embeddings
with structured hashed projections

A. Choromanska et al.
Pseudo-random projections, with a structured matrix
(circulant, Toeplitz, etc.)

x1 x2 xn
x2

x2
xn x2 x1

x0 x1
x−1

x1
x−1 x0

followed by the sign function, for dimension reduction
(lossy compression), e.g., before feeding data (MNIST)
to a neural net.

Are elephants bigger than butterflies?
Reasoning about sizes of objects

H. Bagherinezhad et al.
To estimate object sizes from images:
– Observe the (depth-adjusted) ratio of bounding box
areas, in Flickr images tagged with two objects;

– Arrange those ratios into a graph (not all pairs are
observed, and some are noisy);

– Model the sizes as log-normal distributions.

Asynchronous methods
for deep reinforcement learning

V. Mnih et al. (2016)
Asynchronously running multiple agents in parallel
makes deep reinforcement learning amenable to mul-
ticore CPUs instead of GPUs.

The Libra toolkit for probabilistic models
D. Lowd and A. Rooshenas (2015)

Command-line tool to estimate and use graphical mod-
els; also check libDAI, OpenGML, BNT, OpenMarkov
FastInf.

Tanh-Sinh high-precision quadrature
D.H. Bailey (2006)

To approximate integrals, use

∫ 1

−1
f =

∫ +∞

−∞
f
(
g(t)

)
g′(t)dt ≈

N∑
j=−N

g′(hj)f
(
g(hj)

)
with h = 2−12 for 1000-digit precision,

error ≈ h2

(2π)2

∑
F ′′(jh)

F (t) = f
(
g(t)

)
g′(t)

g(t) = tanh
(π
2
sinh t

)
.

Laplace deconvolution with noisy observations
F. Abramovich et al.

The Laplace deconvolution problem is the task of re-
covering a function f from a kernel g and

q(t) =

∫ t

0

g(t− s)f(s)ds. (Voltera equation)

It could be solved using the Laplace transform but, in
practice, the observations of q are discrete and noisy;
one can, for instance, expand f in the basis of Laguerre
functions (e−t × Laguerre polynomials).

Article and book summaries by Vincent Zoonekynd 545/1044

E pur si muove: Galiliean-invariant
cosmological hydrodynamical simulations

on a moving mesh
V. Springel (2009)

Dynamic (moving, unstructured, Voronoi) meshes,
which move with the flow can be used for hydrody-
namic cosmological simulations.
To compute a Delaunay triangulation: start with a
valid triangulation, add a point, add edges to the ver-
tices of its containing triangle, check the in-circle prop-
erty for the edges of all the triangles created, flip them
if needed.
To regularize a Voronoi tessellation: start with a Pois-
son sample (or a non-uniform distribution) with peri-
odic boundary conditions, move the points to the cen-
ter of mass of their cells, iterate 150 times).
Refine/de-refine the mesh whenever/wherever needed.

A linguistic approach to categorical color
assignment for data visualization
V. Setlur and M.C. Stone (2015)

Assigning meaningful colours to categories, using n-
gram co-occurrence (to assess colourability and infer
the main colours) and Google image search and Word-
Net (to find actual, precise colours, from clipart im-
ages).

A survey of predictive modelling
under imbalanced distributions

P. Branco et al. (2015)
Evaluating the performance of a classifier or a regres-
sion algorithm on unbalanced data requires specific
metrics, e.g.:
– F1: harmonic mean of recall and precision;
– Geometric mean of sensitivity and specificity;
– Area under the ROC (true positive rate vs false pos-
itive rate) curve;

– Area under the precision-recall curve;
– Index of balanced accuracy, (1+α · dominance) ·M ,

where M is some performance measure, and the
dominance is the difference between true positive
and negative rates.

There are regression analogues of the ROC curve (for
those, you often want the area over the curve, AOC):
– RROC: −

∑
(ŷi − yi + c)− ∼

∑
(ŷi − yi + c)+;

– REC curve: P [|y − ŷ|] < ε] ∼ ε;
– REC surface: probability ∼ t+ error.
To deal with unbalanced datasets, try:
– Random undersampling of the majority class;
– Random oversampling of the minority class or, bet-
ter, synthetic data (smote: synthetic minority over-
sampling technique);

– Reweighting (not unlike boosting);
– Identify Tomek links, i.e., points of different classes

that are each other’s nearest neighbours, and remove
that in the majority (or both);

– Condensed nearest neighbour (CNN): find a
subset of the data that correctly classifies the train-
ing set with 1-nearest neighbours;

– 1-class SVM, auto-encoders;
– Utility-based optimization, e.g., from a cost-benefit
matrix (if available).

Check the unbalanced (R) or imbalance-learn
(Python) packages.
Related problems include overlapping, small datasets,
high dimension, noise, small disjuncts (the minority
class has clusters of different sizes or densities: it is
easy to miss the smallest ones).

Are random forests truly the best classifiers?
M. Wainberg et al. (2016)

When playing with hyperparameters, you must use a
held-out test set.

Estimating uncertainty
for massive data streams

N. Chamandy et al. (2012)
The Poisson bootstrap (for streaming data, i.e.,
when the number of observations is not known), uses
weight ∼ Pois(1).

A tutorial introduction
to the minimum description length principle

P. Grünwald (2004)
The minimum description length (MDL) principle is an
information-theoretic interpretation of penalized like-
lihood estimators. It finds hypotheses that compress
the data the most, often using a decomposition

Argmin
H∈H

L(H) + L(D|H)

into model length L(D) (e.g., the order of a
Markov chain and its coefficients) and residual length
L(Data|H). The first term (penalty, model complex-
ity) identifies structure in the data, the second (log-
likelihood), measures the residual noise.
A probability distribution P on a finite set Z = X n

determines an optimal code C with code length L(z) =
d− log2 P (z)e. If n � 1, the rounding is negligible.
The actual code is not needed, only the code length, i.e.,
a function L : Z → [0,∞] such that

∑
z 2
−L(z) ⩽ 1.

Probability and code length are related by

L = Argmin
L

EZ∼P [L(Z)]

L(z) = − log2 P (z).

(This can be generalized to continuous distributions:
L(z) is then the length of the code needed to encode
z ∈X n with “unit precision”.)
The information inequality is

EP [− logQ(Z)] ⩾ EP [− logP (Z)].

Article and book summaries by Vincent Zoonekynd 546/1044

The crude, 2-part MDL principle is

H = Argmin
H

L(H) + L(D|H),

where L(D|H) = log2 P (D|H) and L(H) is defined in
an ad hoc fashion (for instance, to model a sequence of
length n using Markov chains, one could first encode
the order of the chain and then the counts – this is
finite, and is a sufficient statistic).
Instead of L(D|H), we do not lose much if we use
L(D|H): if H is finite, H = {H1, . . . , Hk}, find the
hypotheses Hi with the smallest code length L(D|Hi),
consider its code Ci, and encode the data D as
(i, Ci(D)) (2-part universal model). This still works if
H is countably infinite. More generally (this will also
work for continuous models), for H = {P (·|θ), θ ∈
Θ}, consider a priorW on Θ and the Bayesian mixture
P (·) =

∑
θ∈Θ P (·|θ)W (θ). The corresponding code

length gives the Bayesian universal model.
The normalized maximum likelihood (NML, aka
Shtarkov) distribution

P (xn) ∝ P
(
xn|Hθ̂(xn)

)
,

which minimizes the worst-case regret,

Max
xn∈X n

L(xn|P)− L
(
xn|Pθ̂(xn)

)
gives the minimax optimal (NML) model.

The size distribution of inhabited planets
F. Simpson (2016)

Over 98% of the population lives in a country larger
than the median: by analogy, most inhabited plan-
ets are smaller than ours, and have fewer and heavier
(300 kg) inhabitants.

Memcomputing NP-complete problems
in polynomial time using polynomial resources

F.L. Traversa et al. (2014)
A memcomputer is a non-Turing machine, equivalent
to a non-deterministic Turing machine (it can solve
NP-complete problems with polynomial resources,
even if P 6= NP) whose units can both store and pro-
cess information – they not not store bits but wave-
forms, e.g., combining (eiωkt)1⩽k⩽n into

∏
k e

iωkt.

NP-complete problems and physical reality
S. Aaronson

To solve NP-complete problems in polynomial time,
find a physical phenomenon whose description is equiv-
alent to an NP problem, and just observe it.

Dirichlet processes
Y.W. Teh

The Dirichlet distribution is conjugate to the multino-
mial; it generalizes the Beta distribution (conjugate to

the Bernoulli) from the interval [0, 1] to the simplex
∆k.
Bayesian density estimation considers the model

F ∼ Prior
xi ∼ F

and computes the posterior distribution F |x1, . . . , xn.
The Bayesian mixture model with k components can
be written

k number of components
α > 0 strength of the prior

π ∼ Dir
(α
k
, . . . ,

α

k

)
cluster probabilities

zi ∼ Mult(π) cluster membership
θk ∼ H cluster parameters
xi ∼ Fθzi .

For instance, in the Gaussian case, H is the normal-
inverse-Wishart distribution, θk = (µk, Vk) and Fθk =
N(µk, Vk). The Dirichlet process (DP) appears when
we let k → ∞ (leaving the number of observations
fixed).
There are many ways of defining, constructing or sam-
pling from a Dirichlet process G ∼ DP(α,H). Let Θ
be a measurable space, e.g., [0, 1] or Rn × SPDn, H a
probability distribution on Θ, e.g., uniform on [0, 1] or
Normal-inverse-Wishart on Rn×SPDn, and α > 0 the
strength of the prior.
A Dirichlet process is a family of random variables
(G(A))A⊂Θ whose finite margins are Dirichlet: for all
(measurable) partition Θ = A1 t · · · t An,(
G(A1), . . . , G(An)

)
∼ Dir

(
αH(A1), . . . , αH(An)

)
.

A Dirichlet process is a random probability distribu-
tion G on Θ whose samples are of the form

∑
k⩾1 πkδθk

with (broken stick construction)

θk ∼ H

πk = βk
∏

1⩽ℓ⩽k
(1− βℓ)

βk ∼ Beta(1, α).

This is sometimes written π ∼ GEM(α).
The urn scheme explains how to sample from a Dirich-
let process G ∼ DP(α,H), sample from that sample,
θ1, . . . , θn ∼ G, and marginalize G out. Start with a
sample θ1 ∼ H. Once you have θ1, . . . , θn, with prob-
ability α/(α+ n), sample a new point θn+1 ∼ H; with
probability n/(α+ n), sample from the existing points
θn+1 ∼ Unif({θ1, . . . , θn}).
The Chinese restaurant process (CRP) is similar, but
only looks at the partition of J1, nK induced by the
unique values in (θ1, . . . , θn).

Article and book summaries by Vincent Zoonekynd 547/1044

The Dirichlet process mixture model (or infinite
mixture model) can be written

Θ parameter space
H prior
α strength of the prior
G ∼ DP(α,H)

θi ∼ G
xi ∼ Fθi

(note that there are usually duplicated values in the
θi) or, equivalently

Θ parameter space
H prior
α strength of the prior
θk ∼ H cluster k parameters
π ∼ GEM(α) cluster probabilities
zi ∼ Mult(π) cluster membership
xi ∼ Fθzi ith observation

Hierarchical Bayesian nonparametric models
with applications

Y.W. Teh and M.I. Jordan (2009)
A hierarchical Dirichlet process (HDP) is a Dirich-
let process (DP) whose base distribution is a sample
from a DP. For instance, the HDP mixture model allows
multiple clustering problems to share clusters, e.g., to
share topics across documents.

corpus population
clustering problem document genetic makeup
cluster topic subpopulation

The infinite HMM (iHMM) or HDP-HMM is a hidden
Markov model (HMM) with an unbounded number of
hidden states (one needs to increase the probability of
self-transitions to avoid the creation of many redun-
dant states).
The Pitman-Yor process, which replaces Beta(1, α)
with Beta(1 − d, α + kd) and yields the power laws
commonly seen in language modeling, also has a hier-
archical variant (HPY).
A random measure G is completely random if

A1, . . . , An disjoint=⇒G(A1), . . . , G(An) independent.

The Dirichlet process is not completely random be-
cause it is a probability measure. The Beta process is a
completely random measure generalizing the Dirichlet
process and often used as a prior for featural represen-
tations (i.e., binary matrices, i.e., clustering problems
where an observation can be in several clusters). A
sample from a Beta process B ∼ BP(c,B0) is of the
form B =

∑
k⩾1 ωkδthetak , where (ωk, θk)k⩾1 is a sam-

ple from a Poisson process on [0, 1]×Θ with rate mea-
sure ν(dω, dθ) = cω−1(1−ω)c−1dωB0(dθ) where c > 0
(concentration).

There is a stick-breaking construction (for c = 1)

B =
∑

ωkδθk

vk ∼ Beta(1, α)

ωk =

k∏
1

(1− vi)

θk ∼ B0

or (2-parameter Beta process)

B =
∑
n⩾1

Kn∑
k=1

ωnkδθnk

Kn ∼ Poisson
(

cα

c+ n− 1

)
θnk ∼ B
ωnk ∼ Beta(1, c+ n− 1)

Bayesian nonparametric models
P. Orbanz and Y.W. Teh

A nonparametric Bayesian model is an infinite-
dimensional (parametric) Bayesian model, i.e., a finite-
dimensional parametric Bayesian model whose dimen-
sion increases with sample size. Examples include:
– Gaussian process: f ∼ GP means(

f(x1), . . . , f(xn)
)
∼ N ;

– Dirichlet process G =
∑
k⩾1 πkδθk ,

∑
πk = 1;

– Chinese restaurant process (partitions from a DP);
– Beta process G =

∑
k⩾1 πkδθk ;

– Indian buffet process (partitions from a BP);
– Pitman-Yor process;
– Hierarchical DP, BP or PY;
– Dependent DP;
– etc.
Showing that those processes can be tricky:
– Compatible finite-dimensional marginals and Kol-
mogorov’s extension theorem (only for countable
families);

– Explicit construction (e.g., stick-breaking);
– Limit of finite-dimensional distributions;
– Exchangeable sequences and de Finetti’s theorem.
Consistency of infinite-dimensional Bayesian models is
not as common as for finite-dimensional ones.
In R, check the DPpackage package.

Natural language processing
M. Collins (Coursera & Columbia, 2013)

1. A language model is a probability distribution
on V +, the set of sentences written with a vocabu-
lary V . The sample distribution, from a corpus, is
not a good model: it assigns a zero probability to
sentences never observed. Markov models (n-gram
models) assume that P (xk+1|past) = P (xk+1|x1:k) =
P (xk+1|xk−n+1:k). These probabilities can be esti-
mated as follows:

Article and book summaries by Vincent Zoonekynd 548/1044

– P (xx|x1, x2) =
count(x1, x2, x3)
count(x1, x2)

– P (x3|x1, x2) = λ1
count(x1, x2, x3)
count(x1, x2)

+

λ2
count(x2, x3)
count(x2)

+

λ3
count(x3)
words

where λ1, λ2, λ3 depend on the trigram (x1, x2, x3),
(in particular, λ = 0 if the denominator is zero), e.g.,

λ1 =
count(x1, x2)

count(x1, x2) + γ

λ1 = (1− λ1)
count(x2)

count(x2) + γ

λ3 = 1− λ1 − λ2

– P (x2|x1) =
count∗(x1, x2)
count(x1)

if count(x1, x2) > 0,
where the discounted count is

count∗(x1, x2) = count(x1, x2)− β

and the missing probability mass

1−
∑
x2

count∗(x1, x2)
count(x1)

is assigned to the bigrams with no counts.
2. One can hope to describe sentences with a context-
free grammar (CFG). For a given (grammatical) sen-
tence, there can be several (left-most) derivations – the
sentence can be ambiguous. A probabilistic CFG
(PCFG) assigns a probability to each rule of the gram-
mar, and therefore defines a probability distribution
on the set of derivations (not just the set of sentences).
The training data provides the grammar and empirical
probabilities from the rules. The CKY algorithm uses
dynamic programming to find the most likely parse tree
(for a grammar in Chomsky normal form (CNF), i.e.,
whose rules are of the form X → Y1Y2 or X → y) by
computing π(i, j,X) = Max likelihood(X → xi:j). The
inside algorithm similarly computes the probability of
a sentence using π(i, j,X) =

∑
likelihood(X → xi:j).

3. PCFGs are not sensitive to lexical information:
for instance, they cannot notice that into/IN (resp.
of/IN) is more (less) likely to be attached to a VP
than to a NP. There is also no way of encoding the
“close attachment preference” (a PP is more likely to
be attached to a nearby NP than to a distant one).
A lexicalized PCFG is a PCFG in which each non-
terminal is paired with a lexical item (the “head” of
the non-terminal), e.g.,

S(examined)→2 NP(lawyer) VP(examined)

(the subscript indicates the origin of the lexical item).
Since the number of parameters explodes, they should
be regularized, for instance:
– P [S(examined) →2 NP(lawyer)VP(examined)] =
P [S(examined)→2 NP VP(examined)]P [lawyer| · · ·]

– Shrink P [S(examined) →2 NP VP(examined)] to-
wards P [S→2 NP VP]

– Shrink P [lawyer|S(examined)→2 NP VP(examined)]
towards P [lawyer|S→2 NP VP].

4. The noisy channel model (generative model) to
translate from French f to English e is

p(e, f) = p(e)p(f |e).

It uses a language model for the target, p(e), and a con-
ditional model p(f |e), even though we are eventually
interested in p(e|f).
It is too complicated to model p(f1 · · · fn|e1 · · · en,m)
directly, but p(f1 · · · fn, a1 · · · am|e1 · · · en,m), where
ai ∈ J1, nK is the position of the English word cor-
responding to the ith French word, and the ai can be
integrated out. One can use a model for the alignments
P [ai = j|m,n],

similar languages
noun/adjective inversions
SVO vs SOV

another for the word pairings, [fi|ej , ai = j] and mul-
tiply them (IBM model 2).
The decoding problem, Argmaxe p(e)p(f |e), is hard,
but the alignment and word pairing models are eas-
ier, and useful in other models: use the EM algorithm
(do not use hard alignments but weighted mixtures)
and start with the uniform alignment probability (IBM
model 1).
5. Considering phrases, i.e., consecutive groups of
words, improves performance. To translate with a
phrase model and a trigram language model, progres-
sively build the translation, keeping track of the “state”
(last two words (for the trigram model), last position
(for the alignment model), boolean vector indicating
which words have already been translated, score). Do
not use a completely greedy algorithm, but keep a pool
of good partial translations (states) and progressively
expand them.
6. (Penalized) log-linear models generalize
(smoothed) n-gram models: define features, e.g.,

fk(x1, . . . , xn) = 1xn=world

fk(x1, . . . , xn) = 1xn−1,xn=hello,world,

let

p(xn+1|x1 . . . xn) ∝ exp[θ · f(x1 · · ·xnxn+1)]

or, writing y = xn+1 and x = (x1, . . . , xn),

p(y|x) ∝ exp[θ · f(x, y)]

p(y|x) = exp[θ · f(x, y)]∑
z
exp[θ · f(x, z)]

and find θ that maximizes the penalized log-likelihood

L(θ) =
∑
i

log p
(
y(i)|x(i), θ

)
= 1

2 ‖θ‖
2
2

Article and book summaries by Vincent Zoonekynd 549/1044

using gradient ascent – the gradient is easy to compute,
∂L

∂θk
=
∑
i

fk
(
x(i), y(i)

)
−
∑
i

∑
z

p
(
z|x(i)

)
fk
(
x(i), z

)
.

A log-linear model to label a sentence is of the form

P [label|input, θ] ∝ exp[θ · φ(input, label)]

where φ : Inputs×Labels→ Rd is a feature map. This
is reminiscent of multinomial logistic regression

score = θ · φ(input, label) log-linear
score = θlabel · φ(input) logistic.

7. A maximum entropy Markov model (MEMM)
is of the form

P (tag1, . . . , tagm|word1, . . . ,wordm)

=
∏
i

P (tagi|tag1, . . . , tagi−1,word1, . . . ,wordm)

=
∏
i

P (tagi|tagi−1,word1, . . . ,wordm) (Markov)

and each factor is modeled with a log-linear model

P [tagi|tagi−1, sentence] ∝
exp[θ · φ(sentence, i, tagi−1, tagi)].

The most likely tag sequence can be estimated with the
Viterbi algorithm. MEMMs differ from HMMs in the
use of features (they are difficult to add to a HMM).
A conditional random field (CRF) is a big
log-linear model, in which the feature vector
Φ(sentence, sequence of tags) is of the form

Φ(sentence; tag1, . . . , tagm) =∑
φ(sentence, i, tagi−1, tagi).

It can be used with the Viterbi algorithm and fitted
by gradient descent (the big sum in the normalizing
constant can be dealt with with the forward-backward
algorithm).
One can also consider trigram MEMM, modeling
P [tagi|tagi−1, tagi−2, sentence], and generalizing tri-
gram HMM P [tagi|tagi−1, tagi−2]. Features can in-
clude

xi =W ∧ tagi = T

suffix(xi, 3) = ABC ∧ tagi = T

prefix(xi, 3) = ABC ∧ tagi = T

tagi = T1 ∧ tagi−1 = T2 ∧ tagi−2 = T3

tagi = T1 ∧ tagi−1 = T2

tagi = T

xi−1 =W ∧ tagi = T

xi−2 =W ∧ tagi = T

xi+1 =W ∧ tagi = T

xi+2 =W ∧ tagi = T

xi contains [:digit:] ∧ tagi = T

xi contains [:upper:] ∧ tagi = T

xi contains [-] ∧ tagi = T.

8. The naive Bayes model assumes Xi ⊥⊥ Xj | Y :

P (Y = y,X1 = x1, . . . , Xn = xn) =

P (Y = y)
∏
i

P [Xi = xi|Y = y]

i.e.,
p(y, x1, . . . , xn) = q(y)

∏
i

qi(xi|y).

The maximum likelihood estimator turns out to be the
sample frequencies. If the labels Y are not observed, it
is a clustering problem (not unlike k-means, but with
discrete variables), which can be tackled with the EM
algorithm:
– E-step: estimate the cluster membership probabili-
ties;

– M-step: estimate the parameters.
9. The Viterbi algorithm uses dynamic program-
ming to compute the most likely sequence of hidden
states in a HMM, with Ti,j = probability of the most
likely path of hidden states emitting oi:j and ending in
state xi.
The forward-backward algorithm computes∑

s:sj=a

ψ(s) and
∑
s:sj=a
sj+1=b

ψ(s)

where ψ(s) =
∏
ψ(sj−1, sj , j),

ψ(sj−1, sj , j) = t(sj |sj−1)e(xj |sj) (HMM)
ψ(sj−1, sj , j) ∝ exp[θ · φ(x1:m, sj−1, sj , j)] (CRF).

Those quantities can be used to compute marginal
probabilities.
It can be generalized to sequences of parse trees: the
inside-outside algorithm allows the EM estimation of
PCFGs.

Workflow control-flow patterns
A revised view

R. Russell et al. (2006)
Dependencies between tasks are often represented by a
directed acyclic graph (e.g., in a Makefile), but more
complicated dependencies are sometimes needed (se-
quence, and-split, and-join, or-split, or-join, first-to-
complete-or-join, m-out-of-n-or-join, cancellations, in-
terleaving, etc.); they can be modeled with coloured
Petri nets (CPN).

Temporal evolution
of financial-market correlations

D.J. Fenn et al. (2011)
The inverse participation ration of the kth principal
component wk is IPR =

∑
i w

4
ik; the participation ra-

tio, 1/IPR, is the effective number of assets contribut-
ing to the kth component.

Article and book summaries by Vincent Zoonekynd 550/1044

The evolution of boosting algorithms
A. Mayr et al. (2014)

Bagging fits a model on random subsets of the data
and averages their forecasts. Boosting uses a similar
idea, with weighted subsets (giving more weight to cur-
rently misclassified observations) and a weighted aver-
age of the forecasts. Statistical boosting progressively
builds an (interpretable) statistical model, instead of
averaging forecasts. For instance, if the weak learners
are 1-variable GAMs, each boosting iteration adds one
variable to the model, in a way similar to the lasso
(it provides variable selection and a regularized path).
While gradient boosting finds the best (incremental)
candidate hi(xi, β) among h1(x1, β), . . . , hk(xk, β) and
moves the model slightly in its direction, by adding
εhi(xi, β), likelihood-based boosting looks at penalized
hi(xi, β), each maximizing loglik(β)− penalty(β), and
adds the best one – thanks to the penalty, there is no
need to multiply by ε.
R implementations include mboost, gbm (gradi-
ent boosting); GAMBoost, CoxBoost (likelihood-based
boosting).

Teaching logic
using a state-of-the-art proof assistant

C. Kaliszyk et al. (2007)
Coq is used to teach logic, to avoid the almost-but-not-
completely-right proofs many students generate, after
defining Coq tactics that exactly match the rules of
logic as they are taught.

jHoles: a tool for understanding
biological complex networks

via clique weight rank persistent homology
J. Binchi et al. (2014)

Look at the persistent homology of the filtered sim-
plicial complex associated to the truncated graphs
of a weighted graph. (jHoles converts the weighted
graph into a filtered simplicial complex and gives it to
JavaPlex to compute the persistent homology.)

Infinite-dimensional word embeddings
E.T. Nalisnick and S. Ravi (2016)

Many statistical or machine learning models have a la-
tent state, with values in a finite-dimensional vector
space. One can also use an infinite-dimensional one,
e.g., `2, by adding a per-dimension penalty.

Distributed representations
of sentences and documents

Q. Le and T. Mikolov (2014)
Word2vec can be generalized to paragraphs: instead
of predicting the next word from the previous words,
keep the word weights w fixed and add the paragraph
id as a predictor: the paragraph weights give a vector

representation of each paragraph.

§id the cat ate the

D W W W W

mouse

Topological pattern recognition
for point cloud data

G. Carlsson (2013)
Gentle introduction to topological data analysis
(TDA), with more examples than the other review ar-
ticles.
To gain insight on the structure of a (contractible) met-
ric space, transform it in some way, e.g., by remov-
ing a point, adding a point (1-point compactification,
for separated, locally compact, non-compact spaces),
removing singular points, removing the “center” (i.e.,
keeping the “end points”) to identify appendages.
Functional persistence homology is the persistence ho-
mology of f−1(α) or f−1([α,+∞[), for some map
f : X → R (e.g., the centrality).
Applications include:
– Chemistry: the functional persistence homology bar-
codes measure how close two molecules (clouds of
point/atoms) are;

– Genetics: non-trivial homology of a set of (viral) ge-
netic sequences (for the Hamming distance) reveals
horizontal gene transfer;

– Time series: the homology of the set of (centered,
normalized) fragments (xt, xt+1, . . . , xt+k) can help
identify periodic time series;

– Cosmology: persistence homology (in particular the
Euler characteristic) can be used to compare the
structure of the universe (galaxies form clusters, fil-
aments, walls) with that from a Gaussian random
field.

Introduction to the R package TDA
B.T. Fasy et al.

Homology and cohomology computation
in finite element modeling

M. Pellikka et al.
gmsh can compute homology and cohomology – for
some PDE problems, the boundary only determines
the solution within a given cohomology class.

PReMiuM: an R package for profile regression
mixture models using Dirichlet processes

S. Liverani et al. (JSS, 2015)
Profile regression is a mixed model in which the groups
come from a Dirichlet process mixture clustering.

Article and book summaries by Vincent Zoonekynd 551/1044

GPfit: an R package
for fitting a Gaussian process model
to deterministic simulator outputs

B. MacDonald et al. (JSS, 2015)
When fitting a Gaussian process on non-noisy
data, with a Gaussian correlation function Rij =

Cor(yi, yj) =
∏
k exp−θk |xik − xjk|

2, θk > 0, the
correlation matrix can be ill-conditioned (some of the
points are too close), and the likelihood has local ex-
trema very close to zero. One can replace R with
R + δI, with the smallest nugget δ that makes the
matrix well-conditioned, and reparametrize θ as θ =
expφ.
Check the R packages GPfit (no noise), tgp (noise) or
mlegp (noise, numerically unstable).
Also mentions lhs::maximinLHS (random but well-
dispersed points).

Introducing multivalor:
a multivariable emulator

R.K.S. Hankin
Gaussian processes in higher dimensions.

Newton’s versus Halley’s method:
a dynamical systems approach

G.E. Toberts and J. Horgan-Kobelski (2003)
To solve f(x) = 0, Newton’s method approximates f
with an affine function, Halley’s method with a hyper-
bola.

Pricing composable comtracts on the GP-GPU
J. Ahnfelt-Rønne and M.F. Werk (2011)

SPL (stochastic process language) is a Haskell DSL to
describe and (efficiently) price derivatives.

Fractional-parabolic deformations
with sinh-acceleration

S. Levendorskiĭ
Some integrals can be computed using:
– A fractional-parabolic deformation, i.e., by re-

placing an integral over R with an integral over
σ exp[α log(1 + iR)]: 7−→

– Sinh acceleration:∫
R

f(x)dx =

∫
R

f(sinh y) cosh y dy

≈
∑
|n|⩽N

f(sinhn) coshn

Market timing and return prediction
under model instability

M.H. Pesaran and A. Timmermann (2002)
To detect structural breaks, apply cusum tests to ob-
servations reversed in time.

On the equivalence between quadrature rules
and random features

F. Bach (2015)
The quadrature problem can be formulated as the
problem of approximating an element i : f 7→

∫
D
f of

a Hilbert space as a linear combination of well-chosen
elements evx : f 7→ f(x).
It is similar to the kernel approximation problem: find-
ing a low-dimensional embedding φ such that k(x, y) ≈
〈φ(x), φ(y)〉.

The CMA evolution strategy: a tutorial
N. Hansen (2011)

CMA-ES is a population-based optimization algo-
rithms that models the current population as a Gaus-
sian, samples from this model, keeps the best candi-
dates and iterates.

Gaussian processes for machine learning
C.E. Rasmussen and C.K.I. Williams (2006)

A Gaussian process is an infinite family of random vari-
ables (Xt)t∈R; the mean and covariance functions

m(t) = E[Xt], k(s, t) = Cov(Xs, Xt)

suffice to define it. The joint distribution of
Xt1 , . . . , Xtn is Gaussian, and the conditional distribu-
tion Xs1 , . . . , Xsm |Xt1 , . . . , Xtn , obtained in the usual
way (Shur complement) is the posterior distribution.
To train a Gaussian process, one can use a hierarchi-
cal prior, i.e., posit a parametrization of the mean and
covariance functions, e.g.,

m(t) = at2 + bt+ c

k(s, t) = σ2
1 exp−

(s− t)2

`2
+ σ2

2δij

(the σ2
2δij term accounts for noisy observations) and

select the hyperparameters via log-marginal likelihood.

Time series analysis using Gaussian processes
in Python and the search for Earth 2.0

D. Foreman-Mackey (PyData, 2014)
Application of Gaussian processes to detect transits of
extrasolar planets.

Portfolio optimization
for VAR, CVaR, omega and utility

with general return distributions
W.T. Shaw

Biased random portfolios.

Article and book summaries by Vincent Zoonekynd 552/1044

Algorithms for hyper-parameter optimization
J. Bergstra et al. (2011)

A Parzen estimator of a conditional probability dis-
tribution p(x|y) is an estimator of the form

p(x | y) =
{
`(x) if y < y∗

g(x) if y ⩾ y∗

where ` and g are kernel estimators (possibly with
a Gaussian, etc. prior) and the threshold y∗ is some
quantile of the sample data p(y < y∗) = γ.
The expected improvement (x = parameter, y = loss)
is (an increasing function of) `(x)/g(x): to get a new
candidate solution, one can sample many points from `
and take that with the highest `(x)/g(x).
The parameter space of hyperparameter optimization
problems often has a tree structure: the Parzen esti-
mator can be generalized to a tree-structured Parzen
estimator (TPE).
Sequential search can be parallelized with the con-
stant liar approach: once a candidate point has been
chosen, provisionally set its loss to the average loss.
Check the hyperopt Python package.

Sequential model-based optimization
for general algorithm configuration

F. Hutter et al. (2011)
Gaussian processes (GP) can be generalized to mixed
continuous-categorical variables:

k(x, y) = exp
∑
j

−λjd(xj , yj)2,

where d is the Euclidean or Hamming distance (note
that the coordinates are independent).
Sequential model-based optimization (SMBO, aka
Bayesian optimization) can use random forests (of re-
gression trees) instead of GPs.
Depending on the problem, you may want to trans-
form the objective function (e.g., replacing the algo-
rithm running time with its logarithm).
Instead of estimating the performance of an algorithm
as a sample mean

Mean
i∈Instances

Performance(i, θ)

on a small set of instances, one can learn the mapping
(instance, θ) 7→ performance, using instance features,
and use it to estimate E[Performance(·, θ)]. (You also
need a distribution on instance features. SATzilla uses
a similar idea to choose the most promising algorithm
(DPLL, LP, etc.) for a given instance.)
To maximize the expected improvement (EI), and pro-
duce a diverse set of configurations with high EI, use
multi-start local search.

Preliminary evaluation
of hyperopt algorithms on HPOLib

J. Bergstra et al. (2014)
Testing the hyperopt algorithms on the HPOLib
benchmarking suite suggests that vanilla Gaussian pro-
cesses (with RBF, rather than Matérn kernels) are
good enough.

Making a science of model search
J. Bergstra et al. (2013)

TPE is slightly better than random search.

Time-bounded
sequential parameter optimization

F. Hutter et al. (2010)
A few improvements on SPO:
– Instead of fitting a noise-free Gaussian process to

smoothed data (if there are several, contradictory
measurements for the same parameter values, you
need to somehow reconcile/smooth them), include
noise in the model;

– (When minimizing running time) stop the computa-
tions early if they take too long: a censored running
time is still informative;

– Use an approximate Gaussian process, the projected
process (PP) approximation: instead of considering
(inverting) the whole n × n kernel matrix, select
(without replacement) p instances and make do with
the n× p and p× p submatrices.

SMAC:
sequential model-based algorithm configuration
Random-forest-based Bayesian optimization, in Java.

BayesOpt: a Bayesian optimization library
for nonlinear optimization,

experimental design and bandits
R. Martinez-Cantin (2014)

Gaussian process Bayesian optimization, in C++.

Efficient benchmarking
of hyperparameter optimizers via surrogates

K. Eggensperger et al. (2015)
Comparison of three Bayesian optimization methods:
– Gaussian processes (GP, as implemented in
Spearmint);

– Random forests (RF, as implemented in SMAC);
– Tree-structured Parzen density estimators (TPE, as
implemented in hyperopt)

on realistic benchmarks, surrogates of real-world prob-
lems (real-world problems usually require time, soft-
ware licenses, and/or specialized hardware, and are
therefore hard to reproduce). On low-dimensional con-
tinuous problems, GP perform best; on more general
problems, RF and TPE perform best.

Article and book summaries by Vincent Zoonekynd 553/1044

Optimization: algorithms and applications
R.K. Arora (2015)

Relatively exhaustive list of all optimization-related
topics, not too deep, but with examples, exercises and
Matlab (?) code.

Tree-structured Gaussian process
approximation

T. Bui and R. Turner
Gaussian process estimation can be sped up us-
ing a (smaller) pseudo-dataset of (noiseless) pseudo-
observations; they can be arranged in a tree (à la
Barnes-Hut) and used as a graphical model.

F-Race and iterated F-Race: an overview
M. Birattari et al. (2009)

To minimize an expensive function, e.g., some expected
cost, estimated by Monte Carlo simulations: take a set
of candidates (e.g., a grid); evaluate them in paral-
lel; regularly test if the (more and more precise) es-
timated values are significantly different (e.g., with a
non-parametric ANOVA test); if so, discard the worst
candidate; iterate until only one candidate remains.
This can be combined with CMA-ES: when the num-
ber of candidates has been sufficiently reduced, replace
them with new, nearby candidates.

ParamILS: an automatic
algorithm configuration framework

F. Hutter et al.
Iterated local search (ILS) builds a sequence of local
minima: start with a point; use local search to find
a nearly local minimum; add some noise to escape its
bassin of attraction; iterate, keeping the new minimum
if it is better (other acceptance criteria are possible).
If the objective function is estimated from a Monte
Carlo simulation, there is no need to always use the
same number of iterations.
If the objective function is the running time of some
algorithm, censored values (“more than x”, i.e., we
stopped after x seconds) are sometimes good enough.

GGA: a gender-based genetic algorithm
for the automatic configuration of algorithms

K. Tierney
Gender-based genetic algorithms keep two subpopula-
tions (genders), using different fitness functions. For
instance, if the standard fitness is time-consuming to
compute, one could use it for one gender and use the
other as a “variety store”.

R in Finance 2016
The ForecastCombinations package provides various
ways of combining predictions:
– Equal-weighted average;

– Precision-weighted average;
– Regression;
– Regression with L1 loss;
– Constrained regression:

∑
βi = 1, βi ⩾ 0;

– Average of the best 10% subset regressions;
– BIC-weighted average of all subset regressions.
Stan, a C++-like language to describe Bayesian mod-
els, in the spirit of BUGS, is not limited to hierarchi-
cal models, but can also be used to model time series:
stochastic volatility, mixtures, hidden Markov models,
hierarchical stochastic volatility.
Deep learning libraries are no longer limited to Python
and Lua: MxNet (a C++ library) can be used from R.
There is now an R package for automatic differentia-
tion (AD): madness.
Several talks dealt with portfolio optimization:
– Multi-objective portfolio construction, with NSGA2
(mco::nsga2; risk parity, cccp::rp, was also men-
tioned)

– The ROML package provides portfolio optimization
functions, a bit like a limited version of disciplined
convex optimization, with predefined functions for
many objectives. [R finally has a package for disci-
plined convex optimization: cvxr.]

– Portfolio optimization with PortfolioAnalytics and
random portfolios

Most talks were about finance:
– Do not use the ADF test to identify trading op-
portunities: it highlights mean reversion (Ornstein-
Uhlenbeck process), while you want oscillations. Try
a model of the form

xt+1 = β0 + β1 × levelt + β2 × slopet + noiset+1;

filter for β1 < 0, β2 > 0; keep the best fits. One
could also try a Hilbert transform.

– SVM for stock selection (on the S&P100): compar-
ison of 15 different kernels [one could also combine
them – this is called multiple kernel learning (MKL)].

– One can measure the connectedness of the bank net-
work by fitting a VAR model (use an adaptive lasso
penalty to deal with the large number of banks, and
an OHLC-based volatility estimator) and computing
the H-step ahead contribution of bank i to bank j.

– Leveraged ETFs give less return that you may think:

f(x) = log1p
(
k × expm1(x)

)
⩽ k × x.

This becomes more visible when volatility is high,
and with compounding:∑

f(xt) ⩽ k
∑

xt.

– Building an index from GoogleTrends and a list of
search terms

A few talks covered data management issues, e.g., h5,
to read and write hdf5 files (a portable file format to
store arrays of numbers, data.frames, etc.), feather
(to store columnar data and read it from R or Python)

Article and book summaries by Vincent Zoonekynd 554/1044

or ff to manipulate datasets larger than memory. R
can be used in other environments, such as Postgres or
Hadoop.
A few talks focused on efficient or extensible computa-
tions.
– The Arborist package for random forests also pro-
vides quantile regression (i.e., the leaves do not only
contain the mean, but quantiles) and monotonicity
constraints (reject proposals that breach the con-
straints with probability p – not necessarily 1).

– The roll package provides more rolling functions
(mean, var, sd, cor, cov, lm, eigen, pcr, vif); the
computations use Rcpp and are parallelized.

– The pirls package re-implementats glmnet; it is
slower but allows arbitrary link functions.

Many talks showcased Shiny, interactive (Javascript)
plots and the use of R to teach finance or options.
There were a few talks about options and stochastic
processes:
– The illiquidity of a market can be estimated by com-
paring the price of an ETF and the NAV of the un-
derlying portfolio; this can be interpreted as a bid-
ask spread by noticing that bid and ask prices are
American option prices.

– Computation of the returns of the dual moving av-
erage (MACD) strategy, under a Brownian motion
assumption

– Convertible bonds, divergence swaps, stochastic lo-
cal volatility model, etc.

A few talks were only remotely related to finance. For
instance, the rearrangement problem is the problem
of finding the intra-column rearrangement of a matrix
that minimizes row sum variability (variance, maxi-
mum, minus minimum). Here are a few heuristics:
– Pick a column at random and re-order it so that it
be in the order opposite to the sum of the columns;

– Idem with a subset of columns versus the others;
– This subset of columns can be chosen so that its sum
has as similar a variance as the other columns.

Why should I trust you?
Explaining the predictions of any classifier

M.T. Ribeiro et al. (2015)
To interpret the forecasts of a complex (black box)
model, approximate it, locally (as in local regression)
with simpler models: sparse linear model (e.g., for a
small number of binary features), decision trees, falling
rule lists, etc. The explanation is local: each observa-
tion gets a different explanation. To explain the whole
model, provide a diverse, representative set of obser-
vations and explanations; it is a (weighted) set cover
problem: given an instance×feature binary (or weight)
matrix, select a small number of rows that cover as
many columns as possible (a greedy algorithm is good
enough).

Falling rule lists

F. Wang and C. Rudin (2014)
A falling rule list is a set of rules of the form “if patient
satisfies condition 1, then risk = x% else…”, where the
risk is decreasing. From a set of candidate conditions
B (frequent item set mining: FP-growth, Eclat, Apri-
ori), one can build a Bayesian model (greedily selected
decision rules do not perform well).

B : set of candidate rules
λ : expected number of rules
wj : prior probability of j ∈ B

Γ(αj , βj) : prior for the risk of rule j
Γ(α∞, β∞) : prior for the risk of the default rule

L ∼ Pois(λ) number of rules
c1 . . . , cL : drawn from B, without replacement,

with probabilities proportional to wj
γj ∼ Γ(αj , βj)1⩾1

γ∞ ∼ Γ(α∞, β∞)

riskj =
∑
i⩾j

log γi

Interpretable classifiers using rules
and Bayesian analysis:

building a better stroke prediction model
B. Letham et al. (2015)

Bayesian rule lists generalize falling rule lists to multi-
nomial outcomes.

Scalable Bayesian rule lists
H. Yang et al. (2016)

The alternating decision tree
learning algorithm

Y. Freund and L. Mason (1999)
An alternating decision tree alternates between
prediction nodes and splitting modes; the value of a
leaf is the sum of the predictions on its path; the value
of a sample is the sum of the values of the paths leading
to it.

+.5

a < 4 b > 0

+.2 +.3−.7 −.6

b > 1 a > 1

−.2 −.1+.4 +.1

They can be learnt by boosting; their performance is
similar to boosted decision trees (C5.0), but they are
easier to interpret.

Article and book summaries by Vincent Zoonekynd 555/1044

Optimizing the induction
of alternating decision trees

B. Pfahringer et al.
Alternating decision trees are not scalable: heuristics
are needed.

Ensemble samples with affine invariance
J. Goodman and J. Weare (2010)

The affine-invariant Nelder-Mead optimization algo-
rithm motivates an affine-invariant ensemble of MCMC
samplers, using a “stretch move” (adjust the accep-
tance probability accordingly)

xcandidate
k = xj + Z(xk − xj), j 6= k random

Z ∼ p, p(z) ∝ 1√
z
1[1/a,a], a = 2

Similarly, CMAES suggests a “walk move”,

xcandidate
k ∼ N(µS ,ΣS)

where S is a random subset of particles, |S| ⩾ 2, k 6∈ S,
and µS and ΣS are their mean and variance.
This is implemented in the emcee Python package.

Integration in finite terms
M. Rosenlicht (1972)

Elementary proof of Liouville’s 1834 theorem, which
gives a criterion for an indefinite integral to be ex-
pressible in closed form. For instance,

∫
e−x

2

dx has
no closed form

An invitation to integration in finite terms
E.A. Marchisotto et G.A. Zakeri (1994)

More elementary presentation of Liouville’s theorem.

Smooth numbers:
computational number theory and beyond

A. Granville (2008)
Smooth numbers are numbers whose prime factors are
small. A number if y-smooth if its prime factors are at
most y. Let ψ(x, y) be the number of y-smooth integers
up to x. Then

ψ(x, x1/u)

x
−→
x→∞

ρ(u) > 0

where

ρ(u) = 1 u ∈ [0, 1]

ρ(u) = 1− log u 1 ⩽ u ⩽ 2

ρ(u) =
1

u

∫ u

u−1
ρ(t)dt u > 1.

They play a role in cryptography and computational
number theory.

Generalizing dynamic time warping
to the multidimensional case
requires an adaptive approach

M. Shokoohi-Yekta et al.
Dependent and independent multidimensional time
warp (DTW) give different results. Which is best may
be problem-, class- or exemplar-specific, and can be
learned.

Clustering time series
using unsupervised shapelets

J. Zakaria et al.
(After normalizing the time series) apply clustering al-
gorithms to the matrix of distances between the time
series and “shapelets” (shorter time series); a small
number of discriminative shapelets suffices.

Foster-Hart optimal portfolios
A. Anand et al.

For a bounded random variable X such that E[X] > 0
and P [X < 0] > 0, the Foster-Hart risk is the positive
number r such that E log(1+X/r) = 0. It is not coher-
ent, not convex, not time-consistent, not guaranteed to
exist.

Option-implied equity premium predictions
via entropic tilting

K. Metaxoglou et al. (2016)
Entropy tilting transforms a probability distribution
π to change some of its moments g.

Find π∗

To minimize KL(π∗‖π) =
∫
π∗ log

π∗

π

Such that
∫
g(x)π∗(x)dx = ḡ

Using semantic fingerprinting in finance
F. Ibriyamova et al.

Rather than cosine similarity between bags of words,
use vector embeddings (here, Numenta’s “semantic fin-
gerprint”) to identify similar companies.

Pure quintile portfolios
D. Liu

Let r be the vector of stock returns (at a given
date), X the matrix of (normalized) factor exposures
(stock×factor); the factor returns are (X ′X)−1X ′r;
the factor mimicking portfolios are the rows of
(X ′X)−1X ′. The factor quintile portfolios are the min-
imum variance portfolios subject to the constraints
(i) n/5 stocks, long-only;
(ii) The exposure to the factor of interest is the same

as that of the quintile portfolio;
(iii) The exposure to the other factors is zero.

Article and book summaries by Vincent Zoonekynd 556/1044

Modeling and forecasting
(un)reliable realized covariances

for more reliable financial decisions
T. Bollerslev et al. (2016)

The realized covariance is the sum of a (time-dependent
but persistent) unobserved variance, and a noise term
(market microstructure, Epps effect, non-synchronous
observations). Estimating the distribution of this noise
term leads to a better (exponentially-weighted) covari-
ance estimator.

Equivalence
of robust VaR and CVaR optimization

S. Lotfi and S.A. Zenios (2016)
Robust optimization

Minimize
α

Max
β∈B

Loss(α, β)

optimizes the worst case situation, when the values of
some parameters are constrained to remain in some box
or ellipsoid. Robust CVaR and robust VaR optimiza-
tion turn out to be equivalent.

An introduction to ROC analysis
T. Fawcett (2005)

Precision-recall curves are affected by class skew; ROC
curves are not.
Given a set of classifiers, look at the convex hull of
their ROC curves; given two classifiers A and B, the
random mixtures pA+(1−p)B form the [AB] segment.
The AUC can be interpreted as the probability, given
two observations from the two classes, of correctly dis-
tinguishing them.
To estimate the “precision” of a ROC curve, use boot-
strapped curves and look at the variation of tp given
fp, or (fp,tp) given the score.
For multiclass problems, use

∑
p(ci)AUC(ci) or

2

|C| (|C| − 1)

∑
i<j

AUC(ci, cj)

Non-linear dimensionality reduction:
Riemannian metric estimation

and the problem of geometric recovery
D. Perrault-Joncas and M. Meilă

By inverting the Laplace-Beltrami operator, one can
add a Riemannian metric to manifold algorithms,
showing how distances, angles and areas are distorted.
[One could also try to minimize those distortions.]

Bayesian model choice and information
criteria in sparse generalized linear models

R. Foygel and M. Drton

The extended BIC uses a prior favouring sparser
models.

P (J) ∝
(
p

|J |

)−γ
|J| ⩽ q J ⊂ J1, pK

BICγ(J) = −2 loglik(θ̂J) + |J | log n+ 2γ |J | log p

Extended Bayesian information criteria
for model selection with large model spaces

J. Chen and Z. Chen
Original paper on the eBIC.

A new method for constructing
networks from binary data

C.D. van Borkulo et al. (2014)
The structure of a Gaussian Markov random field
(MRF, i.e., an undirected graphical model) can be esti-
mated by a graphical lasso (estimate the inverse of the
covariance matrix, whose nonzero entries correspond to
conditional independencies) and approximated by lasso
regressions, one for each variable. This approximation
can be generalized to binary MRF (Ising model) and
lasso logistic regressions.

High-dimensional graphical model selection
using `1-regularized logistic regression

M.J. Wainwright et al.

Confidence bounds of recurrence-based
complexity measures

S. Schinkel et al. (2009)
Recurrence plots highlight periodic or chaotic be-
haviour in time series.

Rij =

{
1 if ‖xi − xj‖ ⩽ ε
0 otherwise

Recurrence quantification analysis (RQA) turns
those plots into numbers (features):
– Proportion of dark points (recurrence rate);
– Proportion of points in diagonal segments of length
at least `min (determinism);

– Length of the longest diagonal segment;
– Average length of the diagonal segments;
– Similar quantities for vertical segments (laminarity,
trapping time).

To compute confidence intervals on those quantities,
resample, with replacement, the diagonal (resp. verti-
cal) segments (including those of length one).

The PP-TSVD algorithm
for image restoration problems

P.C. Hansen et al.
Besides the penalized

Find z

To minimize ‖Az − b‖22 + λ ‖z‖2

Article and book summaries by Vincent Zoonekynd 557/1044

and constrained problems

Find z

To minimize ‖Az − b‖22
Such that ‖z‖2 ⩽ c

one can consider the truncated one

Find z
To minimize ‖z‖2
Such that ‖Az − b‖22 ⩽ c.

As usual, one can replace ‖z‖2 with ‖z‖1, ‖∇2z‖2,
‖∇z‖2, ‖∇z‖1, etc.

The evolution of popular music:
USA 1960-2010

M. Mauch et al. (2015)
To study a musical corpus:
– Extract timbre features (12 Mel-frequency cep-
stral coefficients (MFCC), ∆MFCC = MFCC0(t) −
MFCC0(t−1), zero-crossing count) using some Vamp
plugin; extract the 12 chroma features from NNLS
Chroma, for each frame;

– Apply random sampling (20 frames), PCA, model-
based clustering (Gaussian mixture, 35 clusters) to
build the timbre lexicon;

– Use the common chord transitions as a harmony lex-
icon;

– Extract topics with latent Dirichlet allocation (LDA,
with the topicmodels package).

An end-to-end neural network
for polyphonic music transcription

S. Sigtia et al.
Automatic music transcription (AMT) can benefit
from the same tools as speech recognition: language
models, hidden Markov models, recurrent neural nets,
convolutional nets.

Exploiting spillovers to forecast crashes
F. Gresnigt et al. (2015)

Add cross-excitations to Hawkes processes, to model
contagion.

fastFM: a library for factorization machines
I. Bayer

Factorization machines

y = α+
∑

βixi +
∑
i<j

〈γi, γj〉xixj

are not limited to recommendation systems.
Implementations include fastFM, libFM, libffm,
GraphLab.

A neural algorithm of artistic style
L.A. Gatys et al.

Compute the correlations between different features in
different layers of the CNN and try to match them to
those of a “target style” image.

Compressing neural networks
with the hashing trick

W. Chen et al.
Use Vowpal Wabbit’s hashing trick for weight sharing
in (large) neural nets.

Generalized communities in networks
M.E.J. Newman and T.P. Peixoto

In the stochastic block model, each node belongs to
a community, and the link probability only depends
on the endpoints’ communities. It can be generalized:
each node is assigned a random number, and the link
probability only depends on those numbers.

xu ∼ U(0, 1)

puv = ω(xu, uv)

To account for non-Poisson degree distributions, con-
sider instead

puv =
dudv

2×#edgesω(xu, xv).

The model can be efficiently estimated (EM with be-
lief propagation, expansion of ω in the basis of Bern-
stein polynomials – they are nonnegative over [0, 1])
and uncovers both community structures and spatial
structures.

Gradient-free Hamiltonian Monte Carlo
with efficient kernel exponential families

H. Strathmann et al.
Metropolis-Hastings MCMC samples from a probabil-
ity distribution π, known only up to a multiplicative
factor.

x∗ ∼ Q(·|xt) proposal distribution

xt+1 ← x∗ with probability Min

{
1,
π(x∗)

π(xt)

Q(xt|x∗)
Q(x∗|xt)

}
xt+1 ← xt otherwise

The proposal distribution is usually Gaussian, with co-
variance

Σt ∝ I = E[(∇ log π)2] = −E[∇2 log π].

If ∇ log π is intractable, the information matrix can be
estimated from the history of the Markov chain, with a
kernel embedding if there are nonlinear effects (kernel
adaptive MH, KAMH). These ideas can be generalized
to Hamiltonian Monte Carlo (HMC).

Article and book summaries by Vincent Zoonekynd 558/1044

A Riemannian framework
for tensor computing

X. Pennec et al. (2005)
Many algorithms from statistics or numerical analysis
can be generalized to the manifold of positive definite
matrices S+ (“tensors”), endowed with the Rieman-
nian structure (Fisher information metric) induced by
exp : Sym = TIdS+ → S+, invariant by{

GL× S+ −→ S+

(X,A) 7−→ XAX ′.

For instance:
– Mean:

∑
i logx̄ xi = 0;

– Gradient descent: xt+1 ← expxt [−ε∇C(xt)];
– Linear interpolation (geodesic):

x(t) = expx1
[t−−→x1x2] = expx1

[t logx1
x2]

where

expx(y) = x1/2 exp(x−1/2 y x−1/2)x1/2

logx(y) = x1/2 log(x−1/2 y x−1/2)x1/2.

Laplace-Beltrami eigenvalues
and topological features of eigenfunctions

for statistical shape analysis
M. Reuter et al. (2009)

Use the spectrum (“shape DNA”) of the Laplace oper-
ator, and its eigenfunctions (level sets, critical points)
as features for shape classification or comparison.

Geometric understanding of point clouds
using Laplace-Beltrami operator

J. Liang et al.
The Laplace operator can be approximated, from a
cloud of points, using local least squares.

On the origin of burstiness in human
behavior: the Wikipedia edits case

Y. Gandica et al. (2016)
For inter-event times, compute the burstiness

B =
σ − µ
σ + µ

∈ [−1, 1]

(periodic if σ � µ, bursty if σ � µ) and the autocor-
relation.

What is a paraproduct?
A. Bényi et al. (2010)

A generalization of the operator

Π0(f, g)(s) =

∫ s

−∞
f ′g.

Surprising patterns for the call duration
distribution of mobile phone users

P.O.S. Vaz de Melo et al.
The call duration distribution has heavier tail and head
than the log-normal, but can be modeled as a log-
logistic,

P [X ⩽ x] = 1

1 + e−z
, z =

log x− µ
σ

.

Fast moment-based estimation
for hierarchical models

P.O. Perry (2014)
Moment methods can fit large hierarchical models (e.g.,
a recommender system with 5 predictors, 1000 groups,
100,000 observations).

Differential geometric least angle regression:
a differential geometric approach

to sparse generalized linear models
L. Augugliaro and A.M. Mineo (2010)

The GLM L1 regularization path is not piecewise lin-
ear but, on the statistical manifold of an exponential
family, the least angle regression algorithm (keep the
angle between the “score” of the active variables and
the residual tangent vector constant) yields a sparse
regularization path. This is implemented in the dglars
package.

Convolutional neural networks
for visual recognition

A. Karpathy and J. Johnson (2016)
Simple classifiers such as k-NN, softmax (multinomial
logistic) or multiclass SVM (all with regularization) do
not perform well on image classification tasks (MNIST,
Cifar-10, ImageNet), though image features (colour
histogram, bag of visual words, HOG, SIFT, GIST,
LBP, Texton, SSIM, etc.) help: prefer deep convolu-
tional nets, with ReLU units.
To address the vanishing/exploding gradient problem,
initialize the weights so that the activations be ap-
proximately standard Gaussian: for instance, Xavier
initialization suggests rand()/

√
fan-in, for linear (or

tanh) units and rand()/
√

fan-in/2 for ReLU. Alterna-
tively, insert batch normalization layers to rescale the
activations – it is a differentiable operation, therefore
amenable to back-propagation. The rescaling is mini-
batch-specific: the jittering effect is similar to that of
dropout. To use the network, after training, use the
(fixed) µ and σ from the whole training set.
To debug your network:
– The initial loss should be log(#classes) without reg-

ularization, more with
– The unregularized network can overfit a small
dataset

– Plot loss and test accuracy versus epoch and weight
update; |weight update| /weight magnitude should
be around 10−3

Article and book summaries by Vincent Zoonekynd 559/1044

– Use random hyperparameter search; worry if the
best ones are on the boundary.

Among the many optimization algorithms,
– Stochastic gradient descent is slow

x += −αdx

– Momentum tends to overshoot

v = µv − αdx
x += v

– Nesterov momentum (aka Nesterov accelerated gra-
dient, NAG) evaluates the gradient after the momen-
tum step

– With Adagrad, the step sizes tend to zero too fast

N += (dx)2

x += −αdx/
√
N

– RMSprop is similar to Adagrad, but uses an expo-
nential moving average of the second moment in-
stead of a sum;

prefer Adam, which combines momentum and RM-
Sprop, i.e., the first and second moments of the gradi-
ents.
Ensembling helps: even if you have a single model, you
can simply average some of its snapshots, taken during
training, or take an exponential moving average of its
weights over training.
Dropout suggests to drop half the neurons at random,
at train time, and shrink the activations at test time
Instead, one could drop connections (DropConnect).
Zero-padding is necessary, otherwise the image shrinks
at each step, which forbids deep nets. The 1× 1 filters
make sense – they are actually 1× 1× depth.
Pooling layers are often inserted after some of the con-
volutional layers: they downsample the image, usually
with max pooling (average does not work as well).
Conv nets usually end with a fully connected layer, e.g.,
a softmax.
Historical convnets include LeNet, AlexNet, ZFNet,
VGGNet and, more recently, GoogLeNet (no FC lay-
ers), ResNet (152 layers, with skip-layer connections)
– pretrained models are available in the Caffe model
zoo.
Pre-trained convnets can tackle many computer vision
tasks by replacing the “classification head” with an-
other one: localization, detection, etc.
To understand what a convnet does:
– Pick a neuron, see what images excite it;
– Only the first-layer weights are interpretable: they
are always Gabor-like features;

– The output of the FC7 layer (last before the classi-
fier) gives a “code” for the image: visualize the cloud
of images with t-SNE.

– Occlude a part of the image and check how the prob-
ability changes, as a function of the region occluded,
to see where the object is;

– Deconv computes the gradient of a specific neuron
wrt all the pixels to see what it sees; in guided back-
prop: ReLU units let the gradient pass if gradient,
or both input and gradient are positive (instead of
input only) – this gives nicer interpretations of the
neurons;

– Choose a neuron and build an image that maximizes
its output; regularize with an L2 penalty or blur the
image after each step to avoid accumulation of high-
frequency features.

Deep dream starts with an image and tries to amplify
the features in a given layer (forward pass until the tar-
get layer, set the gradient to the activations, backprop
the gradient back to the image, update the image, iter-
ate). NeuralStyle (deep art) looks for an image close to
the contents of one image (measured by the activations
of a layer) and the style of another (measured by the
Gram (covariance) matrix of one or several layers).
With recurrent networks, do not backprop through the
whole sequence, but only 25 characters at a time; to
avoid exploding gradients, cut them off. The LSTM or
GRU (a slight simplification) equations look compli-
cated: changing them at random does not affect per-
formance
CNNs do not necessarily need a lot of data: take a
pre-trained net and freeze all but the last few layers –
it becomes a feature extractor and you can forget that
the features come from a neural net.
To reduce the number of parameters and increase ex-
pressivity,
– Replace large convolutions (5× 5, 7× 7) with stacks
of 3× 3 convolutions;

– Apply a 1×1 convolution to halve the number of fil-
ters, then a 3×3 convolution, then a 1×1 to restore
the number of filters (bottleneck convolution);

– Replace a 3× 3 convolution with a 1× 3 followed by
a 3× 1.

To increase the training set (data augmentation), use
horizontal flips, crops (train the network on crops; use
crops at test time and average several crops), or ajitter
the colour.
Convolutions can be expressed as matrix multiplica-
tions and sped up by linear algebra libraries (to the
price of some data duplication); FFT only helps for
large filters.
Double precision is not needed: single or half is enough.
Semantic segmentation is the task of labeling each pixel
(“cow”, “tree”, “person”, etc.); instance segmentation
also distinguishes different instances (first cow, sec-
ond cow, etc.) Semantic segmentation networks usu-
ally end with an upsampling operation, which can be
learnt (fractionally-strided convolution, often improp-
erly called “deconvolution”).

Article and book summaries by Vincent Zoonekynd 560/1044

For image segmentation, generate a set of proposals
(regions of interest, ROI), and refine them (grey out
pixels far away and predict which of the remaining pix-
els are in the region).
For video, detect feature points at different scales;
track them using optical flow; extract features (HOG,
HOF, MBH) in the corresponding stabilized coordi-
nates. Spatio-temporal convnets use 3-dimensional
convolutions, but single-frame CNNs (on just one
frame – discard the others) perform well, and video
does not add much.
Variational auto-encoders add a Bayesian flavour
to auto-encoders: start with data, x; the encoder gen-
erates µz, σz; sample z ∼ N(µz,Σz); the decoder gen-
erates µx, σx; sample x ∼ N(µx,Σx); the loss function
combines the reconstruction loss on x and a penalty to
ensure that N(µz,Σz) is close to the prior on z.
Generative adversarial networks train two net-
works together: the generator turns random noise into
a candidate image; the discriminator is given an image
and must tell whether it comes from the data or was
generated. They work well on simple datasets (MNIST,
faces); a multiscale variant also works on more complex
ones (CIFAR).
Deep learning for natural language processing

R. Socher (Stanford, 2016)
The current trend in natural language processing is to
somehow replace words and phrases with vectors, and
apply deep learning tools.
For instance, one could take the co-occurrence matrix
(from Wikipedia or CommonCrawl), look at the pre-
vious and next k words (k = 5 to 10 – you can also
give more weight to closer words), and reduce the di-
mension to 25 to 1000, e.g., with SVD. Polysemy, non-
symmetry, common words and new words pose prob-
lems.
Instead, Word2vec tries to predict the previous and
next k words

P (output | input) ∝ exp(u′outputvinput).

Each word is represented by two vectors, uw and vw
(concatenate or average them if you want a single one),
maximizing the likelihood of the observed data. One
can add negative sampling: maximize

σ(u′v)−
∑
k

σ(−u′kv)

where the uk are random words, sampled with proba-
bility P (w) ∝ U(w)3/4, where U is the unigram distri-
bution.
The continuous bag of word (CBOW) model predicts
the center word from the surrounding words.
GloVe uses the (sparse) co-occurrence matrix p and
minimizes ∑

f(pij)(u
′
ivj − log pij)

2,

where f(x) = Min{x, 100} (to avoid giving too much
weight to very common words).
One can predict the sentiment of a word using its con-
text (the vector embedding of wt−2, wt−1, wt, wt+1,
wt+2), with a max-margin (hinge) loss, bidirectional
recurrent neural network (RNN) with LSTM units,
clipped gradients,
Use F1, the harmonic mean of precision and recall, if
the classes are unbalanced.
Recursive neural networks provide embeddings for
phrases: their input is the vector embedding of two
words (or nodes) and the output is the vector em-
bedding (same dimension) and the score if we merge
the two nodes; it can be as simple as one tanh layer,
or a different network for each tree depth or phrase
type (NP, VP, etc.); it can parse sentences greedily. A
PCFG can help reduce the number of candidate trees
to examine.
ConvNets are similar to recursive neural nets, but
merge all possible trees. Instead of using several lay-
ers, use only one, for 2-grams (and 3-gram, 4-grams
5-grams), and add a max-pooling layer, i.e., take the
maximum of those n-gram vectors.

DiceKriging, DiceOptim: two R packages for
the analysis of computer experiments by

Kriging-based metamodeling and optimization
O. Roustant et al. (JSS, 2012)

Kriging is another name for Gaussian process mod-
eling (the differences lie in the way the trend is mod-
eled: constant, linear, more complex, known, to be
estimated, to be integrated out) but it is often limited
to 2 or 3 dimensions and Gaussian kernels, which is
unsuitable to Bayesian optimization (“computer exper-
iment” is just another name for blackbox (expensive)
function).
DiceKriging::km fits a GPmodel, DiceOptim::max_EI
returns the next candidate according to the expected
improvement (EI) criterion. These functions can be
used with lhs::optimumLHS for Latin square designs
and sensitivity::fast99 for sensitivity analysis.
Given random variables X1, . . . , Xn, any (L2) function
f : Rn → R can be decomposed as

Y = f(X1, . . . , Xn)

= µ0 +
∑
i

µi(Xi) +
∑
i<j

µij(Xi, Xj) + · · ·

=
∑

I⊂J1,nKµI(XI)

with E[µI(XI)|XJ] = 0 for J I, which gives a
variance decomposition VarY =

∑
I VarµI(XI). The

Sobol indices are SI = VarµI(XI)/VarY ; Si and∑
I∋i SI are of special interest.

Also check: BACCO, mlegp, tgp.

Article and book summaries by Vincent Zoonekynd 561/1044

Optimal combination forecasts
for hierarchical time series

R.J. Hyndman et al. (2010)
For an additive hierarchy of time seties

yt =
∑
i

yit, yit =
∑
j

yijt, yijt =
∑
k

yijkt,

independent time series forecasts need not be consis-
tent. They are traditionally reconciled, either in a top-
down or a bottom-up fashion. Let Yt be the vector
of all the forecasts and YtK be that of the low-level
ones: Yt = SYtK (where S is a binary matrix). Exist-
ing reconciliation methods are of the form Ỹ = SP Ŷ .
The minimum variance reconciled estimator solves the
optimization problem

Find P

To minimize SP (Var Ŷ)P ′S′

Such that SPS = S.

Equivalently, one can consider the regression Ŷ =
Sβ + ε, where β are the (unknown, consistent) low-
level forecasts.

The great time series bake off: an experimental
evaluation of recently proposed algorithms

A. Bagnall et al.
Comparison of time series classification algorithms:
– 1-NN (nearest neighbour) DTW (dynamic time
warp) and weighted variants of the DTW distance,
e.g., replacing (xi − xj)2 with w(|i− j|)(xi − xj)2;

– 1-NN for distances using both the series and their
first differences;

– Shapelets, i.e., localized patterns (subsequences)
used in a decision tree;

– Random-forest based on simple statistics (mean,
standard deviation) on subintervals;

– Ensemble methods, in the time, power spectrum, au-
tocorrelation, shapelet, etc. space.

Ensemble methods (and NN DTW) work best.

Understanding predictive information criteria
for Bayesian models

A. Gelman et al. (2013)
The AIC and its variants (deviance information crite-
rion, Watanabe-Akaike information criterion) estimate
the out-of-sample performance

AIC = −2 logP (date|θ̂MLE) + 2k

DIC = −2 logP (date|θ̂Bayes) + 2pBayes

WAIC = 2 logPpost(date) + 2pWAIC

where

θ̂Bayes = Epost[θ]

pBayes = 2(logP (data|θ̂Bayes)− Epost[P (data)])
or pBayes = 2Varpost[logP (data|θ)]

logPpost(data) =
∑
i

Epost[p(yi)]

pWAIC = 2
∑
i

logEpostp(yi)− Epost log p(yi)

or pWAIC =
∑
i

Varpost[log p(yi)]

and Epost[·] = Epost[·|θ], Varpost are computed via
simulations. (The BIC, −2 logP (data|θ̂MLE) + k log n,
a more conservative measure, was designed to assess
model quality, not forecast quality.)
The effective number of parameters in the DIC and the
WAIC recognize that hierarchical models have fewer ef-
fective than actual parameters.

Why `1 is a good approximation to `0:
a geometric explanation

C. Ramirez et al. (2012)
The `1 norm is the “best” convex relaxation of the
`0 pseudo-norm (or, rather, `ε, with ε > 0 small):
look at natural, exchangeable, archimedian partial or-
ders on Rn; they are determined by B≼ = {x : x ≼
(1, 0, · · · , 0)}; notice that the `1 ball [‖x‖1 ⩽ 1] is the
convex hull of the `0 ball [‖x‖0 ⩽ 1].

Local ordinal embedding
Y. Terada and U. von Luxburg (2014)

Local ordinal embedding (LOE) recovers the coordi-
nates of a cloud of points from a set of constraints of
the form dij ⩽ dkℓ, (i, j, k, `) ∈ A , by minimizing (by
majorization) ∑

A

(δ + dij − dkℓ)2+.

Local information is sufficient to recover the data.
Contrary to other embeddings (t-SNE, etc.), LOE also
recovers the density of the data.

Towards making high-dimensional distance
metric learning practical

Q. Qian et al.
Distance metric learning (DML) looks for a metric for
which points in the same class are close and points
in different classes are far away. For high-dimensional
problems, one often uses a low-rank parametrization
M = LL′ or dimension reduction (PCA, random pro-
jection) preliminary step. One could look for a positive
demi-definite matrix M satisfying (most of the) triplet
constraints: for x ∼ y and x 6∼ z,

(x− y)′M(x− y) + 1 ⩽ (x− z)′M(x− z)

Article and book summaries by Vincent Zoonekynd 562/1044

i.e., d(x, y) + 1 ⩽ d(x, z). To find M ∈ Sd that mini-
mizes

λ ‖M‖2F+
1

N

∑
x,y,z
x∼y
x ̸∼z

loss
(
M, (x−z)(x−z)′−(x−y)(x−y)′

)
,

solve the dual; to reduce the dimension, use a ran-
dom projection (on the dual); to ensure positive semi-
definiteness, project onto the positive semidefinite code
only once, at the end.

FaceNet: a unified embedding
for face recognition and clustering

F. Schroff et al.
To recognize faces regardless of orientation and light-
ing, train your neural net to learn an embedding where
‖x1 − x2‖2 + α ⩽ ‖x1 − x3‖2 for all triplets x1 ' x2,
x1 6' x3; progressively increase the difficulty of the
triplets by selecting those with the largest loss in the
current minibatch [not unlike boosting].

A critical review of recurrent neural networks
for sequence learning

Z.C. Lipton (2015)
Current neural networks can be trained with:
– Newton: h = −f ′′(x)−1f ′(x);
– Approximate Newton: approximate the Hessian,
e.g., by assuming it is diagonal, or by updating it
every k steps;

– Truncated Newton (Hessian-free): approximate the
inverse f ′′(x)−1, e.g. by running conjugate gradient
a (very) small number of steps (this does not require
the Hessian, just the map h 7→ f ′′(x) · h);

– Saddle-free: do not rescale the gradient by 1/λi but
1/ |λi|

and variants of stochastic gradient descent:
– Momentum: stept ∝ gradient+ α · stept−1
– Nesterov momentum: idem, but the gradient is
taken “half a step” later, i.e., after the momentum
step;

– Adagrad: stept ∝
1√∑

k⩾0

∣∣∣∣∂losst−k∂w

∣∣∣∣2
– RMSProp: stept ∝

1√∑
αk
∣∣∣∣∂losst−k∂w

∣∣∣∣2
– AdaDelta: stept ∝

√∑
αk
∥∥stept−k∥∥2√∑

αk
∣∣∣∣∂losst−k∂w

∣∣∣∣2
– Adam: RMSprop + momentum.
ReLU (restricted linear units) enforce sparsity in the
hidden layers.

Recurrent structures are usually of the form:

· · ·

· · ·

· · ·

input sequence

output sequence

Bidirectional RNN (BRNN) are of the form:

LSTM (long short term memory) units introduce two
changes in the hidden layer, to allow for long memory
and avoid vanishing or exploding gradients:
– Self-connected (recurrent) cell with weight 1 (“con-
stant error carousel”);

– Multiplicative nodes, to set or delete the “memory”
cell.

Draw: a recurrent neural network
for image generation

K. Gregor et al.
Recurrent autoencoders can progressively draw images.

Learning to transduce with unbounded memory
E. Grefenstette et al.

One can devise differentiable analogues of computer
elements (e.g., memory cells: LSTM) and data struc-
tures (stack, deque, etc.). For instance, a differentiable
stack is a stack of weighted elements, with weights in
(0, 1); the weights decrease when we pop an “element”
(but nothing is actually removed); reading the “ele-
ment on top” returns a weighted sum of the stack ele-
ments, with the weights summing to 1, and the higher
elements hiding the lower ones as much as possible.

Highway networks
R.K. Srivastava et al.

Use LSTM-like units (gates) in non-recurrent networks
to make them deeper but still trainable by SGD: re-
place xi+1 = H(xi, wi) with λ = T (xi, wi), xn+1 =
(1− λ)xi + λH(xi, wi).

Extremely randomized trees
P. Geurts et al. (2006)

The splits in the trees in a random forest usually come
from the data – they can actually be random. [The
result can be seen as a smooth and robustified k-NN
classifier.]

Article and book summaries by Vincent Zoonekynd 563/1044

Deep neural decision forests
P. Kontschieder et al.

Decision trees (and therefore random forests) are
amenable to backpropagation: replace the determin-
istic decision at each node with a stochastic one (a
Bernoulli random variable) and define the output of
the tree as the expected leaf value.

Inverse graphics
with probabilistic CAD models

T.D. Kulkarni et al.
Computer vision is the inverse of computer graphics.
It can be approached as a Bayesian inference prob-
lem with, as prior, a (random) 3D scene, with lathed
objects (using Gaussian processes for their shapes)
and human shapes (deformed along their armature),
affinely transformed.

Deep convolultional inverse graphics network
T.D. Kulkarni et al.

Computer vision can be seen as the inverse of com-
puter graphics and tackled with an auto-encoder, de-
rendering an image into a scene description, and then
re-rendering it. The middle layer can be made inter-
pretable by using mini-batches identical except for one
aspect (lighting, pose, shape, etc.) and only updating
the nodes we want to reflect that aspect.

Path-SGD: path-normalized optimization
in deep neural networks

B. Neyshabur et al.
Networks with ReLU units are scale-invariant: multi-
plying the weights of one layer by λ and dividing those
of the next layer by λ leaves the output unchanged.
Use scale-invariant optimization algorithms.

Weight uncertainty in neural networks
C. Blundell et al. (2015)

Bayesian neural networks (neural nets whose
weights are not numbers but probability distributions)
can be seen as a regularization scheme (like early
stopping or dropout); in reinforcement learning, they
also allow Thompson sampling. A diagonal Gaussian
Bayesian neural net (this only doubles the number of
parameters) can be trained by back-propagation.

Evolving neural networks
through augmenting topologies

K.O. Stanley and R. Miikkulainen (2002)
Genetic algorithms to choose the structure of a neural
net.

MADE:
masked autoencoder for distribution estimation

M. germain et al. (2015)

An autoencoder can be made autoregressive, i.e., one
can ensure that there is no path between input i and
output j if i ⩾ j, by using binary mask:
– Connect each hidden node to the first k input nodes,

where k is sampled randomly;
– Connect the `th output node to a hidden node if
` > k.

This can be generalized to deeper networks.

Topological methods
for the analysis of high dimensional data sets

and 3D object recognition
G. Singh et al. (2007)

Start with a covering X =
⋃
α∈A Uα; cluster the points

in each component, Uα =
⊔
β∈Bα Vαβ ; consider the

nerve of the resulting covering X =
⋃
Vαβ ; let the

initial covering vary (e.g., balls of radius ε) to have a
multiresolution approximation of the dataset.

Megaman:
manifold learning with millions of points

J. McQueen et al. (2016)
megaman is an alternative to Scikit-learn’s manifold
submodule, focusing on performance ans scalability
(sparse matrices, pyamg, FLANN, arpack, LOBPCG,
etc.):
– Spectral embedding (Laplacian eigenmaps – fastest);
– Local tangent space adjustment (LTSA)
– Local linear embedding (LLE)
– Isomap
– Diffusion maps
The output also includes an estimate of the distorsion.
All those algorithms approximate the manifold with
a graph (k-nearest neighnours or, better, ε-radius
graphs) and compute its adjacency and/or Laplacian
matrix.

Riemannian preconditioning
for tensor completion

H. Kasai and B. Mishra
A Tucker decomposition of an order 3 tensor X ∈
Rn1×n2×n3 is X = G ×

1
U1 ×2 U2 ×3 U3, where G ∈

Rr1×r2×r3 anb Ui ∈ Rni×ri has orthogonal columns.
The multilinear rank (r1, r2, r3) of X is the rank of its
unfolding matrices (consider X as a cube, cut it into
2-dimensional slices, stack them, and take the rank).
Tucker decompositions form a (Stiefel) manifold M ,
but they are usually only considered up to rotations:
the Tucker manifold is M /O(r1)×O(r2)×O(r3).
It can be endowed with a Riemannian metric induced
by the Hessian of the loss function of the optimization
problem considered, e.g., reconstruction from a small
number of entries, under a rank constraint, minimiz-
ing the Frobenius norm of the entries available. This is
computationally expensive: one can make do with an
approximation of the Hessian, assuming that all the en-
tries are available, and only keeping its diagonal blocks.

Article and book summaries by Vincent Zoonekynd 564/1044

The usual Riemannian optimization framework then
applies.

Fast and guaranteed tensor decomposition
via sketching

Y. Wang et al. (2015)
Tensor operations can be sped up by replacing the ten-
sor with a random projection.

Ensemble of exemplar-SVMs
for object detection and beyond

T. Malisiewicz
Transfer metadata from the closest examplar to the
observation being classified.

Visualizing large scale
and high-dimensional data

J. Tang et al. (2016)
LargeVis is inspired by t-SNE but scales better:
– Compute an approximate k-nearest neighbourhood
graph (t-SNE uses an exact one) with a couple
of random projection trees (pick two points, split
the space along their perpendicular bisector hyper-
plane, iterate) and neighbour exploring (neighbours
of neighbours are neighbour candidates) – k-D trees
do not work well in high dimensions;

– Use the same weights pj|i ∝ exp(−‖xi − xj‖2 /2σ2
i)

as t-SNE and symmetrize,
– For up to 106 points, one can use graph layout algo-
rithms: ForceAtlas2 and Openord are O(n log n);

– Consider a probabilistic model relating the distance
between the points in the low-dimensional projection
dij and the graph weights,

log lik =
∑

i–j edge
wij log f(dij)− γ

∑
i–j not edge

log
(
1− f(dij)

)
f(x) =

1

1 + x2
or 1

1 + ex

– Replace the O(n2) negative edges with a smaller
number of random edges;

– Optimize with asynchronous stochastic gradient de-
scent.

Unconstrained optimization
of real functions in complex variables

L. Sorber et al. (2012)
Traditional optimization algorithms are not directly
applicable to real-valued complex functions Cn → R
because they are not (complex) differentiable. Instead
of separating the real and complex parts, which would
hide some of the structure of the problem, one can use
Wirtinger calculus, i.e., the complex differentials

∂

∂z
=

∂

∂x
− i ∂

∂y
,

∂

∂z̄
=

∂

∂x
+ i

∂

∂y
.

Gradient- or Hessian-based algorithms (L-BFGS, CG,
Gauss-Newton, Levenberg-Marquardt) then apply.

Recursive decomposition
for nonconvex optimization

A.L. Friesen and P. Domingos
Fully decomposable functions, f(x) =

∑
gi(xi), are

easy to minimize, but rare. A function is globally de-
composable if it can be written f(x) = g1(x0, x1) +
g2(x0, x2), where x = (x0, x1, x2) is a partition of the
coordinates. A function f is locally decomposable of
that partition depends on x0. It is approximately lo-
cally decomposable if

‖x′0 − x0‖ ⩽ δ ⇒ ‖f(x′)− g1(x′0, x′1)− g2(x′0, x′2)‖ ⩽ ε.

Examples include protein folding (pairwise interactions
are negligible if the distance is sufficiently high) or
structure from motion (inferring a 3D structure from
a set of 2D images). Those problems can be solved by
recursive partitioning.

Parallel algebraic modeling
for stochastic optimization

J. Huchette et al.
The StochJuMP Julia package solves 2-stage stochas-
tic optimization problems with recourse; contrary to
previous implementations, building the model is sig-
nificantly faster than solving the problem.

Quick introduction to SAT/SMT solvers
and symbolic execution

D. Yurichev (2016)
SAT solvers tackle (boolean) satisfiability problems
expressed in conjunctive normal form, with ors
(
∧
i

∨
j xij , minisat) or xors (

∧
i

⊕
j xij , cryptominisat

– xors are more common than ors in cryptography).
SMT solvers tackle more general (constraint) satisfi-
ability provlems, involving finite sets, integers, reals,
arrays, quantifiers. Examples include Z3 (Microsoft,
non-free, usable from Python or via a standardized lisp-
like language, smt-lib), stp, cvc4 (check the SMT
competition for a more up-to-date list).
Klee is an LLVM-based symbolic virtual machine, de-
signed to reason about actual programs, generate unit
tests, prove code equivalence (e.g., coreutils vs busy-
box) or correctness, run code backwards – it can also
be coaxed into solving more general satisfiability prob-
lems.

Klee: unassisted and automatic generation
of high-coverage tests for complex systems

D. Dunbar et al.
Symbolic (LLVM) virtual machine, to automatically
generate tests or identify bugs.

Article and book summaries by Vincent Zoonekynd 565/1044

Faster cover trees
M. Izbicki and C.R. Shelton (2015)

A simplified cover tree (for nearest neighbour queries)
is a tree, with one data point in each node, satisfying

level(child) = level(parent)− 1

d(parent, child) ⩽ 2level(parent)

d(child, child2) > 2level(child)

Bloofi: multidimensional Bloom filters
A. Crainiceanu and D. Lemire (2015)

The bitwise or between Bloom filters (same length,
same hash function) is still a Bloom filter. By arrang-
ing Bloom filters in a B-tree, one can efficiently find in
which Bloom filters an element is.

ZeroDB white paper
M. Egorov and M. Wilkison (2016)

Encrypted databases expose their B-trees to their
clients.

A review of homomorphic encryption
and software tools

for encrypted statistical machine learning
L.J.M. Aslett et al.

Homomorphic encryption schemes allow some arith-
metic operations on the ciphertext, usually additions
and multiplications:

dec
(
enc(x)⊞ enc(y)

)
= x+ y.

They currently have the following limitations.
– They typically add noise to a deterministic function,
but not too much, to allow for non-ambiguous de-
cryption – but operations on the ciphertext increase
that noise. It is possible to reset the level of noise
during the computations, but this is complex and
slow.

– They are not field morphisms R → k; in particu-
lar, they do not provide a division: if needed, nu-
merator and denominator can be sent back to the
client. Some operations become very expensive: for
instance, matrix inversion can be done with cofac-
tors.

– There are no equality or inequality tests: no condi-
tional code flow is possible.

– The ciphertext can be large, – 10,000 times larger
than the plaintext. It is possible to use a traditional
encryption scheme for the data and homomorphi-
cally encrypt the key – but homomorphic AES de-
cryption is very slow.

– Large integers or real numbers have to be encoded,
e.g., with the Chinese remainder theorem, or as frac-
tions.

In R, check the HomomorphicEncryption package; in
C++, check the HeLib library.

Encrypted statistical machine learning:
new privacy-preserving methods

L.J.M. Aslett (2015)
The limitations of homomorphic encryption, in par-
ticular, the absence of division, exponential and com-
parisons, requires a redesign of most statistical proce-
dures; the EncryptedStats package provides Naives
Bayes and extreme random forests. Limited forms of
comparison and division are actually available:
– By quantizing the values and replacing them with
indicator variables, comparisons such as x = y can
be expressed as a scalar product

∑
xkyk = 1; no

branching is possible, but t ? a : b can be writ-
ten ta+ (1− t)b;

– Approximate division can be performed using (en-
crypted) random number generation, relying on X ∼
Geom(p) =⇒ E[X] = 1/p.

Smoothing spline ANOVA models:
R package gss

C. Gu (JSS, 2014)
Classical Anova µij = µ+ αi + αj + εij can be gener-
alized to functions

f(x1, x2) = (1−A1 +A1)(1−A2 +A2)f

= A1A2f + (1−A1)A2f + (1−A2)A1f +

(1−A1)(1−A2)f

= φ0 + φ1(x1) + φ2(x2) + φ12(x1, x2)

where A1 and A2 are averaging operators, e.g.,
(A1f)(x2) =

∫ b
a
f(x1, x2)dx1/(b − a) and the problem

is usually penalized, e.g.,

Find φ0, φ1, φ2, φ12
To minimize (φ0 −A1A2f)

2 +∫ (
φ1 − (1−A1)A2f

)2
+∫ (

φ2 − (1−A2)A1f
)2

+∫∫ (
φ12 − (1−A1)(1−A2)f

)2
+

λ1
∫
|φ′′1 |

2
+ λ2

∫
|φ′′2 |

2
+ λ12

∫∫
‖φ′′12‖

2
.

If there are no interactions, this is just a generalized ad-
ditive model (GAM). The same framework also applies
to log-density estimation (with less overfitting than
density). In particular, check the ssanova and ssden
functions.

ssanova(y~x) # Smoothing
ssanova(y~x1+x2) # GAM
ssanova(y~x1*x2) # GAM with interactions
ssden(~s) # Plot with dssden()

Hierarchical archimedian copulae:
the HAC package

O. Okhrin and A. Ristig (JSS, 2014)
Archimedian copulas,

Cϕ(u1, . . . , ud) = φ
(
φ−1(u1) + · · ·+ φ−1(ud)

)
Article and book summaries by Vincent Zoonekynd 566/1044

are exchangeable. By introducing pseudo-variables
C(ui, uj), one can consider hierarchical archimedian
copulas, e.g.,

u1 u2 u3

C(u1, u2, u3)

u1 u2 u3 u4

C(C(u1, u2), C(u3, u4))

u1 u2

u3

u4

C(C(C(u1, u2), u3), u4)

The hierarchical structure can be inferred by find-
ing the two closest variables, replacing them with
C(ui, uj), and iterating; consecutive nodes with a
very similar generator φ can be collapsed. Check the
estimate.copula and [rpd]HAC functions.

copulaedas: an R package for estimation
of distribution algorithms based on copulas
Y. Gonzalez-Fernandez and M. Soto (2014)

EDA (estimation of distribution algorithms, CMA-ES)
optimizes a black-box function as follows:
– Start with a random set of candidates
– Improve them by local search;
– Keep the best ones;
– Estimate their distribution;
– Sample more candidates from this distribution
– Iterate.
The distribution is often estimated as a Gaussian, but
one can also use copula-based models: independence
copula, Gaussian copula, hierarchical archimedian cop-
ula, regular vine, etc.

General purpose convolution algorithm
in S4 classes by means of FFT

P. Ruckdeschel and M. Kohl (JSS, 2014)
The distr package provides operations (+, ×, etc.) on
independent random variables, e.g.,
X ∼ N(0, 3) and Y ∼ N(0, 4) =⇒ X + Y ∼ N(0, 5)

by discretizing and convolving the distributions when
no closed form is available.

mediation:
R package for causal mediation analysis

D. Tingley et al. (JSS, 2014)
Given random variables T (treatment, binary),M (sus-
pected mediator) and Y (outcome), one can measure
how much of a role M plays in the causal process from
T to Y

T M Y
δ

ζ

treatment mediator outcome

by modeling M ∼ T and Y ∼ T +M and considering
Total treatment τ = Y

(
1,M(1)

)
+ Y

(
0,M(0)

)
Causal mediation δ(t) = Y

(
t,M(1)

)
+ Y

(
t,M(0)

)
Direct effect ζ(t) = Y

(
1,M(t)

)
+ Y

(
0,M(t)

)
,

which gives decompositions

τ = δ(t) + ζ(1− t), t ∈ {0, 1}.

hmmm: an R package for hierarchical
multinomial marginal models

R. Colombi et al. (JSS, 2014)
Marginal models model the joint distribution of quali-
tative variables as

P (X1, . . . , Xn) = P (X1)P (X2|X1)P (X3|X1, X2) · · ·
· · ·P (Xn|X1, . . . , Xn−1),

with constraints on some of those factors to enforce
conditional independencies (equalities) or stochastic
dominance (inequalities) – not unlike graph-less graph-
ical models.

structSSI:
simultaneous and selective inference

for grouped or hierarchically structured data
K. Sankaran and S. Holmes (JSS, 2014)

Given m p-values p1 ⩽ · · · ⩽ pm, multiple testing
procedures usually look at the family-wise error rate
(FWER), i.e., try to ensure

P [at least one false positive] ⩽ α

– Bonferroni: reject H0(k) if pk ⩽ α/m;
– Šidák: reject H0(k) if pk ⩽ 1− (1− α)1/m;
– Holm–Bonferroni: reject H0(k) as long as pk ⩽

1/(m+ 1− k);
– Holberg: reject H0(k) as long as there exists ` ⩾ k
such that pℓ ⩽ 1/(m+ 1− `)

or the false discovery rate (FDR), i.e., try to ensure

E

[
false positives

positives

]
⩽ α

– Benjamin–Hochberg (BH): reject H0(k) as long as
pk ⩽ kα/m;

– BHY: reject H0(k) as long as pk ⩽ kα/
∑m
i=1(1/i).

But they tend to be optimal for independent tests,
overly conservative for positively dependent tests, and
incorrect for negatively dependent tests – those that re-
main valid account for an arbitrary dependence struc-
ture, but that is too general an assumption.
Some extensions of those tests account for a hierarchi-
cal structure:
– Group BH (GBH) estimates the proportion of H1’s
in each group and reweighs the p-values accordingly;

– Hierarchical FDR (HFDR) accepts or rejects the null
hypothesis at the group level, and only looks at in-
dividual tests in groups whose null hypothesis was
rejected.

Article and book summaries by Vincent Zoonekynd 567/1044

LDAvis: a method for visualizing
and interpreting topics

C. Sievert and K.E. Shirley
To find the words most relevant to a given topic, one
can rank them according to P (term|topic) (but this
gives too much weight to common, non-discriminative
words), or P (term|topic)/P (term) (lift – but this gives
too much weight to rare, non-discriminative words), or,
better, a weighted average of their logarithms (“rele-
vance”).

fitdistrplus:
an R package for fitting distributions

M.L. Delignette-Muller and C. Dutang (2015)
One can fit a distribution to data using: maximum like-
lihood (MLE), moment matching, quantile matching,
maximum goodness of fit (gof); the gof can be assessed
with the Kolmogorov-Smirnov, Cramer-von Mises or
Anderson-Darling distance (AD is a variant of CvM
with more weight on the tail – there are 1-sided vari-
ants, and variants with more weight).

SDD:
an R package for serial dependence diagrams

L. Bagnato et al. (JSS, 2015)
The autocorrelation function (ACF) relies on linear
correlation. Instead, the dependogram uses the inde-
pendence χ2 (or its normalization, Cramer’s V) be-
tween X· and X·−k, discretized into n quantile bins, or
the Kullback-Leibler divergence between (kernel) den-
sity estimators of X·, X·−k and (X·, X·−k).

Fitting heavy tailed distributions:
the poweRlaw package

C.S. Gillespie (JSS, 2015)
To fit a power law distribution p(x) ∝ x−α1x⩾xmin on
the tail of the data, use the maximum likelihood esti-
mator

α̂ = 1 + n

/∑
x⩾xmin

log
x

xmin
;

choose the xmin minimizing the Kolmogorov-Smirnov
(KS) distance; boostrap to estimate the uncertainty
on xmin; to estimate the goodness of fit, look at the
distribution of the KS statistic on data sampled from

.

abctools: an R package for tuning
approximate Bayesian computation analyses

M.A. Nunes and D. Prangle
Approximate Bayesian computation (ABC) is a
Bayesian method that uses simulations instead of like-
lihoods. Rejection ABC proceeds as follows:
– Draw a parameter θ from the prior;
– Simulate data x ∼ p(·|θ); compute statistics s(x);
– If d(sobs, s) ⩽ ε, accept θ;
– Iterate until you have enough samples.

The abctools package complements the abc package
and can help choose the statistics from a set of can-
didates, e.g., by approximate sufficiency (greedily add
the statistics that produce the largest change in the
posterior distribution; stop when it becomes insignifi-
cant) or by finding the subset minimizing some infor-
mation criterion (there are also projection methods)
and help choose ε.

ngspatial: a package for fitting the centered
autologistic and sparse spatial generalized

linear mixed models for areal data
J. Hughes

The autologistic model

log
P [zi = 1]

P [zi = 0]
= x′iβ + η

∑
j∈Neigh(i)

Zj

is confounded; one can center the autocovariate with

log
P [zi = 1]

P [zi = 0]
= x′iβ + η

∑
j∈Neigh(i)

(Zj − µj)

µj = (1 + e−xjβ)−1.

MVN: an R package
for assessing multivariate normality

S. Korkmaz et al.
To check multivariate normality:
– Look at the 1-dimensional margins: histograms, qq-
plots, normality tests;

– Plot the 2-dimensional densities (persp, contour);
– Plot the sample Mahalanobis distance versus χ2

quantiles;
– Try multivariate normality tests: Mardia (based
on skewness and kurtosis), Henze–Zirkler (com-
bines

∑
e−αDij and

∑
e−βDi , where Dij =

dMahalanobis(xi, xj) and Di = dMahalanobis(xi, x̄)),
Royston (Shapiro–Wilk);

– Remove outliers (robust Mahalanobis distance, from
minimum covariance determinant estimators instead
of sample covariances).

paircompviz: and R package for visualization
of multiple pairwise comparison test results

M. Burda
The result of multiple pairwise tests is often repre-
sented by a line diagram, or a letter diagram.

T1 T2 T3 T4 T5

T1 6= T5

Instead, one can consider the relation Ti � Tj if i is
significantly different from j, hope it is a partial order
(this happens surprisingly often) and draw its Hasse
diagram (i.e., remove the edges that can be inferred

Article and book summaries by Vincent Zoonekynd 568/1044

by connectivity) after compressing complete bipartite
subgraphs

A B C

D E F
7→

A B C

D E F.

logcondens: computation related to univariate
log-concave density estimation
L. Dümbgen and K. Rufibach

The log-concave density estimator is parameter-free,
and log-concavity is a plausible assumption for many
datasets: consider using its smoothed version (it is
piecewise log-linear and bas discontinuities at both
ends of the support) instead of a kernel density esti-
mator.
For a multivariate estimator, check LogConcDEAD.

Online graph pruning for pathfinding
on grid maps

D. Harabor and A. Grastien
To account for symmetry and avoid examining nodes
unnecessarily, path finding algorithms on grids try
to recognize rectangular rooms, dead-ends, swamps,
neighbours to prune and “jump points”.

Metabolic paths in world economy
and crude oil price

F. Picciolo et al. (2015)
Measure paths in the world trade web (WTW) with:

– Trade imbalance b =
∑
iMin(w·i, wi·)∑

ij wij

– Reciprocity r =
∑
ij Min(wij , wji)∑

ij wij
– Cycling index

Γ(s) =

∑
si·Γ

(s)
i∑

wi·

Γ
(s)
i =

u
(s)
ii − 1

u
(s)
ii

Us = I +M +M2 + · · ·+Ms

mij ∝ wij (stochastic matrix)

where Γ(s)
i is the fraction of trade that goes back to i

within s steps.
Look at the corresponding time series, the contribution
of each country, the correlation with oil, etc.

Forecasting stock returns
during good and bad times

D. Huang et al. (2012)
Log-prices can be modeled as the sum of a random walk
(permanent shocks) and an AR(1) process (temporary

shocks)ptqt
zt

 =

0
µ
0

+

0 1 1
0 1 0
0 0 λ

pt−1qt−1
zt−1

+ ε

Var ε =

0 0 0
0 σ2

1 ρσ1σ2
0 ρσ1σ2 σ2

2

where the correlation ρ between the random walk
and the AR(1) innovations is a market state indi-
cator: ρ ⩾ 0 corresponds to good times, overconfi-
cence, low risk premium, reversal, Cov(rt+1, rt) < 0.
Empirically, use MRI = (12-month return − µ)/σ,
(where µ and σ are the long-term mean and stan-
dard deviation of the 12-month return) as momen-
tum, and IMA = 1log-price>MA(log-price,200d) or ISR =
1MA(Sharpe,6m)>30% long-term quantile as market state in-
dicator.

Risk premia:
asymmetric tail risks and excess returns

Y. Lempérière et al.
The ranked P&L skewness is the area under the curve of
the cummulated standardized values, sorted by increas-
ing absolute values (there are other low-moment esti-
mators of skewness, e.g., the normalized mean-minus-
median). The risk premium present in many markets
seems to be due to skewness rather than volatility –
investors do not fear small Gaussian fluctuations, but
rather large tail events.

Forecasting the equity risk premium:
the role of technical indicators

C.J. Neely et al. (2010)
To forecast index returns, use both macroeconomic
variables (dividend yield, robust excess return volatil-
ity, term spread) and technical indicators (MACD, mo-
mentum, MACD of the signed volume).

Financial volatility and economic activity
F. Fornari and A. Mele (2010)

Volatility (robust MAD estimator,
√

π
2 〈|rett|〉) and

term spread can predict industrial production growth.

Macroeconomic determinants
of stock volatility and volatility premiums

V. Corradi et al. (2012)
Conversely, the business cycle can predict volatility.

Short interest and aggregate stock returns
D.E. Rapach (2014)

Aggregate short interest (as a proportion of shares out-
standing, detrended) is informative.

Article and book summaries by Vincent Zoonekynd 569/1044

The vector algebra war: a historical perspective
J.M. Chappell

Different formulations can be used to compactly write
Maxwell’s field equations:
– Gibbs vectors, i.e., vectors in R3 with dot and cross

product (R, ·,×);
– Quaternions H, a 4-dimensional albegra with i2 =
j2 = k2 = ijk = −1;

– Clifford algebra, C `(R3), an 8-dimensional algebra,
with eiej = −ejei, e12 = e22 = e23 = +1, with the
natural embedding ei 7→ ei from R3; the dot and
cross product can be recovered as vw = v · w +
e1e2e3v × w.

With the Clifford (or geometric) algebra, Maxwell’s
equations become ∂(E + jcB) = ρ/ε− µcJ . [No men-
tion of differential forms or screw calculus.]

Recent results on pattern maximum likelihood
J. Acharya et al. (2009)

Given an iid sequence of symbols, e.g., HHTHTTH,
where the list of possible symbols is not known, what
can we say about the multiset of symbol probabil-
ities? Standard maximum likelihood (estimate the
probabilities of each symbol and forget the order) only
works well for large samples. Pattern maximum like-
lihood (PML) replaces the symbols by numbers, start-
ing with the most frequent, and reorders them, e.g.,
ababca→121231→111223. A pattern probability p is
a non-increasing sequence p1 ⩾ p2 ⩾ · · · ⩾ 0 with∑
pi ⩽ 1; the remainder 1 −

∑
pi is the continuous

part of p. The PML of a pattern ψ is

PML(ψ) = Argmax
p

p(ψ).

Algebraic computation
of pattern maximum likelihood

J. Acharya et al. (2011)
The PML can be computed analytically with Gröbner
bases. For instance, PML(1112234) = (15 ,

1
5 ,

1
5 ,

1
5 ,

1
5).

Analytic combinatorics
P. Flajolet and R. Sedgewick (2009)

The traditional approach to combinatorics, to estimate
the number an of a certain type of objects (e.g., graphs
of size n with a certain property) is the following:
– Find a recurrence relation involving an (if you can

solve it, you are done);
– Consider the generating function f(x) =

∑
anx

n or
(if a grows too fast) f(x) =

∑
anx

n/n!;
– Transform the recurrence relation for a into a func-

tional (or differential) equation for f ;
– Solve the equation or, somehow, use it to infer the
asymptotic behaviour of a.

Analytic combinatorics goes directly from the com-
binatorial description of the problem to the functional
equation for the generating function, and uses com-

plex analysis to estimate the asymptotic behaviour of
its coefficients.
1. A combinatorial class (A , |·|) is a set A with
a size function |·| : A → N such that, for all n,
an = #{x ∈ A : |x| = n} is finite. Its ordinary
generating function is A(z) =

∑
anz

n ∈ RJzK. The
coefficients are denoted [zn]A(z) = an.
Simple operations on combinatorial classes translate to
their generating functions as follows.

A tB C(z) = A(z) +B(z)

A ×B C(z) = A(z)B(z)

Seq B C(z) = 1/(1−B(z))

Cyc B C(z) =
∑
k⩾1

φ(k)

k
log

1

1−B(zk)

MSet B C(z) =
∏
n⩾1

(1− zn)−Bn

= exp

(∑
k⩾1

1

k
B(zk)

)
PSet B C(z) =

∏
n⩾1

(1 + zn)Bn

= exp

(∑
k⩾1

(−1)k−1

k
B(zk)

)

The last threee formulas are the Pólya logarithm, ex-
ponential, and modified exponential. The sequences
Seq B = {ε} tB tB ×B t · · · =

∐
n⩾0 Bn are only

defined if b0 = 0; the cycles are Cyc B = (Seq B \
{ε})/S; the multisets are MSet B = (Seq B)/S.
Here are a few examples.
– E: single object of size 0;
– Z: single object of size 1;
– I = Seq⩾1 Z: non-zero integers;
– Seq(Z t Z × Z(: coverings of J0, nK by intervals of
length 1 or 2 (Fibonacci numbers);

– T = E t T × Z × T : triangulations (Catalan num-
bers);

– G = Z×SeqG: rooted plane trees – a tree is a root
and a sequence of trees (shifted Catalan numbers
shifted);

– H = Z ×MSetH: non-plane (rooted) trees;
– C = Seq I: compositions (ways of writing an integer

as a sum of integers);
– P = (Seq I)/S = MSet I: partitions;
– A = mZ: m-letter alphabet;
– W = SeqA: words.
The language recognized by a finite automaton has gen-
erating function L(z) = u′(I − zT)v, where T is the
incidence matrix (it is not binary because there can be
several edges, with different labels, between the same
vertices), and u and v the indicator vectors of the ini-
tial and final states. Rational languages have a rational
generating function; context-free languages have an al-
gebraic generating function.

Article and book summaries by Vincent Zoonekynd 570/1044

2. A labelled combinatorial class is a combinatorial
class (A , |·|) with an action of the symmetric group Sn

on each An = {x ∈ A : |x| = n}. Informally, think
of the elements of A as graphs (perhaps with some
added structure) whose vertex set is J1, nK – the notion
of species of structure makes this rigorous and unifies
the labelled and unlabelled cases. Its exponential gen-
erating function is A(z) =

∑
anx

n/n!. Operations on
labelled combinatorial classes translate to their expo-
nential generating functions.

A tB C(z) = A(z) +B(z)

A ?B C(z) = A(z)B(z)

Seq B C(z) = 1/(1−B(z))

Set B C(z) = expB(z)

Cyc B C(z) = log
1

1−B(z)

Given two labelled objects α ∈ A , β ∈ B, one can
build labelled objects (α′, β′) by relabelling α and β
while keeping their order (there are many such rela-
belings). The set of all such labelled objects form the
labelled product A ?B.
Examples include:
– R = Seq Set⩾1 Z: surjections;
– S = Set Seq⩾1 Z: partitions;
– P = Set CycZ: permutations;
– I = Set Cyc1,2 Z: permutations;
– D = Set Cyc>1 Z: derangements;
– T = Z ? SetT , T (z) = zeT (z): a (non-plane) rooted
tree is a root and a set of rooted trees;

– T = U•: a rooted tree is a pointed unrooted tree;
– F = Set CycT , F (z) = (1 − T (z))−1: the graph
of an endomorphism is a set of cycles, with a tree
attached to each element of those cycles.

3. This can be generalized to combinatorial classes
with parameters (A , |·| , χ), χ : A → Nd, and mul-
tivariate generating functions, A(z,u) =

∑
an,kz

nuk,
where an,k = #{a ∈ A : |x| = n and χ(a) = k}. This
leads, for instance, to the expected number of cycles in
a permutations of size n, µn =

∑n
k=1 1/k ∼ log n.

4. Complex analysis, starting with Cauchy’s formula

[zn]f(z) =
1

2πi

∮
Γ

f(z)dz

zn+1
,

can help study the asymptotic behaviour of those
power series.
If f is analytic at 0, with radius of convergence R, then
fn = [zn]f(z) is of exponential order R−n, fn ./ R−n,
i.e., lim |an|1/n = 1/R.
Saddlepoint bounds are often accurate:

[zn]f(z) ⩽ inf
r∈(0,R)

r−n sup
|z|=r

|f(z)| .

If f is meromorphic on [|z| = R], then

[zn]f(z) =
∑

Pi(n)α
−n
i +O(R−n),

where αi are the poles of f on the circle [|z| = R] and
Pi are polynomials of degree at most the order of the
poles minus 1.
6. If f is meromorphic on D = [|z| ⩽ R], with radius
of convergence R, and dominant singularities (i.e., on
the boundary of the convergence disk) ζ1, . . . , ζk, then
g(z) = f(z) −

∑
ci(1 − z/ζi)−αi is holomorphic on a

neighbourhood of D, and the asymptotic behaviour of
[zn]f(z) is that of

∑
ci(1−z/ζi)−αi . For a more precise

asymptotic estimate, repeat the process with g.
In particular, if there is only one dominant singularity,

f(x) ∼ (1− z/ζ)−α =⇒ fn ∼
1

Γ(α)
ρ−nnα−1.

This can be generalized to singularities of the form

(1− z)−α
(
1

z
log

1

1− z

)β
.

8. If there are no singularities, or if the closest singu-
larity is essential, the saddle point method can give the
asymptotic behaviour of the coefficients.
Given an analytic function f on Ω ⊂ C, the surface
z 7→ |f(z)| is not arbitrary: its points are either ordi-
nary (f 6= 0, f ′ 6= 0), zeroes (f = 0) or saddle points
(f 6= 0, f ′ = 0) – in particular, the zeroes are the only
extrema (this can be used to prove the fundamental
theorem of algebra).

A trivial bound for the integral
∫ B
A
f(z)dz is∣∣∣∣∣

∫ B

A

f(z)dz

∣∣∣∣∣ ⩽ length(Γ)× sup
Γ
|f | .

To have a tighter bound, one can choose a path Γ that
goes through a saddle point. In particular (if G is an-
alytic at zero, not a polynomial, with nonnegative co-
efficients and G(R) = +∞),

[zn]G(z) =
1

2πi

∮
G(z)dz

zn+1
⩽ G(ζ)

ζn

where ζG′(ζ)/G(ζ) = n + 1 (the saddle point, ζ, and
the circle of integration depend on n).
The saddle point method is a refinement of this bound
using the Laplace method: (under a few assumptions)

[zn]G(z) ∼ G(ζ)

ζn
√

2πb(ζ)

b(z) = z2
d2

dz2
logG(z) + z

d

dz
logG(z)

ζ
G′(ζ)

G(ζ)
= n.

9. The multivariate power series F (x, u)=
∑
fn,ku

kxn

can be seen as a deformation of a univariate series
F (x, 1). For n fixed, it gives the probability generating
function of a discrete distribution

f−1n [xn]F (x, u) = f−1n
∑
k

fn,ku
k

Article and book summaries by Vincent Zoonekynd 571/1044

and can help study the limit law, the convergence speed
(Berry-Esseen) and the tail probabilities.
[For discrete laws, if pn(u) = E[uXn] pointwise con-
verges to p(u) = E[uX] for all u A ⊂ C, where A
has an accumulation point in the open unit disk, then
Xn converges to X in distribution. For continuous
laws (µn, σn → ∞ – rescaling is needed), pointwise
convergence of the characteristic function (on R) or of
the Laplace function (on a neighbourhood of 0) implies
convergence in distribution.]
Under some conditions (involving the Laplace trans-
form, but reducing to easy-to-check conditions depend-
ing on the type of singularity), the distribution is
asymptotically Gaussian.

Introduction to the theory
of species of structures

F. Bergeron et al. (2013)
A species of structures is a functor F from the category
of finite sets and bijections set to itself.
To a species F , one can associate formal power series

F (x) =
∑
n⩾0

#F [n]
xn

n!

F̃ (x) =
∑
n⩾0

#(F [n]/')xn

ZF (x1, . . .) =
∑
n⩾0

1

n!

∑
σ∈Sn

fixF [σ]xσ1
1 xσ2

2 · · ·

where [n] = {1, 2, . . . , n}, #(F [n]/') = #(F [n]/Sn) is
the number of isomorphism classes in F [n], σk is the
number of cycles of length k in the cycle decomposition
of σ ∈ Sn, fixF [σ] = #{u ∈ F [n] : σu = u} is the
number of points of F [n] fixed by F [σ].
The exponential generating series F (x) counts (la-
belled) F -structures; the (isomorphism) type gener-
ating series F̃ (x) counts isomorphism classes of F -
structures, i.e., unlabelled F -structures; the cycle in-
dex series ZF contains more information.
Bijections FU ' GU for all U (equipotence) do not
necessarily define an isomorphism: for instance, the
species of linear orders Lin and that of permutations
Perm are equiponent, but not isomorphic (the bijec-
tions do not form a natural transformation); in partic-
ular, Lin(x) = Perm(x), but L̃in(x) 6= P̃erm(x).
The following operations on species correspond to more

or less complex operations on their power series.

Sum (F +G)U = FU tGU

Product (F ·G)U =
∑

U=U1⊔U2

FU1 × FU2

Substitution (F ◦G)U =
∑

π partition of U
F [π]×

∏
p∈π

G[p]

Derivative F ′U = F (U t {∗})
Pointing F •U = F [U]× U
Superposition (F ×G)U = FU ×GU
Composition (F □G)U = F (GU)

Here are a few examples.
A permutation can be decomposed into cycles: the cy-
cles of length greater than 1 form a derangement, the
cycles of length 1 form a set. This corresponds to a
product of species, Perm = Der ·U , where U : E 7→ {∗}
is the species of sets, and gives 1/(1− x) = Der(x)ex.

Perm(E) =
∐

U=E1⊔E2

Der(E1)× U(E2)

Since a map is a surjection onto its image, we can relate
maps and surjections by Set(I, ·) = Epi(I, ·) · U :

Set(I, J) =
∐

J=J1⊔J2

Epi(I, J1)× U(J2).

A map E → E is defined by (iterate the map until you
get cycles, and look at the bassin of attraction of each
element in those cycles):
– A partition π of E;
– A rooted tree on each block of π;
– A permutation on the blocks of π.
This is a composition of species, End = Perm(A).

A partition of E is:
– A partition π of E;
– A set structure on each block of π;
– A set structure on π.
This gives Partitions = U(U − 1), and Partitions(x) =
exp(ex − 1) (Bell numbers).
A weighted species is a functor set → R-set, where
R = k((t1, t2, . . .)) is a field of formal power series and
R-set is the category of R-weighted finite sets. An R-
weighted finite set is a set A with a map w : A → R.
One associates power series associated to a weighted
species as before, by replacing the size |A| with the in-
ventory |A|w =

∑
a∈A w(a). The usual operations (+,

·, ◦, ′, •, ×, □) extend to weighted species. Weighted

Article and book summaries by Vincent Zoonekynd 572/1044

species can be used to compute, e.g., the number of
rooted trees with a given number of nodes and a given
number of leaves.
A k-sort species is a functor mset(k) → set, where
mset(k) is the category of multisets with k sorts of el-
ements (colours), i.e., of k-tuples of sets.

Qu’est-ce qu’une espèce de structures?
Génèse et description

F. Bergeron and G. Labelle (2011)
More elementary introduction to the theory of species
of structures.

Statistical learning with sparsity:
the lasso and its generalizations

T. Hastie, R. Tibshirani, M. Wainwright (2015)
2. The lasso

Find β

To minimize 1

2N
‖y −Xβ‖22

Such that ‖β‖1 ⩽ t

can be put in Lagrangian form

Argmin
β

1

2N
‖y −Xβ‖22 + λ ‖β‖1 .

The 1/2N coefficient makes models of different sizes
comparable (e.g., for cross-validation).
For a single predictor, the fit can be obtained by soft-
thresholding the least squares estimate

Sλ(β) = sign(β)
(
|β| − λ

)
+
= .

Cyclical coordinate descent updates the coefficients
one at a time, keeping the others fixed, by soft-
thresholding.
The degrees of freedom of an estimator for an additive
error model yi = f(xi)+εi, f unknown, εi ∼ N(0, σ2),
is

df(ŷ) = 1

σ2

∑
i

Cov(ŷi, yi).

One could also consider `p penalties or constraints,
with 0 ⩽ p < 1, but the problem would no longer
be convex.

Index

N
A

L2

Index

N
A

L1

Index

N
A

L0.5

Index

N
A

L0

3. Generalized linear models (logistic, survival, Pois-
son, etc.) are estimated by minimizing the log-
likelihood; one can simply add an `1 penalty to them.
Thanks to the `1 penalty, overspecified models are not
a problem: there is no need to encode factors as “con-
trasts”.

The `1 regularized SVM path presents jumps: to avoid
them, replace the hinge loss with its square; it becomes
very similar to logistic regression.

Argmin
β

1

N

∑(
1− y1fi(xi|β)

)2
+
+ λ ‖β‖1 .

4. The elastic net combines `1 and `2 penalties. An
`1 penalty alone does not work well when there are
identical variables (the solution is not unique).
To have groups of variables enter the model or remain
unselected in block, the group lasso adds their un-
squared `2 norm as a penalty. Larger groups are more
likely to be selected: to avoid that, weigh the penalties
with the group size, e.g., √p or (better) ‖Z‖F (Frobe-
nius norm of the design matrix of those factors).
To enforce sparsity inside each group, the sparse group
lasso adds an `1 penalty in addition to the unsquared
`2 one.
Sometimes, those groups of variables may overlap (e.g.,
gene pathways). The overlap group lasso can also en-
force a hierarchical structure, e.g., to allow interactions
only if the main effects are already present.
Generalized additive models (GAM) are usually esti-
mated by backfitting, fj ← Smooth(y −

∑
k ̸=j

f̂k); they
solve the optimization problem

(f̂1, . . . , f̂J) = Argmin
f1,...,fJ

E

[
Y −

∑
j

fj(Xj)

]2
.

Sparse GAM (SPAM) adds an unsquared `2 penalty
and uses sparse backfitting:

Argmin
f1,...,fJ

E

[
Y −

∑
j

fj(Xj)

]2
+ λ

∑
j

‖fj‖2

f̃j ← Smooth
(
y −

∑
k ̸=j

f̂k

)

f̂j ←
(
1− λ∥∥f̃∥∥

2

)
+

f̃j

The fused lasso approximates a time series with a
piecewise constant function

Argmin
θ

1

2

∑
(yi − θi)2 + λ

∑
|θi − θi−1| .

It can be generalized to images, non-equispaced obser-
vations, regression with ordered predictors (|βi − βi−1|
– nearby predictors tend to have the same coefficient),
piecewise affine or piecewise polynomial functions
(trend filtering), nearly isotonic regression ‖(∆θ)−‖1.
Coordinate descent does not work for the fused lasso.
In the 1-dimensional case, one can start with the unpe-
nalized estimate (λ = 0) and progressively fuse neigh-
booring intervals. One can also solve the dual (lifted)
problem or use dynamic programming.

Article and book summaries by Vincent Zoonekynd 573/1044

5. The nuclear norm (the sum of the singular values)
is a generalization of the `1 norm: ‖diag x‖∗ = ‖x‖1 .
It is also a convex relaxation of the rank.
Descent methods are iterative optimization algorithms:
choose a direction (usually not far from the gradient,
i.e., 〈∇f, dir〉 < 0); make a small step in this direction;
iterate. Common direction choices include

dir = −∇f (gradient descent)
dir = −D−1∇f for some diagonal matrix D
dir = −(∇2f)−1∇f (Newton).

The step size is important: estimate it with a 1-
dimensional optimization, or with Armijo’s rule.
In the presence of constraints, the projected gradient
method simply projects the solution back onto the fea-
sible set after each step (gradient descent is similar,
with β ∈ Rn instead of β ∈ C):

βn+1=Argmin
β∈C

f(βn)+
〈
∇f(βn), β−βn

〉
+

1

2s
‖β − βn‖22 .

If the objective is a sum of convex functions f = g+h,
one differentiable, one not, the generalized gradient up-
date linearizes g but leaves h as is.

βn+1 = Argmin
β

g(βn) +
〈
∇g(βn), β − βn

〉
+

1

2s
‖β − βn‖22 + h(β)

= proxsh(βn − s∇gβn)

The proximal map generalizes the projection:

proxh z = Argmin
θ

1
2 ‖z − θ‖

2
2 + h(θ)

proxIC z = projection of z onto C
proxλ∥·∥1 z = Sλ(z) elementwise soft-thresholding
prox∥·∥∗ Z = singular value soft-thresholding.

Convergence is faster if g is strongly convex.
The accelerated gradient descent, e.g., conjugate gra-
dient, or Nesterov momentum

βn+1 = θn − s∇f(θn)

θn+1 = βn+1 +
n

n+ 1
(βn1 − βn)

is faster (but non-monotonic).
Coordinate descent (optimizing one coordinate at a
time) works if the non-differentiable part of f is sepa-
rable or, more generally if, when the directional deriva-
tives along the axes are non-negative, then so are all
the directional derivatives (for a situation where it does
not happen, take f on R2 with polygonal level curves:
coordinate descent cannot escape (acute) corners that
remain inside one of the quadrants).
For linear regression, if the variables are centered and
standardixed, the lasso and the elastic net estimates

can be computed from the OLS estimates by shrinkage
and soft-thresholding.
Coordinate descent is faster than the proximal gradient
or Nesterov momentum.
Least angle regression (LAR) adds the variables one at
a time but, contrary to stepwise regression, it only in-
creases the coefficients until another variable becomes
more promising. If the algorithm also removes a vari-
able from the active set when its coefficient drops to
zero, it computes the lasso regularization path.
For the alternating direction method of multipliers
(ADMM),

Find β, θ
To minimize f(β) + g(θ)
Such that Aβ +Bθ = c

the augmented Lagrangian is (with g small)

Lρ(β, θ, µ) = f(β) + g(θ) + 〈µ,Aβ +Bθ − c〉+
ρ

2
‖Aβ +Bθ − c‖22 .

It can be solved by iterating

βn+1 = Argmin
β

Lρ(β, θn, µn)

θn+1 = Argmin
θ

Lρ(βn+1, θ, µn)

µn+1 = µn + ρ(Aβn+1 +Bθn+1 − c).

For the lasso

Find β, θ

To minimize 1
2 ‖y −Xβ‖

2
2 + λ ‖θ‖1

Such that β − θ = 0,

β is updated by a ridge regression, θ by soft threshold-
ing and µ linearly.
Minorization-maximization (MM) minimizes a
(possibly non-convex) function f by finding a function
Ψ : Rm ×Rn → R such that

∀β, θ f(β) ⩽ Ψ(β, θ)
∀β f(β) = Ψ(β, β)

and iterating βn+1 = Argminβ Ψ(β, βn).

The proximal gradient can be seen as a MM (a Lip-
schitz gradient gives Ψ); in a different context, so
can the expectation maximization (EM) algorithm (Ψ
comes from Jensen’s inequality).
A function f(·, ·) is biconvex if f(·, β) and f(α, ·) are
convex (for instance, f(α, β) = (1 − αβ)2); a set
C ⊂ A × B ⊂ Rn is biconvex if the sections Cα,·,
C·,β are convex. Alternate convex search (ACS) suc-
cessively optimizes each block; the function values will
converge, but the solution need not; if it does, it is only
to a partial optimum. For instance, the maximal sin-
gular vectors and values of a matrix can be computed

Article and book summaries by Vincent Zoonekynd 574/1044

as (this is a generalization of the power method)

f(α, β, s) = ‖X − sαβ′‖2F

αn+1 =
Xβn
‖Xβn‖2

βn+1 =
X ′αn
‖X ′αn‖2

.

When there are millions of variables, one can use
screening rules (dual polytope projection (DPP), se-
quential DPP, global string rule, sequential strong
rule) to reduce their number; the less conservative rules
make mistakes, but they can be corrected by checking
the KKT conditions and adding the variables that vi-
olate them.
6. It is possible to design statistical tests for the lasso:
– Bayesian (MCMC) simulations, after choosing a
prior (for instance, the number of variables in the
model is often assumed uniform over J0, kK, with
k � p) [this is unrelated to the fact that the lasso is
the posterior model (MAP estimator) for a Laplace
prior];

– Bootstrap (even slower, but it scales better);
– Covariance test: the change in Cov(ŷ, y) as a vari-

able enters the model is asymptotically Exp(1); con-
trary to stepwise regression, adaptivity and shrink-
age (asymptotically) compensate each other;

– Exact (finite sample) tests for adaptive models whose
selection event can be written Ay ⩽ b (this includes
lasso and stepwise regression)

One can also debias the lasso estimate to compute con-
fidence intervals.
7. The singular value decomposition (SVD) provides
the best rank-r approximation of a matrix Z:

UDrV
′ = Argmax

M : rankM=r
‖Z −M‖F

but missing values complicate the situation.
The iterated SVD (fill in the missing values, compute
the rank r approximation from the SVD, iterate) tends
to overfit.
The soft-thresholding iterated SVD (fill in the missing
values, compute USλ(D)V ′, iterate; you can also let λ
decrease at each step) solves the problem

Argmin
M

1
2 ‖Z −M‖

2
F + λ ‖M‖∗

where the Frobenius norm is taken over the non-
missing entries of Z.
The biconvex problem

Argmin
A,B

‖Z −AB′‖2F + λ(‖A‖2F + ‖B‖2F)

gives a 2-dimensional family of matrix factorizations,
indexed by (r, λ) (r is the number of columns of A
and B).
A vector-valued regression Y = XΘ + E can be esti-
mated with the group lasso, which sets whole rows of

Θ to zero, or with a nuclear norm penalty, to make it
low rank.

Argmin
Θ

‖Y −XΘ‖2F + λ ‖Θ‖∗

These models (matrix completion, low rank regression)
can be written yi = tr(X ′iΘ) + ε for various choices of
the matrices Xi, and estimated as

Argmin
Θ

1

N

∑(
yi − tr(X ′iΘ)

)2
+ λ ‖Θ‖∗ .

The penalized SVD,

Argmin
U,D,V

‖Z − UDV ′‖2F + λ1 ‖U‖1 + λ2 ‖V ‖1

gives sparse singular vectors (the rank-1 problem
is biconvex and can be solved by alternating soft-
thresholding; for the rank-r problem, start again with
Z − udv′).
Additive matrix decompositions express a matrix Z as
a sum, e.g., of low-rank, sparse and small (noise) ma-
trices:

Argmin
L,S

‖Z − (L+ S)‖2F + λ1 ‖L‖∗ + λ2 ‖S‖1 .

For row-wise sparsity (i.e., to model row-wise corrup-
tion), replace ‖S‖1 with

∑
‖Si·‖2.

Factor analysis models the data as yi = µ + Γui + εi,
εi ∼ N(0, S), which gives Var y = ΓΓ′ + S. If S is
scalar, principal component analysis (PCA) recovers
Γ; if not, one can use the low rank + sparse + noise
decomposition.
8. Most statistical procedures can be formulated as an
optimization problem: adding an `1 penalty (or both
`1 and `2 penalties) sparsifies them. It may be nec-
essary to reformulate the problem to get a convex, or
biconvex, or less nasty problem. Different reformula-
tions give different results.
8a. The first principal component is the direction in
which the variance is maximal

Argmax
v : ∥v∥2=1

VarXv = Argmax
v : ∥v∥2=1

v′X ′Xv;

it can be sparsified as

Find u, v
To maximize u′Xv
Such that ‖u‖2 = ‖v‖2 = 1, ‖v‖1 ⩽ t

(solvable with SVD and thresholding) or

Find M ≽ 0
To maximize tr(X ′XM)
Such that trM = 1, tr(|M |E) ⩽ t2.

The first principal component can also be defined as
the direction minimizing the reconstruction error, and
sparsified as

Argmin
v,θ : ∥θ∥2=1

1

N

∑
‖xi − uu′xi‖

2
2 + λ1 ‖v‖1 + λ2 ‖v‖22 .

Article and book summaries by Vincent Zoonekynd 575/1044

Auto-encoders also minimize the reconstruction error
and are easy to sparsify.
For the next principal component, since orthogonality
may conflict with sparsity, one may consider

Find uk, vk
To miximize u′kXvk
such that ‖vk‖2 ⩽ 1, ‖uk‖2 ⩽ 1

‖vk‖1 ⩽ c
∀j ∈ J1, k − 1K u′kuk = 0.

Classical PCA is consistent when N → ∞, p/N → 0,
but not (at all) if N, p → ∞, p/N → c > 0. Thresh-
olding the diagonal of the sample variance matrix and
computing the PCA in this lower-dimensional space is
actually consistent.
8b. Canonical correlation analysis (CCA) solves the
problem

Find β, θ
To maximize Cov(Xβ, Y θ)
Such that VarXβ = VarY θ = 1

e.g., via SVD or ALS; it can be sparsified by adding
`1 and `2 constraints and solved by alternating soft-
thresholding.
8c. Linear discriminant analysis (LDA) can be pre-
sented in three different ways, which can be sparsified
as usual:
– Model the classes with Gaussian distributions, with
different means but the same variance (the naive
Bayes classifier is the special case when the variance
matrix is diagonal);

– Fisher: find a low-dimensional projection in which
the between-class variance is large wrt the within-
class variance, i.e.,

Argmax
β

β′Σbβ

β′Σwβ
;

– Optimal scoring: LDA with two classes is a linear
regression of the binary response; with more classes,
it is still a linear regression, provided we assign a
number to each class, in an optimal way.

8d. Hierarchical clustering does not work well in the
presence of many uninformative variables: sparse hier-
archical clustering assigns (sparse) weights to the vari-
ables and applies the usual clustering algorithms on the
resulting weighted dissimilarity matrix.
Convex clustering looks for prototypes, close to the
points, and close to one another (with an `1 loss, so
that many are actually equal),

Argmin
u1,...,un

∑
‖x1 − ui‖22+λ

∑
i<j

‖ui − uj‖q , q ∈ {1, 2}.

K-means can be sparsified by maximizing the between-

cluster sum of squares

Find C1 t · · · t CK = J1, NK, w ∈ Rp

To maximize
p∑
j=1

wj

(
1

N

N∑
i,i′=1

dii′j −
∑
k

1

Nk

∑
i,i′∈Ck

dii′j

)
Such that ‖w‖2 ⩾ 1, ‖w‖1 ⩽ s, w ⩾ 0

and solved with an alternating algorithm (soft-
thresholding and weighted k-means).
9. Undirected graphs can encode dependence proper-
ties between random variables (one per vertex) in the
following equivalent ways (Hammersley-Clifford theo-
rem):
– The joint probability distribution function factorizes
over the cliques

P (x1, . . . , xp) ∝
∏

C∈Cliques
ψC(xC);

– The random variable X has the Markov property
over the graph: for all cut set S separating the graph
into connected components A and B, XA⊥⊥XB |XS .

For instance, one can model how politicians vote as
follows

Xi : vote of politician i
sign θi : whether i is likely to vote yes
sign θij : whether i and j tend to agree

P ∝ exp
(∑

θixi +
∑

θijxixj

)
(the graph is complete, but only cliques up to size 2
are used).
A multivariate Gaussian model is a graphical model,
with only vertex and edge factors; the adjacency ma-
trix of the graph is the sparsity pattern of the concen-
tration (or precision) matrix Θ = Σ−1.
The Gaussian likelihood can be penalized (graphical
lasso)

Argmax
Θ≽0

log detΘ− tr Σ̂Θ− λρ1(Θ)

where ρ1 is the `1 norm of the off-diagonal elements

and λ = 2

√
log p

N
. The problem is convex and can be

solved efficiently by blockwise coordinate descent (fix
everything except a row (and the corresponding col-
umn); each step is a lasso regression). If the solution
has a block structure, it can be identified before the op-
timization (

∣∣Θ̂ij∣∣ ⩽ λ whenever i and j are in different
blocks) and the blocks can be solved independently.
Alternatively, one can estimate the neighbourhood of
a random variable as a small set of variables that gives
a good prediction, using the lasso (and the and or or
rule: keep an edge (s, t) if both/either s ∈ N (t) and/or
t ∈ N (s)). For discrete variables, use the logistic lasso.

Article and book summaries by Vincent Zoonekynd 576/1044

It is possible to mix continuous and discrete variables

logP =
∑

γsxs − 1
2

∑
θstxsxt continuous

+
∑

ρsj(yj)xs mixed

+
∑

ψjr(yj , yr) discrete

through the pseudo-likelihood (the product of the
neighbourhood likelihoods).
Omitting hidden variables makes a sparse model look
dense. In this case, the concentration matrix can be
written as a sum K = Θ+L, with Θ sparse and L low
rank (from the block inverse formula):

Argmin
Θ,L

Θ−L≻0
L≻0

tr Σ̂(Θ− L)− log det(Θ− L) + λ ‖Θ‖1 + trL.

10. The best sparse approximation, in an orthonor-
mal basis (Fourier, wavelets) is obtained by keeping
the k largest coefficients. One can also combine sev-
eral bases, e.g., Fourier Φ to capture periodic patterns
and smooth changes, and Haar Ψ for sharp changes,
with a lasso constraint

Find α, β
To minimize ‖θ − Φα−Ψβ‖2
Such that ‖α‖1 + ‖β‖1 ⩽ R.

The exact reconstruction problem is even simpler:

Find α, β
To minimize ‖α‖1 + ‖β‖1
Such that θ = Φα−Ψβ,

Compressed sensing reconstructs a sparse signal θ
(e.g., the signal of interest, in a basis in which we
expect it to be sparse) from a small number of ran-
dom projections z′iθ. The random projection matrix
can have Gaussian iid entries, Bernoulli ±1 iid en-
tries, or be a random submatrix of the Fourier matrix(
exp(2πik`/n)

)
1⩽k,ℓ⩽n.

In R, check the following packages: glmnet (GLM),
genlasso (fused lasso), monomvn::blasso (Bayesian
lasso, bootstrap), softImpute (SVD with missing val-
ues), penalizedLDA, sparseLDA, cvxcluster (convex
clustering).

Selected applications of convex optimization
L. Li (2015)

1. Given the primal problem

Find x
To minimize f(x)
Such that ∀i gi(x) ⩽ 0

∀j hj(x) = 0,

define the Lagrangian and the dual function as

L(x, α, β) = f(x) +
∑

αigi(x) +
∑

βjhj(x)

q(α, β) = inf
x
L(x, α, β);

the dual problem is then

Find α, β
To maximize q(α, β)
Such that α ⩾ 0.

2. A support vector machine (SVM) can be fit by

Find w, b

To maximize 1/ ‖w‖22 (width of the band)
Such that ∀i ∈ L+ w′xi + b ⩾ 1

∀i ∈ L− w′xi + b ⩽ −1,

which can be written as a convex problem

Find w, b

To mimimize ‖w‖22
Such that ∀i yi(w′xi + b) ⩾ 1

where yi = +1 if i ∈ L+ and −1 otherwise. To find the
dual problem, write the Lagrangian

L(z, b, α) =
1

2
‖w‖22 −

∑
αi
(
y1(w

′xi + b)− 1
)
;

use the KKT conditions, ∂L/∂w = 0 and ∂L/∂b = 0,
i.e., w =

∑
αiyixi and

∑
αiyi = 0 to compute the

dual function q(α):

Find α

To maximize
∑

αi −
1

2

∑
αiαjyiyjx

′
ixj

Such that α ⩾ 0∑
αiyi = 0.

There are many variants, such as the soft-margin SVM

Find w, b, ξ

To mimimize ‖w‖22 + c
∑
ξ2i

Such that ∀i yi(w′xi + b) ⩾ 1− ξi
∀i ξi ⩾ 0

or the multiclass SVM (with ti = [xi, 1])

Find v1, . . . , vk, ξ
To mimimize 1

2

∑
v′kvk + c

∑
ξ2i

Such that ∀i, k v′yiti − v
′
kti ⩾ δyi,k − ξi.

Sequential minimal optimization (SMO) tries to reduce
memory usage by optimizing two αi’s at a time.
One can also regularize SVMs, by replacing

∑
ξi with∑

ξ2i (LS-SVM), or by a constraint such as
∑
ξ2i = Lσ2

(Morozov) or w′w = π2 (Ivanov).
3. A mixture model

f(x, θ) =
∑

πkf(x, θk)

zi(k) = 1xi comes from the kth component

can be estimated by expectation maximization (EM):

Article and book summaries by Vincent Zoonekynd 577/1044

– E-step: estimate the distribution (not the values –
that is a common mistake) of zi(k) from (π, θ):

γi(k) = P [xi comes form the kth component]
= E[zi(k)]

=
πkf(xi, θk)∑
j πjf(xi, θj)

– M-step: estimate (π, θ) from γ via maximum likeli-
hood.

The general EM algorithm estimates a parameter of
interest θ and integrates out nuisance parameters (la-
tent variables or missing values) z, by estimating their
posterior distribution qi(zi). The log-likelihood can be
written

logL(θ) =
∑
i

log p(xi, θ)

=
∑
i

log
∑
zi

p(xi, zi, θ)

=
∑
i

log
∑
zi

qi(zi)
p(xi, zi, θ)

qi(zi)

⩾
∑
i

∑
zi

qi(zi) log
p(xi, zi, θ)

qi(zi)
(Jensen)

= J(q, θ)

and maximized by coordinate descent:
– E-step: qm = Argmaxq J(q, θm) (we do not estimate
the nuisance parameters zi but their distributions qi;
after this step, the inequality is actually an equality)

– M-step: θm+1 = Argmaxθ J(qm, θ).
The book then gives probabilistic principal component
analysis (PCA with missing values) as an example, but
they make the common mistake of filling in the missing
values.
4. Adding a penalty to the objective, e.g., λ ‖x‖1, is
equivalent to adding a constraint ‖x‖1 ⩽ C, where
C = ‖x∗‖1 and x∗ is the solution of the penalized prob-
lem.
6. The SDP (semidefinite programming) relaxation of
a non-convex quadratically constrained quadratic pro-
gram (QCQP, e.g., x ∈ {±1} can be written x2 = 1) is
obtained by introducing a matrixX = xx′ and relaxing
that equality to X ≽ xx′, i.e.,(

1 x′

x X

)
≽ 0.

The reformulation-linearization technique (RLT) also
relaxes X = xx′, but start with the inequalities `i ⩽
xi ⩽ ui, i.e., xi − `i ⩾ 0 and ui − xi ⩾ 0, multiples
them, and replaces xixj with xij .
7. The minimum volume ellipsoid covering n points
x1, . . . , xn ∈ Rd is defined by

Find A,µ
To mimimize detQ
Such that ∀i (xi − µ)′Q−1(xi − µ) ⩽ 1

Q � 0

and can be recast as a convex problem

Find M,m
To mimimize − log detM
Such that ∀i (Mxi −m)′(Mxi −m) ⩽ 1

M � 0

where M = Q−1/2 and m = Q−1/2µ.

Parsing algorithms
Recursive descent is the most straightforward top-
down parsing algorithm: start with the root of the tree,
try the first possible derivation, and continue, back-
tracking after each failure (it does not work with left
recursive (LR) grammars, i.e., those with a rule of the
form S →+ Sα, where →+ means a series of deriva-
tions). Parser combinators (Parsec, Spirit) are a way
to implement recursive descent parsing in functional
languages, from simple building blocks (parsers, i.e.,
functions that convert strings to parse trees) and glue
– higher order functions).
Parsing expression grammars (PEG) are an al-
ternative to context-free grammars (CFG): the choice
operator | is ordered; the * operator is greedy and
does not backtrack after failure; there are & (and) and
! (not) operators (they do not consume any input
and allow unlimited look-ahead). Packrat is a linear-
time recursive descent algorithm with memoization for
PEG.
The Earley algorithm is similar to recursive descent,
but explores the set of possible parse trees breadth-
first, not depth-first.
The CYK algorithm is a bottom-up dynamic program-
ming based parsing algorithm, building a boolean ta-
ble in O(n3): Tijk indicates if si..j can be derived from
rule Rk (it assumes the grammar is in Chomsky normal
form (CNF) i.e., the derivation rules are of the form
A→ α or A→ BC).
A grammar is LL(k) if, whenever we hesitate between
two derivation rules, we can decide by looking k to-
kens ahead. An LL parser (e.g., ANTLR) precomputes
those decisions and puts them in a table (the table is
exponential in the worst case, but not in practice).
LR parsers are a bottom-up analogue of the top-down
LL parsers: they use a transition table that maps
parser state and next token(s) to a next state and an
action; the action can be “shift” (consume one token)
or “reduce” (do not, but apply one of the rules). Vari-
ants include LALR(1) (look-ahead LR(0), yacc/bison),
SLR (simple LR), GLR (generalized LR).

QuantifQuantile: an R package
for performing quantile regression

through optimal quantization
I. Charlier et al. (2015)

Nonparametric quantile regression Y ∼ X can be esti-
mated with a variant of the k nearest neighbours:

Article and book summaries by Vincent Zoonekynd 578/1044

– Find a set (or grid) γ of N points to minimize
E[|X −Xγ |p]1/p, where Xγ is the projection of X
onto γ (start with a random grid γ and move each
grid point towards the average of the observations
assigned to it);

– Approximate the conditional quantile of Y |X as

q̂α(y|x) = Argmin
a∈R

E[ρα(Y − a) | Xγ = xγ]

– Bootstrap to choose N ;
– Bootstrap for a smoother estimate.

treeClust: an R package
for tree-based clustering dissimilarities

S.E. Buttrey and L.R. Whitaker
Tree-based distances are insensitive to scaling and pro-
vide automatic variable selection: use the proportion
of trees (predict each variable with the others) in which
the two observations are in the same leaf; refine using
tree quality and node distance.

An R package for the panel approach method
for program evaluation: pampe

A. Vega-Bayo
To estimate the effect of a policy (“program evalu-
ation”) from observed panel data, with treated and
control groups, consider the effect of treatment/non-
treatment on the control/treated group as missing val-
ues, and model the panel data with a dynamic factor
model.

A significance test for the lasso
R. Lockhart et al. (2014)

To test if the inclusion of a variable along the regular-
ization path is significant, use

Tk =
〈y,Xβ̂(λk+1)−XAk−1

β̃Ak−1
(λk+1)〉

σ2

d−−→ Exp(1)

where β̂(λ) is the lasso estimator, Ak−1 is the set of
variables in the model just before λk, β̃A(λ) is the lasso
estimator on the variables in A.

Automatically improving accuracy
for floating point expressions

P. Panchekha (2015)
Herbie is a Racket library that rewrites floating point
expressions to improve their precision (e.g., ex − e−x
for x small, or log(1 + ex) for x large):
– Sample the possible inputs, uniformly among float-
ing point numbers (not uniformly over some inverval
of R);

– Estimate the precision of each intermediate result,
by comparing it with an arbitrary precision compu-
tation (progressively increase the precision until it is
sufficient);

– Apply (more than a hundred) rewrite rules (e.g., as-
sociativity, but also

√
x+ 1 −

√
x 7→ 1/(

√
1 + x +√

x)); simplify;

– Also try series expansions;
– Choose which rewritten formula to use depending on
the values of the inputs.

TOL manual
(2013)

TOL (time-oriented language) is a programming lan-
guage with predefined types to describe time series:
– Date and Time (confusingly, it is the same type);
– Infinite sets of dates (e.g., the first day of each
month), with operations on them (union, intersec-
tion, set difference, membership, next-element, re-
striction, offset);

– Unlimited time series, with a few building blocks (in-
dicator, step function, affine function, random num-
ber generator) and operations (+, −, ×, /, coalesce,
lag, arima, etc.).

The package repository has a few dozen items, but
many are only documented in Spanish.
It is not clear why this DSL was not built on an existing
language (Haskell, OCaml, etc.).

Mathematica: a problem-centered approach
R. Hazrat (2010)

Here are a few examples of the syntax of the language.
– Square brackets are used for function arguments,
curly braces for lists; matrices are lists of lists;

– Function definitions use :=, while = creates frozen as-
signments: compare x:=Random[] and x=Random[];

– Function arguments are indicated by _, and they can
be given an optional name, e.g., f[n_]:=n^2;

– Function application can be written f[x], f@x or
x//f; the pipe operator is often used to format the
output, e.g., Inverse[A] // MatrixForm;

– Anonymous functions end with & (it is not always
clear where they start) and their arguments are
called #1, #2, etc. (or # of there is only one), e.g.,
(#^2+1)&[5] or 5//(#^2)&;

– The map function is /@, e.g., f /@ Range[5]; the
function is often anonymous, e.g., #^2& /@ Range[5];

– The fold function is Apply or @@, e.g., Plus @@
Range[5] (it actually replaces the head of the rhs
with the lhs); its vectorized form, for lists of lists, is
@@@;

– The Table function provides a weak form of list com-
prehension, e.g., Table[3n^5+11, {n,1,20}];

– The substitution operator is ./, e.g., x+y ./ x->2;
.// applies the rules until nothing changes, e.g., x+y
.// {x->y,y->z};

– It is possible to specify the type and proper-
ties of the function arguments or substitution,
e.g., f[x_Integer?EvenQ]:=x/2; __ matches a non-
empty sequence, ___ a sequence;

– If can be written /;, e.g., f[n_]:=Sqrt[n] /; n>0.

Article and book summaries by Vincent Zoonekynd 579/1044

A thread-safe arbitrary precision
computation package

D.H. Bailey (2015)
Implementation details for a multiprecision library –
usefil for ODEs (e.g., the Lorentz attractor loses 16
digits in each period) and experimental mathematics.
Alternatives include: gmp, mpfr (and languages that
use it, e.g., Julia), Pari/GP, mpmath (Python), Sage.
Use Newton iteration for square roots x ← x + 1

2 (1 −
x2a)x, nth roots, inverses x ← x + (1 + xb)x, loga-
rithm x ← x − (ex − a)/ex, arcsine; Taylor for expo-
nential (for x small), sine (for x small – use the double
angle formula to bring it back to its initial value in
(−π/4, π/4]). For multiplication, use the elementary
school algorithm (in base 248) or the FFT (the digits
of ab, before accounting for carries, are the convolution
of those of a and b).
For much higher precision (thousands to millions of
digits), algorithms based on the arithmetic-geometric
mean (AGM), being quadratically convergent (the
number of correct digits doubles at each iteration), be-
come competitive.

Ten problems in experimental mathematics
D.H. Bailey et al. (2006)

Applications of the PSLQ algorithms to situations
where the numeric estimation of the number of interest
is non-trivial.

Using integer relation algorithms
for finding relationships among functions

M. Chamberland (2007)
The PSLQ algorithm can also find integer relations be-
tween functions: evaluate them at some random point;
apply PSLQ; try another point to make sure.

A=B
M. Petkovšek et al. (1997)

A geometric series is a series
∑
tn in which the ratio of

two consecutive terms tn+1/tn is constant. A hyper-
geometric series is a series

∑
tn in which the ratio

of two consecutive terms tn+1/tn is a rational function
of n. If

tn+1

tn
=

(n+ a1) · · · (n+ ap)

(n+ b1) · · · (n+ bq)

x

n+ 1
,

it is usually written

pFq
(a1...ap
b1...bq ;x

)
= pFq(a,b;x) =

∑
n⩾0

tn.

There are lists of hypergeometric identities, but ex-
pecting to be able to evaluate arbitrary hypergeometric
series from those lists is hopeless.
1. Given a double hypergeometric term F (n, k), i.e.,
both F (n + 1, k)/F (n, k) and F (n, k + 1)/F (n, k) are

rational functions, Sister Celine’s algorithm looks
for a recurrence relation

I∑
i=0

J∑
j=0

aij(n)F (n− j, k − i) = 0

as follows: divide the recurrence relation by F (n, k);
simplify; only rational functions remain: put them
on the same denominator; the numerator is a poly-
nomial in k and its coefficients should be zero: solve
the corresponding system; if it does not have any
non-trivial solution, increase I and J and try again.
By summing over k, we get a recurrence relation for
f(n) =

∑
k F (n, k); solve it with the Hyper algorithm.

(The algorithm does not scale well: prefer the equiva-
lent Zeilberger algorithm.)
2. Given a hypergeometric term (tk)k, i.e., rk =
tk+1/tk is a rational function of k, Gosper’s algo-
rithm looks for another hypergeometric term (zk)k
such that ∆z = t, i.e., zn+1 − zn = tn; this gives a
simple formula for the partial sums sn =

∑n−1
k=0 tk =

zn − z0.
Since it computes an antiderivative of a hypergeomet-
ric series, it can be seen as an analogue of the Risch
algorithm (differential Galois theory) for hypergeomet-
ric series.
The details are technical: write

r + n =
an
bn

cn + 1

cn

with a, b, c polynomials and ∀k gcd(an, bn+k) = 1;
find a polynomial xn, if it exists, such that anxn+1 −
bn−1xn = cn; let

zn −
bn−1xn
cn

tn.

3. Zeilberger’s algorithm (aka creative telescoping)
is a (faster) variant of Sister Celine’s algorithm, to find
a telescoping recurrence relation

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k)

or, more generally,
J∑
j=0

aj(n)F (n+ j, k) = G(n, k + 1)−G(n, k).

It is guaranteed to exist if F is a proper hypergeometric
term:

F (n, k) = P (n, k)

U∏
i=1

(ain+ bik + ci)!

V∏
j=1

(uin+ vik + wi)!

xk,

where P is a polynomial, U , V , ai, bi, uj , vj are inte-
gers (ci and wj are arbitrary).
Summing over k gives a recurrence relation for sn =∑
k F (n, k) (the rhs cancels out if G has finite support

in k for all n).

Article and book summaries by Vincent Zoonekynd 580/1044

4. To prove hypergeometric identities, e.g.,∑
k F (n, k) = 1, the Wilf-Zeilerber (WZ) algo-

rithm finds G (with compact support in k for all n)
such that F (n−1, k)−F (n, k) = G(n, k+1)−G(n, k),
e.g., by applying Gosper’s algorithm.
5. The Hyper algorithm finds the closed form solu-
tion, if it exists, of any recurrence with polynomial co-
efficients (holonomic sequence) by looking for a hyper-
geometric solution and reducing the problem to find-
ing polynomial solutions of another recurrence (here,
“closed form” means sum of hypergeometric series).
Note that the zeroes of the coefficients of the recur-
rence can make the dimension of the space of solutions
larger that expected: checking that two solutions of a
recurrence of degree k agree on just k points may not
be sufficient to prove they are equal.
There are implementations of those algorithms in
Maple (EKHAD) and Mathematica (Gosper, Hyper, WZ).

Deep reinforcement learning
with double Q-learning

H. van Hasselt et al. (2016)
Imprecise action values lead to overestimated values.
Double Q learning, which learns two sets of weights, θ
and θ′, randomly updating one of them at each step,
and replaces the Q-learning target

Y Qt = Rt+1 + γMax
a

Q(St+1, a; θt)

= Rt+1 + γQ
(
St+1,Argmax

a
Q(St+1, a, θt

)
, θt)

with Y Qt = Rt+1 + γQ
(
St+1,Argmax

a
Q(St+1, a, θt), θ

′
t

)
,

reduces the problem.

Tensorizing neural networks
A. Novikov et al.

To reduce the memory footprint of large neural nets,
one can use lower numeric precision, hashing, or low
rank tensor approximations such as Tucker, CP or ten-
sor train (TT). A TT decomposition of a tensor A is a
decomposition of each element as a product of matrices
(the first and last factors are row and column matrices)

A (j1, . . . , jd) = G1j1G2j2 · · ·Gdjd .

Correlation neural networks
S. Chandar et al.

Canonical correlation analysis (CCA – for a C++ im-
plementation, check dlib) solves the following prob-
lem: given two (vector) random variables X, Y , find
x and y to maximize Cor(x′X, y′Y); x′X and y′Y can
be seen as a common representation of X and Y . An

auto-encoder can be used for the same purpose,

X Y

X Y

h(X,Y)

minimizing the sum of
– Reconstruction error of (X,Y) given (X,Y);
– Reconstruction error of (X,Y) given (X, 0);
– Reconstruction error of (X,Y) given (0, Y);
– Minus Cor

(
h(X, 0), h(0, Y)

)
.

[One could also use a noisy auto-encoder: during train-
ing, replace either X or Y with noise.]

Semi-supervised learning with ladder networks
A. Rasmus et al.

A ladder network is an auto-encoder with skip connec-
tions, to preserve details.

Scheduled sampling for sequence prediction
with recurrence neural networks

S. Bengio et al.
Neural networks outputting a sequence usually predict
the next token from the current (hidden) state and the
previous token – there may be a discrepancy between
training and inference, the former using the true token
while the latter only has the precious predicted token.
Instead, during training, one can randomly choose to
use the true or predicted token, with the probability of
the true token decreasing as training progresses.

Learning both weights and connections
for efficient neural networks

S. Han et al.
For sparse neural nets: train; prune unimportant con-
nections; iterate.

Minimum HGR correlation principle:
from marginals to joint distribution

F. Farnia et al.
The HGR correlation is

ρ(X,Y) = sup
{
E[f(X)g(Y)] : f, g measurable such
that EfX = EgX = 0 and
E(fX)2 = E(gX)2 = 1

}
.

It is between 0 and 1, and is 0 (resp. 1) iif X and Y
are independent (strictly dependent). The distribution
with the minimum HGR correlation for given first and
second moments is the Gaussian – this is an analogue
of the maximum entropy property of the Gaussian dis-
tribution.

Article and book summaries by Vincent Zoonekynd 581/1044

Scalable Bayesian optimization
using deep neural networks

J. Snoek et al.(2015)
Bayesian neural networks, i.e., distributions over
the weights of a neural net (instead of point estimates)
are computationally expensive. They can be approxi-
mated by adaptive basis regression, i.e., neural nets in
which only the last, linear layer is Bayesian. Bayesian
optimization with Gaussian processes scales cubically
in the number of observations; adaptive basis regres-
sion is a linear alternative (random forests are another).

Gradient-based hyperparameter optimization
through reversible learning

D. Mclaurin et al.
Backpropagation through the entire learning proce-
dure, back to the hyperparameters, allows the use of
gradient-based (instead of gradient-free Bayesian opti-
mization) hyperparameter tuning. Storing all the in-
termediate results needed to compute the gradients is
unreasonable (it would mean remembering all the it-
erations of the inner loop, on the mini-batches). It
is however possible to run the optimization procedure
backwards, provided we remember all the bits that fall
off in floating point computations.

Topological data analysis of contagion maps
for examining spreading processes on networks

D. Taylor et al.
TheWatts threshold model (WTM) map is obtained by
simulating the WTM (a node becomes infected if the
proportion of infected neighbours exceeds some thresh-
old) and using the infection times (for various (single-
ton) infection seeds) as coordinates; dimension reduc-
tion may be needed.

Compressing neural networks
with the hashing trick

W. Chen et al.
To reduce the size of a neural net:
– Train a 1-layer net on the log-output of a deep net;
– Do not learn the full weight matrices but low rank
approximations;

– Use feature hashing to reduce the weight matrices to
a reasonable number or parameters.

Analyzing big data
with dynamic quantum clustering

M. Weinstein et al.
Themean-shift clustering algorithm starts with a cloud
of points, computes a density estimator, moves each
point uphill, and iterates. Dynamic quantum cluster-
ing (DQC) is a quantum-flavoured variant:
– Start with a cloud of points x1, . . . , xn;
– Consider the density estimator φ(x) =

∑
φ(xi),

φ(xi) = exp− 1
2 (x− xi)

′(x− xi)/σ2;

– Consider the potential V defined by Hφ = 0, where
the Hamiltonian operator is

H = − 1

2σ2
∇2 + V (x);

– Move the densities towards this potential φ1 7→
e−iδHφi;

– Compute the new position of the points;
– Iterate.

Input warping for Bayesian optimization
of non-stationary functions

J. Snoek et al.
Gaussian processes (GP) usually model stationary pro-
cesses: the covariance function k(x, y) only depends on
x− y. For non-stationary processes, one can use a hi-
erarchical Bayesian model, including a transformation
of the input space to make the process stationary. For
instance, the cummulative distribution function of the
beta distribution can model simple monotonic transfor-
mations: use a logarithmic prior on α and β to encode
the prior belief in an exponential, logarithmic, linear,
sigmoid or logit transformation.

A sufficient and necessary condition
for global optimization
D.H. Wu et al. (2010)

If f is Lebesgue-integrable, then

essinf f = sup{α : Vm,f (α) = 0},

Vm,f (α) =

∫ (
α− f(x)

)m
+
dµ

V
(m)
m,f (α) = m!µ[f(x) ⩽ α].

Use Monte Carlo simulations to estimate those inte-
grals and turn the formula into a glocal optimization
algorithm.

Chemical equation balancing:
an integer programming approach

S.K. Sen et al. (2006)
Balancing a chemical equation is a linear optimization
problem:

Find x
To minimize x′1
Such that Ax = 0, x ⩾ 1, x ∈ Zn.

The quadratic problem

Find x
To minimize x′x
Such that Ax = 0, x ⩾ 1, x ∈ Zn

may be easier to solve and often has the same solution.

Article and book summaries by Vincent Zoonekynd 582/1044

A new approach
to balancing chemical equations

I.C. Risteski
Balancing a chemical equation means finding positive
vectors, x and y, if they exist, so that Ax = By, where
A and B have nonnegative entries. Try:

y = (I −G+G)u

x = A+By + (I −A+A)v

G = (I −AA+)B

for arbitrary vectors u and v. (You need to compute
a pseudo inverse in Q, exactly, or in Z/nZ, with n
sufficiently large.)

Mastering the game of Go
with deep neural networks and tree search

D. Silver et al. (2016)
Consider a Go board as a 19 × 19 image and feed it
to two deep convolutional neural nets, for forecast the
next move (supervised learning from human games),
and to estimate the value of a position; combine with
Monte Carlo tree search (MCTS).

Ball arithmetic
J. van der Hoeven (2011)

For reliable computing, consider replacing interval
arithmetic with ball arithmetic (sometimes called
midpoint-radius arithmetic):
– While interval arithmetic require full precision for
both ends of the intervals, ball arithmetic only needs
full precision for the centers;

– On C or Rn×m, intervals tend to grow faster than
balls (e.g., z 7→ z2 around z = 1 + i).

Mathemagix if a (C++) software environment for cer-
tified numeric computations.

Arb: a C library for ball arithmetic
F. Johansson

Accurate special functions.

Bitcoin and cryptocurrency technologies
A. Narayanan et al. (Princeton & Coursera, 2015)
Non-technical but clear and comprehensive exposition
of cryptocurrencies and their applications.

Curve and surface reconstruction algorithms
with mathematical analysis

T.K. Dey (2007)
The skeleton of a shape (curve, surface) Σ ⊂ Rk

is the set of centers of balls that do not contain any
point of Σ and cannot be enlarged while keeping this
property. The medial axis MΣ is its closure. It
is also the closure of the set of points that have at
least two closest points in Σ. [Those notions also

appear in mathematical morphology, a branch of im-
age analysis.] The local feature size of x ∈ Σ is
f(x) = d(x,MΣ). A sample P ⊂ Σ is an ε-sample if
∀x ∈ Σ ∃p ∈ P ‖x− p‖ ⩽ εf(x); if ε < 1, the sample
is dense.
Given an ε-sample P of a closed plane curve Σ whose
local feature size is always positive, one can find a piece-
wise approximation of Σ, as a subset of the Delaunay
triangulation, as follows:
– Compute the Voronoi tessellation of P and the

voronoi vertices V ; they approximate the median
axis;

– Compute the Delaunay triangulation of P ∪ V ; keep
the edges connecting two points of P .

Alternatively, link each point p ∈ P to it nearest neigh-
bour q and its half-neighbour s – the closest point s
such that ∠spq ⩾ π/2. Both algorithms are O(n log n)
and work if ε < 1/5, resp. ε < 1/3.
One can reconstruct a compact surface (without
boundary) Σ ⊂ R3 from a sample P of points and
its Voronoi tessellation:
– The normal at a point p ∈ P can be approximated

by the direction in which the Voronoi cell Vp is elon-
gated; more formally, if Vp is unbouded, use the av-
erage direction vp of the unbounded edges; if it is
bounded, take the point p+ ∈ P farthest from p,
then the point p− farther from p among the points
such that ∠p−pp+ > π/2 and set vp = p− − p;

– The surface in the neighbourhgood of a point p ∈ P
can be approximated by the cocone: the complement
of the double cone, centered on p, in the direction vp,
of angle 3π/8, restricted to Vp;

– Take the Voronoi edges that intersect the cocones;
their duals are triangles in the Voronoi tessellation
(but there are still too many);

– Remove triangles adjacent to “sharp” edges (angle <
3π/2);

– “Pockets” (blisters) remain on the approximate sur-
face: remove them by walking on the outside.

Topological anomaly detection performance
with multispectral polarimetric imagery

M.G. Gartley and W. Basener (2009)
Outliers form the small connected components of the
truncated graph.

Return to the Riemann integral
R.G. Bartle (1996)

A tagged partition of an interval [a, b] is the datum of

a = x0 < x1 < · · · < xn = b

Article and book summaries by Vincent Zoonekynd 583/1044

and, for each i, ti ∈ (xi−1, xi). The Riemann sum
of a function f : [a, b] → R on a tagged partition
((xi)i, (ti)i) is

R(f, (xi)i, (ti)i) =
∑
i

f(ti)(xi − xi−1).

A function f is Riemann integrable, of integral S, if

∀ε > 0 ∃δ > 0 ∀(xi)i, (ti)i
(∀i |xi − xi−1| < δ) =⇒ |R(f, (xi)i, (ti)i)− S| < ε.

The generalized Riemann integral replaces δ with
a function δ : [a, b] → R>0, evaluated in ti. The fol-
lowing functions are integrable:
– Riemann integrable functions: R ⊂ R∗;
– 1Q;
– Lebesgue-integrable functions:

L = { f ∈ R∗ : |f | ∈ R∗ };

– The derivative of (continuous) functions differen-
tiable except at a countable number of points.

There is no need to add improper integrals: such func-
tions are already integrable.
The convergence theorems from Lebesgue integration
(uniform, monotone, dominated convergence) are still
valid.

Regulated functions:
Bourbaki’s alternative to the Riemann integral

S.K. Berberian (1979)
Another alternative (not a generalization) of the Rie-
mann integral. Regular functions are functions with
one-sided limits at each point; equivalently, they are
uniform limits of step functions. For every regulated
function f , there is a function F , differentiable except
perhaps at countably many points, with F ′ = f (the
converse is not true). Regulated functions are Riemann
integrable.

A friendly introduction to RGP
O. Flasch (2014)

The rgp package provides genetic programming (sym-
bolic regression) and typed genetic programming
(idem, with higher-order functions); it can be used with
emoa for multiobjective optimization and SPOT for hy-
perparameter tuning. Alternatives include ECJ (Java),
GPTIPS (Matlab) and, on the commercial side, Data-
Modeler, Discipulus and Eureqa.

Gradient boosting machines, a tutorial
A. Natekin and A.Knoll (2013)

Boosting builds an ensemble model by fitting simplistic
models (base learners, weak learners) to the data, with
more weight on the observations currently misclassified
by the ensemble. Gradient boosting gives an inter-
pretation of this algorithm as a gradient descent, not

in parameter space, but in function space, i.e., we do
not look at∑

i

∂Loss
(
yi, h(xi, θ)

)
∂θ

but
∑
i

∂Loss(y, ŷ)
∂ŷ

∣∣∣∣∣y=yi
ŷ=f̂(xi).

More precisely, we iterate:

(ρt, θt) = Argmin
ρ,θ

∑
i

[
−∂Loss(y, ŷ)

∂ŷ

∣∣∣∣∣y=yi
ŷ=f̂t−1(xi).

−ρh(xi, θ)

]2
ft ← ft−1 + ρth(·, θt)

The weak learners can be: linear regression, ridge re-
gression, mixed model, splines, radial basis functions,
GAM, tree stumps, trees with a maximum interaction
depth (5 is good enough), wavelets (Viola-Jones face
detection algorithm), etc.
The loss function can be: L2, L1, Huber, quantile loss,
binomial loss log(1− e−yŷ), Adaboost loss e−yŷ, etc.
Generalizations include:
– If there are many variables, fit the base learners on
a random subset of the variables, several times, and
keep the best fit – this gives a sparser model;

– Subsampling (bagging);
– Shrinkage: ft ← ft−1 + λρth(·, θt);
– Early stopping – this is needed; the optimal number
of iterations depends on the step size λ and can be
estimated by cross-validation.

Laplacian eigenmaps for dimensionality
reduction and data representation

M. Belklin and P. Niyogi (2002)
Given a cloud of points x1, . . . , xN , build a graph, with
those points as vertices, and an edge when the distance
between two points is below some threshold, or when
one is among the k nearest neighbours of the other; use
1 or wij = exp−‖xi − xj‖2 /t as weights (similarities).
Spectral dimension reduction solves the gener-
alized eigenvalue problem Lf = λDf , where D =
diag(W1) and L = D −W ,

Lfi = λiDfi 0 = λ0 ⩽ λ1 ⩽ · · · ⩽ λm,

and uses f1, . . . , fm as coordinates.
In dimension 1 (Fiedler vector), this can be jus-
tified as follows: we want a 1-dimensional embed-
ding (y1, . . . , yN) ∈ RN so that points that should
be close (Wij large) be close, e.g., by minimizing∑
ij(yi− yj)2Wij , with some normalization constraint,

e.g., ‖y‖2 = 1 or y′Dy = 1 (in order to avoid the triv-
ial solution y = 1, we also add y ⊥ 1, i.e., y′D1 = 0
– this will give the smallest eigenvalue, skipping zero).
Noticing that

∑
(yi−yj)2Wij = y′Ly, the optimization

problem becomes

Find y ∈ RN

To minimize y′Ly
Such that y′Dy = 1 and y′D1 = 0

Article and book summaries by Vincent Zoonekynd 584/1044

and can be solved with Lagrange multipliers

f(y) = y′Ly

g(y) = y′Dy

∇f = λ∇g,

i.e., Ly = λDy – a generalized eigenvalue problem.
This interpretation remains valid in a continuous set-
ting, i.e., if we replace the cloud of points with a com-
pact manifold M :

Find f :M −→ R, C 2

To minimize
∫
‖∇f‖2

Such that ‖f‖2 :=
∫
M
f2 = 1

〈f, 1〉 :=
∫
M
f = 0

where ‖∇f‖ estimates how far appart f maps nearby
points. The objective can be written

∫
‖∇f‖2 =∫

〈∇f,∇f〉 =
∫
〈∇∗∇f, f〉 =

∫
L f · f, where L =

∇∗∇ = − div∇ is the Laplace-Beltrami operator (that
is the name of the Laplace operator on a Riemannian
manifold); it is positive semidefinite and (if M is com-
pact) its spectrum is discrete 0 = λ0 ⩽ λ1 ⩽ · · · . The
first eigenvalues give a low-dimensional embedding.
To find two clusters in a weighted graph, one can try
to find a partition V = AqB that minimizes

Cut(A,B) =
∑
u∈A
v∈B

Wuv,

but this tends to cut off weakly-connected outliers. In-
stead, one can minimize the normalized cut

NCut(A,B) = Cut(A,B)

(
1

volA
+

1

volB

)
,

where volA =
∑
u∈A
v∈V

Wuv. By setting

x1 =

{
1/ volA if i ∈ A
1/ volB if i ∈ B,

one can see that

NCut(A,B) =
x′Lx

x′Dx
x′D1 = 0;

the relaxed minimum normalized cut problem, aka
spectral clustering, is a generalized eigenvalue prob-
lem.
The local linear embedding (LLE) algorithm builds an
unweighted graph from a cloud of points; the barycen-
tric coordinates Wij minimize

∑
i

∥∥∥x1 −∑jWijxj

∥∥∥2,
and are normalized by ∀i

∑
jWij = 1; the embed-

ding is given by the k lowest eigenvalues of E =
(I − W)′(I − W). One can see that E ≈ 1

2L
2 (un-

der some conditions); the eigenvectors are the same as
those of L.

Constructing Laplace operator
from point clouds in Rd

M. Belkin et al.
One can approximate the Laplace operator L on a sub-
manifoldM ⊂ Rd of (known) dimension k from a finite
sample of points P ⊂M as follows:
– Approximate the tangent space at p ∈ P , for in-

stance by the k plane Q∗ through p best fitting
Pr = P ∩B(p, r), i.e., minimizing the 1-sided Haus-
dorff distance dH(Pr, Q

∗) = supp∈Pr infq∈Q∗ d(p, q);
an approximation T̂p of Q∗ is sufficient;

– Build the Delaunay triangulation Kδ of the projec-
tion π(Pδ) or Pδ on T̂p;

– For a function f : P → R, set Lf(p) to

∑
σ:k-dim

face of Kδ

volσ

k + 1

∑
q∈V (σ)

[f(p)−f(π−1q)]e−
‖f(p)−f(π−1q)‖2

4t .

Contrary to other implementations (e.g., the adjacency
matrix with Gaussian weights), it does not assume that
the points are drawn uniformly from M and does not
require a global mesh (given a mesh, one can use the
same formula, with the whole mesh instead of Kδ, and
the tangent space is not needed (π = id) – this is the
mesh-Laplace operator).

Convergence, stability and discrete
approximation of Laplace spectra

T.K. Dey et al.
The mesh-Laplace operator gives a good approxima-
tion of the Laplace operator (pointwise convergence)
and a good (accurate, robust) approximation of its
spectrum.
The spectrum of the Laplacian gives some informa-
tion on the manifold, e.g., its volume (Weyl’s law:
λn ∼ 4πn/VolM) or its total curvature.

Differential representation for mesh processing
O. Sorkine (2006)

The graph Laplacian of a mesh in R3 can be inter-
preted as the linear transformation from coordinates

Article and book summaries by Vincent Zoonekynd 585/1044

to δ-coordinates (useful, e.g., for mesh editing)

L : vi 7−→ δi = vi −
1

|N(i)|
∑

j∈N(i)

vi

=
1

|N(i)|
∑

j∈N(i)

vi − vj ,

i.e., L = I−D−1A, symmetrized Lsym = DL = D−A,
Lsymx = Dδx. There are many variants, e.g.,

δi =
1

|Ωi|
∑
j

1

2
(cotαij + cotβij)(vi − vj)

δi =
1

|Ωi|
∑
j

tan(θ1ij/2) + tan(θ2ij/2)

‖vi − vj‖
(vi − vj)

where |Ωi| is the volume of the Voronoi cell of i, αij ,
βij are the angles opposite the edge (ij), θ1ij , θ2ij are
the angles at i along (ij).
Reconstructing the coordinates from the δ-coordinates
(with a few positional “constraints” on some of the ver-
tices) can be approached as a least squares problem.
If the mesh is known (e.g., a character in a video game
– the mesh is just deformed as it moves), we can use
the eigenfunctions of the Laplacian to encode the co-
ordinates (it is not really necessary to compute the
eigenfunctions: the reconstruction can also be reduced
to a least squares problem).

Distilling the knowledge in a neural network
G. Hinton et al.

To transfer the information in a complex model to
a smaller model (model compression, model distilla-
tion), one often trains the smaller model to reproduce
the output of the complex one on a very large (un-
labeled) dataset. In the case of a multiclass classifi-
cation problem, since there is information in the low
probabilities, one can, instead of reproducing the out-
put classes of the complex model, reproduce its prob-
abilities or, rather, their logits. Even better, one can
increase the temperature in the learning phase (to help
learn smaller probabilities), and set it back to 1 after-
wards.

A SQP method for general nonlinear programs
using only equality constrained subproblems

P. Spellucci
The donlp2 algorithm solves a nonlinear program with
equality and inequality constraints by taking a second
order approximation of the objective, linearizing the
constraints, replacing some inequalities with equalities
and discarding the others. The subtleties reside in the
choice of the inequalities to keep as equalities (those
violated or near-active) or to discard, and how to deal
with inconsistent quadratic programs.

Q-learning and SARSA:
a comparison between two intelligent stochastic

control approaches to financial trading
M. Corazza and A. Sangalli

Misguided attempt to apply reinforcement learning
(RL) to trading, using the past returns as state: they
use the past Sharpe ratios as rewards – by construction,
this will give a momentum strategy.

Universal value function approximators
T. Schaul et al. (2015)

The value function approximator V (s; θ) learnt in re-
inforcement learning can be generalized to account
for various goals (e.g., a single desired final state),
V (s, g; θ), and used for planning (do not try to get to
the final goal from the start; try to reach intermediate
milestones first).

Weighted Voronoi stippling
A. Secord (2002)

Stippling (non-photorealistic rendering) with weighted
centroidal Voronoi diagrams, i.e., Voronoi diagrams in
which the generators are the centroids of their cell.

Modern C
J. Gustedt (2015)

Long presentation of C11.

Abstract tensor systems
and diagrammatic representations

J. Lazovskis (2012)
Formalization of Penrose’s diagrammatic tensor calcu-
lus, with a focus on Lie algebras.

Sampling for inference in probabilistic models
with fast Bayesian quadrature

T. Gunter et al.
Bayesian quadrature is a faster variant of MCMC. For
positive integrands (e.g., a likelihood), use a Gaussian
process prior on its square root or its logarithm.

Probabilistic line searches
for stochastic optimization

M. Mahsereci and P. Hennig
Stochastic gradient descent (SGD) has two problems:
– The gradient (even if it were not noisy) is not the
best direction: use momentum, AdaGrad, etc.;

– One must choose the learning rate or resort to an
expensive line search: instead of a line search, try
Bayesian optimization.

Sequential Bayesian prediction
in the presence of changepoints and faults

R. Garnett (2009)
List of covariance structures to detect change points
with Gaussian processes (GP):

Article and book summaries by Vincent Zoonekynd 586/1044

– Drastic changepoint: the observations before and af-
ter are independent – the result is discontinuous;

– Continuous drastic changepoint: the observations
before and after are independent conditionally on the
value at the changepoint;

– Change in input and/or output scales,

K(x, y) = λ2outκ

(
|y − x|
σin

)
;

– Faults: bias, stuck value, drift, etc.

RRegrs: an R package for computer-aided
model selection with multiple regression models

G. Tsiliki et al. (2015)
To estimate, compare and choose between 10 regres-
sion models: linear, lasso, elastic net, SVM, neural
net, random forest, recursive feature elimination (fit
the full model, rank the features, take the top k, re-fit
the model, keep the best of those smaller models), etc.,
via caret.

Bellman’s GAP:
a 2nd generation language and system

for algebraic dynamic programming
G. Sauthoff (2011)

Textbook dynamic programming (DP) is straightfor-
ward, but real-life DP can involve more tables, more re-
currence relations, more indices (for instance, sequence
alignment with affine gap penalty requires several ta-
bles). Algebraic dynamic programming (ADP) simpli-
fies DP by describing the search space (e.g., the set
of all possible alignments) with a grammar – this re-
moves all the indices. “Bellman’s GAP” is a Java-like
programming language for ADP. Alternatives include
Haskell- or Ocaml-based DSLs and/or code generators
and may not scale well.

Categorification of persistent homology
P. Bubenik and J.A. Scott (2014)

Persistent homology can be expressed in categorical
terms. An ε-interleaving between F,G : (R,⩽) → D
is a pair of natural transformations

(R,⩽)
D

(R,⩽)

F

Tε

G

(R,⩽)
D

(R,⩽),

G

Tε

F

where Tε is the translation, such that

F (a) F (b)

G(a+ ε) G(b+ ε)

F (a+ 2ε) F (b+ 2ε)

G(a+ 3ε) G(b+ 3ε).

This defines an interleaving distance

d(F,G) = inf{ε : F,G ε-interleaved}.

For any functor H, d(HF,HG) ⩽ d(F,G). In
Vec(R,⩽), tame diagrams (constant on a neighbour-
hood of each t ∈ R, except a finite number of them)
are of finite type; they can be described as barcodes.
The bottleneck distance on barcodes defines an isomet-
ric embedding {barcodes} ↪→ Vec(R,⩽). Given f, g :
X → R (not necessarily continuous), consider their
lower level sets F,G : (R,⩽)→ Top; let H : Top→ D
be a functor; then, d(HF,HG) ⩽ ‖f − g‖∞, i.e., H is
stable to perturbations; this applies to persistent ho-
mology or relative homology. If D is abelian, the cate-
gory of ε-interleavings of diagrams (R,⩽)→ D is also
abelian.

Econometrics: methods and applications
P.H. Frances et al. (Coursera, 2015)

Linear models assume that the predictive variables are
not stochastic. In the model Y = X1β1+X2β2+ε, the
predictive variable X1 is endogenous if Cor(X1, ε) 6=
0: the ordinary least squares estimate β̂1 is then incon-
sistent. This can happen if a variable correlated with
X1 has been omitted, if there is a feedback mechanism
between the predictive variables (e.g., when predicting
sales from price and demand, it may seem that higher
prices are good for sales, but higher prices may just
come from higher demand), or if there are measure-
ment errors (we do not observe X1 but X1 + η).
To address endogeneity, 2-stage least squares
(2SLS) looks for instrumental variables (IV) Z, i.e.,
variables Z that affect y only through X: Cor(Z,X) 6=
0, Cor(Z, ε) = 0 and uses them to find β: Cov(Z, y) =
Cov(Z,X)β. The computations can also be done using
two linear regressions (X ∼ Z, then y ∼ X̂).
The method is consistent if 1

nZ
′ε → 0 (Z and ε are

uncorrelated), lim 1
nZ
′Z invertible (Z is not multicol-

inear), lim 1
nZ
′X has rank k (the number of variables –

Z and X are sufficiently correlated). In particular, you
need at least as many instruments as predictive vari-
ables (use the intercept and the exogenous variables as
instruments: there will be fewer to find).
The Sargan test checks if H0 : Cor(Z, ε) = 0 by ap-
proximating the residuals using 2SLS: estimate X̂ =
Z(Z ′Z)−1Z ′X (1S), estimate b = (X̂ ′X̂)−1X̂ ′y (2S),
compute the residuals e = y −Xb (this is X, not X̂),
compute the R2 of e ∼ Z: under the null hypothesis, it
is small, and nR2 ∼ χ2(m−k) (where m is the number
of instruments and k the number of variables in X).
The Hausmann test for “H0: X1 is actually exoge-
nous” uses the R2 of res(y ∼ X) ∼ X + res(X1 ∼ Z):
it should be small and nR2 ∼ χ2(k1).
The course also covered variable selection (forward or
backward, using T or F tests, AIC, BIC, L2 (RMSE)
or L1 (MAE) norm of the residuals), pseudo-R2 for lo-
gistic regression (McFadden, Nagelkerke), time series
(ARMA, unit roots, cointegration, Granger causality)
and many regression tests:
– Regression specification (Reset): add the powers of

Article and book summaries by Vincent Zoonekynd 587/1044

the fitted values y1 = x′iβ +
∑p
j=1 γj ŷi

j+1 + εi (in-
stead of the powers of x) and perform an F test for
H0 : ∀j γj = 0 (it is approximate because the ŷi are
not fixed predictors);

– Chow break test: split the data in two, at a poten-
tial break point, and use an F test for H0 : βbefore =
βafter;

– Chow forecast test: linear before the break, perfect

fit after: yi = x′iβ +
n1+n2∑
j=n1+1

γjδji + εi, H0 : ∀jγj = 0;

– Jarque-Bera normality test (for the residuals): some
combination of the sample skewness and kurtosis of a
Gaussian variable is approximately χ(2)-distributed.

Integer relation detection
D.H. Bailey (2000)

Given x1, . . . , xn (high-precision) floating-point num-
bers, the PSLQ algorithm looks for integers k1, . . . , kn,
not all zero, so that

∑
i kixi = 0. Given a number α of

interest, apply it to:
– 1, α, α2, . . . , αn to show that α is a root of a simple

polynomial;
– α, ζ(1), ζ(2), . . . , log 2, log 3, . . . , π, π2, . . . , Lik(`),
πkζ(`), etc. to find interesting relations.

It was also used to find a base-16 expansion of π.
For n numbers and integer coefficients with at most d
digits, you need at least nd significant digits.
The LLL algorithm has similar applications.
It is available in a C++ library, in GAP, perhaps also
from SAGE via mpmath and/or GMP.

The decompositional approach
to matrix computation

G.W. Stewart (2000)
The “big six” matrix decompositions are:
– Cholesky: A = RR′ (or A = LDL′), where A is pos-
itive definite and R upper-triangular; used to solve
A′x = b or compute x′A−1x;

– LU: P ′AQ = LU , where A is square, L lower-
triangular, U upper-triangular, P and Q permuta-
tions; used to solve Ax = b;

– QR: A = QR, where Q is orthogonal and R upper-
triangular with non-negative diagonal elements; used
in least-squares estimation: QQ′ is the projection on
ImA;

– Spectral decomposition: A = V ΛV ′, where A is
symmetricV orthogonal and Λ diagonal;

– Schur: A = UTU∗, where A is square, U unitary, T
upper-triangular; sometimes an intermediate step in
eigenvalue problems;

– SVD: A = UΣV ′, where U and V have orthogonal
columns and Σ is diagonal.

Using multi-complex variables for automatic
computation of high-order derivatives

G. Lantoine et al (2012)

The first derivative of an analytic function f : R→ R

can be approximated as f ′(x) = Im
f(x+ ih)

h
+ o(h).

For higher derivatives, use multicomplex numbers,

Cn =
R[i1, . . . , in]

(i21 + 1, . . . , i2n + 1)

f (n)(x0) ≈ Im1,2,...,n
f(x0 + hi1 + · · ·+ hin)

hn

For higher derivatives, some have also suggested to use
Cauchy’s formula,∮

C

f(x)

z − z0
dz = 2πif(z0),

which generalized to

f (n)(z0) =
n!

2πi

∮
C

f(x)

(z − z0)n
dz.

Learning to discover
efficient mathematical identities

W. Zaremba et al.
The set of equivalent reformulations of a mathematical
expression (e.g., sum((A*B)^6), where A and B are ma-
trices) form a graph, with edges corresponding to valid
transformations. Computer algebra systems (Maple,
Mathematica) use a set of heuristic rules to explore this
graph and return a simpler expression (either a shorter
one, or one with a lower algorithmic complexity). One
can also use random exploration.
Instead, machine learning (e.g., n-grams, or RNN) can
guide the exploration.

A contextual-bandit approach
to personalized news article recommendation

L. Li et al.
There are 3 classes of bandit algorithms:
– ε-greedy (with decaying ε);
– Upper confidence bounds (UCB);
– Bayesian approaches (Gittins index).
LinUCB generalizes UCB to contextual bandits: if the
reward is linear, i.e., E[ra|xa] = x′aθa, θa unknown,
a = arm, a confidence interval can be computed in
closed form.

Frequentism and Bayesianism:
a Python-driven primer

J. VanderPlas (2014)
Frequentist confidence intervals can be problematic:
for instance, for the truncated exponential P (x|θ) =
eθ−x1x>θ and the observed data {10, 12, 15}, the 95%
confidence interval is (10.2, 12.2), even though we know
that θ < 10 – the corresponding bayesian credible in-
terval is (9.0, 10.0).
The paper also details Bayesian linear regression,
with emcee (affine invariant ensemble MCMC),
PyMC (Metropolis-Hastings) and PyStan (Hamiltonian

Article and book summaries by Vincent Zoonekynd 588/1044

MCMC), and explains how to choose an uninformative
prior: we want it to be invariant under the transfor-
mations (x, y) 7→ (y, x) and (x, y) 7→ (λx, λy) – this
second transformation gives the Jeffreys prior for the
variance, P (σ) ∝ 1/σ.

An object-oriented framework
for robust multivariate analysis

V. Todorov and P. Filzmoser (2009)
The rrcov package provides robust estimators of scale
and location:
– Minimum covariance determinant (MCD):

mean and variance of the k observations whose
covariance matrix has the smallest determinant
(heuristically: start with k points, compute µ̂ and
V̂ , d2i = (xi− µ̂)′V̂ −1(xi− µ̂), take the k points with
the smallest distance, iterate);

– Minimum volume ellipsoid (MVE) that contains
at least half the data;

– Stahel-Donoho: weighted mean and covariance,

wi = Min

{
1,
(c
ri

)2}
ri = Max

a
r(xi, a) outlyingness

ri(xi, a) =
|x′ia−m(a′X)|

s(a′X)
outlyingness in direction a

m, s : robust 1-dimensional location and scale;

– Orthogonalized Gnanadesikan-Kettenring (OGK):
given a robust 1-dimensional scale σ, define robust
covariances

sij =
1

4

[
σ

(
Xi

σXi
+

Xj

σXj

)2

− σ
(
Xi

σXi
− Xj

σXj

)2
]

and tweak the resulting covariance matrix to make
it positive semidefinite;

– S-estimator: solution of the optimization problem

Find µ, V
To minimize σ(d1, . . . , dn)
Such that detV = 1

where di = (xi − µ)′V −1(xi − µ), and σ is an M-
estimator of scale, i.e., 1

n

∑
ρ(z/σ) = δ, δ ∈ (0, 1),

ρ : R+ → [0, 1] increasing from 0 to 1.
It also provides robust PCA:
– PCA using a robust variance matrix;
– Projection pursuit, i.e., finding the direction in
which some quantity (a robust 1-dimensional esti-
mator of scale) is maximal;

– Huber’s method: consider all the directions defined
by pairs of points, and project the data on those di-
rections; for each point and each of those directions,
compute the normalized distance to the center, us-
ing 1-dimensional robust estimators of location and
scale; use the k points with the lowest distance.

Robust principal component analysis?
E.J. Candès (2009)

If a matrix is the sum of a (dense) low-rank and a sparse
matrix, M = L + S, the components can be recoverd
by solving the convex optimization problem

Find L, S
To minimize ‖L‖∗ + λ ‖S‖1
Such that L+ S =M,

where ‖·‖∗ is the nuclear norm (sum of the singular
values). Depending on the application, L or S may be
of interest.

Introduction to numerical methods
in differential equations

M.H. Holmes (2007)
1. To solve an initial-value problem (IVP), i.e., an or-
dinary differential equation (ODE) of the form y′ =
f(y, x), y(0) = α, one can discretize the derivative.
There are many ways of doing that (forward Euler,
backward Euler, centered, leapfrog, etc.) and the re-
sulting numeric schemes have different stability prop-
erties.
A numeric scheme is A-stable if the numeric solution
of y′ = −ry, y(0) = α remains bounded (the exact so-
lution decays exponentially). This equation is chosen
because, near a stable (constant) solution, all ODEs
look like that. A scheme is conditionally A-stable if it
is stable when the step size is sufficiently small. It is
stricly A-stable if the solution converges to zero. It is
monotone A-stable if the solution is monotonic. The
forward (Euler) scheme is conditionally (monotone) A-
stable and explicit; the backward scheme is (monotone)
A-stable but implicit; the leapfrog method is unstable.
One can also integrate the equation, yi+1 − yi =∫ ti+1

ti
f(y, t)dt and use numeric integration, e.g., left

box, right box, midpoint, trapezoidal rule (implicit,
A-stable, O(h2), conditionally monotone), Simpson’s
rule, etc. The Adams method approximates f with a
function that can be integrated exactly (for instance,
a quadratic approximation gives Simpson’s rule).
The trapezoidal method is O(h2), but it is implicit.

yi+1 = yi +
1
2h(fi + fi+1)

fi = f(ti, yi)

fi+1 = f(ti+1, yi+1).

It can be turned into an explicit method by replacing
fi+1, which we do not know yet, by its Euler approx-
imation: the second order Runge-Kutta (RK) method
(Heun) is O(h2), explicit, conditionally A-stable.

yi1 = yi +
1
2 (k1 + k2)

k1 = hf(ti, yi)

k2 = hf(ti+1, yi + k1)

The popular RK4 method uses a similar idea, with
Simpson’s rule.

Article and book summaries by Vincent Zoonekynd 589/1044

Newton’s equation, my′′ = F (y), conserves energy,
H(t) = 1

2my
′2 + V (y), where V ′(y) = −F (y), but not

all numeric schemes do. The trapezoidal method does,
but it is implicit. The velocity Verlet method simply re-
places it with its Euler approximation (it is prefered to
RK4 in physics). It does not exactly conserve energy,
but almost: it is symplectic.
2. A boundary value problem (BVP) is an ODE of the
form y′′ = f(x), y(0) = α, y(1) = β.
If the equation is linear, y′′ + p(x)y′ + q(x)y = f(x),
the centered approximations of y′ and y′′ give a tridi-
agonal system (choose a step size h < 2/ ‖p‖∞). If
the condition number is 10n (it is O(N2), where N is
the number of steps), do not expect more than 15− n
significant digits.
The discretization of non-linear BVP gives a non-linear
system of equations, which can be solved by Newton’s
method (the Jacobian is tridiagonal); the solution need
not be unique.
Residual methods look for solutions of the form y(x) =∑
akφk(x), for some basis functions φk (B-splines,

Fourier) so that the residual be zero on a grid (col-
location) or minimal in L2 norm (least squares).
Shooting methods solve the IVP y(0) = α, y′(0) = s,
and adjust s so that y(1) = β, hoping the problem is
not ill-conditionned.
3. The heat equation

D
∂2u

∂x2
=
∂u

∂t
u(0, t) = uleft(t)

u(1, t) = uright(t)

u(x, 0) = g(x)

is a parabolic equation: it is a diffusion (it tends to
smooth the initial condition – g need to be contin-
uous, but u will), it satisfies the maximum principle
(the maximum and minimum of u are on the bound-
ary) and has the instant messaging property (even if
u(·, 0) is zero on some interval, it immediately becomes
non-zero).
The explicit method (forward difference for time, cen-
tered for space), with stencil

xi−1 xi xi+1

tj

tj+1

does not satisfy the instant messaging property and
has stability problems as t increases. (PDEs have ad
hoc notions of stability, e.g., by looking at how an os-
cillatory initial condition evolves; the explicit method
requires k = O(h2), where k is the time step and h
the space step.) The implicit method (backward dif-

ference)

xi−1 xi xi+1

tj

tj+1

has the instant messaging property and is stable. Nu-
merical simulations suggest that the exact solution of-
ten lies between the explicit and implicit ones. The
theta method mixes a proportion θ of explicit and 1−θ
of implicit.

xi−1 xi xi+1

tj

tj+1

For θ = 1
2 (Crank-Nicolson – the most widely used

method for parabolic equations), the error is O(h2) +
O(k2) (instead of O(h2) +O(k)). The trapezoidal rule
(for time) also gives the Crank-Nicolson method. It is
not robust to the presence of jumps.
The method of lines discretizes only the space: this
gives a family of coupled ODEs.
Residual methods, approximating the solution as
u(x, t) =

∑
qk(t)Bk(x), can also be used.

4. The advection equation is

∂u

∂t
+ a

∂u

∂x
= 0, u(x, 0) = g(x), a > 0.

It can be solved eactly with a change of variables:
u(x, y) = g(x − at). Contrary to the heat equation,
jumps in the initial condition g are preserved (strictly
speaking, this is a weak solution). The upwind and
downwind explicit schemes (forward difference in time,
backward or forward in space)

upwind

tj

tj+1

downwind

tj

tj+1

have different domains of dependence.

x

t

exact upwind downwind

The downwind scheme will not work. For the upwind
one, the exact domain of dependence is included in
the numeric one (Courant-Friedrichs-Lewy (CFL) con-
dition – this did not happen with the heat equation) if
ak/h ⩽ 1. More generally, one could look at methods
of the form ui,j+1 = Aui+1,j + Bui,j + Cui−1,j , com-
pute a Taylor expansion of the error and set to zero
as many terms as possible. Implicit methods tend to
have an infinite domain of dependence, which is not
desirable for advection equations.

Article and book summaries by Vincent Zoonekynd 590/1044

5. The wave equation is

c2
∂2u

∂x2
=
∂2u

∂t2

u(0, t) = u(1, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x).

It can be solved by separation of variables (Fourier se-
ries) or by a change of variable. Jumps in the initial
conditions are preseved. The domain of dependence is

To study the stability of hyperbolic equations (or of
their discretizations), look for solutions of the form
u(x, t) = ei(kx−ωt). For the wave equation, this gives
ω = ±ct. For other equations (Klein-Gordon, c2uxx =
utt; modified advection, ut + aux + bu = 0; beam,
uxxxx+ utt = 0; advection-diffusion, Duxx = ut+ aux;
etc.), it may be complex, u(x, t) = eatei(kx−bt). The
equation is stable if Imω ⩽ 0 (for all k), non-dispersive
if Reω ∝ k (the speed of the wave does not depend on
the wavelength), non-dissipative if Imω = 0 (for all k).
The explicit method (centered differences)

tj−1

tj

tj+1

xi−1 xi xi+1

satisfies the CFL condition if λ = ck/h ⩽ 1; it is non
dissipative for λ ⩽ 1 but dispersive for λ < 1 (prob-
lematic for short wave lengths).
6. The Laplace equation ∆u = 0, the prototypal el-
liptic PDE, is the steady state of the wave equation:
it has similar smoothing properties. It can be solved,
with a finite difference approximation (centered differ-

ences: 5-point scheme).

yj−1

yj

yj+1

xi−1 xi xi+1

The resulting matrix has the following sparsity pattern,
where T is tridiagonal and D diagonal.

T D 0

D

D

0 D T

One can solve Ax = b, without inverting A, if A is
symmetric positive definite, by gradient descent, min-
imizing F (x) = 1

2x
′Ax− bx:

xk+1 ← xk + αkdk

dk : descent direction
rk = b−Axk = rk−1 − αk−1qk−1
qk = Adk

αk = Argmin
α

F (xk + αdk) =
dk · rk
dk · qk

.

Steepest descent, dk = −∇F (xk) = rk, may converge
very slowly if the level surfaces of F are eccentric ellip-
soids, i.e., condA � 1 (but condA ≈ 4N2/π2 � 1).
Conjugate gradient addresses this problem by using
dk = rk + βk−1dk−1, where β is such that ∀i 6= j,
ri ⊥ rj , i.e., β = ‖rk+1‖2 / ‖rk‖2; the solution is
reached in (at most) N steps.
To address the conditioning problem, find B invertible
such that condBA ≈ 1 and solve BAx = Bb. To apply
the conjugate gradient method, we need a symmetric
(positive definite) matrix: just rewrite the equation as
(BAB′)B′−1x = Bb. Popular choices for this precondi-
tioner include M = B−1B′−1 = diagA, tridiagA and
(D+L)D−1(D+U) where A = D+L+U , D diagonal,
L and U strictly upper and lower triangular.

Article and book summaries by Vincent Zoonekynd 591/1044

Probabilistic numerics
and uncertainty in computations

P. Hennig et al. (2015)
Many numeric (non-probabilistic) algorithms can be
given a Bayesian flavour: Bayesian optimization is the
best known, but not the only one.
In Bayesian quadrature, to estimate an inte-
gral, e.g.,

∫ 1

0
f , one models the integrand as a

Gaussian process f ∼ GP: since integration is
linear, (

∫ 1

0
f, f(t1), . . . , f(tn)) is Gaussian, and one

can estimate the conditional distribution
∫ 1

0
f |

f(t1), . . . , f(tn). This gives an estimate of the inte-
gral and of its precision – but it depends a lot on (the
smoothness of) the prior. One can also choose the point
where to evaluate the function next to increase the pre-
cision the most. The prior (the covariance function of
the Gaussian process) specifies the smoothness of the
integrand (usually C∞) and perhaps other properties
(e.g., the sign – but the distributions would no longer
be Gaussian). Different priors lead to different quadra-
ture rules.

f ∼ GP(m,C) =⇒
∫
f ∼ N(

∫
m,
∫∫

C)

Bayesian quadrature can be generalized to Bayesian
ODEs or PDEs.
Bayesian decision theory uses Bayesian quadrature
to estimate and maximize expected utility. (Bayesian
optimization uses Bayesian decision theory to choose
the next point to evaluate.)
Bayesian linear algebra tries to solve Ax = b
where A to too large to be inverted, using the value
of some products As1 = y1, . . . , Asn = yn to gain
some knowledge about A−1 and A−1b. The inverse
A−1 is not know but can be modeled as a Gaussian
variable; (A−1b, A−1y1, . . . , A

−1yn) is then Gaussian,
and so is the conditional distribution A−1b | s1 =
A−1y1, . . . , sn = A−1yn.

Sampling for inference in probabilistic models
with fast Bayesian quadrature

T. Gunter et al.
Bayesian quadrature, to estimate expectations E[`] =∫
`(x)π(x)dx, with a Gaussian process (GP) prior on

the integrand `, is problematic when ` is a likelihood:
the prior does not enforce non-negativity, and struggles
to model the high dynamic range of most likelihoods.
A Gaussian prior on the log-likelhood is better, but the
integral is far from Gaussian. A square root transform,
`(x) = αf (x)

2, f ∼ GP, is a good compromise; the in-
tegral is not Gaussian but can be approximated by a
Gaussian, either by linearization or moment matching
(warped sequential active Bayesian integration, WS-
ABI).

Projection pursuit
P.J. Huber (1985)

Given a random variable X ∼ f on Rn, projection
pursuit looks for a projection X 7→ AX on a low-
dimensional subspace (dimension 1, 2 or 3) that max-
imizes (or minimizes) some projection index Q(AX).
This projection index may be:
– Equivariant (mean or some other measure of loca-
tion);

– Location-invariant and scale-equivariant (standard
deviation or some other measure of dispersion – this
gives PCA and robust PCA);

– Affine-invariant, e.g., normality test statistics (unin-
teresting projections tend to be more Gaussian than
those with idiosyncraties): |skewness|, excess kurto-
sis (or other standardized absolute cumulants – but
they tend to be very outlier-sensitive), standardized
Fisher information

Q(X) = σ2(X)

∫ (
f ′

f
− φ′

φ

)2

f,

standardized negative Shannon entropy

Q(X) = −
∫

log

(
φ

f

)
f,

Kolmogorov-Smirnov, Durbin-Watson, etc. (this is
now called independent component analysis, ICA).

The k-dimensional projection can be approximated in
a greedy (stepwise) fashion (if you want a more precise
result, use backfitting: once you have a k-dimensional
projection, remove one vector, find its optimal replace-
ment, and iterate until convergence).
Given two random variablesX, Y inRn, a discriminat-
ing hyperplane can be found by using the T -statistic
as a projection index, or

ave[a′X]− ave[a′Y]

sd[a′(X ∪ Y)]

or
med[a′X]−med[a′Y]

mad[a′(X ∪ Y)]
.

The same idea gives a measure of outlyingness

ri =
∑
a

a′xi −med[a′X]

mad[a′X]

which can be used to define weights and robust
(weighted) estimators of location and scale.
Regression is the estimation of f(x) = E[Y |X = x].
Projection pursuit regression (PPR) estimates it
as a sum of ridge functions

f(x) ≈
∑

gj(a
′
jx)

(note that the ridge functions are constant on hyper-
planes). The ridge functions can be estimated greedily:

– Compute the residuals ri = yi −
m−1∑
1

gj(a
′
jxi);

– Smooth the scatterplot ri ∼ a′xi:

ri = g(a′xi) + noise

(this depends on a);

Article and book summaries by Vincent Zoonekynd 592/1044

– Find the projection a that minimizes∑
i

(
ri − g(a′xi)

)2
;

– Iterate.
Not all functions can be represented exactly as a finite
sum of ridge functions (but they can be approximated
– and, even if it is possible, the decomposition need not
be unique.
Projection pursuit density approximation
(PPDA) uses the same idea to approximate prob-
ability distribution functions, with a multiplicative
decomposition (to ensure non-negativity)

f(x) ≈ f0(x)
k∏
1

hj(a
′
jx),

for some reference distribution f0. One can either look
for

fk(x) = f0(x)

k∏
1

hj(a
′
jx) −→

k→∞
f(x)

or, dually,

f−k(x) = f(x)

k∏
1

hj(a
′
jx) −→

k→∞
f0(x)

(this removes the features of f , one by one, until we are
only left with the reference (featureless) f0). The qual-
ity of the approximation can be measured with the rel-
ative entropy E(f, g) =

∫
log(f/g), the Hellinger dis-

tance H(f, g) =
∫
(
√
f −√g)2, the Prohorov distance

π(µ, ν) = inf
{
ε > 0 : ∀A µ(A) ⩽ ν(Aε) and

ν(A) ⩽ µ(Aε)
}
,

the bounded Lipschitz metric

d(µ, ν) = sup

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ : f ∈ C 0,

sup |f | ⩽ 1, sup
x ̸=y

∣∣∣∣f(x)− f(y)x− y

∣∣∣∣ ⩽ 1

}
,

etc. One can proceed iteratively: find a minimizing
E(fa, ga) (where fa and ga are the marginal distribu-
tions and g = f0); replace f with fga/fa (resp. g with
gfa/ga); iterate.
Projection pursuit density estimation (PPDE)
applies the same idea to density estimation (from sam-
ples):
– Standardize, using robust location and dispersion es-
timates;

– Choose f0 with fat tails; fit it to the cloud of points;
– Proceed as above; if the marginal densities are too
time-consuming to estimate, use sample-based esti-
mates.

(Only use when there is not enough data or too many
dimensions for a kernel estimator.)
Deconvolution tries to recover a signal x from a convo-
lution y = f ∗ x with an unknown filter f . Minimum
entropy deconvolution considers segments of length d,
(yt, . . . , yt+d−1), as points of Rd, and finds the least
Gaussian 1-dimensional projection q′ · yt:t+d−1: q is an
estimate of f−1.
If a time series Xt is a sum of periodic signals with
independent periods, they can be recovered by finding
p maximizing
– Q(p) = avet[Z

2
p,t], where Zp,t = avek[Xt+kp];

– Or |C(p)|2 =
∣∣avet[e2πit/pXt]

∣∣2 .
Reinforcement Learning

D. Silver (2015)
1. Reinforcement learning (RL) is the search for the
optimal policy for a Markov decision process (MDL)
observed only through its history (past states, actions
and rewards). A RL agent can model one or several of:
– The MDP itself;
– The value of each state;
– The policy.
Planning refers to the special case where the MDP is
known.
2. A Markov reward process is a Markov process
(a Markov chain) with rewards. The value of a state is

v(s) = E[Rt+1 + γv(St+1) | St = s],

i.e., v = R+ γPv.
A Markov decision process (MDP) adds actions.
We still have v = R+ γPv, but v, R and P depend on
the policy π. The value of a state, or of a state-action
pair, for the optimal strategy (there exists an optimal
deterministic strategy) satisfies the Bellman equation:

v∗(s) = Max
a

q∗(s, a)

q∗(s, a) = Ras + γ
∑
s′

P ass′v∗(s
′).

3. To find the optimal strategy for a known MDP
(planning), policy iteration starts with an arbitrary
policy, evaluates the values of the states for this policy,
computes the greedy policy for those values, and iter-
ates. Each step improves the policy and, in the limit,
the Bellman equation is satisfied: it converges to the
optimal policy.
Value iteration is a variant in which we do not com-
pute the values exactly, but just iterate v ← R + γPv
once. There is actually no need to keep track of the
policy, it suffices to iterate on the values:

v(s)← Max
a

Ras + γ
∑
s′

P ass′v(s).

There are many variants:

Article and book summaries by Vincent Zoonekynd 593/1044

– Update the states one at a time, in a random order;
– Only update the most promising states;
– Use a sample of the transition matrix;
– Focus on states close to the agent.
4. To estimate the value function of a given policy
on an unknown MDP (prediction), Monte Carlo RL
uses the average return (the sum of the discounted re-
wards) from complete episodes (i.e., you have to let
the MDP run until it reaches a final state to know the
return). Temporal difference learning (TD) uses
incomplete episodes:

MC: v(st)← v(st) + α
(
Gt − v(st)

)
TD: v(st)← v(st) + α

(
Rt+1 + γv(st+1)− v(st)

)
.

MC is unbiased but has high variance; TD is biased but
has lower variance. Instead of looking one step ahead,
we can look n steps ahead and replace Gt with

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnv(st+n).

Forward-view TD(λ) combines them all:

Gλt = (1− λ)
∑
n⩾1

λn−1G
(n)
t (λ-return)

v(st)← v(st) + α
(
Gλt − v(st)

)
.

Backward-view TD(λ) only uses information from
the past, by assigning credit for the reward to the most
recent and frequent states, using eligibility traces.

E0(s) = 0

Et(s) = γλEt−1(s) + 1st=s

δt = Rt+1 + γv(st+1)− v(st) 1-step-ahead error
v(s)← v(s) + αδtEt(s)

Backward- and forward-view TD(λ) are equivalent.
5. Control looks for the optimal value (or policy) of an
unknown MDP. It can be on-policy (learn about the
optimal policy while following it) or off-policy (learn
about the optimal policy while following another one).
Since the model is unknown, the q-value function is
more useful than the value function to compute the
policy.

π(s) = Argmax
a

Ras + P ass′v(s
′) (P is unknown)

π(s) = Argmax
a

q(s, a)

MC-ε-greedy control uses MC to evaluate the q-value
function and ε-greedy exploration (with probability

1− ε, choose the greedy (optimal) policy; with proba-
bility ε, act at random; update the strategy at the end
of each episode).
SARSA control uses SARSA (TD for the q-value func-
tion) and ε-greedy exploration

q(s, a)← q(s, a) + α
(
R+ γq(s′, a′)− q(s, a)

)
.

As before, these can be generalized to forward-view
SARSA(λ)

q
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnv(st+n)

qλt = (1− λ)
∑

λn−1q
(n)
t

q(st, at)← q(st, at) + α
(
qλt − q(st, at)

)
and backward-view SARSA(λ)

E0(s, a) = 0

Et(s, a) = γλEt−1(s, a) + 1st=s,at=a

δt = Rt+1 + γq(st+1, at+1)− q(st, at)
q(s, a)← q(s, a) + αδtEt(s, a)

The step sizes usually decrease, but not too quickly
(Robbins-Monro sequence:

∑
αt =∞,

∑
α2
t <∞).

Off-policy algorithms learn about a policy π while fol-
lowing another policy µ. Importance sampling MC

G
π/µ
t =

π(at|st)
µ(at|st)

π(at+1|st+1)

µ(at+1|st+1)
· · · π(aT |sT)

µ(aT |sT)
Gt

v(st)← v(st) + α
(
G
π/µ
t − v(st)

)
has a high variance.
For importance sampling TD,

v(st)← v(st)+α

(
π(at|st)
µ(at|st)

(
Rt+1 + γv(st+1)

)
− v(st)

)
,

the variance remains reasonable.
Q-learning does not use importance sampling, but
uses π (not µ) in the target

q(at, st)← q(at, st)+α
(
Rt+1 + γq(st+1, a

′)− q(st, at)
)

where a′ comes from π and at+1 from µ. In particu-
lar, when π = greedy and µ = ε-greedy, this becomes
SARSAMAX (or “Q-learning”):

q(s, a)← q(s, a) + α
(
R+ γMax

a′
q(s′, a′)− q(s, a)

)
.

Article and book summaries by Vincent Zoonekynd 594/1044

Algorithm Model Policy Aim on-/off-policy
Policy iteration known unknown π∗Value iteration
MC unknown known v or q onTD(λ)
MC + ε-greedy

unknown unknown q∗
onTD(λ) + ε-greedy

IS MC or TD offQ-learning

6. If the number of states is large, we cannot use a ta-
ble lookup to model the value function v(s) or q(s, a):
one can summarize the state as a set of features and
use them in a linear (or nonlinear) model. This model
attempts to minimize

J(w) = Eπ
(
vπ(s)− v(s, w)

)2
,

e.g., with stochastic gradient descent (SGD),

∆w = α
(
vπ(s)− v(s, w)

)
∇J(w),

where, for a linear model v(s, w) = x(s)′w with fea-
tures x(s), the gradient is ∇J(w) = x(s), i.e.,

∆w = step size× prediction error× feature value.

Since vπ(s) is unknown, we use a target instead: the
return Gt for MC, Rt+1 + γv(st+1, w) for TD(0), the
forward or backward λ-return Gλt for TD(λ).
Deep Q-networks (e.g., those that play Atari games)
keep all the history and replay it (random mini-
batches); they compute the Q-learning targets with
some old, fixed (slowly updated) estimate of the q-
function.
7. Instead of the value function, one can directly learn
a parametrized policy πθ(s, a) = probability of taking
action a in state s. This allows stochastic policies. The
policy gradient theorem links the gradient of the loss
function to the score function of the policy, ∇ log π:

∇J(θ) = Eπθ
[
∇θ log πθ(s, a)qπθ (s, a)

]
.

For instance, for a softmax,

πθ(s, a) ∝ exp
(
φ(s, a)′θ

)
∇ log π = φ(s, a)− Eπθ [φ(s, ·)]

and for a Gaussian policy

a ∼ N(µ(s), σ2), µ(s) = φ(s)′θ

∇θ log π =

(
a− µ(s)

)
φ(s)

σ2
.

The Monte Carlo policy gradient (“reinforce”)
algorithm estimates this expectation using one MC
sample, i.e., qπθ (s, a) ≈ rt.
The actor-critic method learns both the action-value
function and the policy (it may be biased, but reduces

the variance)

qw(s, a) critic
πθ(s, a) actor
∆w = as above
∆θ = α∇θ log πθ(s, a)qw(s, a).

The advantage function critic replaces qv(s, a) with
the advantage function

Aπθ (s, a) = qπθ (s, a)− vπθ (s)

(this does not change the expectation but reduces the
variance). The TD error is an unbiased estimate of
the advantage function

δ = r + γVv(s
′)− Vv(s)

that only requires an estimate of v instead of q. (As be-
fore, you can replace the TD(0) target r + γv(s′) with
the return (MC target), the λ-return (TD(λ) target)
or use eligibility traces (backward-view TD(λ)).)
8. Model-based reinforcement learning learns
the model (an MDP: the state and action spaces are
known, the reward (s, a) 7→ r is a regression problem,
the transitions (s, a) 7→ s′ a density estimation prob-
lem, possibly with a Bayesian prior) and uses it to es-
timate the value function or policy.
Dyna learns the model from experience and the value
function from both real experience and simulated ex-
perience.
Forward search focuses on the sub-MDP starting at
the current state. In particular, Monte Carlo tree
search (MCTS) applies MC control to simulated ex-
perience (at first, we do not know the Q(s, a), so we
act at random until the end; this gives an estimate of
some of the Q(s, a); iterate with more and more paths
– this is how computers play go).
TD search applies SARSA to the sub-MDP starting
at the current state.
Dyna2 uses two sets of weights, long-term (TD learn-
ing, from real experience) and short-term (TD search),
and adds them.

Article and book summaries by Vincent Zoonekynd 595/1044

9. A multi-arm bandit is a 1-state, 1-step MDP.

action value q(a) = E[R | A = a]

optimal value v∗ = Max
a

q(a) (unknown)

regret `t = E[v∗ − q(At)]

total regret Lt = E
[∑
t⩽τ⩽T

v∗ − q(Aτ)
]

gap ∆a = v∗ − q(a) (unknown)

We want to play the arms (actions) with a low gap
more often. For the greedy (no exploration) and ε-
greedy strategies, the loss Lt is linear in t. Optimistic
initialization initializes q(a) to a high value; it is still
linear. Decaying ε-greedy is sublinear, but choosing the
schedule requires knowledge of the gaps.
“Optimism in the face of uncertainty” uses an upper
bound on q(a): q(a) ⩽ q̂t(a) + ût(a) with high proba-
bility. For instance, UCB1 uses Hoeffding’s inequality
(which assumes q bounded):

at = Argmax
a

q̂(a) +

√
2 log t

Nt(a)
.

Bayesian bandits put a prior on q and use some quan-
tile of the posterior, e.g., q̂(a) + cσ(a).
Probability matching tries to estimate

P [∀a′ q(a) > q(a′)]

from the posterior. Thompson sampling crudely es-
timates this probability by sampling from q(a) (once
for each action) and choosing the best action.
Information state search extends the state space to in-
clude all the information so far: the bandit becomes
an MDP (with an infinite state space). For instance, a
Bernoulli bandit gives an infinite tree of Beta distribu-
tions, and the values can be computed exactly (Gittins
index) or with MCTS.
A contextual bandit is a 1-step MDP (with several
states).
For MDPs, UCB is trickier: try optimistic initialization
or the information state approach (with MCTS).
10. Let us consider 2-player zero-sum, perfect informa-
tion (“Markov”) games. Nash equilibria (joint strate-
gies) exist (provided you allow mixed strategies) but
need not be unique. Minimax (depth-first) search

π = 〈π1, π2〉
vπ(s) = Eπ[Gt | St = s]

v∗(s) = Max
π1

Min
π2

vπ(s)

explores the tree of possible actions – usually trun-
cated, with the leaf values estimated with some evalu-
ation function.
Simple TD learns the value function with TD and
uses it with minimax search. TD root uses the mini-
max value (of the root of the tree) as the target. TD

leaf does not update the root but the leaf of the search
tree (run a search from st, take a decision, end up in
st+1, run a search from st+1, update the leaf of the
first search towards the value of the second search).
Treestrap updates all the values in the search (not
just the root or the leaf), i.e., updates a shallow search
from a deep one. MCTS (simulate games until the end,
from the current state, and apply RL to those self-play
games) works well. UCB can be generalized (UCT).

Phase plots of complex functions:
a journey in illustration

E. Wegert and G. Semmler (2011)
To plot a function f of a complex variable, one often
considers the surface z 7→ |f(z)| (or log |f(z)|), some-
times with a colour for the phase f(z)/ |f(z)| ∈ S1.
Phase plots only plot the phase, as a colour in the plane
(one can also change the brightness, using a sawtooth
function of log |f(z)| or f(z)/ |f(z)| or a product of
them). Most of the information is still visible, some-
times more clearly than with the surface:
– Zeroes and poles are clearly visibles the colours
changes on a simple loop give the difference between
the number of zeroes and poles (counted with mul-
tiplicity) inside the loop;

– The zeroes of f ′ (that are not zeroes of f) are
“colour saddle points”, i.e., intersections of isochro-
matic lines;

– Essential singularities are obvious;
– Some results have a striking illustration, e.g., the
zeroes of the partial sums of a converging power se-
ries with finite convergence radius R cluster at every
point on [|z| = R].

Error in loadNamespace(x): there is no
package called 'elliptic'

Article and book summaries by Vincent Zoonekynd 596/1044

Introducing elliptic, an R package
for elliptic and modular functions

R.K.S. Hankin
The elliptic R package provides tools to deal with
(and plot) complex functions, in particular elliptic
functions (doubly periodic meromorphic functions)
such as Weierstrass’s ℘ and related (ζ ′= −℘, σ′/σ = ζ)
functions.

Topology and data
G. Carlsson (2009)

1. Topological data analysis estimates the Betti
numbers βk(X,F) = dimHk(X,F) of a topological
(or metric) space X (often, a subspace of Rn), over
a field F (often F2), from a finite number of points
sampled from X.
An abstract simplicial complex is a pair (V,Σ), where
V is a finite set and Σ ⊂P(V) such that σ ∈ Σ, τ ⊂
σ =⇒ τ ∈ Σ. Its topological realization is

⋃
σ∈Σ

chull({ei : i ∈ σ})

where (ei)i∈V is the canonical basis of RV .
The homology of a simplicial complex X = (V,Σ) is

defined as

Σk = {σ ∈ Σ : #σ = k + 1} k-simplices
Ck = ZΣk k-chains
(V,⩽) total order
di(σ) = σ \ ith element of σ
di : Σk −→ Σk−1

∂k =
∑

(−1)idi : Ck −→ Ck

∂k ◦ ∂k+1 = 0, therefore Im ∂k+1 ⊂ ker ∂k

Hk(X,Z) =
ker ∂k
Im ∂k+1

.

Let U = (Uα)α∈A be an open covering of a topolog-
ical space X. The nerve NU is the abstract simpli-
cial complex (A,Σ) where σ = {α0, . . . , αk} ∈ Σ iff⋂
α∈σ Uα 6= ∅. If all intersections of elements of U are

empty or contractible, it is homotopy equivalent to X.
The Čech complex Č(V, ε) is the nerve of the cov-
ering of X with balls of radius ε with centers in a
finite subset V ⊂ X. If X is compact, Riemannian,
ε sufficiently small and V well chosen, then Č(V, ε) is
homotopy equivalent to X.
The Vietoris-Rips complex VR(V, ε) is (V,Σ), with
σ = {x0, . . . , xk} ∈ Σ iff ∀i, j d(xi, xj) ⩽ ε, i.e., all
(xi, xj) span a Čech 1-simplex. (Its 1-skeleton is the
“truncated graph” from the distance matrix.)
The Delaunay complex is the nerve of the covering
by Voronoi cells

Vλ = {x∈X : x closer to λ than to any other λ′∈V }.

The strong witness complex of X, wrt a finite
set of points (landmarks) L ⊂ X, is a fattening of
the Delaunay complex, W s(X,L , ε) = (L ,Σ) with
{`0, . . . , `k} ∈ Σ iff

∃x ∈ X : ∀i d(x, `i) ⩽ d(x,L) + ε.

The weak witness complex Ww(X,L , ε) is (L ,Σ)
with {`0, . . . , `k} ∈ Σ iff

∀Λ ⊂ {`0, . . . , `k} ∃x ∈ X ∀` ∈ L \ Λ ∀`i ∈ Λ

d(x, `) + ε ⩾ d(x, `i).
There are Vietoris-Rips variants W s

VR and Ww
VR.

All those complexes are functorial in ε: the inequal-
ity ε ⩽ ε′ induces an inclusion Č(V, ε) ↪→ Č(X, ε),
which in turn induces a morphism of homology groups
HkČ(V, ε) −→ HkČ(V, ε

′).
The R-persistence homology is the functor{

(R>0
+ ,⩽) −→ ModZ
ε 7−→ HkČ(V, ε).

R-persistence Z-modules are complicated objects, but
there is a classification theorem for finitely-generated
N-persistence F -vector spaces,

(Vn)n∈N ≡
N⊕
i=0

U(mi, ni),

Article and book summaries by Vincent Zoonekynd 597/1044

where
U(m,n)t =

{
F if m ⩽ y ⩽ n
0 otherwise

and U(m,n)s −→ U(m,n)t is the identity for m ⩽ s ⩽
t ⩽ n. Note that 6= even though all the
dimensions are the same.
The N-persistence F -homology of a finite set X
(choose a subset {εn, n ∈ N} ⊂ R) can be represented
as a barcode.
The actual computations require linear algebra (diago-
nalizing ∂ – Smith normal form) over the principal ideal
domain F [t] (N-persistence vector spaces are equiva-
lent to graded F [t]-modules).
2. Those ideas have been applied to image data:
– Consider 3 × 3 patches (points in R9); only keep

those with high contrast (top 20%);
– Center and normalize (points in S7); sub-sample;
– Estimate the density with the distance to the nearest
neighbours (k = 15) and keep the top T% densest
points (T = 20%);

– Build the witness complex on 50 landmark points
chosen by archetypal analysis.

The barcodes suggest β0 = 1, β1 = 5, which can be
realized as the union of 3 circles,

corresponding to edges (or gradients), horizontal lines
and vertical lines (consistent with the presence of hor-
izontal and vertical artefacts: horizon, buildings, peo-
ple, trees, etc.). Looking at β2 suggests (unconvinc-
ingly) that those cricles may be embedded in a Klein
bottle.

edges

horizontal
lines

vertical
lines

For datasets in which one observation is a cloud of
points (e.g., a few statistics estimated on a moving
window – say, the number of spikes for the 5 neurons
firing the most, in brain activity data), you can use

Betti numbers (or the most frequent Betti signatures)
as features.
3. Given a map ρ : X → Z and a covering U of Z
(with Z = R or Rn or S1), ρ∗U is a covering of X;
consider the Čech complex of its connected components
Čπ0(ρ∗U), e.g., for U = U [R, e] = {[kR − e, (k1)R +
e], k ∈ Z}. For point clouds, replace the connected
components π0 with single linkage clustering: points
less than ε apart are in the same component (these are
the Vietoris-Rips connected components). The map ρ
could be a density estimator, data depth

ρp(x) =
1

|X|
∑
y∈X

d(x, y)p

or eigenvectors of the graph Lapalcian of the 1-skeleton
of the Vietoris-Rips complex, seen as (eigen) functions.
To avoid choosing ε, consider the simplicial complex
SS(X, ρ,U) whose vertices are (α, I), with α ∈ A and
I = (εi, εi+1) a (maximal) interval on which the bar-
code of H0Č(ρ

−1Uα, ε))ε does not change and whose
k-simplices are the {(α0, I0), . . . , (αk, Ik)} such that
Aα0
∩· · ·∩Aαk 6= ∅ and I0∩· · ·∩Ik 6= ∅. Choose a sec-

tion of the projection, s : ČU → SS, s(α) = (α, Iα),
and choose εα ∈ Iα. [The results are similar to Isomap.
I am not convinced this is significantly different from
a minimum spanning tree.]
4. Persistent homology can be generalized to other
index posets. For instance, VR(X[T], ε)ε,T where
X[T] = {x ∈ X : φ(x) ⩾ T} and φ is a density
estimator on the finite set X (or some other function –
this is Morse theory), gives R×R- (or N×N-) persis-
tent homology. It can be described with multigraded
modules over k[X1, . . . , Xn] (here, n = 2). The classi-
fication of those modules is too complex to be useful
(but may be amenable to Gröbner bases), but simpler
invariants are more accessible, e.g., dimMt1,...,tn or

rank
(
Mt1,...,tn −→Mt′1,...,t

′
n

)
(for n = 1, the ranks contain all the information).
Zigzag diagrams (quiver representations) appear in the
following sotuations:
– Pairwise comparisons of subsamples (bootstrap)

S0 ∪ S1 S1 ∪ S2

· · ·
S0 S1 S2

– Samples from a moving window;
– Upper level sets (T%) of a density estimators with

varying bandwidths εi

X[T, εi−1] ∪X[T, εi] X[T, εi] ∪X[T, εi+1]

· · · · · ·

X[T, εi−1] X[T, εi]

Article and book summaries by Vincent Zoonekynd 598/1044

– Witness complexes as the set of landmarks change

W (X,Li, ε)

· · · · · ·

W (X,Li−1,Li, ε) W (X,Li,Li+1, ε)

There is a classification theory for finite zigzag persis-
tence vector spaces: the elementary blocks are of the
form

0 F F 0

· · · · · ·
F F 0

5. The paper ends with a discussion of functorial
clustering algorithms (functors from the category of
finite metric spaces with isometries, embeddings, non-
increasing embeddings, non-increasing maps, to the
catogory of sets.)

Barcodes: the persistent topology of data
R. Ghrist (2008)

Another (shorter) clear review article.

Computational topology for point data:
Betti numbers of α-shapes

V. Robins (2002)
To estimate the Betti numbers (intuitively, βk(X) is
the number of k-dimensional holes in X) of X ⊂ Rd

from a finite set of points S ⊂ X, attach spheres of
increasing radius α at each point:

Sα =
⋃
x∈X

B(x, α)

βαk (S) = dimHk(Sα)

for α ⩾ dHausdorff(S,X). The persistent Betti number
βα,βk (S) = rank

(
i∗ : Hk(Sα) → Hk(Sβ)

)
, for α ⩽ β

and i : Sα ↪→ Sβ , is, intuitively, the number of k-
dimensional holes in Sα that are not filled in Sβ .
The number of connected components βα0 (S) can be
obtained from the minimum spanning tree of S. Higher
Betti numbers can be computed from the Delaunay
complex of Sα in S (the dual of the Voronoi complex
of Sα in S).

JavaPlex tutorial
H. Adams and A. Tausz (2015)

JavaPlex is a Java/Matlab library to compute the
persistent homology of filtered simplicial complexes.
The tutorial ends with the 3-circle structure of image
patches.

A roadmap for the computation
of persistent homology
N. Otter et al. (2015)

Comparison of software to compute persistent ho-
mology: JavaPlex (well documentated), Dionysus
(C++/Python, documented), Dipha (C++, MPI,
command line interface, fast), Gudhi (C++, fast),
Perseus, Simpers, jHoles, pHat, CHomP.

Three examples of applied
and computational homology

R. Ghrist (2008)
Concrete applications of algebraic topology include:
– Euler characteristic integration (constructible
sheaves) to aggregate sensor data: the Euler char-
acteristic is a measure since, under some circum-
stances, χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B);

– Persistent homology to understand the shape of and
identify the structures in high-dimensional datasets,
e.g., natural images or brain activity;

– Conley index theory (a generalization of Morse the-
ory) to distinguish between chaotic and noisy (ex-
perimental or simulated) data.

How to write a 21st century proof
L. Lamport (2012)

Advocacy for the replacement of “informal proofs”
(which we have been writing since the 17th century)
with “structured proofs”: sequences of statements,
each with a proof (itself structured, if needed). It
is still too early for mathematicians to write formal
(computer-verified) proofs, but familiarity with them
can be helpful; the appendix shows a proof in TLA+.

An extensible SAT-solver
N. Eén and N. Sörensson (2004)

Walk through the MiniSAT code – should you want to
implement your own SAT solver

Conflict-driven clause learning SAT solvers
J. Marques-Silva et al. (2008)

DPLL is the basic SAT solving algorithm:
– Write the formula as

∧
i

∨
j xij ;

– If one of the clauses has only one term, set it to true;
– If one of the variables always appears with the same
sign, e.g., always x, or always ¬x, set it to true (or
false);

– When you can no longer apply the previous steps,
choose a value for one of the variables; backtrack
when needed.

But this is suboptimal: when we reach a contradiction,
we backtrack and try another value for some variable,
but if it is unrelated to the contradiction, nothing will
change, and we will explore the same tree again and
again. Clause learning identifies the cause of the con-
tradiction and adds it as a new clause, to help prune
the search tree.

Article and book summaries by Vincent Zoonekynd 599/1044

To find one (or several) clauses to add, represent the
current state of the exploration as a graph, whose nodes
are the possible values of the variables and with the
clauses used for the deductions as arrows (all inbound
edges have the same label), and find a cut between the
latest decision variable and the conflict node.

Practical applications of Boolean satisfiability
J. Marques-Silva

SAT applications include:
– Hardware verification: checking that two circuits are
equivalent;

– Circuit testing: automatic test generation, for
boolean circuits, assuming the failure is that of a
single value stuck at 0 or 1;

– Planning: checking if a state is reachable in k steps,
in a deterministic transition system, with several
transition functions, corresponding to the decisions;
temporal logic;

– Bioinformatics, e.g., inferring haplotypes from geno-
types: a genotype is a string over the alphabet
{0, 1, 2} (wild, mutant, heterozygous); a haplotype
is a string over {0, 1}; each genotype comes from
two haplotypes; the genotypes are known but the
haplotypes are not; we want the minimum number
of haplotypes to explain the genotypes.

Bayesian structural time series models
S.L. Scott (2015)

Structural models (level, trend and seasonality) can be
put in state-space form and used for ad campain effec-
tiveness measurement. The model can be extended to
allow non-Gaussian innovations (by expressing them
as an (infinite) mixture of Gaussians) and long-term
trends (by using a mean-reverting AR(1) slope instead
of a random walk).
In R, check the bsts and CausalImpact packages.

Experiments in the internet age:
a modern look at the multi-armed bandit

S.L. Scott (2014)
Planning an experiment and running it until the end
is suboptimal (in terms of regret): you spend a lot of
time estimating precisely options that are suboptimal.
In the 2-arm bandit setup, P (θ1 > θ2) can be estimated
analytically, or estimated by sampling from the poste-
riors of θ1 and θ2: Thompson sampling uses a single
sample and works well. Full factorial experiments are
rarely possible, but one can design fractional factorial
experiments to estimate the coefficients as precisely as
possible [this is not unlike Bayesian optimization].

Big data, statistics and the internet
S.L. Scott (2014)

Gibbs sampling (sample from β|µ, V ; sample from
µ, V |β; iterate) cannot be directly, efficiently imple-
mented with MapReduce (there is too much commu-
nication and virtually no CPU usage – the complexity

of most MapReduce algorithms is the volume of com-
munications, not the computations). Instead, consen-
sus Monte Carlo gives different bits of data to var-
ious workers, which work intependently (sample from
β|µ, V, dataw; sample from µ, V |β, dataw; iterate) and
the results are combined. Contrary to distributed opti-
mization (ADMM) or horizontal strategies for stochas-
tic optimization (progressive hedging), it is a simple
consensus – there are no increasing penalties to force
convergence.
This can be applied to hierarchical Bayesian Poisson
regression (2 × 107 observations, 104 groups, 10 vari-
ables).

Introduction to RKHS
and some simple kernel algorithms

A. Gretton (2015)
Given a kernel k : X ×X → R on a finite set X, one
can consider the Hilbert space

H = Span{k(x, ·), x ∈ X} ⊂ F (X,R)〈∑
x

αxk(x, ·) ,
∑
y

βyk(y, ·)
〉
:=
∑
x,y

αaβyk(x, y).

It satisfies:

H ⊂ F (X,R)

∀x ∈ X k(x, ·) ∈ H
∀x ∈ X ∀f ∈ H 〈f, k(x, ·)〉 = f(x)

‖δx‖ = k(x, x)1/2 <∞,

where
δx :

{
H −→ R
f 7−→ f(x)

is the evaluation function.
Those results generalize to infinite X, and H is called
a reproducible kernel Hilbert space (RKHS) for k.

Scalable Bayesian optimization
using deep neural networks

J. Snoek et al. (2015)
Gaussian-process-based optimization scales cubically
with the number of observations. Instead, one can
train a neural net on the data

input tanh−−−→ · · · tanh−−−→ φ1 · · ·φD
linear−−−→ output

(prefer tanh to ReLU) and fit a Bayesian linear model
using the last layer y =

∑
βiφi + ε (adaptive basis re-

gression).

Fast exact summation
using small and large superaccumulators

R.M. Neal (2015)
Naive computation of long sums can lead to rounding
error accumulation. There are approximate algorithms
(Kahan-Babuška), but it is actually possible to com-
pute those sums exactly, by using a “superaccumula-
tor”, i.e., 4096 64-bit numbers, one for each possible

Article and book summaries by Vincent Zoonekynd 600/1044

exponent (all but one bit overlap: carry propagation is
rarely needed). For small sums, a smaller number of
64-bit numbers (e.g., with 32-bit overlaps) is sufficient.
The overhead is twofold. [A big fixpoint number, with
no overlap, looks simpler, but would force us to reim-
plement addition and could end up slower.]

Quantifying creativity in art networks
A. Elgammal and B. Saleh (2015)

To measure creativity (originality and influence):
– Build a graph of paintings, with a directed edge be-
tween two paintings if the first precedes the second,
weighted by similarity;

– Subtract some reference value from the weights;
– Invert the negative edges;
– Compute the eigenvector centrality (PageRank).

An R package flare
for high dimensional linear regression

and precision matrix estimation
X. Li et al.

Variants of the lasso where the square loss is replaced
with the absolute value, the L2 norm (not its square),
or more generally the Lp norm, 1 ⩽ p ⩽ 2, and appli-
cations to sparse precision matrix estimation (tiger,
clime).

Tiger: a tuning-insensitive approach
for optimally estimating

Gaussian graphical models
H. Liu and L. Wang (2012)

Fitting a Gaussian graphical model, i.e., estimating a
sparse precision matrix, can be done column by col-
umn, with sparse regressions Xi ∼ X\i: the lasso
and many variants (Dantzig selector, scaled lasso, etc.)
have been suggested, but the optimal tuning parame-
ters cannot be computed in practice. The sqrt lasso
(minimize ‖residuals‖2 + λ ‖β‖1 – this is the L2 norm,
not its square) is tuning-insensitive.
In R, check the bigmatrix and flare packages.

Identification of structured dynamical
systems in tensor product

reproducing kernel Hilbert spaces
M. Signoretto and J.A.K. Suykens

Factorization machines (or tensor machines) with a low
rank constraint: add a “multilinear spectral penalty”,
built from the SVDs of the unfoldings of the model
parameters.

Improving distributional similarity
with lessons learned from word embeddings

O. Levy et al.
Traditional and neural word embeddings use the same
bag-of-contexts representation:

– Positive pointwise mutual information;

PPMI(word, context) =
(
log

P̂ (word, context)
P̂ (word)P̂ context)

)
+

– Its SVD-based low-rank approximation;
– Skipgram with negative sampling (SGNS, wordvec):
maximize s(word · context) and minimize s(word ·
corrupted context), where s is the sigmoid function
and · the scalar product – this can be seen as a ma-
trix factorization PMI ≈ Words · Contexts′ + log k,
with a robust (sigmoid) loss;

– Global vectors (GloVe), a factorizationM ≈Words ·
Contexts′+ bw ·1′+1 · b′c, where Mw,c = log#(w, c).

The difference in performance is mostly due to better
(or learned) hyperparameters in the “neural” networks.

Auto-WEKA:
combined selection

and hyperparameter optimization
of classification algorithms

C. Thornton et al.
Use Bayesian optimization, e.g., SMAC (random-
forest-based Bayesian optimization) or TPE (tree-
structured Parzen estimators), to choose both algo-
rithm and hyperparameters in Weka.

Real-time prediction and post-mortem analysis
of the Shanghai 2015 stock market bubble

D. Sornette et al. (2015)
– Fit the log-periodic power law (LPPL) model on sev-
eral windows, from 750 to 125 trading days;

– Filter the results (they give a long list of empirical
conditions the model should satisfy);

– The “confidence” is the proportion of models (i.e.,
window sizes) that pass those filters; it estimates
crash risk;

– The “trust” is a resampling-based variant of that
goodness-of-fit test: resample the residuals, add
them to the fit, re-estimate the model, check if it
still passes the filters;

– Compute the probability distribution function of the
crash time, or of the bubble start time.

Generative adversarial nets
I.J. Goodfellow et al.

Generative adversarial nets simultaneously learn
two models

generator G : noise 7−→ data
discriminator D : noise or data 7−→ true or false

via the minimax game with value

V (D,G) = Ex∼data logD(x) + Ex∼noise log(1−DG(x))

value(game) = Min
G

Max
D

V (D,G).

Article and book summaries by Vincent Zoonekynd 601/1044

Conditional generative adversarial nets
M. Mirza and S. Osindero

GANs can be generalized to conditional models (mod-
els of x|y instead of x).

Deep generative image models using
a Laplacian pyramid of adversarial networks

E. Denton et al.
Stack GANs to generate finer and finer images.

A neural conversational model
O. Vinyals and Q.V. Le

Build a conversational model with a sequence-to-
sequence (seq2seq) RNN-LSTM network, trained on
IT helpdesk chats or movie subtitles.

Learning to understand phrases
by embedding the dictionary

F. Hill et al.
Train a RNN with LSTM to map dictionary definitions
to word vector representations (word2vec) and use as
a crossword solver (or a reverse dictionary, i.e., to find
the word on the tip of your tongue from its definition).

A simple way to initialize
recurrent networks of rectified linear units

Q.V. Le et al.
To avoid the vanishing/exploding gradient problems
when training recurrent neural networks (RNN) with
stochastic gradient descent (SGD):
– Use Hessian-free optimization instead of SGD;
– Or use SGD, with momentum, careful initialization,
and clipped gradients;

– Or use a LSTM network (the model is complicated,
but its gradients well-behaved);

– Or use ReLU and careful initialization.

Towards large-scale continuous EDA:
a random matrix theory perspective

A. Kabán et al.
In high dimension, one can still use CMA-ES after im-
posing some structure on the covariance matrix (e.g.,
diagonal). Instead, one can apply CMA-ES on random
(low-dimensional) subspaces and combine the result-
ing subpopulations. (EDA, “estimation of distribution
algorithms”, refers to CMA-ES-like evolutionalry algo-
rithms.)

Centrality of the supply chain
L. Wu

Supplier and consumer centralities (hits algorithm).

Discovering hidden factors of variation
in deep networks
B. Cheung et al.

Train a semi-supervised auto-encoder

x

x

z y

(we want a latent representation (z, y) of x, where y is
known, and z should be as independent of y as possi-
ble) with a penalty on the average squared covariance〈
Cov(zi, yi)

2
〉
.

A MiniZinc tutorial
K. Marriott and P.J. Stuckey

MiniZinc is a discrete optimization modeling language:
it translates the problem to feed it to various optimiz-
ers (constraint propagation, linear programming, etc.)
and provides global constraints (alldifferent, etc.).

Modeling discrete optimization
P.J. Stuckey and C. Coffrin (Coursera, 2015)

Another MiniZinc tutorial, with exercises.

The Wiener-Askey polynomial chaos
for stochastic differential equations

D. Xiu and G.E. Karniadakis (2001)
The polynomial chaos expansion of a stochastic pro-
cess (with finite variance) is the approximation

Xt = a0(t)H0 +∑
i1⩾0

ai1(t)H1(Xi1) +∑
i1,i2⩾0

ai1i2(t)H2(Xi1 , Xi2) +

· · ·

where X1, X2, . . . are N(0, 1) iid,

Hn(x1, . . . , xn) = e
− 1

2x
′x
(−1)n ∂n

∂x1 · · · ∂xn
e
− 1

2x
′x

are Hermite polynomials and ai1,...,ik are functions to
be determined. It can be generalized to other fami-
lies of orthogonal polynomials and non-Gaussian ran-
dom variables. These expansions can be used to solve
SDEs, in the same way one would use power series with
ODEs.

Time-dependent polynomial chaos
P. Vos

Worked out examples showing how to numerically solve
stochastic ODEs (ODEs with random variables in their

Article and book summaries by Vincent Zoonekynd 602/1044

coefficients or their initial conditions) with general-
ized polynomial chaos (gPC) expansions and to cir-
cumvent numeric instability (by reinitializing the ex-
pansion from time to time).

Polynomial chaos: a tutorial and critique
from a statistician’s perspective

A. O’Hagan (2013)
Polynomial chaos (PC) describes a random variable X
as X d

= f(Ξ) (equality in distribution), where Ξ is a
random variable following a known, simple distribu-
tion. Such a function f is not unique: one can look
for it in the finite-dimensional space of polynomials (of
degree at most n) orthogonal wrt the probability distri-
bution function of Ξ (Legendre for U(−1, 1), Hermite
for N(0, 1), Laguerre for Exp(1) – choose depending on
the boundedness of X). Typically, Ξ has dimension at
least that of X. The Karhunen-Loève expansion is a
degree-1 PC expansion.

Random geometry on the sphere
J.F. Le Gall (2014)

To obtain a random metric on the sphere, draw a ran-
dom planar graph on the sphere, consider the graph
distance (suitably rescaled), refine it by adding more
nodes and edges until, in the limit, you have a met-
ric on the whole sphere. More precisely, the “random
graphs” are defined as follows:
– Consider planar maps, i.e., embeddings of graphs
into the sphere S2, up to homeomorphism;

– Consider only p-angulations (i.e., the faces have p
edges);

– Sample uniformly from

Mp
n = {p-angulations with n faces},

for p = 3 or 4 and n large.
For the limit, notice that a planar map is an element
of

K = {compact metric spaces}/isometries,

which is complete when equiped with the Gromov-
Hausdorff distance

d(E1, E2) = inf{dH(ψ1E1, ψ2E2) :

ψi : Ei ↪→ E isometric embeddings}

dH(X,Y) = Max
{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

= inf{ε ⩾ 0 : X ⊂ Yε and Y ⊂ Xε}

where Xε is the ε-enlargement of X.
The Brownian map is the random variable, with val-
ues in K, obtained in the limit; it is a sphere, but it
has Hausdorf dimension 4 (a.s.).
Quadrangulations can be described as well-labeled trees
(Schaeffer’s bijection).
A continuous random tree (CRT) is obtained from
a Brownian excursion (a Brownian motion B such that

B0 = B1 = 0 and ∀t Bt ⩾ 0), as [0, 1]/∼ where s ∼ t if
d(s, t) = 0 and

d(s, t) = Bs +Bt − 2 Min
u∈[s,t]

Bu;

is a distance on the tree. Schaeffer’s construction can
be applied to a CRT with Brownian labels (there are
two levels of randomness: in the tree, and in the la-
bels).

Aspects of random maps
G. Miermont (2014)

All the details on the Brownian map.

A relation between Brownian bridge
and Brownian excursion

W. Vervaat (1979)
A Brownian excursion is a Brownian motion E on
[0, 1] conditioned by E0 = E1 = 0 and ∀s ∈ [0, 1],
Es ⩾ 0. It can be built from a Brownian bridge by
finding its minimum and shifting it (modulo 1) to start
and end at that minimum:

Wt Brownian motion
Bt =Wt − tW1 Brownian bridge
τ = Argmin

t
Bt

Et = Bτ+tmod 1 −Bτ Brownian excursion.

Automatic construction
and natural language description

of nonparametric regression models
J.R. Lloyd et al.

The automatic statistician models time series as
Gaussian processes (GP) whose kernel is described via
a formal language, using elements such as WN (white
noise), C (constant), Lin (linear), SE (square expo-
nential), Per (periodic), CP (change points) and +
and × operators. The models are not unlike sym-
bolic regression and include linear regression (C+Lin+
WN), GP smoothing (SE + WN), cyclical decompo-
sition (

∑
SE +

∑
Per + WN), Fourier decomposition

(C+
∑

cos+WN), etc.

Intelligible models
for classification and regression

Y. Lou et al. (2012)
Comparison of variants of GAM: the shape functions
can be splines (in R: mgcv), regression trees, tree en-
sembles (bagged, boosted, or both) with a fixed or
adaptive depth; the model can be learnt via penal-
ized least squares (wiggliness penalty,

∫
|f ′′|2), gradi-

ent boosting or backfitting (learn fk on the residuals
y −

∑
i≠k fi(xi), iterate until convergence): boosted

bagged trees, preferably with adaptive depth, perform
better.

Article and book summaries by Vincent Zoonekynd 603/1044

Accurate intelligible models
with pairwise interactions

Y. Lou et al. (2013)
Interactions can easily be added to GAMs (GA2M),
but since the number of pairs of variables can be huge,
some form of feature selection is needed. For instance,
one can greedily add the most promising interaction to
the model, using
– Anova (p-value of a test comparing the model with
no interactions and the model with the (xi, xj) in-
teraction);

– Independence χ2 test between the sign of the GAM
residuals and (xi > ai, xj > aj), ai = median(xi);

– Comparison of the RMSE of a full model (e.g., a ran-
dom forest) y ∼ rf(x1, . . . , xn) with a model without
the (xi, xj) interaction, y ∼ rf(x1, . . . , x̂i, . . . , xn) +
rf(x1, . . . , x̂j , . . . , xn);

– RSS of the best split for (xi, xj) – it can be computed
efficiently.

Convexifying the set of matrices of bounded
rank: applications to the quasiconvexification

and convexification of the rank function
J.B. Hiriart-Urruty and H.Y. Le (2011)

The convex hull of

{M : rankM ⩽ k and ‖M‖ ⩽ 1}

is
{M : ‖M‖∗ ⩽ k and ‖M‖ ⩽ 1}

where ‖M‖ =
∑
x ̸=0 ‖Mx‖2 / ‖x‖2 = σ1(M) is the

spectral (operator) norm and ‖M‖∗ =
∑
i σi(M) is the

nuclear (trace) norm (those norms are dual).
This generalizes a similar result for the `0 pseudo-norm:
the convex hull of {x : ‖x‖0 ⩽ k and ‖x‖∞ ⩽ 1} is
{x : ‖x‖1 ⩽ k and ‖x‖∞ ⩽ 1} and ‖·‖1 and ‖·‖∞ are
dual.
A function f is quasi-convex if its sublevel sets [f ⩽
α] are convex. The (quasi-)convex hull of a function is
the largest (quasi-)convex function minorizing it. The
restricted rank is

rank
r

:M 7→
{

rankM if ‖M‖ ⩽ r
+∞ otherwise.

Its quasi-convex hull is

M 7→
{
d 1r ‖M‖∗e if ‖M‖ ⩽ r
+∞ otherwise

and its convex hull is

M 7→
{

1
r ‖M‖∗ if ‖M‖ ⩽ r
+∞ otherwise.

In other words, the spectral norm ‖·‖∗ (sum of the sin-
gular values) is a convex relaxation of the rank. For
instance, the non-convex robust PCA problem

Find L, S,N
To minimize rankL+ λ ‖S‖0
Such that ‖N‖F ⩽ ε
and X = L+ S +N

can be relaxed to

Find L, S,N
To minimize ‖L‖+ ∗+ λ ‖S‖1
Such that ‖N‖F ⩽ ε
and X = L+ S +N.

Robust models often look for a decomposition

data = model+ outliers+ noise
= low rank+ sparse+ small.

Robust rotation synchronization
via low-rank and sparse matrix decomposition

F. Arrigoni et al. (2015)
Robust PCA and matrix completion are both low-rank
approximations: they can be combined.
Rotation matrices R1, . . . , Rn ∈ SO(3) can be recov-
ered from noisy relative alignments Rij = RiR

−1
j +

noise by minimizing

∑
Rij available

∥∥Rij −RiR−1j ∥∥2F .

Letting X =

1 R12 · · · R1m

R21

...
...

Rn1 · · · 1

 , the problem

becomes

Find R =

R1

...
Rn

 ∈ SO(3)n

To minimize ‖p(X −RR′)‖2F

where p is the projection on the available coordi-
nates. Since R ∈ SO(3)n, we can add the constraints
rankX ⩽ 3 and X ≽ 0.

Efficient computation of sparse Hessians
using coloring and automatic differentiation

A.H. Gebremedhin et al. (2009)
To recover a sparse, symmetric matrix A, from its
sparsity structure and a small number of products
Ax1, . . . , Axn, one can use a colouring of the graph
whose adjacency matrix is the sparsity structure to
define S = (1node i has colour j)ij ; for a star-colouring
(each 4-vertex path has at least 3 colours; conse-
quently, the subgraph induced by 2 colours is a collec-
tion of stars), one can efficiently recover A from AS.

Article and book summaries by Vincent Zoonekynd 604/1044

Compressed sensing recovery
via nonconvex shrinkage penalties

J. Woodworth and R. Chartrand (2015)
Compressed sensing, i.e., `0 minimization

Find w
To minimize ‖w‖0
Such that Aw = b

is often relaxed to `1 minimization, and many algo-
rithms rely on the proximal mapping of the `1 norm

S(x) = = Argmin
w

λ ‖w‖1 +
1
2 ‖w − x‖

2
2 .

The `p quasi-norms, 0 < p < 1, are a better approxi-
mation of the `0 penalty, but their proximal mapping
has no known closed form expression. Instead, one can
start with a proximal mapping (in closed form), e.g.,

p-shrinkage firm shrinkage hard shrinkage

and derive the corresponding penalty .

Entropy-based financial asset pricing
M. Ormos and S. Zibriczky (2014)

In portfolio construction, one can use entropy instead
of the standard deviation as a risk measure (it requires
a density estimator): one can compute and plot effi-
cient portfolios in the entropy×return space and de-
compose the entropy into systematic (mutual informa-
tion) and specific (conditional entropy) components.

Permutation-information-theory approach
to unveil delay dynamics
from time series analysis

L. Zunino et al. (2010)
Given a probability distribution p on J1, NK, one can
define the normalized entropy HS and the complexity
CJS as (here, pe denotes the uniform distribution)

S[p] = −
∑

pi log pi

S[pe] = logN

HS [p] =
S[p]

S[pe]

J(p|pe) = S[12 (p+ pe)]− 1
2S[p]−

1
2S[pe]

Max
p

J(p|pe) = log 2N − (N + 1) log(N + 1)

QJ(p|pe) =
J(p|pe)

Maxq J(q|pe)
CJS [p] = QJ(p|pe)HS [p]

To transform a time series into a discrete distribution,
choose
– an embedding dimension D > 1;

– an embedding delay τ
and consider the permutation defined by

(xt, xt+τ , . . . , xt+(D−1)τ).

This defines a discrete distribution on SD (D should
not be too large: D!� n.) The corresponding entropy
and complexity are the permutation entropy and the
permutation statistical complexity.
As an example, one can look at the Mackey-Glass os-
cillator

ẋ = −x+
ax(t− τ0)

1 + xc(t− τ0)
a = 2, c = 10, τ0 = 60

in the (HS , CJS) space, as τ0 varies.

Data manipulation detection
via permutation information theory quantifiers

A.F. Bariviera (2015)
Application to financial time series.

Representing numeric data in 32 bits
while preserving 64-bit precision

R.M. Neal (2015)
Storing data as decimals (rather than floating point)
is space-efficient, but a time-consuming conversion is
usually needed to use the data. Instead, one can use a
table lookup (implemented in pqR).

A generalized
Kahan-Babuška-summation algorithm

A. Klein (2005)
When naively computing a (long) sum of floating point
numbers, the rounding errors accumulate. It is possible
to compensate for them, e.g., by re-ordering the terms
(if they are all positive, use the Huffman code order,
starting with the smallest numbers – unfortunately,
with arbitrary signs, finding the optimal order is an
NP-hard problem) or by estimating the error and cor-
recting for it: the Kahan algorithm estimates the error
and corrects it immediately; the more accurate Kahan-
Babuška-Neumaier (KBN) algorithm corrects it at the
end. There are dozens of variants of those algorithms.

Printing floating-point numbers quickly
and accurately with integers

F. Loitsch (2010)
Printing floating-point numbers (i.e., converting them
to decimal) is not a trivial task. The previous al-
gorithm, Dragon4, required arbitrary-precision arith-
metic. Grisu, only requires integer arithmetic (but oc-
casionally needs to fall back to Dragon4).

Article and book summaries by Vincent Zoonekynd 605/1044

Kylix: a sparse allreduce
for commodity clusters
H. Zhao and J. Canny

The all-reduce pattern usually involves a tree network

In a bufferfly network, the nodes are arranged in a hy-
percube; in step k, the nodes communicate with their
neighbours along dimension k.

Edge compression techniques
for visualization of dense directed graphs

T. Dwyer et al. (2013)
To display a directed graph with a lot of edges (e.g., the
dependencies between software components), one can
try to group them into modules, with edges between
modules instead of between nodes:
– One can find, in linear time (via hashing), nodes that
have the same set of neighbours, and group them
(the nodes inside a module are either disconnected
or form a clique, depending on whether we include a
node in its neighbourhood);

– One can also allow for some internal structure in the
modules (but the algorithm is trickier);

– One can also allow for some module-crossing edges
(powergraph), e.g., with a greedy algorithm: com-
pute a hierarchical clustering of the nodes, for some
node similarity measure; for each potential cluster,
compute the number of edges that would be re-
moved; choose the modules greedily. The results
were compared with the optimal minimizer of

#modules+ w1 ×#edges+ w2 ×#crossings,

computed using MiniZinc – the greedy solution is far
from optimal but, in psychological tests (“how much
of the graph do you remember?” “Can you find the
shortest path from A to B?”), it is an improvement
on traditional layout algorithms.

Improved optimal and approximate
power graph compression

for clearer visualization of dense graphs
T. Dwyer et al. (2013)

Finding the optimal powergraph compression of a graph
(i.e., a module decomposition that reduce the num-
ber of edges) using general optimization methods (in-
teger propagation, integer programming) is too time-
consuming.
The following heuristic is faster, and gives decent re-
sults:

– Arrange the set of possible solutions into a tree, with
the initial graph (1-node modules) as the root, and
children obtained by merging two modules in the
parent;

– Use best-first-search or, better, beam search: at each
iteration (i.e., for each depth in the tree), keep the
k best solutions (k = 1 is greedy-best-first search).

It is actually reasonable to explore the whole tree, with
backtracking, after judicious pruning.

A generic algorithm
for layout of biological networks

F, Schreiber et al. (2009)
The algorithm beging dunnart (for constrained graph
layout): start with a feasible but partial layout, find
a locally optimal partial layout, extend it into a full
layout.

Google matrix analysis
of the multiproduct world trade network

L. Ermann and D.L. Shepelyansky (2015)
In the graph whose vertices are country×product pairs,
also consider the Chei-rank (the PageRank of the op-
posite graph); use a personalized variant of PageRank
to account for imbalance between products (e.g., oil vs
furs) or countries; and compute the correlations

κ =
∑
c,p

pcpp
∗
cp − 1

κp1,p2 = NC
∑
c

pcp1p
∗
cp2∑

c1

pc1p1
∑
c2

pc2p2
− 1

where pcp (resp. p∗cp) are the PageRank (Chei-rank)
scores (eigenvectors for λ = 1, normalized so that
p′1 = p∗′1 = 1).

Randomizing bipartite networks:
the case of the world trade web

F. Saracco et al. (2015)
The common graph metrics can be generalized to bi-
partite graphs:
– Assortativity: Cor(degX, deg Y | edge X—Y);
– Complexity and fitness are PageRank analogues –
they can be used to reorder the rows and columns of
the adjacency matrix;

– As a replacement for the clustering coefficient (there
are no odd cycles), one can count motifs, e.g., , ,

, , , and ;
– Nestedness: count the number of products (coun-
tries) two countries (products) have in common;
sum; normalize.

To construct statistical tests on a graph, use some max-
imal entropy distribution on the set of graphs (e.g.,
assuming the degree distribution is known).

Article and book summaries by Vincent Zoonekynd 606/1044

On the modular dynamics
of financial market networks

F.N. Silva et al. (2015)
Let G be a graph (undirected, no self-loops, no multi-
ple edges), A(G) its adjacency matrix, ∆(G) its de-
gree matrix (diagonal), L(G) = ∆(G) − A(G) its
Laplacian, ρ(G) = L(G)/ tr∆(G) its density matrix,
λ1 ⩾ λ2 ⩾ · · · ⩾ λn the eigenvalues of ρ(G). The Von
Neumann entropy of G is

S(G) = −
∑
i

λi log2 λi.

One can look at how graph metrics or community met-
rics (modularity, average shortest path length, aver-
age betweenness, degree assortativity, transitivity, von
Neumann entropy) vary over time (for a network built
from the correlation matrix of asset returns, estimated
on a moving window).
With a model-based community detection algorithm,
one can generate random graphs from the fitted com-
munity model, and look at the distribution of graph
metrics.

A note on the von Neumann entropy
of random graphs

W. Du et al. (2010)

Dynamic multi-factor clustering
of financial networks

G.J. Ross (2015)
To measure how much a qualitative variable (sector,
country, etc.) influences a hierarchical clustering (from
stock return correlations): for each pair of points i, j
in the same class, find their closest common ancestor
k, count the proportion of points in this class among
the descendants of k; average over all pairs.

Identifying states in a financial market
M.C. Münnix et al. (2012)

To identify market states:
– Compute the correlation matrix, for daily (or hourly)
returns, on a 2-month moving window;

– Compute the normalized L1 distance (alternatively,
the difference between the largest eigenvalues) be-
tween those correlation matrices, and cluster them
(hierarchical clustering or k-means) – alternatively,
fit some regime-switching model.

Forecasting financial extremes: a network
degree measure of super-exponential growth

W. Yan et al. (2015)
Use the degree of the visibility graph of the log-price (or
its opposite) to identify super-exponential growth (or
decay); this is similar to the LPPL pattern recognition
indicator.

A practical approach to financial crisis
indicator based on random matrices

A. Kornprobost and R. Douady (2015)
The Hellinger distance between two probability dis-
tributions is

Hellinger(p, q) =
∫ (√

p−√q
)2
.

To detect market instability, look at the following in-
dicators:
– Hellinger distance between the Marcenko-Pastur dis-
tribution and the distribution of the eigenvalues of
the correlation matrix (low eigenvalues are not in-
formative: discard everything below the tenth of the
maximum theoretical eigenvalue);

– Hellinger distance with the spectrum of the sample
correlation of a constant correlation Gaussian (or
Student, with 2 degrees of freedom);

– Maximum eigenvalue of VarX (spectral radius);
– trVarX;
– MaxSpecCorX, with capitalization-weighted and
volume-weighted variants (apply a moving average
filter if too noisy).

Kernel spectral clustering and applications
R. Langone et al. (2015)

To cluster data with PCA (or kernel PCA, or spectral
methods – kPCA on a graph Laplacian), binarize the
transformed data (signPC1, signPC2, . . .) and use the
most frequent binary codes as clusters.

Scale up nonlinear component analysis
with doubly stochastic gradients

B. Xie et al.
Use two stochastic approximations simultaneously in
kernel PCA: process the data in minibatches (as in
stochastic gradient descent) and use random features
(different in each batch, as in randomized PCA).

Implied correlation and expected returns
M. Valenzuela

The option-implied correlation

ρ =

σ2 −
∑
i

w2
i σ

2
i∑

i ̸=j
wiwjσiσj

σ2 =
2erT

FT

(∫ FT

0

putT (K)dK +

∫ ∞
TF

callT (K)dK

)

computed from (30-day) put and call options on the
S&P100 and its constituents, can help predict (3- to
12-month) future returns.

Article and book summaries by Vincent Zoonekynd 607/1044

Market timing with a robust moving average
V. Zakamulin (2015)

Among the half-dozen momentum strategies studies,
the exponentially-weighted moving average (EWMA)
“buy if

∑
k⩾0 λ

k × returns[t−k−1,t−k] > 0”, with λ =
0.87, is the most robust to the look-back period.

Market timing with moving averages:
anatomy and performance of trading rules

V. Zakamulin
Technical analysis rules can be formulated as “buy
if
∑
k⩾0 wkPricenow−k” for different weigting schemes

(one can also use price changes, with different weights).

Copula-based hierarchical risk aggregation
F. Derendinger (2015)

A mildly tree-dependent random vector (Xi)i∈I is
– a rooted tree structure on the index set I,
– a univariate distribution for each leaf,
– a copula for each node, describing the dependence of
its children,

where each node is the sum of its children. This does
not uniquely determine the distribution of the random
vector, unless one also assumes that, for each node,
its descendants are conditionally independent from the
other nodes.

Measuring financial asset return
and volatility spillovers,

with applications to global equity markets
F. Diebold and K. Yilmaz (2009)

To measure spillover in a VAR(p) model xt = Φxt−1 +
εt,
– Write the proces as an MA(∞) process, xt = (1 −
ΦL)−1εt;

– Using the Choleski decomposition Var εt = QtQ
−1
t ,

rewrite the process as an MA(∞) process with or-
thogonal innovations xt = (I − ΦL)−1Q−1t · Qtεt =
A(L)ut;

– The 1-step-ahead error xt+1 − xt+1|t = A0ut+1 has
variance A0A

′
0; the K-step-ahead error can be de-

composed

∑
ij

∑
1⩽k⩽K

akij
2 =

∑
i

∑
k

akii
2 +

∑
j ̸=i

∑
k

akij
2

where the second term is the spillover of j onto i.

The spillover index is

S =

∑
i ̸=j

∑
k

akij
2

∑
ijk

akij
2

It depends on the order of the variables, but not too
much.

On the computational complexity of
high-dimensional Bayesian variable selection

Y. Yang et al. (2015)
The Bayesian hierarchical sparse model

γ = {variables entering the model} ⊂ J1, nK
π(γ) ∝ p−κ|γ|1|γ|⩽s0
π(φ) ∝ φ−1 (improper prior)
βγ ∼ N(0, gφ−1I|γ|)

w ∼ N(0, φ−1In)

Y = X + γβγ + w

(the slab-and-spike prior, i.e., a mixture of two Gaus-
sians with different variances, is another popular
choice), sampled via Metropolis-Hastings (with the
neighbourhood of γ defined by removing or adding a
variable; or by removing and adding a variable) is an
alternative to the lasso for variable selection: it has
different, sometimes better, theoretical properties.

Relevance vector machines explained
T. Fletcher

Relevance vector machines (RVM) consider the
bayesian model

wj ∼ N(0, α−1j)

εi ∼ N(0, β−1)

ti = w′φ(xi) + εi

and estimate its posterior

w | t, α, β ∼ N(m,Σ)

m = βΣΦ′t

Σ = (diagα+ β−1Φ′Φ)−1

iteratively, by computing m and Σ for given values of
α and β, then computing the values of the hyperpa-
rameters α, β that maximize the evidence P (t | α, β):

αi ←
1− αiΣii

m2
i

β ←
N −

∑
i(1− αiΣii)

‖t− Φm‖2
.

Quite often, αi → ∞, i.e., wi → 0: the corresponding
parameters can be pruned. The remaining parameters
are the relevance vectors.

Shotgun stochastic search
for “large p” regression

C. Hans et al. (2007)
Shotgun stochastic search (SSS) is a variant of
Metropolis-Hastings (MH) to look for a sparse model:
– Let Γ be the set of the best k models examined so

far and γn the current model;
– In parallel (MCMC is usually sequential), examine
all the (or a large number of) neighbours of γn; add
them to Γ; discard the worst models if |Γ| k;

Article and book summaries by Vincent Zoonekynd 608/1044

– Choose γn+1 as with MH (if you allow for three types
of neighbours, from deletion moves γ−, additions γ+
and replacement γ0, they are unbalanced, expecially
in high dimensions:

∣∣γ0∣∣ � |γ+| � |γ−| – you may
want to sample from them separately), but with an
acceptance probability that depends on the sum of
the scores of the neighbours of the current point and
the candidate.

Statistical model criticism
using kernel two sample tests

J.R. Lloyd and Z. Ghahramani
The notion of p-value can be generalized to a Bayesian
setting:
– Choose a statistic T ;
– Estimate P [T ⩽ Tobs] using the posterior distribu-
tion of T .

It measures how surprising the data still is, even after
observing it.

Random bits regression:
a strong general predictor for big data

Y. Wang et al.
Penalized regression on random binary features per-
forms well on big data (same idea as echo state net-
works or extreme learning machines, which are just
SVMs with a randomized (instead of universal) ker-
nel).

Random feature maps for dot product kernels
P. Kar and H. Karnick (2012)

SVMs with a high-dimensional embedding space tend
to have too many support vectors. One can trans-
form the kernel to reduce the dimension, randomly (as
in the Johnson-Lindenstrauss lemma). For instance,
if the kernel is of the form k(x, y) = f(〈x, y〉), with
f(x) =

∑
n⩾0 anx

n, where the an are nonnegative,
one can use this expression to build an embedding
Z : Rd −→ RD, with 〈Zx,Zy〉 ≈ k(x, y):
– Select N randomly with P [N = n] ∝ 1/pn+1;
– Select ω1, . . . , ωn ∈ {±1}d randomly;
– Let Z1(x) =

√
aNpN+1

∏
j ω
′
jx;

– Do the same for the other coordinates Z2, . . . , ZD.

An introduction to random indexing
M. Sahlgren

LSA (latent semantic indexing) builds a word-
document matrix and computes its (truncated) SVD
to produce a lower-dimensional representation of the
words. However, the initial word-document matrix can
be too large. Instead, one can use a random projec-
tion (Johnson-Lindenstrauss): it can be built incre-
mentally, one document at a time.

A practical guide
to applying echo state networks

M. Lukoševičius
Implementation advice for reservoir computing.

fastFM: a library for factorization machines
I. Bayer

C library, with Python bindings (contrary to libfm).
Factorization machines are not limited to recommen-
dation systems, but can add interactions to any model.

Tensor machines
for learning target-specific polynomial features

J. Yang and A. Gittens
Tensor machines are a generalization of factorization
machines

f(x) = w0+〈w1, x〉+
q∑
p=2

〈
r∑
i=1

wpi1 • · · · • wip, x • · · · • x

〉

where · • · is the outer product and wpi1 • · · · • wip is a
rank-1 tensor. The model is fitted by minimizing

1

n

∑
i

loss
(
f(xi), yi

)
+ λ ‖w‖22 .

(Kar-Karnick features are similar, but w is constrained
to be in the subspace spanned by a sufficiently large
number of random tensors.)

Score function features for discriminative
learning: matrix and tensor frameworks

M. Janzamin et al. (2015)
To build features:
– Estimate the probability distribution p(x) of the (un-
labelled) data x;

– Compute the score functions

Sm(x) = (−1)m∇
mp(x)

p(x)
;

– Given labeled data (x, y), we want some information
about G(x) = E[y|x]; we can estimate the expecta-
tion of its derivatives: E[∇mG(x)] = E[ySm(x)];

– These are (huge) tensors: compute a low rank ap-
proximation (SVD, CP), E[∇mG(x)] ≈

∑
j u
⊗m
j

(each tensor product only involves a single vector
because the tensors are symmetric);

– Use σ(x·uj) as features where σ is a signoid function.

Picture: a probabilistic programming language
for scene perception
T.D. Kulkarni et al.

A scene description language can be turned into a prob-
abilistic programming language; do not use a fully-
rendered (photorealistic) scene to compute the model
with the data pixel by pixel: use features instead (from
computer vision or deep learning).

Article and book summaries by Vincent Zoonekynd 609/1044

Slice sampling for probabilistic programming
R. Ranca (2015)

To sample from a probability distribution only known
up to a multiplicative factor, p(x) ∝ p∗(x), slice sam-
pling proceeds iteratively:
– Pick ut ∼ U(0, p∗(xt));
– Pick xt+1 ∼ U({x : p∗(x) ⩾ ut}).
StocPy is yet another Python-based probabilistic pro-
gramming language.

Count-min-log sketch: approximately counting
with approximate counters

G. Pitel and G. Fouquier (2015)
Count-min-sketch variant with more precision for low
counts, with applications to TD-IDF matrices.

Supervised learning from multiple experts:
whom to trust when everyone lies a bit

V.C. Raykar et al. (2009)
Binary forecasts yij , for many tasks i (e.g., medical di-
agnostic) for several experts j can be combined (use
majority voting as a baseline model) with an EM al-
gorithm, alternatively estimating the forecasts and the
reliability of each expert; one can add a Bayesian prior
if some experts are known to be more or less reliable.

Invariant backpropagation: how to train
a transformation-invariant neural network

S. Demyanov et al.
One expects neural networks to be invariants to some
transformations (rotations, translations, etc.). The fol-
lowing weight updates achieve that (you do not have
to specify the group action):

w← w − α∂Loss
∂w

− β ∂

∂w

∥∥∥∥ ∂Loss∂Input

∥∥∥∥2 .
Learning classifiers from synthetic data

using a multichannel autoencoder
X. Zhang et al.

Use an autoencoder (trained on real data) on surrogate
data to make it more realistic.

Deep transform: cocktail party source
separation via probabilistic re-synthesis

A.J.R. Simpson
To separate two speech signals (in a mono-aural sig-
nal), learn an auto-encoder

Speaker 1
Speaker 2

Mixed
Speaker 1
Speaker 2

[They used a male and a female speaker: their
auto-encoder learned to separate gender, rather than
speech.]

Explaining and harnessing
adversarial examples

I.J. Goodfellow et al. (2015)
For high-dimensional linear models, you can make in-
finitesimal changes to the input (e.g., ±1 to each 8-bit
pixel of an image) that add up to a large change in the
output. To mitigate the problem:
– Use “deep” neural networks (at least one hidden
layer);

– Train on a mixture of adversarial and clean exam-
ples.

(RBF networks are immune to those adversarial exam-
ples, but do not generalize well.)

Neural Turing machine
A. Graves et al.

A differentiable Turing machine can be trained with
gradient descent to learn simple algorithms.

Long short-term memory over tree structures
X. Zhu et al. (2015)

LSTM networks can be generalized from sequences to
trees.

LSTM: a search space odyssey
K. Greff et al.

In a recurrent net, there is feedback from the output
to the input. In an LSTM net, there is feedback from
(some of) the inner nodes to (themselves and) the in-
put: they can be trained line RNN (with the same
problems).

jvmr: integration of R, Java and Scala
D.B. Dahl et al.

Embed R in Scala or Java, or the reverse.

Bayesian estimation supersedes the t test
J.K. Kruschke (2013)

For a Bayesian T test, check the BEST R package.

Cubist models for regression
M. Kuhn et al. (2012)

Cubist models generalize decision trees:
– There is a model in each node, and each leaf (or
node) is shrunk towards its parent;

– One can add boosting and/or shrink each forecats
towards its nearest neighbours (in the training set
or the sample to forecast).

Article and book summaries by Vincent Zoonekynd 610/1044

R in finance 2015
1. Several presentations applied social network analy-
sis (SNA) methods to financial networks.
PageRank on a graph weighted by cross-correlations
can identify leaders. [Some use the HITS algorithm
instead, to identify leaders and followers, extracting
information from leaders and investing in followers.]
If the nodes i of a graph represent financial entities,
each with a risk Ci, one can compute the following
graph metrics:

Fragility =
E[degree2]
E[degree]

Risk score =
√
C ′AC

where A is the incidence matrix The risk score can be
decomposed with Euler’s formula:

Risk score =
∑ ∂Score

∂Ci
Ci.

One can then compute

Criticality = C � x

where x is the eigenvector centrality (not unlike Page-
Rank) and � the elementwise product, and

Spilloverij =
∂

∂Ci

∂Score
∂Cj

.

A graph (e.g., interbank lending market, in some coun-
try) can be decomposed into core and periphery, and
compute various graph metrics (density, betweenness
centrality, closeness centrality, transitivity, average
path length, eigenvalues, etc.) over time.
One can apply network analysis (plots, centrality) on
raw (SWIFT) financial transactions.
One can compute graph metrics (centrality, etc.) on
graphs learnt with bnlearn.
2. Higher moments (up to the fifth...) were mentioned
a couple of times.
Use differential evolution (DEoptim) to optimize the
expected utility of a portfolio (using the sample distri-
bution of past returns). The derivatives of the utility
function should alternate in sign. They all have names:

U ′ > 0 Non-satiation (high returns)
U ′′ < 0 Risk aversion (low risk)
U ′′′ > 0 Prudence (positive skew)
U ′′′′ < 0 Temperance (low kurtosis)
U ′′′′′ > 0 Edginess.

Use, for instance, U(wealth) = wealth/(c+ wealth).
Investors have a preference for high odd moments and
low even moments. The HighFreq package estimates
them from OHLC data (not unlike all the volatility
estimators in TTR).

3. A partially auto-regressive process is the sum of a
stationary AR process and a random walk; it can be
estimated with a Kalman filter. Caveats: the tests
have low power; the AR component may just capture
the market microstructure (e.g., the bid-ask bounce).
This is implemented in the partialAR package (use
the cointegration residuals, from egcm).
To identify change points in a time series, find the par-
tition of the indices that maximizes the sample energy
distance

E (X,Y) = 2E |X − Y |α− E |X1 −X2|α− E |Y1 − Y2|α

Ê (X,Y) =
2

#B

∑
B

|xi − xj |α+

− 1

#Wx

∑
Wx

|xi − xj |α−
1

#Wy

∑
Wy

|yi − yj |α

The e-cp3o algorithm speeds up the computations by
removing points that are unlikely to be change points
and reducing the size of B, Wx, Wy. This is imple-
mented in ecp::ecp3o.
For large but sparse VARX models (VAR with exoge-
nous variables), add a (nested group) lasso penalty.
The Hierarchical VAR (HVAR) model also adds lasso
penalties to the lags. This is implemented in the
BigVAR package.
By combining bits of models that are not often used
together, one can build rather complicated models,
e.g., a regime switching cointegration model with time-
varying transition probabilities
To detect multivariate outliers, use a robust covari-
ance matrix, e.g., the MCD (minimum covariance de-
terminant). Iteratively-reweighted MCD gives the cor-
rect false positive rate. This is implemented in the
CerioliOutlierDetection package.
4. The PortfolioAnalytics package provides many
portfolio optimization approaches, including Meucci’s
fully flexible views or Almgren and Chriss’s portfolios
from sorts.
Flexible asset allocation with stepwise correlation rank
suggests to build a portfolio one asset at a time, adding
the asset with the best

w1 ×momentum rank+ w2 × volatility rank+

w3 × correlation rank,

where the correlation is the average correlation with
the assets already in the portfolio.
It is safer to build a portfolio from a few (smart beta)
ETFs than from a large number of stocks: lower esti-
mation error and fewer parameters lead to better out-
of-sample performance.
Taxes have an impact on the optimal multi-period 2-
asset portfolio (Kelly principle).
5. mVaR and mES (Cornish-Fisher value at risk and
expected shortfall) are estimators: we can compute
their variance and bias (a computer algebra system

Article and book summaries by Vincent Zoonekynd 611/1044

(CAS) is useful – they used the Matlab symbolic tool-
box, but you may want to check SAGE, Maxima or
Yacas) and compare them with a maximum likelihood
estimator (asymptotically no bias and lowest variance).
Also check qrmtools::ARA and the SharpeR package.
mVaR and mES are bad for: low α, fat tails, large
samples.
One can still decompose the VaR into a sum of con-
tributions (risk factors, managers) in the presence of
non-linear assets (e.g., with the delta-gamma approxi-
mation).
One can compute an upper bound on the expected
Sharpe ratio; it is unclear if/how it depends on the
number of assets.
6. The highfrequency package provides functions to
align non-synchronous time series (wait until there has
been a new observation for all time series), compute
volatility or jump estimators (realized bipower vari-
ation, MedRV, ROWVar), tests for the presence of
jumps, etc.
Here is a stylized fact for high frequency data:

Number of transactions ∝ USD Volume2/3×Volatility.

The creditr package provides CDS computations,
with a Shiny interface, not unlike the Bloomberg or
Markit CDS screen/calculator.
7. The Rborist package is similar to RandomForest,
but faster; it can use several cores (or a GPU).
The irlba package computes the fast truncated SVD.
8. data.table still has an edge on dplyr:
– The data is indexed;
– It provides fast aggregation, and ordered joins (aka
rolling joins, locf);

– fread is a fast CSV reader (but h2o.importFile is
even faster).

The development version of DBI (finally) allows for
parametric queries (prepared statements). The readr
package provides faster functions to read CSV files
(but fread is even faster). The httr, xml2, rvest,
jsonlite packages were also mentioned; dplyr,
reshape2, etc. were not.
Rcpp provides better integration with RStudio, annota-
tions (e.g, // [[Rcpp::export]]), C++11 (closures,
type inference), direct access to Boost even on Win-
dows (BH).
Rblpapi is a newer inferface to Bloomberg, in C++
rather than Java. It does not work well on Windows.
Some suggest to describe the data pipeline in a purely
declarative way; to facilitate deployment, this should
also include the data cleaning part.
The simsalapar package can help you (easily)
parallelize computations – when you have to run
the same computations/simulations many times,
with different parameter values. An example for
VaR computations with nested archimedian copulas

(copula::onacopula) was given. [I prefer to use
doParallel (and foreach) directly.]

The computation of the expected improvement
in dominated hypervolume

of Pareto front approximations
M. Emmerich et al. (2008)

For multi-objective Bayesian optimization, replace the
expected improvement (EI) with the expected increase
in the hypervolume dominated by the Pareto set.
While a Monte Carlo approach is possible, it can be
computed exactly: decompose the space into boxes,
each corresponding to a different shape for the new
efficient frontier, and compute the expected improve-
ment conditional on the new point being in a given
box.

Faster computation
of expected hypervolume improvement

I. Hupkens et al. (2014)

Expensive multiobjective optimization
for robotics

M. Tesch et al. (2013)
Bayesian multiobjective optimization to steer snake
robots, to optimize both speed and head camera sta-
bility: replace the expected improvement (EI) with
the expected improvement in (dominated) hypervol-
ume (EIHV). Also gives another test problem, built
from the Branin function.

A tutorial on Bayesian optimization
of expensive cost functions,

with application to active user modeling
and hierarchical reinforcement learning

E. Brochu et al. (2010)
Good review article.

ParEGO: a hybrid algorithm
with online landscape approximation

for expensive multiobjective optimization
J. Knowles (2004)

The following multiobjective optimization algorithm is
more economical (in function evaluations) than NSGA-
II:
– Initialize the population with a Latin hypercube;
– Take a weight vector λ ∈ ∆n at random (a new one
for each iteration, possibly with some of the coordi-
nates set to zero);

– Consider the objective function

f(x) = Max
i
λifi(x) + ρ

∑
i

λifi(x);

– Model it using a Gaussian process (if there are more
than 80 points in the population, take 80 at random);

– Use some optimization algorithm (say, Nelder-Mead)
to maximize the expected improvement;

Article and book summaries by Vincent Zoonekynd 612/1044

– Add the new point to the population;
– Iterate.
The paper also provides a few test functions.

Multiobjective optimization
on a budget of 250 evaluations

J. Knowles and E.J. Hughes (2005)
ParEGO performs better than a binary-search-based
algorithm:
– Pick a point at random in the largest hypercube, and
split the hypercube at that point in the direction that
yields the most “cube-like” sub-spaces;

– Idem with a point close to a “good point”, for some
random aggregation of the scores, e.g.

∑
i λifi(x),

λ ∼ U(∆n);
– Alternate between those steps with a predefined ex-
ploration/exploitation ratio.

Multiobjective optimization
of urban wastewater systems using ParEGO:

a comparison with NSGA-II
G. Fu et al. (2008)

Another comparison of ParEGO and NSGA-II.

Efficient global optimization
of expensive black-box functions

D.R. Jones et al. (1998)
Not very different from DACE: start with a Latin hy-
percube; check the goodness of fit of the model (and
transform the variables if needed); compute the ex-
pected improvement in closed form.

Efficient global optimization (EGO)
for multi-objective problem and data mining

S. Jeong and S. Obayashi (2005)
Another EGO example.

BOA: the Bayesian optimization algorithm
M. Pelikan et al. (1999)

Variant of CMA-ES with Bayesian networks (suitable
for discrete variables) instead of a Gaussian distribu-
tion.

Bayesian optimization algorithms
for multi-objective optimization

M. Laumanns and J. Ocenasek (2002)
The multiobjective Bayesian optimization algorithm
works as follows:
– Keep an archive of best solutions (all those that ε-

dominate the solutions seen so far, but allow some
dominated solutions to have at least k of them);

– Model the archive, not unlike CMA-ES, but with
decision trees (one for each variable – Bayesian net-
works proved too complex) instead of a Gaussian
distribution;

– Sample candidates from this model.

Multi-objective
Bayesian optimization algorithm

N. Khan et al. (2002)
BOA can be generalized to multiobjective optimiza-
tion: use non-dominated sorting and the crowding dis-
tance to select the n nest solutions.

Multiobjective evolutionary algorithm
test suites

D.A. van Veldhuizen and G.B. Lamont (1999)

Scalable test problems for evolutionary
multi-objective optimization

K. Deb et al. (2001)

Combining multiobjective optimization
and Bayesian model averaging to calibrate
forecast ensembles of soil hydraulic models

T. Wöhling and J.A. Vrugt (2008)
Bayesian optimization with Gaussian processes re-
placed by a (BMA) ensemble of domain-specific (PDE)
models.

Bayesian optimization
with inequality constraints
J.R. Gardner et al. (2014)

Constrained Bayesian optimization,

Find x

To minimize f(x)

Such that g(x) ⩾ 0,

where both the objective f and the constraints g are
expensive to compute, is a straightforward generaliza-
tion of Bayesian optimization: replace the expected
improvement E[(f(x+) − f̂(x))+] with the expected
constrained improvement E[1ĝ(x) · (f(x+) − f̂(x))+].
One often assumes conditional independence: ĝ(x) ⊥⊥
f̂(x) | x.

Pareto front modeling for sensitivity analysis
in multi-objective Bayesian optimization

R. Calandra et al. (2014)
In multiobjective Bayesian optimization (MOBO), do
not return a discrete set of solutions but, since a model
was used for the optimization, a model of the Pareto
front.

Design and analysis of computer experiments
J. Sacks et al. (1989)

One of the first papers on Bayesian optimization.

Article and book summaries by Vincent Zoonekynd 613/1044

A fast and elitist
multiobjective genetic algorithm: NSGA-II

K. Deb et al. (2002)
The non-dominated sorting genetic algorithm II
(NSGA-II) solves multi-objective optimization prob-
lems, i.e., estimates their non-dominated front.
1. The candidate solutions are sorted by first find-
ing the non-dominated front, removing it, and iterat-
ing. The non-dominated rank can be computed ef-
feciently:
– For each solution, compute the domination count,
i.e., the number of solutions that dominate it;

– For each solution, compute the set of solutions it
dominates;

– The first non-domination front solutions have domi-
nation count zero: remove it;

– Update the domination counts and the domination
sets;

– Iterate.
2. To preserve diversity, look at the crowding dis-
tance of each solution, defined as the average side
length of the cuboid around it with (half) its vertices
among the other solutions.
3. Define a partial order on the solutions:
– Prefer solutions with a lower non-domination rank;
– If the ranks are equal, prefer solutions with a higher
crowding distance.

4. One can add constraints:
– Prefer feasible solutions;
– When two solutions are infeasible, prefer that with
the smaller constraint violation.

The paper also contains reference problems.

GPfit: an R package
for Gaussian process model fitting

using a new optimization algorithm
B. MacDonald et al. (2013)

When fitting a Gaussian process on non-noisy data,
with a Gaussian correlation function

Rij = Cor(yi, yj) =
∏
k

exp−θk |xik − xjk|2 ,

θk > 0, the correlation matrix can be ill-conditioned
(some of the points are too close), and the likelihood
has local extrema very close to zero. One can replace R
with R+δI, with the smallest nugget δ that makes the
matrix well-conditioned [this is the idea behind ridge
regression; this is also what you naturally do when the
eigenvalues are too close to zero], and reparametrize θ
as θ = expφ.
Check the R packages GPfit (no noise), tgp (noise) or
mlegp (noise, numerically unstable).
Also mentions lhs::maximinLHS (random but well-
dispersed points).

News and monetary shocks
at a high frequency: a simple approach

T. Matheson and E. Stavrev (2014)
Given a bivariate time series X, one can estimate a
VAR(1) model Xt = α+ βXt−1 + εt using OLS.
To interpret the residual (i.e., to estimate a structural
VAR (SVAR) model), one can try to write it as an
MA(1) process, εt = Aηt where η ∼ N(0, 1). The inno-
vations η represent independent (Gaussian, standard)
shocks.
There is not enough information to estimate both
A and η: if Σ = Var ε has Choleski decomposition
Σ = PP ′, then A = P is a solution, but so is A = PU ,
for U ∈ O2. One typically adds linear constraints on
A to ensure that there is only one solution, e.g., A
lower-triangular.
Instead, one can impose constraints on the signs of
(some) of the coefficients) of A, e.g.,(

+ +
+ −

)
.

This is still insufficient to determine A, but it is suf-
ficient for a Bayesian approach: one can compute the
posterior distribution of A (using, e.g., a uniform prior
on O2). The authors use rejection sampling [but since
the elements of O2 admit a simple parametrization,
exact computation should be possible – rejection sam-
pling poses even larger problems in higher dimensions].
Since O2 ≈ S1 qS1, it is not straightforwad to extract
an estimator from the posterior distribution.

How do fiscal and technology shocks
affect real exchange rates?

New evidence for the United States
Z. Enders et al. (2008)

More details on SVAR models with sign restrictions:
allowance for small deviations to the sign constraints,
use of the posterior distribution to test the sign of the
non-constrained elements.

Scaling log-linear analysis
to datasets with thousands of variables

F. Petitjean and G.I. Webb (2015)
Given M qualitative variables V1, . . . , VM , log-linear
analysis (LLA) greedily builds a model

P [V1 = a1, . . . , VM = aM] = u+∑
i

ui(ai) +∑
i<j

uij(ai, aj) +

· · ·

only adding a term if it leads to a significant difference.
At each step, it is not necessary to re-examine all the
(tuples) of variables: one can identify many of those

Article and book summaries by Vincent Zoonekynd 614/1044

that remain insignificant and only re-evaluate the oth-
ers.
Implementation: Chordalysis (Java, GPL).

A statistically efficient and scalable method
for log-linear analysis of high-dimensional data

F. Petitjean et al. (2014)
Use minimum message length (MML) instead of
goodness-of-fit χ2 tests.

Scaling log-linear analysis
to high-dimensional data
F. Petitjean et al. (2013)

Considering only decomposable models (if an interac-
tion between k variables is present, then so are all of its
subsets, and the corresponding graph is chordal) leads
to more efficient χ2 computations.

Unsupervised learning of acoustic features
via deep canonical correlation analysis

W. Wang et al.
Canonical correlation analysis (CCA) looks for highly
correlated linear combinations between two groups of
variables, X and Y :

Find u, v
To maximize Cor(u′X, v′Y).

More generally (if X and Y are centered),

Find U, V
To maximize traceU ′XY ′V
Such that U ′XX ′U = nI

V ′Y Y ′V = nI.

This is equivalent to minimizing

1

n
‖U ′X − V ′Y ‖2F + λ ‖U‖2F + λ ‖V ‖2F .

One can replace X and Y with their embedding in
a reproducing kernel Hilbert space (RKHS) or a deep
neural net.

Tensor factorization via matrix factorization
V. Kuleshov et al. (2015)

To compute an approximate CP decomposition of a
symmetric 3-tensor, evaluate it on a set of random
vectors to get symmetric matrices (Mℓ)ℓ and jointly
diagonalize them, i.e., find U orthogonal such that
UMℓU

′ be almost diagonal (use an L2 penalty on the
off-diagonal elements – it is possible to build U iter-
atively, as a product of simple (rotation) matrices).
This can be generalized to higher-order tensors or to
non-symmetric tensors – consider(

0 M ′

M 0

)
.

Fastfood – approximating kernel expansions
in loglinear time

Q. Le et al. (2013)
Forecasts from kernel methods require the evaluation of
the kernel on a large number of points (e.g., for SVM,
one needs

f(x) =
∑

y support vector
αyk(y, x),

and the number of support vectors grows linearly with
the data).
A kernel can be written

k(x, y) =
∑

λiφi(x)φi(y).

It can be approximated by drawing i1, . . . , in with
p(i) ∝ λi and considering k(x, y) ≈

∑n
k=1 φik(x)φik(y).

For Gaussian radial basis functions (RBF), one can use
φj(x) = exp(i(Zx)j) as eigenfunctions, where Z is a
Gaussian random matrix.
This matrix is large, but may be replaced with
SHGΠHB where B has random ±1 on the diagonal,
G has random Gaussian numbers on the diagonal, S is
a (diagonal) scaling factor, Π is a random permutation
matrix and H is a Walsh-Hadamard matrix:

H2 =

(
1 1
1 −1

)
, H2d =

(
Hd Hd

Hd −Hd

)
.

Speeding up convolutional neural network
using fine-tuned CP-decomposition

V. Lebedev et al. (2015)
Convolutional neural networks (CNN) can be sped up
by replacing the 4D convolution kernel with a low-rank
approximation.

An entropy-based early-warning indicator
for systemic risk

M. Billio et al. (2015)
Use the entropy

−
∑

pi log pi (Shannon)
1

α− 1

(
1−

∑
pαi

)
(Tsallis)

1

1− α
log
∑

pαi (Rényi)

of
– The marginal expected shortfall

MESi = E[ri | rmarket < VaR5%
market];

– ∆CoVaR, where

∆CoVaRαm,i = CoVaRαm,i − CoVaR1/2
m,i

CoVaRαm,i = VaRα[rmarket | ri = VaRαi];

– The number of edges in the Granger causality graph
of asset returns

to predict crises (in the Finance industry).

Article and book summaries by Vincent Zoonekynd 615/1044

New ranks for even-order tensors and their
application in low-rank tensor optimization

B. Jiang et al. (2015)
For tensors, the notion of rank is complicated.

The Black-Litterman approach:
original model and extensions

A. Meucci (2010)
The Black-Litterman model

π equilibrium market returns
µ ∼ N(π, τΣ) expected market returns
X ∼ N(µ,Σ) market returns

P ′µ ∼ N(v,Ω) view on the expected returns

is needlessly complicated and even counter-intuitive
(the limiting cases Ω→ 0 or Ω→∞ are not those the
end-user will expect). Instead, one can specify views
on the market returns:

X ∼ N(µ,Σ)

P ′X ∼ N(v,Ω).

To compute the posterior distribution, reformulate the
model as

X ∼ N(µ,Σ) returns
Z ∼ N(0,Ω) error on the views
v = P ′X + Z views,

compute the joint distribution of (X,Z, P ′X +Z) and
then the conditional distribution X | P ′X + Z = v.

A fuzzy R code similarity search
detection algorithm

A. Bartoszuk and M. Gagilewski
To measure the similarity (plagiarism, copy-paste) be-
tween two functions:
– Compare the edit distance µ1 (utils::adist) be-

tween the strings (normalized with deparse(paste(
text=f)));

– Consider the blocks of code as bags of functions (in-
deed, <-, :, +, for are functions) and compute some
variant of Jaccard similarity, e.g.,

µ2(x, y) =

∑
Min(xi, yi)∑
xi + yi

where x and y are the count vectors;
– Compute the abstract syntax tree (AST) (utils::
getParseData), ignore names and values (symbol,
num const) and compute the total length µ3 of the
common substrings above some minimum length;

– Combine those three measures using a training set
and logistic regression.

Other plagiarism detection tools include: MOSS,
JPlag, GPlag.

Detecting similarity of R functions
via a fusion of multiple heuristic methods

A. Bartoszuk and M. Gagilewski
To measure code similarity, use asymmetric measures,
similar to the previous three ones, but normalized by
dividing by the length of the first function, e.g.,

µ2(x, y) =

∑
Min(xi, yi)∑

xi
.

Add another measure,

µ4 =
#V (Hij)

#V (Gi)

where Gi is the program dependence graph (PDG: the
vertices are the vertices of the AST; there are two types
of edges, corresponding to the control flow and to data
dependencies) of fi, andHij is the largest common (iso-
morphic) subgraph of Gi and Gj (computed with the
McGregor heuristic algorithm, from the Boost C++
library).

An industrial-strength audio search algorithm
A.L.C. Wang

To fingerprint audio files:
– Compute the time×frequency spectrogram;
– Identify peaks; ensure they are approximately uni-
formly distributed;

– Use rectangular regions of this constellation of peaks
as fingerprint.

Search is then an alignment problem.

A comparison of fractal trees
to log-structured merge (LSM) trees

B.C. Kuszmaul (2014)
A fractal tree index is a B-tree with a buffer at each
node: only when the buffer is full is it sent to lower
nodes. This requires more memory, but greatly re-
duces disk writes. [Nothing seems to justify the work
“fractal”: “lazy” would have been a better name.]
LSM trees store runs of data, i.e., lists of key-value
pairs sorted in key order (some big data databases keep
recently-inserted data in memory, sorted, as long as it
fits, and then write it to disk, each time in a different
file). These runs can be arranged in a tree.

Data structures for text sequences
C. Crowley (1998)

To store and manipulate text, with insert and delete
operations (as in a text editor), check the following
data structures:
– Array;
– Array with a gap in the middle (corresponding to
the current position);

– Doubly-linked list of characters, or lines, or fixed-
length (partially-empty) buffers;

Article and book summaries by Vincent Zoonekynd 616/1044

– PieceTable: two buffers, one read-only (the original
file), one append-only, with an array of pointers in-
dicating which span of which buffer to use in which
order.

An efficient natural neighbour interpolation
algorithm for geoscientific modelling

H. Ledoux and C. Gold
Move in the space of triangulations using flipping
movements 7→ until you reach the Delaunay
triangulation.

A stable and fast implementation of natural
neighbor interpolation

L. Liang and D. Hale (2010)
Java implementation: edu.mines.booles.jtk.interp.

Differential privacy and machine learning:
a survey and review

Z. Ji et al. (2014)
Differential privacy adds noise to ensure that changes
to a single individual have a negligible impact. For in-
stance, one can add Laplace noise to the result f(D),
with the amplitude of the noise proportional to

Max
d(D1,D2)=1

‖f(D1)− f(D2)‖ or Max
d(D,D′)=1

‖f(D)− f(D′)‖

(in the second case, only D′ varies, but you need some
smoothing).
Similarly, to compute Argmaxa f(D, a) (e.g., to maxi-
mize a likelihood), one can sample from a Laplace dis-
tribution

p(a) ∝ exp
εf(D, a)

2 Max
dist=1

‖∆f‖

For most machine learning algorithms, adding noise to
the data and/or the loss function and/or the result en-
sures differential privacy.

DREAM(D): an adaptive Markov chain Monte
Carlo simulation algorithm to solve discrete,
non-continuous, and combinatorial posterior

parameter estimation problems
J.A. Vrugt and C.J.F. Ter Braak (2011)

Differential evolution can be used as a proposal dis-
tribution in an adaptive Metropolis simulation with
several MCMC chains (DREAM).
For discrete states, one could try to round the results,
but this only works with ordered discrete variables. In-
stead, one can take two chains at random, two coordi-
nates, and swap them.
Discrete MCMC can also be used for optimization or
satisfiability problems (e.g., Sudoku). [How different is
it from simulated annealing and genetic algorithms?]

A directional multivariate value at risk
R. Torres et al.

The value-at-risk (VaR) can be generalized to a multi-
variate setup by considering the set Qα = {x : P [X ⩽
x] = α} or, if we prefer a single vector, the intersection
Qα ∩ E[X] + Spanu, where u = (1, . . . , 1)′ is the vec-
tor in the middle of the positive quadrant. This can
be generalized to an arbitrary quadrant. [The authors
mistakenly claim that the quadrant is entirely deter-
mined by u.]

Shortfall deviation risk:
an alternative for risk measurement

M.B. Righi and P.S. Ceretta
There are many, many variants of value at risk (VaR)
and expected shortfall (ES). Here is yet another one:

ES = E[loss | loss ⩾ VaR]
SDR = ES+ σ[loss | loss ⩾ ES]

A robust statistics approach to minimum
variance portfolio optimization

L. Yang et al.
Estimate the variance matrix as the fixed point V (ρ)
of

V (ρ) = (1− ρ) 1
n

∑
i

xix
′
i

1

n
x′iV (ρ)−1xi

+ ρIN

and choose ρ to minimize the (ex post) variance port-
folio (Tyler’s robust M estimator).

Tornadoes and related damage costs
statistical modeling with a semi-Markov

approach
C. Corini et al. (2015)

Tornadoes can be modeled using aMarkov renewal pro-
cess (J, T)

Jn = (discrete) intensity of the nth tornado
(Fujita scale)

Tn = (discrete) time of the nth tornado.

One can also consider

Zt = intensity of the last tornado
Bt = time since the last tornado.

Both (J, T) and (Z,B) are Markov; Z is a semi-Markov
process.

Hawkes processes in finance
E. Bacry et al.

Survey: definitions, properties, applications, estima-
tion, simulation (either one event at a time, as for
inhomogeneous Poisson processes, or by tracking the
parenthood tree: first, generate events coming from
the background rate, then their children, then their
grand-children, etc.).

Article and book summaries by Vincent Zoonekynd 617/1044

Dirac processes and default risk
C. Kenyon and A. Green (2015)

Since the short rate r is always used in an integral,∫ t2
t1
r(s)ds, it does not have to be a stochastic process:

it can be a generalized process. A Dirac process is a
process of the form

∑
i δTi , there the Ti are the arrival

times of a Poisson process and δa is the Dirac mass
in a. They can be used in option pricing.

The Horseshoe+ estimator
of ultra-sparse signals

A. Bhadra et al.
Sparse signals can be recovered by thresholding, using
the hierarchical model

θi ∼ (1− µ)δ0 + µN(0, ψ2)

Xi ∼ N(θi, 1).

The Horseshoe prior is another hierarchical model:

λi ∼ Half-Cauchy(τ)
θi ∼ N(0, λ2i)

Xi ∼ N(θi, 1).

The Horseshoe+ prior is yet another one:

ηi ∼ Half-Cauchy(1)
λi ∼ Half-Cauchy(ηiτ)
θi ∼ N(0, λ2i)

Xi ∼ N(θi, 1).

Hierarchical Bayesian survival analysis
and projective covariate selection

in cardiovascular event risk prediction
T. Peltola et al.

Prefer the Horseshoe prior to the Laplace one (lasso):
it does not shrink large coefficients too much. The re-
sulting (Bayesian, posterior) model is not sparse, but
one can find a sparse model with similar forecasts.

Moments determine the tail of the distribution
(but not much else)

B.G. Lindsay and P. Basak (2000)

sup
F and G have
the same first
p moments

|F (x)−G(x)| ⩽ wp(x)

wp(x) =
(
1 x · · · xp

)

1 m1 · · · mp

m1
...

...
...

mp · · · · · · m2p

1
x
...
xp

Distinguishing cause from effect using
observational data: methods and benchmarks

J.M. Mooij et al.
Comparison of bivariate causal discovery algorithms,
additive noise models (compare the complexity of the
linear models y ∼ x and x ∼ y) and information-
theoretic causal inference (compare the flatness or en-
tropy of the margins – for non-linear relations, the flat-
ter is the cause) on a benchmark dataset.

A fast unified algorithm for solving
group-lasso penalized learning problems

Y. Yang and H. Zou (2014)
A faster algorithm for the group lasso

β̂ = Argmin
β

Loss(β) +
∑

g∈Groups
‖βg‖2

(this is ‖·‖2, not ‖·‖
2
2), when the loss function has a

bounded second derivative (or, more generally, a Lips-
chitz first derivative: least squares, squared hinge loss,
huberized hinge loss).
Implemented in R in gglasso. Also check grplasso.

Archimedian-based Marshall-Olkin
distributions and related copula functions

S. Mulinacci
The generalized Marshall-Olkin copula is the copula of
(Min(X1, X3),Min(X2, X3)), where (X1, X2, X3) has
an archimedian copula and (for instance) exponential
margins. The random variables X1 and X2 are the
failure times of two machines, X3 is a systemic fail-
ure time (it entails the failure of both machines), the
archimedian copula represents a common factor that
influences all three types of failures in the same way
(e.g., the maintenance of the power plant).

Fully automated variational inference
of differentiable probability models

A. Kucukelbir et al.
Variational Bayes in Stan: let X denote the observed
variable, Z the hidden variable; p(X,Z) is known, but
p(Z|X) is too complicated. One can look for q(Z),
Gaussian, close to p(Z|X) for the Kullback-Leibler dis-
tance, estimated by gradient descent.

blowtorch: an R package for on-line
constrained optimization
L. Petito and S. Pollack

The blowtorch package solves the equality-
constrained optimization problem

Find x
To maximize f(x)
Such that G(x) = 0

using Lagrange multipliers

Λ(x, λ) = f(x)− λ ·G(x)

Article and book summaries by Vincent Zoonekynd 618/1044

and stochastic gradient descent (SGD) to minimize
‖∇Λ‖22. The user must provide f ′, f ′′, G, G′, G′′; it can
be used as a pre-processing step before CG (conjugate
gradient) or BFGS.

Stochastic dual coordinate ascent methods
for regularized loss minimization
S. Shalev-Shwartz and T. Zhang

One can replace gradient descent

Find w

To minimize 1

n

∑
i

φi(w
′xi) +

λ

2
‖w‖2

with dual coordinate ascent
Find x

To maximize 1

n

∑
−φ∗i (−αi)−

λ

2

∥∥∥∥ 1

λn

∑
αixi

∥∥∥∥2
For faster convergence, start with SGD, then use
stochastic DCA.

The role of Occam’s razor
in knowledge discovery

P. Domingos
There are two versions of Occam’s razor:
1. If the generalization error is the same, prefer simpler
models: they are easier to understand and explain;

2. If the training error is the same, prefer the simpler
model: the generalization error will be lower.

The second is wrong:
– In a regression, one should not round the coefficients,
even though “x+ 2” is simpler than “1.17x+ 1.98”;

– The VC dimension is a better indicator of the gen-
eralization error than the number of parameters;

– The number of models among which the final model
is chosen is more important than its complexity
(multiple testing);

– Insanely complex models work well: penalized re-
gression, the kernel trick which inflates the dimen-
sion of the feature space, ensemble models, deep
learning.

Estimating the algorithmic complexity
of stock markets

O. Brandouy et al. (2015)
The Kolmogorov complexity K(s) of a binary string s
is the minimum length of a program (in some fixed lan-
guage) that outputs s. An (infinite) string s is random
(this is not a probabilistic notion) if

∃c ∀n K(s1:n) ⩾ n− c.

One can estimate the randomness of a (long) string
by looking at its compressibility, with algorithms such
as Huffman, RLE or Paq8o8. To apply this idea to
time series, iteratively remove the visible structure, try
to compress, and iterate as long as the signal remains
compressible:

– Remove the visible structure from the prices: com-
pute the log-returns;

– Remove the visible structure (the distribution of re-
turns): uniformize the returns;

– Remove the visible structure (volatility clustering):
uniformize the returns on a moving window;

– Discretize, compress.
What remains is not clear: it could be market mi-
crostructure (e.g., tick size) or the artefacts of the
structure-removing procedures.

Liquidity crises on different time scales
F. Corradi et al. (2015)

The notion of liquidity depends on the time scale: the
depth and breadth of the limit order book around 30
seconds; the speed at which the order imbalance dis-
appears, around 15 minutes.

Iterated prisoner’s dilemma contains strategies
that dominate any evolutionary opponent

W.H. Press and F.J. Dyson (2012)
In the iterated prisoner’s dilemma (IPD), a longer (but
still finite) memory does not give any advantage (over
a 1-period memory). Strategies can be modeled by a
Markov chain. A player can decide on his/her oppo-
nent’s rewards (but not on his/her own).

Optimal thresholding of classifiers
to maximize F1 measure

Z.C. Lipton et al.

Extreme learning machines
E. Cambria and G.B. Huang (2013)

ELMs (or echo networks) are neural nets whose hid-
den layers are initialized at random; they can be seen
as random kernel embeddings.

Text understanding from scratch
X. Zhang and Y. LeCun

Convolutional neural networks can be used on streams
of characters (not words) for text classification (6 con-
volutional layers, 3 fully connected ones, 2 dropout
units); the characters are encoded as m-dimensional
boolean vectors.
The training data can be augmented with synonyms
(mytheas, from LibreOffice, itself from Wordnet). The
approach also works with non-alphabetic languages us-
ing romanization (for Chinese: pypinyin and jieba)
It works better than a bag-of-words (logistic regression
on the 5000 most frequent words) or a bag of centroids
(idem, after applying k-means, k = 5000, to word2vec).

Article and book summaries by Vincent Zoonekynd 619/1044

Delving deep into rectifiers:
surpassing human-level performance

on ImageNet classification
K. He et al.

Rectified linear units (ReLU) f(y) = y+ can be gen-
eralized to parametric rectified linear units f(y) =
y+ − ay−, where a is learned (and not penalized – like
biases). The weights can be initialized randomly.

Online passive-aggressive algorithms
K. Crammer et al. (2006)

SVMs or regressions can be estimated online: if
the new observation is correctly classified (with high
enough a margin), do not update the model (passive
step), otherwise, update it a little (aggressive step).

The relaxed online maximum margin algorithm
Y. Li and P.M. Long (2001)

SVMs can be fit online (i.e., one observations at a
time).

Why does deep learning work?
A perspective from group theory

A. Paul and S. Venkatasubramanian (2015)
In autoencoders formed a group

G = {autoencoder}
X = {possible inputs}
Y = {training data} ⊂ X,

with G acting on X, learning would be a random walk
looking for g ∈ StabY . This can be made rigorous.

Evolutionary artificial neural network
based on chemical reaction optimization

J.J.Q. Yu et al.
Chemical reaction optimization (CRO) is a population-
based simulated annealing optimization algorithm:
– Molecular structure: solution;
– Potential energy: value of the objective function (to
minimize);

– Kinetic energy: tolerance to an increase in energy;
– Decomposition (of a molecule): randomization of
50% of the coordinates;

– Synthesis (collision between molecules): cross-over;
– Motion: random neighbour, mutation.

Reinforcement learning
neural Turing machines

W. Zaremba and I. Sutskever
A Neural Turing machine is a Turing machine in which
everything (input, output, memory access, etc.) has
been replaced by a distribution (over inputs, outputs,
possible memory locations, etc.). Reinforcement learn-
ing can help train it more efficiently, by avoiding ac-
cesing all the memory at each iteration.

Markov logic networks
M. Richardson and P. Domingos

A Markov logic network (MLN) is a set of first or-
der logic formulas (FOL adds functions and quantifiers
to propositional logic), with weights.
MLNs extend both FOL and Markov networks. A
MLN defines a Markov network: write all the formulas
in clausal form (the initial universal quantifiers can be
omitted; the existential quantifiers can be replaced by
functions; only use disjunctions), e.g.,

Formula Clausal form
∀x F (x) F (x)
∀x ∃y F (x, y) F (x, g(y))
∀x F (x)⇒ G(x) G(x) ∨ ¬G(x);

add a node for each possible grounding of each pred-
icate. The network is large (even if we ensure it is
finite by demanding that the values of the functions be
among the constants), but inference does not always
require grounding the whole network,

DL-Learner manual
J. Lehmann (2014)

Perhaps the only open-source ILP learner.

Efficient program synthesis using constraint
satisfaction in inductive logic programming

J. Ahlgren and S.Y. Yuen (2013)
ILP systems often arrange the set of candidate clauses
into a lattice, and explore it from the bottom (using
A* for Prolog and simulated annealing for Aleph), but
many candidates are invalid. Atom is similar, but uses
a SAT solver (the DPLL algorithm) to generate valid
candidates.

Integer sequence discovery from small graphs
T. Hoppe and A. Petrone (2014)

Encyclopedia of finite graphs: all simple connected
graphs with up to 10 vertices and many of their in-
variants, with the corresponding OEIS sequence.
Tools used: nauty (gen -c to enumerate the graphs),
NetworkX, Graph-tool (C++, with Python bindings,
GPL), PuPL, SQLite.

DeepWalk: online learning
of social representations
B. Perozzi et al. (2014)

A set of (fixed-length) random walks on a graph can
be seen as a corpus: NLP techniques apply (language
models, LDA, word2vec, etc.).

Article and book summaries by Vincent Zoonekynd 620/1044

Partial correlation analysis:
applications for financial markets

D.Y. Kenett et al. (2014)
The influence of a random variable Z on the correlation
between two random variables X and Y is

d(X,Y : Z) = ρ(X,Y)− ρ(X,Y | Z)

where

ρ(X,Y | Z) = ρ(X,Y)− ρ(X,Z)ρ(Y, Z)√(
1− ρ2(X,Z)

)(
1− ρ2(Y, Z)

) .
The average influence d(X : Z) = 〈d(X,Y : Z)〉Y ̸=X
or d(X) = 〈d(X : Z)〉Z is asymptotically Gaussian and
can be used in statistical tests.
For two dates, one can compute the rank correlation
Cor(dt1(X), dt2(X)): the corresponding date×date
matrix shows the market stability.
By looking at the influence of stocks Y in a given sector
Si on a stock X, d(X : S) = 〈d(X : Y)〉Y ∈S , one can
derive a finer sector decomposition, adapted to compa-
nies spanning several sectors.

A multiple network approach
to corporate governance

F. Bonacina et al. (2014)
Eigenvalue centrality xi =

∑
j Aijxj can be generalized

to directed graphs (hits algorithm, identifying hubs
and authorities)

aj =
∑
i

Aijhi

hi =
∑
j

Aijai

and directed graphs with coloured topics

aj =
∑
ik

Aijkhitk

hi =
∑
jj

Aijkaitk

tk =
∑
ij

Aijkajhi.

The hits authority a and hub h vectors are the first
left and right singular vectors of A, obtained from a low
rank decomposition A ≈

∑
r σru

(r) ◦ v(r) or the SVD
decomposition A = UDV ′ – the next singular vectors
can often be interpreted as well.
These decompositions can be generalized to tensors:
parallel factor analysis A ≈

∑
r σru

(r) ◦ v(r) ◦ w(r) or
Tucker decomposition A ≈ G×1 U ×2 V ×3 W .
In a financial context, one could look at the three fol-
lowing networks:

Aij1 = percentage of company i owned by company j
Aij2 = number of directors sitting on both boards
Aij3 = 1Cor(Xi,Xj)>0.65.

The various singular vectors correspond to various in-
fluence networks.

Inside the network: trading of inside and
outside stocks by corporate insiders

H. Berkman et al. (2014)
Insiders central in the corporate network earn higher
returns when they buy or sell their stock, or nearby
stocks.

A network approach to portfolio selection
G. Peralta and A. Zareei (2014)

Stocks with high centrality are more stable; stocks
with low centrality bring higher diversification bene-
fits. Avoid stocks with extreme centrality: they are
either too volatile or fail to bring any diversification
benefit.

Using friends as sensors
to detect global-scale contagious outbreaks

M. Garcia-Herranz et al. (2014)
Since the S-shaped cummulative epidemic curve is
shifted left for more central nodes, one can build an
early-warning system (here, for viral spread of hashtags
on Twitter) using a random sample of central nodes.
For instance, one could take n nodes at random (con-
trol group) and then a random neighbour (followee) of
each of them (sensor group – they have higher central-
ity).

Common pitfalls
using the normalized compression distance:

what to watch out for in a compressor
M. Cebrián et al. (2005)

The (incomputable) normalized information distance
(NID) is

NID(x, y) =
Max{K(x|y)−K(x), K(y|x)−K(y) }

Max{K(x), K(y) }
where the conditional Kolmogorov complexity K(x|y)
is the length of the shortest program that outputs x
when fed y, and k(x) = k(x|∅).
The normalized compression distance is

NCD(x, y) =
Max{C(xy)− C(x), C(yx)− C(y) }

Max{C(x), C(y) }
where C(x) is the length of x after compression
with your favourite algorithm (bzip2 (Burrow-Wheeler
transform), gzip (LZ77), PMZZ (Markov model)). To
really have a distance, one needs C(xx) = C(x) or, at
least, C(xx) = C(x) + O(log |x|) – but if xx exceeds
the block size, this is not guaranteed.

Clustering by compression
R. Cilibrasi and P.M.B. Vitányi (2005)

Initial article on NCD, with applications to clustering.
Implementation: complearn-gui.

Article and book summaries by Vincent Zoonekynd 621/1044

The Google similarity distance
R. Cilibrasi and P.M.B. Vitányi (2007)

Let N{x,y} be the number of web pages containing
both x and y, according to Google. Define a proba-
bility distribution on all singletons and doubletons of
search terms by g({x, y}) ∝ N{x,y} (allowing x = y).
The Google code is then G(x, y) = − log g({x, y}) =
− logN{x,y}+ logN and G(x) = G(x, x). The normal-
ized Google distance is another approximation of the
NID:

NGD(x, y) =
G(x, y)−Min{G(x), G(y)}

Max{G(x), G(y)}

=
logMax{Nx, Ny} − logNxy
logN − logMin{Nx, Ny}

We do not know N , but the results do not seem very
sensitive to it:

#pages ⩽ N ⩽ #words per page×#pages.

Cross-firm information flows
and the predictability of stock returns
A. Scherbina and B. Schlusche (2013)

Test for Granger causality

x ∼ lag(x) + lag(y) + lag(market)
y ∼ lag(x) + lag(y) + lag(market)

for all pairs of stocks on a moving window (12 or 36
months, or 52 weeks) to identify leaders (p < 5% – you
may want to control for multiple testing).
For each stock with leaders, forecast the returns from
the past returns of the leaders (using the previous re-
gression – there is one forecast per leader) and invest
if most leaders agree.
Beware of non-synchronous trading.
Other signs of leadership include: analyst coverage, in-
stitutional ownership, trading volume, increased news
coverage (but when the coverage is too high, the com-
pany ceases to be a leader: information spreads almost
instantly).

Exploring multi-layer flow network
of international trade based on flow distances

B. Shen et al. (2015)
After adding source and sink nodes to the world trade
flow network (for some commodity) to ensure that the
net flow through each node is zero, one can compute
distances:
– Expected first passage time;
– Expected (not only first) passage time (only well-
defined for open flow networks, i.e., with source and
sink);

– The symmetrization of those, e.g., using a minimum
or a harmonic mean:

Min(dij , dji),
2dαijd

α
ji

dαij + dαji
.

The trophic level of a node is the (first passage) dis-
tance from the source.

The tone of financial news
and the perceptions of stock and CDS traders

M. Liebmann et al. (2014)
One can estimate the relation between news (they are
often already tagged, e.g., “results” or “debt/credit”)
and returns (for different assets, e.g., stocks and CDS)
using a Naive Bayes classifier, i.e., by looking at the
words one by one and keeping the most relevant, e.g.,

Tone(w) = P (+|w)
P (+)

− P (−|w)
P (−)

.

One could also use association rule mining [mentioned,
not tried – should not work well] or logistic regression
[not mentioned – should work with a penalty and word
pairs].
Commonly-used lexicons do not work well in a financial
context (e.g., “cancer” is usually negative, but neutral
in a financial context): one needs a bespoke or dynamic
lexicon.

Generalized low-rank models
M. Udell et al. (2014)

This is one of the first papers introducing a statistical
algorithm with an implementation, not in R, Python,
Matlab or C, but in (both) Julia and Spark.
Principal component analysis (PCA) of A ∈Mmn,

(X,Y) = Argmin
X∈Mmk
Y ∈Mnk

‖A−XY ′‖2F

= Argmin
X,Y

∑
ij

(Aij − xi·y′j·)2

can be generalized to

Argmin
X,Y

∑
(i,j)∈Ω

Loss(xi·y′j·, Aij) +
∑
i

r(xi·) +
∑
j

s(yj·).

Here are a few examples, for the penalty terms:
– Low-rank matrix completion: Ω J1,mK× J1, nK;
– Quadratically-penalized PCA: r = s = ‖·‖22;
– Non-negative matrix factorization: r(x) = I∀j xj⩽0

where

Icondition =

{
0 if condition is true
∞ otherwise;

– Sparse PCA: r(x) = I#{j:xj ̸=0}⩽s or its L1 relaxation
r = ‖·‖1;

– Quadratic clustering (k-means): r(x) = I∃ℓ:x=eℓ ,
where the eℓ are the basis vectors;

– Quadratic mixtures: r(x) = Ix∈∆, where ∆ is the
standard simplex;

– Subspace clustering (approximation of the data as
a union of low-dimensional subspaces): partition
the columns of x into blocks and set r(x) =
Iat most one block has nonzero entries;

Article and book summaries by Vincent Zoonekynd 622/1044

– Feature selection: r(x) = ‖·‖22, s(y) = ‖·‖2 (not
‖·‖22), to make y column-sparse (most columns are
zero);

– Supervised learning;
– Dictionary learning: r = ‖·‖1 to enforce sparsity and
s = ‖·‖22 (to ensure the problem is well-posed when
k � m,n).

Here are a few examples for the loss function:
– Robust PCA:

Argmin ‖A−XY ′‖1 + γ ‖X‖2F + γ ‖Y ‖2F ;

– Weighted PCA: Lij(u, a) = wij(u− a)2;
– Huber PCA: L(u, a) = huber(u− a), where

huber(x) =
{

1
2x

2 if |x| ⩽ 1
|x| − 1

2 if |x| ⩾ 1

– Quantile PCA (if the cost of under- and over-
estimating A is different: Lij(u, a) = λ(u − 1)+ +
(1− λ)(u− a)−;

– Divergences:

LKL(u, a) = a log
a

u
− a+ u

LIS(u, a) = a log
a

u
− 1 +

a

u

Lβ(u, a) =
aβ

β(β − 1)
+
uβ

β
− auβ−1

β − 1
;

– Boolean PCA: L(u, a) = (1 − ua)+ with a ∈ {0, 1}
(hinge loss);

– Logistic PCA L(u, a) = softplus(−au) = log(1 +
e−au), with a ∈ {0, 1};

– Poisson PCA L(u, a) = eu − au + a log a − a =
LKL(e

u, a), with a ∈ N (count data);
– Ordinal PCA

L(u, a) =
∑
b<a

(1− u+ b)+ +
∑
b>a

(1 + u− b)+;

– Interval PCA L(u, [a, b]) = Max{(a−u)+, (b−u)+};
– Categorical PCA

L(u, a) = (1− ua)+ +
∑
b ̸=a

(1 + ub)+,

where a ∈ J1, kK and u ∈ Rk, i.e., we consider a
block of k columns of Y at a time;

– Ordinal PCA L(u, a) =
∑
b(1− Ia>bub)+;

– Permutation PCA L(u, a) =
∑
i(1− uai + uai+1)+;

– Ranking PCA L(u, a) =
∑
i<j(1− uai + uaj)+.

The problem is not convex, but often biconvex (con-
vex in one variable when the other is fixed) and can be
solved by alternating minimization (alternatively min-
imize wrt one variable with the other fixed). Each step
is easy to parallelize: treat the rows of X separately.
We do not need the exact minimum at each iteration:
a single step in the right direction is often enough.
To deal with non-finite regularization terms, one can
use the proximal gradient method:

g1 =
∑

j:(i,j)∈Ω

∇Loss(xiyj , Aij)yj

xi ← proxαr(xi − αgi)

where proxf (z) = Argminx f(x)+
1
2x− z

2 and α = 1/k
(for the kth iteration) or α = 1/ ‖gi‖2.
Stochastic gradient can help.
Careful initialization (e.g., SVD, k-means++) is im-
portant.

Adaptive subgradient methods for online
learning and stochastic optimization

J. Duchi et al. (2010)
Gradient descent is the iterative algorithm

xn+1 ← xn − ηgn,

where η is the learning rate and gn the gradient (or a
subgradient) of the loss function.
Projected gradient descent adds a constraint x ∈ X :

xn+1 ← Argmin
x∈X

‖x− (xn − ηgn)‖22 .

One can give more importance to the directions in
which the gradient is larger:

xn+1 ← Argmin
x∈X

∥∥∥x− (xn − ηG1/2
n gn)

∥∥∥2
Gn

where Gn =
∑

1⩽k⩽n gkg
′
k or Gn =

∑
diag gkg

′
k and

‖x‖2G = 〈x, x〉G = 〈x,Gx〉 defines the Mahalanobis
norm.
The proximal gradient is

xn+1 ← Argmin
x∈X

η〈gn, x〉+ ηφ(x) +Bψn(x, xn)

where ψn = ψ or ψn = nφ or ψn =
√
nψ or ψn(x) =

‖x‖
δI+G

1/2
n

or ψn(x) = ‖x‖δI+diagG
1/2
n

and

Bψ(x, y) = ψx− ψy − 〈∇ψy, x− y〉

is the Bregman divergence. The first term pulls x in
the direction −gn, as much as allowed by the other
terms; the second is a regularization; the third forces
x to be close to xn.

Identifying and attacking
the saddle point problem

in high-dimensional non-convex optimization
Y.N. Dauphin et al.

In high dimension, the local minima (of a draw of a
Gaussian process) are very close to the global mini-
mum, but there are many critical points far away from
the minima (to see it: plot the value of the objective
function at critical points versus the proportion of neg-
ative eigenvalues). They are surrounded by plateaus,
on which gradient methods get stuck. Newton methods
are even worse: the saddle points are attractive (New-
ton methods assume there are no negative eigenvalues
and end up going in the wrong direction).

Article and book summaries by Vincent Zoonekynd 623/1044

Trust region methods (minimize a first or second order
approximation of the objective, with a constraint on
the distance from the previous point) fare better. One
can “fix” the Newton method for saddle points by re-
placing the eigenvalues of the Hessian by their absolute
values (saddle-free Newton method). This is actually
a trust region method, using |H| as a distance, and
a first-order approximation. In high dimension, one
can stay on a Krylov subspace (a subspace of the form
Span{x,Hx, . . . ,Hkx}, for some x – this approximates
the subspace spanned by the most important eigenvec-
tors).

Fast large-scale optimization by unifying
stochastic gradient and quasi-Newton methods

J. Sohl-Dickstein et al. (2014)
Combine the mini-batches of stochastic gradient de-
scent with the approximate Hessian (and absence of
hyper-parameters) of quasi-Newton methods by keep-
ing track of the (compressed) approximate Hessian of
each mini-batch separately

Deep learning with elastic averaging SGD
S. Zhang et al. (2015)

To parallelize stochastic gradient descent (SGD), add
an L2 penalty for the distance to some central, refer-
ence value, updated only once in a while – only send
updates to the parameter server for parameters that
have drifted enough from their initial values.
More precisely, replace the problem

Find x
To minimize f(x)

with

Find x, x1, . . . , xn
To minimize

∑
f(xi) + ρ

∑
‖x− xi‖2

Such that ∀i xi = x.

For the implementation, ignore the constraint; worker i
knows xi and x, and can compute the contribution
of xi to the gradient; to update x, the workers need
to combine their knowledge (this can be done asyn-
chronously).

Bayesian optimization in a billion dimensions
via random embeddings

Z. Wang et al.
Bayesian optimization works best in low dimensions:
in high dimensions, project on a random subspace – if
the intrinsic dimension of the problem is low, this is
good enough.

Practical Bayesian optimization
of machine learning algorithms

J. Snoek et al.
Bayesian optimization is a class of optimization al-
gorithms tha looks for the minimum of an expensive

function; contrary to other optimization algorithms, it
keeps (and uses) all the previous function evaluations.
For instance, one can model the function as a Gaus-
sian process (GP), often with a Matern 5/2 kernel (this
makes the function a.s. C 2, but not more) and choose
the next point to evaluate by maximizing
– The probability of improvement,

PI(x) = P [y(x) ⩾ best];

– The expected improvement,

EI(x) = E[(y(x)− best)+];

– The upper confidence bound, LCB(x) = µx − κσx,
where y(x) ∼ N(µx, σx).

(Prefer the expected improvement.)
Possible improvements include:
– Modeling the (log-)duration function as well, and
minimizing the expected improvement per second;

– Running several function evaluations in parallel and
maximizing the expected improvement over all pos-
sible outcomes of the pending evaluations.

Hyperopt: a Python library
for optimizing the hyperparameters

of machine learning algorithms
J. Bergstra et al. (2013)

If you need to minimize an expensive function, some
of whose arguments may be discrete (you need to pro-
vide a prior on the parameters, not just bounds). Also
check spearmint.

Continuous global optimization in R
K.M. Mullen (2014)

Big list of global optimization algorithms available in R,
i.e., algorithms robust to local minima (simulated an-
nealing, genetic algorithms, particle swarm optimiza-
tion, brancg-and-bound, direct, etc.), with tests on 50
different problems (in the globalOptTests package):
prefer nloptwrap::stogo (very slow, unless you pro-
vide an analytic gradient), rgenoud::genoud, GenSA.

On best practice optimization methods in R
J.C. Nash (2014)

The optreplace package replaces the default opti-
mization algorithms in optim:
– dfoptim::nmkb instead of Nelder-Mead;
– Rcgmin instead of CG;
– Rvmmin instead of BFGS or L-BFGS-B (but it uses a
full Hessian, not a low-memory approximation);

nls is not replaced, but nmlrt is a robust alternative.
Diagnostics are often lacking (there are some in
optimx).
Stochastic optimization (SANN, DEoptim), con-
strained optimization (constrOptim), fuzzy optimiza-
tion deserve attention.

Article and book summaries by Vincent Zoonekynd 624/1044

Representative/benchmark problems are needed (those
in NISTnls/NISTopt are “extreme”).

Convex optimization in R
R. Koenker and I. Mizera (2014)

Long list of applications of convex programming in
statistics:
– Median regression;
– Quantile regression;
– Hinge regression (or other piecewise linear convex
loss functions);

– Huber M -estimators (the loss function is quadratic
when the residuals are small, linear when they are
large);

– Penalized quantile regrsssion;
– Support vector machines (hinge loss and L2 penalty)

(kernlab);
– Random linear constraints, P [a′ix ⩽ bi] ⩾ η, where
ai ∼ N(αi,Ωi) are random variabes;

– Square root lasso, group lasso;
– Convex regression.
Matrix completion and robust PCA can be expressed
with matrix norms such as the spectral norm (largest
eigenvalue) or the nuclear norm (sum of the singular
values).
Interior point methods usually replace linear inequality
constraints with log-barriers. For proper cones, one can
use a generalized log λ : K → R, C 2, with ∇2λ ≺psd 0
(i.e., concave), such that

∃θ ∀x �K 0 ∀y �R+
0 λ(yx) = λ(x) + θ log y.

For instance,

λ(x) =
∑
i

log xi for K = Rn
+

λ(x) = log(x20 − ‖x1:n‖
2
) for K = {x ∈ Rn+1 : ‖x1:n‖ ⩽ x0}

λ(A) = log |A| for K = S+n

Interior point methods work best when the Hessian (of
the objective function plus the barrier) is sparse, e.g.,
when the problem is additively separable.
After discretization, infinite mixture models (Kiefer-
Wolfowitz)

Find f
To minimize

∑
i log gi

Such that g = Af, f ⩾ 0, f ′1 = 1

(where Aij = φ(xi, θj), the θj are on a fine grid,
the xi are the observations and φ(·, θj) the proba-
bility distribution functions being mixed) or penal-
ized/constrained density estimation problems are con-
vex and additively separable (the penalty could be∫
(
√
f)′,

∫
(log f)′′2,

∫
|(log f)′′|; the constraint could

be “f log-concave”). Many of these are implemented
in REBayes, but it unfortunately relies on Mosek.

trustOptim: an R package for trust region
optimization with sparse Hessians

M. Braun (2014)
Trust region optimization minimizes a second order ap-
proximation of the objective function in a small region
around the current point (it is similar to sequential
quadratic optimization, but with constraints, to avoid
moving too fast – and it does not misbehave in pres-
ence of indefinite Hessians); if the approximation is not
good at the new point, of if it does not bring any im-
provement, shrink the region; if the new point is on the
boundary, expand the region.
This is implemented in the trust package, but the al-
gorithm does not scale well if the Hessians are dense:
trustOptim uses the same idea with sparse Hessians
(either provide the sparsity structure and use numeric
differentiation, or provide an analytic Hessian, e.g.,
from CppAD or R2admb).

Square root lasso: pivotal recovery of sparse
signals via conic programming

A. Belloni et al.
The square root lasso is

Argmin
β

‖y − x′β‖2 + λ ‖β‖1 ;

while the lasso is

Argmin
β

‖y − x′β‖22 + λ ‖β‖1 .

Spectral projected gradient methods:
review and perspectives

E.G. Birgin (2014)
The spectral projected gradient (SPG, implemented in
BB::BBoptim), combines (projected) gradient descent
and secant methods. Secant methods approximate the
gradient∇f with an affine function x 7→ φ(x) = a+Bx,
using the last two points,

φ(xn−1) = a+Bxn−1 = ∇fxn−1
φ(xn) = a+Bxn = ∇fxn

i.e.,

B(xn − xn−1) = ∇fxn −∇fxn−1
a = ∇fxn −Bxn

(there are many such functions). The BB method tries
to use B = σI; this is usually mot possible, but the
least squares approximation is good enough:

σ =
〈previous step, change in gradient〉

previous step size

σn+1 =
s′nyn
s′nsn

sn = xn − xn−1
yn = ∇fxn −∇fxn−1.

Article and book summaries by Vincent Zoonekynd 625/1044

Spectral methods use this step, multiplied by some co-
efficient, adjusted to ensure that the objective function
improves every M steps (not at every step – it is a
non-monotonic method).

What is... a spectrahedron?
C. Vinzant

The positive semidefinite cone.

AD model builder: using automatic
differentiion for statistical inference of highly

parameterized complex nonlinear models
D.A. Fournier et al. (2011)

Automatic differentiation (AD) differentiates a func-
tion written in C++ as follows:
– Evaluate the function and keep track of all the float-
ing point operations performed; if there are loops or
conditionals, expand them – the sequence of opera-
tions need not always be the same;

– Iteratively compute either ∂tj/∂xi (forward mode)
or ∂f/∂ti (reverse mode, aka, back-propagation),
where the ti are the intermediate results; reverse
mode if more efficient.

ADMB provides a C++-like DSL to specify a func-
tion and uses a quasi-Newton algorithm with the gra-
dient from AD to minimize it. It also provides diagnos-
tics useful in statistics: inverse of the information ma-
trix (i.e., variance of the estimated parameters), profile
likelihood, MCMC samples from the posterior distribu-
tion of the parameters (for the Hessian, they use finite
differences: the code generated by AD is often “ludi-
crously obfuscated” and AD tools “frequently cannot
differentiate the code they produce, so you are usually
limited to derivatives of order 1”).

Using AD model builder and R together:
getting started with the R2admb package

B. Bolker (2013)
If you write down the likelihood of your model your-
self, want to use gradient-based optimization methods,
but your model is too complex to have its gradient
computed by hand or for numeric differentiation to be
useful, R2admb can compute the (analytic) gradient for
you and optimize the log-likelihood. It generates the
usual diagnostics (AIC, vcov, profile likelihood) and
(MCMC-based) posterior parameter distributions. It
needs ADMB (free, but has to be installed separately)
and a C++ compiler, and forces you to write the log-
likelihood in C++. There does not seem to be a way
of accessing the (compiled, analytic) gradient directly.
Also check glmmADMB – PBSadmb and ADMB2R are older.
In Python, check PyAutoDiff (it uses Theano, and can
therefore leverage GPUs).

Getting things in order:
an introduction to the R package seriation

M. Hahsler et al.

To reorder the rows and columns of a matrix, e.g. a
dissimilarity matrix (in R: seriation):
– Try to minimize the number of inversions in each
row and column;

– Find a Hamiltonian path on the distance matrix
(TSP);

– Minimize the moment of inertia around the diagonal∑
ij dij |i− j|;

– Make the dissimilarities close to the distance to the
diagonal, i.e., dij ≈ |i− j| (find σ ∈ Sn to minimize
the sum of squares

∑
ij(dij − |i− j|)2);

– Ensure similar values are close together by mini-
mizing

∑
p

∑
q∈Neigh(p)

(xp − xq)2, using 4- or 8-element

neighbourhoods;
– Use the first principal component;
– Compute a hierarchical clustering and apply some
heuristic to select an ordering compatible with it (in
R: gclus).

Few of those methods can be generalized to rectangu-
lar matrices and, in this case, rows and columns are
often treated independently.

Generalized association plots:
information visualization

via iteratively generated correlation matrices
C.H. Chen

Take the correlation matrix of the columns of a corre-
lation matrix, and iterate.
On the first two principal components, the points form
an ellipse; the linear order on this ellipse can be used
to solve seriation problems (“rank-2 ellipse seriation”).
After a few more iterations, the matrix often only has
±1 entries and only two different columns; the observa-
tions can be split into two groups; recursively iterating
gives a hierarchical clustering. [This assumes the ma-
trix has no symmetries, i.e., its stabilizer for the action
σ ·A = (Aσi,σj)ij is trivial.]

Package hdlm: regression tables
for high-dimensional linear model estimation

T.B. Arnold
It is often claimed that penalized regression does not
provide p-values or confidence intervals – but one can
use a 2-step approach:
– Fit a sparse model (least squares with lasso, quantile
regression with lasso, Dantzig selector, etc.) on part
of the data (be conservative: we want to keep all the
variables in the true model with high probability);

– Fit this smaller model on another (independent) part
of the data, and compute p-values and confidence in-
tervals.

The hdlm package also bootstraps the p-values and cor-
rects them (by taking the median).

Article and book summaries by Vincent Zoonekynd 626/1044

Exact and approximate area-proportional
circular Venn and Euler diagrams

L. Wilkinson (2012)
To plot an Euler diagram, representing the intersec-
tions of n sets, with circles:
– Encode all possible intersections as n-bit binary

numbers (e.g., Y1101 = X1 ∩X3 ∩X4); use the same
numbering for the disjoint sets, Zk = Yk \

⋃
ℓ:Yℓ Yk

Yℓ;

– Define the loss as
∑

(area−desired area)2, where the
sum is over the disjoint sets;

– Estimate those areas using either exact computa-
tions (compute pairwise intersections, compute the
area of the polygon and the lunes), polygon approx-
imations of the circles or a bitmap approach (dis-
cretize the circles into pixels);

– For the initial guess, use the desired disk ar-
eas and place them using multidimensional scal-
ing (MDS) on the Jaccard distance matrix dij =
|Xi ∩Xj | / |Xi ∪Xj |;

– In the optimization, only move the circle centers,
first using an (analytical) approximate gradient with
a small learning rate, them a numeric gradient.

In R, this is implemented in the venneuler package.

Visualizations with Venn and Euler diagrams
L. Micallef

A polygonal Euler diagram can be drawn with a force-
directed layout, with attractive and repulsive forces,
not only between vertices, but also between edges and
polygons.

Statistical computing in functional data
analysis: the R package fda.usc

M. Febrero-Bande and M. Oviedo de la Fuente
The fda.usc package builds on the other functional
data analysis (FDA) packages (fda, ftsa, rainbow,
fpca, MFDF, fdaMixed) and provides an abstraction for
functional objects (an fdata type) aimed at making
functional data manipulations as easy as categorical
variable manipulations (with the factor abstraction).
It provides:
– Conversion methods from fdata: basis expan-

sion, non-parametric kernel smoothing (min.basis,
fdata2fd, min.np);

– Lp distances, semi-metrics (Lp distance between the
kth derivatives);

– Depth computations (the average distance between
a given observation and all the (other) observations –
it is minimum for the median) and the corresponding
measures of location and dispersion; they can also be
used for outlier detection;

– Smoothed bootstrap;
– Regression with scalar response and functional co-
variates, with cross-validation and influence mea-
sures (Cook’s distance).

Online prediction under model uncertainty
via dynamic model averaging:

application to a cold rolling mill
A.E Raftery et al. (2010)

Dynamic model averaging (DMA) generalizes Bayesian
model averaging (BMA) to time-varying models.
Given n time-varying models (e.g., a time-varying re-
gression, which can be fitted with a Kalman filter), as-
sume that the data may come from a different model at
each point in time, and that the correct model changes
according to a Markov chain; model the correct model
as the hidden state in a hidden Markov model (HMM);
use the state probabilities as weights when averaging
the n models.

White noise and simulation
of ordinary Gaussian processes

B. Puig and F. Poiron
White noise can be defined as a generalized pro-
cess (the stochastic analogue of a tempered distribu-
tion), i.e., a continuous linear form on the Schwartz
space S (the space of rapidly-decreasing functions φ:
∀α, β supx

∣∣xαDβφ
∣∣ <∞); it is entirely defined by its

characteristic function

C(φ) =

∫
Ω

eiXϕdP =

∫
S′
ei⟨ω,ϕ⟩dµ(ω) = exp− 1

2 ‖φ‖
2
H .

With a stochastic process, we can consider Xt (a ran-
dom variable) orXt(ω) (a number). With a generalized
process, we can only look at Xϕ, where φ is a test func-
tion, i.e., the weighted average of “Xt”, using (φ(t))t
as weights.

ABC model choice via random forests
P. Pudlo et al. (2014)

ABC posterior probabilities for model selection are not
trustworthy. Instead, simulate data from several mod-
els, compute a summary statistic, and ask some ma-
chine learning algorithms (say, random forests) to pre-
dict the model (and its aprameters) from the summary
statistic.

A survey of metric learning for feature vectors
and structured data

A. Bellet et al. (2014)
Some machine learning algorithms (k-means, k near-
est neightbours) rely on a distance, but choosing it
beforehand need not be optimal: metric learning uses
the data to select the best distance for the problem at
hand.
Mahalanobis distance learning looks for a distance of
the form

dM (x, y) =
√
(x− y)′M(x− y)

with M positive semidefinite, that optimizes some cri-

Article and book summaries by Vincent Zoonekynd 627/1044

terion, e.g. (large merging nearest neighbours, LMNN)
Find M ∈ S+
To minimize (1− µ)

∑
(i,j)∈S

d2M (xi, yi) + µ
∑

(i,j,k)∈R
ξijk

Such that ∀(i, j, k) ∈ R
d2M (xi, xk)− d2M (xi, xj) ⩾ 1− ξijk

where

S = {(i, j) : yi = yj and xi ∈ Neigh(xj)}
R = {(i, j, k) : (i, j) ∈ S and yi 6= yk}

Regularizations include:
– The mixed L2,1 norm, ‖M‖2,1 =

∑
i ‖Mi,·‖2, which

tends to zero out entire rows of M ;
– Log-det divergence,

D(M,M0) = tr(MM−10)− log det(MM−10)− d,

with M0 = I.
Non-Mahalanobis similarities include:
– k(x, y) = x′My, with M not necessarily positive, or
even symmetric;

– k(x, y) =
x′My√

x′Mx
√
y′My

(generalized cosine simi-

larity);
– Kernalization, kernal PCA (kPCA);
– A neural network (deep belief net, convolutional
net) to learn a non-linear projection g so that
‖g(x)− g(y)‖1 be small for positive pairs and large
for negative pairs.

Local metric learning:
– Cluster the data and learn a different Mahalanobis
metric in each cluster; one can also consider the a
barycenter of Mahalanobis distances;

– The symmetrized Bregman divergence is a smoothly-
varying Mahalanobis distance:

dϕ(x, y) = φxφy − (x− y)′∇φy
dsym
ϕ (x, y) = dϕ(x, y) + dϕ(y, x)

= (x− y)′∇2φ(z)(x− y)for some z ∈ [x, y]

One can devise distances for specific types of data:
– Histogram data (points in the standard simplex ∆)

and the χ2 distance

χ2(x, y) =
1

2

∑
i

(xi − yi)2

xi + yi

χ2
L(x, y) = χ2(Lx,Ly) (with L∆ ⊂ ∆)

or the earth mover’s distance;
– Strings, trees, graphs with the edit distance.

Handling sparsity via the horseshoe
V.M. Carvalho et al. (2009)

To estimate a sparse model, besides the Laplace prior
(lasso) and the Student prior (relevance vector ma-
chine), consider the horseshoe prior

β ∼ N(0, λ2τ2)

λ ∼ Half-Cauchy

where λ is the local shrinkage and τ the global shrink-
age. The model expects two types of observations:
strong signal (no shrinkage) or noise (total shrinkage) –
the lasso is more moderate and always has some shrink-
age.

Missing value estimation
for DNA microarray gene expression data:

local least squares imputation
H. Kim et al.

To impute missing values in a gene×experiment matrix
(many genes, few experiments):
– Assume we want to impute a value in the first gene
(row) g1;

– Find the k closest genes (highest correlation)
gi1 , . . . , gik ;

– Regress g1 ∼ gi1 + · · ·+ gik and fill in g1.
This is a refinement of nearest neighbour imputation,
which uses an equal- (or empirically) weighted average
of gi1 , . . . , gik .
SVD imputation works well for low-noise time series:
– Fill in the missing values with row averages;
– Compute the eigenvectors;
– Regress g1 against the (first) eigenvectors;
– Predict the missing values;
– Iterate until convergence.

Choquistic regression: generalizing logistic
regression using the Choquet integral

A. F. Tehrani
A non-additive discrete measure (sometimes called a
capacity or a fuzzy measure) is a function µ : P(C)→
[0, 1] such that

µ(∅) = 0

µ(C) = 1

A ⊂ B =⇒ µ(A) ⩽ µ(B).

It is determined by its Möbius transform m:

µ(B) =
∑
A⊂B

m(A)

m(A) =
∑
B⊂A

(−1)|A|−|B|µ(B).

A non-additive measure is k-additive if |A| > k =⇒
m(A) = 0; 0-additive measures are (additive) mea-
sures.
The Choquet integral generalizes the weighted aver-
age (a way of aggregating several criteria)

∑
c∈C

µ({c})f(c)

Article and book summaries by Vincent Zoonekynd 628/1044

from (additive) measures to non-additive measures. In-
tuitively, it allows for interactions between the criteria
being averaged.

f : C → R+

0 ⩽ f(c(1)) ⩽ · · · ⩽ f(c(m))

Cµ(f) =

m∑
i=1

[
f(c(i))− f(c(i−1))

]
µ({c(1), . . . , c(m)})

=
∑
T⊂C

m(T)×Min
c∈T

f(c).

In logistic regression, we can replace w′x with
γ(Cµ(x) − β), where x is seen as a function i 7→ xi
and µ is k-additive, with k small. The log-likelihood is
concave.

Mendelian randomization and causal inference
in observationsl epidemiology

N.A. Sheehan et al. (2008)
Medelian randomization is another name for instru-
mental variables (IV): find a variable IV so that

IV ⊥⊥ confounding factors
IV −→ possible cause
IV ⊥⊥ consequence | possible cause

IV possible cause consequence

confounding factors

The IV is often a gene. Gene interactions complicate
the picture.

Simulation of fractional Brownian motion
T. Dieker (2004)

A stationary stochastic process X is self-similar if
X(m) = 1

m (X1+· · ·+Xm) and X1 have the same distri-
bution. It has long-range dependence if

∑
γk diverges,

where γk = Cov(X0, Xk). A standard fractional Brow-
nian motion is characterized by

B(t) has stationary increments
B(0) = 0, EB(t) = 0

EB(t)2 = t2H

B(t) is Gaussian.

Its increments Xk = B(k + 1) − B(k) are fractional
Gaussian noise. These are Gaussian processes with
covariance functions

E[B(s)B(t)] = 1
2 [t

2H + s2H + |t− s|2H]

γk = E[XnXn+1] =
1
2 [|k − 1|2H − 2 |k|2H + |k + 1|2H].

There is no closed form for the spectral density of frac-
tional Gaussian noise

f(λ) =
∑
k∈Z

eikλ =

2 sin(πH)Γ(2H + 1)(1− cosλ)
(
|λ|−2H−1 +

∑
· · ·
)

but approximations are available.
ARFIMA processes, (1 − L)dXk ∼ ARMA(p, q) also
have long memory; the fractional integration is defined
by

(1− L)d =
∑
n⩾0

(
d

n

)
(−L)n

(
d

n

)
=

Γ(d+ 1)

Γ(d− n+ 1)Γ(n+ 1)

The Hosking method simulates a general stationary
Gaussian process iteratively, in O(n2): since

V1:n+1 = VarX1:n+1 =

γ0 γ1
γ1

γ1
γ1 γ0

and E[X1:n+1] = 0, we know that Xn+1|X1:n = x1:n ∼
N(µ, v), where µ and v are easy to compute (because
of the shape of V1:n).
The Choleski method can simulate arbitrary Gaussian
processes; the Choleski matrix can actually be com-
puted explicitly, and this gives an O(n3) incremental
algorithm.
The Davies and Harte method embeds the covariance
matrix into a circulant matrix

γ0 γ1 γn−1 0 γn−1 γ1

γ1 γn−1

γ1 γn−1

γn−1 γ1 γ0 γ1 γn−1 0

0 γn−1 γ1 γ0 γ1 γn−1

γn−1 γ1

γn−1 γ1

γ1 γn−1 0 γn−1 γ1 γ0

which can be efficiently inverted (FFT), to find a
square root in O(n log n).
There are approximate simulation methods (i.e., they
sample from a distribution which is not exactly a frac-
tional Brownian motion), using:
– The expression of a fractional Brownian motion as a
stochastic integral;

– Queueing theory;
– Random midpoint displacement, i.e., replacing
Xn+1|X1:n with Xn|Xi1,...,ik in the Hosking or
Choleski method;

– Spectral analysis: a stationary Gaussian process can
be expressed as a stochastic integral involving its
spectral density f ,

Xn =

∫ π

0

√
f(λ)

π
cos(nλ)dB1(λ)−∫ π

0

√
f(λ)

π
sin(nλ)dB2(λ);

Article and book summaries by Vincent Zoonekynd 629/1044

– Wavelets: the wavelet coefficients of a fractional
Brownian motion are almost independent and almost
Gaussian, with zero mean and known variance;

– Fractional integration of white noise (white noise is
the “derivative” of Brownian motion, seen as a gen-
eralized process, aka tempered distribution);

– Series expansions.
The Hurst exponent can be estimated in many ways:
– Aggregated variance VarX(m) = m2H−2 VarX

or absolute moments E
∣∣X(m) − X̄(m)

∣∣k ∼
mk(H−1)E |X − EX|k but, in presence of autocorre-
lation, the finite-sample estimators are biased;

– Higuchi estimator: absolute moment estimator, with
k = 1 and overlapping windows;

– The slope of the periodogram;
– The variance of the regression residuals, on a moving
window (i.e., the aggregated variance, after detrend-
ing);

– R/S analysis;
– Likelihood estimator: (X1, . . . , XN) ∼ N(0,ΓH),
where ΓH is known (as a function of H) – unfor-
tunately, det ΓH and Γ−1H are expensive to compute;

– Whittle estimator: compare the periodogram I(λ)
with the spectral density fH(λ),

Ĥ = Argmin
H

∑
k

I(λk)

fH(λk)
;

– Local Whittle estimator: replace fH(λ) with
C |λ|1−2H ;

– Variance of the wavelet coefficients (no detrending
is needed if the wavelet has enough vanishing mo-
ments).

Speeding up convolutional neural networks
using fine-tuned CP-decomposition

V. Lebedev et al. (2015)
In image processing, convolutional neural networks
(CNN) perform the convolution of an image with a
4-dimensional tensor:

xijk = pixel at coordinates (i, j), in RGB plane k,
for one of the patches

yℓ = bℓ +
∑
ijk

aijkℓxijk

= `th coordinate of the output, for this patch

The tensor can be replaced by a low-rank approxima-
tion, e.g., the CP-decomposition (a higher-order ana-
logue of PCA).

FitNets: hints for thin deep nets
A. Romero et al. (2015)

To have a small network (e.g., a thin but deep) mim-
ick a large one (wide and deep) do not only learn the
outputs, also use the intermediate representations.

Effective use of word order
for text categorization

with convolutional neural networks
R. Johnson and T. Zhang

Convolutional neural networks (CNN), often used to
process images, apply convolutional and pooling layers
(one or several pairs) to the data before passing it to
a linear classifier.
– A convolutional layer takes k × k (overlapping) re-

gions of the image and gives each of them to m neu-
rons; the weights are shared accross regions; each
region, a 3k2-dimensional vector, becomes an m-
dimensional vector;

– A pooling layer takes the output of a convolutional
layer, cuts it into non-overlapping regions, and ag-
gregates them (max-pooling or average pooling), so
that each region becomes an m-dimensional vector.

This can also be applied to text:
– Encode length-k regions as bags of vords (i.e., |V |-

dimensional vectors) or using indicator variables
(i.e., k |V |-dimensional vectors);

– To deal with variable sentence or text length, fix the
number of pooling units and dynamically select the
pooling region size;

– Use linear rectifiers.

Link analysis, eigenvectors and stability
A.Y. Ng et al.

Hits and PageRank are eigenvalue problems: if the
eigengap (the difference between the two largest eigen-
values) is small, the first eigenvector is not stable. Hits
is unstable if the maximum degree is large; PageRank is
not robust to perturbations to pages with a high score.
Latent semantic indexing (LSI) (compute the left and
right singular vectors of the binary term-document ma-
trix) is a special case of Hits and has the same prob-
lem.

Stable algorithms for link analysis
A.Y. Ng et al. (2001)

The randomized Hits algorithm is the Hits algorithm,
expressed as a random walk with teleportation, à la
PageRank (teleportation increases stability).
The subspace Hits algorithm uses the first k eigenvec-
tors and defines the scores as

aj =

k∑
i=1

f(λi)〈ej , xi〉2

where ej are the basis vectors (zeroes except in po-
sition j), f(λ) = λ2 (but other weight functions are
possible), xi are the eigenvectors and λi the eigenval-
ues.

Intriguing properties of neural networks
C. Szegedy et al. (2014)

Article and book summaries by Vincent Zoonekynd 630/1044

Deep neural networks are discontinuous: it is possible
to manufacture an imperceptible alteration of an image
to misclassify it.
While it is possible to interpret individual hidden neu-
rons, it is equally easy to interpret random linear com-
binations of neurons.

On the effective measure of dimension
in the analysis cosparse model

R. Giryes et al. (2014)
Compressed sensing tries to reconstruct a vector x so
that y = Ax+ noise, assuming x is sparse.
The cosparse model tries to reconstruct a vector x so
that y = Ax + noise assuming Bx is sparse – for in-
stance, x could be an image and Bx its gradient.

Adaptive compressed sensing for estimation
of structured sparse sets

R.M. Castro and E. Tánczos (2014)
Compressed sensing, i.e., the reconstruction of a signal
from noisy and partial observations, under the assump-
tion that it is sparse, can be generalized to more general
supports, e.g., subsets of length s of J1, nK, subintervals
of length s of J1, nK, disjoint unions of k such intervals,
s-element stars in a graph, etc.

An exact mapping between the variational
renormalization group and deep learning

P. Mehta and D.J. Schwab (2014)
The renormalization group is the hierarchical descrip-
tion of a physical phenomenon by progressively inte-
grating out (marginalizing over) small features (“itera-
tive coarse-graining scheme”). It is not unlike deep net-
works, which integrate small features into larger ones,
from layer to layer.

Taming the monster: a fast and simple
algorithm for contextual bandits

A. Agarwal et al. (2014)
The ε-greedy or epoch-greedy algorithm have a subop-
timal regret. Randomized UCB has an optimal regret,
but it is complex and slow: it can be simplified and
sped up.

Learning to discover social circles
in ego networks

J. McAuley and J. Leskovec
A generalization of BigCLAM that allows overlapping
or nested communities (not unlike topics) and uses
both graph structure and node features.

Fast, simple and accurate handwritten digit
classification using extreme learning machines

with shaped input-weights
M.D. McDonnell et al. (2014)

Extreme learning machines (ELM, echo nets – neural
nets whose hidden layer is random and not learned)
perform as well as deep nets in the digit classification
task:
– Augment the training set by distorting it;
– Each hidden unit only operates on a randomly sized
and positioned patch of the image.

Selfieboost: a boosting algorithm
for deep learning

S. Shalev-Shwarts
Adaboost sequentially fits a model, assigning more
weight to currently misclassified observations, and re-
turns a linear combination of the models. Selfieboost
only returns the last one; to avoid losing the perfor-
mance of the earlier models, it adds a penalty to keep
the new model forecasts close to the previous ones.

Move evaluation in Go
using deep convolutional networks

C. Maddison et al. (2015)
The positions on a Go board are not unlike the pixels
of an imge: use convolutional neural networks to eval-
uate a position or a move, using training data from the
KGS server

Teaching deep convolutional neural neworks
to play Go

C. Clark and A. Storkey
More details.

Efficient gradient-based inference through
transformations between Bayes nets and

Neural nets
D.P. Kingma and M. Welling (2014)

Bayesian networks and neural networks are the same
thing: each can (often) be transformed into the other.

Hogwild!: a lock-free approach to parallelizing
stochastic gradient descent

F. Niu et al.
Stochastic gradient descent (SGD) is often easy to par-
allelize: reformulate the objective function to make it
almost sepearable (a large sum of functions of a small
number of variables – that is usually possible if the
input is sparse) and forget about concurrency prob-
lems (let the processors overwrite each other’s work –
it happens too rarely to have a noticeable effect).

Crypto-nets:
neural networks over encrypted data

P. Xie et al. (2015)
Homomorphic encryption can be used with neural net-
works – but since it only provides + and ×, you need
to approximate the transfer function with a polynomial
(the input space should be compact).

Article and book summaries by Vincent Zoonekynd 631/1044

libDAI: a free and open source C++ library
for discrete approximate inference

in graphical models
J.M. Mooij (2010)

To estimate Bayesian networks or Markov random
fields (MRF). Also check OpenGM2.

LSH forest: self-tuning indexes
for similarity search

M. Bawa et al.
Given a locality-sensitive hash (LSH) family H =
(hi)i⩾1, one usually assigns a fixed-length label g(p) =
(h1(p), . . . , hn(p)) to each point p. Instead, one can use
variable-length labels, arranged in a prefix tree, suffi-
ciently long so that all the points have a different label.
An LSH forest is a set of such LSH trees.

A performance evaluation
of open source graph databases

R. McColl et al. (2014)
Stinger, MTGL, Boost, Giraph and NetworkX perform
well.

Trend filtering methods
for momentum strategies

B. Bruder et al. (2011)
Here are a few algorithms to identify trends in a time
series:
– Moving average, exponential moving average;
– Local regression, which can be seen (for a rectangular
kernel) as the discretization of the Lanczos derivarive
(a noise-robust slope)

f ′(x) = lim
ε→0

3

2ε2

∫ ε

−ε
tf(x+ t)dt;

– Local polynomial regression, loess smoothing;
– Hodrick-Prescott filter,

ŷ = Argmin
y

‖y − x‖22 + λ
∥∥D2y

∥∥2
2
;

– Structural model (Kalman filter);
– Low-pass filter, from a Fourier or Wavelet transform;
– Singular spectrum analysis (SSA): let

H =

y1 · · · ym
...

...
yn · · · yt

and perform a dimension reduction on H;

– Support vector machines, Y ∼ time, with radial ba-
sis functions (RBF), and their standard deviation as
smoothing parameter;

– Empirical mode decomposition (EMD), Hilbert fil-
ter;

– Gaussian processes (not mentioned).

Multivariate filtering methods were listed but not de-
tailed: Kalman filter (with a small number of stochas-
tic components), error correction models, permanent-
transitory decomposition.

Chaos in economics and finance
D. Guégan (2009)

Let X0 be a random variable and Xn = f(Xn−1) a de-
terministic dynamic system. To study time series using
this model:
– Estimate the embedding dimension;
– Estimate f and f ′ (using k-NN, radial basis func-
tions, neural nets, etc.);

– Estimate the Lyapunov esxponent

λ = lim
n→∞

1

n

∑
1⩽t⩽n

ln |f ′(Xt)| ,

i.e., the speed at which trajectories diverge:
‖xn − yn‖ ≈ eλn ‖x0 − y0‖;

– Test if it is positive.

Computing present values:
capital budgeting done correctly

R. Jarrow (2014)
The value Vt of an asset is related to its expected re-
turns as follows.

1 + µT−1 := ET−1

[
VT
VT−1

]
VT−1 = ET−1

[
VT

1 + µT−1

]
VT−2 = ET−2

[
VT−1

1 + µT−2

]
= ET−2

[
1

1 + µT−2
ET−1

[
VT

1 + µT−1

]]
= ET−2

[
VT

(1 + µT−2)(1 + µT−1)

]
Vt = Et

[
VT

(1 + µt) · · · (1 + µT−1)

]
(This is the real-world measure, P).
Some textbooks incorrectly price stochastic cash flows
as

V wrong
0 =

E[VT]

(1 + Eµ0) · · · (1 + EµT−1)
.

Correlation in the magnitude
of financial returns

J. Hämäläinen (2014)
Look at Cor(|ri| , |rj |).

Understanding the relationship
of momentum with beta

T. Cenesizoglu et al. (2014)
Beta explains momentum performance.

Article and book summaries by Vincent Zoonekynd 632/1044

The stability and accuracy of credit ratings
P. Viegas de Carvalho et al. (2014)

Reratings are not related to changes in the probability
of default, but rather to changes in the relative prob-
ability of default. Ratings depend on the business or
economic cycle.

Data science at the command line
J. Janssens (2014)

Traditional Unix tools (grep, sort, uniq, head, seq,
paste, shuf, parallel, etc. can be complemented
with more recent or specialized tools to process data
(download, clean, explore, model) such as cvskit (in
particular csvlook and cvssql), jq (to transform
JSON data, à la XPath), json2csv, scrape (to trans-
form XML/HTML data, using XPath or CSS selec-
tors), Rio (to use R as a filter, to convert a CSV file
into another one, or into a plot).
Some of those tools are not standard and were devel-
opped by the author for the book. All are available in
a (Vagrant) virtual machine.
The book suggests Drake to manage data science work-
flows and gives a few examples of actual computations,
with Tapkee (a C++ library, part of Shogun, for di-
mension reduction: PCA, MDS, t-SNE, LLE, isomap),
Weka, R (via Rio), SKLL, BigML – but no mention of
Vowpal Wabbit, libsvm, liblinear or libfm. Some tra-
ditional and useful Unix commands were also missing:
xargs (mostly replaced by parallel), dc (but many
prefer bc), file, screen, tmux, csplit (though split
was mentioned).

Big data analytics summer school
(Caltech, JPL, Coursera, 2014)

The k-nearest neightbours (kNN) algorithm can be im-
plented as follows:
– In dimension 1, with binary search;
– In dimensions 2 to 8, with a kd-tree;
– In dimensions greater than 8, with locality-sensitive
hashing (LSH) – this only provides approximate
neighbours.

In much higher dimensions, kNN no longer works: all
the distances are approximately equal (curse of dimen-
sionality).
The Euclidian distance is not a good choice for
distance-based algorithms in presence of corrrelations
or differences of scale. One could use the Mahalanobis
distance but, for supervised learning, this is subopti-
mal. For instance, for a classification problem, multi-
class discriminant analysis (a form of metric learn-
ing) looks for the distance that best separates the
classes, i.e., maximizes

γ(V) =
|V ′ΣbV |
|V ′ΣwV |

where

V = linear projection of the data
Σb = between scatter matrix
Σw = within scatter matrix.

The course also covered the following topics:
– Dimension reduction: kNN, feature selection, PCA,
metric learning, kernel PCS (kPCA);

– Bootstrap (classical, N out of M , subsampling);
– Visualization;
– Random forests (the sample proximity is the number
of trees in which samples i and j end up in the same
leaf).

Mining massive datasets
J. Leskovec, A. Rajaraman, J. Ullman

(Stanford, Coursera, 2014)
The complexity of a map-reduce algorithm should be
measured by the communication cost – that is the main
bottleneck, and its is reasonable to assume that all the
data has to be moved around. For instance, matrix
multiplication is more efficient with a 2-step algorithm:
first divide the matrix into blocks (tiles) and compute
the partial sums, then aggregate them.
Page-rank can be personalized by teleporting to a ran-
dom page in a set of reference pages (e.g., the DMOZ
pages for the topic of interest) instead of a random
page; it can be made more robust to spam farms by
teleporting to a random page in a set of trusted pages
(e.g., edu domains).
Min-hashing is an approximate test for set equality –
a locality-sensitive hashing (LSH) function for sets.
Let Ω = {1, . . . , n} be a set (in practice, it will be a set
of words or n-grams); a random permutation σ ∈ S(Ω)
defines a (random) hash function

hσ(C) = inf{ i : σ(i) ∈ C }, C ⊂ Ω.

The probability that two subsets C1 and C2 agree on
this hash function is their Jaccard similarity,

P [hσ(C1) = hσ(C2)] = J(C1, C2) =
|C1 ∩ C2|
|C1 ∪ C2|

.

A family H of hash functions h : S −→ X, where (S, d)
is a metric space and P a probability on H, is said to
be (d1, d2, p1, p2)-sensitive if

∀x, y ∈ S d(x, y) ⩽ d1 =⇒ P [h(x) = h(y)] ⩾ p1
∀x, y ∈ S d(x, y) ⩾ d2 =⇒ P [h(x) = h(y)] ⩽ p2.

It can be “amplified” by the and or or construction,
or an and-or or or-and combination (the distances
d1, d2 remain the same, probabilities are transformed
by p 7→ pr or p 7→ 1− (1− p)r).

and : ∀i, j ∈ J1, rK hi(x) = hj(x)

or : ∃i, j ∈ J1, rK hi(x) = hj(x)

Here are some examples of LSH families:

Article and book summaries by Vincent Zoonekynd 633/1044

– For the cosine distance, project on a random hyper-
plane

hv(x) = sign(v · x), P [h(x) = h(y)] = 1− θ

π
;

– For the Euclidian distance, project the points on a
random line, and put them in buckets of length a.

For approximate text similarity (Jaccard similarity of
the bag or words, or the bag of n-grams), one can also
look at the following:
– The number of distinct words;
– The N least common words – that gives a lower
bound on the distance;

– An index (word, position, number of remaining
words), where “position” is the position in the bag
of words, sorted with the rarest words first.

The apriori algorithm, for frequent itemset mining, pro-
ceeds in two steps (for item pairs – n steps for n-item
sets): first count the number of occurrences of each
item, and pick those that appear at least s times; then,
count the pairs of items (but only for those found in
the first step), and keep those that appear at least s
times. The memory consumption can be reduced:
– PCY: in the first pass, also count pairs, but after
hashing them;

– Multihash: idem, with several hash functions;
– Multistage: in pass 1.5, count the hashed pairs, but
only for the items from pass 1;

– Toivonen: run the algorithm on a random subset of
the data that fits in memory; enlarge the set of can-
didate itemsets by adding the immediate subsets of
those selected by the algorithm; count them (on the
whole dataset); enlarge the set of candidate itemsets
if necessary; iterate until convergence.

One can model communities using a bipartite graph,
with nodes and communities as vertices, and a link
probability pc for each community c; a link emerges
between nodes u and v with probability

P (u, v) = 1−
∏

c : u,v∈c
(1− pc)

(or Max{ε, P (u, v)}). The BigCLAM model replaces
the binary community membership structure with a
community strength matrix, Fuc ∈ [0, 1], and a link
emerges between u and v with probability

P (u, v) = 1−
∏
c

(1− Pc(u, v)),

where Pc(u, v) = 1− exp(−Fuc · Fvc),
i.e., P (u, v) = 1− exp(−Fu · F ′v).

The strength matrix can be estimated as

F = Argmax
F

∏
(u,v)∈E

P (u, v)
∏

(u,v) ̸∈E

(1− P (u, v))

= Argmax
F

∑
(u,v)∈E

log
(
1− e−Fu·F

′
v

) ∑
(u,v) ̸∈E

Fu · F ′v.

If all the nodes of a graph have the same degree d, 1
is an eigenvector of its adjacency matrix with eigen-
value d; if the graph is not connected, (1 · · · 10 · · · 0)
and (0 · · · 01 · · · 1) are eigenvectors for eigenvalue d; if
there are few edges between the clusters, those vectors
are approximate eigenvectors for an eigenvalue close
to d. In the general case (spectral graph partition-
ing), consider the Laplacian L = (degG)Id − A; the
vector 1 is an eigenvector with eigenvalue 0; the second
smallest eigenvalue is

λ2 = Min
x

x′Lx

x′x
= Min

x
x′x=1

∑
(i,j)∈E

(xi − xj)2.

The coordinates of that vector give the clustering:
if there are two clusters, of the same size, they are
{i : xi > 0} and {i : xi < 0}; in general, look for a
jump in sort(x) and/or look at the third eigenvector.
Trawling finds small communities by looking for com-
plete bipartite subgraphs Ks,t – it is a frequent itemset
problem.
One can approximately count the number of 1s in a
stream of bits, on a moving window of size k � 1, by
keeping track of the counts for blocks of sizes 20, 21,
22, . . . and merging them when needed, but the result
can be imprecise if the smaller blocks are empty; in-
stead, one can define “size” as being the number of 1s
instead of the number of positions.
To estimate the number of different elements in a
stream, look at the maximum number R of leading
zeroes in a binary hash of those elements (and re-
peat for many hash functions): 2R is an estimator
of the number of distinct elements but, unfortunately,
E[2R] =∞. This problem can be fixed (HyperLogLog).
The singular value decomposition (SVD) gives the best
rank-k approximation of a matrix, but it does not pre-
serve sparsity. The CUR decomposition addresses
this problem:
– C is obtained by taking (say) 4k columns of A, at
random, sampled with probability P (j) ∝ ‖A·j‖2L2

(with replacement): C = A·J ;
– Similarity, R is obtained from rows of A: R = AI·;
– U = A†IJ (the pseudo-inverse is also computed from
the SVD: if W = XSY ′ is the SVD of W , then
W † = Y S†X ′, where S = diag(si), S† = diag(s−1i)
and s−1i = 0 if si = 0).

Content-based recommendation systems look at the fea-
tures (e.g., TDIDF, for text) of items highly rated by
the user. User-user collaborative filtering finds users
similar to the target (cosine similarity, or centered co-
sine similarity aka correlation); item-item collabora-
tive filtering is similar. Latent factor recommendation
systems decompose the user×item rating matrix (e.g.,
SVD with missing values).
There are big-data (1-pass) approximations of the k-
means clustering algorithm:
– Read the data in batches; build the clusters progres-
sively; for each cluster, only keep the mean, standard

Article and book summaries by Vincent Zoonekynd 634/1044

deviation and count;
– CURE: Run k-means on a random sample of the
data; pick 4 points per cluster; move them towards
the center; read all the data and assign each obser-
vation to the nearest point.

Support vector machines (SVM) are looking for the
separating hyperplane with the largest margin

Find w, b
To maximize Min

i
(w · xi + b)yi

Such that ‖w‖ = 1

where yi ∈ {±1}. This can be written

Find w, b, γ
To maximize γ
Such that ∀i (w · x+ i+ b)yi ⩾ γ

‖w‖ = 1.

The support vectors are the observations xi such that
the margin (w · xi + b)yi is γ. If we remove the con-
straint ‖w‖ = 1 and impose (w · xi + b)yi = 1, the
margin becomes ‖w‖−1 (to prove it, consider a sup-
port vector x+, its symmetrix x− wrt the hyperplane,
and add their margins), and the problem

Find w, b

To minimize ‖w‖2
Such that ∀i (w · x+ i+ b)yi ⩾ 1.

If the data is not separable, add a penalty cξi for each
misclassified point

Find w, b, ξ

To minimize ‖w‖2 + c
∑
i ξi

Such that ∀i (w · x+ i+ b)yi ⩾ 1− ξi
∀i ξi ⩾ 0.

This can be written with a hinge loss

Find w, b

To minimize ‖w‖2 + c
∑
i

Max{0, 1− yi(w · xi + b)}.

The constraints have disappeared: we can use (stochas-
tic) gradient descent.

Process mining
W. van der Aalst (Coursera, 2014)

Process mining is the study and modeling of logs (a log
is a set of traces, a trace is q sequences of actions or
tasks or activities, with timestamps, and often ancil-
liary data – usually as CSV files, but there is an XML
standard: XES). The model is often represented us-
ing the business process modeling notation (BPMN),
with activities and decision nodes (xor split × ,
xor join, and join, + , and split)

+ +

× ×

To more easily keep track of the “current state” (the
process can be in several branches at the same time),
one can use a Petri net instead: it is made of transi-
tions and places , and the current state is tracked
with one or several tokens : a transition is enabled
when there is a token in each of its input places; when
it fires, it consumes a token in each of its input places
and produces one in each output place (the number of
tokens is not constant).

A Petri net is k-bounded if there are at most k tokens
in any given place; it is safe if it is 1-bounded; a dead-
lock is a reachable dead marking, i.e., a state in which
no transition is enabled; a live transition is a transi-
tion that can be enabled from any reachable marking;
a workflow net is a Petri net, with one source place,
one sink place, in which all nodes are on a path from
source to sink; a workflow net is sound if it is safe,
has no dead parts, has proper completion (if there is a
token in the sink, there are no tokens anywhere else),
and has the option to complete.
If x and y are events appearing in the log, x < y means
that x is sometimes immediately followed by y. The
causal footprint of a log is the set (matrix) of rela-
tions between events, where the possible relations are:
– x→ y if x < y and not y < x;
– x ‖ y if x < y and y < x;
– x # y if neither x < y nor y < x.
The alpha algorithm tries to build a Petri net from
the causal footprint of a log. Intuitively, it tries to rec-
ognize patterns for xor/and split/join (e.g., a → b,
a → c, b # c corresponds to a xor split). More for-
mally:
– L = the set of traces (the log); a trace is a sequence
of tasks;

– T = the set of tasks;
– Ti = the set of initial tasks;
– To = the set of final (output) tasks;
– X is the set of candidate places, where a candidate
place is a pair (A,B), A,B ⊂ T , such that

∀a ∈ A ∀b ∈ B a→ b

∀a1, a2 ∈ A a1 # a2

∀b1, b2 ∈ B b1 # b2

– Y ⊂ X only contains the maximal elements of X;
– For the set of places P = Y ∪ {i, o}, just add an
initial and a final place;

– The set of arcs, F , contains an arc from i to each
element of Ti; an arc from each element of To to o;
for places (A,B), an arc from each element a of A
to (A,B), and an arc from (A,B) to each element b
of B.

Article and book summaries by Vincent Zoonekynd 635/1044

The algorithm is related to frequent itemset mining.
The model learned by the alpha algorithm is not min-
imal (one can sometimes remove places with no visible
effect), and cannot capture loops or non-local depen-
dencies; it is not robust to noise: you can end up with
a flower model, which allows any behaviour.

Region-based process discovery tries to address some
of those problems. First, define states from the log; for
instance, a state could be the trace before a given point,
or the trace after a given point, or the whole trace, or
the last (or next) k actions (as a sequence, or as a set,
or as a multiset); one could also use the other attributes
(resources) of the events. The states form a transition
system. A region is a subset of states such that, for
each activity a, either a always enters the region, or a
always exits the region, or a never enters nor leaves the
region. The places are the non-trivial minimal regions.
Language-based regions reduce the problem of find-
ing the places to a linear algebra problem: a place is a
solution (x, y, c) ∈ N3 of c1 + Bx − Ay ⩾ 0, where A
and B are binary matrices, with one column per activ-
ity and one row for each prefix of a trace, an element of
A is 1 if the activity is in the prefix an element of B is
1 if the activity is in the prefix without its last element;
c is the number of tokens, the nonnegativity condition
ensures that the number of tokens in a place is never
negative, x and y describe the arcs, x is the number
of transitions to the place (x, y, c), y is the number of
transitions from the place (x, y, c).
Inductive process mining decomposes the event log
using seq, xor and and operations. Genetic algo-
rithms are also used in process mining.
To measure the conformance of a log and a model:
– Compute the causal footprint of the log and the
model, and count the discrepancies;

– Replay the log, add tokens to enable transitions
when needed, and count the number of tokens added
and the number of tokens remaining at the end (but
once the net is flooded with tokens, anything is pos-
sible);

– Align the log and the model [no details].
Process models can be enhanced:
– At decision points, use statistical models to guess
which branch will be taken (data-aware Petri nets);

– Identify bottlenecks and their causes;
– Social networks (for instance, it is easy to identify
the structure of an organization);

– Operational support: detect problems, predict the
remaining time, predict and recommend the next ac-
tivity or resource.

MEG decoding using Riemannian geometry
and unsupervised classification

A. Barachant
To forecast a binary class k ∈ {0, 1} from multidimen-
sional signals xi : J1, NK→ Rc:
– Compute the average for each class, pk : J1, NK →
Rc;

– For each class k ∈ {0, 1}, combine the signals
w1pk1 + · · ·+ wcpkc

w1x1 + · · ·+ wcxc

to maximize the signal-to-noise ratio

w(k) = Argmax
w

‖w′pk‖2
‖w′x‖2

= Argmax
w

w′pkp
′
kw

w′xx′w
;

– It is an eigenvalue problem: keep the first four eigen-
vectors wk1, . . . , wk4;

– As features, use the covariance matrix Σi =
1
NZiZ

′
i

of

Zi =

w01′p0
...

w04′p0
w11′p1

...
w14′p1
w01′xi

...
w14′xi

– Do not use the variance matrices themselves, but
project them on the tangent space (at I, using the
logarithm) of the space S+ of positive definite ma-
trices.

The actual Kaggle task was a form of transfer learn-
ing (the test samples were not from the same distribu-
tion as the training samples – MEGs from a different
patient): one can use the forecasts from the trained
model as a starting point for the k-means algorithm.
But this requires barycenters: in S+, the average of a
set of points is the point that maximizes the sum of
the squared distances, and the distance is

d(Σ1,Σ2) =
∥∥∥log Σ−1/21 Σ2Σ

−1/2
1

∥∥∥
F

=

√∑
c

log2 λc

where the λc are the eigenvalues of Σ−1/21 Σ2Σ
−1/2
1 .

A Riemannian geometry with
complete geodesics for the set of positive

semidefinite matrices of fixed rank
B. Vandereycken et al. (2013)

It is easy to describe the geodesics of S+(n, n), the
manifold of positive definite matrices of size n, and use
them in optimization problems (e.g., line search along
a geodesic), but the algorithms do not scale (they are
O(n3)). Low-rank approximations are attractive, but
the space of positive semidefinite matrices of size n

Article and book summaries by Vincent Zoonekynd 636/1044

and rank p, S+(n, p), has no canonical metric. It can
be described as the orbit of(

1p 0p,n−p
0n−p,p 0n−p

)
under the action of GL+

n defined by A · X =
AXA−1. The natural right-invariant metric on GLn,
gA(ηA, νA) = tr(A−1′η′AνAA

−1), defines a metric on
S+(p, n).

A differential geometric approach
to the geometric mean

of symmetric positive-definite matrices
M. Moakher

The matrix exponential exp : S(n) → S+(n) estab-
lishes a bijection between symmetric matrices S(n)
and symmetric positive definite matrices S+(n) '
GLn/On.
The geodesic on S+(n) from I in the direction S is
t 7→ etS .
The geodesic on S+(n) from P in the direction S ∈
S(n) ' TPS+(n) is t 7→ P 1/2etP

1/2SP−1/2

P 1/2.
The distance on S+(n) is

d(P,Q) =
∥∥Log(P−1Q)

∥∥
F
=

 ∑
λ∈SpecP−1Q

ln2 λ

1/2

(note that P−1Q is not symmetric, but SpecP−1Q =
SpecQ1/2P−1Q1/2 ⊂ R×+).
The Riemannian mean of positive definite matrices
P1, . . . , Pn, defined as P = ArgminP

∑
k d(P, Pk)

2, sat-
isfies

∑
k Log(P

−1
k P) = 0; it is a generalization of the

geometric mean.

Multiclass brain computer interface
classification by Riemannian geometry

A. Barachant et al. (2012)
If your data consists of positive definite matrices,
rather than arbitrary vectors, algorithms that only use
the notions of distance and mean (e.g., kNN, k-means,
etc.) are directly applicable using the Riemannian
structure of S+(n). For other algorithms, project the
data on the tangent space (at the identity, or any other
point, if one makes better sense), using the logarithm.

Classification of covariance matrices using a
Riemannian-based kernel for BCI applications

A. Barachant et al. (2013)
More details; algorithm to compute the mean; applica-
tion to support vector machines.

MEG decoding accross subjects
E. Olivetti et al. (2014)

Transductive transfer learning (TTL):

θ̂ = Argmin
θ

1

n

∑
i

Ptarget(xi)

Psource(xi)
loss(θ, xi, yi).

Factorization machines
S. Rendle

A factorization machine is a linear model with in-
teractions,

y = α+
∑
i

βixi +
∑
ij

γijxixj

where the interaction terms have low ramk γij =
〈vi, vj〉,, vi ∈ Rk, k small (you can add higher order
interactions). It is an alternative to the “hash trick”
Vowpal Wabbit uses. It works better than support
vector machines for sparse data. (Without α and β, it
would just be a matrix factorization.)
For an implementation, check libfm.

Learning recommender systems
with adaptive regularization

S. Rendle (2012)
Simultaneously nearn the model and the regularization
parameter:

βn+1 = Argmin
β

Loss(training set, β, λn)

λn+1 = Argmin
λ

Loss(test set, βn+1, λ).

(Here, Argmin does not have to be the minimizer: tak-
ing a few steps towards the minimum is sufficient.)

Scaling factorization machines
to relational data
S. Rendle (2013)

When fitting a model on relational data (often, a star
schema, e.g., movie ratings, with movie characteris-
tics (genre, year) and user characteristics (age, gender,
friends)), one typically joins (denormalizes) the data.
this needlessly inflates the volume of data to process
and the running time. Learning on data in normal form
is possible (process the fact table; update the weights
of the rows on the dimension tables; process the dimen-
sion tables).

Tensor decompositions and applications
T.G. Kolda and B.W. Bader (2009)

There are two generalizations of PCA to tensors (using
Eistein’s summation convention):

CP: xijk = grairbjrckr
Tucker: xijk = gpqraipbjqckr

The CP (canonical decomposition/parallel factors) ex-
presses the tensor x as a sum of rank-1 tensors. The
rank of x is the minimal number of terms in such a
sum. Contrary to the notion of rank for matrices:
– The ranks over R and C may be different;

Article and book summaries by Vincent Zoonekynd 637/1044

– Among tensors of a given shape, the typical rank
(any rank that occurs on a set of non-zero measure)
and the maximum rank can differ;

– “The” typical rank is not unique;
– The best rank-1 approximation need not be part of
a best rank-2 approximation;

– The best rank-k approximation need not exist: the
set of rank-k tensors is not closed, i.e., some tensors
can be approximated arbitrarily closely by a tensor
of smaller rank – the border rank of x is the minimum
number of rank-1 tensors needed to approximate x
with an arbitrarily small error.

The CP decomposition can be estimated using alter-
nating least squares (ALS).

Probabilistic principal component analysis
M.E. Tipping and C.M Bishop (1999)

PCA is a limiting case of (isotropic) factor analysis,
X ∼ N(µ,WW ′ + σ2I), when σ2 → 0 (σ2 is the av-
erage variance due to discarded components). PPCA
allows for missing values.
In R, check the pcaMethods package (for probabilitic
and bayesian PCA).

NICE: non-linear
independent component estimation

L. Dinh et al. (2014)
Given a random variable X : Ω→ Rn, a non-linear in-
dependent component decomposition is a transforma-
tion f : Rn → Rn such that the density of H = f(X)
factorizes: pH(h) =

∏
d pHd(hd).

It can be estimated by maximum likelihood, pX(x) =
pH(f(x)) |det f ′|, i.e.,

Argmax
f,pH1

,...,pHn

∑
x

∑
d

log pHdfdx+ log |det f ′| .

We look for a transformation (built from three layers
of building blocks) of the form

y1 = x1

y2 = x2 +m(x1)

which ensures that |det f ′| and f−1 are easy to com-
pute.

Sparse matrix factorization
B. Neyshabur and R. Panigrahy (2014)

The sparse matrix factorization problem aims to write
a matrix Y as a product of sparse matrices Y =
X1X2 · · ·Xn – PCA can be seen as a special case, where
X1 has few columns and X2 few rows.
Assuming the matrices are square, random, central-
ized, normalized, and the coefficients of Y are 0, 1 or
−1, X1X

′
1 = round(Y Y ′) with high probability; X1

can be recovered from X1X
′
1, and one can then iter-

ate.

Blind denoising with random greedy pursuits
M. Moussallam et al. (2014)

To find a sparse reconstruction of a time series y, choose
“atoms” (elementary time series Φ = (φ1| · · · |φn) and
fit y = Φα+ w, where α is sparse:

Find α
To minimize ‖α‖0
Such that ‖y − Φα‖ ⩽ ε.

One can use a greedy algorithm (matching pursuit,
MP) to find an approximate solution – for the stop-
ping criterion, look at

Max
ϕ

|〈y, φ〉|
‖y‖2 ‖φ‖2

.

Instead of a single sparse representation, one can com-
pute several (as with random forests: at each step,
choose a new atom in a random subset of Φ) and av-
erage them.

Dimensionality reduction for k-means
clustering and low rank approximation

M. Cohen et al. (2014)
To speed up approximate k-means or PCA, use a sketch
of the data (row and column sampling, approximate
SVD (CUR), Johnson-Lindenstrauss projection).

Alternating least squares
for personalized ranking

G. Takács and D. Tikk (2012)
Alternating least squares (ALS) are often used to find
R̂ = P ′Q, with P and Q rectangular with a small num-
ber of columns, to minimize∑

u∈Users

∑
i∈Items

cui(r̂ui − rui)2.

It can also be used with a ranking objective∑
uij

cuisj
(
(r̂ui − r̂uj)− (rui − ruj)

)2
.

HyperLogLog in practice:
algorithmic engineering of a state of the art

cardinality estimation algorithm
S. Heule et al. (2013)

HyperLogLog is biased for small counts: one can (em-
pirically) estimate the bias and correct it. (Hyper-
LogLog++ introduces a few more changes, mostly to
reduce memory usage.)

Article and book summaries by Vincent Zoonekynd 638/1044

In-code computation
of geometric centralities with HyperBall:

hundred billion nodes and beyond
P. Boldi and S. Vigna

To count the number |B(x, r)| of nodes in the ball of
center x and radius r in a graph, use a HyperLogLog
counter cv for each node and estimate B(x, r+1) from
B(x, r).
This can be used to compute the harmonic centrality

centrality(x) =
∑
y

1

d(x, y)
=
∑
r⩾1

|B(x, r)|
r

.

The power of comparative reasoning
J. Yagnik et al.

The winner-takes-all (WTA) locality-sensitive hash
(LSH) is {

Rn −→ { 1, . . . , k }
x 7−→ Argmax

1⩽j⩽k
xσ(j)

for a random permutation σ ∈ Sn.
By using several permultations σ and choosing k = 2,
we get a binary hash.
One can apply a kernel before computing the hash.

OpenGM: a C++ library
for discrete graphical models

B. Andres et al. (2012)
C++ template library implementing algorithms for
discrete graphical models (loopy belief propagation,
sequential tree reweighted belief propagation, graph
cut, etc.), i.e., given a factor graph and a semiring
(Ω,⊗, 1,⊕, 0), computing

⊕
x

⊙
F φF (xneigh(x)); ex-

amples include

Optimization (R,+, 0,min,∞)
Marginalization (R+, ·, 1,+, 0)
Constraint satisfaction ({0, 1},∧, 1,∨, 0).

MPPack:
a scalable C++ machine learning library

R.R Curtin et al. (2012)
An LGPL C++ template machine learning library
(also check Weka, Shogun, mlpy, sklearn, MLLib).

Practically accurate floating point math
N. Toronto and J. McCarthy (2014)

Measure the floating point error when approximating
a real number r with a floating point number x as

error(x, r) =
x− r

ulp(fl(r))

where

ulp(y) = distance from y to the next float
fl(r) = float closest to r

ord(x) = (signed) number of floats between 0 and x
ord−1(n) (needed to compute ulp).

It is the number of floats between x and r.
When implementing a numeric function, check where
it is ill-conditionned (“the badlands”), e.g., for func-
tions f : R → R, check where the condition number
|xf ′(x)/f(x)| exceeds 4.
The examples use typed/racket (for the plots as well)
and MPFR.

Fast approximate nearest neighbors
with automatic algorithm configuration

M. Muja and D.G. Lowe
Comparison of randomized kd-trees and hierarchi-
cal k-means for fast approximate nearest neighbours
(FANN).

CRDTs: consistency
without concurrency control

M. Leţia et al. (2009)
CRDTs are data structures whose operations commute:
they can be used in a distributed environment. For in-
stance:
– A set with a single add-element operation;
– A set with add and delete operations, if no element
is ever added twice: keep two lists, one for added
elements, one for deleted elements, and clean them
from time to time;

– An ordered set, with insert-at and delete operations:
use a dense index space (notR, but paths in a binary
tree).

A comprehensive study of convergent
and commutative replicated data types

M. Shapiro et al. (2011)
Eventual consistency, in a distributed/asynchronous
environment, can be guaranteed by the data structures
themselves, without synchronization. For instance:
– Add-only set;
– Distributed maximum (when the maximum changes,
broadcast it to the other replicas);

– Counter: broadcast +1 or −1 – the reception order
is irrelevant;

– Register: store value-timestamp pairs and only keep
the value with the latest timestamp;

– Set with add and remove operations, if removed ele-
ments cannot be added back: use two add-only sets,
for elements added and elements removed, and occa-
sionally garbage-collect them;

– Set with add and remove operations, in which add
has priority over remove in case of a conflict (e.g.,

Article and book summaries by Vincent Zoonekynd 639/1044

shopping cart): when adding an element, also store
a unique identifier (a new one, if the element was
already there); remove removes the elements with
the identifiers known to the replica that received the
order;

– Graphs: like sets;
– Directed acyclic graphs: that is a global property; it
cannot be ensured in general without synchroniza-
tion.

– Partial order: like sets;
– Total order (e.g., collaborative editing): either
add an addRight(position,content) operation, which
stores the content-timestamp pair in a linked list or
an addBetween operation, for which the total order
is defined by a dense set of identifiers (trees: Lo-
goot or Treedoc – but they have to be rebalanced
(garbaged-collected) from time to time).

Generation and analysis of constrained
random sampling patterns

J. Pierzchlewski and T. Arildsen
Random sampling of analog (1-dimensional) signals is
preferable to regular sampling. Simple sampling pat-
terns include: a regular grid with noise, or adding noise
to the previous point.

The algorithmic foundations
of differential privacy

C. Dwork and A. Roth (2014)
To ensure plausible deniability, use randomized algo-
rithms (e.g., answer truthfully with probaility 1

2 , an-
swer randomly otherwise – for real-valued functions,
perturb the result with the Laplace distribution). A
randomized algorithm M is differentially private if

‖x− y‖ ⩽ 1 =⇒ P [M (x) ∈ S] ⩽ eεP [M (y) ∈ S] + δ.

The privacy loss is ln P [M (x) = ξ]

P [M (y) = ξ]
.

When answering several queries, the system should
refuse to answer similar ones (e.g., the number of peo-
ple with disease D, and the number of people not
named X with disease D).

Computing arbitrary functions
of encrypted data
C. Gentry (2008)

The following encryption scheme, which adds noise to
the cleartext, is somewhat homomorphic – the noise
progressively increases and eventually becomes too
large.

cleartext: m ∈ {0, 1}
key: p ∈ {0, 1}P , p ≡ 1 (mod 2)
ciphertext: c = m′ + pq
where m′ ∈ {0, 1}N , m′ ≡ m (mod 2)

q ∈ {0, 1}Q
somewhat preserved: +, −, ×

To make it homomorphic, try to find functions fi→i+1

that transform Encrypt(pi,m) to Encrypt(pi+1,m)
(i.e., that change the key and reset the noise), using
the somewhat preserved operations (this is possible af-
ter a small change in the encryption scheme). This is
slow, there is no division, and no inequalities.

A comparative study of discretization methods
for naive Bayes classifiers

Y. Yang and G.I. Webb (2002)
When discretizing data, use

√
n quantile bins, but

make sure each bin has at least 30 observations.

The Winograd schema challenge
H.J. Levesque et al. (2012)

A replacement for captchas (or the Turing test): re-
solve referential ambiguity (e.g., “the trophy does not
fit in the suitcase because it is too big”, what is too
big: the trophy or the suitcase?).

Sloane’s gap:
do mathematical and social factors explain
the distribution of numbers in the OEIS?

N. Gauvrit et al. (2011)
Plotting the number of occurrences of an integer in the
OEIS shows two clouds, with a similar exponential de-
cay, and a gap inbetween. Computational complexity
explains the decay, but not the gap – it could be due
to social factors.

Profiling R on a contemporary processor
S. Sridharan and J.M. Patel (2014)

R is slow because of cache misses, caused by:
– Pointer-chasing the the garbage collector (GC);
– Linear algebra operations: R should provide both
row- and column-major storage and/or use blocking;

– Custom C code in packages (e.g., rpart): it should
be cache-conscious.

The GC problems are made worse by:
– Unnecessary attributes (e.g., row names, which are
automatically added);

– Unnecessary copies; intermediate object creation
(arithmetic operations on vectors or matrices);

– Inefficient implementations (e.g., subsetting with a
boolean vector recomputes the row indices for each
column).

Convex optimization in Julia
M. Udell et al. (2014)

The Convex.jl package brings disciplined convex pro-
gramming (DCP) to Julia.
Besides the positive orthant, the second order cone,
and the semi-definite cone, note the exponential cone,

{ (x, y, z) ∈ R3 : y ⩾ 0, yex/y ⩽ z },

Article and book summaries by Vincent Zoonekynd 640/1044

used for the convex functions exp(x), − log(x),
log
∑
i expxi.

Computing in operations research using Julia
M. Lubin and I. Dunning (2013)

JuMP.jl relies on macros rather than operator over-
loading (as in CVX, Convex.jl, PuPL, Pyomo, etc.)
and can therefore efficiently build larger problems.

A review of goal programming
for portfolio selection

R. Azmi and M. Tamiz (2010)
“Goal programming” is a vague notion that refers to
the various ways of selecting a single solution of a multi-
objective optimization problem, “find x to minimize
g1(x), . . . , gn(x)” somewhere on the efficient frontier.
For instance:
– Minimize

∑
i λigi(x);

– Minimize Maxi gi(x);
– Minimize g1(x); among the solutions, minimize g2;
continue until there is only one solution left;

– etc.

Portfolio selection with higher moments:
a polynomial goal programming

approach to ISE30 index
G. Kemalbay et al. (2011)

Indicator-based selection
in multiobjective search

E. Zitzler and S. Künzli (2004)
Multiobjective search tries to find a good approxima-
tion of the Pareto set – a good solution is close to the
Pareto set and diversified. These notions are rarely
clearly defined, but could be formalized, e.g., one could
try to maximize the volume dominated by the solution.
Here is one algorithm:
– Start with a large candidate set;
– Compute the “fitness” of each point in it (relative to
the others);

– Remove the worst point; update the fitness of the
others;

– Iterate (until some termination criterion is met, e.g.,
the population size).

The indicator-based evolutionary algorithm (IBEA) de-
fines the fitness of a point a ∈ A as

F (a) =
∑

b∈A\{a}

− exp−I({a}, {b})/κ

where κ is a parameter (the temperature) and I is a
binary quality indicator, e.g.,

I(A,B) = Min
{
ε : ∀ b ∈ B ∃ a ∈ A ∃ i ∈ J1, nK

fi(a)− ε ⩽ fi(b)
}

or

I(A,B) =

{
I(B)− I(A) if ∀ b ∈ B ∃ a ∈ A a � b
I(A ∪B)− I(A) otherwise

where I(A) is the volume dominated by A.

Sparse and stable Markowitz portfolios
J. Brodie et al. (2008)

For sparse portfolios, add an L1 penalty to the portfo-
lio optimization problem.

Sparse portfolio selection
via quasi-norm regularization

C. Chen et al. (2013)
For sparse portfolios, add an Lp penalty (0 < p < 1)
to the portfolio optimization problem; it is no longer
convex, but can still be solved in polynomial time via
interior point methods.

Optimal risk budgeting
under a finite investment horizon

M. López de prado, R. Vince and Q. Zhu (2013)
To decide which proportion xi of one’s wealth to in-
vest in asset i, one can use x̂ = Argmaxx fQ,U (x),
where fQ,U (x) is the expected utility for utility func-
tion U after Q periods. The Kelly principle is x̂ =
Argmaxx f∞,linear(x). The leverage space seems to be
the graph of x 7→ fQ,linear(x).

A factor model for non-linear dependences
in stock returns

R. Chicheportiche and J.P. Bouchaud (2013)
The non-linear correlation between two random
variables X and Y generalizes Cor(|X| , |Y |) and
Cor(X2, Y 2):

Cp(X,Y) =
1

p2
log

E
[
|XY |p

]
E
[
|X|p

]
E
[
|Y |p

] .
In the standard factor model xi =

∑
k βkifk + ei, the

non-linear correlations Cp(fk, fℓ), Cp(fk, ei) Cp(ei, ej)
are non-zero. The nested factor model, for the volatil-
ities of the factors f and the residuals e, with two fac-
tors, Ω0 and Ω1, can account for them:

fk = εk exp[Ak0Ω0 +Ak1Ω1 + ωk]

ej = ηj exp[Bj0Ω0 +Bj1Ω1 +$k].

Commodity futures and market efficiency
L. Kristoufek and M. Vosvrda (2013)

To measure the efficiency of a given market (or asset),
average the following measures:
– Hurst exponent (long-term efficiency): local Whittle
estimator, GPH estimator;

– Fractal dimension (short-term): Hall-Wood estima-
tor, Genton estimator;

– Entropy: Pincus approximate entropy.
The article also gives a concise review of those estima-
tors.

Article and book summaries by Vincent Zoonekynd 641/1044

Implied Hurst exponent and fractional implied
volatility: a variance term structure model

K.Q. Li and R. Chen (2014)
One can compute the Hurst exponent from option
prices:
– Using the fractional Black-Scholes formula; a single
option does not give (σ,H), but just V = σ2T 2H :
use several maturities and regress log V ∼ log T ;

– Using a model-free approach, very similar to the VIX
computations, to compute V .

Forecasting the NOK/USD echange rate
with machine learning techniques

T. Papadimitriou et al.
One can forecast the exchange rate

FXt+1 ∼ FXt + (M2 −MUS
2) + (GDP−GDPUS) +

(IR− IRUS) + (Inflation− InflationUS) +

Oil+ t,

where the inflation is a forecast from an ARMA model
or from the forward rate, using support vector regres-
sion

β̂ = Argmin
β

1
2 ‖β‖

2
+ C

∑
i

φ(yi − β′xi)

φ =

(with the kernel trick). The resulting model can be
made more interpretable using a “dynamic evolution
neuro-fuzzy inference system” (denfis), i.e., a set of
fuzzy rules of the form “Rule m: if x1 is Rm1 and . . .
and xn is Rmn then y =

∑
i βmixi”, where Rm1 is a

Gaussian membership function

Rm1 ∝ exp− (x− c)2

2σ2
.

Rationality of survival, market segmentation
and the equity premium puzzle

Y. Gabovich (2014)
A supply-and-demand model, with young people in-
vesting in equities and retirees in bonds, can explain
the equity premium puzzle (the difference in returns
between bonds and equities is too large to be explained
by risk aversion alone).

Do patented innovations affect
cost of equity capital?

S.P. Hegde and D.R. Mishra (2014)
Cost of equity increases with R&D expenses but de-
creases with patents: they reduce the uncertainty
about the marketability of the research.

Say it again Sam:
the idiosyncratic information content

of corporate conference calls
J. Cicon (2014)

To measure the information content of corporate con-
ference calls, compare the two parts of the call (man-
agement presentation and Q&A session), e.g., with co-
sine similarity, to estimate how much unscripted infor-
mation is provided.

Management forecasts and the cost of equity
capital: international evidence

Y. Cao et al. (2014)
The presence of management forecasts lowers the cost
of equity.

Do social firms catch the drift?
Social media and earnings news

V. Bhagwat and T.R. Burch (2013)
Twitter firms (more than 0.1 tweet per day, on average,
since the creation of the twitter account – the mapping
from firm to twitter account was done manually) have
stronger post-earnings announcement drift (PEAD).

A general option valuation approach
to discount for lack of marketability

R. Brooks (2014)
To price a non-marketable asset, one can model the
price of the corresponding marketable asset as the sum
of the unmarketable price and an option, e.g., an op-
tion to sell the asset at the current market price, or at
the best price in the period (if the investor has market
timing abilities) or at the average price in the period
(European put, lookback put, average-strike put).

Stock market ambiguity
and the equity premium

P.C. Andreou et al. (2014)
Ambiguity (uncertainty about the probability distri-
bution of future assets) can be measured as the dis-
persion (standard deviation or mean absolute devi-
ation) of the volume-weighted strike prices of S&P
500 index options. It is a better predictor of future
returns than other ambiguity proxies (analysts’ fore-
casts, stock turnover, press) or other option-implied
measures (slope of the volatility smirk, risk-neutral
variance, skewness or kurtosis, hedging pressure, i.e.,
OTM puts / ATM calls), and almost as good as the
variance risk premium, (VRP = VarQXt − VarPXt,
where VarQXt is computed from option prices and
VarPXt = Varrealized Xt−1).

Credit risk models II: structural models
A. Elizalde (2005)

Structural default models model the value of the assets
of a company as a geometric Brownian motion; a de-
fault occurs when the value of the assets is below some
threshold

Article and book summaries by Vincent Zoonekynd 642/1044

– at the end of the period;
– at any point during the period;
– or on some sufficiently long subinterval of the fore-
cast period.

These correspond to the Merton model (European op-
tions), first passage models (FPM, barrier options) and
liquidation process models. Those models do not work
well.
To account for correlation and contagion, one can
movel the value of the assets (of several companies) as
diffusions with correlated innocations and correlated
jumps.

Asymmetric dependence, tail dependence
and the time interval

over which the variables are measured
B.U. Kang and G. Kim (2014)

Look at the asymptotic behaviour of the n-period cop-
ula: ∣∣∣λ(n)(q)− λ(n)(1− q)∣∣∣ −−−−→

n→∞
0

λ
(n)
U , λ

(n)
L −−−−→

n→∞
0

where λ(n)(q) is the n-period quantile and λ
(n)
U , λ(n)L

the upper and lower tail dependence indices.

Stock and index derivatives and markets
J. Spina (2014)

The main option strategies are:
– Dividend spread: profit from investors that fail from
exercising their American options in time;

– If you own stocks of your own firm, want to keep
the dividends and voting rights, but want some pro-
tection: buy OTM puts (you may also want to sell
OTM calls to finance the puts);

– Variable prepaid forward (sell the stock you own in
the future, but get the money now);

– If you want to bet on the performance of a stock (e.g.,
your firm), use an option collar, sell ATM puts, buy
ATM calls.

Relative alpha
J.C. Jackwerth and A. Slavutskaya

The relative alpha of a hedge fund is the excess per-
formance wrt its peers, where the peers are funds for
which the return difference has a small variance. More
formally,

αi =
∑
j ̸=i

wijE[ri − rj]

wij ∝ k
(
h−1 Var[ri − rj]

)
k : kernel
h : bandwidth (Silverman’s rule of thumb).

Factor high-frequency based volatility models
K. Sheppard and W. Xu (2014)

Factor model to estimate large realized covariance ma-
trices.

A multivariate model
of strategic asset allocation with longevity risk

E. Bisetti et al. (2014)
If you use reinsurance as a cheap source of leverage (like
Berkshire), do not forget to account for longevity risk –
it is negligible for short-term investors, but significant
for long-term ones.

Consumption-based asset pricing
with rare disaster risk

J. Grammig and J. Sönksen (2014)
High equity risk premium may be due to fears of rare
disasters.

Optimal hedging
with the vector autoregressive model

L.T. Gatarek and S. Johansen (2014)
With several assets (3+) and cointegration relations
(2+), use portfolio construction tools (e.g., minimum
variance) on the set of stationary portfolios.

Classifying as defensive or cyclical
a bivariate wavelet analysis perspective

J. Bruzda
Given two signals x and y, compute the non-decimated
Hilbert coefficients u and v and define

Covj(xt, yt+τ) = ujtv̄j,t+τ

Varj xt = Covj(xt, xt)

ReCovj(xt, yt) : wavelet cospectrum
ImCovj(xt, yt) : wavelet quadrature spectrum

Corj(xt, yt) =
Covj(xt, yt)√
Varj xtVarj yt

|Corj(xt, yt)|2 : wavelet coherence
|Corj(xt, yt)| : wavelet coherency

θj(xt, yt) = arg Covj(xt, yy) phase spectrum

τj(xt, yt) = −θj(xt, yt) ·
2j+2

6π
time delay

βj(xt, yt) =
Covj(xt, yt)

Varj xt

|βj(xt, yt)| : wavelet gain.

In R, check waveslim::modwt.hilbert(x,"k3l3",4).

Optimality of momentum and reversal
X.Z. He et al. (2014)

One can add momentum and reversal to a geometric

Article and book summaries by Vincent Zoonekynd 643/1044

Brownian motion
dS

S
=
[
φmt + (1− φ)µt

]
dt+ σSdZS

dµt = α(µ̄− µt)dt+ σµdZµ Ornstein-Uhlenbeck

mt =
1

τ

∫ t

t−τ

dSu
Su

Momentum

and compute the optimal strategy, for a 2-asset uni-
verse (stock and bond) and an investor maximizing the
expected utility of final wealth. The model can be fit-
ted to historical data (S&P500, monthly, 1 century).

Discounting the distant future
J.D. Farmer et al. (2014)

If the interest rate (is non-constant and) follows an
Ornstein-Uhlenbeck process dr = −α(r−m)dt+kdW ,
the discount factor D(t) = E[exp−

∫ t
0
r(s)ds] satisfies

logD(t) ∼t→∞ (m− k2/2α2)t, in particular, the long-
term interest rate r∞ = m − k2/2α2 is not the long-
term average of the interest rate. The interest rate
distribution, r ∼ N(m, k2/2α), does not determine r∞.

Independence of stock markets before
and after the global financial crisis of 2007

B.M. Ibrahim and J. Brzeszczyński (2014)
To measure the impact of a variable z on a regression
y ∼ x, where x, y, z are time series, assume that the
coefficients of the regression are AR(1) processes whose
coefficients depend on Z,

yt = (α+ εt) + (β + ηt)xt + ut

εt+1 = (a+ bzt)εt + vt+1

ηt+1 = (c+ dzt)ηt + wt+1

For instance, x and y could be the returns in two mar-
kets and z the difference in turnover of volatility be-
tween those two markets.

An empirical investigation
of methods to reduce transaction costs

T. Moorman (2014)
To reduce transaction costs, define a no-trade zone
around the optimal portfolio, using some measure of
distance (Euclidian, cosine, etc.) and an “optimal”
threshold.

Causal dependency in extreme returns
K. Echaust

There is more long memory in return tails: look at the
cross-correlation of block maxima and minima.

Option pricing
with the logistic return distribution

M. Levy and H. Levy
Black Scholes option pricing formulas can be general-
ized to the logistic distribution (the distribution whose

cdf is the logistic function). A possible justification
is that while aggregated log-returns are asymptotically
Gaussian, normal market conditions are still far away
from this limit.

Forecasting crashes: correlated fund flows
and the skewness in stock returns

X. Gong et al. (2014)
Correlated demand for liquidity (from mutual funds)
explains the negative skewness of stock returns:
– Use mutual fund holdings to estimate how much of
the trading of a fund is due to liquidity shocks (in-
flows and outflows);

– Assume that the stock returns are linearly related to
those liquidity shocks;

– Estimate the variance and skewness of the returns,
conditional on the liquidity shocks;

– Decompose it into contributions of the variance,
covariance, skewness, coskewness of the liquidity
shocks.

Non-linear forecasting of energy futures:
oil, coal and natural gas

G.G. Creamer (2014)
Use Brownian distance correlation

ν(X,Y) = ‖fXfY − fXY ‖

c(X,Y) =
ν(X,Y)√
ν(X)ν(Y)

as an alternative to Granger causality, and for feature
selection (to build leading indicators).

Agent-based models of financial markets
E. Samanidou et al. (2007)

Clear review of a few agent-based models of financial
markets:
– Rebalancers (targeting wcash = wstock = 1

2) and
CPPI investors, reviewing their portfolios (and trad-
ing) at random times, each agent estimating the “fair
price” from the order book to make her decision, with
random deposits and withdrawals;

– Traders with a noisy log-utility (so that the optimal
weight of stock and bond is independent of wealth,
up to noise), assuming the forward returns will be
one of the past k returns (the look-back k is investor-
dependent);

– Gamblers, wealthi,t+1 = λ×wealthit, with λ random
around 1, and a welfare state ensuring wealthi,t ⩾
q × average wealth;

– Percolation: traders are the occupied sites on a lat-
tice of dimension 2 to 7, clusters are groups of traders
making the same decision (herding), P [buy] =
P [sell] = a, P [sleep] = 1−2a, ∆log price ∝ supply−
demand; this gives the correct stylized facts, includ-
ing log-periodic oscillations (if you add some ratio-
nality and hysteria);

Article and book summaries by Vincent Zoonekynd 644/1044

– The supply and demand balance between noise
traders and fundamentalists drives price changes,
and each trader reviews her beliefs based on those
price changes.

Only the last two models give credible prices.

Electricity price forecasting: a review of the
state-of-the-art with a look into the future

R. Weron (2014)
Review of many methods to forecast electricity prices:
– Agent models (Nash equilibrium, multi-agent simu-
lations);

– Jump diffusion model, Markov-switching model;
– Exponential smoothing, regression, AR, SARMA,
ARX, TAR, GARCH, etc.;

– Neural nets (MLP, recurrent, fuzzy), SVM.

Financial sector tail risk and real economic
activity: evidence from the option market

M. Neumann
An option-implied measure of tail risk can be computed
from the price of deep OTM put options on a financial
index (cheaper than it should be because of (implicit)
government guarantee) and the constituents of this in-
dex.

Q-learning-based financial trading systems
with applications

M. Corazza and F. Bertoluzzo (2014)
Use reinforcement learning (e.g., Q-learning) to design
your automated trading systems.

TrueSkill™: a Bayesian skill rating system
R. Herbrich et al.

Generalization of the (already Bayesian) Elo system.

Intrinsic ratings compendium
K.W. Regan (2012)

To estimate Elo ratings from moves rather than game
outcomes (there are more of them):
– Compute the value of the position before and after
each move (with a chess program);

– Assume P [move] ∝ pα(value,∆value)
0 , where α is a func-

tion to estimate;
– Discard openings (first 8 moves), repeated positions,
clearly advantageous positions;

– Estimate the Elo rating from α.

A different angle on fitting ROC curves to
rating data using the first principal component

J.R. Vokey (2014)
To estimate a ROC curve from a few points, convert
the p-values to a Gaussian (qnorm – the points are likely
to be aligned) and take the first principal component
(rather than a regression line).

From Archimedian to Liouville copulas
A.J. McNeil and J. Nešlehová

Archimedian copulas are copulas of d-dimensional `1-
norm symmetric distributions, i.e., copulas of random
variables X = RSd, where Sd is uniform on the unit
simplex ∆d = {x ∈ Rd

+ :
∑
xi = 1 } and R is an

independent nonnegative random variable. Replacing
the uniform distribution on ∆d with a Dirichlet dis-
tribution, P (x1, . . . , xn) ∝

∏
xαi−1i gives the (non-

exchangeable) Liouville copulas.

An introduction to state space models
M. Wildi (2013)

Detailed presentation of state space models and the
Kalman filter in R, with
– Detailed explanations of the formulas (the Kalman
filter is a sequence of Bayesian updates – in particu-
lar, a prior is needed);

– The various objective functions for model estimation
(look at the out-of-sample residuals yt = ŷt|t−1, or
the in-sample ones, yt = ŷt|t, and minimize their
sum of squares or their likelihood – prefer the out-
of-sample maximum likelihood estimator);

– A few examples:
· Regression, where the coefficients are the hidden
state, and the covariates form the (time-changing)
observation matrix;
· Intervention studies;
· Missing values, dealt with by skipping the obser-
vation ξ̂t|t ← ξ̂t|t−1;
· Time-changing AR(1) process;
· Decomposition into trend and SARMA compo-
nents.
· Smoothing was not detailed – there are many appli-
cations in signal processing, but few/none in time
series analysis.

In R, check the dlm, KFAS, dlmodeler packages.

Parallel Markov chain Monte Carlo
D.N. VanDerwerken and S.C. Schmidler (2013)
Use importance sampling weights to merge parallel
MCMC simulations and get a consistent estimator
much earlier, even in case of slow mixing (e.g., mul-
timodal or highly correlated distributions).

Testing the equality
of two positive definite matrices

with applications to information matrix testing
J.S. Cho and H. White (2014)

Build a test for equality of positive definite matrices
using

A = B ⇐⇒ (detD)1/k =
1

k
trD = 1,

where D = BA−1.

Article and book summaries by Vincent Zoonekynd 645/1044

Birds of a feather flock together
Local learning of mid-level representations

for fine-grained recognition
A. Freytag et al.

Local learning is similar to local regression, but for ar-
bitrary machine learning algorithms: given a new ob-
servation to classify, find the k-nearest ones (k � 1),
train a model on them, and use it.

Multivariate Weibull distributions
for asset returns I

Y. Malevergne and D. Sornette (2004)
Asset returnsX can be described by a modifiedWeibull
distribution,

p(x) ∝ |x|c/2−1 exp−
(
|x|
σ

)c
(perhaps with a different exponent c for x > 0 and
x < 0), i.e., some power of the returns, sign(X) |X|α,
is Gaussian. For the correlation structure, use a Gaus-
sian copula.

Tweedie family densities:
methods of evaluation

P.K. Dunn and G.K. Smyth
The Tweedie distribution is an exponential dispersion
model in which the variance is some power of the ex-
pectation

f(y) = a(y, φ) exp
yθ − κ(θ)

φ

Var y ∝ E[Y]p.

Special cases include Gaussian (p = 0), Poisson (p =
1), Gamma (p = 2) and inverse Gaussian (p = 3). The
pdf can be approximated by inverting the cummulant
generating function (it has a simple form) or by an
infinite series.
In R, check the cplm and tweedie packages.

Series evaluation of Tweedie exponential
dispersion model densities

P.K. Dunn and G.K. Smyth (2005)
If Y ∼ EDp(µ, φ) follows a Tweedie distribution with
0 < p < 1, it can be written Y = X1 + · · ·+XN , with
Xi ∼ Γ, Xi iid, N ∼ Poisson. When p is close to 1,
the distribution is multimodal (p = 1 gives the Poisson
distribution, which is discrete).

Model identification
using stochastic differential equation

grey-box models in diabetes
A.K. Duun-Henriksen et al. (2013)

A white-box model is a system of ODEs (here,
phamaco-kinetics) based on domain knowledge. A
grey-box model is a noisy system of SDEs; it mixes

domain knowledge and data. A black-box model is en-
tirely data-driven.
For grey-box models in R, check the ctsm package
(SDEs with noisy measurements at discrete times, i.e.,
non-linear Kalman filter).

Approximate bayesian inference
for latent Gaussian models by using

integrated nested Laplace approximations
H. Rue et al. (2009)

One can use nested Laplace approximations (asymp-
totic expansion of

∫ b
a
eMf(x)dx, when M → ∞, if f

has a unique maximum x0, using a Taylor expansion
of f around x0) to estimate posterior probabilities in
latent Gaussian models.
In R, check the INLA package (not on CRAN).

Non-linear causal inference
using Gaussianity measures

D. Hernández-Lobato et al. (2014)
If x causes y (through a linear model with non-
Gaussian noise), the residuals of y ∼ x are less Gaus-
sian than those of x ∼ y.

Ranking the economic importance
of countries and industries

W. Li et al. (2014)
Country- and sector-level imports and exports (world
input-output data, www.wiod.org) defines a (weighted,
directed) graph, amenable to cascading failure toler-
ance analysis: check what happens when a node fails
– other nodes fail if their revenue drops by a fraction
greater than p ∈ [0, 1]. The critical value pc beyond
which most nodes fail measures the centrality of the
first failing node.

Interdependencies and causalities
in coupled financial networks

I. Vodenska et al. (2014)
To identify lead-lag relations from log-return time se-
ries, complexify the signals with a Hilbert transform;
compute the “complex correlation matrix”; build a di-
rected network using the sign of the phase of the cor-
relation to infer the direction of the edges. One can
also look at the principal components (complex PCA)
and use random matrix theory (or its resampling-based
equivalent, rotational random shuffling, RRS).

SIMoNe: statistical inderence
for modular networks

J. Chiquet et al. (2008)
If you suspect your network has a modular structure,
i.e., the adjacency matrix has a block structure, with
dense diagonal blocks and sparse off-diagonal blocks.

Article and book summaries by Vincent Zoonekynd 646/1044

Maps of random walks on complex networks
reveal community structure

M. Roswall and C.T. Bergstrom (2008)
One can describe paths on a graph by using a Huffman
code for the outgoing edges of each node – but there
is a different code for each node. Instead, one can use
a unique code, and encode the target nodes instead of
the outgoing edges (Huffman code for the limiting dis-
tribution of a random walk on the graph). To identify
clusters, use a 2-level code: each cluster has a unique
name, each node has a code unique in its cluster, but
reused on other clusters. The path is encoded by us-
ing the node codes, as long as it remains in the same
cluster and, when it changes cluster, an exit code, the
name of the cluster, and the code of the new node. The
average description length is

P [change cluster]H[cluster codes] +∑
cluster

P [same cluster]H[node codes in that cluster]

where H is the entropy.
To find the optimal partition into clusters, use a greedy
agglomerative algorithm, and refine with simulated an-
nealing. Contrary to other clustering algorithms, the
edge weights are used. By adding teleportation (à la
PageRank), the algorithm can also deal with directed
graphs.

Online community detection
for large complex networks

G. Pan et al. (2014)
To estimate communities online, do not optimize the
modularity, but the expected modularity, for some
generative model, e.g.:
– Link a new node to a community C with probability

proportional to degC;
– Long two nodes in communities C and C ′ with prob-

ability proportional to degC × degC ′.

Nowcasting economic and social data:
when and why search engine data fails,
an illustration using Google flu trends

P. Ormerod et al. (2014)
Search engine data (e.g., Google flu) is less reliable
when social influence is high: the Bass diffusion model
(fitted between the two low points on both sides of
a peak) can help distinguish between independently-
motivated and socially-motivated searches.

Do we need hundreds of classifiers
to solve real-world classification problems?

M. Fernández-Delgato et al. (2014)
Comparison of 179 classifiers (the output is binary),
in R, Weka, C, Matlab (no Python) on 121 datasets:
prefer random forests and SVM, but do not reject neu-
ral networks, boosting, C5.0, avNNet (caret) or ELM
(extreme learning machines).

Generating abbreviations
using Google Books library

V.D. Solovyev and V.V Bochkarev
Abbreviations are prefixes (or substrings) with the
same context.

Improved part-of-speech tagging for online
conversational text with word clusters

O. Owoputi et al. (2013)
TweetNLP is a POS tagger for twitterese; it uses a hid-
den Markov model (HMM) with Brown clustering to
recognize new words and alternate spellings.

Selecting influential examples: active learning
with expected model output changes

A. Freytag et al.
Active learning refers to the algorithms used to decide
which unlabeled samples to label next (when labeling
is costly and online), i.e., which sample is the most
informative. Strategies include:
– Rapid exploration: prefer samples far away from
already-labeled ones – but this gives too much em-
phasis on outliers;

– Maximum uncertainty: label the samples the model
is the most uncertain about;

– Maximize the expected model change;
– Reduce the estimated classification error (expected
entropy minimization);

– Maximize the expected model output change
(EMOC).

Logarithmic-time online multiclass prediction
A. Choromanska and J. Langford (2014)

For multiclass classification problems with a large num-
ber of classes, arrange the classes in a logarithmic-
depth tree, either:
– Known in advance;
– Constructed using class frequencies (Huffman cod-
ing);

– Constructed online, recycling orphan nodes when
needed.

Model compression
C. Bucilă et al. (2006)

To compress an ensemble of thousands of models into
a simpler, smaller model, fit the smaller model on the
forecasts of the complicated model on a large set of
unlabeled examples. If there is no such set, use a
synthetic one: add noise to each feature of existing
observations, where the amplitude of the noise is the
distance to the closest observation (for qualitative vari-
ables, replace the value with that of the nearest neigh-
bour with probability p).

Article and book summaries by Vincent Zoonekynd 647/1044

Do deep nets really need to be deep?
L.J. Ba and R. Caruana (2014)

Shallow neural networks are as expressive as deep ones:
– Learn a deep model;
– Use it to create a huge synthetic training set from
unlabeled data;

– Train a shallow model on the synthetic dataset (to
speed things up, use a low-rank approximation of the
weight matrix).

Towards automated discovery
of artistic influence

B. Saleh et al. (2014)
Linguistic models can be used with non-text data: for
instance, one can use topic models (latent Dirichlet
analysis, LDA) on images, by replacing the words with
image features (first identified by the Laplace Har-
ris detector, then reduced to a set of 600 features
(“words”) using k-means).

Memory networks
J. Weston et al. (2014)

One can combine neural networks with a memory com-
ponent:
– Convert the input to features;
– Store them in memory (more generally, update the
memory from the input features and the current
memory);

– Predict the output features from the memory and
the input text;

– Generate the output from the output features.
The various components can use your favourite ma-
chine learning algorithm (SVN, decision tree, neural
net, etc.). The idea can be used on text data, us-
ing a bag-of-word approach, e.g., to answer questions
about a story (store the raw input, verbatim, sequen-
tially, time-stamped, in memory; compute the memory
m1 “closest” to the input question; compute the mem-
ory m2 closest to both the input and m1 and with
m1 ≺ m2; output a single word).

Modeling interestingness
with deep neural networks

J. Gao et al. (2014)
Use a deep neural net, with a convolutional and a
max-pooling layer (often used in image processing) to
model text; train it to forecast followed links, i.e.,
f(text1, text2) = 1 if text2 was read after text1.

Understanding locally competitive networks
R.K. Srivastava et al.

Visualizing the nodes of a neural network with rectified
linear units (RLU,), maxout (output the maxi-
mum of the inputs) or local winner takes all (in a group
of nodes, the maximum passes its input unchanged,
but the others output 0) (these are often trained with

droupout) suggest that the nodes cluster – only part of
the network is activated for any given input pattern.

Political ideology detection
using recursive neural networks

M. Iyyer et al.
A recursive neural net (RNN) is a model that
– Uses a vector representation of the words in the sen-
tence (initialize it with word2vec);

– Combines them, along the parse tree of the sentence
(all nodes share the same parameters);

– And outputs the predicted class (here, liberal vs con-
servative) using a softmax.

Efficient programmable learning to search
H. Daumé III et al. (2014)

In structured prediction, the search space can be de-
scribed by an arbitrary imperative program (or a gram-
mar).
Software to model sequence data (segmentation, tag-
ging in NLP): CRF++, crfsgd, VW.

Dropout: a simple way to prevent
neural networks from overfitting

N. Srivastava et al. (2014)
When iteratively training a neural net (e.g., with
stochastic gradient descent, SGD), forget (drop) a ran-
dom subset of the nodes at each iteration (and update
this smaller set). The resulting neural net can be seen
as an ensemble of (all the) 2n sparser subnets.
This can be interpreted as the addition of noise to the
hidden nodes; this noise can be integrated out to com-
pute the gradient (for regression, this is similar to ridge
regression).

Monte Carlo non-local means: random
sampling for large-scale image filtering

S.H. Chan et al. (2013)
To denoise a pixel i in an image, take the weighted
average of the pixels j,

∑
j wijxj , where wij measures

the similarity of the regions around i and j (non-local
means, NLM); the pixels j can be from the same image
or from an image database. To speed up the algorithm,
consider:
– Only looking at pixels j close to i;
– Dimension reduction (SVD);
– Effective data structures (kd-trees);
– A low rank approximation of the weight matrix W ;
– Random sampling.

Modeling the shape of the scene: a holistic
representation of the spatial envelope

A. Oliva and A. Torralba (2000)
It is possible to recognize scenes by looking at their tex-
ture and structure, without any segmentation (GIST
descriptors):

Article and book summaries by Vincent Zoonekynd 648/1044

– Presence of textured zones;
– Undulating contours;
– Uncluttered horizon line;
– Size of the major components;
– How straight the horizon line is;
– Parallels and perpendiculars;
– Converging lines.

Evaluation of GIST descriptors
for web-scale image search

M. Douze et al. (2009)
Useful for duplicated image search.

Random search
for hyper-parameter optimization
J. Bergstra and Y. Bengio (2012)

Avoid grid search for hyper-parameter optimization: if
some of the directions are irrelevant, random search (or
a low discrepancy sequence) performs better.

Important parameter

Ir
re

le
va

nt
 p

ar
am

et
er

Important parameter

Ir
re

le
va

nt
 p

ar
am

et
er

Freeze-thaw bayesian optimization
K. Swersky et al. (2014)

Bayesian optimization searches the (global) minimum
of an expensive, noisy function (over [0, 1]D). The func-
tion is often modeled as a Gaussian process (GP). To
choose the next point on which to evaluate the func-
tion, one can use:
– The point that gives the best expected improvement

aEI(x) = (f(xbest)− µ(x))+
(where the positive part is smoothed – they do not
use u+ ≈ log(1 + eu), but u+ ≈ uΦ(u) + φ(u) – and
the smoothing is larger when the variance V (x) is
large);

– The point that reduces the expected uncertainty
about the location of the minimum the most (en-
tropy search).

It is actually not needed to precisely estimate the func-
tion at each point: one can stop early (freeze), estimate
the limiting value (by assuming exponential conver-
gence – this is not unlike the classical series accelera-
tion techniques) and, at each iteration, decide to either
explore a new point, or continue (thaw) the computa-
tions for a frozen point.
For bayesian optimization in Python, check HIPS/
spearmint.

MA-SW-Chains: memetic algorithm
based on local search chains

for large scale continuous global optimization
D. Molina et al. (2010)

A memetic algorithm is an evolutionary algorithm, hy-
bridized with local search. The chains refer to the fact
that the local search is not run until the end, but just
a few more steps at each generation.

Approximate bayesian computation
and particle filters
D. prangle (2014)

Maximum likelihood estimation can still be used when
the likelihood is not computable:
– Simulate data ysim for many values of the parameter
θ;

– Select the θ for which ysim and yobs are the closest
(instead of using all of y, you can use some summary
statistic).

In a bayesian framework, this likelihood-free method
becomes “approximate bayesian computation” (ABC):

Repeat N times:
Draw θ from the prior
Draw ysim|θ from the model
Accept θ if d(ysim, yobs) < ε.

To avoid degeneracy (no samples accepted), repeat un-
til there are M samples (alive ABC).
Adding noise makes the estimate consistent (noisy
ABC).
For state space models, one can start with a particle
filter

t = 1
Sample x(i) from the prior
w(i) ∝ likelihood(yobs

t |x(i))
Increment t, resample, propagate the particles

and replace the likelihood

Simulate y(i)|x(i), θ
w(i) = 1d(yobs

t ,y(i))<ε.

Accurate methods
for approximate bayesian computation filtering

L. Calvet and V. Czellar (2012)
In the ABC particle filter

p
(n)
t ∝ 1

d(ỹ
(n)
t ,yt)<ε

,

where y is the data and ỹ is the data sampled from
the model (N samples), choosing ε is akin to select-
ing the bandwidth of a kernel density estimator (this
guarantees ε −−−−→

N→∞
0).

Article and book summaries by Vincent Zoonekynd 649/1044

Relevant statistics for Bayesian model choice
J.M. Marin et al. (2013)

The choice of a (non-sufficient) summary statistic
T (i.e., using π(θ|T (y)) instead of π(θ|y), where
θ =model, y =data, T =summary statistic) in bayesian
statistics (in particular ABC) leads to incorrect Bayes
factors, and therefore incorrect model selection. Under
some conditions on the summary statistics, the Bayes
factor is asymptotically correct.

Bayesian computation via empirical likelihood
K.L. Mengersen et al. (2012)

The empirical likelihood (in R, emplik) is an alter-
native to approximate bayesian computations (ABC):
given a set of equations uniquely determining the pa-
rameters of interest θ, E[h(y, θ)] = 0, let

Lel = Max
{∏

i

pi : p ∈ [0, 1]n,

∑
pi = 1,

∑
pih(yi, θ) = 0

}
.

Multidimensional scaling using majorization:
SMACOF in R

J. de Leeuw and P. Mair
To find the minimum of a function f , majorization sug-
gests to find a simpler function g such that

∀x, y g(x, y) ⩾ f(x)
∀y g(y, y) = f(y)

and iterate xn+1 = Argminx g(x, xn).
Multi-dimensional scaling (MDS) is the problem

Argmin
x1,...,xn

∑
ij

wij(δij − ‖xi − xj‖)2;

the objective function can be written

σ(X) = 1 + trX ′V X − 2 trX ′B(X)X

⩾ 1 + trX ′V X − 2 trX ′B(X)Y

(the rhs is now a quadratic function).
Variants include:
– Several dissimilarity matrices;
– Linear constraints (they can be formulated as a
reparametrization: find C to minimize σ(ZC), with
Z known);

– Rectangular matrices: given a judge×object rating
matrix, find coordinates for both judges and items in
the same space – this is a special case of the previous
setup, with weights W =

(
0 ∗
∗ 0

)
;

– Non-metric MDS:

Argmin
X,f

f non-decreasing

∑
ij

wij(f(δij − ‖xi − xj‖)2,

the estimate of f changes at each step, and is op-
tained by monotone regression (aka isotonic regres-
sion)

– MDS on quadratic surfaces (mostly spheres).

Hierarchical k-means clustering
A. Böcker et al. (2004)

The hierarchical k-means algorithm is a sequence of
k-means invocations:
– Start with the mean;
– Split all the centroids in two, add noise, and start
the k-means algorithm with these centroids;

– Iterate until the number of centroids equals the num-
ber of points.

Clustering with Bregman divergences
A. Banerjee et al. (2005)

The k-means algorithm (of the k-medoid one – the
cluster centers are chosen among the data points) can
be generalized to other distances or divergences. The
Bregman divergence associated to a convex function
φ : S −→ R, with S ⊂ Rn, is

dϕ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉.

Examples include φ(x) = ‖x‖2, for the Euclidian dis-
tance; φ(x) =

∑
xi log xi, for the Kullback-Leibler di-

vergence on the simplex S = [
∑
xi = 1, ∀i xi ⩾ 0];

φ(x) = − log x, for the Itakura-Saito distance,

D(p, q) =
∑
i

(
pi
qi
− log

pi
qi
− 1

)
.

Itakura-Saito nonnegative matrix factorization
and friends for music signal decomposition

C. Févotte (2012)
The β-divergence,

dβ(x|y) =
1

β(β − 1)
(xβ + (β − 1)yβ − βxyβ−1),

which specialized to the Euclidian distance (β =
2), the Kullback-Leibler divergence (β = 1) or the
Itakura-Saito divergence (β = 0, non-convex, but scale-
invariant) is a popular cost function in nonnegative ma-
trix factorization (NMF). It is non-convex in general,
but can be optimized by majorization-minimization
(MM) by majorizing the convex and concave parts sep-
arately (using Jensen’s inequality and the tangent, re-
spectively). IS divergence NMF is actually a maximum
likelihood estimator for a generative model of the short-
term Fourier transform (STFT) of the signal.
In music, NMF can recover instruments and notes.

Article and book summaries by Vincent Zoonekynd 650/1044

On the surprising behavior of distance metrics
in high-dimensional space

C.C. Aggarwal et al. (2009)
The curse of dimensionality states that, in high di-
mensions, the closest point and the farthest point are
approximately at the same distance. A study of the
asymptotic behaviour of

Max1⩽i⩽n ‖Xi‖Lk
Min1⩽i⩽n ‖Xi‖Lk

as the dimension d tends to infinity suggests that the
situation is worse if k is large. Prefer the L1 distance
or, even better, the Lk semi-metric for k ∈ (0, 1). It is
not a metric – it does not satisfy the triangle inequality
– but, for algorithmic purposes (e.g., to look for the k
nearest neighbours), it is usually fine.

Feature selection strategies for classifying
high-dimensional astronomical data sets

C. Donalek et al.
Algorithms to select features include:
– Fast relief: compare the distribution of
f(nearest hit)− f(x0) and f(nearest miss)− f(x0);

– Fisher discriminant ratio: FDR =

(
µ1 − µ2

σ1/σ2

)2

;

– Correlation-based feature selection: find a subset
of the variables with low correlation between them-
selves and high correlation with the target;

– Least angle regression.

Distribution’s template estimate
with Wasserstein metrics
E. Boissard et al. (2013)

The notion of mean (and barycenter) can be general-
ized to arbitrary metric spaces,

(x1, . . . , xn) = Argmin
µ

∑
i

d(µ, xi)
2,

but unicity, or even existence, is not guaranteed in gen-
eral. Given a metric measurable space (E, d,Ω), the
Wasserstein distance between two probability measures
µ and ν on E is

d(µ, ν)2 = inf
m measure on E×E

pr1m=µ
pr2m=ν

∫
E×E

d(x, y)m(dx, dy).

If E = Rn and µ is absolutely continuous wrt the
Lebesgue measure, there exists T : Rn −→ Rn (Bre-
nier map) such that ν = T ∗ µ and

d(µ, ν) =

∫
|T (x)− x|2 µ(dx).

It measures the deformation needed to transform µ into
ν and can be used to compute barycenters.

Item response models
to measure corporate social responsibility

N. marco et al. (2013)
To combine several signals into one (here, various CSR
measures, provided by KLD – now MSCI ESG), one
can use:
– Equal weights;
– Weights reflecting stakeholders’ preferences;
– Data envelopment analysis (DEA – the weights are
company-specific and determined by the data);

– The first principal component, from PCA, ICA,
NMF, etc. [not mentioned];

– Item response theory (IRT): this automatically iden-
tifies the offset for each variable and how discrimi-
native they are.

Measuring corporate social performance:
an efficiency perspective

C.M. Chen and M. Delmas (2010)
Data envelopment analysis (DEA) is a way of measur-
ing the distance (of a firm) from the efficient frontier (of
its peers). Let i denote companies, k the measures to
be maximized (profit, etc.), xki the value of measure k
for firm i, F = {i : ∀j ∃k xki ⩾ xki} the efficient fron-
tier. The aggregated score for company i is

∑
k λkixki,

where the optimal weights are

λ·i = Argmin
λ·i
λ⩾0∑

k

λki=1

Max
j∈F

∑
k

λki(xkj − xxi).

Traditionnaly, DEA separates the measures into inputs
xki (to be minimized) and outputs xkj (to be maxi-
mized):

Find λ·i, µ·i

To maximize
∑
ℓ

µℓiyℓi

/∑
k

λkixki

Such that ∀j
∑
ℓ

µℓiyℓj

/∑
k

λkixkj ⩽ 1

and λ, µ ⩾ 0.

(To make the program linear, rescale it by adding the
constraint

∑
k λkixxi = 1.)

The ratio
∑
ℓ µℓiyℓi/

∑
k λkixki is the efficiency of the

firm; it is 1 iff it is on the efficient frontier.
The article uses an extension of DEA to ordinal vari-
ables to aggregate corporate social responsibility mea-
sures.
[Would the bootstrap help give more stable results?]

Non-linear shrinkage of the covariance matrix
for portfolio selection:

Markowitz meets Goldilocks
O. Ledoit and M. Wolf (2014)

Linear shrinkage estimates a covariance matrix as
(1− λ)V + λI, where V is the sample variance matrix

Article and book summaries by Vincent Zoonekynd 651/1044

and λ is chosen to minimize some loss function. The
loss function could be the asymptotic Frobenius dis-
tance between the estimator and the population vari-
ance (the population variance is not known but, to
compute the asymptotic distribution, we do not need
all of it: the eigenvalues actually suffice). In a financial
context, one can minimize the variance of the tangen-
tial portfolio: the results turn out to be similar.
Instead of letting just one parameter vary, one can let
O(N) parameters vary, e.g., the eigenvalues of the sam-
ple covariance matrix.
The estimator is defined as follows:

c = N/T concentration
V = UΛU ′ sample covariance matrix
λ1, . . . , λn eigenvalues of V
τ1, . . . , τn eigenvalues of the population variance

s(x) ∈ R ∪C+ solution of s−1 =
1

T

N∑
i=1

τi
1 + τis

− x

di =
1

λis(λi
new eigenvalues

D = diag(d1, . . . , dN)

S = UDU ′ desired estimator.

The population eigenvalues can be estimated by dis-
cretizing the relation between the asymptotic empirical
distribution function H of the population eigenvalues
and that, F , of the sample eigenvalues: for all x ∈ C+,
the Stieltjes transform of F ,

s =

∫
dF (λ)

λ− z

is determined by

−1− c
z

+ cs ∈ C+

s =

∫
dH(τ)

τ(1− c− czs)− z
.

Linear vs quadratic
portfolio selection models in practice

F. Cesarone et al.
The standard quadratic programming problem

Find x ∈ Rn

To minimize f(x) = x′Qx
Such that x ⩾ 0, x′1 = 1

can be solved efficiently with the increasing set algo-
rithm. The minimum is attained in the relative interior
of a face where f is strictly convex; furthermore, there
is an increasing sequence of faces F1 ⊂ F2 ⊂ · · · ⊂ Fk,
dimFi = i, on which f is strictly convex, has an inte-
rior global minimizer x∗i and x∗ = x∗k. The algorithm
looks at all possible faces of dimension 1 satisfying the
conditions, and tries to extend them (breadth-first).

For cardinality-constrained problems, that is even eas-
ier: stop early.
This can be used to find cardinality-constrained mini-
mum variance portfolios.

Premium indexation:
CVaR-lasso optimal index replication

Y.J. Jin and X. Zhong (2014)
To replicate an index, use CVaR optimization rather
than mean-variance and add an L1 constraint (the au-
thors suggest a hard constraint,

∑
i |wi| ⩽ 2) to control

the number of stocks in the replicating portfolio.

Portfolio selection
under directional predictability of returns

J. Hämäläinen (2014)
Forecasting return signs is easier than forecasting re-
turns, and the signs can still be used in a mean-variance
optimization: the retrun distributions can be com-
puted using
– Sign forecasts, si for signXi;
– The probability that they are correct, pi =
P [signXi = si];

– The probability that they are jointly correct or in-
correct, pij = P [(signXi)(signXj) = sisj].

Diversification management
of a multi-asset portfolio

M. Poonia (2014)
Comparison of various notions of diversification: num-
ber of stocks, diversification ratio, risk parity, PCA
risk diversification, torsion bets.

Conditional Sharpe ratios
K.V. Chow and W.C. Lai

When computing the Sharpe ratio, replace the excess
returns by 0 unless the benchmark returns are below
their α quantile.

Portfolio choice in the presence of estimation
error: a pricing model filter approach

M. Lozano (2014)
Use the sample covariance matrix of the CAPM (or
some factor model) residuals.

Sparse and robust normal and t-portfolios
by penalized Lq likelihood minimization

D. Ferrari et al. (2014)
The lasso can be generalized to

β̂ = Argmin
β,µ,σ

−
n∑
i=1

Lqf
x′iβ − µ

σ
−

p∑
j=1

Lpπ(βj , λ)

Article and book summaries by Vincent Zoonekynd 652/1044

where

xi = observations
f = Gaussian distribution (for instance)
Lq = generalized logarithm,

Lq(z) =

zq−1 − 1

1− q
if q 6= 1

log z if q = 1

π = prior on the parameters, e.g., Laplace,
π(β, λ) = λe−λ|β|/2.

The lasso is obtained for q = 1, π = Laplace, f =
Gaussian.

Portfolio spillovers
and a limit to diversification

B. Argyle (2013)
After a sharp price change to a stock, investors hold-
ing the stock will rebalance their portfoklio, but not
necessarily by buying/selling this stock – it may be
easier, faster to buy/sell more liquidy assets. In the
case of large institutional investors, and/or many in-
vestors holding a similar portfolio, there could be a
price impact to those other stocks: can we detect it?

Dynamic portfolio selection
by augmenting the asset space

M.W. Brandt and P. Santa-Clara (2006)
To compute an (approximately) optimal dynamic as-
set allocation when all you can do is compute static as-
set allocations (Markowitz portfolio optimization), just
add a few managed portfolios (e.g., weights propor-
tional to some factor) to your universe of assets, and
compute the corresponding “static” optimal portfolio.
Use a VAR model if you end up with too many assets.

Tilt Nickel to Diamond
G. Xiang and T. Yu (2014)

Take a set of risk factors (Fama-French, Carhart, etc.)
and a set of alpha factors. Starting with a capital-
weighted portfolio (or some other benchmark), increase
the exposure to the alpha factors while keeping the ex-
posure to the risk factors close to zero.

The deflated Sharpe ratio: correcting
for selection bias and backtest overfitting

M. López de Prado (2014)
When computing the Sharpe ratio of the best strategy
in your backtests, you can account for multiple testing
and non-Gaussian returns as follows:
– Estimate the return distribution,

Xit ∼ F (µ, σ, s, κ) iid;
– Estimate the corresponding distribution of the (sam-
ple) Sharpe ratios Si;

– Estimate the distribution of the best one, Max
1⩽i⩽n

Si;

– Convert the best Sharpe ratio into a p-value, using
this distribution;

– Convert the p-value into a z-score – a deflated Sharpe
ratio.

The independence assumption is unrealistic, in this
context: when backtesting many strategies, they are
often just variants of the same idea, so their returns
are very similar.

Evaluating trading strategies
C.R. Harvey and Y. Liu (2014)

To compare several strategies, take multiple testing
into account:
– FWER (family-wise error rate, e.g., Bonferroni or
Holm correction) is often too conservative;

– FDR (false discovery rate, e.g., BHY correction)
gives more usable results.

The discussion is needlessly complicated by the use of
T values instead of p-values.
In R check bonferroni, holm, BY, in the mutoss pack-
age.

Optimal asset pricing
R. Turner et al. (2014)

Asset selling (sometimes called “asset pricing”) studies
the optimal price of a perishable asset (airline ticket,
hotel room, TV advertising slots) for which customers
arrive randomly (inhomogeneous Poisson process) with
(known) decreasing price elasticity (they are less and
less price-sensitive as time passes).
Pricing policy xq(t) (price of the asset at time t if there
are still q in inventory) and expected revenue vq(t) are
related by a system of ODEs. For the optimal policy,
just add

∂Rq(x, t)

∂x
= 0,

where Rq(x, t) is the expected revenue if a customer
arrives at time t and is quoted price x.

Disentangling rebalancing return
W.G. Hallerbach (2014)

The “rebalancing return”, i.e., the difference between
a rebalanced portfolio and a buy-and-hold portfolio,
can be decomposed into a volatility return (“volatility
harvesting”) and a “dispersion discount” (a negative
contribution), coming from the dispersion between the
growth rate µi − 1

2σi of the assets.

Signal-wise performance attribution
for constrained portfolio optimization

B. Durin (2014)
One can decompose the performance of a constrained
portfolio built from several signals into the contribu-
tion of each signal and that of the constraints (with no
residual term).

Article and book summaries by Vincent Zoonekynd 653/1044

Learning bayesian networks in R:
an example in systems biology

M. Scutari (UseR 2013)
The bnlearn package can learn the structure of a
Gaussian or discrete bayesian network, using
– Constraint-based algorithms (incremental associa-
tion), that perform tests of conditional independence
(mutual information, χ2, partial correlation);

– Score-based algorithms, that maximize (hill-
climbing, tabu search) the goodness of fit (likeli-
hood, AIC, BIC, Dirichlet posterior density, etc.) of
the network;

– Hybrid algorithms, local search using statistical tests
to define the neighbourhoods.

If the data is continuous but non-Gaussian, one can
discretize it with Hartemink’s method: discretize each
variable into 60 quantile bins, collapse them while re-
ducing the mutual information as little as possible, stop
when each variable has 3 levels (low, average, high).
The deal, catnet, pcalg packages can also learn the
graph structure, and some even accept mixed data (but
each only provides one algorithm). All those packages
can also fit the model parameters. For inference, use
gRain (fast) or bnlearn (flexible).
Bootstrap can improve the stability of the result.
To model interventions, either whitelist all the edges
from the intervention node, or blacklist all the edges
to the intervention node.

b <- boot.strength(d, R=200, algorithm="hc")
g <- averaged.network(b, threshold=.85)
plot(cpdag(g)) # Remove ambiguous directions

Learning bayesian networks
with the bnlearn R package

M. Scutari (JSS, 2010)
More (but terse) details about the underlying algo-
rithms, tests and scores.

Bayesian networks in R
with applications in systems biology

R. Nagarajan et al. (2013).
After a chapter on bnlearn (see the presentation above
for a more thorough exposition), the book reviews, the
book quickly presents dynamic networks. VAR mod-
els can be represented as dynamic baysesian networks
(DBN), and estimated using shrinkage (GeneNet),
lasso (var, lars, glmnet, penalized), low order in-
dependencies (G1DBN), change point models (ARTIVA),
modular assummptions (simone).
The inference chapter names the main algorithms
(variable elimination, junction trees, particle meth-
ods), with few details, and gives examples with gRain
(setFinding, querygrain) and bnlearn (cpdist,
cpquery).

Inferring dynamic genetic networks
with low order independencies

S. Lèbre (2009)
The structure of undirected Bayesian networks (ran-
dom Markov fields) can be estimated from the partial
correlation (which can be computed from the inverse
of the correlation matrix, or from regressions): add an
edge between i and j if pCor(Xi, Xj) 6= 0.
When there are not enough observations (p� n), one
can use a shrinkage estimator (e.g., replace the cor-
relation matrix C with (1 − λ)C + λI to make it in-
vertible, or use a Lasso regression), or the first order
partial correlation: add an edge between i and j if
Cor(Xi, Xj) 6= 0 and ∀k 6= i, j Cor(Xi, Xj |Xk) 6= 0
(the 0th order partial correlation is the correlation, the
(q+1)st order partial independence graph is a subgraph
of the qth).
This can be used to infer the structure of dynamic
bayesian networks (DBN). There is an implementation
in the G1DBN R package.

Inferring causal impact
using bayesian structural time-series models

K.H. Brodersen et al. (2014)
To measure the effect of an intervention on a time series
yt, the difference-in-difference approach just compares

yafter − ybefore | intervention

with

yafter − ybefore | no intervention,

ignoring time series dynamics. Instead, one can model
the time series, before the intervention, with a state
space model, including a linear trend (whose slope is
a random walk or a mean-reverting time series), sea-
sonality, and covariates with dynamic coefficients. A
spike-and-slab prior provides automated variable
selection. This is implemented in the CausalImpact R
package, and used for A/B testing.

Credit risk spillovers among financial
institutions around the global credit crisis:

firm-level evidence
J. Yang and Y. Zhou (2013)

To study spillover risk, fit a VAR model to the data,
and perform a “DAG analysis” on (the correlation ma-
trix of) the residuals, i.e., fit a bayesian network, and
check if the direction of the edges is well-defined.

Reducing bias through directed acyclic graphs
I. Shrier and R.W. Platt (2008)

Identifying causal relations in observational data is
tricky. Introducing a confounding variable in the re-
gression can reduce or increase the bias, e.g.,

Z

X Y
?

versus
Z

X Y.
?

Article and book summaries by Vincent Zoonekynd 654/1044

Real world causal networks are more complicated. If
the DAG is known, one can find whether the variable
will increase or decrease the bias as follows: the co-
variates should not be descendants of X; keep only
ancestors of X, Y or Z; delete arcs leaving X; moral-
ize, convert to undirected; delete Z; if X and Y are no
longer connected, then Z can be used as a confounder
in Y ∼ X.
There are potential problems: the DAG need not be
known (consider all DAG candidates), or may be in-
complete; the method does not account for synergistic
or antagonistic actions.

Causal diagrams for epidemiologic research
S. Greenland et al. (1999)

Earlier article on the same topic.

Using directed acyclic graphs to guide analyses
of neighbour health effects: an introduction
N.L. Fleischer and A.V. Diez Roux (2008)

Algorithms to decide whether a set of confounders is
sufficient, necessary, minimally sufficient.
For implementations, check: DAGitty (browser-
based), Tetrad (Java) or dagR (undocumented).

Adjustment criteria in causal diagrams:
an algorithmic perspective

J. Textor and M. Liśkiewicz (2011)
Efficient algorithm.

A tool for filtering information
in complex systems

M. Tumminello et al. (2005)
The minimum spanning tree (take the edges one by
one, starting with the most important ones, and keep
them if they do not introduce a loop) discards too
much information: instead of looking for an acyclic
graph, one can look for planar graphs (giving the “pla-
nar maximally filtered graph”, PMFG) or, more gener-
ally, graphs of genus g. Instead of highlighting edges,
this highlights 3- and 4-cliques, and .

Spread of risk across financial markets:
better to invest in the peripheries

F. Pozzi et al. (2013)
Stocks in the periphery of the minimum spanning tree
(MST) or the planar maximally filtered graph (PMFG)
provide more diversification benefit. Those graphs can
be used to represent the contents of a portfolio. Try
a long-short strategy, periphery vs center, with mini-
mum variance portfolios on each side, using the follow-
ing measures of centrality: degree, betweenness, eccen-
trality, closeness, eigenvector centrality.

import sage.graphs.genus
To compute the genus of a graph G = (V,E), consider
all possible combinatorial embeddings, i.e., all possi-
ble cyclic orderings at each vertex. Formally, a com-
binatorial embedding is an action of the free group
Z ∗ Z = 〈v, e〉 on the set of half-edges, with the or-
bits for 〈v〉 corresponding to the vertices and those for
〈e〉, to the edges (e is an involution). The genus of the
embedding is given by 2− 2g = V − E + F , where V ,
E and F are the number of orbits for v, e and ve.

Determining the genus of a graph
A. Perez (2009)

A graph is planar iff it does not contain (a subdivision
of) K5 = or K3,3 = (Kuratowski theorem).
The genus of a graph is the minimum g such that the
graph can be embedded in a surface of genus g.
The maximum genus of a graph is the maximum g such
that the graph can be embedded in a surface of genus
g and, cutting the surface along the graph gives 2-cells,
i.e., pieces homeomorphic to the open disk.

The use of correlation networks
in parametric portfolio policies

H. Lohre et al. (2014)
Nothing new: the authors suggest to look at the min-
imum spanning tree (MST) built from the correlation
matrix of stock or sector returns, and look at graph
metrics such as
– The graph diameter (a small stock network diame-
ter, or a large sector network diameter, is a sign of
market instability);

– The betweenness centrality, which can be used in
a parametric portfolio (a parametric portfolio is a
portfolio whose weights are a linear combination of
some investment signals: since only the coefficients
have to be estimated, the quadratic optimization
problem is much simpler).

Finding community structure
in very large networks

A. Clauset et al.
To find communities in a graph, one can use a greedy
agglomerative algorithm: start with each node in its
own cluster; merge the two clusters that produce the
largest increase in modularity (the modularity is the
difference between the fraction of edges inside clusters
and the expected fraction); iterate. Instead of keep-
ing track of the adjacency matrix Aij as you merge the
clusters (it is sparse, but finding the pair that increases
the modularity the most creates dense matrices), keep
track of ∆Qij , the increase in modularity if we merge
i and j.

Quadrature rule-based bounds
for functions of adjacent matrices

M. Benzi and P. Boito (2010)

Article and book summaries by Vincent Zoonekynd 655/1044

Many graph metrics can be computed using matrix
functions (often, the exponential) and the adjacency
matrix A, e.g.:
– Degree;
– Subgraph centrality of a node i: [eA]ii;
– Estrada index, EE(G) =

∑
eλk = tr eA;

– Comminicability between i and j, [eA]ij ; average
communicability from i;

– Communicability betweenness of k:∑
ijk different

[eA]ij − [eA−Ek]ij
[eA]ij

where Ek is the adjacency matrix of the graph with-
out the edges linked to node k;

– Resolvent subgraph centrality, etc.: replace ex with

f(x) =

(
1− x

N − 1

)−1
.

They can be estimated by Gaussian quadrature (i.e.,∫ 1

−1 f(x)dx ≈
∑
wif(xi); choose n and wi; compute

the optimal xi).

Ranking hubs and authorities
using matrix functions

M. Benzi et al.
Graph metrics defined by matrix functions applied to
the adjacency matrix A can be generalized to directed
graphs by considering the undirected bipartite graph(

0 A
A′ 0

)
. The node metrics then have two variants:

the hub and authority ones.

Functions of matrices
N.J. Higham (2005)

A complex function f can be evaluated on a matrix A
as follows.
– If f(z) =

∑
anz

n has convergence radius R, and
SpecA ⊂ B(0, R), then f(A) =

∑
anA

n.
– If f is C∞ on a neighbourhood of SpecA, and
Z−1AZ = diag(J1, . . . , Jp) is the Jordan decomposi-
tion of A, then f(A) = Z diag(f(J1), . . . , f(Jp))Z

−1,
where

Jk =

λ 1 0

1

0 λ

f(Jk) =

f(λ) f ′(λ)
fm−1(λ)

(m− 1)!

f ′(λ)

0 f(λ)

– If λ1, . . . , λs are the eigenvalues of A, n1, . . . , ns the
sizes of the largest Jordan blocks for each of them, r
the polynomial of degree at most

∑
ni such that

∀i ∈ J1, sK ∀j ∈ J0, ni − 1K r(j)(λi) = f (j)(λi),

then f(A) = r(A).
– f(A) =

1

2πi

∮
Γ

f(z)(zI−A)−1dz, where f is analytic
inside Γ and Γ encloses SpecA.

Common examples include exponential, logarithm,
sine, cosine, square root (not always defined), sign
(only defined if iR ∩ SpecA = ∅).
Numeric methods include:
– Polynomial or rational approximations (for exp, log,
sin, cos: use Padé’s approximation and scaling);

– Factorization: write A = X−1BX, where f(B) is
easier to compute; for instance, if B is upper trian-
gular, the diagonal of f(B) is f(bii), the coefficients
immediately above the diagonal can be computed by
solving f(B)B = Bf(B), and one can iterate for the
rest (Parlett recurrence – if only works if the eigen-
values are different, but there is a block variant if
they are not).

– Iterative methods, Xn+1 = g(Xn), often coming
from Newton’s method for some equation satisfied
by f(z) (but beware of numeric instability). For in-
stance,

X0 = A

Y0 = I

Xk+1 = 1
2 (Xk + Y −1k)

Yk+1 = 1
2 (Yk +X−1k)

for the square root or

X0 = A

Xk+1 = 1
2 (Xk +X−1k)

for the sign.

Quantitative easing and volatility spillovers
across countries and asset classes

Y. Zhou
One can use contemporaneous causal inference to study
the relations between various volatility indices.

Dynamical macro-prudential stress testing
using network theory

S. Levy-Carciente et al. (2014)
There are two main channels of risk contagion:
– Direct interbank liability linkages;
– Changes in bank asset values.
One can account for the latter with a bipartite bank-
asset network.

Article and book summaries by Vincent Zoonekynd 656/1044

Global portfolio investment network
and stock market co-movement

T. Chuluun (2014)
Cross-border capital flows (data from the IMF
CPIS (coordinated portfolio investment survey), 2001–
present) define a network of countries. Central coun-
tries (high degree, indegree (better), outdegree (worse)
or eigenvector centrality) are more correlated with
global indices. Other flows define other networks:
trade flows, foreign direct investment, bank loans, etc.

Stochastic flow diagrams
N.J. Calkin and M. López de Prado (2014)

The authors have re-invented graphical models and/or
recurrent neural networks, with a slightly different
graphical notation.

The topology of macro financial flows
N.J. Calkin and M. López de Prado (2014)

Instead of building a minimum spanning tree (or more
general graph) from a correlation matrix, one can build
a graphical model from an SVAR(p) model.

Structural analysis
with independent innovations

H. Herwartz (2014)
Often, multi-variate time series models (e.g., SVAR,
structural vector autoregressive model) are not identi-
fied: independent component analysis (ICA) can help.

Emergence of statistically validated financial
intraday lead-lag relationships

C. Curme et al. (2014)
Compute the cross-correlation matrix of stock returns,
convert the correlations to p-values, adjust them for
multiple testing, truncate them, and build the corre-
sponding graph. As the lag increases (from 5 minutes
to 1 hour), the graph becomes sparser.

Optimizing directed acyclic graph
support vector machines
F. Takahashi and S. Abe

When using support vector machines (SVM) on mul-
ticlass problems with the one-against-all or the pair-
wise approach, there are unclassified regions. To avoid
them, one can use a smaller number of pairwise models,
arranged in a tree, either by eliminating one element
at each level of the tree

1 or 2?

1 or 3? 2 or 3

1 3 2

not 1not 2

not 3 not 1 not 2 not 3

or using a tournament,

1 or 2? 3 or 4?

a or b?

a b

But the performance depends on the directed acyclic
graph (DAG) chosen. It is better if easy-to-classify
class pairs (low support vectors/observations ratio) ap-
pear in the top layers of the graph, and the hard-to-
clasify ones in the leaves.

A comparison of methods
for multiclass support vector machines

C.W. Hsu and C.J. Lin (2002)
Among the multiclass SVM algorithms, prefer the pair-
wise or DAG ones to the (more complicated) “all to-
gether” methods.

Algorithms for the multi-armed bandit problem
V. Kuleshov and D. Precup (2000)

Simple multi-arm bandit algorithms (to manage
the exploration-exploitation trade-off in reinforcement
learning) work well:
– ε-greedy: select the arm with the highest empirical
mean reward µ̂i with probability 1−ε, and a random
arm with probability ε;

– Boltzmann: pi ∝ exp(µ̂i/T), where the temperature
T slowly decreases;

– Pursuit:

pi ←
{

(1− β)pi + β · 1 if i = Argmaxj µ̂j
(1− β)pi + β · 0 otherwise;

– Reinforcement comparison:

pi ∝ expπi

πj ← πj + β(r − r̄)
r̄ ← (1− α)r̄ + αr

where

πi = preference
j = arm selected
r = reward
r̄ = average reward;

– Upper confidence bound

j = Argmax
i

(
µ̂i +

√
2 ln t

ni

)
where

µ̂i = average reward for arm i

ni = number of times i was chosen

t =
∑

ni = number of steps.

Article and book summaries by Vincent Zoonekynd 657/1044

Applications include clinical trials and online advertis-
ing.

Hierarchical temporal memory
including HTM cortical learning algorithms

Numenta (2011)
Recurrent (convolutional?) deep neural network, with
connections within layers, binary weights, and sparsity
constraints.

A survey on transfer learning
S.J. Pan and Q. Yang (2010)

Transfer learning studies what to do when the training
and test sets are significantly different. For instance:
how to extend a document classification model to a new
domain (say, a sentiment model, from camera reviews
to hotel reviews)? How to deal with a time-changing
domain? Some new learning will be needed, but we
want to reuse as much information as possible – we
want to automatically identify the bits of the model
that can be kept and those that should be discarded.
Approaches include:
– Instance transfer: reweight the source data (Ada-
boost, importance sampling);

– Feature transfer: reweight/select the features to re-
duce the distance between the source and the target
domains;

– Semisupervised learning;
– Use the source model as a prior for the target one.
Markov logic networks (MLN) and inductive logic pro-
gramming (ILP) were also mentioned, with no details.

MEG decoding across subjects
E. Olivetti et al. (2014)

Application of transfer learning (instance transfer, i.e.,
importance sampling): decoding an MEG when train-
ing and test data are from different subjects.

Correlation and large-scale simultaneous
significance testing

B. Efron
In presence of high correlation, the p-values are still
U(0, 1) under H0, but not iid: their sample distribu-
tion can be: wider (if many correlations are large and
negative); narrower and skewed (if many correlations
are large and positive).

High-dimensional variable selection
for survival data

H. Ishwaran et al. (2010)
To gauge the importance of a variable in a random for-
est model, look at (the distribution of) its minimum
depth.

A factor model to analyze heterogeneity
in gene expression

Y. Blum et al. (2010)
Approaches to multiple testing often assume indepen-
dence – FAMT (factor analysis for multiple testing)
relaxes that assumption [no details]. In R, check the
FAMT package.

Measuring and testing dependence
by correlation of distances
G.J. Székely et al. (2008)

Original article on distance covariance

V 2(X,Y) =

∫
Rp+q

|fXY (t, s)− fX(t)fY (s)|2

‖t‖1+pp ‖s‖1+qq

dt ds.

A non-iterative bayesian approach
to statistical matching

S. Rässler (2003)
Statistical matching (aka “data fusion”) can be seen
as a missing data problem, and tackled by stochas-
tic regression imputation (NIBAS): compute the re-
gressions X ∼ Z, Y ∼ Z (where Z are the common
variables), ΣX , ΣY , Cor(X,Y) (use the identity if you
have no information), and sample Σ, βX , βY , X|y, β,Σ,
Y |x, β,Σ.

Coherent mortality forecasting:
the product-ratio method

with functional time series
R.J. Hyndman et al. (2012)

Forecasts (using functional PCA, and time series mod-
els for the coefficients of the principal components) of
the mortality rates of two subpopulations (say, males
and females) often diverge. Instead, forecast the sum
and the difference of the (log) rates (if the variances
are equal, they are uncorrelated: Cov(X+Y,X−Y) =
VarX − VarY). For more than two populations, con-
sider the average (of the log-rates) and the difference
with the average.

Forecasting elections
with non-representative polls

W. Wand et al. (2014)
Non-representative polls are just stratified surveys: af-
ter adjustment, they are perfectly usable.

Super Learner
M.J. van der Laan et al. (2007)

Use cross-validation to choose among various models.
Besides the usual models (GLM, GLMnet, GAM, etc.),
the SuperLearner R package also wraps DSA (deletion,
substitution, addition), LogicReg (logic regression –
“logic”, not “logistic”), polspline (adaptive regression
splines, aka MARS).

Article and book summaries by Vincent Zoonekynd 658/1044

Subsemble: an ensemble method
for combining subset-specific algorithms fits

S. Sapp et al. (2013)
Bagging fits models on samples of the data, and aver-
ages them. Instead of an unweighted average, one can
use cross-validation to find the best weights.

Bayesian estimation supercedes the t-test
M. Meredith and S. Kruschke (2014)

The BEST package replaces the T test with Bayesian
statistics (with a Student T distribution to allow for
outliers).

library(BEST)
r <- BESTmcmc(y1,y2)
r
summary(r)
plot(r)
plotPostPred(r)
s <- r$sigma1^2 / r$sigma2^2
hdi(s)
plotPost(s)

The OpenCPU system: towards a universal
interface for scientific computing through

separation of concerns
J. Ooms (2014)

OpenCPU is a REST interface (with a well-defined
API, inviting other implementations) to R; it is state-
less (function results are stored on the server, and a
key to access them is returned to the client).

The stringdist package
for approximate string matching

M.P.J. van der Loo
The stringdist package implements many string dis-
tances: Hamming (limited to same-length strings),
longest common substring, Levenstein (number of in-
sersions, deletions, substitutions), optimal string align-
ment (idem, with transpositions of adjacent characters
– not a distance), Damerau-Levenstein (idem, but cor-
rected to make it a distance), n-gram distance (L1 dis-
tance between the n-gram count vectors), cosine dis-
tance (1− 〈u, v〉 is not a distance on the sphere – but
arccos〈u, v〉 is), Jaccard distance (number of common
n-grams divided by the number of n grams), heuristics
(Jaro and Jaro-Winkler distances count “matches” and
penalize “non-matches”).

ScagExplorer: exploring scatterplots
by their scagnostics

T.N. Dang and L. Wilkinson
To examine a large number of scatterplots, one can
summarize them with a small number of metrics (out-
lying, skewed, clumpy, sparse, striated, convex, skinny,
stringy, monotonic), look at the resulting parallel-plot-
with-violins and/or cluster them. The authors suggest

the leader algorithm (start with an empty leader list
and add a new scatter plot if the nearest leader is be-
yond some Euclidian distance threshold; only display
the leaders, or only display the scatterplots attached
to a given leader).

New approaches in visualization
of categorical data: R package extracat

A. Pilhöfer and A. Unwin (2013)
If you have more than two qualitative variables, check:

Relative multiple barchart
extracat::rmb(~ V1 + V2 + V2)
Categorical parallel coordinate plot
extracat::cpcp(d)
vcd::mosaic(xtabs(freq ~ V1 + V2 + V2))
vcd::doubledecker(xtabs(...))

The extracat::optile function, used by cpcp to re-
order the levels of the qualitative variables to reduce
overplotting, may also be of interest.

Rainbow color map (still) considered harmful
D. Borland and R.M. Taylor (2007)

It is not perceptually uniform, it is not naturally or-
dered, its luminance does not vary monotonically.

RnavGraph: an R package to visualize
high-dimensional data using graphs as

navigational infrastructure
A. Waddell and W. Oldford (2013)

Not unlike ggobi: move from one (2D) scatterplot to
another by a rotation (in 3D if they share a variable,
in 4D otherwise).

Dealing with stochastic volatility in time series
using the R package stochvol

G. Kastner
Bayesian estimation of stochastic volatility models.

Parallel computing for data science,
with examples in R and beyond

N. Matloff (2013)
This book reviews, with detailed examples, the main
types of parallel systems, mostly in R (clusters, multi-
core systems, GPUs):
– parallel::clusterApply, parallel::cluster-
ApplyLB (with load balancing);

– parallel::mclapply;
– foreach, %dopar%;
– Rmpi (low-level programming on clusters, via mes-
sage passing);

– Rdsm (based on bigmemory): shared memory (you
have to manage the locks yourself);

– OpenMP, to automatically parallelize loops in C
(yes, it is that easy);

– TBB (Threads building blocks): thread-safe C++
containers, with a few parallel algorithms;

Article and book summaries by Vincent Zoonekynd 659/1044

– Cilk++: adds spawn and sync keywords to C (I am
not sure how relevant this is, given that C++ now
has futures);

– gputools
– Thurst: similar to TBB, for the GPU (it can also
use OpenMP or TBB if you do not have a GPU);

– Rth: to use Thrust from R;
– OpenBLAS.
(The author wrote Rdsm and Rth.)

A comparison of programming languages
in economics

S.B. Aruoba (2014)
Julia, Python+Numba, Matlab+MEX, Mathematica
have speeds comparable to C++/Fortran/Java, but
functional languages (OCaml, Haskell, Scala) are
worth a look.

A reliable effective terascale
linear learning system

A. Agarwal et al. (2013)
Most machine learning algorithms can be implemented
on a data-centric computing platform such as Hadoop
using the AllReduce operation (arrange the nodes in a
tree, use it to compute sums or weighted averages, i.e.,
to aggregate the partial results), which has much less
overhead than MapReduce. However, their implemen-
tation bypasses Hadoop’s MapReduce (the nodes com-
municate between themselves via TCP), which may
lead to reliability issues (do not expect the system to
run for more than a few hours without failures).

Asynchronous functional reactive
programming for GUIs

E. Czaplicki and S. Chong (2013)
FRP is programming with signals, i.e., time-changing
values (in Haskell, that would be a functor, fmap:
(a→b)→ Signal a→ Signal b). Most FRP languages
assume the signal changes continuously, and sample
from it. Elm (a Haskell DSL) works with discrete sig-
nals (asynchronous FRP) and therefore avoids needless
recomputations.

MDF
https://github.com/ahlmss/mdf (2013)

Data-flow programming in Python.

Clash of the lambdas
A. Biboudis et al. (2014)

Lambdas in Java 8 are mature and efficient. Scala is
inefficient, e.g., because of garbage collection or box-
ing/unboxing (collections are not specialized for prim-
itive types). Optimizing frameworks (ScalaBlitz) help,
but not enough: the gap is reduced from 2 orders of
magnitude to 1.

Graph drawing in Tikz
T. Tantau (2013)

There are now graph layout algorithms in Tikz, imple-
mented in Lua.

Managing schema evolution
in NoSQL data stores

S. Scherzinger et al. (2013)
Schema migration in schema-less databases (NoSQL)
are often ad hoc (dangerous, untested) data transfor-
mations, either eager (convert everything in one go)
or lazy (old and new entries cohabit, they are only
converted when accessed). A system-agnostic data mi-
gration language would be useful.

Locality-sensitive hashing scheme
based on p-stable distributions

M. Datar et al. (2004)
To solve the k-nearest neighbour problem probabilisti-
cally, in high dimension:
– Find hash functions with a higher probability of col-
lision when the points are close:

distance ⩽ r1 =⇒ P [collision] ⩾ p1
distance ⩾ r2 =⇒ P [collision] ⩽ p2;

– Apply many such hash functions to the data and
examine the points with the most collisions.

Such hash functions can be obtained by projecting the
points in a random direction and binning them:
– Choose r > 0;
– Pick b ∼ U(0, 1) and a ∼ F , where F is an n-
dimensional p-stable distribution;

– Let ha,b(v) =
⌊
a · v + b

r

⌋
.

A distribution F is p-stable if, for all n, for all
v1, . . . , vn ∈ R, if X1, . . . , Xn, X ∼ F are iid, then∑
i viXn and (

∑
|vi|p)1/pX have the same distribution.

The Cauchy distribution is 1-stable; the Gaussian dis-
tribution is 2-stable.

The development of hyperdual numbers
for exact second-derivative calculations

J.A. Fike and J.J. Alonso (2011)
The first derivative of a function f is often approxi-
mated using

f ′(x) =
f(x+ h)− f(x)

h
+O(h)

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2),

but this is not numerically stable: there is a subtrac-
tive cancellation error problem, which prevents h from
being too small (often, 10−4 to 10−6 is the best we can
do). The complex step approximation

f ′(x) =
Im f(x+ ih)

h
+O(h2)

Article and book summaries by Vincent Zoonekynd 660/1044

https://github.com/ahlmss/mdf

addresses this problem: h can be very small (10−14).
But the problem reappears if you want the second
derivative.
Instead of complex numbers, one can use other exten-
sions of R, such as the dual numbers R[ε]/(ε2),

f(x+ ε) = f(x) + f ′(x)ε

or the hyperdual numbers, R[ε, η]/(ε2, η2, ε2η2),

f(x+ ε+ η) = f(x) + f ′(x)ε+ f ′(x)η + f ′′(x)εη.

The derivatives are exact, and there is no step size to
choose.
That is easy to implement in languages with operator
overloading (C++, Julia), but 10 times slower than the
difference method.

Unbounded spigot algorithms
for the digits of pi
J. Gibbons (2005)

Good job interview question: implement a streaming
algorithm to compute the digits of π, ad infinitum, us-
ing

π =
∑
n⩾0

(n!)22n+1

(2n+ 1)!
.

The formula comes from

π

4
= arctan 1 =

∫ 1

0

dx

1 + x2
=
∑ (−1)n

2n+ 1
.

The series converges very slowly, but it is alternating,
and taking the average of two consecutive partial sums
gives a faster converging series – but it is still alter-
nating, so we can use the same trick, again and again.
This is the Euler convergence accelation transform.
This transformation can also be motivated as follows:
given

f(x) =
∑
n⩾0

(−1)nanxn,

show that

g(y) = f

(
y

1− y

)
=
∑
n⩾0

(−1)n∆na0y
n,

where ∆a is the forward difference of a, and compute
g(12) = f(1).

Here is a straightforward algorithm: find an upper and
lower bound on the error,

sn − `n ⩽ π ⩽ sn + un,

and use it to infer if the kth decimal of sn is that of π
– for this, you need arbitrary precision rationals.

Computing extremely accurate quantiles
using t-digests

T. Dunning
To compute a quantile of a datastream, approximately,
one can:
– Sample from it, online, and take the quantile of the
sample – for extreme quantiles, you only need to keep
a sample of the tails;

– Bin the data into a set of centroids and counts, and
collapse the centroids when there are too many of
them (t-digest).

The PH-tree – a space-efficient storage
structure and multi-dimensional index

T. Zäschke et al. (2014)
Indexes for spacial data are often KD-trees (split the
space in half, along an axis-aligned hyperplace, at each
node), quad-trees (split the space in 2n at each node)
or R-trees (trees of bounding boxes). One can also
use prefix trees (tries), by interleaving the different di-
mensions into a single bitstring. There is no need for
rebalancing.

Nepotism and equity prices
G. Zhu (2014)

Nepotism (several family members being directors in
the same company – in the US, this has to be reported
in text form; the information can be extracted by look-
ing for keywords such as “brother”, “father”, etc., used
to build a social network and compute the usual net-
work metrics) is detrimental to firm value, except when
there is a large outside block holder.

Textual classification of SEC comment letters
J.P. Ryans (2014)

SEC comment letters are a good predictor of future
negative abnormal returns (use a naive Bayes classi-
fier), especially if they have been accessed by many
investors (number of downloads).

Efficient online summarization
of microblogging streams

A. Alariu (2014)
A word graph (the nodes are words, the edges are bi-
grams, with weights) can be used to summarize a cor-
pus (look for the highest-weight path). One can also
use trigrams and let the weights decay (multiply by
1− ε at each step).

Looking for risk in words:
a narrative approach to measuring

the pricing implications of finance constraints
M.M.M. Buehlmaier and T.M. Whited (2014)
Financially constrained firms (those having difficulty
raising funds) can be identified from the text in the
MD&A section of their 10-K filing, using the naive

Article and book summaries by Vincent Zoonekynd 661/1044

Bayes algorithm (building the training set is problem-
atic, though).

Finance constraints
M.M.M. Buehlmaier (2014)

One can estimate how financially constrained a com-
pany is by the textual analysis of its regulatory filings,
using a Naive Bayes classifier. The training sets are
questionable:
– A small, subjective manually-generated training set;
– Companies identified by a set of words known to be
associated with delays resulting from the difficulty
of issuing new equity;

– Idem for debt.
One could also check for the effect of pairs, triplets,
quadriplets of words.

The price of silence: when no one
asks questions during conference calls

S. Chen et al. (2014)
The number of questions asked by investors in
earnings-related conference calls measures the quality
of a firm’s communication.

News-implied volatility and disaster concerns
A. Manela and A. Moreira (2013)

Use SVM regression to predict the VIX from front-page
articles of the Wall Street Journal.

Portfolio selection
with options and transaction

S. Malamud (2014)
Introducing options in your investment universe dra-
matically increases the number of assets, and the vari-
ance matrix becomes untractable – and, option traders
would argue, largely irrelevant. Instead of a mean-
variance portfolio, one can look for greek-efficient port-
folios – with a high value for the greeks you want, and
a small value for those you do not. [I would still use
the mean-variance framework, and include the greeks
as constraints, setting those we want to ±1, and those
we do not to 0.]

Volatility and directional
information-based trading in options

Generalization of the PIN model to option markets,
accounting for two types of information, direction and
volatility.

Why does the option to stock volume ratio
predict stock returns?

L. Ge
Most option-implied measures only use the price: the
volume, normalized by the stock volume, and decom-
posed into call/put, buy/sell, open/close, is also a

predictor of future returns. Opening and closing of
long call positions are more informative than synthetic
shorts.

CDS inferred stock volatility
B. Guo (2014)

Since both CDSs and OTM puts can be used to protect
against downside risk, one can define a CDS-implied
volatility. It is different from the option-implied one,
and is a better predictor of future stock volatility.

Option listing and information asymmetry
J. Hu (2014)

Option listing improves market efficiency and reduces
information asymmetry. (The study uses propensity
score matching.)

Stock market ambiguity
and the equity premium

A. Kagkadis (2014)
The dispersion of volume-weighted strike prices is a
measure of market ambiguity (high ambiguity leads to
high hedging demand with different beliefs, which leads
to a higher dispersion of strikes). It is related to, but
different from, other option-implied quantities (vari-
ance risk premium (VRP), smirk slope, risk-neutral
variance, skewness, kurtosis, open-interest ratio (OTM
puts/ATM calls, a measure of hedging pressure)). It
complements the VRP. (Analyst forecast dispersion is
another measure of ambiguity.)

Wealth transfers via equity transactions
R.G. Sloan and H. You (2013)

The option of a company to issue new shares or buy
back shares when its stock is over- or under-priced
should be included in its valuation. It corresponds to
a wealth transfer from new to old investors.

Demand for crash insurance, intermediary
constraints and stock return predictability

H. Chen et al. (2013)
New deep out-of-the-money S&P 500 put options are a
good (negative) predictor of future (monthly) returns.

An option to cheat: an application of option
theory to realize flipping in underpricing

J. Stojkovic (2013)
IPO flipping is the sale of an (undervalued) IPO stock
on day one if/when the price jumps. It can be mod-
eled as a perpetual American call option, with the IPO
price as strike. The option price can be decomposed
into the potential immediate profit, and the time value
of waiting.

Article and book summaries by Vincent Zoonekynd 662/1044

Does VIX truly measure return volatility?
K.V. Chow et al. (2014)

The current VIX computations (price of a portfolio of
OTM put or call options, with weights inversely pro-
portional to the square of the strike) are not really
model-free (they assume a diffusion). It is a biased es-
timator of expected volatility, but it can be corrected.

Merton’s model, credit risk and volatility skews
J. Hull et al. (2004)

Merton’s model assess the credit risk of a company by
considering its equity as an option on the assets – the
spot is the value of the assets, the strike is the value
of the debt, the expiry its maturity. Options on eq-
uity are therefore compound options on the assets –
this explains the skew. One can use the option mar-
ket to estimate the model parameters and compare the
results with CDS spreads.

Where would the EUR/CHF exchange rate be
without the SNB’s

minimum exchange rate policy?
M. Hanke et al. (2013)

Capped exchange rates (e.g., the floor on EUR/CHF)
can be modeled as American options on the latent (un-
capped) FX.

Option-implied volatility measures
and stock return predictability

X. Fu et al.
The following option-derived quantities have some pre-
dictive power on future stock returns:

IVSpread = IVATM, Call − IVATM, Put

IVSkew = IVOTM, Put − IVATM, Call

AMB = 1
2 (IVITM, Put + IVATM, Call)−
1
2 (IVITM, Call + IVATM, Put)

COMA = IVOTM, Call − IVATM, Call

POMA = IVOTM, Put − IVATM, Put

RVIV = RV− 1
2 (IVATM, Put + IVATM, Call).

Jump and variance risk premia
in the S&P 500

M. Neumann et al. (2014)
By estimating the physical and risk-neutral (option
prices) SVCJ (stochastic volatility with contempora-
neous jumps in returns and variance) model,

ds = µdSdt+ S
√
V dW1 + Z1dN

dV = κ(θ − V)dt+ σ
√
V dW2 + Z2dN,

one can define the following risk premia:
– Diffusive variance risk premium: κQ − κP;
– Price jump risk premium: µQ − µP;
– Variance jump risk premium θQ − θP.
They are related to macroeconomic uncertainty.

Risk-adjusted option-implied moments
F. Brinkmann and O. Korn (2014)

The (model-free) risk-neutral density can be computed
from option prices; the physical density (and the phys-
ical moments) can be computed in the same way, using
physical expected discounted payoffs instead of prices.
Those physical prices can be computed from market
prices and the utility function of a representative in-
vestor. A CRRA utility function can explain the vari-
ance risk premium (VRP),

VRP def
= EP[variance]− EQ[variance],

but not both the VRP and the skewness risk premium.

Pricing interest rate derivatives
and computing pathwise Greeks

in the extended Libor market model
T. Lee (2013)

There is no longer a single yield curve; the Libor mar-
ket model (LMM) can be extended to this new multi-
curve environment.

Expected bond returns
and the credit risk premium

Z. Afik and S. Benninga (2014)
Do not confuse yield to maturity (computed from the
promised cash flows) and expected bond returns (com-
puted from the expected cash flows, i.e., accounting for
rating, rating transition matrix and industry recovery
rate). The difference between the two, the credit risk
premium, is (empirically) a simple function of rating
and duration.

Asymmetry in stock returns:
an entropy measure

L. Jiang et al. (2014)
Asymmetry tests usually rely on exceedance correla-
tions

ρ+c = Cor(X,Y | X,Y ⩾ c)
ρ−c = Cor(X,Y | X,Y ⩽ −c).

Tests based on exceedance densities

f+c (x, y) = f(x, y, | x, y ⩾ c)
f−c (x, y) = f(x, y, | x, y ⩽ −c)

and the “entropy”

Sc =
1
2

∫∫
RR2

(√
f+c −

√
f−c

)2

are more powerful.

Article and book summaries by Vincent Zoonekynd 663/1044

Introduction to nonextensive statistical
mechanics and thermodynamics

C. Tsallis et al. (2003)
Tsallis entropy (or q-entropy, or non-extensive entropy)
generalizes entropy.
The exponential function ex is a solution of y′ = y;
its inverse, lnx, is additive: ln(xy) = lnx + ln y; the
entropy is

S =
∑
i

pi ln
1

pi
=

〈
ln

1

pi

〉
.

The q-exponential exq is a solution of y′ = yq; its in-
verse,

lnq x =
x1−q − 1

1− q
,

is pseudo-additive:

lnq(xy) = lnq x+ lnq y + (1− q) lnq x lnq y;

the q-entropy is

Sq =
∑
i

pi lnq
1

pi
=

〈
lnq

1

pi

〉
.

The characterizations of entropy (Shannon or Khinchin
theorem) generalize to q-entropy, with one more term
or exponent, e.g.,

S(A+B) = S(A) + S(B) + (1− q)S(A)S(B) if A⊥⊥B
S(A+B) = S(A) + S(B|A) + (1− q)S(A)S(B|A)

Tsallis entropy is related to other generalized entropies,
e.g.,

SRenyi
q =

1

1− q
ln
∑
i

pqi =
ln[1 + (1− q)Sq]

1− q
.

Realized coskewness of the VIX and S&P 500
and the equity premium

Z. Liu et al. (2014)
In factor models, besides volatility, idiosyncratic
volatility, β(stock,market), one can also look at
coskew(stock,market) (but it can be tricky to estimate
– if you have high-frequency data, you can try the re-
alized skewness). Coskew(VIX, S&P 500) is related to,
but different from, the variance risk premium (VRP).

Which beta is best? On the information
content of option-implied beta

R. Baule et al. (2014)
One can define many option-implied betas:
– Using implied volatility (IV) and historical correla-
tion;

– Using IV and assuming constant correlation;
– Using IV and assuming some specific option-pricing
model;

– Using IV and cross-correlation derivatives (if avail-
able);

– Using the implied moments: if y = α+ βx+ ε, then

β =

√
1− Var ε

Var y

(
Var y

Var ε

)1/2
=

(
Skew y

Skew ε

)1/3
Option-implied betas based on the variance, and those
that ensure that the market beta is one (for this, jointly
estimate the betas for all the stocks) are more accurate.

Extremal dependence and contagion
R. Fry-McKibbin and C.Y.L. Hsiao (2014)

During crises, not only do the moments change (re-
turns drop, volatility jumps), so do the comoments:
for instance, Cor(ret, vol) changes sign, from negative
(volatility skew) in normal times, to positive (volatility
smile) in crises. One can devise contagion tests by look-
ing at Cor(reti, volj), Cor(reti, skewj), Cor(voli, volj).

Modelling dependence structure
and forecasting portfolio value-at-risk

with dynamic copulas
M. Cerrato et al. (2014)

Look at the asymmetric dependence, e.g.,
– Threshold correlation,

ρ− = Cor(X1, X2 | X1 ⩽ x1, X2 ⩽ x2),

where x1, x2 are the p-quantiles of X1 and X2, and

ρ+ = Cor(X1, X2 | X1 ⩾ x1, X2 ⩾ x2),

where x1, x2 are the (1− p)-quantiles;
– Quantile dependence

λp = P [X1 ⩽ x1 | X2 ⩽ x2]

or
λp = P [X1 ⩾ x1 | X2 ⩾ x2];

– Tail dependence

λU = lim
p→1

λp

λL = lim
p→0

λp

between the long and short portfolios built from the
following signals
– β(stock,market);
– coskew(stock,market,market);
– cokurt(stock,market,market,market).
To estimate the VaR, use the GAS (generalized autore-
gressive score) model.

Asymmetry in tail dependence
of equity portfolios

E. Jondeau
To estimate tail dependence, prefer parametric meth-
ods (unless you really have a lot of data), e.g., using
the multivariate non-central t distribution.

Article and book summaries by Vincent Zoonekynd 664/1044

Cornish-Fisher versus Gramm-Charlier:
an appraisal

D. Maillard (2014)
Cornish-Fisher is a transformation of a Gaussian ran-
dom variable

Y = X +(X2− 1)
S

6
+ (X3− 3X)

K

24
− (2X3− 5X)

S2

36
;

if S and K are small, they are close to the skewness
and excess kurtosis of Y .
Gram-Charlier is a transformation of the Gaussian den-
sity φ:

ψ(x) = φ(x)

(
1 +

S

6
H3(x) +

K

24
H4(x)

)
Hn(x) = (−1)ne−x

2/2 d
n

dxn
e−x

2/2

(this time, S and K are really the skewness and excess
kurtosis). The domain of valitidy of the Cornish-Fisher
transformation (the set of skewness-kurtosis pairs at-
tainable) is much larger.

Expansion of probability density functions
as a sum of gamma densities

with applications in risk theory
N.L. Bowers (1966)

The idea behind the Gram-Charlier expansion of a pdf,

p(x) = φ(x) +
∑
n⩾1

· · · =
∑
n⩾0

anHn(x)φ(x),

where the Hn are orthogonal polynomials wrt the
Gaussian distribution φ, can be generalized to other
reference distributions, e.g., for positive random vari-
ables, the Gamma distribution (and Laguerre polyno-
mials).

Robust series expansions
for probability density estimation

M. Welling
Use robust moments〈

(αx)ne
1
2 (1−α

2)x2
〉
, 1 ⩽ α2 ⩽ 2,

to define robust Gram-Charlier or Hedgeworth expan-
sions.

Joining risks and rewards
H.J. Stein (2014)

When you need both the P and Q measures (e.g., for
risk and pricing), use the same samples, but with dif-
ferent weights (i.e., use importance sampling, as when
pricing deep OTM options).

Identifying jumps in financial assets:
comparison between nonparametric jump tests

A.M. Dumitru and G. Urga (2011)
Review of many jump estimators or tests, e.g., those
based on

BV =
∑
|rtrt−1|∑

Min(rt, rt−1)
2∑

median(rt, rt−1, rt−2)
2

Max
|rt|
BV∑

t≡0 (mod δ)

|rt + · · ·+ rt+δ−1|m

∑
|rt|m∑

Rt − rt (ratio vs log-returns), etc.

Monitoring housing markets
for episodes of exhuberance

E. Pavlidis et al. (2013)
The ADF test can be generalized to distinguish be-
tween integrated I(1) and explosive behaviours:

∆yt = α+ βyt−1 +

k∑
i=1

γi∆yt−i + ε, t ∈ [T1, T2]

ADFT1T2
=

βT1T2

σ(βT1T2
)

SADFT1
= sup
T2⩾T1

ADFT1T2
expanding window

GSADFw = sup
T2−T1⩾w

ADFT1T2 window size at least w.

A compound multifractal model for
high-frequency asset returns

E.M. Aldrich et al. (2014)
High-frequency returns (E mini S&P 500 futures con-
tract), in trade space, away from prescheduled news
announcements, are Gaussian. Intertrade duration can
be modeled with an exponential distribution, condi-
tional on a hidden state (k binary state variables, with
varying degrees of persistence).

dt ∼ Exp
(
λ
∏
i

Mit

)

Mi,t+1 =

{
Mit with probability 1− pi
2−Mit with probability pi

Mi0 = m0 ∈ (0, 2)

A truncated version of this Markov switching multi-
fractal duration (MSMF) model, Min(dt, d

0
t), where

d0t ∼ Exp(λ0), gives a better fit.

Article and book summaries by Vincent Zoonekynd 665/1044

When to sell Apple and the Nasdaq? Trading
bubbles with a stochastic disorder model

A. Shiryaev et al. (2014)
Consider a geometric brownian motion with a change
point in the trend,

dSt = (µ11t<θ + µ21t⩾θ)Stdt+ σdBt

(the breakpoint, θ, is called a “moment of disorder” in
quality control). Close a long (resp. short(position at

τlong = Argmax
τ⩽T

τ stopping time

E[Sτ]

τlong = Argmin
τ⩽T

τ stopping time

E[Sτ].

It can be estimated explicitly.

Empirical asset pricing: Eugene Fama,
Lars Peter Hansen and Robert Shiller

J.Y. Campbell (2014)
Around the notion of stochastic discount factor.

The systematic risk of private equity
A. Buchnet and R. Stucke (2014)

To estimate the risk of a private equity fund, model its
dividend payments as a stochastic process.

Dividend yield = 1− e−δt

δt = δ0 + ztt

zt ∼ N(0, σ)

The valuation of M&A targets
by relative indifference pricing

C. Mauch and S. Rostek (2013)
The indifference price is the price at which a given in-
vestor (initial wealth and utility function) is indifferent
between holding and not holding the asset. The buying
and selling (i.e., long and short) indifference prices are
different. Indifference pricing is relevant for incomplete
markets, e.g., for real options.

Return and risk of pairs trading
using a simulation-based bayesian procedure
for predicting stable ratios of stock prices

L.T. Gatarek et al. (2014)
When testing for cointegration, only the subspace of
cointegration relations is well-defined. To single out a
cointegration relation, some “normalization” is needed,
e.g., β =

(
β1
β2

)
=

(
1
β2

)
, or β′β = I, i.e., β =(

β1√
1− β2

1

)
(only the leverage changes). There are

several rules to choose the size of the position on the
spread st = β1y1t + β2y2t, e.g., −st, signEt[∆st+1] or
Et[∆st+1]× signEt[∆st+1] or a buy-and-hold strategy.

Financial contagion risk
and the stochastic discount factor

L. Piccotti (2014)
Contagion risk (in the financial sector) can be esti-
mated as follows:
– Start with bank returns, rit;
– Remove common risk factors (e.g., Fama-French, es-
timated with a Kalman filter, assuming that the be-
tas are random walks), and only look at the residuals
eit;

– Regress those residuals against the sector residuals,
with the bank of interest removed, eit = βiteı̂t + εit;

– Decompose the variance of the sector excess returns
Var

∑
i wieit into a contagion contribution (the βit,

i.e., the off-diagonal elements of Var e·t) and a resid-
ual term.

Explosive bubble modelling
by noncausal process

C. Gouriéroux and J.M. Zakoian (2013)
Instead of a causal linear autoregressive process

yt+1 = ρyt + εt+1, εt iid

one can try to model financial time series with a non-
causal AR process

yt = ρyt+1 + εt+1, εt iid, Cauchy.

[An AR(1) model is not convincing: try to add terms
for 1-day, 1-week, 1-month, 1-year, etc.]

Stochastic areas of diffusions
and applications in risk theory

Z. Cui
The area swept by a stochastic process below some
threshold can be used to model default.

Extending time-changed Lévy asset models
through multivariate subordinators
E. Luciano and P. Semeraro (2007)

To construct a multivariate Lévy process from a Gaus-
sian one, use a multivatiate subordinator, not a uni-
variate one.

FARVaR
C.X. Cai et al. (2014)

To compute the value-at-risk, estimate the intraday
density of returns (with a kernel estimator) and model
the evolution of this density, from day to day, as a
functional autoregressive (FAR) process.

Risk-adjusted time series momentum
M. Dudler et al. (2014)

Define risk-adjusted momentum as
∑ log-returnst

volatilityt
.

Article and book summaries by Vincent Zoonekynd 666/1044

A Market-based funding liquidity measure
Z. Chen and A. Lu (2014)

The BAB (betting against beta) factor is the spread
between (leveraged) low-beta stocks and (deleveraged)
high-beta stocks. Its performance (low beta anomaly)
can be explained by the inability of many investors to
leverage their portfolio. But the beta is not a measure
of funding liquidity: instead, one can combine size, id-
iosyncratic volatility, institutional ownership and ana-
lyst coverage – the BAB premium is higher for high-
margin stocks. Appendix A lists 14 funding liquidity
proxies.

Corporate news releases and equity vesting
A. Edmans et al. (2014)

CEOs time the release of corporate news to match their
vesting equity.

Does liquidity beta predict mutual-fund alpha?
X. Dong et al. (2014)

The outperformance of a fund with a liquidity beta is
not due to the liquidity premium, but to more trading
opportunities in liquid times.

Policy announcements in FX markets
P. Mueller et al (2014)

Interest rate is a good FX investment signal, but only
on scheduled FOMC announcement days. This can be
explained by an agent model, in which agents learn the
announcement effects in a Bayesian fashion.

Alliances and return predictability
J. Cao (2014)

Use alliance partners in your pairs trading strategy.

Post-split drift and post-earnings
announcement drift: one anomaly or two?

L. Fengfei (2014)
Both stock splits and earnings announcements have a
lasting effect on future returns, but the two phenomena
may be distinct:
– The effects are real;
– They have the same duration, but
– A trading strategy using both outperforms one using
only one.

[The conclusion is incorrect: the fact that the trading
strategy performs better could come from the lower
noise in the combined signal.]

International funding illiquidity
A. Vedolin (2014)

Country-specific funding illiquidity can be measured
by the difference between market bond prices and the-
oretical bond prices (using the Svensson, Nelson-Siegel,
or cubic spline model): large discrepancies mean that

arbitrageurs could not profit from the arbitrage oppor-
tunity.

Can information be locked-up? Informed
trading ahead of macro-news announcements

Y. Tang (2014)
US macroeconomic announcements are often pre-
released to the media under embargo agreements
(lockup). Evidence (abnormal returns, order flow im-
balance, from high-frequency data on index futures and
ETFs, in the 30 minutes preceding the announcement)
suggests that, for the FOMC (Federal Open Market
Committee), this embargo is routinely breached – other
government agencies manage to enforce it, though.

General purpose technologies,
international technology diffusion,

and the cross section of stock returns
W. Yang (2014)

Patents can be classified as general-purpose (comput-
ers, telecom, electronics) or special-purpose (chemical,
medical, mechanical, etc.) The difference between the
growth rate of general- and special-purpose patents is
a non-diversifiable risk factors, that can be added to
factor models (Fama-French, etc.)

Macro disagreement and the cross-section
of stock returns

W. Li (2014)
High-beta stocks are more prone to speculative mis-
pricing, and high dispersion (in market forecasts) leads
to lower returns. This effect also exists for macroeco-
nomic factors (industrial growth, inflation, etc.)

Liquidity risk and expected stock returns
L. Pástor and R.F. Stambauch (2003)

Stock liquidity can be defined as the volume coefficient
in the regression

returnt+1 ∼ returnt + sign(returnt)volumet.

The market liquidity is the equal-weighted average of
the stock liquidities.

In search of distress risk
J.Y. Campbell et al. (2008)

Yet another bankruptcy model. [Why not a survival
model? They already look at various horizons and the
distance to default from Merton’s model.]

The world price of political uncertainty
J. Brogaard et al. (2014)

Global political uncertainty (data from www.policy-
uncertainty.com affects the implied cost of capital of
countries integrated with the global economy; local po-
litical uncertainty has the opposite effect (it can be de-
fined as a binary variable indicating elections in a given

Article and book summaries by Vincent Zoonekynd 667/1044

http://www.policyuncertainty.com/
http://www.policyuncertainty.com/

year – data from the World Bank database of political
institutions). One can also use text data to measure
political uncertainty:
– Proportion of articles about economic uncertainty;
– Residual of the regression of the domestic proportion
against the global one.

A leverage-based measure
of financial instability

A. Tepper and K.J. Borowiecki (2014)
Credit constraints, margin requirements and leveraged
investors (their demand curve can become upward-
sloping – to estimate it, assume they are optimistic and
reinvest everything they gain, as much as possible) can
make markets unstable. The stability condition (for
a 4-agent model: leveraged investors, unleveraged in-
vestors, bank, central bank) can be written explicitly.

Aggregate short interest
and return predictability

D.E. Rapach et al. (2014)
Detrended aggregate short interest helps predict future
market returns.

Predictive systems under economic constraints
M. Bonelli et al. (2014)

Expected returns are not constant and can be modeled
as

rt+1 = µt + ut+1

xt+1 = (1− λ)x∞ + λxt + wt+1

µt+1 = (1− β)µ∞ + βµt + vt+1

Σ = Var(ut, vt, wt)
′.

Since the expected returns µt are unlikely to be nega-
tive, one can add this constraint, either with a Bayesian
prior, or by reparametrizing the model, e.g., by using
a square root process for µt.

Model uncertainty and expected return proxies
C. Jäckel (2013)

The implied cost of capital (internal rate of return in a
dividend discount model – if you know the future div-
idends) is often used as a proxy for expected returns,
but it is as imprecise.

Predicting the spread of financial innovations:
an epidemiologic approach

I. Hull (2013)
The spread of financial innovations (new products:
CDS, MBS, ABS, CDO, ETF, etc.) can be modeled
with the SIR model. A 2-host SIR model (banks and
creditors) can help monitor solvency problems.

Risk vs anomaly:
a new methodology applied to accruals

J. Ohlson and P. Bilinski
Low accruals increase/decrease the probability of large
positive/negative returns. (The “new methodology” is
logistic regression...)

Strategic allocation
to commodity factor premiums

D. Blitz and W. de Groot (2013)
Consider tercile commodity portfolios, for the following
factors:
– Momentum (past 12-month return);
– Carry (annualized nearby future price / next nearby
future price);

– Volatility (of daily returns, over the past 3 years)

The cross-sectional variation
of volatility risk premia

A. González-Urteaga and G. Rubio (2014)
Instead of the index VRP (realized vol, minus model-
free implied vol (MFIV)), look at the stock-specific one,
and β(VRPstock ∼ VRPindex).

Convenient liquidity measure
for financial markets

O. Danyliv et al.
There are already many definitions of liquidity: bid-ask
spread, |returns| /ADV, long-term return variance /
short-term return variance,

high− low
low

/
volume
MCap .

Here is one more:

log
Volume× Close
High− Low .

Colog asset pricing,
evidence from emerging markets

Y. Dranev and S. Fomkina
Yet another measure of risk:

CologX = E[X logX]− E[X]E[logX],

where X measures the loss beyond some threshold.
One can also consider the colog utility:

U(x) = x− λx log x.

Article and book summaries by Vincent Zoonekynd 668/1044

Machines vs machines: high-frequency trading
and hard information

Y. Huh (2014)
Hawkes’s self-exciting model can be used to measure
liquidity from high-frequency data (i.e., how fast the
intensity of the Poisson process reverts to its long-term
value).
High-frequency trading both takes and provides liquid-
ity, but the balance depends on information asymme-
try – measure it by the proportion of transactions in
the stock (say, AAPL) caused by a change in some
index (sat QQQ).

Predictive power of aggregate short interest
E.J. Yu (2014)

Aggregate short interest can help predict cyclical GDP
changes, up to four quarters ahead.

Exployee satisfaction, labor market flexibility,
and stock returns around the world

A. Edmans et al. (2014)
Employee satisfaction only leads to higher returns in
countries with a flexible job market (US, UK, but not
Germany).

Multi-scale representation
of high-frequency market liquidity

A. Golub et al. (2014)
One can define another time scale (besides wall clock,
volume clock, number-of-transactions clock) by look-
ing at price changes beyond some threshold; time
scales corresponding to different thresholds can be
combined to define a multiscale market state, in
{up, down}♯thresholds.

Predictability of bank stock returns
during the recent financial crisis

W.S. Leung et al. (2014)
To predict the future returns of a bank, look at:
– Earnings;
– Non-performing loans;
– Loan-to-deposit ratio;
– Tier-1 capital ratio;
– Exposure to the structured finance market (off-
balance sheet activities, ABX AAA index);

– Funding illiquidity risk (maturity mismatch).
The data for US banks comes from the bank regulatory
database (“FRY5C form”).

Technical market indicators: an overview
J. Fang et al.

Technical analysis does not work – review of 93 indi-
cators...

Article and book summaries by Vincent Zoonekynd 669/1044

Discretionary accrual models
and the accounting process
X.G. Gómez et al. (2000)

Accruals should be included in the earnings: the cash
flow alone is very noisy (its autocorrelation is nega-
tive), and accruals help smooth it. However, there is
too much discretion in their computation: only part of
them is informative.

Earnings = Cash flows+Good accruals+Bad accruals

The non-discretionary accruals have been defined as:
– Last year’s accruals;
– The average of the previous accruals;
– The fitted value of the following regression (divide
by the previous assets and fit the models for each
industry×year)

Accruals ∼ ∆(Revenue− Receivables) + PPE
Accruals ∼ ∆Revenue+ PPE+ CFO
Accruals ∼ Previous short-term accruals+

Previous long-term accruals+∆CF

where

Short-term accruals = ∆
(
(Current assets− Cash)−

(Current liabilities− Financing items)
)

Long-term accruals =
−Depreciation not in inventory−
∆Allowances. (?)

Foreign ownership and real earnings
management: evidence from Japan

J. Guo et al. (2014)
After the tightening of accounting rules in Japan (“big
bang accounting reform”, in the late 1990s), companies
have moved from accrual earnings management to real
earnings management. This can be measured with the
residuals of the following regression (divide by the pre-
vious assets and estimate for each industry×year pair,
if there are at least 15 companies)

Cash flow from operations ∼
Previous assets+ Sales+∆Sales

Discretionary expenses ∼ Previous assets+ Sales
Production costs ∼

Previous assets+ Sales+∆Sales+
previous ∆Sales

where

Discretionary expenses = Advertising+ R&D+ SGA
Production costs = COGS+ Inventory.

One can also add them:

abnormal CFO+ abnormal discretionary expenses−
abnormal production costs.

Firms with more foreign ownership are less manipula-
tive.

Performance matched
discretionary accrual measures

S.P. Kothari et al. (2001)
Discretionary accrual measures, e.g., the residuals of
the following regressions (divide by the previous assets,
fit for each year×industry combination)

Accruals ∼ ∆Sales+ PPE
Accruals ∼ ∆(Sales− Receivables) + PPE
Accruals ∼ ∆Sales+ PPE+ Previous ROA
Accruals−Depreciation ∼ ∆Sales,

rarely account for the relation between performance
and accruals (a trend in performance leads to systemat-
ically positive/negative accruals). One can use match-
ing (on year, industry, and previous ROA).

Kinetic component analysis
M. López de Prado and R. Rebonato (2014)

The authors have rediscovered structural models.
acceleration an+1 = an + noise

velocity vn+1 = vn + an + noise
true price pn+1 = pn + vn + 1

2an + noise
observed price qn = pn + noise

(I think there is no 1
2an term in structural models, and

R’s StructTS function only uses a first-order Taylor
expansion, i.e., assumes that the acceleration is zero.)
Those models can be fitted with a Kalman filter and,
by choosing the amplitude of the noise, one can fine-
tune the amount of smoothing.
Contrary to other smoothing methods, such as Fourier
transform, wavelets, Hodrick-Prescott filter or local re-
gression (lowess), which do not behave well at the ends
of the sample, they are forward-looking, and provide
forecasts and confidence intervals. For instance, mar-
ket makers could use those forecasts to compute the
acceptable interval for their quotes.
By looking if the acceleration is significantly different
from zero, one can decide whether to follow a “momen-
tum” strategy (strictly speaking, it should be called
“inertia” strategy).
As usual, the article includes Python code.

Reward-risk momentum strategies using
classical tempered stable distribution

J. Choi et al. (2014)
Momentum strategies look at past performance but,
instead of returns, one can consider other performance
measures:
– VaR, CVaR, here estimated from and ARMA(1,1)-
GARCH(1,1) model with classical tempered stable
(CTS) innovations;

– Sharpe ratio, µ/σ;
– Stable tail-adjusted return ratio (STARR), µ/CVaR,

or an additive version of it, µ− CVaR;
– Rachev ratio CVaR(gain)/CVaR(loss).

Article and book summaries by Vincent Zoonekynd 670/1044

Maximum drawdown, recovery and momentum
J. Choi (2014)

The returns over the past 6 months (or 6 weeks) can
be decomposed into the sum of pre-peak, maximum
drawdown, and recovery log-returns. In a momentum
strategy, one can replace the past returns with various
linear combinations of those three terms.

Persistent doubt: an examination of the
performance of hedge funds

M. de la O González et al. (2014)
Hedge fund performance seems to be persistent: to
check it, form quintile portfolios on various perfor-
mance measures, such as
– Alpha, adjusted for everything you can think of
(they used developed and emerging markets, size,
bonds, credit, FX, commodities);

– The manipulation-proof performance measure
(MPPM), Θ(A), i.e., the certainty-equivalent
monthly return (of the past 2 years of returns) for an
investor with constant relative risk aversion (CRRA)
A = 3;

– The excess MPPM, Θfund(A)−ΘRussell 2000(A);
– The doubt ratio, DR = 2 +Θ(2)/(Θ(2) + Θ(3)).

Asymetric risks of momentum strategies
V. Dobrynskaya (2014)

The momentum anomaly can be explained by the
CAPM with upside and downside betas: past winners
have a lower β+ and a higher β−.

Bayesian analysis of bubbles in asset prices
A. Fulop and J. Yu (2014)

Bubbles can be described by regime-switching models
(choose two among mean-reverting, unit root (random
walk) and explosive root). Structural break models are
similar, but their breakpoint is deterministic.
The authors suggest to model the price/dividend ratio
(rather than the price) as a mean-reverting process,
whose long-term mean follows a random walk, with an
AR coefficient > 1 or < 1 depending on the regime,
estimated with a particle filter.

emcee: the MCMC hammer
D. Foreman-Mackey et al. (2013)

The Goodman-Weare sampler uses the detailed
balance rule, but the candidate distribution is inspired
by differential evolution (DE):
– Consider n chains, X1, . . . , Xn;
– The candidate for Xk is Xj + Z(Xk − Xj), where
Z ∼ g is random, e.g., g(z) ∝ z−1/21[a−1,a](z) and
j ∼ U(J1, nK \ {k}).

The algorithm can be parallelized (but this changes the
detailed balance condition) and is affine-invariant: it is
not sensitive to different scales in the parameters.

emcee is a Python implementation.

GraphX:
a resilient distributed graph system on Spark

R.S. Xin et al. (2013)
In a distributed environment, graph algorithms tend to
be inefficient because data partitioning is often done on
edge cuts (vertices are assigned to machines, edges span
machines – it is a vertex-centric view of the graph).
does not preserve locality. But graph partitioning with
(random) vertex cuts (edges are assigned to machines,
vertices span multiple machines – an edge-centric view)
fares better.
GraphX (part of Spark) can easily implement the
Pregel API (send-combine) or the Power Graph API
(gather-apply-scatter).

Extreme learning machines: a survey
G.B. Huang et al. (2011)

“Extreme learning machines” are single-hidden-layer
feed-forward neural networks in which the hidden layer
is fixed and arbitrary – it seems to be another name
for echo state networks, which can be seen as discrete
support vector machines (with a random, rather than
universal, kernel).

Variable selection using random forests
R. Genuer et al. (2012)

To account for groups of highly correlated explanatory
variables, consider nested random forests, with an in-
creasingly large number of variables.

Learning the parts of objects
by non-negative matrix factorization

D.D. Lee and H.S. Seung (Nature, 1999)
Principal component analysis (PCA), vector quantiza-
tion (VQ), nonnegative matrix factorization (NMF),
independent component analysis (ICA) are all decom-
position V ≈WH, with different constraints: orthogo-
nal columns (rows) inH (W) for PCA; booleanW with
exactly one 1 in each row for VQ; W,H ⩾ 0 for NMF.
When used to reduce the dimension of a set of images
(say, faces), they give qualitatively different results:
PCA gives eigenfaces (not faces), designed to be com-
bined; VQ gives prototypes (faces); NMF gives parts
of images (the non-negative constraints only allow for
additive reconstruction). On text data, the decompo-
sitions define topics: VQ only allows a single topic per
text; PCA allows several, but these are “relative” top-
ics, designed to be combined, and difficult to interpret;
the independence assumption in ICA is inappropriate
in this context.

When does
the nonnegative matrix factorization

give the correct decomposition into parts?
D. Donoho and V. Stodden

Article and book summaries by Vincent Zoonekynd 671/1044

The nonnegative matrix factorization (NMF) X = AΨ
can be interpreted geometrically: the rows of X are
in the simplicial cone generated by the rows of Ψ, and
this cone is in the first orthant. In particular, unless
the cone is generated by rows of X “touches” the fron-
tier of the orthant (e.g., the orthant itself, or an ice-
cream cone tangent to the orthant), the decomposition
is not unique: one can replace Ψ with a slightly wider
cone. Separability and complete factorial sampling en-
sure unicity.

Algorithms
for nonnegative matrix factorization

D.D. Lee and H.S. Seung
A nonnegative matrix factorization (NMF) of an n×m
matrix V (with nonnegative entries) is a decomposition
V ≈WH whereW is n×k and H k×m, with k small,
and W and H have non-negative entries. By iterating

H ← H � (W ′V)� (W ′WH)

W ←W � (V H ′)� (WHH ′)

(where � and � are the elementwise multiplication and
division), one can find a local minimum of ‖V − V H‖2
(it is actually a gradient descent with an adaptive
learning rate). One can find a similar update rule to
minimize the divergence D(V ||WH), where

D(A ||B) =
∑
ij

(
Aij log

Aij
Bij
−Aij +Bij

)
.

Alternating least squares (ALS) were not mentionned.

Big data in asset management
T. Roncalli (2014)

Machine learning methods can be applied to finance:
– Lasso regression can be used for hedge fund replica-
tion, or to hedge positions;

– Nonnegative matrix factorization (NMF) can be
used to decompose returns into factors, with posi-
tive weights (this is not the classical NMF: we want
a decomposition R =WF , with W ⩾ 0, but no sign
constraint on R or F ; no algorithm is mentionned,
but alternating least squares (ALS) should work);

– There is no satisfactory sparse Kalman filter, but the
model

yt = x′tβt + εt

βt = βt−1 + ηt

can be estimated with a penalty, as in the Hodrick-
Prescott (HP) filter,

(β̂1, . . . , β̂n) = Argmin
β

∑
t

‖yt − x′tβt‖
2
+

λ
∑
t,j

h(βtj − βt−1,j) +

µ
∑
t,j

h(βtj)

with h(ε) = ‖ε‖1 or h(ε) = ‖ε‖22.

Finding large average submatrices
in high dimensional data

A.A. Shabalin (2009)
Biclustering algorithms look for homogeneous subma-
trices (e.g., approximately equal rows, or columns, or
elements, or rank statistics in rows, or in columns, or el-
ements above a threshold, or well-fit by a 2-way anova,
etc.) and can be seen as a form of unsupervised ex-
ploratory data analysis. The LAS model assumes that
the data is constant on (possibly overlapping) subma-
trices), with additive noise. The log-likelihood of a k×`
submatrix of the whole m× n matrix is

− log

[(
m

k

)(
n

`

)
Φ
(
−average×

√
l`
)
.

]
To account for overlap, the submatrix with the best
score is subtracted from the data, and the algorithm is
iterated. To find a good submatrix with prescribed size
k× `, take k rows at random, take the best ` columns,
then the best k rows, and iterate until convergence;
then fine-tune (k, `).

Measures of causality in complex datasets
with applications to financial data

A. Zaremba and T. Aste (2014)
Granger causality is a comparison of P (Xt|X⩽t−1) and
P (Xt|X⩽t−1, Y⩽t−k). For a VAR model, one can use
Geweke’s measure,

FY→X = log
Var[Xt|X⩽t−1]

Var[Xt|X⩽t−1, Y⩽t−k]
,

or apply the kernel trick to it.
The transfer entropy is

TY→X = H(Xt|X⩽t−1)−H(Xt|X⩽t−1, Y⩽t−k)

where
H(U |V) =

∑
uv

puv log
pv
puv

is Shannon’s conditional entropy.

Are there bubbles in stock prices?
Testing for fundamental shocks
A. Velinov and W. Chen (2014)

A VAR(p) model, for a stationary time series yt (if it
is not stationary, try with ∆yt),

yt = ν +A1yt−1 + · · ·+Apyt−p + ut,

can be written

A(L)yt = ν + ut

where L is the lag operator and (if A(L) is invertible)
as an MA(∞) process (Wold decomposition)

yt = µ+
∑
s⩾0

Φsut−s = µ+Φ(L)ut.

Article and book summaries by Vincent Zoonekynd 672/1044

While the VAR parametrization is well-defined, the
MA one is not identified: one can multiply ut by an
invertible matrix:

yt = µ+Φ(L)Bεt = µ+Ψ(L)εt.

The article uses two variables,

yt = ∆

(
log(production)
log(stock prices)

)
and (to identify the model) the restrictions

E[εtε
′
t] =

(
1 0
0 1

)
, Ψ =

(
∗ 0
∗ ∗

)
(this is a structural VAR (SVAR) model). The two
types of shock can be interpreted as fundamental and
non-fundamental, and give a decomposition of the log-
price into fundamental and non-fundamental compo-
nents.

Downside volatility timing
I. Nolte and Q. Xu (2014)

Add (high-frequency, realized) downside risk to your
alpha model or your risk forecasts (e.g., a heteroge-
neous autoregressive (HAR) model, σt,t+1 ∼ σ+

t−1,t +

σ−t−1,t + σt−4,t + σt−22,t): it is more informative than
volatility.
You can also try to decompose the risk into its jump
and diffusion components (with the bipower variation).

The economic value of realized jumps:
an asset allocation perspective

I. Nolte and Q. Xu (2014)
Separating jumps from diffusion gives better volatil-
ity forecasts; they can be used in portfolio construc-
tion (“volatility timing”), either in the variance matrix
in an optimization problem, or in a “parametric port-
folio construction” (the portfolio weights are a linear
function of some state variable, linked to the volatility
components).

Volatility indices and state-preference pricing
Z.F. Liu (2014)

The VIX was originally computed from ATM options
on the SP100 and the Black-Scholes formula. It is now
computed from OTM SP500 options, but, although it
no longer relies on the Black-Scholes formula, it is not
completely model-free, ignores trading volume and in-
cludes illiquid options.
The article suggests a model-free approach (by con-
structing a “variance” option, that pays the squared
log-returns) using only liquid vanilla options.

Effects of financial crises on the long memory
volatility dependency of foreign exchange
rates: the Asian crisis vs the global crisis

Y.W. Han (2014)
Long-memory, i.e., the slow decay of the autocorrela-
tion (processes between stationary and integrated) can
be estimated with ARFIMA models (more precisely,
for volatility, ARMA-FIGARCH) or by the local Whit-
tle estimator (the asymtotic behaviour of the spectrum
(periodogram) when ω → 0+).

Omega risk model with tax
Z. Cui (2014)

Ruin theory models, such as the first hitting time

τ = inf{t ⩾ 0 : Xt ⩽ 0},

the deterministic grace period (Chapter 11)

τ = inf{t ⩾ 0 : ∀s ∈ [t− ε, t] Xs ⩽ 0}

or the stochastic grace period (omega risk model,
w(Xs)1Xs⩽0 is the intensity of a Poisson process)

τ = inf{t ⩾ 0 :

∫ t

0

w(Xs)1Xs⩽0 ds > e}

can be augmented with taxes (paid at rate γ when
Xt = X̄t).

Xt = pre-tax value
Ut = after-tax value
dUt = dXt − γX̄tdX̄t

X̄t = running maximum

On a new index of riskiness:
theoretical results and some applications

R. Resta and M.E. Marina (2013)
The riskiness of a gamble g can be measured by finding
α = Ras(g) such that E[e−g/α] = 1; this is monotonic
wrt stochastic dominance. This can be generalized to
α = Iθ(g) such that

E[e−g−/α − 1]

E[1− e−g+/α]
= θ.

Model risk of risk models
J. Danielsson et al. (2014)

To measure model risk, use several risk models (MA,
EWMA, GARCH, t-GARCH, EVT, historical, etc.)
and look at the ratio

highest VaR (or ES)
lowest .

The co-expected-shortfall is

CoES = E[X|M ⩽Mα],

where X are the stock returns, M the market returns,
Mα the α-quantile of the market returns. The CoVaR
is similarily defined.

Article and book summaries by Vincent Zoonekynd 673/1044

On the measurement of economic tail risk
S. Kou and X. Peng (2014)

Median shortfall is the only “economically sound” (no-
tion defined with a set of axioms) tail risk measure (yes,
it is just a VaR).
The main problem (“elicitability”) with the expected
shortfall (ES) is that, at least theoretically, you can-
not check that your ES estimate is correct: something
very bad could happen vmuch farther in the tail, that
would have no effect on the VaR, but a huge effect on
the ES.

Power law and evolutionary trends
in stock markets

P.V.S. Balakrishnan et al. (2007)
The power law exponent of stock trading volume has
been increasing since 1965, suggesting a higher concen-
tration of trades.

Rollover risk and volatility risk
in credit spread models: a unified approach

S. Perrakis and R. Zhong (2013)
Credit risk is often estimated as a barrier option on
the value of the firm, modeled as a random walk. The
model can be improved by adding:
– The capital structure;
– Illiquidity risk – an illiquid bond market increases
the rollover risk;

– Volatility risk – volatility is not constant (the article
uses a CEV process).

Estimating stochastic volatility models using
realized measures

J. Bekierman and B. Gribisch (2014)
Add the realized volatility to your GARCH or stochas-
tic volatility model:

returnt = eλt/2εt

log(realized volatilityt) = ξ + λt + σ1ut

latent volatility = λt = γ + δλt + σ2ηt ???
εt, ut, ηt ∼ N(0, 1).

A user’s guide
to the Cornish-Fisher expansion

D. Maillard (2012)
The Cornish-Fisher expansion is often considered as a
black box: “compute the skewness and kurtosis of your
distribution, plug them into the formulas, and retrieve
the VaR and CVaR”. The expansion is actually very
simple: a Gaussian random variable Z ∼ N(0, 1) can
be transformed into a non-Gaussian one:

X = f(X) = Z+
S

6
(Z2−1)+K

24
(Z3−3Z)−S

2

36
(2Z2−5Z)

(understanding where this specific degree-3 polynomial
comes from is less simple).

There are two common mistakes.
– To easily compute the VaR and CVaR of X from
those of Z, f should be bijective: this imposes re-
strictions on the S and K parameters.

– The moments of X are not (0, 1, S, 3 +K), but only
asymptotically so, when S,K → 0. In particular,
what needs to be put in the formula is not the skew-
ness and kurtosis, but the skewness and kurtosis
parameters (the article fails to stress that the vari-
ance is affected by the same problem). The actual
moments can be numerically transformed into the
needed parameters.

Forward-looking measures
of higher-order dependencies

with an application to portfolio selection
F. Brinkmann et al. (2014)

Option prices can be used to estimate higher mo-
ments (skewness, kurtosis). In a multi-asset situa-
tion, the variance, skewness and kurtosis tensors can be
modeled in a parsimonious way by assuming that the
“higher correlations” (normalized covariance, coskew-
ness, cokurtosis) are all equal, i.e., besides the uni-
variate parameters, there are only three parameters to
estimate (ρcov, ρcoskew, ρcokurt). Those higher moments
can be used in portfolio optimization (take a 4th order
Taylor expansion of the expected utility).

FVA explained: is there a solution?
D. Lu and F. Juan

When marking to market derivatives, one should also
consider
– CVA (credit value adjustment), i.e., the credit rist
of the counterparty (CDS spread);

– DVA (debit value adjustment), i.e., the credit risk
of the bank itself;

– FVA (funding value adjustment), i.e., the cost of
funding the collateral for the derivative – uncollater-
alized derivatives are becoming rarer and rarer and
the funding cost is not exactly the CDS spread.

Recovering from derivatives funding:
a consistent approach

to DVA, FVA and hedging
C.J. Gunnesson and A.F. Muños de Morales

(2014)
CVA, DVA, FVA can be priced by replication.

KVA: capital valuation adjustment
A. Green et al. (2014)

Besides CVA, DVA, FVA, one can also include the cost
of regulatory capital (KVA) in derivative valuation.

On multicurve models for the term structure
L. Morino and W.J. Runggaldier (2014)

To price forward rate agreements (FRA) and other
fixed income products, you need a multicurve model,

Article and book summaries by Vincent Zoonekynd 674/1044

with one curve for discounting, and one for the cash
flows. [It had always shocked me to see people use the
same curve.]

Equity portfolio management
using option price information

P. Christoffersen and X.N. Pan (2014)
Clear review of the use of options data for equity port-
folio management:
– Smile slope = ivol|K/S = 0.95− ivol|K/S ≈ 1;
– 〈 ivol|Call− ivol|Put〉;
– Model-free volatility, skewness, kurtosis;
– Exposure to VIX innovations, oil VIX (OVX), gold
VIX (compute it yourself), copper VIX;

– Exposure to market skew;
– Exposure to VRP;
– Option-implied covariance matrix or, even, option-
implied joint return distribution.

Dispersion trading in South Africa
S. Maze (2012)

A dispersion trade is long an index call, and short con-
stituent calls; it is profitable if the constituents of the
index are more volatile than the index.

Option and accounting information: empirical
evidence in stock and derivative markets

C.J. García Martín et al.
When forecasting the post-earnings announcement
drift (PEAD), use options data (options volume/stock
volume, open interest, etc.) if available.

The price impact of option hedging
and the anomalous weekly reversal

T. Wang (2014)
Hedging by option writers impacts prices, even for
liquid underliers, especially around expiry, creating
weekly reversals.

Identifying the drivers of predicted beta
J. Wand and J. menchero (MSCI, 2014)

One can compute betas from a factor model

r ∼ N(µ0, V)

V = eve′ +∆

βi = β(ri, w
′r) =

Cov(ri, w
′r)

Var(w′r)
=

Vi,·w

w′V w

and decompose it into factor contributions. One can
do the same thing for the cross-sectional dispersion of
the β’s.

Generalized risk-based investing
E. Jurczenko et al. (2013)

Minimum variance, maximum diversity, risk parity,
etc. are special cases of the following optimization

problem:

Find w

To minimize dispersion
i

wγi
σδi

∂
√
w′V w

∂wi
Such that w′1 = 1

i.e., trying to make those asset contributions equal, if
possible.

Equal-risk bounding is better than risk parity
for portfolio selection

F. Cesarone and F. Tardella (2014)
The equal risk bounding (ERB) portfolio is the min-
imum risk portfolio among the risk parity portfolios
built on a subsets of the assets:

Find w
To minimize Maxi wi(V w)i
Such that w′1 = 1, w ⩾ 0;

it can also be written
Find w, λ
To minimize λ
Such that ∀i wi(V w)i ⩽ λ

w′1 = 1, w ⩾ 0.

Efficiently combining multiple sources of alpha
in portfolio construction

J. Menchero and J.H. Lee (MSCI, 2014)
Given a risk (or alpha) factor, one can define several
portfolios. Let wi be the weight of asset i in the mar-
ket portfolio, with

∑
wi = 1. Let βik be the exposure

of stock i to risk factor k, normalized:
∑
i wiβik = 0,∑

i wiβ
2
ik = 1.

– The simple factor portfolio for factor k has weights
wiβik. (Thanks to the normalization) the factor re-
turns can also be obtained by (univariate, time se-
ries) regression: Xi = αi + βikF

simple
k + εi.

– The pure factor portfolio for factor k has exposure 1
to factor k and exposure 0 to the other factors; the
weights are the rows of β+ diag(w), where β+ is the
pseudo inverse of β (β+ = (β′β)−1β′ if the columns
of β are linearly independent – it is a little more com-
plicated otherwise, e.g., if you have world, country
and sector factors).

– The minimum volatility portfolio among those with
unit exposure to factor k.

Alpha-risk factor misalignment:
does it pose a problem?

J.H. Lee et al. (MSCI, 2013)
Portfolio optimization tends to maximize the exposure
to the residual alpha – the part of the alpha not ac-
counted for by the risk model –, assuming that it bears
no risk. Since it does contain risk, and less information
than the alpha, one can add a penalty for the exposure
to this residual alpha to the optimization problem –
but, quite often, this adjustment is not needed.

Article and book summaries by Vincent Zoonekynd 675/1044

Diversified minimum variance portfolios
G. Coqueret (2014)

Regularization path of the minimum variance portfolio
with an L2 constraint.

Trilateral foreign exchange exposure
T.J. O’Brian (2014)

To compute (and hedge) the FX exposure of a firm in a
trilateral situation (e.g., the firm and the customers use
different currencies, and the price is in a third currency;
two firms, from different countries, compete in a third
country; firm, factory and market are in three different
countries), consider unilateral shocks (i.e., shocks, up
or down, in one currency, leaving the other two fixed).

Pseudo-mathematics and financial
charlatanism: the effects of backtest

overfitting on out-of-sample performance
D.H. Bailet et al. (Notices of the AMS, 2014)

The dangers (and omnipresence) of overfitting in fi-
nance.

Significance testing in empirical finance:
a critical review and assessment

J.H. Kim and P.I. Ji (2014)
Empirical finance is still in the statistical dark ages:
people use conventional (arbitrary) significance thresh-
olds, disregarding:
– Sample size;
– Economic significance (often, tests do not answer the
question “is there something” but “do I have enough
data to see it?”): do not test H0 : β = 0 against
H1 : β > 0, but against H1 : β > β1 – if you do not
want to choose β1, report a confidence interval for
β;

– Test power;
– Heteroskedasticity, autocorrelation, outliers;
– Expected losses.
One could use:
– Smaller thresholds (10−3 is fine in psychology);
– Bayesian methods, i.e., check if

P (H1|data)
P (H0|data)

=
P (data|H1)

P (data|H0)

P (H1)

P (H0)
> 1.

In addition, the publication bias is high and replicated
studies almost inexistent. [I disagree: I see a lot of
replicated studies – but they remain unpublished.]

Adaptive learning and survey data
A. Markiewicz and A. Pick (2013)

Homo economicus and his exact subjective probabili-
ties should be replaced with homo econometricianus,
who uses time series models fitted on real data (“adap-
tive learning”) and macroeconomic data.

Quantifying differential interpretation
of public information

X.S. Sheng
By modeling analysts as Bayesian learners, blending
their prior beliefs with their interpretation of new in-
formation, one can decompose the dispersion in their
forecasts into a prior dispersion and the dispersion due
to new information,

Varnew information =
VarXbefore

i − λ2 VarXafter
i

1− λ2
Xafter
i −Xafter = α+ λ(Xbefore

i −Xbefore) + ε

Investor behavior and financial innovation:
a case study on callable bull/bear contracts

X. Li et al. (2014)
Knock-out barrier options are cheap, volatile, and
skewed – prospect theory can explain why investors
like them (as a lottery), even though they lose money.

Bankruptcy sells stocks...
but who’s buying and why?

L. Coelho et al.
Bankrupt companies are actively traded, and often
overpriced: they are used by retail investors as lottery
stocks (high probability of a small loss, low probability
of a large gain, i.e., high skewness).

Pairs trading with copulas
W. Xie et al. (2014)

When implementing a pairs trading strategy (once you
have identified the pair, e.g., via cointegration tests),
one often just looks at the difference in normalized
prices,

pX(0) = pY (0) = 1

∆(t) = pX(t)− pY (t)
Trade when |∆(t)| > 2σ∆(t).

Instead, one can estimate the copula of the returns, and
the conditional probabilities (“mispricing indices”)

MIX|Yt = P [Xt < xt|Yt = yt]

MIY |Xt = P [Yt < yt|Xt = xt]

(where Xt are the returns and xt the realized returns)
and trade when

∑
s⩽tMIX|Ys or

∑
s⩽tMIY |Xs exceeds

some threshold.

Improving pairs trading
T.R. Almeida (2011)

Pairs opening after a 1-sided shock are less profitable.

Article and book summaries by Vincent Zoonekynd 676/1044

Liquidity-adjusted price-dividend ratios
and expected returns

B.G. Jang et al.
The price-dividend ratio is often assumed to be sta-
tionary: if can therefore be defined as a cointegration
relation for (log(price), log(dividends)). But evidence
suggests that it may not always be stationary: one can
try to replace it with a cointegration relation for(

log(price), log(dividends), log(liquidity)
)
,

where the USD trading volume can be used as a proxy
for liquidity.

Random walks in dividend yields and bubbles
F. Bidian (2014)

A non-stationary dividend yield is not necessarily evi-
dence of a bubble.

Estimating private equity market beta using
cash flows: a cross-sectional regression of

fund-market paired internal rates of return
Y. Jiang and J. Sáenz (2014)

To estimate the beta of private equity (PE):
– Compute the internal rate of return (IRR) of the PE
investments (you need several of them, and you get
an IRR for each);

– Compute the corresponding market IRRs (using the
same cash flows, but invested in the market, with a
non-zero final value);

– Regress.
[I am skeptical about the stability of this procedure:
the market IRRs are weighted averages of market re-
turns – they will be very, very similar, so we are almost
regressing against a constant...]

Peering inside the analyst “black box”:
how do equity analysts model companies?

A. Markou and S. Taylor (2014)
Analysts value firms using the discounted cashflow
model (DCF), with explicit cashflow forecasts (subjec-
tive, or from subjective forecasts of balance sheet items,
or from subjective/historical growth rates thereof).
The discount factor (weighted average cost of capital,
WACC) is computed from the cost of debt, the cost
of equity (equity risk premium, ERP), the tax advan-
tage of debt, and the capital structure – some include
preference shares and pension liabilities in the capi-
tal structure. The ERP is difficult to estimate – most
use the CAPM. The terminal value and the time af-
ter which it is reached influence the result. The DCF
is complemented by other approaches: EV/EBITDA,
P/E, etc.
For more details, check Damodaran’s books.

Changes in cash:
persistence and pricing implications

J.Z. Chen and P.B. Shane (2010)
The changes in earnings can be decomposed into

∆Earnings = Accruals+∆FCF
∆FCF = ∆Cash+ net distribution to debt holders

+ net distribution to shareholders.

The change in cash can be decomposed into a normal
and an abnormal part,

∆Cash = ∆̂Cash+ residual

where the forecast ∆̂Cash comes from the model

∆Cash ∼ σindustry(FCF) +

∆
assets− BV(equity) +MV(equity)

assets +

∆ log(assets) + ∆FCF+

working capital− cash
assets +

∆
debt
assets +∆

R&D
assets + (∆dividends > 0) +

∆
cash outflow on acquisitions

assets +

∆Casht−1 + Casht−1.

Negative abnormal cash changes are persistent, and do
not bode well for the company. Positive abnormal cash
changes are not persistent, but such hubris is ignored
by the market.

When the use of positive language backfires:
the joint effect of language sentiment,
readability and investor sophistication

on earnings judgements
H.T. Tan et al. (2013)

When readability is low, sentiment (i.e., word choice)
matters, but in opposite directions for naive and so-
phisticated investors.

R&D spillover and predictable returns
Y. Jiang et al. (2012)

R&D spending is an externality:
– Low R&D firms lag high R&D firms in the same in-
dustry;

– The surprises are higher for low R&D firms (in the
same industry) that are not often found next to the
leaders (in news, portfolios or analysts’ reports).

What do we learn from two new
accounting-based stock market anomalies?

S. Basu (2004)
Accounting anomalies (buy low NOA, sell short firms
receiving a going-concern audit opinion, etc.) are con-
sistent with minimally rational markets: the prices are

Article and book summaries by Vincent Zoonekynd 677/1044

inconsistent with all investors being rational, but trans-
action costs are too high for rational investors to make
a profit.

The roles of receivables and deferred revenues
in revenue management

J. Zha (2014)
To detect manipulations, look at:
– ∆receivables� 0 (fictitious sales, bill-and-hold);
– ∆deferred revenue� 0 (get the cash early, ship the
goods late).

Disentangling the accruals mispricing
in Europe: is it an industry effect?

E. Basilico and T. Johnsen (2013)
Also look at:

– ∆accounts receivables
net operating assets ;

– ∆inventory
net operating assets ;

– Days of sales outstanding =
∆
receivables

sales
receivables

sales

;

– Days of inventory outstanding =
∆
inventory
COGS

inventory
COGS

.

R in Finance 2014
Packages. Among the packages presented, beyond
the usual data.table and Rcpp (with C++11 fea-
tures), and the omnipresence of shiny:
– The next edition of Modeling Financial Time Series
with SPlus ditches SPlus (and will contain a list of
must-know R packages);

– eventstudies for the Patell test;
– FlexBayes fits hierarchical models (linear, logistic,

Poisson, via MCMC;
– ilmts will provide Hurst exponent estimation and
simulation of long (and intermediate) memory pro-
cesses;

– cds implements the ISDA standard model for CDSs,
i.e., the standardized characteristics of the contract
and the quoting conventions;

– The pbo package estimates the probability of back-
test overfitting.

R engine. Recent or forthcoming performance im-
provements include:
– Bytecode compilation;
– Shallow duplication (since R 3.1.0);
– Reference counting (perhaps in R 3.2.0);
– Large vectors (> 16GB);
– Parallelization: explicit parallelization works;
C/C++ parallelization via OpenMP only works on
Linux; implicit parallelization only works for a few
functions;

– The proftools package will soon be available.

Portfolio construction. The PortfolioAnalytics
package performs portfolio optimization (with ROI
(Rglpk, Rsymphony, quadprog), random portfolios,
DEoptim, pso, GenSA), for various types of objectives
(mean, value at risk (VaR), expected shortfall (ES),
standard deviation, expected utility) and constraints;
the types of objective and constraints are apparently
limited.
The cccp package will solve cone-constrained convex
programs.
One should include taxes (in particular, “tax harvest-
ing” effects in case of losses) in portfolio optimization:
it can be very profitable to replace a stock with an
equivalent one.
Let x be the (random variable of) asset returns and
x̃ = (1 x′)′. The inverse of

Θ = E[x̃x̃′] =

(
1 µ′

µ Σ+ µµ′

)
is

Θ−1 =

(
1 + µ′Σµ −µ′Σ−1
−Σ−1µ Σ−1

)
=

(
1 + sharpe2 −w′
−w Σ−1

)
wherew is the markowitz portfolio. The distribution of
vechΘ−1 is asymptotically gaussian, and Var vechΘ−1

is easy to compute (from Var vechΘ): it can be used
to perform tests or compute confidence intervals on
the Shape ratio or the portfolio weights. This can be
generalized to constrained portfolios (e.g., the optimal
portfolio with zero covariance wrt some reference port-
folio).
To check if a signal has some predictive power on future
returns, build the top and bottom quintiles, and match
them (on industry, size, trading volume): if the effect
disappears, it was caused by the imbalance between the
portfolios. Coarsened exact matching is implemented
in the cem package.
Cointegrated pairs do not remain so (use the egcm
package for the tests).
Higher moments. DEoptim can account for higher
moments in portfolio optimization.
The factor model ri =

∑
k bikfk + ei (with E[ri] =

E[fk] = E[ei] = 0, fk ⊥⊥ ei, ei ⊥⊥ ej if i 6= j) can be
used to decompose the higher moments of the portfolio
returns.

E[(w′r)2] =
∑
ijkl

wiwjbikbjlE[fkfl] +
∑
i

w2
iE[e2i]

E[(w′r)3] =
∑
i1,i2,i3
k1,k2,k3

wi1wi2wi3bi1k1bi2k2bi3k3E[fk1fk2fk3]

+
∑
i

w3
iE[e3i]

E[(w′r)4] = · · · .

(I leave the fourth moment as an exercise to the reader:
contrary to the second and third moments, the cross-
products do not all disappear – you should have three

Article and book summaries by Vincent Zoonekynd 678/1044

more terms.) Those higher-order tensors can be writ-
ten as matrices using the Kronecker product

E[(w′r)2] = w′(BSB′ +∆)w

E[(w′r)3] = w′(BG(B′ ⊗B′) + Ω)(w ⊗ w)
E[(w′r)4] = w′(BP (B′ ⊗B′ ⊗B′) + Y)(w ⊗ w ⊗ w).

Volatility models. The 2-state STAR model

yt = [λtφ1 + (1− λt)]′

1

yt−1
...

yt−p

+ εt

smoothly switches between two AR models, φ1 and φ2;
the state transition function λt = λ(zt) depends (via
a logistic link) on exogenous variables zt. It can be
extended to a STARMAX model by allowing autore-
gressive dynamics in the state zt.
One can use the bootstrap to estimate the preci-
sion of volatility indices (VIX, vega-weighted VIX
(VVIX), liquidity- or elasticity-weighted VIX); check
the ifrogs package for an implementation.
The stochvol package uses MCMC to fit stochastic
volatility (SV) models: for time series modeling, re-
gression with SV noise or factor models.
The gpusvcalibration package uses GPUs to cali-
brate stochastic volatility models; it relies on nloptr
and DEoptim.
Risk models. The factorAnalytics package can es-
timate risk factor models (time series, fundamental,
statistical) and decompose the risk (standard devia-
tion, VaR, ES) into risk factor contributions;
To estimate correlation, one can use shrinkage or, even
better, weighted averages of shrinkage estimators.
When monitoring the volatility (or the VaR) of a port-
folio, risk =

√
w′V w where V = βvβ′ + ∆, one may

want to decompose its changes into contributions of
changes in weights w, changes in β, changes in v,
changes in ∆. Graphically, one can look at:

risk(portfolionow,modelt) ∼ t
risk(portfoliot,modelnow) ∼ t

VIXt ∼ t
VaR99%

t −VaR95%
t ∼ t

For stress-testing:
– Model the joint distribution of the risk factors and
the stress factors (the stress factors may be in your
risk model), either as a Gaussian or a mixture of
Gaussians;

– Sample from the conditional distribution

risk factors | stress factors

for given values of the stress factors (−10%, −20%,
−30%, etc.)

One can add the volume synchronized probability of in-
formed trading (VPIN) to the Fama-French, momen-
tum and liquidity factors; look at the beta of stock
VPIN vs Market VPIN.
Performance measurement. To measure the per-
formance of private equity (PE), use the cash flows to
and from the fund, apply them to the benchmark, and
look at log1p(IRRPE)− log1p(IRRMarket) or

final valuePE
final valueMarket

.

Time series. To predict economic recessions, one can:
– Take high-frequency time series (e.g., daily index re-
turns);

– Compute their spectrograms on a moving window
(short-term Fourier transform (STFT), sometimes
also called Gabor transform); one can notice more
low-frequencies in expansion periods, and more mid-
frequencies in recessions;
library(quantmod)
getSymbols("^GSPC", from="1980-01-01")
x <- log1p(as.vector(ROC(Ad(GSPC))))
dates <- index(GSPC)

library(e1071)
y <- stft(x, inc=1)$values
dates <- index(GSPC)
dates <- tail(dates, nrow(y))

par(mar=c(2,1,1,1), xaxs="i")
image(
dates, 1:ncol(y), y,
col = rev(topo.colors(10)),
axes = FALSE, xlab = "", ylab = ""

)
axis.Date(1, dates)
box()
par(new = TRUE)
plot(
dates, rowSums(y),
type = "l", lwd = 3, axes = FALSE

)

The patterns we see are just due
to the volatility: they completely
disappear if we normalize the signal
in each window...
image(
dates, 1:ncol(y), y/rowSums(y),
col = rev(topo.colors(10)),
axes = FALSE, xlab = "", ylab = ""

)
axis.Date(1, dates)
box()
par (new = TRUE)
plot(
dates, rowSums(y),
type = "l", lwd = 3, axes = FALSE

)

Article and book summaries by Vincent Zoonekynd 679/1044

– Consider those spectrograms as images, and model
them as a 2-dimensional Gaussian process;

– Compute the empirical orthogonal functions (EOF)
of the sequence of images (basically, a PCA): this
gives variables with a potential predictive power on
the current or future market state;

– Add low-frequency variables (GDP, perhaps also
yield, etc.);

– Use stochastic search variable selection (SSVS) on
those variables to find a parsimonious probit model,
to predict the current or future state of the economy.

The bcp package detects change points (different
means) in multivariate (Gaussian) time series, using
bayesian methods. Use with log-returns (I would also
try with their absolute value) for a few indices or cur-
rency pairs.
Tests. robust::lsRobTest provides tests on robust
models (I often say that you should start to worry and
pay attention to robust methods (e.g., robust::lmRob)
when they yield significantly different results).
Text mining. When extracting sentiment from text,
the position of the words is relevant: for instance, if
a text starts with a lot of negative words and ends
with a lot of positive words, it does not mean it is neu-
tral. Use weighted measures of sentiment, with ,

, (1, x, x(1 − x)), etc. as weights (they like
Pc(u)− (1− uc)u3−c).
Networks. From the adjacency matrix A of a graph,
one can compute the number of paths of length m be-
tween i and j as [Am]ij . The total number of paths
between i and j, [

∑
m⩾0A

m]ij , may be infinite: in-
stead, one can give less importance to longer paths,
[
∑
m⩾0 wmA

m]ij , e.g., [expA]ij . Many graph no-
tions (centrality, communicability, etc.), usually com-
puted from the adjacency matrix A, can be general-
ized and computed from f(A) (with, e.g., f = exp):
the f -centrality e′if(A)1 generalizes the degree, the
f -communicability f(A)ij generalizes the number of
paths. Check the irlba package (implicitly-restricted
Lanczos method) to help compute those quantities on
large, sparse matrices.
Infrastructure. The RHIPE package is an interface
to Hadoop; datadr provides a simpler divide-map-
reduce API, using either Hadoop (via RHIPE) or and
in-memory key-value store. treilliscope applies the
same ideas to treillis/lattice/faceted plots; it relies on
“cognostics” (e.g., scagnostics, i.e., scatterplot cognos-
tics) to navigate the huge number of panels.
The rredis package serializes/deserializes R objects
to/from strings with paste/substitude/deparse:
it is slow for large objects (e.g., time series).
RApiSerialize does the serialization/deserialization
in C++; RcppRedis uses it, and can therefore effi-
ciently deal with streaming data: for instance, C++
or Python would put the data to process in Redis, and
R would read and processe it.
OneTick is a tick data database, with online aggrega-
tion and complex event processing (CEP) in a GUI; the

node can be arbitrary R/Python/Java/C++ code: for
instance, one could fit a state-space model (well, PCA)
on a moving window to predict future returns.

CEM: Software for coarsened exact matching
S.M.Iacus et al. (2009)

Coarsened Exact Matching (CEM) removes the sam-
pling bias in observational studies: it temporarily
coarsens each control variable (i.e., bins the observa-
tions and builds a histogram) and prunes the obser-
vations in the (multivariate) bins that do not have at
least one control and one treated unit. The statistical
analysis can then proceed on the remaining data (with
weights inversely proportional to the bin sizes).

Asset Allocation with Higher Order Moments
and Factor Models

K. Boudt et al (2014)

An approach for identifying and predicting
economic recessions in real-time

using time–frequency functional models
S.H. Holan et al. (2012)

Apparent criticality and calibration issues in
the Hawkes self-excited point process model:
application to high-frequency financial data

V. Filimonov and D. Sornette (2013)
Hawkes processes (Poisson processes in which each
event increases the background Poisson intensity, with
an exponential or power law decay – there are sev-
eral commonly-used such “kernels”) can be interpreted
as branching processes (each event is either a mother
event, exogenous, coming from the background inten-
sity, or a daughter event, endogenous, coming from a
previous event). The branching ratio is the average
number of daughter events.
Goodness of fit can be assessed with a change of time,
Λ̂ =

∫
λ̂, which should give a Poisson process with

λ ≡ 1.
The calibration of Hawkes processes is plagued by the
following problems:
– Sensitivity to outliers (use a contamination model);
– Edge effects: missing mother events before the sam-
ple, missing daughter events after;

– Sensitivity to kernel misspecification: we often only
care about the tail of the kernel, but its short-term
behaviour also matters;

– Multiple extrema in the log-likelihood.
The microstructure of high-frequency data brings more
problems:
– Overnight trading is not neglibible, and it is differ-
ent;

– The exchange only sends 1-second timestamps, and
groups the ticks (to send fewer messages); The data
provided tries to add miliseconds using the reception

Article and book summaries by Vincent Zoonekynd 680/1044

time (ignoring latencies – problematic if they fluctu-
ate), but there are still ties (one can try to add noise
to reduce the bias);

– The data is not stationary, µ(t) is not constant:
there are daily patters (U shape) (estimate the pat-
ter and remove it to get λ ≡ 1 – but this distorts
the kernel) and announcement days are completely
different (remove them);

– Regime switches (between different branching ratios,
or different background intensities) are interpreted
as excess clustering and bias the estimation.

An investigation of trades that move the BBO
Y. Huang et al.

The bid-ask spread is insufficient to measure liquidity:
one can look into the depth of the order book by consid-
ering strings, i.e., series of trades with non-increasing
prices and computing the (average) number of trades,
total volume, duration, log-return, volatility, begining
spread, begining trade size, begining price.
To test for variations between days or securities, one
can use the intra-class correlation coefficient (ICC).

Investor networks in the stock market
R. Bilkdik et al. (2013)

While it is possible to develop an information network
model and estimate it using (approximate) maximum
likelihood from transaction data, this is not scalable.
In a very empirical way, one can estimate the network
by linking agents i and j if they trade the same asset,
in the same direction, in a window of size τ , at least
M times.
Agents with higher centrality trade earlier and earn
higher returns.

A longitudinal analysis of asset return,
volatility and corporate news network

G. Creamer et al. (2012)
Use a topic model (LDA, latent Dirichlet analysis) on a
newsfeed, build a bipartite network of topics and com-
panies (mentionned in the news items), reduce it to
a network of companies (with the number of articles
on the same topic as weights) and test for Granger
causality between graph metrics (centrality, etc.) and
returns or volatility.

A link mining algorithm
for earnings forecast and trading
G. Creamer and S. Stolfo (2008)

Build a bipartite graph with directors (or directors
and analysts) and firms as nodes, reduce it to a graph
of firms (with the number of directors or analysts in
common as weights): the network metrics (centrali-
ties, clustering coefficient) can help predict earnings
surprises.

Trading networks
L. Adamic et al. (2010)

A simple limit-order book model (n brokers, a long liq-
uidity taker, a short liquidity taker) suggests that order
flow imbalance and size are visible on the network. Us-
ing transaction-level data, one can build a time-varying
transaction network (e.g., on a 600-transaction win-
dow), look at network metrics
– Centrality (in-degree− out-degree);
– Absolute centrality;
– Assortativity (degree correlation);
– Clustering coefficient (comparison of the number of
triangles and the number of connected triples);

– Size of the largest strongly connected component
and financial variables
– Amihud price impact;
– Bid-ask spread;
– Volatility (absolute value of the returns, squared re-
turns or high− low;

– Intertrade duration;
– Trading volume;
Network metrics Granger-cause volume and intertrade
duration.

The two faces of interbank correlation
K. Schaeck et al. (2013)

The correlation between banks can be decomposed into
a diversification component (if the banks are very di-
versified, they are doing all possible banking activities,
i.e., they are all doing the same things – they are there-
fore exposed to the same sources of risk) and a residual
component (containing, among others, the endogenic
risk resulting from the relations between the banks).

CommonalityA = Cor(returnsA, returnssector)

DiversificationA = Cor(returnsA, returnsmarket)

Excess commonalityA =

residuals(Commonality ∼ Diversification)A.

If one knew the bank holdings, one could define com-
monality (resp. diversification) as the distance between
the weights of the portfolio of bank A and the aggre-
gate portfolio of the banking sector (resp., the market
portfolio), and the excess commonality as the diffrence
between the commonality and the minimum common-
ality possible for that level of diversification.

Filtering noise from correlation matrices
A. Izmailov and B. Shay (2013)

Random matrix theory (RMT) is often used to clean
sample correlation matrices: since the asymptotic
(T → ∞, N → ∞, Q = T/N constant) distribution
of the eigenvalues of the sample correlation matrix of
a standard Gaussian random variable is known and
bounded, one can discard all eigenvalues beyond the
(asymptotic) maximum

λmax = (1 +Q−1/2)2.

Article and book summaries by Vincent Zoonekynd 681/1044

The article suggests a finite sample correlation (but
this increases λmax, which is already very high) and
measures the noise present in the correlation matrix
by the “entropy” ∑

i

λi
n

log2
λi
n
.

Since, on the examples, the effect of filtering seems
to be an increase in the “contrast” of the correla-
tion matrix, one may want to compare with a simple
coefficient-wise transformation, e.g., x 7→ xα.

Determining the number of clusters/segments
in hierarchical clustering/segmentation

algorithms
S. Salvador and P. Chan

To estimate the number of clusters, consider some per-
formance metric as a function of the number of clusters,
and try to find the “knee” in its plot: Argmaxi xi+1 −
xi, Argmaxi xi+1/xi, Min{i : D2(x)i = xi+1 + xi−1−
2xi ⩾ c}, ArgmaxiD

2(x)i, Argmax res(x ∼ i), or the
changepoint of a broken line fit to the data. If there
is a lot of data,. use the method again on J1, 2̂K and
iterate until convergence.

The relative asset pricing model:
towards a unified theory of asset pricing

A. Muraalidhar et al.
Advocacy for liability-driven investing (LDI): institu-
tional investors (pension funds form a growing propor-
tion of all investors) first define a “liability proxy port-
folio”, describing their future liabilities (most do not do
that seriously and settle for “60% equity, 40% bonds”)
and then try to track or beat it. This can be modeled
in a CAPM-like way,

E[X −X0] = βE[M − L−X0],

where X are the asset returns, X0 are the risk-free re-
turns, M are the market returns, L are the liability
portfolio returns. The model can be augmented with
more factors, à la Fama-French, and the presence of a
reference point L accounts for prospect theory.

A robust capital asset pricing model
D. Ruffino (2014)

In mean-variance portfolio optimization

ŵ = Argmax
w

CE[w′X] ≈ Argmax
w

w′µ− 1
2λ1w

′V1w,

only the returnsX ∼ N(µ, V1) are uncertain. In robust
mean-variance optimization, µ and V1 are also uncer-
tain. It is possible to linearize the certainly equivalent
into

ŵ ≈ Argmax
w

w′µ0 − 1
2λ1w

′V1w − 1
2λ2w

′V2w

where µ ∼ N(µ0, V2). (Note that the uncertainty on
V1 does not appear in this approximation.)

This is equivalent to the initial problem with V1 re-
placed with V1 + (λ2/λ1)V2 – i.e., this looks like a
shrinkage estimator.

The Fama-French three factors
in the Chinese stock market

J. Xu and S. Zhang (2013)
The Fama-French model works well in China (higher
returns for small or high-value stocks, higher R2 when
compared with the US), but pay attention to a few
pitfalls:
– A large proportion of the shares are (still?) non-
tradable;

– There are 4 markets (main Shanghai board, main
Shenzhen board, sme, geb – the last two, also in
Shenzhen, are similar to the Nasdaq: you may, or
not, want to include them);

– There are multiple share classes (A, B, H, foreign) –
do not forget them when computing per-share quan-
tities.

The determinants of convenience yields
M. Prokpczuk and Y. Wu (2013)

The carry cost is the difference between the future and
spot prices. It corresponds to interest foregone, stor-
age costs, inventory, insurance against unexpected de-
mand, insurance against supply shocks, speculation,
etc. – it can be interpreted as a convenience yield.
Rather than the spread future− spot, the convenience
yield can be estimated from a model: the spot is a dif-
fusion, the convenience yield is an Ornstein-Uhlenbeck
process and it determines the spot trend). The conve-
nience yield can be explained by:
– Global inventory levels;
– Hedging pressure (relative net/gross position for
commercial traders);

– Volatility;
– Macroeconomic conditions: industrial production
and inflation forecasts (from the BCEI).

Systematic tail risk
M.R.C. van Oordt (2013)

The tail beta, the sensitivity to extreme (say, beyond
the 5% value at risk) market returns is persistent and a
good predictor of losses during crises. However, there
is no tail beta premium.

Patent- and innovation-driven performance
in venture capital-backed IPOs

J. Cao et al (2013)
Patents (use the NBER patent database) are still a
good sign.

Article and book summaries by Vincent Zoonekynd 682/1044

General purpose technologuies
and the cross-section of stock returns

P.H. Hsu and W. Yang
Classify patents as general-purpose (computers, tele-
com, electronics) or special-purpose (chemical, med-
ical, mechanical, etc.). The difference between the
growth rate of general and special purpose patents pre-
dicts industrial growth; it is a non-diversifiable risk
factor, that can be added to your factor risk models
(Fama-French, etc.).

Blockholder exit threats
and financial reporting quality

Y. Dou (2014)
The presence of blockholders (measured by the
Herfindahl index of shareholders above 5%), increases
financial reporting quality (measured by abnormal ac-
cruals, production costs, discretionary expenses, op-
erating cash flow, where “abnormal” means “absolute
value of the residuals of a regression agains other finan-
cial variables, cross-sectionally, by industry), at least
for liquid stocks.

Environmental disclosure
and the cost of capital: evidence

from the Fukushima nuclear accident
P. Bonetti et al. (2013)

Environmental disclosure (CO2 emissions, etc.) is as-
sociated to a lower cost of capital (and a lower rise in
cost of capital after accidents). It can be measured by:
the existence of an environmental report, the inclusion
of CO2 emissions, the inclusion of a CO2 emissions tar-
get, lower CO2 emissions than the industry. The effect
on the cost of capital can be estimated with propensity
score matching wrt size, leverage, ROA, B/P industry.

Institutional presence
J. Sulaeman and C. Wei (2013)

Non-shareholder institutional observers improve corpo-
rate governance (and liquidity, cost of capital, informa-
tion diffusion). It can be measured by the assets under
management of institutional investors located in the
region (US state) where the firm is headquartered.

Property theft and the cost of capital
J.D. Brushwood et al. (2013)

High state-level property crime leads to a higher cost
of capital.

Linguistic complexity in firm disclosures:
obfuscation or information?

B.J. Bushee et al. (2013)
Linguistic complexity (measured by some linear com-
bination of the average number of words per sentence,
the average number of syllables per word, the propor-
tion of “complex” words: Gunning fog index, Fleisch-
Kincaid index) in manager-driven discourse is a sign

of obfuscation, but it is informative in analyst-driven
discourse.
One can assess the relation with information asymme-
try, measured by

– Amihud liquidity =
|daily returns|
dollar volume ;

– λGH = 2(λ1 + λ2 × average size), where

∆pt = ψ1∆Dt + ψ2(∆Dt · Size)+
λ1Dt + λ2D1 · Size+ noise

pt = price
Dt = sign(tradet);

– λMRR in

∆pt
pt

= ψ∆Dt + λ(Dt − ρDt−1) + noise

Dt = noise+ ρDt−1.

Liquidity risk in credit default swap markets
B. Junge and A.B. Trolle (2013)

Market illiquidity can be measured by the difference
between the price of an index CDS and its theoretical
price, from the CDSes of its constituents. The corre-
sponding index arbitrage portfolio is a tradable liquidity
factor. It can be used in a multi-factor model, as we
do for equities.

Managing option trading risk with Greeks
when mental accounting matters

H. Siddiqi
Many people consider call options as a surrogate for
the underlying – they end up with biased Greeks and
one can profit from them.

Breaking bitcoin: does cryptocurrency
exchange activity lead to increased real activity

outside cryptocurrency exchanges?
D. Vitt (2013)

One can use Bitcoin’s perfect ledger of all transac-
tions to model the evolution of volume, price, number
of transactions (with a distinction between hot (casi-
nos) and cold (real economy) wallets), search frequency
(Google trend), money supply with a VAR model and
impulse-response plots.

When finance meets physics: the impact
of the speed of light on financial markets

and their regulation
J.J. Angel (2014)

The regulators have forgotten that information does
not travel instantaneously (e.g., there are 4ms be-
tween Chicago and New York): rules such as “best
execution” are actually unimplementable. Clock syn-
chronization difficulties also prevents them from recon-
structing what happenned.

Article and book summaries by Vincent Zoonekynd 683/1044

ParadisEO-MOEO: a framework
for evolutionary multi-objective optimization

A. Liefooghe et al. (2007)
ParadisEO is a C++ framework for multiobjective op-
timization, i.e., for the estimation of the Pareto fron-
tier. Here are some of the ideas used in those algo-
rithms:
– Pareto ranking: a solution’s rank is the number of
solutions dominating it (rank-1 solutions are opti-
mal, at least in the sample);

– Pareto front: one can group the candidate solutions
into “fronts” of increasing Pareto rank, to preserve
diversity;

– One can eep both an archive of Pareto optimal so-
lutions and a current population; the strength of an
archive solution is the number of population solu-
tions it dominates; the strength of a population so-
lution is the sum of the strengths of the archive so-
lutions dominating it.

The area under the ROC curve
and its competitors

J. Hilden (1991)
There are a few variants of the ROC curve:
– OROC (ordinary ROC),

P (positive|D) ∼ P (positive|¬D);

– FROC (frequency-scaled ROC),

P (positive, D) ∼ P (positive,¬D);

– EUROC (expected utility ROC),

E[U(treatment)|x,D] ∼ E[U(treatment)|x,¬D]

The AUC can be interpreted as the probability of cor-
rectly distinguishing between a diseased (D) and a non-
diseased (¬D) patient, but it is not helpful for a single
patient. The power of a diagnostic test (x) is better
measured by its diagnasticity:

Prior regret = −Max{E[U(T)], E[U(¬T)]}
Posterior regret = −Max{E[U(T)|x], E[U(¬T)|x]}

Diagnosticity = Prior regret− E[Posterior regret]

Use and misuse of the receiver operating
characteristic curve in risk prediction

N.R. Cook (2007)
Do not use the AUC (or its generalization for survival
data, the c statistic) for model selection

Visualizing distributions
of covariance matrices

T. Tokuda et al.
To visualize a distribution of covariance matrices (e.g.,
a prior), look at:

– Univariate distributions of the log-volatilities and
the correlations (since distributions used as priors
are often exchangeable, there are few of them to con-
sider: log σ1 and ρ12);

– Bivariate scatterplots;
– Trivariate scatterplot of correlations

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 ;

– A hundred 50% equiprobability matrices for
N(0,Var(X1, Xj));

– Histogram of the effective variance |V |1/n and the
effective dependence 1 − |cov2cor(V)|1/n (highlight
samples with a high or low effective dependence in
the other plots);

– The effective dependence of V1:k,1:k versus k.
Commonly-used priors are not as uninformative as we
would like: for instance, for the inverse Wishart, ρij is
uniform, but (ρij , ρkℓ) is not; even for a uniform cor-
relation, the effective dependence depends on the size
and converges to 1− e−1.
Those plots are implemented in the VisCov R package.

Trade interpretation and trade imbalances
in the European union: a network perspective

G.M. Krings et al. (2013)
Flow, in a trade network, can be decomposed into
symmetric, cyclic (often negligible) and acyclic com-
ponents.

A

C B

3010

20

10
=

A

C B

10

10
+

A

C B

1010

10

+

A

C B

10

10

There are usually several acyclic flow graphs: choose
the most diverse (maximize the sum of squared flows
– Herfindahl index, i.e., a generalized entropy). The
acyclic graph can be decomposed into (single-source,
single-destination) elementary flows: start with the
nodes with no inflows as sources and no outflows as
destinations (as in a topological sort), compute the
maximum flow (not unique if there is a bottleneck),
and choose the most diverse one.
Integration between two countries can be defined as
trade/GDP.
One can also consider the random walk of a dollar on
the trade network (PageRank without teleportation):
the average commute time can be used as a distance;
after multi-dimensional scaling (MDS), one can watch
the time evolution of the network.

Article and book summaries by Vincent Zoonekynd 684/1044

Political risk spreads
G. Bekaert (2013)

The political risk spread is the proportion of the
sovereign spread explained by the political risk rating
from the ICRG (international country risk grade), in
a regression that also includes global macroeconomic
conditions (high-yield spread), local macroeconomic
conditions (GDP, GDP growth, inflation, budget, cur-
rent account) and liquidity (incidence of zero daily
bond returns).
One can also look at the components of the political
risk rating.

Cluster PIN: a new estimation method
for the probability of informed trading

Q. Gan et al. (2013)
The PIN (probability of informed trading) model

Buyt ∼ Pois(εB + µ)
Sellt ∼ Pois(εS)
Buyt ∼ Pois(εB)
Sellt ∼ Pois(εS + µ)

Buyt ∼ Pois(εB)
Sellt ∼ Pois(εS)

news
α

no news

good

bad
δ

PIN =
αµ

αµ+ εB + εS

is difficult to fit. One can approximate it by considering
the order imbalance Xt = Buyt−Sellt; its distribution
is a mixture of three Skellam distributions (differences
of independent Poisson variables), corresponding to the
three regimes (no news, bad news, good news). It is not
easier to fit, but one can use hierarchical clustering to
approximate the three regimes; the resulting param-
eters can then be used as starting points for a more
exact algorithm.

Short-horizon CEO incentives
and abnormal stock returns,

insider trading and earnings management
J.D. Chi et al. (2013)

Firms with short-horizon CEO incentives (data from
S&P ExecuComp) and high short sales constraints
(i.e., with inefficient information dispersal, as mea-
sured by idiosyncratic volatility, short interest and
size) are different: share price inflation and correction,
greater eranings surpries, greater responses to earnings
surprises, higher accruals, higher revenue for the CEO
selling his shares.
To control for exogenous variables, the study uses
propensity score matching: first, predict the probabil-
ity that a firm has short-horizon CEO incentives, with
a logit model from: incentive ratio (stock and option
compensation, divided by total compensation), P/B,
total assets (size), ROA, volatility of cash flow from
operations, capital intensity (fixed assets / total as-
sets), governance (institutional ownership, Gompers’s
governance index, percentage of independent directors

on the board, board size); then, compare the long- and
short-horizon CEO incentive firms with a similar pre-
dicted probability of short horizon.

Lowball guidance and management’s credibility
J. Chen (2013)

IBES provide management compensation term struc-
ture data.

Economic linkages inferred from news stories
and the predictability of stock returns
A. Scherbina and B. Schlusche (2013)

Stock co-occurrence, in news, is informative: price
shocks (after a bankruptcy, an oil spill, etc.) diffuse
on that graph, making 1-day returns predictable.

Asset volatility
M. Correia et al. (2013)

Structural bankruptcy models (Merton) can be im-
proved by better estimates of asset volatility:
– σ = λσMarket Value, where λ = MV/(MV+ debt);
– σ =

√
λ2σ2

MV + (1− λ)2σ2
debt + 2ρσMVσdebt, where

ρ is shrunk towards to industry average and σdebt is
estimated from a representative bond;

– Replace σMV with the implied volatility (average
the put and call volatilities), which is more forward-
looking;

– The volatility of the RNOA (return on net operat-
ing assets), estimated from the inter-quartile range,
from the quantile regression

RNOAt+1 ∼ RNOA+ + (RNOA > 0) + RNOA−+
accruals+ dividends+ (dividends > 0)

– The volatility of the seasonality-adjusted RNOA,
RNOAt − RNOAt−4Q.

Instead of a probit model

bankruptcy ∼ leverage+ past returns+
market capitalization+ volatility,

a survival model (predicting the time to bankruptcy)
makes better use of the data.

Buffet’s alpha
A. Frazzini et al. (2013)

Berkshire Hathaway’s returns (at least the public stock
portfolio part – the private equity part and the value
of Buffet himself are difficult to replicate) can be repli-
cated using market, size, value, low-beta and quality
factors, with a 1.6 leverage – Berkshire have a low fi-
nancing rate, thanks to their AAA rating, the use of
insurance as liabilities, deferred taxes due to acceler-
ated depreciation (free loans from the IRS), and the
sale of derivatives.

Article and book summaries by Vincent Zoonekynd 685/1044

A five-factor asset pricing model
E.F. Fama and K.R. French (2013)

The Fama-French model to explain excess returns can
be extended by adding two more factors:
– Market excess returns;
– Returns of the quintile long-short size portfolio;
– Returns of the quintile long-short B/P portfolio;
– Returns of the quintile long-short profitability port-
folio, where

profitability =
revenue− COGS− interest− SGA

book equity ;

– Returns of the quintile long-short investment port-
folio, where

investment = ∆assets
previous assets .

The model is not sufficient to describe returns: the in-
tercept is significantly different from zero – however, it
is small, so it may not matter after all.

The other side of value:
the gross profitability premium

R. Novy-Marx (2012)
Another article on gross profits/assets.

In short supply:
equity overvaluation and short selling

M.D. Beneish et al. (2013)
Short selling facilitates information flow, and makes
markets more efficient. Short selling constraints, e.g.,
lack of supply of shares to borrow, impede information
flow: if you use the short interest ratio (SIR), consider
correcting it for insufficient supply; the cost of borrow
can be used as a proxy for supply.
(No mention of the diversity of supply.)

Risk-averse reinforcement learning
for algorithmic trading

Y. Shen et al.
Reinforcement learning can be made risk-averse: just
replace the expected future reward with its expected
utility, for some concave utility function.

The meaning and use of the area under a
receiver operating characteristic (ROC) curve

J.A. Hanley and B.J. McNeil (1982)
The area under the ROC curve can be interpreted as
the probability that a randomly chosen pair of a posi-
tive and a negative observation is correctly identified;
it can also be seen as a Wilcoxon statistic, which leads
to sample size and power computations.

Generating multi-asset arbitrage-free
scenario trees with global optimization

A. Consiglio et al. (2013)
When generating scenarios for a stochastic optimiza-
tion problem, one has to ensure that they are arbitrage-
free. Checking if they are is a convex problem, but find-
ing arbitrage-free scenarios that match given moments
is a non-convex problem. It can be solved efficiently
via a sequence of convex relaxations.

How high frequency trading
affects a market index

D.Y. Kenett et al. (2013)
This is not what the article is about, but the abstract
suggested a study of the term structure of beta.

Can Google Trends search queries
contribute to risk diversification?

L. Kristoufek (2013)
Search volume, from Google trends (use the ticker, per-
haps prefixed with “stock”), may be a proxy for risk
and can be used in portfolio construction

weight ∝ search volumeα.

There are no comparisons with other measures of risk,
with other weighting schemes (market capitalization),
and the study was limited to the Dow Jones 30.

Stochastic dominance tests
on the ASEAN40 index

V. Aumeboonsuke (2011)
One can use stochastic dominance to compare invest-
ments or asset returns: increase the order until the
difference becomes significant.

When to sell a Markov chain asset?
Q. Zhang (2013)

Computation, using the Bellman equation, of the op-
timal stopping time to sell a stock whose log-price fol-
lows a telegraphic process (random motion with two
possible slopes, with slope changes determined by an
(observable) 2-state Markov chain – equivalently, the
slope changes are determined by a Poisson process).

The fine structure of volatility feedback II:
overnight and intra-day effects

P. Blanc et al. (2013)
Intraday and overnight returns can be modeled jointly;
they behave and interact differently.
GARCH and FIGARCH models are special cases of

Article and book summaries by Vincent Zoonekynd 686/1044

ARCH(∞):

ARCH(q) : σ2
t = s2 +

q∑
τ=1

K(τ)r2t−τ

GARCH : σ2
t = s2 +

∑
τ⩾1

geτ/τpr2t−τ

FIGARCH : σ2
t = s2 +

∑
τ⩾1

gτ−αeτ/τpr2t−τ

Statistical inference of comovements of stocks
during a financial crisis

T. Ibuki et al. (2013)
The Ising model can be used to model buy (+1) and
sell (−1) decisions; the returns are P (+1) − P (−1).
The energy is

E = −α
∑
ij

SiSj − β
∑
i

RSi − γ
∑
i

MSi,

where Si,k(t) ∈ {±1} is the decision of trader i at time
t for asset k, R = 1

N

∑
i Si(t − 1) are the previous

returns, M = 1
K−1

∑
ℓ ̸=k ckℓmℓ, ckl is the correlation

between assets k and `, mℓ is the behaviour of the av-
erage trader for asset `.
The parameters α, β, γ can be estimated; their evolu-
tion over time can highlight regime changes; they can
be used to forecast returns (e.g., currencies).

copulaedas: and R package for estimation of
distribution algorithms based on copulas

Y. Gonzalez-Fernandez and M. Soto (2013)
Estimation of distribution algorithms (EDA) is a
population-based global optimization algorithm:
– Start with a set of candidates, uniformly sampled in
the feasible region;

– Fit a distribution (Gaussian or, as in this article,
based on a multivariate copula or a vine copula);

– Sample a few candidates from this distribution;
– Replace some of the old candidates;
– Iterate.
(You may want to improve the candidates with a local
search as they are generated.)
Similar software include: ParadisEO (C++) and
MathEDA (Matlab).

Insider trading in Hong Kong: concentrated
ownership versus the legal environment

J. Zhu et al. (2002)
Looking at Jensen’s alpha (the intercept in the CAPM
model) or comparing firms with their peers (build
3×3×3 tercile portfolios on size, B/P and momentum)
suggests that insider purchases are informative, while
their sales are not. In contrast with the US, the effect
is more pronounced for large (not small) companies.

Portfolio concentration
and the geometry of co-movement

W. Phoa (JPM, 2013)
Diffusion maps are another dimension reduction tech-
nique (the article fails to compare it with principal
component analysis (PCA), multi-dimensional scal-
ing (MDS), independent component analysis (ICA),
isomap, t-SNE, Kohonen maps, etc.):
– Compute the similarity matrix 1 + Cor(X);
– Divide each row by its sum, to have a probability
transition matrix;

– Compute its first k eigenvectors, rescale them by the
eigenvalues, and use their coefficients as coordinates.

One can estimate the portfolio concentration by com-
puting the variance matrix Σ of the resulting cloud
of points (using the portfolio weights) and looking at√
trΣ. One can estimate the local concentration with

a kernel estimator.
This can be generalized to other measures of depen-
dence (rank correlation, tail dependence, etc.)

An introduction to diffusion maps
J. de la Porte et al. (2008)

For the purpose of dimension reduction, small dis-
tances are more informative than large distances. Since
multi-dimensional scaling (MDS) weighs them in the
same way, it struggles at identifying non-linear, low-
dimensional structures. Isomap uses the geodesic dis-
tance on a graph, but is not very robust to pertur-
bations. Instead, one can consider a diffusion process
(a random walk – this is very similar to the PageR-
ank algorithm) on the complete graph, with transition
probabilities

p(x→ y) ∝ exp−‖x− y‖
2

2σ2
.

Diffusion maps are projections to a lower-dimensional
space coming from the spectral analysis of the transi-
tion matrix P (or P t, after t steps) – note that this
matrix is not symmetric. Those projections approxi-
mate the diffusion distance

Dt(i, j) =
∑
k

∣∣P tki − P tkj∣∣2
(two points are close if they are similarily distant from
any other third point).
Here are the computations: let K be the kernel
matrix, D = diag(K1) the (normalizing) density,
P = D−1K the transition matrix; Q = D1/2PD−1/2

is symmetric and can be diagonalized Q = SΛS′;
P = (D−1/2S)Λ(D−1/2S)−1 is also diagonalizable and
D−1/2S = [ψ0|ψ1| · · · |ψn] are its right eigenvectors;
send observation i to (λt1ψ1(i), . . . , λ

t
kψk(i)) for some

k ∈ J1, nK and t > 0.

Article and book summaries by Vincent Zoonekynd 687/1044

What is... Data Mining
M. Maggioni (2012)

Gentler presentation of diffusion maps.

Speaker identification using diffusion maps
Y. Michalevsky et al. (2011)

To use diffusion maps for classification tasks (e.g.,
speaker identification), one needs to project new ob-
servations on the submanifold, e.g., using the Nyström
extension.

k(x, y) = exp−‖x− y‖
2

2σ2

d(i) =
∑
j

k(xi, xj)

p(i, j) =
k(xi, xj)

d(i)

The right eigenvectors ψk satisfy Pψk = λkψk, i.e.

ψk(i) =
1

λk

∑
j

p(i, j)ψk(j).

That formula can be generalized to project any point
z, not just one of the xi:

d(z) =
∑
j

k(z, xj)

p(z, xj) =
k(z, xj)

d(z)

ψk(z) =
1

λk

∑
j

p(z, j)ψk(j).

[There may be a confusion, in this article or in oth-
ers, between eigenvectors and singular vectors, and/or
between the matrices D−1K and D−1/2KD−1/2.]

Diffusion maps
R.R. Coifman and S. Lafon (2006)

Original article on diffusion maps, in a continuous con-
text. One can define a family of diffusions (a diffusion
is a continuous analogue of a random walk) as

kσ(x, y) = exp−‖x− y‖
2

2σ2

dσ(x) =

∫
kσ(x, y) dy

kσ,α(x, y) =
kσ(x, y)

dσ(x)αdσ(y)α

dσ,α(x) =

∫
kσ,α(x, y) dy

pσ,α(x, y) =
kσ,α(x, y)

dσ,α(x)
,

with α = 0, 1
2 or 1 (there are three parameters: α, σ

and t, the number of steps in the random walk). With
α = 1, the distribution of the points on the submani-
fold has no influence.

Diffusion maps and coarse-graining:
a unified framework for dimensionality

reduction, graph partitioning
and data set parametrization
S. Lafon and A.B. Lee (2006)

For large datasets, one can aggregate the data and con-
trol the discrepancy on the diffusion distances.

Diffusion maps for signal processing
R. Talmon et al. (2013)

Diffusion maps can be used in signal processing:
– For single-channel source localization, one can record
white noise from various angles, compute the corre-
sponding diffusion map, notice that its first com-
ponent ψ1 corresponds to the location (angle), and
project any new recording onto it.

– To identify repeating, transient interference (key-
board noises, etc.), one can compute the diffusion
map of the frames of the signal and notice that
they form two clusters: a compact one, with the
interference, and a more diffuse one, with the sig-
nal (speech). The interference samples can be aver-
aged (the speech samples are too different: averaging
them is destructive).

– Non-local filtering averages a signal x with nearby
signals: x̂ ∝

∑
i k̄(x, xi)xi; the kernel k̄ used can

come from the diffusion distance:

k̄(x, y) = exp−D
2
t (x, y)

2ε2
.

To build diffusion maps, the Euclidian distance is not
always the best choice. Consider:
– Euclidian distance in feature space;
– Intrinsic distance: cluster the data, compute the co-
variance Ci of each cluster i, use the Mahalanobis
distance

d(x, y) =
1

2
(x− y)′(C−1cl(x) + C−1cl(y))(x− y).

– Local PCA models: use dimension reduction, but
only locally, to remove the noise when computing
small distances (they matter more than large dis-
tances).

The diffusion map can be computed from the singular
value decomposition (not checked). Let K be the ker-
nel matrix, D = diag(K1) the (normalizing) density,
P = D−1K the transition matrix, P = UΛV ′ its singu-
lar value decomposition, V = [ψ0|ψ1| · · · |ψn] its right
singular vectors, Λ = diag(λ0, λ1, . . . , λn) its singular
values; send observation i to (λt1ψ1(i), . . . , λ

t
kψk(i)) for

some k ∈ J1, nK and t > 0.

Applications of machine learning to finance
Z. Cazalet and R.L. Dao

Lasso regression can be used to replicate hedge funds
with a parsimonious portfolio.
The non-negative matrix factorization (NMF)

A = BC

Article and book summaries by Vincent Zoonekynd 688/1044

with ∀i, j, k Aij , Bik, Ckj ⩾ 0, A square, B and C rect-
angular and small can be used as an alternative to
principal component analysis (PCA) or independent
component analysis (ICA), with log-prices (not price
returns); stocks can be clustered using the correspond-
ing factors.
When fitting classification models (probit, etc.), try
ensemble methods such as bagging or boosting.
The Hodrick-Prescott (HP) filter is a low-pass filter
with an L2 penalty on the second derivative,

Argmin
y

1

2
‖y − x‖2L2 + λ ‖D2x‖2L2 .

One can use an L1 penalty instead: the L2 penalty
tends to “oversmooth” the signal and the L1 penalty
tolerates isolated singularities.
Add support vector machines (SVM), with cross-
validation, to your toolbox. They can also be used
to smooth a signal [not clearly explained].

Experiments in conditioning risk estimates
with quantified news

C. Kantos (Northfield, 2013)
Risk models are backward-looking, but they can be
adjusted with contemporaneous data. GARCH mod-
els are sometimes used for this, but they do not deal
well with announcement days. One can use intraday
volatility, cross-sectional volatility, implied volatility
(VIX if the stocks does not have a liquid options mar-
ket), variation in news sentiment. Only the factor and
stock-specific variances are adjusted, not the exposures
or the correlations.
[Data sources: Ravenpack, Alexandria, Market Psych,
Thomson Reuters, Recorded Future (sentences in the
future tense).]

Cointegration strategies for asset allocation
D. diBartolomeo (Northfield, 2013)

Cointegration can provide “active returns with passive
management”: find a portfolio (or a constinuously-
rebalanced strategy) with price P such that P −
Price(index + 3%) be stationary – for hedge fund re-
turns, use P − Price(10%). This can be described as
“liability-driven investing”. The results are more ro-
bust than modern portfolio theory. VAR (vector auto-
regressive) models are the other traditional way of in-
corporating non-contemporaneous structure in time se-
ries.

An innovative look at corporate credit risk
S. Malinak (Northfield, 2013)

There are many ways of estimating the probability of
default:
– Structural models (Merton, KMV): the value of the
assets of a company can be modeled as a geometric
random walk (estimate its volatility from the volatil-
ity or implied volatility of the stock and the capital

structure; somehow estimate its drift) and one can
compute the probability that the value of the assets
will drop below that of the debt (Black-Scholes for-
mula – barrier options seem to make more sense, but
simpler vanilla options actually perform better);

– Accounting models (Altman, Ohlson, etc.);
– Forward-looking accounting models, with analyst es-
timates instead of past reported values (when avail-
able);

– Text mining from company filings, transcripts, news
feeds or broker research (the data has to be cleaned
of compliance and commercial verbiage, and a sen-
timent lexicon specific to that kind of document is
needed).

Incorporating commodities in the
multi-asset-class portfolio risk assessment

D. diBartolomeo (Northfield, 2013)
Adding commodities to a risk model is not as straight-
forward as it may seem:
– There are too many of them: one should use a fac-
tor model, e.g., by clustering commodities into agri-
cultural, energy, precious metals, industrial metals,
performing a principal component analysis (PCA) in
each cluster, and retaining the first two components
(as suggested by random matrix theory (RMT));

– The correlations (between commodities, between
commodities and other asset classes) are very volatile
(the confidence intervals are very large, and often
contain 0), even after GARCH correction;

– There is a lot of overlap with other asset classes: in-
stead of adding the commodity factors to the model,
one can express them using the factors already there
– since it works, it suggests that, except perhaps for
agricultural commodities, commodities hardly add
any diversification to a portfolio.

Liquidity planning tools and strategy capacity
for equity markets

D. diBartolomeo (Northfield, 2013)
The risk of a portfolio increases with size. To estimate
it, decide on a liquidation policy (cost of liquidating
x% in n days in a normal/crisis situation), compute
the volatility of the portfolio, convert it to a value at
risk (VaR), add the liquidity costs (from your transac-
tion cost model), and convert the corrected VaR back
to a volatility.

Quality minus junk
C.S. Asness et al. (2013)

The discounted cash flow model

Price =
∑
n⩾0

(1 + r)−n−1d(1 + g)n = · · · = d

r − g
,

where d is the next dividend, (1 + r)−1 the discount

Article and book summaries by Vincent Zoonekynd 689/1044

factor, and g the growth rate, can be written

P/B =
d/B

r − g

=

Profit
Book value ×

Dividends
Profit

r − g

=
Profitability× Payout ratio
Required return−Growth ;

this suggests to combine various measures of profitabil-
ity, payout (shareholder friendliness), required return
(safety) and growth, in the hope that the errors will av-
erage out. A quality indicator can be constructed by
adding the z-scores (rank the stocks, divide the rank
with the number of stocks, apply the Gaussian inverse
cumulative distribution function) of various financial
ratios falling in those categories:
– Profitability: GP/A (gross profit to assets), ROE
(return on equity), ROA (return on assets), CFOA
(cash flows over assets), gross margin, accruals;

– Growth: change in those factors over the past 5
years;

– Safety: Altman z-score, Ohlson model, beta, lever-
age, ROE volatility;

– Payout: new equity, new debt, payout-to-profits
(dividends paid and shares repurchased, divided by
sales minus COGS (cost of goods sold)).

Quality is persistent (high autocorrelation, leading to
low-turnover strategies).
The price of quality, i.e., the slope of the regression
log(P/B) ∼ quality (one could use the z-score instead
of a logarithm; one can define the price of each quality
component similarily) is lower during bubbles.

Value investing: the use of historical
financial statement information
to separate winners from losers

J.D. Piotroski (2002)
Value portfolios often contain many poorly performing
stocks, their performance coming from a small num-
ber of strongly performing stocks. They can be im-
proved with a quality measure such as the Piotroski
score, a sum of binary variables measuring profitabil-
ity (ROA, CFO, change in ROA, accruals), capital
structure (change in leverage, change in liquitidy (cur-
rent ratio), new equity issuance), efficiency (change in
gross margin, change in turnover). This works best for
stocks with inefficient information dispersion (low vol-
ume/float, market capitalization, number of analysts,
media coverage, availability of earnings forecasts, etc.).
Most of the performance is gained around earnings an-
nouncements.

Financial statement analysis
also separate winners from losers in Brazil

A.B. Lopes and F.C. Galdi
Even in emerging countries such as Brazil, the Pi-
otroski score can improve value portfolios.

Change in cash-holding policies and stock
return predictability in the cross section

W.R. Sodjahin (2013)
The change in cash holdings (cash/assets) has pre-
dictive power on future returns, especially for low
cash/assets firms, even after controling for size, P/B,
momentum, growth, liquidity (current ratio) and id-
iosyncratic volatility (standard deviation of the Fama-
French residuals).

The accrual anomaly
P.M. Dechow et al. (2011)

Cash earnings are more persistent than accrual earn-
ings. Many investors focus on earnings rather than
cash: accruals, i.e., the piece of earnings made up by
accountants, do not seem to be correctly priced. High
accruals are a good predictor of inventory write-downs,
SEC enforcement actions, etc.

Earnings manipulations and expected returns
M.D. Beneish et al. (2013)

The M-score is a refinement of Sloan’s accruals: it com-
bines accruals with changes in receivables/sales, gross
margin, proportion of other assets, sales, depreciation
rate, SGA/sales, leverage. It predicts changes in ac-
cruals and the futures returns, even after controling
for size, momentum, value and accruals.

The detection of earnings manipulations
M.D. Beneish (1999)

Construction of the M-score, a probit model to predict
manipulation (future SEC accounting enforcement ac-
tion or media coverage) for non-financial US firms in
the late 1980s.

Financial ratios and the probabilistic
prediction of bankruptcy

J.A. Olson (1980)
The Ohlson model, a refinement of the earlier Alt-
man model, is a logit model to predict the bankruptcy
of US industrial firms in 1970–1976 using the follow-
ing variables: size, liabilities/assets, current ratio, net
income/assets, cash flow from operations/liabilities,
change in net income. (There are 3 more variables,
but they are not significant: working capital/assets,
liabilities ⩾ assets (to allow for discontinuities), nega-
tive net income for the past 2 years.)

The quality dimension of value investing
R. Novy-Marx (2013)

Review of many quality measures – Graham score,
Grantham quality (high ROE, low ROE volatility,
low leverage), Greenbaltt’s return on invested capital
(EBIT/tangible capital), Sloan’s accruals, Piotroski’s
score, Novy-Marx gross profit/assets ratio – and how
they can be combined with value factors (E/P, B/P,

Article and book summaries by Vincent Zoonekynd 690/1044

EBIT/EV, where the enterprise value EV is market
capitalization + liabilities − cash).

The tree of LIFO
R. Cahan et al. (DB, 2012)

Many accounting-derived investment signals have been
suggested, capturing accounting manipulations (e.g.,
difference between cash and accrual earnings), overin-
vestment, return on capital, distress, etc. Clasifica-
tion trees (CART) can combine those factors, captur-
ing non-linearities (default models do not distinguish
between low-default-risk assets; many signals show an
“inverted U” pattern, i.e., extreme values are bad) and
conditional payoffs (e.g., default models that do not
include volatility work better for high-volatility stocks;
different sectors (financials...) behave differently) and
avoid overfitting through pruning.
Fitting them on a 5-year window captures changing
market conditions and investor preferences (leverage is
good/bad in risk-seeking/adverse environments).
The model can be used as a “prescreen” for non-quant
investors, or as an overlay, a long-only or a long-short
strategy.

Using link mining for investment decisions:
extending the Black-Litterman model

G. Creamer (2013)
Directors and companies form a bipartite network.
Many social network statistics (degree, degree central-
ity, closeness centrality, betweenness centrality, (nor-
malized) clustering coefficient), etc. – measured on the
bipartite graph, or the graph of directors, or the graph
of companies) estimate in how many pies board mem-
bers have their fingers, i.e., they gauge corporate gov-
ernance. [No recent data available.]
Analysts following companies (ibes data) can be used
in a similar way.

Understanding hedge fund alpha
using improved replication methodologies

J. Chen and M.L. Tindall (2013)
Hedge fund indices can be replicated using penalized
regression (lasso) or state space models (linear models
whose coefficients follow a random walk, with indepen-
dent errors). Methods known to be suboptimal (step-
wise regression, principal component regression, par-
tial least squares (PLS)) are indeed suboptimal. (The
authors do not list the factors retained by the model
and their coefficients – they tend to be very noisy and
rather unusable.)
The factors used also contain option-like assets:
– Buy-write index (buy the S&P 500 and write a (cov-
ered) near-term call);

– Synthetic call (buy a 3-month ATM call and sell it
one month later; do not use market prices (?) but
the Black-Scholes formula, with the VIX as implied

volatility, the 3-month T-bill as risk-free rate, and
the S&P 500 dividend yield);

– Synthetic put.

Regularized hedge fund clones
D. Giamouridis and S. Paterlini

Two methods have been proposed to replicate hedge
funds:
– Moment replication: try to match the second, third
and fourth moments of the distribution of hedge fund
returns and hope that the first moment (the returns)
will follow;

– Factor replication.
Adding an L1 penalty to factor replication

Find β

to minimize ‖r − Fβ‖22 + λ ‖β‖1
such that 1′β = 1

−1 ⩽ β ⩽ 1

creates smaller portfolios, with a lower turnover (an L2

penalty would also reduce the turnover), and therefore
a lower implementation cost.

Hedge fund replication:
putting the pieces together

V. Weber and F. Peres (2013)
Hedge fund style classification labels have little
value (the entropy of the conditional probabilities
P [cluster|style], where the clusters come from the k-
means algorithm, is high).
Hedge funds can be replicated (even if we account
for transaction costs and liquidity constraints) from a
set of dynamic risk factors (rule-based trading strate-
gies) and various regression techniques (ordinary least
squares (OLS), weighted least squares (WLS), lasso,
BIC model selection):
– Dollar-neutral equity portfolios (e.g., Topix vs S&P
500);

– Carry strategies (within each asset class, go long
markets in backwardation, go short markets in con-
tango);

– Equity risk parity;
– Long-short momentum strategies (for each asset
class);

– Long currency futures;
– High yield (there are no corporate bonds, but one
can use a portfolio of government bonds and equi-
ties, matching the duration and the equity beta).

Hedge fund returns should be corrected for autocorre-
lation.

Alpha factors in risk models
(M. Brown, CQAsia 2013)

Try to include your alpha, or its components, in the
risk model – but if you already had similar risk fac-
tors, remove them. (Some people also suggest to rotate

Article and book summaries by Vincent Zoonekynd 691/1044

the risk model to make it orthogonal to your alpha, so
that the optimization reduces the risk orthogonal to
your alpha, without reducing your alpha.)

Flight to safety
(T. Marsh, CQAsia 2013)

The “flight to safety” is problematic: since markets
have to clear, if investors want to sell risky positions,
someone else has to be willing to buy them – or, rather,
the price has to drop enough for someone to be willing
to buy them.
The market can be modelled with 10 investors, with
varying risk aversions, 5 assets, with known expected
returns, volatilities and correlations, in quantities and
prices such that everyone holds an optimal portfo-
lio and markets clear. After a crisis, the prices have
changed, and the investors no longer hold an optimal
portfolio; in addition, their risk tolerance has dropped,
and their estimates of expected returns, volatilities and
correlations have changed. Can they rebalance their
portfolios? How should prices change to allow markets
to clear?

Wealth transfer
(H. You, CQAsia 2013)

New equity issues (resp. share repurchase) are bad
(resp. good) for existing investors: they should be in-
cluded when computing the value of the firm.

Generalized risk-based investing
(T. Michel, CQAsia 2013)

Equal-weighted, minimum risk, risk parity, maxi-
mum diversification (all examples of “smart betas”,
i.e., alternatively-weighted indices) and equal-weighted
portfolios are special cases of

∀i, j wαi
σiβ

MCRi =
wαj
σjβ

MCRj

for various values of α and β.

An innovative look at corporate credit risk
G. Bonne (CQAsia 2013)

There are several models to estimate the probability of
default:
– Structural (Merton) models, based on leverage,
volatility of assets, drift of assets;

– Ratio analysis (works better with analyst forecasts
instead of reported values);

– Text mining (using filings, transcriptions of meetings
with investors, etc.) – the general sentiment lexicons
do not work well in this context

– Combined models.

Generating Alpha from event-based investing
(D. Pope, CQAsia 2013)

Event studies should not limit themselves to comput-
ing the average return around an event, but should
use a portfolio approach, trying to actually design and
implement a strategy around those events.
– The announcement of activist investing raise the
price two or three weeks before and after the an-
nouncement (13D filing, when they own more than
5% of the company).

– After a CEO change, accompanied with an improve-
ment in quality (say, return on assets (ROA) ratio)
in the next six months, the price rises for one year;
the effect is less pronounced with CFOs (they are
more often poached).

– There is a positive (resp. negative) reaction to divi-
dend initiations and increases (resp. decreases).

The momentum of complicated firms (conglomerates)
lags that of their peers.

Quant in Asia
(B. Lau, CQAsia 2013)

One can measure overcrowding as follows: take 120 fac-
tors, combine them in random ways, look at the per-
formance of the corresponding strategies, and compare
the portfolios in the top 10% – there is some overlap,
but not that much.

Gearing into reverse
C. Natividade (DB, 2013)

The variance ratio

VR(q) = Variance(returns on intervals of size q)
q ×Variance(returns on intervals of size 1)

(for a random walk, it is a constant function of q) sug-
gests there is a short-term (30 minutes to 2 hours) re-
versal. The reversal is more pronounced for assets with
a low correlation to the VIX.

Colours of trend
C. Natividade et al. (DB, 2013)

How to build a trend-following strategy:
– Use trend (time series momentum) rather than
(cross-sectional) momentum if your universe has few
assets;

– Add liquidity constraints (e.g., 1% of the average
daily volume);

– Compute each signal for 9 different window sizes,
and aggregate them (unweighted average, first prin-
cipal component, or using a sentiment indicator –
more weight to recent value in adverse market con-
ditions);

– Combine all the strategies, e.g., with equal weights,
mean-variance optimization, equal-risk contribu-
tion, maximum diversification, residual momentum
(regress the strategy returns against the first two
principal components of the asset returns, rank the
(cummulated?) residuals);

Article and book summaries by Vincent Zoonekynd 692/1044

– For the variance matrix needed by the mean-variance
optimization, use a regime-specific variance matrix
(from the sentiment indicator);

– Fine-tune the rebalancing frequency;
– There is no evidence that stop-loss rules improve the
strategy.

The signals used are the following direction signals (in
{±1}):
– Velocity: EWMA(X, a) − EWMA(X, b) (you

can use a Hodrick–Prescott filter instead of the
exponential-weighted moving average, or any low-
pass filter);

– Aggregate correlation;
– Auto-regression;
– Naive direction: Xt −Xt−a;
and strength signals (in [0, 1] – they can be used as
trade size or leverage):
– Hurst exponent;
– Mann-Kendall test;
– Auto-turbulence;
– Technical analysis recipes (RSI, VHF, etc.).

Pairing singles
C. Natividade (DB, 2013)

Pairs trading can be seen as a trend-following strategy
for several assets:
– The two assets have started to diverge and we expect
them to continue to diverge;

– The two assets are usually close, but they have
started to diverge; we expect them to converge soon
(cointegration was not mentionned).

Clock-watchers
C. Natividade (DB, 2013)

With the volume clock instead of the wall clock (divide
the day into 96 blocks of equal volume, correspond-
ing to 15 minutes of average volume), trend-following
strategies (e.g., Mann-Kendall test; short- versus long-
term moving average (5 vs 25 blocks); trend-following
with structural-break-test-induced stop-loss) are less
volatile.

Machine (un)learning
C. Natividade (DB, 2013)

Try the following machine learning algorithms:
– Ordinary least squares;
– Support vector machines (SVM);
– Penalized regression (not mentionned);
– Gaussian process regression (in R: gptk, kernlab,

etc.);
– Recurrent neural nets (RSNNS in R, neurolab or
pybrain in Python);

– Deep neural nets (not mentionned, and difficult to
implement);

– Regime switching models (hidden Markov models,
HMM);

to predict future returns from the following features:
– Velocity;
– Acceleration;
– Mann-Kendall test:∑

j−i∈{3,5,10,20,30}

sign(xj − xi)

– Auto-turbulence:

(yi − µ)′Σ(yi − µ)
Σ = Var y

µ = E[y]

yt = (xt, xt−1, . . . , xt−30)

(you can restrict yt to the components with a signif-
icant correlation with xt);

– Volatility (3-month, exponentially weighted).

Switching styles
K. Chen and C. Natividade (DB, 2012)

There are three main FX strategies:
– Carry: buy (sell) the three G10 currencies with the
highest (lowest) money market rate; rebalance every
3 months;

– Momentum: buy (sell) currencies that appreciated
(depreciated) the most over the past year; rebalance
every month (this works well when the volatility is
either low or high);

– Valuation: buy (sell) the three cheapest (dearest)
currencies (for the purchasing power parity, PPP);
rebalance every 3 months.

Here are a few ways of combining them:
– Style momentum: increase the weight of the best-
performing one;

– Moment optimization (generalizations of the
minimum variance portfolio – but you need ro-
bust estimators of higher comoments: L-moments,
shrinkage, etc.): maximize

E[X]− λ1 VarX + λ2 SkewX − λ3 KurtX;

– Other general portfolio construction procedures:
maximum diversification, equal risk, etc.

– Regine switching, using a market sentiment indica-
tor.

The sentiment indicator is the first principal com-
ponent of the following factors:
– VIX;
– MSCI Financials/MSCI World;
– Difference between 30Y and 2Y asset swap spreads;
– Average of USD, EUR, JPY 3M5Y swaption volatil-
ities;

– TED spread (interbank rates vs treasury bills);
– Spread between BAA corporate bonds and 10-year
treasuries;

– Non-financial CDS spreads;
– FX implied volatility (CVIX);

Article and book summaries by Vincent Zoonekynd 693/1044

– FX volatility slope (1Y vs 1M);
– FX volatility skew;
– Emerging markets soverign risk.

Nineteen dubious ways to compute
the exponential of a matrix,

twenty-five years later
C. Moler and C. Van Loan (2003)

There are many algorithms to compute the exponen-
tial of a matrix, with problems regarding reliability
(the precision of the result should be known, a warning
should be issued if it is insufficient), stability, accuracy,
efficiency: series methods (Taylor, Padé), scaling and
squaring (eA = (eA/m)m, where eA/m is computed with
a series), rational approximation (good if the eigenval-
ues are negative), ODE solvers (general solvers are very
inefficient, but the algorithms can be specialized to this
special case), characteristic polynomial (if you know
it, etA is a polynomial in A), eigenvalues, matrix de-
compositions (A = SBS−1, with B diagonal, Jordan,
triangular or block-diagonal – find a good compromise
between “close to diagonal” and “well-conditionned”:
the blocks correspond to nearly-confluent eigenvalues),
Trotter’s formula (eB+C = limn→∞(eB/meC/m)m,
with B = (A + A′)/2, C = (A − A′)/2, and eA, eC
are computed using their eigenvalues), Krilov spaces
(Span{v,Av,A2v, . . . , Amv}, with m small).
In R, use the expm package.
The pseudo-spectrum can help explain the behaviour
of the matrix exponential:

Λε(A) = { z :
∥∥(zI −A)−1∥∥ ⩾ ε−1}

= { z : z ∈ Λ(A+ E), ‖E‖ ⩽ ε }
= { z : ‖(A− zI)v‖ ⩾ ε, ‖v‖ = 1 }
= { z :

∥∥(zI −A)−1∥∥ ⩾ ε−1 }.
There are nice pseudospectra plots on the Pseudospec-
tra gateway website.

Visualizing and inspecting
large datasets with tableplots

M. Tennekes et al. (2013)
The tableplot is very similar to the lensplot, but the
rows correspond to aggregated values, not individual
observations (for qualitative variables, it is a stacked
area plot, for quantitative variables, just the plot of
the average in each bin – use 100 bins).
An alternative to describe for data exploration:
tabplot, tabplotGTK; use ff, LaF for larger datassets.

DAKS: an R package for data analysis
methods in knowledge space theory

A. Ünlü and A. Sargin
Item response theory (IRT) (ltm, mokken in R) is used
in psychometrics to model (students’) abilities and
(tests’) difficulties. Knowledge space theory (KST) ful-
fills the same role, but is deterministic and based on the

notion of partial order (on the set of skills: i→ j if skill
i entails skill j). The basic local independence model
(BLIM) is a probabilistic KST, accounting for a non-
zero probability of careless error and lucky guess (for
each item). The inductive item tree analysis (IITA) al-
gorithm builds a sequence of partial orders (start with
i v0 j if j → i has no counter-examples; then i vL j
if j → i has at most L counter-examples and does not
add any non-transitivity to vL−1) and pick that clos-
est to the data, i.e., minimizing

∑
i ̸=j(bij − b∗ij), where

bij is the number of counter-examples of j → i and b∗ij
their expected number.

Mining the web for the “voice of the herd”
to track stock market bubbles

A. Gerow and M.T. Keane
Vocabulary uniformity in financial articles (FT)
(smaller set of verbs – only positive ones; smaller set
of nouns – focus on a smaller set of market events) can
help detect crises: use the (windowed geometric mean
of the) exponent in the power law distribution of word
frequency. Verbs work better. In the bull market prior
to a crisis, the distribution of frequencies of positive
verbs is different (as measured by the Kullback-Leibler
divergence) from the long-term distribution.

Modeling movements in oil,
gold forex and market indices using

search volume index and twitter sentiment
T. Rao and S. Srivastava (2012)

Google search volume (use a list of words, suggested
by the “related searches”, and reduce the dimension
with principal component analysis (PCA)) and twitter
sentiment (same keywords) can predict future weekly
returns (GLD, WTI, DJIA, Nasdaq, EUR), with “95%
accuracy” (sic) – even though the sentiment estimator
itself is only 80% accurate.

Critical truths about power laws
M.P.H. Stumpf and M.A. Porter (2012)

All too often, the omnipresence of power laws:
– Lacks statistical support;
– Lacks a mechanistic explanation: it could just be
due to the central limit theorem andthe aggregation
(sum) of heavy-tail random variables;

– Provides no new insight.

A guide to vehicle routing heuristics
J.F. Cordeau et al. (2002)

List of a few VRP algorithms: Clarke-Wright savings
heuristic, sweep algorithm (rotate a ray centered at the
depot), adaptive memory (a kind of genetic search),
and various tabu algorithms (random tabu duration,
penalized objective, removal of unlikely (i.e., long)
edges, etc.).

Article and book summaries by Vincent Zoonekynd 694/1044

http://www.cs.ox.ac.uk/pseudospectra/
http://www.cs.ox.ac.uk/pseudospectra/

A new flexible direct ROC regression model
Detection of cardiovascular risk factors

by anthropometric measures
M.X. Rodrígez-Álvarez et al. (2010)

The dependence of the ROC curve on covariates can
be modeled with a GLM or GAM model (ROC-GLM,
ROC-GAM).

Data stream mining: a practical approach
A. Bifet et al. (2011)

moa is a Java library for machine learning on stream-
ing data, an online analogue of Weka. Contrary to
Vowpal Wabbit, it only allows a small number of fea-
tures (hundreds), focuses on algorithms with theoret-
ical guarantees, (mainly decision trees and ensemble
methods), and can deal with time-changing models
(concept drift).
1. Hoefding trees (VFDT, very fast decision trees)
only look at each observation once, and split a node
if the information gain and/or the difference between
the best and the next best variable to split on exceeds
some threshold (computed from Hoefding’s inequality);
this requires storing sufficient statistics at each node.
To save memory, some nodes can be disactivated. To
save time, the information gains are only computed
every 200 observations. Quantitative variables can be
approximated by histogram (quantile) summaries or a
Gaussian approximation.
For prediction, one can use the majority class of a leaf,
or use the sufficient statistics stored in that leaf in a
naive Bayes classifier, or use whichever method worked
best for that leaf in the past.
To estimate performance, use measures robust to un-
balanced classes, such as Cohen’s kappa.
2. Online bagging estimates several models in par-
allel (a small number, to keep resource usage low), in-
cluding each observation Pois(1) times (offline bagging
corresponds to a binomial distribution, whose limit is
a Poisson distribution). To improve online bagging:
– Include each observation Pois(λ) times, with λ > 1,

to increase weight diversity;
– Output a random class (sampled according to the
predicted probabilities), instead of the majority one.

Online boosting is similar, but with Pois(λi,m) instead,
for observation i and model m, with λi,1 = 1, and
λi,m+1 computed from λi,m depending on whether ob-
servation i is classified properly by model m. Online
boosting does not perform as well as online bagging,
especially in the presence of changes.
Instead of separate models, option trees, i.e., trees with
option (non-deterministic) nodes (both branches are
taken) are more memory-efficient.
Ensembles of classifiers of different sizes (say, 2n, for
various values of n – when the size exceeds the thresh-
old, either delete the root (the oldest node) and all its
children except one – or delete everything and start

afresh) perform better: smaller trees adapt quickly,
and larger trees perform better when there is no change
(use weights proportional to the inverse of the square of
the error rate, estimated with an exponential moving
average).
To avoid overfitting, one can use depth-limited trees, or
trees built on distinct subsets of the attributes (all k-
element subsets) and combined with a (softmax) neural
network, trained alongside the trees.
3. To account for concept drift, one can:
– Fit the model on a moving window;
– Review the previous decisions, at each node, and
check if we would still make the same decision;

– Check if the error rate decreases (it should, as long
as the data-generation process does not change).

The data in the moving window can be used, not only
to detect change, but also to update or refit the model.
The windows can be:
– A fixed window of sizeW (reference) and the lastW
observations;

– The lastW observations and theW observations im-
mediately before;

– All the possible partitions of the previous W obser-
vations into two windows.

This last idea can be improved (adwin):
– Only consider logW windows (the past bcc, bc2c,
bc3c, etc. observations);

– Use an approximate data structure (exponential his-
togram) to store the data needed;

– Instead of an actual statistical test, use a threshold,
derived from Hoefding’s inequality.

This can be combined with a Kalman filter. For Hoefd-
ing trees, look for changes at each node, but adjust the
threshold for multiple testing.

Introduction to stream:
a framework for data stream mining

J. Forrest et al.
stream is an R package for machine learning on data
streams, focusing on clustering (cluster the data into
a large number of micro-clusters, online, then cluster
the micro-clusters into macro-clusters, offline). The
interface allows for other mining tasks (classification,
itemset mining), but there is no implementation yet.
The clustering algorithms from moa are available.

A general framework for observation-driven
time-varying parameter models

D. Creal et al. (2008)
GAS (generalized autoregressive score) models are a
unified framework to describe GARCH-like models
(observation-driven models, i.e., the time-dependence
of the paramters comes from lagged, observed values –

Article and book summaries by Vincent Zoonekynd 695/1044

as opposed to, say, stochastic volatility)

yt ∼ p(y|y1, . . . , yt−1; f1, . . . , ft−1;x1, . . . , xt; θ)

ft = ω +
∑
i

Aist−i +
∑
j

Bjft−j

st = St−1
∂ log p

∂ft−1

St−1 = I or St−1 = Et−1

[
∂ log p

∂ft

∂ log p′

∂ft

]−1
.

(This can be seen as a kind of smoothed or shrunk
Kalman filter.)

Structural and toppological phase transitions
on the German stock exchange

A. Sienkiewicz et al. (2013)
The minimum spanning tree (MST) computed from the
correlation of stock returns changes with time, some-
times a scale-free network (the degree distribution is a
power law), sometimes a star-like network (idem, with
one outlier).

Coupling between time series: a network view
S. Mehraban et al. (2013)

Some of the properties of a time series can be read from
its visibility graph: the vertices are the timestamps,
and there is an edge between i and j if ∀k ∈ Ki, jJ,

yk < yi +
k − i
j − i

(yj − yi).

It can be generalized to pairs of time series (normalize
them both first): edge between i and j if

∀k ∈ Ki, jJ yk ⩽ yi +
k − i
j − i

(xj − xi)

or

∀k ∈ Ki, jJ yk ⩾ yi +
k − i
j − i

(xj − xi).

Dynamics of episodic transient correlations
in currency exchange rate returns

and their predictability
M. Žukovič (2013)

One can look for predicability in financial time series
by testing if the correlation Cxx(s) or the bicorrelation
Cxxx(r, s) of the log-returns

Cxx(r) = E[xtxt−r]

Cxxx(r, s) = E[xtxt−rxt−s],

estimated on a moving window, is zero.

Dancing links
D.E. Knuth (2000)

Dancing links, i.e., the remark that it is easy to remove
and add back an element in a doubly-linkes list, can be
used to efficiently keep track of the current state in
depth-first (backtracking) search. For instance, in the
exact set cover problem (given a boolean matrix, find
a set of rows with exactly one 1 in each column), one
can encode the matrix as two doubly-linked lists (rows
and columns), and descending in the tree just removes
a column and one or several rows. This can be used in
many satisfaction problems:
– Packing pentominoes on a chessboard: one row for
each possible position of each individual pentomino,
one column for each chessborad square, 1 if it is oc-
cupied;

– The n-queen problem: one row for each possible
queen position, one column for each row, column or
diagonal, 1 if it is controlled;

– Sudoku: one row for each possible decision of the
form “digit i in (k, l)”, columns for constraints:
“there is a number in (k, l)”, “there is an i in row
k”, “there is an i in column l”, “there is an i in
square m”.

Will central counterparties
become the new rating agencies?
C. Kenyon and A. Green (2012)

Overreliance on central counterparties could be as bad
as overreliance on rting agencies: through collateral-
ized trades, they transform credit risk into liquidity
risk, but sharp price changes (that exceed the buffer
in the margin account) and invalid prices (from previ-
ous transactions (we want future transactions) or from
a model) still pose problem – seek more diverse price
sources.

Network analysis of correlation strength
between the most developed countries

J. Miśkiewicz (2012)
Instead of looking at the minimum spanning tree of a
correlation matrix, i.e., start with an empty graph and
progressively add the most important edges, if they
do not create cycles, until the graph is connected, do
the opposite: start with a complete graph and delete
the least important edges as long as the graph re-
mains connected (the result is not a tree). [The first
part of the article is a very confusing estimator of
Cor(log x, log y).]

Early prediction of movie box office success
based on Wikipedia activity big data

M. Mestyán et al. (2013)
Editor activity of a Wikipedia entry is yet another
(crowdsource) data source, after Twitter and Google.

Article and book summaries by Vincent Zoonekynd 696/1044

Deep learning via hessian-free approximation
J. Martens (2010)

Newton’s method to minimize f approximates the ob-
jective as qθ(p) = f(θ) + ∇f(θ)′p + 1

2p
′Bp and min-

imizes it by solving ∇f(θ) + Bp = 0. Instead of ex-
actly minimizing this second order Taylor expansion,
minimize it approximately by a few conjugate gradient
(CG) steps – the whole hessian B is not needed, only
a few products Bp are (truncated Newton).

Gradient descent Newton

The article also lists a few modifications, useful for
neural networks: damping (do not move too far: the
quadratic approximation should remain good), back-
propagation to compute products with the (Gauss-
Newton approximation of the) hessian, mini-batches
(large, and constant during the CG runs), termination
condition for the CG, no backtracking (in the CG runs,
keeping the parameter corresponding to the best value
of f , as opposed to the last value, i.e., the best value
of qθ), preconditioning (change of variables), start each
CG iteration in the direction of the previous one.

A practical guide
to training restricted Boltzmann machines

G. Hinton (2010)
Advice on setting the many, many parameters in con-
trastive divergence (with a concise, but clear explana-
tion).

Deep neural networks for acoustic modeling
in speech recognition

G. Hinton et al. (2012)
Review article on deep neural networks, Gaussian-
Bernoulli restricted Boltzmann machines (GRBM),
contrastive divergence.

High frequency trading and mini flash crashes
A. Golub et al. (2012)

Most mini flash crashes have a regulatory origin (in-
termarket sweep orders, ISO: the order is executed on
the exchange with th ebest price first, which can de-
plete the order book (if the exchange is less liquid) and
expose stub quotes).

Discrete optimization
P. Van Hentenryck (Coursera, 2013)

Lively overview of several approaches to optimization
problems; as in the real world, for the programming as-
signments you are not told which algorithms will work
for a given problem – your first ideas are likely to fail.

0. The first attempt to solve an optimization prob-
lem is often a greedy algorithm. For instance, for the
traveling salesman problem, you can start at a node,
take the nearest neighbour, and iterate; you could also
(that is better) start with a 2-element cycle, add a ver-
tex in the best position, and iterate. For the set cover
problem (often represented as a binary matrix, one el-
ement per column, one set per row), you can take the
sets in order, until all the elements are covered; better,
you can take the largest sets first; even better, you can
take the sets with the largest number of uncovered ele-
ments first – you can also simplify the problem, e.g., by
removing dominated sets or checking if there are sets
that have to be taken (because there is an element that
is only in this set).
The knapsack problem can be solved exactly by dy-
namic programming (let Oj,k be the value of the op-
timal solution with capacity k and items J1, jK) or
(depth-first, best-first, etc.) branch and bound (to find
a bound, relax the problem by removing the capac-
ity constraint or, better, by replacing x ∈ {0, 1} with
x ∈ [0, 1]).
1. Constraint programming keeps track of the set of
possible values (“domain”) of each variable, and tries
to reduce those sets by “propagating the constraints”.
For instance, in the 8-queen problem, “propagating
the constraints” means “marking the cells that are
no longer available”. It could be called “branch-and-
prune”.
From an implementation point of view, a constraint is
often an object with two methods, satisfied? and
propagate; it only interacts with the domain store –
constraints do not interact with one another.
There are dedicated constraint propagation algo-
rithms for each type of constraint. For instance,
to propagate an arithmetic constraint over integers∑
aixi = 0, one can isolate one variable xi =∑
j ̸=i a

−1
i ajxj and find a lower and upper bound on

xi from the lower and upper bounds on the other xj (a
few iterations may be needed).
Most constraint programming languages or libraries al-
low reification (transforming a condition into a binary
variable) and the use of decision variables as array in-
dex – these make constraint propagation a bit trickier.
Global constraints, e.g., allDifferent, could be ex-
pressed with elementary constraints, but if the solver is
made aware of them, it can exploit their special struc-
ture (e.g., detect infeasibility earlier, or prune more) –
sudoku can be solved efficiently in this way.
Scheduling problems often use more complicated global
constraints.
The domains are usually intervals (bounds consis-
tency), but one could consider arbitrary sets instead
(domain consistency – more computationnally expen-
sive).
If the problem has a symmetry, symmetry-breaking
constraints can reduce the search space a single coset.

Article and book summaries by Vincent Zoonekynd 697/1044

For instance, a balanced incomplete block design
(BIBD) is a v×b binary matrix with r ones in each row,
k ones in each column, such that the scalar product of
any 2 rows is `. (This is used in experiment design
and software testing: b new features, v tests, each with
k features, each feature appearing r times, each pair
of features is tested ` times.) The symmetries (row
and column permutations) can be removed by requir-
ing that the rows (and columns) be in lexicographic
order.
Since constraints do not communicate with each other,
Redundant constraints can speed up the computations:
you could add the sum of the constraints, or (better), a
linear combination of the constraints, with coefficients
1, α, α2, etc.; you could also find some less obvious
property of the solution.
For instance, in the car sequencing problem (the cars
to build have different option, but at most a out of b
consecutive cars can have option o), the cars with a
given option cannot be all at the end: there is a min-
imum number of them in each interval [0, k] – these
redundant constraints help the solver realize early that
a partioal solution is infeasible; it links the capacity
and demand constraints.
If you have two very different models, you can give
them both to the solver, and link them with constraints
(dual modeling); for instance, for the 8-queen problem,
there is one queen in each column, and we want to
find the corresponding row numbers, but conversely,
there is one queen in each row, and we want to find
the corresponding column numbers.
The implementation of global constraints often re-
lies on graph algorithms. For instance, for the
allDifferent constraint, feasibility can be checked by
the existence of a maximum matching in the bipartite
graph of variables and values. (Feasibility is a special
case of constraint propagation: it either leaves the do-
mains unchanged, or sets them all to ∅.)
When exploring the tree of possible assignments, there
are several strategies to choose which variable to in-
stantiate and which value to set it to: often, the most-
constrained variable (smallest domain and/or largest
number of constraints) leads to earlier failures and
more pruning. For instance, for the Euler knight prob-
lem, you can start in a corner, and then do the other
corners. Instead of choosing the variable and then its
value, you can do the opposite, i.e., choose the value
and then the variable (e.g., in the perfect square pack-
ing problem). Instead of choosing an actual value, you
can just reduce the domain, e.g., by halving it – that is
a weaker commitment (magic square, car sequencing).
2. For large problems, local search, which only pro-
vides a local optimum, is a scalable alternative to exact
methods – but you need to pay close attention to the
definition of the neighbourhoods, to how you explore
them (randomly, exhaustively, heuristically), and im-
plement them as efficiently as possible,
The simplest neighbourhood corresponds to changing

the value of a single variable, e.g., for a satisfaction
problem (you are trying to minimize the number of
breached constraints), choose a variable that appears
in the largest number of violated constraints and a new
value to minimize the number of violations.
The next simplest neighbourhood swaps the val-
ues of two variables – in particular, if there is an
allDifferent constraint. For instance, in the TSP
problem, the 2-opt neighbourhood corresponds to
swapping two edges; if can be generalized to 3-opt (re-
move 3 edges and rewire the nodes to have another tour
– contrary to 2-opt, there are many possible rewirings)
or k-opt (Lin-Kerningham).
If the the number of breached constraints is too coarse
a measure of how bad a solution is, you can use the
“degree” of violation instead, e.g., in an arithmetic con-
straint, the difference between the lhs and the rhs.
When using local search to solve a constrained opti-
mization problem, you can solve a sequence of satis-
fiability problems (e.g., for graph colouring, look for
a solution with k colours, and progressively decrease
k – you can use the solution with k + 1 colours, with
one colour removed, as a starting point for the search
for a solution with k colours), or build a sequence of
feasible solutions (e.g., maximize

∑
i |Ci|

2, where Ci is
the set of vertices with colour i, using Kemp chains
to move from one feasible solution to another), or ex-
plore both feasible and infeasible solutions, by adding a
penalty for breached constraints to the objective (e.g.,
change the colours of one node at a time and minimize∑

2bi |Ci| −
∑
|Ci|2, where bi is the number of bad

edges in colour i – it turns out that, in this example,
local minima are feasible).
Heuristics, e.g., simulated annealing (with restarts, re-
heats, and perhaps even a tabu list) can help escape
local minima.
Tabu search keeps a list of the last k states to avoid vis-
iting them again; instead of the whole state, you can
make some property of the state (especially if the satte
is complex), or the (inverse of the) move (e.g., swapping
the values of variables i and j) tabu. There are many
variants: aspiration (accept a tabu move if it is better
than everything seen so far), intensification (store high-
quality solutions and return to them periodically), di-
versification (when there has been no progress for some
time, diversify the current state, e.g., by seting some
of the variables to random values), strategic oscillation
(change the proportion of time spent in the feasible and
infeasible regions), late-acceptance hill-climbing (com-
pare the candidate solution with the solution n steps
earlier – only one comparison, and keeping the value of
the solutions suffices) etc.
3. Mixed integer programs (MIP) can be solved
by branch-and-bound, using a linear relaxation, and
branching on the most fractional variables. Reformu-
lating the problem can make the relaxation closer to
the actual problem. For instance, the constraint x 6= y

Article and book summaries by Vincent Zoonekynd 698/1044

can be made linear with the big-M transformation,

x ⩽ y − 1 + bM

x ⩾ y + 1 + (1− b)M
b ∈ {0, 1},

whereM is very large, but the relaxation often chooses
b = .5, i.e., discards the constraint – in the graph
colouring problem, it tells you that you need at least 1
colour. If you use binary colours instead, the constraint
becomes ∀c bi,c+bjc ⩽ 1, and the linear relaxation tells
you that you need at least 2 colours.
It is often possible to add constraints to a mixed integer
program without changing the set of integral solutions,
e.g., with Gomory cuts (they can be computed from the
tableau, in the simplex algorithm). More generally, we
can add facets of the convex hull of the feasible integral
points (polyhedral cuts) as new constraints – only when
needed, as the algorithm progresses, because there is a
potentially exponential number of them.
For instance, in the graph colouring problem, n colours
are needed to colour an n-clique C: we can add a con-
straint for each clique.
For the traveling salesman problem with a binary vari-
able for each possible edge, one can add constraints of
the form

∑
i∈C si ⩽ |C| − 1 to eliminate a cycle C.

There is an exponential number of such constraints,
but they can be added one by one, when they are
breached (finding which constraints are breached is a
knapsack problem); when all the constraints are satis-
fied, the solution is usually still fractional, so branching
is needed.
Dually, column generation deals with exponentially
many variables. In the cutting stock problem, the task
is to cut shelves of lengths `1, . . . , `k, from boards of
length L, minimizing the number of boards needed.
The naive formulation (binary variables xi,n indicat-
ing that shelf i is taken from board n) has too many
symmetries. Instead, one can look at all possible ways
of cutting a board: configurations are of the form
c = [n1, . . . , nk], where ni is the number of copies
of shelf i; the decision variables are the numbers of
configurations of type c, for each type. There is an
exponential number of configurations, but finding the
one to add is a (simple) optimization problem (knap-
sack). Branch-and-price uses column generation to find
a bound in the branch-and-bound algorithm.
Limited discrepancy search (LDS) uses a heuristic to
decide the order in which to explore the tree: assum-
ing that the tree is binary with the left branches cor-
responding to the heuristic, it follows the heuristic less
and less, in waves: first follow the heuristic, then follow
it except once, then except twice, etc.
Large neighbourhood search (LNS) is a hybrid of local
search and CP/MIP: start with a feasible solution, se-
lect a neighbourhgood (e.g., fix the value of some of the
variables), find the best solution in this neighbourhood
(CP is often better for smaller problems), iterate.

Linear and discrete optimization
F. Eisenbrand (Coursera, 2013)

Clear, detailed (but slow) introduction to linear pro-
gramming, with a few examples in SimPy.

A beginner’s guide to irrational behaviour
D. Ariely (Coursera, 2012)

Presentation of the ideas (behavioural economics) al-
ready explained in his books: our relation with money
(huge gap between free and $0.01, relations shifting
from social to contractual, effect of bonuses on perfor-
mance); dishonnesty (there is a small area in which we
are dishonnest but not enough to feel so; it increases
with the distance to money – worrying in a cash-less
society); the moral pendulum (a good action is often
followed by one less so); motivation (need for mean-
ing, acknowledgement, involvement (Ikea effect), not-
invented-here bias); self-control; herding; etc.

Artificial Intelligence (CS188)
D. Klein (EDX, 2013)

Artificial intelligence (AI) is the set of techniques used
to build machines that act rationally i.e., that learn
from the past, predict the future, and use this infor-
mation to maximize their expected utility; it has ap-
plications in natural language processing (NLP), video
games (how to teach computers how to play PacMan),
etc.

1. Many planning problems can be formulated as
search problems, either in a search graph (the nodes
are the states of the world) or a search tree (the nodes
are partial plans). Breadth-first search (BFS) explores
the tree by putting the nodes to expand (the fringe) in
a FIFO queue; depth-first search (DFS) uses a LIFO
stack. There are many variants, for instance, itera-
tive deepening uses DFS with a limited depth, and in-
creases the depth if there is no solution (since most
of the time is spent on the deepest layer, it keeps the
time-complexity of BFS and returns a low-depth solu-
tion, but retains the low-memory usage of DFS). A*
uses a heuristic (a lower bound on the length of the
path to the goal) to decide in which order to expand
the nodes, i.e., it uses a priority queue (the most com-
mon implementation errors are: you only know that a
path is the best when you remove it from the fringe,
not when you put it there; for graph search, checking if

Article and book summaries by Vincent Zoonekynd 699/1044

the node you want to put in the fringe is already there
is not sufficient, you also need to update its cost). The
heuristic often comes from a relaxation of the problem.
2. Constraint satifaction problems are similar (single
agent, deterministic actions, fully observed state, dis-
crete state space), but the state is not arbitrary: it is
defined by variable assignments.
A binary constraint satisfaction problem (each con-
straint involves two variables) can be represented by
a graph, with variables as vertices and constraints as
edges (if the constraints are not binary, use a bipar-
tite graph, with two types of nodes, variables and con-
straints). BFS does not perform well because it only
considers actual solutions in the last layer; DFS fares
slightly better, but it only realizes it made a mistake
when the solution is complete. Backtracking search
checks the constraints as early as possible to prune the
search tree; it can be improved by changing the vari-
able order (most constrained first), or the value order.
It can be improved further by propagating the con-
straints via arc consistency: (for binary constraints)
for each arc in the constraint graph, check if for each
value x in the tail there is a valid value y in the head;
reprocess the arcs if you remove something from their
head. This can be generalized to k-consistency (each
assignment of k − 1 vatiables can be extended to an
assignment of all k) – 3-consistency (path consistency)
is sometimes used.
The structure of the problem can help: independent
sub-problems can be solved independently; if the con-
straint graph is a tree, process the variables in topo-
logical oder to make them consistent, and assign them
in the reverse order; if the graph is a tree after remov-
ing a small number of nodes, do an exhaustive search
on those nodes and use the tree algorithm for the oth-
ers (cutset conditionning); consider “mega-variables”
(subproblems), overlapping to ensure consistency, and
forming a tree (they should satisfy the running inter-
section property).
Iterative improvement algorithms can also be used: lo-
cal search (e.g., the min-conflict heuristic changes a
variable to the value that violates the fewer constraints
– it works very well for the n-queen problem, n = 107);
simulated annealing; genetic algorithms.
3. Advesarial search, i.e., two-player, perfect-
information, zero-sum, deterministic games (zero-sum
means that there is only one utility function, one player
tries to maximize it, the other tries to minimize it) uses
the same ideas: the value of a state is the best achiev-
able outcome from that state, against an optimal ad-
versary (minimax); it is sometimes possible to prune
the search tree (alpha-beta pruning). It is needlessly
pessimistic against a non-optimal adversary (e.g., the
PacMan ghosts move randomly). If there are ressource
limits, go down the tree as far as possible in the allot-
ted time, and use an evaluation function, usually some
linear combination of features, (if it is sufficiently deep,
it should work well). Since the agent replans at each
step, infinite loops (thrashing) are possible (decide on

plan A and go left, then decide on plan B and go right,
etc.).
4. Expectimax replaces the worst-case in Minimax with
the average case, i.e., the uncertainty does not come
from a perfect adversary, but from chance (equiva-
lently, the adversary acts randomly). The values in
the leaves are utilities, and the players maximize their
expected utility.
5. In a Markov decision process (MDP), the effect of
the agent’s actions are not deterministic. Formally,
an MDP is the datum of a set S of states, a set A of
actions, transition probabilities Ts,a,s′ , rewards Rs,a,s′
and a start state. The aim is to maximize the expected
(discounted) reward.
By introducing chance nodes for (s, a) pairs (q-states),
one can use expectimax:

V (s) = Max
a

Q(s, a) Max node

Q(s, a) =
∑
s′

Ts,a,s′(Rs,a,s′ + γVs′) Chance node.

The corresponding tree is huge, has a lot of redundan-
cies, but we only want an optimal policy S −→ A.
The value Vk(s) of a state if the game ends after k steps
can be computed iteratively (value iteration); the val-
ues Vk converge to V , but the policy usually converges
faster.
Policy iteration starts with an arbitrary policy, com-
putes the value of the states under that policy, finds the
optimal policy for those values (expectimax, 1 step),
and iterates until convergence.
6. Reinforcement learning tries to solve an MDP with-
out knowing it:
– Passive reinforcement learning starts with a policy
π and learns the corresponding state values (policy
evaluation);

– Temporal difference learning directly learns the state
values (at each step, update the estimated value of
the state you are leaving), but not allow the the cor-
responding optimal policy (the rewards and the tran-
sition probabilities are needed);

– Q-learning does the same thing, but with the Q-
values; it converges to the optimal policy, even if
you do not follow it (off-policy learning).

To explore the state space, one could follow the current
policy with probability 1− ε and act randomly other-
wise (ε-greedy) or, better, explore areas whose badness
has not been established yet (boost the Q-values by
adding k/number of visits).
If there are too many states, approximate them by a
set of features, and estimate the Q-values with linear
combinations of features.

Semantic hashing
R. Salakhutdinov and G. Hinton (2007)

Deep neural networks (stacked restricted Boltzman
machines (RBM)) whose deepest layer has a small

Article and book summaries by Vincent Zoonekynd 700/1044

number of binary variables can model word count
vectors more accurately than latent semantic analy-
sis (LSA, i.e., SVD-based low-dimensional approxima-
tions of the word-document co-occurrence matrix); the
values of those binary vectors can be used as a semantic
hash: texts that differ by only a few bits are similar.

Do arbitrage-free prices
come from utility maximization?

P. Siorpaes (2012)
In an incomplete market with no arbitrage, no-
arbitrage prices (of non-traded assets) form intervals.
For a given utility-maximizing investor, the set of
threshold prices (sell if above, buy if below) is a sub-
interval. As the investor’s endowment varies, these in-
tervals cover the no-arbitrage one.

Forecasting intraday volatility
in the US equity market.

Multiplicative component GARCH
R.F. Engle and M.E. Sokalska (2011)

Intraday volatility can be modeled as a product of three
factors, rit =

√
htsiqtiεti:

– Daily volatility (from a factor risk model) ht;
– Deterministic diurnal volatility pattern si=E[r2it/ht]
– GARCH residual volatility qti.
The results are more stable if you pool the stocks by
industry.

The European debt crisis:
defaults and market equilibrium
M. Lagi and Y. Bar-Yam (2012)

Long-term sovereign interest rate and debt/GDP ratio
are linked, and their evolution can help defaults (one
can compute a market-implied critical debt/GDP ra-
tio).

Modeling dependence with C- and D-vine
copulas: the R-package CDVine

E.C. Brechmann and U. Schepsmeier (2013)
Vine copulas describe the dependence between n vari-
ables with n(n− 1)/2 bivariate copulas, using Bayes’s
formula

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1, . . . , xn−1).

The K-function (Kendall function) is

k(t) = P [C(U, V) ⩽ t].

The K-plot plots the sample versus the theoretical K-
function. The λ-function is

λ(t) = t− P [C(U, V) ⩽ t];

one can plot it (λ-plot, with the sample and theoret-
ical λ-functions) or use it to reduce the copula fitting

problem to a curve fitting problem (for parameter es-
timation or goodness-of-fit tests).

Fi =
1

n− 1

∑
j ̸=i

1xj<xi

Gi =
1

n− 1

∑
j ̸=i

1yj<yi

Hi =
1

n− 1

∑
j ̸=i

1xj<xi,yj<yi

χi =
Hi − FiGi√

Fi(1− Fi)Gi(1−Gi)
λi = 4 sign[

(
F1 − 1

2

)
(Gi − 1

2)]

×Max
{
(Fi − 1

2)
2, (Gi − 1

2)
2
}

One can also look at the χ-plot, χi ∼ λi, where χi can
be interpreted as a local measure of dependence (“lo-
cal correlation”) and λi as the signed distance to the
median.
The CDVine package also provides tests and estimators.

The fine-structure of volatility feedback
R. Chicheportiche and J.P. Bouchaud (2012)

The quadratic generalization of the GARCH model
(QARCH)

σ2
t = s2 +

∑
τ>0

Lτrt−τ +
∑
τ,τ ′>0

Kτ,τ ′rt−τrt−τ ′

accounts for a dependence of the volatility on the sign
of the past returns (linear term) and effects at different
time scales (off-diagonal terms). Special cases include:
– The effect of both 1- and 2-day returns;

squares of the returns
on those intervals

– The effect of the previous 1-, 5-, 20-day returns;
squared returns

– Trends
squared returns

products

or
products

Beyond implied volatility:
extracting information from option prices

R. Cont (1997)
In an incomplete market, the state price density (SPD)
is not unique; to choose one, take that that minimizes
hedging risk (for a given option) among all probabil-
ity densities that give arbitrage-free prices (or among
all densities, if hedging risk is more important than
absence of arbitrage), or that closest to the historical
density.
To estimate the SPD, use the option prices (or the
volatility smile):

Article and book summaries by Vincent Zoonekynd 701/1044

– Taylor expansion of the logarithm of the Fourier
transform (cummulants, Edgeworth expansion);

– Hermite expansion of both the SPD and the payoff;
– Kernel estimator of the call option prices C to com-

pute the density

er(T−t)
∂2C

∂K2

– Maximum entropy distribution under the constraints
that the market prices are fair (without further con-
straints, it is often multimodal);

– Implied binomial trees (unstable);
– Mixture of log-normals (thin tails).
As an application, one can assume that the volatility
is a function of the price, σ = σ(S), estimate this func-
tion, compute the corresponding SPD, compare with
another estimator (say, a kernel estimator), and use
the difference as an investment signal.
The article also stresses the difference between expec-
tation pricing (what accountants do) and no-arbitrage
pricing.

Measuring capital market efficiency:
global and local correlations structure
L. Kristoufek and M. Vosvrda (2012)

A low fractal dimension indicates herding; fractal di-
mension D and Hurst exponent H can be combined to
form a “market efficiency measure”.

rxx(0)− rxx(τ) ∝
τ→0

τ4−2D

rxx(τ) ∝
τ→∞

τ2H−2

rxx(τ) = Mean
t

[xtxt+τ]

Calibration of optimal execution
of financial transactions

in the presence of transient market impact
E. Busseti and F. Lillo (2012)

Finding the trading strategy (how much to trade in
each 5-minute period, using the information available
at that time, to trade a total quantity X during the
day) to “minimize” the execution cost (the difference
between the profit if everything had been traded at the
open price and the actual profit – it is a random vari-
able, so by looking at its expectation and variance, one
can build a whole efficient frontier of trading strategies)
can be formulated and solved as a quadratic problem.

Introduction to nloptr:
an R interface to NLopt

J. Ypma (2013)
NLOpt is a set of optimization algorithms, for con-
strained or unconstrained, global or local, gradient-free
or not:
– Dividing rectangles (direct, StoGO): not unlike
Lipschitz optimization (if f is Lipschitz with con-
stant k, then ∀x ∈ [a, b] f(x) ⩾ f(a) − k(x − a),

f(x) ⩾ f(b)− k(b− x); by refining the intervals one
can build a piecewise lower approximation of f), but
without the knowledge of the Lipschitz constant;

– Controlled random search (crs) with local muta-
tion, improved stochastic ranking evolution strategy
(isres): population-based random Nelder-Mead;

– Multi-level single linkage (local search, with many
random or low-discrepancy restarts, that tries to
avoid points leading to already-visited extrema);

– Constrained optimization by linear approximations;
– Bounded optimization by quadratic approximations;
– Principal axis (Brent);
– Nelder-Mead, Subplex;
– Method of moving asymptotes (mma);
– Sequential quadratic programming (slsqp);
– l-bgfs;
– Augmented Lagrangian (to turn a constrained opti-
mization problem into a sequence of unconstrained
ones).

An effective implementation of the
Lin-Kernighan traveling salesman heuristic

L. Helsgaun
The 2-opt move for the traveling salesman problem (re-
move 2 edges and rewire in the only possible way) can
be extended to k-opt moves (remove k edges and rewire
in one of the many possible ways). The Lin-Kernighan
heuristic uses the same idea, but extends a (k− 1)-opt
move into a k-opt move, but limits the choice of the
k-th edge to the edge after the (k − 1)st edge.

The traveling salesman provlem:
a case study in local optimization

D.S. Johnson and L.A. McGeoch (1995)
Among other algorithms, here are two heuristics to ad-
dress the problem. The Clarke-Wright savings heuris-
tics starts with a star path (return to the starting
point after visiting each city) and progressively joins
“nearby” cities. The Christofides heuristics constructs
a minimum spanning tree, finds a minimum-length
matching of its vertices of odd-degree (producing a
graph all of whose vertices have even degree), and finds
a Euler tour.

The late-acceptance hill-climbing heurstic
E. Burke and Y. Bykov (2012)

A variant of hill-climbing, as fast as, easier to imple-
ment than, and more robust than simulated annealing:
keep a queue of past values; accept a candidate if it is
better than the current solution or the solution in the
queue L steps ago; put the candidate in the queue if it
is better than the current solution.

The late-acceptance hill-climbing algorithm
for the magic square problem

Y. Bykov
Another application of LAHC, to magic frames (to
build a large magic square, constrain the problem some

Article and book summaries by Vincent Zoonekynd 702/1044

http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms

more, and look for nested magic squares – the magic
frame problems are smaller and independent).
(But there are constructive magic square algorithms:
Siamese method, LUX method.)

The vehicle routing problem
T.G. Hinton (2010)

Heuristics to solve the traveling salesman problem
(TSP) include:
– The minimum spanning tree (MST) (pre-traversal
order, after choosing a root);

– The Christofides heuristic: build the MST, find a
minimum matching of the odd-degree vertices, find
a Eulerian tour (i.e., it visits all edges) of the result-
ing graph (all the vertices now have even degree),
prune it to have a tour;

– Local search with k-opt neighbourhoods (remove k
edges and rewire the graph into a tour in all possible
ways); to speed up the search, use a neighbourhood
list (only consider the k = 40 closest nodes of each
node); with simulated annealing, select the starting
temperature so that the average probability of ac-
cepting a detrimental move be 0.75.

Here are a few heuristics to solve the vehicle routing
problem (VRP):
– Local search with λ-interchange neighbourhoods
(swap λ vertices between two routes);

– n-opt-k: pick k routes, remove n edges, rewire in all
possible ways;

– Iterated tour partition: solve the TSP problem, pick
a node, start there, follow the tour until full capac-
ity, start another tour, iterate until the end;

– Clarke-Wright (CW) heuristic (agglomerative greedy
algorithm): start with 1-city routes, merge two
routes, iterate – the routes to merge are chose with
the CW savings:

s(i, j) = c0,i + c0,j − ci,j

or their modified version

s(i, j) = c0,1 + c0,j − λci,j + µ |c0,i − c0,j |+ ν
di + dj
d̄

where d̄ is the average demand and λ, µ, ν ∈ [0, 2]
are chosen by exhaustive search (they try to avoid
“ring routes” and favour large demands). It can be
randomized: sort the possible moves from best to
worst and take the ith one with probability 1

q1i⩽q or
p(1− p)i.

Factors on demand
A. Meucci (2010)

Factor risk models are often used to both estimate and
decompose risk. One can use different factors for es-
timation and attribution: given the joint distribution
of (F,Z) or (X,Z) (often, simulated data), find d to
minimize the discrepancy (variance, R2, VaR, etc.) be-
tween R(X) and d′Z.

F : estimation factors Z : attribution factors

ε = BF + U invariants

X : risk factors

R(X) : portfolio returns d′Z

dim reduction

pricing

For instance:
– Statictical estimation factors (random matrix the-
ory, RMT) and industry attribution factors.

– X = Z = stock returns and R(X) = price of an
option on this stock defines “non-linear delta”

Argmin
d

CVaR (option returns− d× stock return)

– Use detailed, regional (numerous) estimation factors
and (fewer) global attribution factors;

– Style analysis (maximize the R2 between the port-
folio returns and a linear combination of reference
strategies)

– Risk attribution to the alpha components: use port-
folios associated to the components of the alpha as
attribution factors and minimize the variance of the
residuals.

Risk management
for central bank foreign reserves

ECB (2004)
3. Foreign reserves management is similar to assets
and liabilities management (ALM), evaluated on a tree
modeling the evolution of short rate and exchange
rates, with a few differences:
– The portfolio is often separated into liquid and non-
liquidity-constrained parts;

– Choosing a base currency is problematic;
– Constraints of the form

reserves ⩾ 12-month debt repayments+ imports

are imposed on the liquid portfolio;
– If the distribution of final wealth is not satisfactory,
it can be “shaped” by adding (several) value at risk
(VaR) constraints.

4. Foreign reserves are often excessively constrained.
If you can tolerate short-term underperformance, add
corporate bonds; relaxing the (liquidity, currency, du-
ration, credit) constraints, and allowing for a larger
universe, moves the efficient frontier: you can gain
1.5% in expected returns or risk – assuming that your
estimates of the various market parameters are cor-
rect. However, as you diversify your portfolio, measur-
ing risk becomes trickier.
7. The conflicting targets, wealth preservation (in
the home currency) and liquidity preservation (ability

Article and book summaries by Vincent Zoonekynd 703/1044

to pay in foreign currencies), call for different bench-
marks. One can use robust (worst-case) optimization

Max
w⩾0
w′1=1

Min
s,b

[
w′µ− λs,b(w − wb)′Vs(w − wb)

]
to address multiple benchmarks b, multiple scenarios
s (normal and hectic, with the same correlation, but
different volatilities, estimated with robust (shrinkage)
estimators), and different “weights” (risk aversions)
λs,b in each case. The problem can be reformulated
as a linear problem with quadratic constraints. For
non-Gaussian returns, directly optimize the expected
utility with a set of scenarios.
10. To account for counterparty risk (credit risk), do
not simply look at the credit ratings, but check:
– The probability of default P [default];
– The expected and unexpected loss (given default),

EL = E[loss|default]
UL = σ[loss|default];

– The portfolio expected loss
∑
i ELi, the portfolio un-

expected loss
UL′ ρUL

where ρ is either the default correlation (“default”
is a Bernoulli random variable) or the correlation of
the asset returns.

As usual, the expected and unexpected portfolio loss
can be decomposed into a sum of contributions and/or
used in portfolio optimization.
13. Instead of decomposing the risk (ex ante), one can
decompose the change in risk (ex post), either as

∆VaR = VaR(wt, pt−1, t−1)−VaR(wt−1, pt−1, t−1)
+VaR(wt−1, pt, t−1)−VaR(wt−1, pt−1, t−1)
+VaR(wt−1, pt−1, t)−VaR(wt−1, pt−1, t−1)
+ rest

or

∆VaR = VaR(wt, pt, t)−VaR(wt−1, pt, t−1)
+VaR(wt−1, pt, t−1)−VaR(wt−1, pt−1, t−1),

where w are the portfolio weights, p the market data
(prices) and t the time. This helps understand why
the risk limits are breached – to avoid blindly selling
positions.
17. To decompose the risk of a portfolio, use risk fac-
tors directly interpretable by portfolio managers (even
if they are not independent – for a more modern ap-
proach, check Meucci’s factors on demand). For in-
stance, for a fixed income portfolio, use use shift,
slope and curvature factors; for an equity portfolio, use
size, value (P/E, P/B, dividend yield) and momentum
(earnings revisions, price reversals, earnings torpedo
(high expected earnings and price drop)) factors.

18. The performance of a fixed income portfolio can be
decomposed into time, curve and spread (i.e., bench-
mark) components:

∆ = P (t, t)− P (t− 1, t− 1)

= B(t, t)−B(t, t− 1) time
+B(t, t− 1)−B(t− 1, t− 1) curve
+ rest spread

where

P (curve, time) = portfolio value
B(curve, time) = benchmark value

19. The PnL of fixed income portfolios can be decom-
posed into benchmark, duration, allocation and selec-
tion components, where “duration” captures the effect
of the difference between the duration of the bench-
mark and that of the portfolio. The factors used to
explain the PnL should be portfolio-dependent.
20. Liquidity crises can be modeled as follows:
– Random inflows and outflows occur daily, and have
to be addressed by the overnight tranche of the port-
folio;

– If the overnight tranche exceeds some threshold
ON*, the excess is moved to the weekly tranche;

– If the weekly tranche exceeds some threshold W*,
the excess is moved to the optimized portfolio;

– Every week, the overnight tranche is replenished, up
to the target ON*, from the weekly tranche.

Using simulations (e.g., the cashflows follow an auto-
regressive (AR) process) one can estimate the proba-
bility of a liquidity crisis, as a function of the target
levels ON* and W*.
21. Choose your benchmark wisely: if it only depends
on one parameter, duration, and if high duration means
high returns, choose the maximum duration so that

VaR95% ⩾ 1
2 × risk-free returns

(or some other threshold – the reference rate could be
a constant rate, or a short-term rate minus a spread).

The expectation maximization algorithm:
a short tutorial

S. Borman (2009)
Let x denote the observed data, z the hidden data and
θ the parameters to estimate. We want to maximize

L(θ) = log p(x|θ) = log
∑
z

p(x, z|θ),

iteratively. The improvement brought by θ on the pre-

Article and book summaries by Vincent Zoonekynd 704/1044

vious estimate θn is

∆(θ|θn) = L(θ)− L(θn)

= log
∑
z

p(x, z|θ)− log p(x|θn)

= log
∑
z

p(z|x, θn)
p(x, z|θ)
p(z|x, θn)

− log p(x|θn)

Jensen
⩾

∑
z

p(z|x, θn) log
p(x, z|θ)
p(z|x, θn)

− log p(x|θn)

=
∑
z

p(z|x, θn) log
p(x, z|θ)

p(z|x, θn)p(x|θn)
.

Since L(θ) ⩾ L(θn) +∆(θ|θn), with equality if θ = θn,
a value of θ that improves the right handside will also
improve the left. After dropping the terms constant
with respect to θ, we end up maximizing∑

z

p(z|x, θn) log p(x, z|θ) = EZ|X,θn [log p(x, z|θ)].

The single formula

θn+1 = Argmax
θ

∑
z

p(z|x, θn) log p(x, z|θ)

is traditionally (and confusingly) decomposed into E
and M steps:
– Compute the conditional probabilities p(z|x, θn), one
for each value of z (E step);

– “Compute” the function
∑
z p(z|x, θn) log p(x, z|θ) –

it is a function of θ (E step);
– Find the value θn+1 of θ that maximizes it (M step).
The generalized expectation maximization (GEM) al-
gorithm does not use θn+1 = Argmaxθ∆(θ|θn) but
merely θn+1 ∈ {θ : ∆(θ|θn) > 0}; this is sufficient
to ensure convergence.

A quasi-Newton acceleration
for high-dimensional optimization algorithms

H. Zhou et al. (2009)
The EM (expectation-maximization) iteration can be
written xn+1 = F (xn) and (hopefully) converges to a
fixed point of F . One can replace it with Newton’s
method to solve G(x) = 0, where G(x) = x − F (x):
xn+1 = xn −G′(xn)−1G(xn), i.e.,

xn+1 = xn − (I − F ′(xn))−1G(xn).

To facilitate the inversion, one can use a low-rank ap-
proximation of F ′(xn). The quasi-Newton method uses
another approximation of F ′(x): sufficiently close to
the fixed point x∞,

F 2xn − Fxn ≈ F ′(x∞)(Fxn − xn).

The smallest matrix F̂ ′(x∞) satisfying those equations
for the last q observations is an estimate of F ′(x∞).

The speed of Shor’s algorithm
J.V. Burke et al. (2007)

Shor’s r-algorithm is a generalization of steepest de-
scent (γ = 0) and conjugate gradient (γ = 1) to find a
minimizer of a (non-necessarily smooth) function f

xn+1 = xn − tnBnB′nf ′(xn)
tn = Argmin

t
f(xn+1)

rn+1 = B′n(f
′(xn+1)− f ′(xn))

Bn+1 = Bn(I − γrn+1r
′
n+1)

with good performance for non-smooth functions (in
this case, f ′ is a subgradient).

The R Journal (2013)
This issue contains more articles than usual; among
others: RTextTool provides a unified interface to
supervised classification algorithms for text process-
ing (svm, glmnet, maxent, sldca, ipred::bagging,
caTools::LogitBoost, randomForest, nnet, tree);
“generalized simulated annealing” (genSA) may be
faster than DEOptim or rgenoud; ftsa analyzes func-
tional time series (e.g., a yield curve, a volatility sur-
face); qualitative comparative analysis (QCA) is an-
other name for association rules analysis in the so-
cial sciences (small datasets), often with fuzzy sets;
many packages to manipulate maps (ggmap, osmar,
OpenStreetMap, RGoogleMaps); applications of sparse
matrices (Matrix) to fit GEE models and spatial probit
models; etc.
To promote/enable reproducibility and productional-
ization, the R package manager should account for ver-
sioning (version dependencies are currently declared,
checked, but not used), like Gentoo or NPM – but this
would require the ability to install and load, simulta-
neously, several versions of the same package.

The generalized simulated annealing algorithm
in the LEED search problem

E.R. Correia et al.
Generalized simulated annealing (GSA) is simulated
annealing on RD, with the following visiting distribu-
tion

g(∆x) ∝ 1(
1 + (q − 1)

(∆x)2

T 2(3−q)

) 1
q−1+

D−1
2

,

cooling scheme T (t) ∝ t1−q and acceptance probability

p(∆E) =

(
1 + (q − 1)

∆E

T

)− 1
q−1

.

Fast simulated annealing (q = 2, Cauchy visiting dis-
tribution) performs well.

Article and book summaries by Vincent Zoonekynd 705/1044

R in finance 2013
Here are some of the topics mentionned:
– Instead of finding the portfolio weights maximizing
the expected utility, one can smooth the expected
utility and look for the center of a region (in the
portfolio weights space) where it is high: probabilis-
tic utility formalizes this idea and computes the ex-
pected weights w for the distribution

p(w) ∝ expE[utility(wealth(w))];

– Part of the volatility smile is due to numeric im-
precisions (far from the strike, the price is almost
independent of the implied volatility);

– On a toy model of asset returns (say, ARMA), one
can explicitly compute the Sharpe ratio of simple
strategies (say, a moving average);

– Markov chains can model the evolution (survival)
of exchange-traded derivatives, by looking at their
(log10-binned) volume;

– Performance attribution;
– Implied expected returns can be computed from
a set of mean-variance optimal portfolios, e.g.,
capital-weighted (market), equal-weighted (1/N),
equal risk contribution, maximum diversification
(w′
√
diag V /

√
w′V w), and risk efficient (the tan-

gency portfolio, under the assumption that the re-
turns are proportional to the downside deviation);

– The high-frequency-based volatility (HEAVY)
model

ht = Var rt = ω1 + α1Vt−1 + β1ht−1 + λr2t

µt = E[Vt] = ω2 + α2Vt−1 + β2µt−1

rt : (daily) returns
Vt : realized volatility, measured

from high-frequency data;

– Change-point analysis on a time series of indepen-
dent observations can be performed using cluster
analysis (agglomerative or divisive) with time con-
straints (to ensure that the clusters are contiguous –
this is not unlike key detection in music), by maxi-
mizing

E (X,Y, α) = 2E |X − Y |α−|X −X ′|α−|Y − Y ′|α ;

this is implemented in the ecp package;
– Cluster risk portfolios assign the same risk contri-
bution to each cluster (either user-defined clusters,
e.g., asset classes, or those resulting from some clus-
tering algorithm), and then to each asset inside each
cluster;

– Many models predict the yield curve or the S&P500
from economic variables; combining them, with
weights inversely proportional to the past perfor-
mance (mean squared error, with older values dis-
counted more), improves performance – but penal-
ized models, with all the variables, do even better;

– Network analysis of interbank overnight loans, from
SEC filings, can identify those whose failure can lead
to a crisis (high centrality);

– Communities in a venture capital (VC) network in-
fluence performance;

– Remortgaging can be formulated as a game between
lender and borrower;

– Crashes can be predicted with the log-linear power
law (LPPL) model;

– Behavioural portfolios (or goal-based optimal port-
folios) are mean-variance optimal portfolios, with a
constraint on the value-at-risk.

The estimation of covariance matrices was a recurring
topic:
– Factor models can also be used to decompose the
cross-sectional volatility;

– When estimating a variance matrix, rescale the
volatility with the (smoothed) VIX to make it sta-
tionary;

– Use robust correlation estimators (MCD for market
outliers, robust pairwise correlation for specific risk
outliers): to avoid believing in diversification when
it is not there; for dynamic alerts (plot the Maha-
lanobis distance versus time with a (say) ±3σ band);

– Principal volatility component (PVC) analysis looks
for no-ARCH portfolios (not unlike independent
component analysis, which looks for non-Gaussian
portfolios);

A few new packages were presented: RND to estimate
the risk-neutral density from option prices, modopt
(not currently available) to specify optimization (and
even stochastic optimization) problems as strings (un-
fortunately not as expressions, as Matlab’s CVX al-
lows), greeks, MTS (unavailable) for sparse modeling
(sparse parametrization or penalized estimation) of
multivariate time series (VAR, VARMA, etc.).
From a programming point of view, besides Rcpp (to
access QuantLib functions or objects not available in
RQuantLib, to use linear algebra libraries such as Ar-
madillo), quantstrat (to build and test investment
strategies), or data.table, rzmq (an interface to Ze-
roMQ, an easy-to-use and language-agnostic network-
ing library) and scidb were also mentionned.

Efficient indexation
An alternative to cap-weighted indices

N. Amenc et al. (2010)
Compute the tangency portfolio by assuming that the
returns are proportional to the (rank of the) downside
risk (since investors require higher returns to invest
in riskier stocks) and using principal component anal-
ysis to estimate the variance matrix; shrink towards
the 1/N portfolio by adding minimum and maximum
weight constraints, 1/2N ⩽ w ⩽ 2/N ; do not rebal-
ance every quarter but only when the absolute value
of the changes in weights exceed 50%.

Scalable robust covariance
and correlation estimates for data mining

F.A. Alqallaf et al. (2002)
Robust estimators of the variance matrix are often

Article and book summaries by Vincent Zoonekynd 706/1044

computationnally intensive (O(edn2)):
– Minimum covariance determinant (MCD): take 90%
of the data (at random), compute the covariance ma-
trix, iterate, keep the matrix with the smallest de-
terminant;

– Minimum volume ellipsoid (MVE): take 90% of the
data, find the smallest ellipsoid containing those
points, iterate, keep the ellipsoid with the smallest
volume (MCD can be seen as a constrained MVE:
the ellipsoids are those defined by the sample mean
and variance);

– Fast MCD: instead of taking a different, random, in-
dependent sample at each iteration, take the 90% of
the data with the smallest Mahalanobis distance.

Faster estimates can be obtained by using robust pair-
wise correlation estimators (but you need to fix the
correlation matrix afterwards):
– Rank correlation;
– Find the robust scale sj and location mj of each
variable j,

∑
i

ψ

(
xij −mj

sj

)
= 0,

where ψ is the Huber function , ψ(x) =
Min(Max(−c, x), x) or the sign function and
take the correlation Cor(y·j , y·k) of the transformed

data yij = ψ

(
xij −mj

sj

)
(Huber correlation, quad-

rant correlation).

Propagation of outliers in multivariate data
F. Alqallaf et al.

The contamination models used to develop robust es-
timators rarely include componentwise outliers – the
resulting estimators have a poor breakdown, in high
dimension, in presence of such outliers.

Portfolio optimization with mental accounts
S. Das et al. (2010)

It is easier for investors to specify, for each of their goals
(retirement, bequest, etc.) the minimum success prob-
ability than the overall risk aversion. Each goal corre-
sponds to a subportfolio, optimized with a value-at-risk
(VaR) constraint. Under a Gaussian assumption, those
portfolios are mean-variance efficient; if short sales are
allowed, the resulting portfolio is still optimal (if they
are not, you only lose a few basis points).

Options and structured products
in behavioural portfolios

S. Das and M. Statman (2013)
Options have a role to play in behavioural portfolios
(VaR-constrained portfolios), even if they are over-
priced (by up to 20%).

Threshold cointegration:
overview and implementation in R

M. Stigler (2012)
The cointegration relation can be written in VECM
(vector error correction model) form,

∆Zt+1 = c+ λ′Zta+B∆Zt + ε,

where λ′Zt are the cointegration relations (e.g.,

λ =

(
1
−β

)
, Zt =

(
Xt

Yt

)
and a is the mean-reversion speed). It can be extended
to a threshold model by having the mean-reversion
speed a depend on the current regime (the regime could
correspond to the position of λ′Zt wrt some thresh-
olds). This is implemented in the tsDyn package.

The misleadig value of measured correlation
B.M. Damghani et al. (2012)

Correlation is rarely a good measure of how linked
two assets are, and cointegration should often be pre-
ferred. For instance, its assumptions (linear, syn-
chronous, no outliers) are seldom satisfied; it is not
valid if the spread between two underlyers follows a
mean-reverting process (e.g., WTI and Brent – if you
have a notion of “spread”, correlation is a bad idea),
or for companies sharing the same, fixed-size market,
or for commodities with an equity mirror (e.g., oil
and BP), or for assets with contagion/domino effects
(credit derivatives), or for overlays.
Instead of replacing the correlation model

dx

x
= σ1dW1

dy

y
= σ1ρdW1 + σ2

√
1− ρ dW2 dW1 ⊥⊥ dW2

with the cointegration (Ornstein-Uhlenbeck) one

dx

x
= σ1dW1

dy

y
= θ(µ+ x− y)dt+ σ2dW2 dW1 ⊥⊥ dW2

one could try a hybrid model

dx

x
= σ1dW1

dy

y
= θ(µ+ x− y)dt+ σ2dW2

Cor(dW1, dW2) = ρ.

Improving portfolio selection using
option-implied volatility and skewness

V. DeMiguel (2012)
With a continuum of option prices, one can compute
the model-free implied volatility (MFIV)

MFIV[t,T] =
√
EQ[e−r(T−t)R2

[t,T]]

Article and book summaries by Vincent Zoonekynd 707/1044

(or the other impled moments) and, assuming that
MFIV/realized volatility is constant, forecast the fu-
ture realized volatility – it is a better forecast of future
volatility than historical volatility. Use implied volatil-
ity and implied skewness (either the model-free implied
skewness, defined as the MFIV, or the spread between
the IV computed from puts and calls) in your alpha to
increase performance (Sharpe ratio, etc.)

High-quality topic extraction
from business news explains

abnormal financial market volatility
R. Hisano (2012)

Analysis of a huge set of business news suggests that
news do have an impact on trade volume: for the news
associated to a given company, discard all stock-related
news, use latent Dirichlet analysis (LDA) for form 100
topics (sets of words, each word is in exactly one topic),
and use penalized regression to try to predict future re-
turns.

Factor-risk-constrained mean-variance
portfolio selection: formulation

and global optimization solution approach
S. Zhu (2011)

Constraints on the contribution of risk factors to the
portfolio risk (a quadratic term) make the portfolio op-
timization problem non-convex. For up to a few hun-
dred assets, it is amenable to branch-and-bound, with
a semi-definite relaxation.

Measuring financial market stress
K.L. Kliesen and D.C. Smith (2010)

One can build a “financial stress index” by looking at
(weekly) interest rates (government bonds with var-
ious maturities, TIPS, corporate bonds with various
credit ratings), spreads (Libor-OIS, TED), and in-
dices (emerging market bonds, VIX, bond volatility,
equities) and taking the first principal component (of
the demeaned, normalized time series) (the coefficients
(“loadings”) are only estimated once, when the index
is first constructed; they do not change with time).

Stability analysis of financial contagion
due to overlapping portfolios

F. Caccioli et al. (2012)
When banks hold diversified portfolios, those portfolios
overlap; a bankruptcy triggers a flash sale and a deval-
uation of the assets, thereby impacting other banks.
Contagion is made worse by overcrowding (ratio of the
number of banks by the number of assets).

Cascading failures in bipartite graphs:
model for systemic risk propagation

X. Huang et al. (2013)
Idem.

A model of market limit orders
by stochastic PDEs, parameter estimation,

and investment optimization
Z. Zheng and R.B. Sowers (2012)

The limit order book can be modeled with a (system
of) stochastic PDEs for mid-price (a function of time)
and volume (a function of price and time – positive vol-
umes for supply, negative for demand, and the volume
at the mid-price is zero).

Keynes meets Markowitz: the tradeoff
between familiarity and diversification

P. Boyle et al. (2009)
Knightian uncertainty (uncertainty about the param-
eters of probability distributions) can be introduced
in portfolio construction as follows: asset returns are
Gaussian, X ∼ N(µ0, V); their variance V is known
but their mean µ0 is not; we only have an estimate µ ∼
N(µ0, A), whose precision (ambiguity, A) is known; the
investor wants to maximize the expected returns, with
penalties for risk and ambiguity. The article uses a
robust optimization instead:

Max
w

Min
µ0

{
w′µ0 − λ1w′V w,

(µ− µ0)
2

diagA
⩽ λ2

}
.

Improved performance by constraining
portfolio norms: a generalized approach to

portfolio optimization
V. DeMiguel et al. (2007)

Adding an L2 penalty to the portfolio optimization
problem

Min
w
{w′V w + λ ‖w‖22 , w

′1 = 1}

is equivalent to shrinking the covariance matrix V to
V + λI; one can equivalently use a hard constraint

Min
w
{w′V w, w′1 = 1, ‖w‖2 ⩽ ν}.

Adding an L1 constraint ‖w‖1 ⩽ ` restricts the lever-
age to ` (` ⩾ 1, e.g., 1.3 for 130/30 portfolios).
Applying the conjugate gradient algorithm to the 1/N
portfolio to minimize the variance produces a sequence
of N − 1 “partial minimum variance portfolios”.

Stock return serial dependence and
out-of-sample portfolio performance

V. DeMiguel et al. (2010)
Use a VAR (or NAR – non-parametric auto-regressive
– nearest neighbour regression, using the 50 days clos-
est to today’s performance) model to build a momen-
tum portfolio (use the conditional variance and mean,
V, µ|Xt−1; it will also capture lead-lag relations; you
may want to add an L1 constraint (or penalty) to re-
duce turnover.

Article and book summaries by Vincent Zoonekynd 708/1044

The adaptive lasso and its oracle properties
H. Zou (2006)

Prefer the adaptive lasso (the coefficients of the L1

penalties are variable-specific, e.g., λ/β̂γols, with γ > 0)
to the lasso: it makes variable selection consistent.
In R, it is implemented in lqa::adaptive.lasso.

A kernel statistical test of independence
A. Gretton et al.

Covariance is not sufficient to test for independence,
but in a universal reproducing kernel Hilbert space
(RKHS), it is. “Universal” means dense in Cb(X,R)
– in practice, you will choose a kernel and hope that it
is not too far from universal. The norm of the covari-
ance operator is
HSIC = E[k(x1, x2)`(y1, y2)] + E[k(x1, x2)]E[`(y1, y2)]

− 2Ex1,y1 [Ex2 [k(x1, x2)]Ey2 [`(y1, y2)]]

and it can be estimated as
1

m2
tr(KHLH)

where
m = number of observations
kij = k(xi, xj)

`ij = `(xi, xj)

H = I =
1

m
11′

k, ` : kernels on X and Y .
One can compute the asymptotic distribution of this
estimator under the null hypothesis Pxy = PxPy and
estimate the critical value for a statistical test (or to
convert the test statistic to a p-value).

New approaches in visualization
of categorical data: R package extracat

A. Pilhöfer and A. Unwin (2013)
Use barcharts overlaid with mosaic plots (rmb) and
interactive (iWidgets, iPlots) parallel graphs (cpcp),
with the variables and values reordered to reduce over-
plotting.

Visualizing association rules: introduction
to the R-extension package arulesViz

M. Hahsler and S. Chelluboina
Here are a few ways to visualize association rules:
– Plot confidence, support, lift, number of items using
two variables as coordinates and a third as colour;

– Plot the rules as a matrix, with the antecedant (lhs)
on the x axis and the consequence on the y axis,
reordered with the seriation package and/or clus-
tered with the Jaccard distance

d(Xi, Xj) = 1− |Xi ∩Xj |
|Xi ∪Xj |

;

– Graphs (with itemsets, or items, as nodes);
– Parallel plots, etc.

Time-frequency dynamics
of the biofuels-fuels-food system

L. Vacha et al. (2012)
To study one time series x, one can look at its contin-
uous wavelet transform

Wx(u, s) =

∫
x(t)

1√
s
ψ̄

(
t− u
s

)
dt.

To study two time series x, y, one can look at the
cross-wavelet transform

Wxy(u, s) =Wx(u, s)Wy(u, s)

or, separately at the wavelet coherence coefficient
(“time and frequency correlation”)

R2(u, s) =

∣∣S[s−1Wxy(u, s)]
∣∣2

S[s−1 |Wx(u, s)|2]S[s−1 |Wy(u, s)|2]

where S is some (2-dimensional) smoothing operator,
and the wavelet phase

φxy(u, s) = argWxy(u, s).

GillespieSSA: Implementing
the stochastic simulation algorithm in R

M. Pineda-Krch (2008)
Population dynamics (predator-prey, SIR, etc.) are
often modeled as coupled ordinary differential equa-
tions (ODE), but this is only valid for large popula-
tions. For small populations, a stochastic model is
needed – stochastic simulation algorithms (SSA) are
a generalization of the simulation of a Poisson pro-
cess, modeling the state changes (alive/dead, sucepti-
ble/infected/resistant) of the individuals; they can be
exact or (faster) approximate.

GrassmannOptim: an R package
for Grassmann manifold optimization

K.P. Adragano et al. (2012)
Gradient-based optimization can be used on manifolds
other than Rn – for instance, many constrained opti-
mization problems looking for a set of orthogonal vec-
tors are unconstrained optimization problems on the
Grassmannian (e.g., the first eigenvectors, independent
components, or other dimension reduction problems).

Graphical models with R: Tutorial
S. Højsgaard (2012)

The gRbase, gRain, gRim packages provide functions
to build, use, fit graphical models (or discrete variables,
i.e., log-linear models).

Article and book summaries by Vincent Zoonekynd 709/1044

An improved algorithm
for matching large graphs

L.P. Cordella et al.
To find an isomorphism between two graphs, grow an
isomorphism between subgraphs (adding edges outgo-
ing from the subgraph, or incoming if there are no out-
going edges, or other vertices of there are no edges
to/from the subgraph), backtracking when needed.
The VF2 algorithm is implemented, for instance, in
Python’s NetworkX module.

McKay’s canonical graph labeling algorithm
S.G. Hartke and A.J. Radcliffe

To test if two graphs are isomorphic, one could try
all possible permutations, or the permutations (of the
vertices) that preserve some vertex invariant, such as
the degree (or the centrality, etc.). The degree is too
coarse an invariant, but it can be propagated: first,
partition the edges by degree; then, for each node, look
at the number of edges to each part of the partition –
this gives a finer partition; iterate until the partition
stabilizes (equitable partition). When you reach an eq-
uitable partition, split by removing an element (non-
deterministically) from one of the parts (deterministi-
cally). The smallest leaf of the resulting search tree
(the partitions are ordered) is a canonical isomorph of
the graph.
The algorithm is implemented in nauty.
It is not known if the graph isomorphism is NP-
complete.

Clustering with qualitative information
M. Charikar et al. (2004)

Here are some algorithms to cluster the vertices of a
graph whose edges are labeled “agree” or “disaggree”:
– Take a binary decision variable xij for each edge,

with xij = 0 if i and j are in the same cluster; the
condition xij = xjk = 0 =⇒ xik = 0 can be written
xik ⩽ xij + xjk; minimize∑

i,j aggree
xij +

∑
i,j disaggree

(1− xij);

truncate the solution of the linear relaxation at 2/3
and 1/3, one cluster at a time;

– Associate a vector vi to each vertex: maximizing∑
i,j aggree

vivj +
∑

i,j disaggree
(1− vivj)

subject to vivi = 1 and vivj ⩾ 0 is a semi-definite
relaxation of the previous problem.

On the identifiability
of the post-nonlinear causal model

K. Zhang and A. Hyvärinen (2009)
The PNL (post-nonlinear) model x2 = f2(f1(x1) + e1)
is not identifiable in general (e.g., in the Gaussian case)

but is, in many special cases (e.g., if f1 is not in-
vertible). It is not directly useable beyond two vari-
ables: first use conditional independence tests to find
the Markov equivalence class of directed acyclic graphs
(DAG), then use the PNL model two variables at a
time, to identify the unresolved causal relations.

Dynamic decentralized any-time
hierarchical clustering
H.V.D. Parunak et al.

Ant clustering (each ant picks up items and drops them
when it is close to similar items) can be seen as a dis-
tributed variant of k-means. It can be generalized to
produce a hierarchical clustering: start with a random
tree (with the data in the leaves) and move nodes (if
they are too dissimilar to their siblings) or merge them
(if their children are very dissimilar). (This is just a
local search algorithm, but an easy-to-parallelize one.)

Parable: a parallel random partition based
hierarchical clustering algorithm
for the MapReduce framework

S. Wang and H. Dutta
To cluster a large dataset on Hadoop:
– Split the data at random and compute a hierarchical
clustering on each node;

– Choose one of the trees as a template;
– Align all the other trees to it: swap two children of
the root if doing so makes them more similar to the
two children of the root of the template, continue
recursibely with the other nodes;

– Output the resulting tree: the shape is that of the
template, but the leaves contain sets of observations
rather than individual observations.

Probabilistic latent variable models
for distinguishing between cause and effect

J.M. Mooij
The direction of a causal relation between two random
variables X and Y can be inferred by comparing the
two models

E

X Y

and
E

X Y

(E is not observed) using Bayesian model selection.

A quick and gentle guide
to constraint logic programming via ECLiPSe

A. Niederliński (2011)
The book starts with a clear description of the dif-
ferences between constraint logic programming (CLP)
and its ancestor, Prolog: they are syntactically similar,
they explore the same tree, but CLP prunes it more
efficiently. Prolog only gives up a branch (a partial
instantiation, or grounding, of the decision variables)

Article and book summaries by Vincent Zoonekynd 710/1044

when a constraint (involving ground variables) is vio-
lated. CLP keeps track of the domain of each variable
(usually, as an interval of integers – but it could also
be an arbitrary finite set of integers) and, after each in-
stantiation, propagates the constraints – for instance,
if you know that x+y = z, x, y ∈ J0, 3K, z ∈ J5, 9K, you
can deduce that x, y ∈ J2, 3K, z ∈ J5, 6K – this prunes
a lot of branches. In addition, CLP offers more choice
for the search strategy: branch-and-bound (Prolog is
designed for satisfaction problems and requires dirty,
non-declarative tricks), variable choice heuristic (e.g.,
most constrained), value choice heuristic (e.g., mini-
mum, maximum, middle, random), random restarts,
timeout, etc. CLP also differs from operations research
(OR), which is limited to continuous and binary vari-
ables.
The rest of the book is a long list of examples for the
ECLiPSe open source CLP system, but most of the lan-
guage features are used without any explanation.

= < > =< >= is ; , not => <= :- \==
#= #< #> #=< #>= :: .. &= &:: ~ ! -> =\=
$= $< $> $=< $>= fail retractall assert
labeling findall minimize bb_min search
indomain ic_symbolic:indomain
ground suspend delete

Similarity evaluation on tree-structured data
R. Yang et al. (2005)

The edit distance between trees (number of relabeling,
delete and insert operations needed to transform one
into the other) can be computed with dynamic pro-
gramming. Alternatively, one can use the string edit
distance between the preorder (or post-order) traversal
sequences, or various histogram distances (height, de-
gree, label). Here is another histogram: transform the
tree into a binary tree

⇝

,

make it complete, and consider the histogram (empir-
ical distribution) of the binary branches

a

b c

(they can be seen as 3-grams for binary trees).

OpenTURNS reference guide
OpenTURNS is a C++ reliability library, often used
from Python, i.e., a list of methods used by engineers
to propagate uncertainty in their computations and
identify the main sources of those uncertainties.
First, the input variables can be described, as a joint
probability distribution, using empirical cumulative

distribution functions (ecdf), kernel smoothing, corre-
lation, rank correlation, common parametric distribu-
tions, copulas, mixtures (via the Fourier transform),
classical or Bayesian estimators, tests and plots for
goodness of fit, etc.
Then, one propagates uncertainty: either as [min,max]
intervals, analytically, or by solving optimization prob-
lems, or by simulations with quasi-random numbers
(low discrepancy sequences, or Latin squares (design
of experiments) – Latin squares are fixed-length mul-
tivariate low discrepancy sequences); or as location-
dispersion pairs, or quantiles, estimated by Monte carlo
simulations or Taylor expansions.
To approximate the probability of some event [g(X) ⩽
0], transform X to make it rotationally invariant
(isoprobabilistic (Nataf, Rosenblatt) transformation –
if X ∼ N(µ,C ′C), just use X 7→ C−1(X − µ))
and approximate the event [g(X) ⩽ 0] with a half-
plane (FORM: first order reliability method) or a ball
(SORM). The probability can also be approximated
with Monte Carlo simulations.

g(X) ⩽ 0

reliability
index FORM SORM

Finally, the importance of each input variable on the
uncertainly of the output can be estimated, for in-
stance, if Z = h(X), with a Taylor expansion

VarZ ≈ ∇h(µX) VarX∇h(µX)′

=
∑
i

∇ih(µX) VarX∇h(µX)′

or, simply, with Cor(Z,Xi), lm(Z~Xi), pCor(Z,Xi),
rank correlation, ∂RI/∂θ, etc.
Instead of the Taylor expansion, given

Rn Rm

Ω

h

X Y=h(X)

one can use the functional chaos expansion: the ex-
pansion of h over a basis of orthogonal polynomials
(“polynomial chaos”) wrt fX (only keep the “first” co-
efficients – since there are many indices, you can tweak
the notion of “first”, e.g., using the Lp pseudonorm, for
p < 1, of the indices).

LOF: Identifying density-based local outliers
M.M. Breunig et al. (2000)

One can use the ideas behind density-based cluster-
ing (dbscan) to define the degree of outlier-ness of a

Article and book summaries by Vincent Zoonekynd 711/1044

point p,

lofk(p) =
1

k

∑
q∈Nk(p)

`k(q)

`k(p)

`k(p) =
1

k

∑
q∈Nk(p)

dk(p, q) local reachability density

dk(p, q) = Max{dk(q), d(p, q)} reachability distance
dk(p) = distance to the kth nearest neighbour.

Being local, the method still works if the data has clus-
ters of different densities. Fraud detection is the most
prominent application of outlier detection.

A scalable and efficient outlier detection
strategy for categorical data

A. Koufakou et al. (2007)
Here are a few ideas to detect outliers in categorical
data:
– Greedy algorithm to identify observations whose re-
moval reduces the entropy the most;

– Observations containing few frequent item sets (FIS)

fpof(x) ∝
∑
F∈fis
F⊂x

Support(x)

fis = {I : |Support I| > n}

– Observations containing many infrequent itemsets

Otley(x) =
∑
I⊂x

|Support I|⩽n

1

|I|

– Observations containing rare values for most vari-
ables (i.e., consider the variables separately)

avf(x) = 1

m

∑
i

f(xi)

where f(xi) is the proportion of points in which the
ith variable has value xi.

Frequent pattern growth (FP-growth)
algorithm. An introduction

F. Verhein (2008)
The apriori algorithm for frequent item set (FIS) min-
ing

L1 = {frequent items}
= { {x} : Support {x} ⩾ n }

Ck+1 = { a ∪ {x}, a ∈ Lk, {x} ∈ L1, x 6∈ a }
Lk+1 = { c ∈ Ck+1 : Support c ⩾ n }

is expensive (double loops to compute the candidates
Ck and the frequent k-item sets Lk).
The FP-growth algorithm processes the data into an
FP-tree:
– Compute the support of each item;
– For each transaction, sort the items by decreasing
support;

– Build the corresponding prefix tree, storing the sup-
port of each prefix in the nodes, with links between
identical items.

10
8

5 2
3 1 2

1 1 1 1 1
1 1 1

a
b
c
d
e

Using the FP-tree to extract frequent itemsets is trick-
ier:
– Start with the least frequent item;
– If it is sufficiently frequent, consider the subtree it
defines, update the counts for the conditional FP-
tree and discard the leaves (the item itself);

– Process this conditional FP-tree recursively;
– Discard the item and iterate with the next least fre-
quent item, until the tree is empty.

Efficient implementations of Apriori and Eclat
C. Borgelt (2003)

The frequent itemset (FIS) mining algorithms Apriori
and Eclat both explore the same prefix tree

a b c d

ab ac ad ae bc bd be cd ce de

abc abd abe acd ace ade bcd bce bde cde

abcd abce abce abde acde bcde

abcde

breadth-first and depth-first. Eclat can be imple-
mented by storing the transactions as rows in a sparse
bitmatrix and by using the columns to compute the
intersections.

Article and book summaries by Vincent Zoonekynd 712/1044

Simple algorithms for frequent itemset mining
C. Borgelt (2010)

The split-and-merge algorithm for frequent itemset
mining preprocesses the data:
– Compute the item frequencies;
– Remove the items below the desired threshold;
– Sort the items in each transaction by increasing fre-
quency;

– Aggregate identical transactions (keep track of their
count).

The dataset is then processed recursively (divide and
conquer):
– Take the least frequent item;
– Recursively process the itemsets that do not contain
it, by removing it from the transactions and reaggre-
gating them (some may become equal);

– Recursively process the transactions that contain it:
discard the other transactions, and remove the item
from the remaining transactions.

A comprehensive assessment of methods
for de novo reverse engineering

of genome-scale regulatory networks
V. Nerendra et al. (2010)

Algorithms to identify (undirected) causal relations in-
clude:
– Relevance networks: add an edge between variables
with a significant mutual information

MI(x, y) =
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

(use a kernel estimator for the densities, and change
the order of the nested loops to acoid recomputing
the 1-dimensional densities p(x), p(y) each time);

– Add an edge between variables with a mutual infor-
mation above some threshold;

– Prune an MI-derived graph by removing the edge
with the lowest mutual information in each triangle
(Arcane);

– Methods based on higher order mutual information

H(X) =

∫
−p(x) log p(x)dx

H(X,Y) =

∫∫
−p(x, y) log p(x, y)dxdy

H(X,Y, Z) =

∫∫∫
−p(x, y, z) log p(x, y, z)dxdydz

H(X;Y, Z) = H(X) +H(Y, Z)−H(X,Y, Z)

to test if Y → X ← Z;
– Add an edge between variables with a significant cor-
relation;

– Add an edge between variables with a significant par-
tial correlation; the partial correlations can be com-
puted from the concentration matrix (the inverse of
the variance);

– The graphical lasso, i.e., and L1-penalized estimator
of the concentration matrix;

– Limited partial correlation (qp-graphs);
– Hierarchical clustering;
– Local methods.

Fast calculation
of pairwise mutual information

for gene regulatory network reconstruction
P. Qiu et al.

To compute the mutual information matrix

MIkℓ =
∫∫

pkℓ(x, y) log
pkℓ(x, y)

pk(x)pℓ(y)
dxdy

one often uses a kernel estimator of the probabil-
ity densities, which gives something like MIkℓ =∑
i log

∑
j fijkℓ. This is often implemented with

nested loops (for k ... for l ... for i ...
for j ...), but one can change the order of the loops
(to i, j, k, `) and factor out some of the computations
(bits of the kernel estimators of pk(x), pℓ(x), which
were recomputed each time).

A robust procedure
for Gaussian graphical model search

from microarray data with p larger than n
R. Castelo and A. Roverato (2006)

Relevance networks infer the structure of a graphical
model by testing if Cor(Xi, Xj) = 0, but this ignores
confounders, e.g., if B ← A→ C, then Cor(B,C) 6= 0.
Instead, one can look at the conditional independences,
which can be tested with partial correlations

Cor(Xi, Xj | Xk, k 6= i, j)

or, equivalently, the zero pattern of the concentration
matrix (the inverse of the variance). When it cannot
be estimated, e.g., if p � n, one can use the limited
partial order correlations instead,

Cor(Xi, Xj | Xk1 , . . . , Xkq).

The non-rejection rate is the proportion of subsets
{k1, . . . , kq} such that

H0 : Cor(Xi, Xj | Xk1 , . . . , Xkq) = 0

is not rejected (using the T test for zero regression coef-
ficients) – if q is large, use a random subset of the

(
p
q+2

)
subsets. The qp-procedure produces the graph whose
edges have a non-rejection rate below some threshold.
To choose q and assess its adequateness, look at the
histogram of the non-rejection rate and the qp-clique-
plot:

plot(max_clique_size ~ threshold | q,
cex = number_of_edges)

abline(h = min(p,n))

(you want enough edges to capture all the information,
but a small maximum clique size).

Article and book summaries by Vincent Zoonekynd 713/1044

Local causal and Markov blanket induction
for causal discovery

and feature selection for classification
C.F. Aliferis et al. (2010)

Review of a few algorithms to infer local causality in a
graphical model, viz computing the parents and chil-
dren (PC) of a node X ∈ V and its Markov blanket
(MB) – a minimal element of

{A ⊂ V \ {X} : ∀Y ∈ A \ {x} X ⊥⊥ Y | A}.

For a faithful graph (all dependence and independence
relations come from the graph),

PC(X) = {Y ∈ V : ∀Z ⊂ V \ {X,Y } X 6⊥⊥ Y | Z}

and MB(X) is uniquely defined and contains parents,
children and childrens’ parents (spouses) of X.
By stitching the PC(X) for all X, one can estimate the
whole (global) graphical model.
Local causality learning can also be used for feature
selection.

Hash kernels for structured data
Q. Shi et al. (2009)

The idea behing the count-min sketch (use a hash ta-
ble, with several hash functions, and ignore collisions)
can be used to approximate scalar products in high-
dimensional spaces (e.g., after the “kernel trick”) or to
compress sparse feature vectors (in text processing)

k(x, y) = 〈φ(x), φ(y)〉 ≈
〈
φ̄(x), φ̄(y)

〉
φ̄j(x) =

∑
i : h(i)=j

φi(x).

If the features are duplicated, the drop in performance
is not that bad. Hashing can be combined with random
sampling – for instance, if the features are the number
of subgraphs of size k in each isomorphism class. This
idea is implemented in Vowpal Wabbit.

New methods for separating causes
from effects in genomics data

A. Statnikov et al. (2012)
Finding the direction of a causal link from observa-
tional data alone (no intervention analysis) looks hope-
less: in terms of graphical models, A→ B and A← B
are in the same Markov equivalence class. However,
comparing the complexities of both models, i.e., of
the decompositions of P (A,B) into P (A)P (B|A) or
P (B)P (A|B), or checking if the conditional distribu-
tion is constant, i.e., B|A ⊥⊥ A, can sometimes give
the answer – many algorithms have been proposed.
Also check the “Cause-effects pairs” Kaggle competi-
tion.

A linear non-Gaussian acyclic model
for causal discovery

S. Shimizu et al. (2006)
Variables x1, . . . , xn, related by cause/consequence re-
lations described by a directed acyclic graph (DAG),
and observed with a non-Gaussian, additive noise ε,
can be modeled as x = Bx+ ε, where B is strict lower
triangular. But since x = (I − B)−1ε, independent
component analysis (ICA) can recover B = I−ICA(x),
up to a permutation of the rows and columns. The re-
sulting DAG can be pruned with statistical tests for
the strength of the causal relations.

Distinguishing causes from effects using
non-linear acyclic causal models

K. Zhang and A. Hyvärinen (2007)
The LiNGAM algorithm (ICA-based causality discov-
ery) can be extended to allow for non-linearities

xk+1 = fk+1(gk+1(x1, . . . , xk) + εk+1),

which can be reformulated as

x = f(Bs)

with B strict lower triangular. In the case of two vari-
ables, one can find g1 and g2 so that x1 be as indepen-
dent as possible from g2(x2)−g1(x1), e.g., by minimiz-
ing their mutual information with a multilayer percep-
tron (MLP) and using a statistical test to check the
independence.

Nonlinear causal discovery
with additive noise models

P.O. Hoyer et al.
Given a non-linear noise with additive non-Gaussian
noise y = f(x) + ε, plot the density of y|x for several
values of x: it should be the same curve, up to trans-
lations. This property is unlikely to hold for x|y and
strengthens the belief that x→ y.

0

1

2

3

0.00 0.25 0.50 0.75 1.00
x|y

de
ns

ity

0.00

0.25

0.50

0.75

0.0 0.5 1.0 1.5 2.0
y|x

de
ns

ity

The actual test checks that x 6⊥⊥ y and res(y ∼ f(x)) ⊥⊥
y, where y ∼ f(x) is a non-linear regression and res(·)
its residuals.

Article and book summaries by Vincent Zoonekynd 714/1044

Inferring deterministic causal relations
P. Daniušis et al. (2012)

Causal inferrence often relies on the assumption that
the noise is additive and non-Gaussian. This breaks
down in the case of a deterministic relation Y = f(X),
especially if f is invertible. However, one can expect
X ⊥⊥ f and Y 6⊥⊥ f , where ⊥⊥ denotes algorithmic
independence – the shortest description of p(x, y) is a
separate description of p(x) and f .

pX

pY

Given a family of distributions E well-suited to model a
probability density p, one can measure the complexity
of p as

D(p‖E) = Min
q∈E

D(p‖q),

where
D(p‖q) =

∫
p(x) log

p(x)

q(x)
dx

is the Kullback-Leibler divergence. The information-
geometric causal inference (IGCI) method computes

CX→Y = D(pX‖EX)−D(pY ‖EY)

and concludes that X → Y if CX→Y < 0. If EX = EY
only contains the uniform distribution U(0, 1),

CX→Y =

∫ 1

0

log |f ′(x)| p(x)dx

≈ 1

m− 1

m−1∑
i=1

log

∣∣∣∣ yi+1 − yi
xi+1 − xi

∣∣∣∣ ,
where x1 ⩽ · · · ⩽ xm.

The architecture of SciDB
M. Stonebraker (2011)

SciDB is a database for scientific data, not unlike a
column store, but with arrays instead of columns. It
can be queried with a SQL-like language (AQL) or a
more precedural one (AFL). In addition to relational
operators (join, etc.), it provides scientific operations
(matrix multiplication, singular value decomposition
(SVD), regression, machine learning). Data is stored in
overlapping chunks, because many operations (on time
series, images, geographical data, etc.) require neigh-
bouring values. It also supports versioning (the data
is never deleted, but stored to optimize queries with
current data).

Latent Dirichlet allocation:
towards a deeper understanding

C. Reed (2012)
A topic is a probability distribution on a collection of
words. Latent Dirichlet allocation (LDA) is similar to
k-means, but with bags of words instead of vectors in
Rn: it models a “mixture” of topics, one step of the
algorithm assigning each text to the nearest topic, the
next refining the topics by “averaging” the texts asso-
ciated with it.

The R package metaLik
for likelihood inference in meta-analysis

A. Guolo and C. Varin (2012)
Meta-analysis (combining the result of many studies,
without access to the raw data of each), boils down to
a seemingly simple random-effects model: estimate β
in

Yi = βi + ei

βi = β + εi

ei ∼ N(0, σ2
i) precision of study i

εi ∼ N(0, τ2) heterogeneity of the studies.

Unfortunately, most statistical procedures (tests, con-
fidencen intervals, etc.) rely on asymptotic results: the
small size of the sample (the number of studies aggre-
gated) makes them invalid. In this context, higher-
order expansions (of the log-likelohood) are preferable.

Non-parametric kernel distribution function
estimation with kerdiest: an R package
for bandwidth choice and applications

A.Quintela-del-Río and G.Estévez-Pérez (2012)
If you are more interested in the cumulative distribu-
tion function (cdf) than the probability distribution
function (pdf), e.g., probability of exceedance, mean
return period, quantiles, etc., the optimal bandwidth
for kernel density estimation is different.

Spherical k-means clustering
K. Hornik et al. (2012)

Spherical k-means, often used in text clustering, refers
to k-means for the cosime dissimilarity, i.e., after
projecting the data on the sphere, Minp,c

∑
i 1 −

cos(xi, pc(i)), i.e.,

Min
M,p

∑
ij

µij(1− cos(xi, pj)),

with µij ∈ {0, 1} and M1 = 1. In the fixed point al-
gorithm, local improvements are possible (change the
membership of a single observation; this also changes
the prototypes p). Extended spherical k-means mini-
mize ∑

ij

wijµ
m
ij (1− cos(xi, pj)),

with µij ∈ [0, 1] and M1 = 1 (m and w are given).

Article and book summaries by Vincent Zoonekynd 715/1044

ClustOfVar:
an R package for clustering of variables

M. Chavent et al. (2012)
PCAMIX is a generalization of principal component
analysis (PCA) that allows both quantitative and qual-
itative variables. The first component is

Argmax
u∈Rn

∑
j quantitative

variable

Cor2(u,xj)+
∑

j qualitative
variable

Corr2(u,yj)

where Corr(u,y) is the correlation ratio, i.e., the pro-
portion of the variance of u explained by y. It can
be computed from the singular value decomposition
(SVD). It can also be used to cluster the variables,
by considering

Argmax
u1,...,uk∈Rn

C1,...,Ck partition
of the variables

k∑
ℓ=1

∑
j∈Cℓ∩Quant

Cor(u,xj) +
∑

j∈Cℓ∩Qual
Cor(u,yj).

This can be approximated by hierarchical clustering of
the variables, or a k-means-like algorithm.

The devil is in the tails: actuarial
mathematics and the subprime mortgage crisis

C. Donnelly and P. Embrechts (2010)
The default times, needed to price CDOs, are often
modeled with a 1-parameter Gaussian copula and (say)
exponential margins. This is inadequate: it implies
asymptotic independence – one should use another cop-
ula or, at least, stress the model with other copulas.

R and data mining: examples and case studies
Y. Zhao (2013)

Examples (working code with little or no explanations
of what is computed) of data mining algorithms in R.
The paper version also contains case studies. The top-
ics include:
– Decision trees: party::ctree, rpart, random-
Forest;

– Regression: lm, glm, nls;
– Clustering: kmeans; cluster::pam, cluster::
clara, fpc::pamk; hclust; fpc::dbscan;

– Outlier detection: boxplot.stats; DMwR::lo-
factor, Rlof::lof; dbscan, kmeans, time series
models, extremevalues, mvoutlier, outliers;

– Time series: decompose, stl, timsac::decomp,
ast::tsr; arima; dwt; clustering with dwt::
dwtDist; classification after transfroming the time
series into features, e.g., with dwt, or with k-nearest-
neighbours (RANN::nn);

– Association rules: arules::apriori, arules::
eclat, arulesViz;

– Text mining: twitterR::userTimeline; tm:
vectorSource, Corpus, tm_map, getTransform-
ations, TermDocumentMatrix, find*; wordcloud;
textcat (n-grams), lda, topicmodels;

– Social network analysis: igraph, sna

There is no mention of the forecast and caret pack-
ages.

An efficient algorithm
for automatic peak detection

in noisy periodic and quasi-periodic signals
F. Scholkmann et al. (2012)

The local maxima scalogram (LMS)
mk,i = 1xi<xi−k, xi>xi+k

may help detect peaks in a signal.

Local maxima scalogram

1:length(y)
1:

di
m

(m
)[

1]

1:length(y)

1:
(2

 *
 j)

Index

as
.v

ec
to

r(
su

ns
po

ts
)

Graph databases
I. Robinson et al. (2013)

Relational databases are cumbersome and inefficient
when dealing with graphs (self-joins, recursive joins),
and nullable columns complicate queries even fur-
ther. NoSQL databases can fake foreign keys, but
all the work has to be done by the application.
Graph databases use index-free adjacency (the rela-
tions are not stored in a global, separate index, but
locally, bidirectionally, at each node), often separate
graph structure from property data (not unlike col-
umn stores), and provide efficient graph-theoretic oper-
ations (depth-first search, breadth-first search, shortest
path (Dijkstra), A*, etc.). They can be used for pre-
dictive modeling, e.g., identify missing links (triadic
closure: if A–B and A–C, then B–C is likely) or im-
portant links (a local bridge is a relation that leads to
a different part of the network).
Applications include social data (find colleagues with
similar interests, colleagues of colleagues interested in
a given topic, etc.), email forensics, recommendations,
geographical data (parcel delivery and shortest path
queries, R-trees), master data management, network
and data center management (machines, applications,
etc.), access control (dealing with complex organiza-
tion structures and product hierarchies requires recur-
sive joins in SQL), bioinformatics (protein networks).
Data modeling is very similar to entity-relation (ER)
modeling: use a node for each entity (and for most re-
lations: only encode simple relations as relationships),
avoid attributes on relationships (prefer fine-grained
relationships). Time can be stored in linked lists (pre-
vious/next) or date nodes (or, even, a timeline tree:

Article and book summaries by Vincent Zoonekynd 716/1044

each day points to its month, each month points to its
year). Optimizing a graph database just means adding
direct links for relations that would otherwise require
several links.
Neo4j provides several APIs: a core API (in Java,
with Node and Relationship objects), a traversal API
(more declarative), and Cypher (a SQL-like language
– the book has a lot of examples); SPARQL (for RDF)
and Gremlin are other query languages. It can be em-
bedded (either persisted on disk, or in-memory), used
as a server (REST, JSON – the server can be extended:
use JAX-RS annotations to indicate to which URIs a
class/method responds), supports transactions, recov-
ery, master-slave replication.

Data-intensive text processing
with MapReduce

J. Lin and C. Dyer (2010)
1. With the help of infrastructures such as MapRe-
duce, the “unreasonable effectiveness of data” has
made data-intensive scientific discovery the “fourth
paradigm of science” (after theory, experiment and
simulations).
Contrary to most books on MapReduce or its im-
plementation Hadoop, which hide actual contents (if
any) under complicated installation instructions (this
is Java) and boilerplate code (this is Java), this one
focuses on MapReduce algorithm design – no actual
code, just clear Python-like pseudo-code.
2. MapReduce assumes that failures are common,
moves processing closer to the data and processes data
sequentially (no random access). It can be seen as a
cloud analogue of the map and fold primitives of func-
tional programming.

map: (k1, v1) −→ [(k2, v2)]

reduce: (k2, [v2]) −→ [(k3, v3)]

The Hadoop infrastructure works as follows:
– The input data is stored in a distributed file sys-
tem (HDFS), often serialized (ProtocalBuffers, Avro,
Thrift); the files are stored on data nodes (each file is
replicated three times); the metadata is on the name
node.

– The mapper receives the data, as key-value pairs,
and emits more key-value pairs.

– The combinator (optional) pre-aggregates the data:
for instance, when counting words, emitting pairs
(w, 1) is inefficient
def mapper(id, terms):
for term in terms:

emit term, 1
def reducer(term,counts):
emit term, sum(counts)

and the counts can be pre-aggregated.
– The partitionner (optional) groups the data, usually
by key but, for some applications, you may want to
use only part of the key.

– The framework shuffles and sorts the data (transpar-
ently);

– The reducer receives (key,list) pairs and emits more
key-value pairs.

– The jobtracker oversees the MapReduce jobs (on the
job submission node), the tasktrackers, on each data
node, run the code.

3. Here are a few MapReduce design patterms:
– In-mapper recombiner: while it is possible to pre-
aggregate the data in a combiner, it is often more
efficient to do it in the mapper – not in its map
method (called for each key-value pair), but in its
close method (called when the node has finished
processing all the data). You may need to flush the
accumulator if it gets too large. For some opera-
tions, e.g., the mean, the combiner and the reducer
do different things.
def mapper(t,x):
emit t, (x,1)

def combiner(t, xcs):
xs, cs = zip(*xcs) # unzip
emit t, (sum(xs), sum(cs))

def reducer(t, xcs):
xs, cs = zip(*xcs) # unzip
emit t, sum(xs)/sum(cs)

– Pairs: to compute co-occurrences, use pairs of words
as keys.

– Stripes: to compute co-occurrences, use one word as
key, and a hash table as value.

– Order inversion: if you need the result of the ag-
gregation before it is ready, e.g., to compute relative
frequencies, duplicate the data (e.g., one copy for the
word count, another for the word pair count), make
sure the intermedite result (word count) is computed
first (set the sort order), and partition the data ac-
cordingly.
emit (w1,*):1
emit (w1,w2):1
emit (w1,w3):1
partition on w1

– Value-to-key conversion: when the reducer must pro-
duce sorted data, ask the framework to sort it before,
by putting the value to sort in the key.

– Reduce-side join: for a 1-to-1 join of T and S, emit
k : (t, T) and k : (s, S) (where s and t are the pri-
mary keys of S and T , k the column to join on, and
T , S the other columns), for a 1-to-many join, emit
(k, s) : S and (k, t) : T , define a custom partitioner,
ensure that the values of the small table come first
and cache them.

– Map-side join: if the data has already been par-
titionned on disk, e.g., as a result of a previous
MapReduce process, map over the larger set after
reading the corresponding chunk of the smaller one
in the mapper – no reducer is needed.

– Memory-backed join: put the smaller dataset into
memory (or some distributed key-value store: Mem-
cached, etc.) in every napper – if it does not fit into
memory, partition it into n pieces and perform n
in-memory joins.

Article and book summaries by Vincent Zoonekynd 717/1044

4. An inverted index maps words to sorted lists of
document ids (there may be some data (“payload”)
with the id: term frequency, position, style (title or
not), html link, linguistic function (pos, type of en-
tity: place, person), etc.). For efficient set operations
(intersection, union), the list should be sorted: do not
emit term:(id,freq), but (term,id):freq to have
the framework sort the ids (you need a custom parti-
tionner to ensure that all the messages for a given term
are sent to the same reducer).
The volume of data is huge: the process can benefit
from compression.
– Only store the differences (d-gaps) between docu-
ment ids – since they are sorted, the numbers are
smaller.

– Variable length integer coding: set the 8th bit to zero
as long as the number is not finished.

– Group varInt: group the numbers by 4 and prefix
each group with a byte indicating (on 2 bits) the
length of each number.

– Simple-9: in each 32-bit word, use 4 bits to indicate
how the remaining 28 bits are split into equal-sized
parts.

– Unary code: encode n as n− 1 1s and one 0.
– γ-code: encode n as blog2 nc 1s, a 0, and the binary

encoding of the number, without the leading 1.
– δ-code: similar to the γ code, but the first part is
not unary-encoded but γ-encoded.

– Golomb code: choose b, encode q = b(n − 1)/qc in
unary, encode the remainder r = n− 1− qb in trun-
cated binary (the smaller numbers are encoded on
k bits, the others on k + 1 – unassigned k-bit codes
followed by 0 or 1).

MapReduce is a poor solution for document retrieval,
but you could partition the documents, and cache the
most-requested results.
5. Many sequential graph algorithms rely on some
global data structure (e.g., a priority queue): they are
not straightforward to implement in MapReduce. For
instance, breadth-first search (Dijkstra’s algorithm)
can be implemented as a sequence of MapReduce it-
erations: store the estimated distance from the source
in each node, process each node in each iteration, stop
when the distances no longer change – there are as
many iterations as the longest shortest path (you also
need to keep track of the adjacency list, e.g., by emit-
ting it as well).

def mapper(id,d):
for a in neigh(id):
emit a, d+w

def reducer(id,ds):
emit id, min(ds)

PageRank (a random walk on the graph, with tele-
portation, computing a score (equilibrium probabil-
ity) for each node), hits (random walk on a bipartite
graph of hubs and authorities, computing two scores for
each node on the initial graph – the graph is usually

query-dependent: pages containing the search terms
and their neighbours), salsa (idem) can be computed
in the same way, each iteration spreading the probabil-
ity mass (but pay attention to dangling nodes). Com-
biners can improve performance, if you partition the
data with some heuristic (sort by zipcode, school, lan-
guage, domain name, etc.). To avoid underflow, use
log-probabilities: they can be added as

a⊕ b =

{
b+ log1p(ea−b) if a < b

a+ log1p(eb−a) if a ⩾ b.

6. If a statistical model contains parameters θ (un-
observed, to be estimated), hidden variables y (unob-
served, but we do not care much about their values),
and data x (observed), maximum likelihood estimators

(θ̂, ŷ) = Argmax
(θ,y)

P (X = x, Y = y; θ)

give a very noisy estimator of θ: prefer the marginal
likelihood estimator (i.e., integrate y out):

θ̂ = Argmax
θ

P (X = x; θ)

= Argmax
θ

∏
i

∑
y

P (X = xi, Y = yi; θ).

The expectation-maximization (EM) algorithm is a hill-
climbing algorithm that attempts to maximize the
marginal log-likelihood:

θn+1 ← Argmax
θ

∑
x,y

P (x, y; θn) logP (x, y; θ).

This single formula is often, confusingly, presented as
two steps:
– Estimation of the probability distribution X,Y | θ =
θn in the E step (it is a probability distribution: in
the discrete case, it is a set of probabilities);

– Computation of the expected log-probability∑
x,y

P (x, y; θn) logP (x, y; θ)

(it is a function of θ: if it is explicitly computed, it
is also part of the E step);

– Maximization, in the M step.
Given a hidden Markov Model (HMM), the problems
of computing the probability that the model gener-
ated the data (used for clustering or outlier detection)
and computing the most probable sequence of hidden
states that could generate the observed data can be
solved with dynamic programming (the forward algo-
rithm computes the probability that the process is in
state q at time t; the Viterbi algorithm computes the
probability of the most probable sequence of states
leading to state q at time t): they can be implemented
with MapReduce, by processing one column of the dy-
namic programming table (one time t) in each itera-
tion; each mapper receives a small part of the data;
each reducer computes a cell in the dynamic program-
ming table. Similarly, estimating the parameters of
a HMM (forward-backward algorithm) can be imple-
mented with EM.

Article and book summaries by Vincent Zoonekynd 718/1044

HMM can be used, for instance, to align texts in dif-
ferent languages:

P (target, alignment | source)

=
∏

P (ti+1|ti)×
∏

P (ti|sai)

= language model× translation model.

MapReduce can also be used for parallel but non-data-
intensive tasks.
The book also mentionned, with few details,
other technologies in the MapReduce/Hadoop ecosys-
tem: Mahoot (machine learning), HBase (tables in
HDFS), Cassandra (key-value store), Giraph (bulk-
synchronous parallel (BSP) framework), GPU pro-
gramming (e.g., for streaming data), Pig, Hive, Hadapt
(data processing).

Financial risk modelling
and portfolio optimization with R

B. Pfaff (2013)
Each chapter is structured in the same way: terse pre-
sentation of a few mathematical notions (consider it
as a mere check-list), list of relevant R packages (not
unlike the CRAN task views), and (more interesting)
examples.
The topics covered are
– Risk measures: VaR, ES, mVaR, mES, coherent mea-
sures;

– Efficient frontier;
– Distributions to model returns: generalized lambda
distribution (GLD), GHD (ghyp, lmomco::pargld,
fBasics::gldFit);

– Extreme value theory: block maxima, peaks over
thresholds, exceedance declustering (evir::gev,
esmev::gev.fit, fExtremes::gevFit, ismev::
rlarg.fit, fExtremes::mrlPlot, gpdFit, de-
Cluster);

– Volatility: GARCH models (fGarch::garchFit,
rugarch);

– Dependence: correlation, rank correlation, Kendall’s
τ , lower tail dependence, copula GARCH model
(fit a GARCH model to individual time series, and
then a copula to the (joint) residuals), mixture
of copulas (QRM::fit.tcopula, QRM::rcopula.t,
copula::dcopula);

– Robust estimation: M-estimator, MM-estimator,
MVE, MCD, S-estimator, SDE, OGK estimator
(rrcov::Cov*);

– Robust optimization: scenario-based, box or elliptic
uncertainty set (FRAPO::Socp, Rsocp);

– Diversification: risk contribution, diversification ra-
tio, defined with the volatility or some down-
side risk measure such as the tail dependence
coefficient (FRAPO::P*, FRAPO::dr, FRAPO::cr,
Portfolio::Analytics::optimize.portfolio);

– Portfolio optimization with VaR, ES or draw-
down in the objecive or the constraints
(fPortfolio::minRiskPortfolio, FRAPO::P*);

– Time series models: ARMA, VAR, VECM, SVAR,
SVEC (urca, vars);

– Tactical asset allocation: Black-Litterman, copula
opinion pollomg, entropy polling (TTR, fTrading,
BLCOP).

Lectures on modern convex optimization
A. Ben-Tal and A. Nemirovski (2012)

Convex programming is too general to be amenable to
practical, efficient methods, but many special cases are
– linear, conic quadratic, semi-definite programming
are all examples of conic programming.
1. To find a lower bound of

x∗ = Min
x
{f(x) : ∀i gi(x) ⩾ bi},

consider a linear combination of the constraints∑
i

yigi(x) ⩾
∑
i

yibi

(with y ⩾ 0). If f(x) ⩾
∑
i yigi(x), then

∑
yibi is a

lower bound. The best such lower bound is

Max
y⩾0

{∑
i

yibi : ∀x f(x) ⩾
∑
i

yigi(x)

}
.

This is the dual problem; its optimal value is less than
that of the primal (weak duality). If f and g are linear,
set x to +1 and −1: the inequalities become equalities,
and the dual of

Min
x
{c′x : Ax ⩾ b}

is
Max
y
{b′y : y ⩾ 0, A′y = c}.

For linear problems, there is a strong duality: the pri-
mal has an optimal solution iff the dual has, and the
optimal values are the same – but there are two ways in
which a problem can fail to have a solution: it can be
infeasible, or unbounded; if the primal is unbounded,
then the dual is infeasible, but the converse if false:
both can be infeasible.
Applications of linear programming include com-
pressed sensing (`1 penalty as an appoximation of a
(non-convex) `0 one), support vector machines (SVM),
discrete-time linear dynamic systems.
Replacing the linear objective function by an arbitrary
(convex) function is not the only way of generalizing
linear programming into non-linear programming – one
can keep the objective function linear but replace the
constraints Ax − b ⩾ 0 with Ax − b ≽K 0, where ≽K
denotes the partial order induced by a closed, pointed
convex cone with non-empty interior K. In the dual
problem, y ⩾ 0 gets replaced by y ≽K∗ 0, i.e., y ∈ K∗,
the dual cone. This is conic programming.
To formulate the dual of

Min
x
{c′x : Ax ≽K b},

we are looking for a lower bound on the objective

c′x ⩾ 〈λ,Ax〉 ⩾ 〈λ, b〉

Article and book summaries by Vincent Zoonekynd 719/1044

for some λ. But an arbitrary λ does not preserve in-
equalities: the dual of K is the set of λ that always
do:

K∗ = {λ : ∀x ≽K 0 〈λ, x〉 ⩾ 0}.

For the dual, consider

Max
λ
{〈λ, b〉 : λ ≽K∗ 0, ∀x〈c, x〉 ⩾ 〈λ,Ax〉}.

The last condition can be written as

∀x 〈c, x〉 ⩾ 〈A ∗ λ, x〉.
By setting x to a basis vector and its opposite, we see
that this is equivalent to c = A∗λ. The dual is there-
fore:

Max
λ
{〈λ, b〉 : λ ≽K∗ 0, A∗λ = c}.

The primal can be formulated in the same way (inter-
section of a cone and an affine subspace) by adding a
variable y = Ax− b. More compactly:

primal : Min
y
{〈d, y〉 : y ∈ L − b, y ≽K 0}

dual : Max
λ
{〈b, λ〉 : λ ∈ L ⊥ + d, λ ≽K∗ 0}.

Strong duality holds if the primal is strictly feasi-
ble, i.e., ∃x Ax − b �K 0 (strict inequality), i.e.,
◦
K ∩ (L − b) 6= ∅. (Without strict feasibility, any-
thing can happen: primal solvable but dual infeasible,
etc.)
2. The Lorentz cone

Lm =

{
x ∈ Rm : xm ⩾

√
x21 + · · ·+ x2m−1

}
;

is self-dual. A second order cone program (SOCP)
is

Min
x
{c′x : Ax− b ∈ Lm1 × · · · × Lmk}.

The condition Ax− b ∈ Lm can be written,(
Dx
p′x

)
−
(
d
q

)
∈ Lm,

where (
D d
p′ q

)
=
(
A b

)
,

i.e., p′x− q ⩾ ‖Dx− d‖2.
The dual of

Min
x
{c′x : ∀i ‖Dix− di‖2 ⩽ p′iq − qi}

is
Find µ, ν

To maximize
∑
i

µ′idi + νiqi

Such that
∑
i

D′iµi + νipi = c

∀i ‖µi‖2 ⩽ νi.

Optimization problems rarely arise in this form: they
have to be somehow transformed. For the objective,
replace “minimize f(x)” with “minimize t such that
t ⩾ f(x)”. For the constraints, there is a very, very
long list of functions or constructions that can be used
in SOCPs; here are a few of them.

– The Euclidian norm: ‖x‖2 ⩽ t;
– Its square:

‖x‖22 ⩽ t ⇐⇒ x′x+ 1
4 (t+ 1)2 ⩽ 1

4 (t− 1)2

⇐⇒
∥∥∥∥(x

1
2 (t− 1)

)∥∥∥∥
2

⩽ t+ 1

2

– Convex quadratic forms (i.e., quadratic program-
ming):

x′C ′Cx+ q′x+ r ⩽ t

⇐⇒
∥∥∥∥(Cx

1
2 (t+ q′x− r)

)∥∥∥∥
2

⩽ 1
2 (t− q

′x− r);

– Many (rational) powers;
– The Lp norm;
– etc.
Robustifying a linear program with elliptic (or, more
generally, conic-quadratic representable) constraints
gives a SOCP. For instance, the robustification of the
constraint ax− b ⩾ 0 is

Min
a∗,b∗

{
a∗x− b∗ :

∥∥∥∥(a∗ − ab∗ − b

)∥∥∥∥
2

⩽ ε
}
⩾ 0

i.e.,

ax− b+Min
u,v

{(
x
−1

)′(
u
v

)
:

∥∥∥∥(uv
)∥∥∥∥

2

⩽ ε
}
⩾ 0

i.e.,

ax− b− ε
∥∥∥∥(x
−1

)∥∥∥∥
2

⩾ 1.

(To robustify the objective c′x, replace it with a new
variable t, add the constraint c′x ⩽ t, and robustify
it.) The robustified problem can be used to assess the
stability of the objective, the solution, the feasibility
status of a linear problem.
3. Semi-definite programming (SDP) is another
special case of cone programming, where the (self-dual)
cone is that of positive semi-definite symmetric matri-
ces. One can assume there is only one inequality –
otherwise, put them in a single block-diagonal matrix.
It is a generalization of conic quadratic programming:(

x
t

)
∈ Lk ⇐⇒

(
tIk−1 x
x′ t

)
≽ 0.

In addition, SDP can use the largest eigenvalue (or
singular value), the sum of the k largest eigenvalues
(or singular values), the spectral norm, (some rational
powers of) the determinant, non-negative polynomials,
trigonometric polynomials, etc. Applications include
the stability of dynamical systems (eigenvalues) and
robust cone programming.
Semi-definite programming provides relaxations of
combinatorial problems, finer than LP relaxations, as
follows. Formulate the problem as a quadratic program

Article and book summaries by Vincent Zoonekynd 720/1044

with quadratic constraints (e.g., x ∈ {0, 1} is equiv-
alent to x2 − x = 0 or, since we prefer inequalities,
x2 − x ⩽ 0, x− x2 ⩽ 0).

x∗ = Argmin
x
{f(x) : g(x) ⩽ 0}

Consider the dual problem, i.e., transform the con-
straints to penalties, with coefficients to be determined,

fλ(x) = f(x) + λg(x), λ ⩾ 0;

this provides a lower bound on f(x∗)

ζ∗ = inf
x
fλ(x) ⩽ f(x∗).

But, since fλ(x) is a quadratic form, ∀x ζ ⩽ fλ(x)
means that fλ(·) − ζ ≽ 0. Finding the best bound is
therefore a semi-definite program:

(ζ∗, λ∗) = Argmax
ζ,λ

{ζ : fλ(·)− ζ ≽ 0, λ ⩾ 0}.

The SDP relaxation of a quadratically-constrained
quadratic program can also be formulated as follows:
replace inhomogeneous quadratic forms

g(x) = x′Ax+ 2b′x+ c

with homogeneous ones

G(x, t) = x′Ax+ 2tb′x+ ct2 =

(
t
x

)′(
c b′

b A

)(
t
x

)
,

then, replace the quadratic forms x′Gx with tr(GX).
The relaxation corresponds to the embedding

Rn−→Sn+1
+

x 7−→
(
1
x

)(
1
x

)′
.

Applications of SDP relaxation include graph prob-
lems (Shannon capacity, maxcut), other combinatorial
problems, chance constraints.
Finding the best inner ellipsoidal approximation of a
polytope defined by inequalities (or, more generally, of
an intersection of ellipsoids) is a SDP.
Finding the best outer ellipsoidal approximation of a
polytope defined as the convex hull of its vertices (or,
more generally, of a union of ellipsoids) is a SDP.
4. Convex programming is a polynomial problem: the
ellipsoid method needs O(n2 log ε−1) steps (and each
steps needs O(n2) operations) and goes as follows.
Start with an ellipsoid containing the optimal set. If
its center is not feasible, there exists a separating hy-
perplane between the center and the (convex) feasible
set: use it to cut the ellipsoid. If it is feasible, the (sub)
gradient of the objective defines a hyperplane, on one
side of which the optimal set lies: use it to cut the el-
lipsoid. In both cases, take an outer approximation of
the cut elllipsoid and iterate.

Interior point methods are interior penalty meth-
ods, i.e., to solve

Min
x
{c′x : x ∈X },

they solve a sequence of unconstrained problems

x∗(t) = Argmin
x

tc′x+K(x)

where K is a barrier function (if xn → x and x ∈
∂X , then K(xn) → +∞) and t increases, (x∗(t))t⩾0

traces the central path (each is solved with the Newton
method, which converges quadratically if sufficiently
close to the solution).
With conic programming, a clever choice of the barrier
function

x ⩾ 0⇝ − log x

X ≽ 0⇝ − log detX

x ∈ Lk ⇝ − log(x2k − x21 − · · · − x2k−1)

and tn+1 = 1.1tn, a single Newton step suffices for each
value of t and the algorithm converges in O(log ε−1)
steps. It is easier to monitor convergence and stay close
to the central path if one traces both the primal and
dual central paths; they are related by the augmented
complementary slackness relation

x∗(t) = −t−1∇K(s∗(t))

s∗(t) = −t−1∇K(x∗(t))

(since the cone is self-dual, the barrier is the same for
both problems).
5. Interior point methods are polynomial, but for
large-scale problems O(n3) or O(n2) will not do: if
we want the algorithm to terminate in a reasonable
amount of time, we can afford to evaluate the objec-
tive, its gradient, but nothing fancier.
There are information-theoretic bounds on the num-
ber of steps needed to achieve a given precision ε, e.g.,
O(log n/ε2) as n → ∞ for ball constraints (and much
worse for box constraints) – it is almost independent
of the dimension.
Mirror descent is a generalization of the projected
gradient

xn+1 ← Proxxn(γtf ′(xt)),
where one replaces the norm, distance and gradient to
better suit the problem. For instance,

– Over an L2 ball, ‖·‖2, ω(x) = 1
2x
′x and the proxy

mapping

proxxξ = Argmin
y∈X

ω(y) + 〈ξ − ω′(x), y〉

= Argmin
y∈X

‖x− ξ − y‖2

is the projection of x− ξ on X;

– Over the simplex ∆n, use ‖·‖1 and ω(x) =∑
xi log x1;

– Over the spectahedron {x ∈ Sn : x ≽ 0, trx ⩽ 1},
use ‖λ(x)‖1 and ω(x) =

∑
i λi(x) log λi(x).

Article and book summaries by Vincent Zoonekynd 721/1044

A convex-concave saddle point problem (e.g., equilib-
rium, in a zero-sum game)

Min
x∈X

Max
y∈Y

φ(x, y),

where φ is convex in x, concave in y, can be solved with
mirror descent by considering the vector field (φx, φy)
instead of the gradient.
There are a few variants: stochastic mirror descent if
the gradient is noisy (the expected error converges in
the same way), bundle mirror descent (momentum, to
address plateau problems), etc.
Most non-smooth optimization problems are of the
form

Min
x∈X

Max
y∈Y

φ(x, y)

and can be smoothed as (Nesterov smoothing)

Min
x∈X

Max
y∈Y

φ(x, y) + d(y).

The mirror prox algorithm (a variant of saddle point
mirror descent) can be used to solve those prob-
lems. Convergence, for a non-smooth optimization
problem, using only first-order information, is at best
O(1/sqrtt), but it can be brought to O(1/t) after such
a transformation. Examples of non-smooth functions
that can be used in this wayinclude:
– The Lp norm, ‖x‖p = Max∥y∥q⩽1〈y, x〉.
– The Lp norm of the singular vectors of a matrix;
– The Lp-norm of the positive part,∥∥x+∥∥

p
= Max
∥y∥q⩽1

y⩾0

〈y, x〉

– The maximum entry of a vector, or the sum of the
k largest entries

sk(x) = Max
y∈∆n,k

〈y, x〉

where ∆n,k = [1′y = k, y ⩾ 0];
– The sum of the k largest eigenvalues

Sk(x) = Max
y≽0

tr y=k

tr(yx).

Maximum likelihood estimation
of a multi-dimensional log-concave density

M. Cule et al. (2010)
The log-concave maximum likelihood density estima-
tor is well-defined, and asymptotically finds the log-
concave density that minimizes the Kullback-Leibler
divergence with the true density. Its support is the
convex hull of the sample data (log-concave distribu-
tions have thin tails).
The estimator can be used for data visualization (e.g.,
checking for the presence of elliptic contours), classi-
fication (estimate the density of each class), cluster-
ing (fit a mixture of log-concave distributions with
the EM algorithm, as you would a mixture of Gaus-
sians), monte Carlo estimation of functionals of the

density (probabilities, moments, expectations, entropy,
etc.), mixing detection (compare the log-concave esti-
mator with a mixture of log-concave densities, or with
f(x) ∝ exp(φ(x)c ‖x‖2), with φ concave and fixes val-
ues c > 0 (this also accounts for fat tails), or with
a permutation test comparing the data with samples
from the estimated distribution).
Contrary to kernel-based estimators, this does not re-
quire the choice of a bandwidth matrix (problematic in
high dimensions).
The density is found by minimizing

σ(y1, . . . , yn) = −
1

n

∑
yi +

∫
C

exphy(x)dx

where yi = log f̂(xi) are the log-densities evaluated at
the data points xi, hy is the smallest concave function
with ∀i hy(xi) ⩾ yi, the first term is the (negated)
log-likelihood, the second term can be thought of as a
Lagrangian term (we want the density to integrate to
1), C is the convex hull of the points (the support of
the density). Since the concave function hy is affine
on each triangle of a triangulation of the points (ob-
tained as a side result of the QuickHull algorithm), the
integral is easy to compute. The objective fuction is
convex, but non-differentiable: one could use Newton’s
algorithm with a subgradient, but convergence would
be slow (linear or worse, versus quadratic for differen-
tiable functions), or Shor’s r algorithm (space dilation
in the direction of the difference of two consecutive
gradients – empirically faster)
There is an R implementation in the LogConcDEAD
package (in dimension 1, also check logconden).

Efficient rank reduction
of correlation matrices

I. Grubišić and R. Pietersz (2005)
A constrained optimization problem

Max
x∈Rn

{f(x) : g(x) = 0}

can be formulated and solved as an unconstrained one
if the feasible set M = [g(x) = 0] ⊂ Rn is a manifold
M on which you can explicitly compute the gradient
and (for the Newton and conjugate gradient methods)
the hessian: the gradient comes from the isomorphism
between TyM and T ∗yM induced by the Riemannian
structure,

Fy(u) = 〈(gradF)y, u〉TyM ,

the hessian from the Levi-Civita connection and the
updates to the solution (“moving in some direction”)
are given by parallel transport alomg geodesics.
In the case of rank-constrained correlation matrices,
the feasible set is not a manifold (it is a stratified man-
ifold, each stratum corresponding to a value for the
rank), but it can be described as the quotient of a
manifold (the “Cholesky manifold”) by the orthogonal

Article and book summaries by Vincent Zoonekynd 722/1044

group. The resulting algorithm is equivalent to opti-
mization using a parametrization with spherical coor-
dinates.

Sparse inverse covariance selection via
alternating linearization methods

K. Scheinberg et al. (2010)
There are many algorithms for sparse inverse covari-
ance selection (SICS), i.e., sparse estimators of the in-
verse covariance matrix corresponding to sparse graph-
ical models (Σ−1ij = 0 iff Xi ⊥⊥ Xj |Xk,k ̸=i,j):

Max
X≻0

log detX − 〈X,Σ〉+ λ ‖X‖1 .

The alternating linearization method solves the opti-
mization problem

Min
x
f(x) + g(x)

with f and g convex, by rewriting the problem as

Min
x,y
{f(x) + g(y) : x = y}

and separately updating x and y. It can be adapted to
solve the SICS problem.

Model selection
through sparse maximum likelihood estimation

for multivariate gaussian or binary data
O. Banerjee et al. (2006)

The sparse inverse covariance matrix

Argmax
X≻0

log detX − trSX − ρ ‖X‖1 ,

where S is the sample variance matrix, can be esti-
mated by solving the dual problem, which is of the
form

Max
W
{log detW : ‖W − S‖∞ ⩽ λ}.

It can be estimated one coordinate at a time (block-
coordinate descent)

w12 ← Argmin
y
{y′W−111 y : ‖y − s12‖∞ ⩽ ρ}.

Sparse inverse covariance estimation
with the graphical lasso

J. Friedman et al. (2007)
This problem can in turn be solved though its dual

Min
β

1
2

∥∥∥W 1/2
11 β − b

∥∥∥2 + ρ ‖β‖1 ,

which is a lasso problem. The glasso package provides
an implementation.

Covariance selection and estimation
via penalized normal likelihood

N. Liu et al.
The coefficients of the Cholesky matrix can be in-
terpreted as regression coefficients – penalized (lasso,
ridge) regression gives a penalized Cholesky matrix,
and a penalized variance matrix.

Covariance selection for non-chordal graphs
via chordal embedding

J. Dahl et al.
The sparsity pattern of a variance matrix forms a
chordal graph. One can easily estimate the inverse
covariance matrix under a chordal soarsity constraint
and, with more work, an arbitrary sparsity constraint.

Sparse permutation invariant
covariance estimation

A.J. Rothman et al. (2008)
The L1-penalized inverse-variance (concentration) es-
timator

Argmin
Ω≻0

tr(ΩΣ̂)− log |Ω|+ λ
∥∥Ω−∥∥

1

(where Ω− are the off-diagonal elements of Ω) can
be estimated by parametrizing Ω as Ω = T ′T , with
T lower-triangular, to ensure positivity, and using a
quadratic approximation of the absolute value:

|un+1| ≈
1

2

u2n+1

|un|
+

1

2
|un| or

1

2

u2n+1

|un|+ ε
+

1

2
|un| .

Efficient estimation
of covariance selection models

F. Wong et al. (2003)
Bayesian approach for covariance selection (sparse es-
timation of the inverse covariance), with a Γ prior on
the diagonal elements, and a zero-inflated prior on the
correlations, estimated with Gibbs sampling, updating
one partial correlation at a time (to keep the matrix
positive definite).

Shrinkage algorithms
for MMSE covariance estimation

Y. Chen et al. (2009)
How to choose the shrinkage coefficient when estimat-
ing a covariance matrix (the optimal coefficient de-
pends on the unknown variance matrix and cannot be
used, the Ledoit-Wolf coefficient can be improved on).

Article and book summaries by Vincent Zoonekynd 723/1044

Identifying small mean-reverting portfolios
A. d’Aspremont (2008)

When looking for cointegrated assets to form mean-
reverting portfolios, sparse portfolio are more in-
vestable. For instance, one could look for a port-
folio whose prices Pt = Stx maximize the Ornstein-
Uhlenbeck mean reversion parameter λ

dPt = λ(P̄ − Pt)dt+ σdZt.

As a proxy for the mean-reversion, one can use the
Box-Tiao predictability

ν =
Vart−1[Pt−1]

Vart−1[Pt]
=

Var[Pt−1]

Var[Pt|Pt−1]

(maximizing mean-reversion corresponds to minimiz-
ing predictability, i.e., momentum). If the asset prices
follow a VAR(1) process St = St−1A + Zt, then Pt =
Stx = St−1Ax+ Ztx and

ν(x) =
x′A′ΓAx

x′Γx

where Γ = VarSt – it is a generalized eigenvalue prob-
lem.
To estimate the matrices A and Γ, one can use penal-
ized methods (covariance selection for Γ, lasso for A).
The sparse generalized eigenvalue problem

Max
x

{
x′Ax

x′Bx
, ‖x‖0 , ‖x‖ = 1

}
can be approximately solved greedily (progressively in-
crease the number of non-zero coefficients, assuming
that those sets of indices are increasing) or by semi-
definite relaxation.

An open-source implementation of the critical
line algorithm for portfolio optimization

D.H. Bailey and M. López de Prado (2013)
When people compute the efficient frontier

Find w
To minimize w′Σw
and maximize w′µ
Such that w′1 = 1

l ⩽ w ⩽ u

they often solve a series of optimization problems, each
with a different target return, and interpolate. This is
imprecise and computationally wasteful.
The turning points on the efficient frontier are efficient
portfolios such that nearby efficient portfolios contain
different assets – points, on the efficient frontier, at
which an asset enters or leaves the portfolio. Between
two turning points, the efficient portfolios are the so-
lution of an unconstrained problem (only equality con-
straints: w′µ = µtarget and w′1 = 1) on a subset of
the assets, for which an analytic expression can be de-
rived (via Lagrange multipliers); they are also convex

conbinations of the turning points (2-fund theorem).
The efficient frontier can be computed by starting with
the maximum return portfolio and moving down, from
turning point to turning point.
The authors provide an implementation in Python.

Loglog counting of large cardinalities
M. Durand and P. Flajolet (2003)

To approximately count the number of different ele-
ments in a stream of words (words in a text, IP ad-
dresses in an intrusion detection system, values in a
column in a database for query optimization, etc.) one
can:
– Distribute the hashed (randomized) values in N
buckets, in a bitmap, and count the occupied buckets
(there are adaptive and hierarchical variants);

– Keep a proportion p � 1 of the data (by looking
at the first bits of the hashed value) and count it,
exactly;

– Look at the maximum position ρ(x) of the first non-
zero bit in the hashed data: log2N ≈ Max ρ(x).

The log-log algorithm uses this idea, after splitting the
data into m buckets, and averages the estimates.

HyperLogLog: the analysis of a near-optimal
cardinality estimation algorithm

P. Flajolet et al. (2007)
In the loglog counting algorithm, one can replace the
arithmetic mean of the N̂i with the harmonic mean of
the 2N̂i .

Firefly algorithm, stochastic test functions
and design optimisation

X.S. Yang (2010)
The firefly algorithm is similar to particle swarm op-
timization (PSO), but each particle moves randomly
(no momentum) and is more attracted by nearby fit-
ter particles (it is not attracted by less fit particles at
all). If the local minima are hardly distinguishable, the
particles can end up in several of them.

Empirical mode decomposition
of financial data

K. Drakakis (2008)
An intrinsic mode function (IMF) is a continuous func-
tion with positive maxima and negative minima, i.e., a
function that oscillates (e.g., , or). A
function f can be decomposed into an IMF (empirical
mode decomposition, EMD) as follows (sifting):
– Interpolate the local maxima (upper envelope) and
local minima (lower envelope) of f ;

– Average them;
– Subtract this average from the function;
– Iterate until this difference is an IMF;
– Subtract the IMF from f and start again to decom-
pose the residuals.

Article and book summaries by Vincent Zoonekynd 724/1044

Recent mathematical development
on empirical mode decomposition

Y. Xu and H. Zhang
The first intrinsic model function (IMF) of the empir-
ical mode decomposition (EMD) is intuitively similar
to the Hilbert transform (HHT, Hilbert-Huang trans-
form):

Hf(t) = pv
∫
R

f(s)

t− s
ds

Af = f + iHf

Af(t) = ρ(t)eiθ(t)

where ρ(t) is the instantaneous amplitude, θ(t) the
phase, θ′(t) the frequency.
This technical article tries to describe which functions
can he obtained as IMF.
In R, check the EMD and hht packages.

MCMC Using Hamiltonian dynamics
R.M. Neal (2011)

To sample from a probability distribution P (q) ∝
exp−U(q), the Hamiltonian Monte Carlo (HMC)
method adds another variable p (momentum) and con-
siders the Hamiltonian system H(q, p) = U(q) +K(p),
with K(p) = 1

2p
′Mp; its dynamics are

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi

.

To be umerically stable, the discretization of this sys-
tem should remain reversible, volume-preserving, sym-
plectic. The Euler method does not, but the leapfrog
method (start with a half-step for momentum, and
then use full steps for both position and momentum so
that the updates are staggered) does. The HMC algo-
rithm goes as follows: start with a state (q, p), sample
p from P (p) ∝ exp−K(p) (Gaussian), make L leapfrog
steps of size ε, and use the new state as a Metropolis
proposal. HMC avoids the random-walk-like behaviour
of the Metropolis algorithm, especially when the di-
mension is high or the variables correlated; fine-tuning
the mass matrix M can improve things even further.
Choosing ε and L is difficult, though.

The No-U-Turn Sampler:
Adaptively setting path lengths
in Hamiltonian Monte Carlo

M.D. Hoffman and A. Gelman
The leapfrog simulation in HMC sampling is usually
done a fixed number of times L. To avoid having to
specify L, one can try to move in one direction, as long
as ‖qnew − qold‖ increases, i.e., as long as

1

2

d

dt
‖qnew − qold‖2 = (qnew − qold) · pnew ⩾ 0.

But this is not time-reversible: we would not be sam-
pling from the right distribution. The nuts algorithm
fixes that problem by moving sn2n steps ahead, for in-
creasing values of n, with sn a random sign (the tech-
nical details are more complicated than that).

Stan modeling language
M.D. Hoffman and A. Gelman (2012)

Stan is a Bayesian sampler, not unlike Bugs or Jags,
but it uses Hamiltonian Monte Carlo (HMC) sampling:
when a Gibbs sampler converges slowly and generates
correlated samples, HMC should perform better. The
model is converted into heavily-templated C++ (for-
mal differentiation of the log-likelihood) and compiled
(this can take time). Stan can automatically select the
tuning parameters: the mass matrix is set to the iden-
tity; the number of steps can be chosen with the nuts
algorithm; the step size can be estimated during warm-
up. Instead of a sampling statement
y[i] ~ normal(mu, sigma)

one can explicitly increment the log-probability
log__ <- log__ + normal_log(y[i], mu, sigma)

This is useful to integrate out discrete parameters.

PyMC: Bayesian stochastic modeling
in Python

A. Patil et al. (JSS 2010)
PyMC is a Bayesian sampler, not unlike Bugs or Jags,
using Python instead of a more limited DSL (domain-
specific language).

import numpy as np
from pymc import *
n = 5 * np.ones(4, dtype=int)
x = np.array([-.86,-.3,-.05,.73])
alpha = Normal('alpha', mu=0, tau=.01)
beta = Normal('beta', mu=0, tau=.01)
@deterministic
def theta(a=alpha, b=beta):
return invlogit(a+b*x)

d = Binomial('d', n=n, p=theta,
value=np.array([0,1,3,5]), observed=True)

M = MCMC(d)
M.isample(iter=10000, burn=1000, thin=10)
M.trace('alpha')[:]
plot(M); M.stats()
g = geweke(M); geweke_plot(g)
raftery_lewis(M)
Matplot.autocorrelation(M)

It can also deal with “factor potentials”, i.e., the
unnormalized probabilities that appear in undirected
graphical models.
Convergence can be assessed with the Geweke test,

z =
θ̂begin − θ̂end√

Var θbegin +Var θend
,

comparing the begining (say, the nth decile) and the
end (say, the last half) of the chain, or the Raftery

Article and book summaries by Vincent Zoonekynd 725/1044

and Lewis procedure, that estimates the required burn-
in, sequence length and thinning to have a q = 97.5%
quantile, precise at r = .5%, with probability s = 95%,

P [|q̂ − q| ⩽ r] ⩾ s.

Goodness of fit can be estimated by sampling from the
fitted model and comparing with the real data, e.g., by
comparing the discrepancy 〈(x − x̂)2〉 (where x̂ is the
(fitted) expected value of x) of the two datasets.

Five balltree construction algorithms
S.M. Omohundro (1989)

Balltrees are an alternative to k-d-trees (which split
the space in two at each node, orthogonally to one
axis) and octrees (which split the space into 2d quad-
rants at each node): a binary tree of balls, not neces-
sarily disjoint, with the children included in the par-
ents. They are used with two types of queries: pruning
(e.g., find all leaves containing a given query node) and
branch&bound (e.g., finding the nearest neighbours).
There are a few algorithms to build them:
– k-d algorithm: choose the axis along which the range
of the data is larger, split the balls along the median
of their centers;

– Top-down: idem, but choose the dimension and split
point to minimize the total volume of the bounding
balls;

– Insertion: add a new observation as a sibling of an
existing leaf, in the position that increases the vol-
ume the least;

– Bottom-up: find the two balls whose boiunding ball
has the lowest volume, merge them, iterate;

– Improved bottom-up: idem, but each node keeps
track (e.g., with another balltree implementation)
of the best ball to merge it with, and the resulting
volume; the balls are in a priority queue and only
need to be updated when they are removed from the
queue.

The bottom-up construction gives better results
(smaller volume) for continuous distributions, mani-
folds and hierarchical clusters (e.g., the Cantor set).

An unscented Kalman smoother
for volatility extraction:

evidence from stock prices and options
J. Li (2011)

To estimate the volatility from a stochastic volatility
model: discretize it, linearize it, and apply a Kalman
smoother. The unscented Kalman smoother does not
explicitly linearize the model, but uses several points
around the current state (2d + 1 of them: one in
each axis direction) to estimate the mean and variance
needed by the Kalman filter.

A short introduction to learning to rank
H. Li (2011)

In information retrieval (IR, e.g., web search), the com-
puter returns the top 100 anwsers and somehow ranks

them. Those two steps are often separate (the rele-
vance function used to extract the top 100 is not used
to sort the results): one can use machine learning to
learn that sorting function.
To evaluate the ranking, use a penalty for misranked re-
sults, (logarithmically) higher if the difference is large,
(exponentially) smaller if the element is far from the
top.
Pointwise methods use standard classification methods
(ordinal regression). Pairwise methods learn the func-
tion (x, y) 7→ x ⩽ y or (x, y) 7→ rankx − rank y. List-
wise methods learn an R-valued score function (not
uniquely defined) that induces the desired order.
Most of the examples presented are variants of support
vector machines (SVM).

What HMMs can do
J. Bilmes (2002)

Hidden Markov models (HMM) are graphical models,
i.e., they can be defined by a set of conditional inde-
pendence relations between the state S and the emitted
message M :

{S[t,T],M[t,T]} ⊥⊥ {S[1,t−2],M[1,t−2]} | St−1
Mt ⊥⊥ {S¬t,M¬t} | St.

In other words:
– Future ⊥⊥ past | present;
– Given the current state, the message is independent
of all the other variables.

Gaussian processes in machine learning
C.E. Rasmussen

A Gaussian process is an infinite family of random vari-
ables (Xt)t∈R; the mean and covariance functions

m(t) = E[Xt], k(s, t) = Cov(Xs, Xt)

suffice to define it. The joint distribution of
Xt1 , . . . , Xtn is Gaussian, and the conditional distribu-
tion Xs1 , . . . , Xsm |Xt1 , . . . , Xtn , obtained in the usual
way (Shur complement) is the posterior distribution.
To train a Gaussian process, one can use a hierarchi-
cal prior, i.e., posit a parametrization of the mean and
covariance functions, e.g.,

m(t) = at2 + bt+ c

k(s, t) = σ2
1 exp−

(s− t)2

`2
+ σ2

2δij

(the σ2
2δij term accounts for noisy observations) and

select the hyperparameters via log-marginal likelihood.

Article and book summaries by Vincent Zoonekynd 726/1044

A dynamic programming
segmentation procedure

for hydrological and environmental time series
A. Kehagias et al. (2005)

The empirical quality of a time series segmentation can
be measured by the squared error of a constant, linear
of AR(1) model estimated on each segment; the op-
timal segmentation with a given number of segments
can be efficiently computed (O(n2)) via dynamic pro-
gramming. The number of segments can be estimated
with the Bayesian information criterion (BIC).
If the true segmentation is known, the quality of the
result can be assessed by looking at the number of mis-
classified pairs (i, j) with |i− j| < N/2.

Löwdin orthogonalization
A natural supplement to Gram-Schmidt

S. Beaver
Contrary to Gram-Schmidt orthogonalization, Löwdin
orthogonalization

Argmin
Q∈O(n)

‖A−Q‖F

is symmetric. It can be computed from the singular
value decomposition (SVD) A = UΣV ′ as Q = UV ′.

Statistical outliers and dragon-kings
as Bose-condensed droplets

V.I. Yukalov and D. Sornette (2012)
Model for power law distribution with endogenous out-
liers (“dragon-kings”, as opposed to exogenous outliers
or “black swans”): let ε(n) be the number of cities with
n inhabitants or more, i.e., the rank of a city with n
inhabitants; w(ε) = ne−βε the attraction of a city with
rank ε; P [ε(n) ⩽ ε] = aw(ε)n; and a boundary condi-
tion ε(m) =number of cities (i.e., all cities have m or
more inhabitants) – the outliers come from this bound-
ary condition.

Linking agent-based models and stochastic
models of financial markets

L. Feng et al. (2012)
Evidence from agent-based-models that fat tails and
long memory come from herding among technical
traders.

Advances in cointegration and subset
correlation hedging methods

M.M. López de Prado and D. Leinweber
(2012)

Hedging a portfolio P1 with assets P2, . . . , Pn means
finding w so that the spread

St = P1,t +
∑
k⩾2

wkPk,t

be “small”, in the sense that ST = 0, or ST+h−ST = 0,
or ST small, or ST+h − ST small, or VarST small, or
S stationary, etc.

Here are a few heging algorithms:
– Regression (only valid if the intercept is not signifi-
cant);

– Minimum variance (equivalent to no-intercept re-
gression), or minimum risk, for your prefered mea-
sure of risk (VaR, CVaR, etc.);

– Principal components: let V be the first n− 1 prin-
cipal components of Var∆P , and choose w so that
V ′w = 0, w1 = 1;

– Find w to minimize the Dickey-Fuller statistic (or
the statistic of some other unit root test);

– Maximize the diversification ratio
∑
wkσk
σ∆S

– Minimize the maximum subset correlation.
The predictability of an AR(1) process Pt = βPt−1+ εt
is

λt =
Et−1[P

2
t]

E[P 2
t]

= 1− E[ε2t]

E[P 2
t]
.

If the asset prices Pit follow a VAR(1) model, the pre-
dictability of a linear combination w′P·,t is defined sim-
ilarly (after simplification, it is a generalized eigen-
value). The Box-Tiao method minimized the pre-
dictability of the spread.

Economic scenarios for an asset and liability
management study of a pension fund

C.C. Slagmolen
VAR models are often used to generate scenarios for
ALM computations; the state variables could be 1-
month interest rate, 10-year interest rate, inflation, eq-
uity returns and dividend yield; one can impose that
some of the coefficients of the model be zero to account
for causal relations.

zt+1 = ν +Bzt +Σξt+1

Those state variables can be used to estimate the value
of the assets of a pension fund, but cannot be used, di-
rectly, to discount future liabilities: the term structure
generated by a VAR model can present arbitrage op-
portunities. To estimate the term structure, one can
first model the deflator (sometimes called stochastic
discount factor or pricing kernel) Mt+1 on [t, t+ 1]

− logMt+1 = δ0 + δ1zt +
1
2λ
′
tλt + λ′tξt+1

λt = λ0 + Λzt

(where δ0 + δ1zt is the short rate and λt the market
price of risk) and assume that the term structure is
affine, i.e., that the price, at time t, of a zero-coupon
bond maturing at time t+n, is P (n)

t = exp(An+Cnzt).
But the stochastic discount factor also gives a price,
P

(n+1)
t = Et[Mt+1P

n
t+1], allowing us to compute An

and Cn.
The model is very sensitive to the starting state (e.g.,
low interest rates) and the estimation periods (e.g.,
presence of a crisis).

Article and book summaries by Vincent Zoonekynd 727/1044

Optimal versus naive diversification:
how inefficient is the 1/N portfolio strategy?

V. DeMiguel et al. (2007)
Comparison of the 1/N portfolio strategy with alter-
natives (minimum variance or tangent portfolio from
sample variance, bayesian estimators, shrinkage esti-
mators, prior from a CAPM or Fama-French pricing
model, etc.): it is not significantly worse. Those alter-
natives have an edge when there is a lot of data, when
the correlation is not invariant under the action of Sn,
when there are few assets, and/or when the optimal
Sharpe ratio is significantly higher than the 1/N one.

In defence of optimization: the fallacy of 1/N
M. Kritzman et al. (2010)

If you have enough data (5 to 50 years) or use reason-
able expected returns, optimal portfolios significantly
outperform 1/N portfolios.

Why does an equal-weighted portfolio
outperform value- and

price-weighted portfolios?
Y. Plyakha et al. (2012)

The equal-weighted portfolio outperforms the value-
weighted portfolio, not only because of a different risk
exposure (more small caps), but also because of fre-
quent rebalancing.

Adaptive asset allocation
Macquarie Private Wealth

Amateurish (plots with no axes, confusion between cor-
relation and volatility, plots that seem to omit the
quantities of interest (performance, etc.) as if there
was something to hide, ridiculous numeric precision,
etc.) advocacy for risk parity portfolios (keep the con-
tribution to risk constant, lower the leverage when the
risk is too high) that ends with a minimum variance
portfolio on high-momentum stocks.

Performance attribution for equity portfolios
Y. Lu and D. Kane

The Brinson method decomposes the performance of a
portfolio as follows. LetWB

j (resp. WP
j) be the weight

of sector j in the benchmark (portfolio), RBj (resp. RPj)
the returns sector j in the benchmark (portfolio).

Active return
= Portfolio returns− Benchmark returns
=WPRP −WBRB

= (WP −WB)RB +WB(RP −RB)
+ (WP −WB)(RP −RB)

The three terms are called “allocation”, “selection” and
“interaction”. This can be generalized to several group-
ings (e.g., sectors and countries), but the number of
interaction terms increases exponentially.

With several periods, you can neither add the returns
(the aggregated returns would be wrong) nor com-
pound them (the returns are correct, but the contri-
butions no longer add up to them). Instead, one can
use optimal linking: write the returns as

RP[0,T] −R
B
[0,T] =

∑
t

βt(R
P
t −RBt)

for some judiciously-chosen “linking coefficients” β:

βt = A+ αt

A =
(RP[0,T] −R

B
[0,T])/T

(1 +RP[0,T])
1/T − (1 +RB[0,T])

1/T

αt = C(RPt −RBt)

C =
RP[0,T] −R

B
[0,T] −A

∑
t(R

P
t −RBt)∑

t(R
P
t −RBt)2

.

Regression-based analysis can more easily accomodate
several groupings or factors (Brinson analysis can be
seen as a no-intercept regression), but time-aggregation
poses the same problems.
In R, this is implemented in the pa package.

Equity performance attribution methodology
Morningstar (2008)

Since the interaction term, in the Brinson method, is
difficult to interpret, it can be incorporatesd into the
last decision: in the (prefered) top-down approach, the
contributions are allocation and selection+interaction,
in the bottom-upapproach, they are selection and allo-
cation+interaction.
For multi-period attribution, one can use a geometric
approach:

log(1 +RP)− log(1 +RB) =

log(1 +Rallocation) + log(1 +Rselection)

where Rallocation and Rselection are decomposed into
sums of contributions.
Long and short positions should be analyzed sepa-
rately. One can add a “return gap” term, for unex-
plained returns (intra-period trades, corporate actions,
etc.)

How news affect the trading behaviour
of different categories of investors

in a financial market
F. Lillo et al. (2012)

Endogenous information (returns, volatility), exoge-
nous information (news – they use the (non-free) Gen-
eral Enquirer; check C. Potts’s lexicons web page for
more lists of words) and investor behaviour.

Article and book summaries by Vincent Zoonekynd 728/1044

http://sentiment.christopherpotts.net/lexicons.html

Comparing the performance of FA, DFA and
DMA using different synthetic long-range

correlated time series
Y.H. Shao et al. (2012)

Empirical comparison of various long-range correlation
estimators (Hurst index):
– R/S (rescaled range) analysis;
– FA (fluctuation analysis): 〈(yt+s − yt)2〉1/2 ∼ s−α;
– DFA (detrended FA): 〈(yt+s−gt)2〉1/2 ∼ s−α, where
gt is a polynomial approximation of yt on non-
overlapping boxes of size s;

– DMA: idem, with a moving average with window
size s.

DFA is good enough.

Numerical evaluation of a generalized
Cauchy principal value

A. Nyíri and L. Baranyi (1999)
The Cauchy principal value

pv

∫ x0+∆

x0−∆

f(x)

h(x)− h(x0)
dx

can be evaluated numerically as
∫∆

0
g, where

g(u) =
f(x0 + u)

h(x0 + u)− h(x0)
+

f(x0 − u)
h(x0 − u)− h(x0)

g(0) =
f ′+ + f ′−

h′
− f

h′′+ + h′′−
2h′

.

Principal-value integrals by a simple and
accurate finite-interval method

W.J. Thompson (1997)
The Cauchy principal value can be approximated nu-
merically, if the interval around the singularity is small,
by using the Taylor expansion (only the odd derivarives
remain).

pv

∫ x0+∆

x0−∆

f(x)

x− x0
dx = 2

∑
n⩾0

f (2n+1)(x0)∆
2n+1

(2n+ 1)!(2n+ 1)

This can be generalized to pv

∫ x0+∆

x0−∆

f(x)

(x− x0)p
dx.

Isoelastic agents and wealth updates in
machine learning markets
A.J. Storkey et al. (2012)

A machine learning market is a way of combining
several estimators of the distribution of a random
variable X: the possible outcomes, 1, 2, . . . , n corre-
spond to Arrow-Debreu secutiries, the estimators are
investors, each endowed with an initial wealth (confi-
dence in the model) and trying to maximize their ex-
pected utility. The equilibrium can be estimated by
tatonnement; for some utilities, it can be derived in
closed form.

Image processing
G. Sapiro (Coursera, 2013)

1. The jpeg compression algorithm works as follows:
convert the rgb image to YCbCr (the channels are
more independent – this is just a linear transforma-
tion), cut the image into 8× 8 blocks, apply a discrete
cosine transform (DCT) to each of them, quantize the
resulting coefficients (you can use more bits for the
most important ones – the number of bits is specified
by the “quantization matrix”; rescaling it changes the
size and quality of the result), use Huffmann encoding
on the resulting stream of bits. (The DCT is actually
the empirical Kahunen-Loève transform (KLT) from
stochastic calculus, in the special case of Markovian
images.)
Predictive encoding uses some algorithm to predict the
(n+1)st pixel from the previous ones and encodes the
error. It can be used for lossless compression (jpeg-ls)
or lossy video compression (mpeg)
2. Some image enhancement algorithms are straight-
forward to implement: curves (e.g., gamma correction),
histogram equalization, histogram matching, local av-
eraging (local mean, local median). Non-local means
denoising finds and averages similar neighbourhoods
(e.g., all the windows, all the gargoyles, etc.), in differ-
ent parts of the picture.
Different noise removing filters are adapted to different
types of noise: median filter for salt-and-pepper noise,
the gaussian blur for gaussian noise, etc. To infer the
type of noise, you can pick a small region of the image
and assume that it was initially uniform; the noise may
not be the same on the whole image.
Image degradation can be modeled as

g = f ∗ h+ noise

where f is the initial image, h the degradation and
∗ denotes convolution. If the noise is negligible, the
Fourier transform gives G = FH, therefore F = G/H.
To estimate h, calibrate the camera on a known, sim-
ple image f , e.g., a single dot. The Wiener filter takes
the noise into account: F̂ = H∗/(H2+Snoise/Ssignal)G
where S is the power spectrum and ·∗ the complex
conjugate (it minimizes the expected square error).
Since Snoise/Ssignal is usually not known, it is often
replaced with a constant K (the gain): just multiply
by H∗/(H2 +K).
3. The Hough transform detects lines (or other para-
metric shapes). Let X be the set of the pixels in the
image and Y the set of the shapes we want to detect,
e.g., the set of straight lines in X, discretized (and
parametrized in some way, e.g., ρ = x cos θ + y sin θ).
For each pixel in X, increase the intensity of the corre-
sponding pixels in Y . The most prominent shapes are
the pixels in Y with the highest intensity. To find seg-
ments, rather than (infinite) lines, check back on the
image where there are pixels on the line
Otsu’s image segmentation algorithm is simplistic: look
at the histogram of the image and try to see two modes,

Article and book summaries by Vincent Zoonekynd 729/1044

e.g., find the threshold that minimizes the within vari-
ance. Since the total variance is the within variance
plus the between variance, you can instead maximize
the between variance; as you move the threshold, it is
easy to update. If the background is not uniform, it
may not work: try to apply the algorithm on a moving
window instead.
The Mumford-Shah image segmentation algorithm
solves an optimization problem: find a new image, lo-
cally smooth, with a penalty for the difference with
the initial image (MSE), and another penalty for the
presence of a lot of edges. More previsely, find a new
image J and the edge locations B to minimize

α

∫
D

‖I − J‖2 dΩ+ β

∫
D\B
‖∇J‖2 dΩ+ γ

∫
+BdΩ.

Image segmentation is often interactive: the applica-
tion asks the user to indicate what is the foreground
and what is the background, by a few strokes inside
those regions. We can adapt Otsu’s algorithm: look
at the distribution of the colour of the pixels along
those strokes, and assign each new pixel to the region
whose distribution is closest. The weighted distance
transform also uses geometric information: for each
pixel, compute the weighted geodesic distance to the
foreground (using Dijkstra’s algorithm, in linear time)
and the background scribble, and assign the pixel to
the closest scribble; as weight, use the change in the
foreground probability along the direction of the path,
|∇pForeground · ds|. You can refine the result by adding
new scribbles, automatically, inside the detected fore-
ground, and inside the detected background.
Segmentation can also be formulated as a graph-
theoretic problem: consider the graph whose vertices
are the pixels, plus one vertex for the background,
and one for the foreground. The edges correspond to
neighouring pixels, with also one edge from the back-
ground to each pixel, and the same for the foreground.
The graph is weighted: between pixels, use the ab-
solute value of the difference between a pixel and its
neighbours; between the foreground and a pixel, use
the probability that a pixel belongs to the foreground,
e.g., from the scribbles given by the user in interactive
segmentation. This is a min-cut problem.
Those algorithms can be generalized to process video
(e.g., Roto-brush video segmentation in Adobe After
Effects): do not consider the image as a whole, but
smaller windows covering it; take motion into account
(the same window on the next frame is not exactly at
the same place); use mixed models for the distribution
of the colours of the background and foreground; use
a shape prior and a colour prior to find the new seg-
mentation, with more weight on the shape prior if the
colours are not distinct enough.
4. Let C be a planar curve, s its arclength parametriza-
tion, Cs its first derivative (of length 1), Css its sec-
ond derivative, orthogonal, of length κ (the curvature).
Cartan’s theorem states that, up to Euclidian trans-
formation, a curve is entirely determined by its curva-

ture (s, κ(s)), seen as a function of the arc length. It
can be generalized to equi-affine transformations, i.e.,
affine transformations preserving areas (their determi-
nant is 1): an equi-affine parametrization v is such that
det(Cv, Cvv) = 1; the equi-affine curvature µ is de-
fined by Cvvv = µCv; up to equi-affine transformation,
a curve is entirely determined by its equi-affine cur-
vature (v, µ(v)), seen as a function of the equi-affine
arclength v.
The evolution of a planar curve can be described by a
partial differential equation (PDE),

∂Curve
∂t

= V (p, t),

such as the curvature flow Ct = κn (or heat flow,
Ct = Css, a simple curve becomes convex and turns
into a circular point), the affine affine heat flow Ct =
κ1/3n (elliptic points), the constant flow Ct = n. (The
tangential components do not affect the geometry of
an evolving curve – they just change the parametriza-
tion.) Geodesic active contours use Ct = gκn, with
g = 1/ ‖∇I‖. Curves can also be represented by a level
set, f(x, y) = 0: the normal is n = −∇f/ ‖∇f‖, the
curvature κ = div(∇f/ ‖∇f‖) and the curve evolution
Ct = V n becomes ft = V ‖∇f‖.
Calculus of variation refers to infinite-dimensional op-
timization problems: finding a function (e.g., a curve)
that minimizes some quantity. For instance, if we want
to find the function u (subject to some boundary con-
ditions) to minimize φ(u) =

∫
F (x, u, ux)dx, the first

order conditions are given by the Euler-Lagrange equa-
tion, φ′(u) = 0, where φ′ is the functional derivative,
i.e.,

∂F

∂u
− d

dx

∂F

∂ux
= 0.

Solving the variational problem with the steepest de-
scent method ut+1 − ut − αφ′(u) is tantamount to
adding a time parameter t and solving the PDE ut =
−αφ′(u). For instance, minimizing

∫
ρ(‖∇I‖)dΩ with

ρ(a) = a2 gives isotropic diffusion (gaussian smooth-
ing, the heat equation) It = ∆I = div(∇I), and ρ(a) =
a gives anisotropic diffusion It = div(∇I/ ‖∇I‖) –
there is less diffusion when the gradient is high, i.e.,
near the edges, which are preserved.
For instance, φ(u) =

∫
‖∇I‖2 dΩ gives φ′(u) =

−2 div∇I = −2∆I – the corresponding diffusion
(isotropic diffusion) is the heat equation, i.e., Gaus-
sian smoothing.
More generally, one can consider φ(I) =

∫
ρ(‖∇I‖)dΩ.

In particular, φ(I) =
∫
‖∇I‖ dΩ =

∫∫ √
I2x + I2ydxdy

gives φ′(u) = − div(∇I/ ‖∇I‖): this anisotropic dif-
fusion is similar to Gaussian diffusion, but with less
diffusion near the edges (where the denominator ‖∇I‖
is large.
The gradient ∇I gives some edge information, but only
locally. To have global edges, start with some local

Article and book summaries by Vincent Zoonekynd 730/1044

edge detection, e.g.,

g(x, y) =
1

1 + ‖∇(G ∗ I)‖2

(G ∗ I is the smoothed image, G can be chosen to de-
tect some specific shapes, and since the gradient is in
the denominator, edge pixels have a low value) and
find a curve C that minimizes

∫
C
g(x, y)ds; the result-

ing diffusion gives active contours. You need a starting
curve to deform: take segments regularly placed on the
image, or a closed curve around the boundary of the
image.
Histogram equalization (contrast enhancement) can
also be formulated as a diffusion:

dI(x, y)

dt
= I(x, y)−number of pixels of value ⩾ I(x, y).

It minimizes

1
2

∫
(I − 1

2)
2dx− 1

4

∫∫
(I(x)− I(y))dxdy.

You can change the objective function, e.g., by giving
more/less weight to some region.
Inpainting fills in he missing parts of an image (e.g.,
because they contained undesirable elements, or they
were damaged or lost). This can be done with PDEs:
assume that the laplacian ∆I does not change as we
move along the edges, i.e., in a direction ∇⊥I orthog-
onal to the gradient ∇I; propagate according to

It = ∇∆I · ∇⊥I

(only the missing parts of I change).
Inpainting can also be done with calculus of variations:
if we know the normalized gradient θ = ∇I/ ‖∇I‖,
then θ · ∇I = ‖∇I‖. We can look for θ and I to mini-
mize (on the region to fill in)∫

(‖∇I‖ − θ · ∇I) dΩ;

the corresponding Euler-Lagrange equations are

dI

dt
= div

∇I
‖∇I‖

− div θ.

(In practice, one would add a regularizing term, e.g.,∫
(div θ)p(a+ b ‖∇(G ∗ I)‖)dΩ,

to the function to minimize.)
To preserve texture, while inpainting, decompose the
image into a smooth (say, locally constant) component
and a texture component, and inpaint both separately.
To inpaint the texture, use smart cut-and-paste: find
a similar region, elsewhere in the image (like non-local
means), allowing for some deformation; do this for a
covering by small regions, but require that the trans-
lation vector changes smoothly from one region to a

neighbouring one. This can be formulated in a varia-
tional way.
5. Noise can be removed from an image y by finding
the image x that minimizes

f(x) = ‖x− y‖2 + λG(x).

There are many popular choices for the penalty term
(Bayesian prior) G(x): ‖x‖2, ‖∆x‖2 (smoothing),
ρ(∆x) (robust statistics), ‖∇x‖ (total variation), etc.
Sparse modeling tries to express an image as a linear
combination of images (“atoms”) from a set of refer-
ence images (“dictionary” – it could be a basis, but it
will usually be larger), with as few atoms as possible,
i.e., with an L0 penalty. Often, one can replace the
L0 pseudo-norm with the L1 norm: the optimal solu-
tion is the same; the relaxed problem is convex (and a
greedy algorithm, adding one element at a time, gives
reasonably good results). The k-SVD algorithm learns
the weights and the dictionary for a given set of images
(usually, small overlapping patches in the same image)
at the same time: start with a random dictionary (or,
say, the DCT one used by jpeg), compute the weights,
update the reference images, iterate. This can be used
for denoising, inpainting, video inpainting, zooming,
demosaicing (for camera sensors: for each pixel, only
one of the three colours is present), etc.
Compressed sensing is another form of sparse model-
ing: it models each 8 × 8 patch as a mixture of (say)
10 Gaussians (these are 64-dimensional Gaussians: use
low-rank variance matrices), alternates between the es-
timation of the gaussians and the estimation of the
weights of the patches (MAP-EM) and only uses one
of the Gaussians for each patch.
Sparse modeling can also be used for classification –
concatenate dictionaries adapted to the different types
of scenes to recognize, and look at which atoms were
used.

Artificial Intelligence Planning
G. Wickler and A. Tate (Coursera, 2013)

1. A planning problem is described by a set of states,
a set of actions, acting on the set of states, an initial
state, and a goal state.
There are more parsimonious descriptions, with sym-
bols (e.g., robot1, box1, locationA), predicates (e.g.,
location(what,where)), and parametrized actions
(e.g., move(who,what,from,to)); each action has a
set of (positive and negative) preconditions, and a set
of (positive and negative effects). This can be ex-
tended with disjunctions and quantifiers in the pre-
conditions. Those problems can be represented in a
Lisp-like (pddl) or Proglog-like (strips) syntax.
Examples include puzzles (canibals and missionaries,
8-puzzle, 8-queen problem, etc.), autonomous systems
(elevators, space probes, unmanned vehicles) and busi-
ness process management.
There are many algorithms to solve those (NP-

Article and book summaries by Vincent Zoonekynd 731/1044

http://www.ipol.im/pub/art/2012/g-cv/

complete) problems: state-space search (A* and vari-
ants, with a heuristic function), plan-space search,
graphplan, reduction to other problems (sat, asp (an-
swer set programming), integer programming).
2. State-space search algorithms rely on some graph
search algorithm, often based on a heuristic (an ap-
proximation of the distance between a state and the
goal), such as best-first-search (explore the node whose
estimated distance to the goal is shortest) or A* (also
include the distance from the initial state), in their
tree-search or graph-search variants (if you assume that
the graph is a tree, you do not have to check if a node
has already been visited; if it is not, you should check,
and the technical condition on the heuristic is slightly
different).
There are memory-efficient variants of A*, such as it-
erative deepening A* (depth-first search with a bound
on the cost, restart many times as you progressively
increase the bound – since most of the work is done in
the last iteration, it is not that slow).
Instead of forward search (going from the initial state
to the goal), you can try backward search (going from
the goal to the initial state), but in both cases, the
branching of the tree can be too high. To reduce it, you
can consider partially instantiated actions (a(s,–),
where “–” is left unspecified until needed).
But in the case of n independent actions that can be ex-
ecuted in any order, there are still n! different paths...
3. Plan space search is another form of backward
search, in which we progressively build the plan, by
adding actions, but without imposing any order un-
til absolutely necessary. More precisely, start with
the goal, look at its preconditions, find one that is
not satisfied, find an action that enforces it (you
will need to backtrack on that choice) and add it
as a causal link (“action a establishes precondition
p of action b”). Unsatisfied preconditions are only
one of the two types of “flaws” a partial plan can
have: there is a “threat” when the effect of an ac-
tion contradicts a causal link – this can be reme-
died by imposing an order relation, putting the ac-
tion before or after the causal link. (In addition,
the actions added can be partially instantiated, e.g.,
move(who,what=apple,from=tree,to=bag), and one
progressively adds constraints (=, 6=) on unbound vari-
ables.) This is no longer a search in the state graph,
but in the graph whose nodes are partial (and par-
tially ordered) plans, and whose edges are partial plan
refinements.
4. GraphPlan addresses the branching factor problem
by considering an (easy-to-solve) relaxed problem and
searching among the solutions of the relaxed problem.
The planning graph is a layered, directed graph:
– The first proposition layer P0 contains the proposi-

tions valid in the initial state (we assume that there
are no negative conditions);

– The action layer Ai contains all actions whose pre-

conditions form a subset of the previous proposition
layer Pi−1; also add no-op actions for each proposi-
tion in layer Pi−1;

– The proposition layer Pi contains all the proposi-
tions in Pi+1 plus all the positive effects (not the
negative ones) of the actions on Ai (P0 corresponds
to a state, but later proposition layers no longer do:
they usually contain incompatible propositions);

– Edges from the preconditions of an action (in the
previous layer) to this action;

– Edges from an action to its positive and negative
effects in the next layer (use two edge types).

This already gives a necessary condition for reacha-
bility. We can also add edges inside layers to indi-
cate incompatibilities (mutex). Two propositions are
non-mutex if they are produced by independent (non-
mutex) actions (or by a single action) (you need to dis-
tinguish between positive and negative effects). Two
actions are mutex if they are dependent, or if some of
their preconditions are mutex. The layers are increas-
ing in size, and the sets of mutexes are decreasing, so
that the layers stop changing at some point.
5. To build a heuristic for the A* algorithm, you can
try to simplify the problem in some way, by removing
some of the information or constraints. For instance,
for the 15 puzzle, you can ignore the labels on cells 8–
15, and store the number of (marked) tiles to move in a
pattern database. Even better, you can do this for cells
1-7 and 8-15 (disjoint pattern databases), and add the
corresponding heuristics. (In general, to find disjoint
pattern databases, try to find mutually exclusive sets
of proposition symbols – e.g., 2 sets – if there are too
many, the problems are trivial and not informative.
The traveling salesman problem (TSP) gives another
example: when moving the truck, do not remove it
from its old position (ignore deletes), so that it is in
several positions at the same time (the relaxed problem
reduces to the minimum spanning tree (MST) problem,
which also gives a heuristic solution).
Heuristic search often wins the International Planning
Competition.
The FF planner, and most state-of-the-art planners,
use the planning graph on a relaxed problem (no
deletes) to find a heuristic: it is not admissible, but
it is usually good.
6. Hierarchical task networks (HTN) rely on more
domain knowledge to group actions into higher level
tasks: the problem is then to find a decomposition of
a goal into tasks.
7. Planning problems can be augmented with
ressources, time (time points, or interval algebra), un-
certainty (replace “state” with “sets of states”), prob-
ability (partially observable markov decision process
(MDP)), interacting agents. Real-world planners need
to monitor the plan execution and modify the plan if
something unexpected happens.
When run on similar problems, the planner can learn

Article and book summaries by Vincent Zoonekynd 732/1044

http://planning.cis.strath.ac.uk/competition/

macro operations (the tasks in a HTN) and refine its
heuristic function (to help choose between nodes with
the same heuristic).

Private equity as an asset class
F. Fraser-Sampson (2010)

Private equity (PE) refers to equity (shares in a com-
pany) not listed on a stock exchange. A GP is a man-
ager of a PE fund, an LP is an investor in a PE fund.
When investing in a PE fund, you pledge that you
will invest a certain amount (the committed capital),
in the coming years, when required (when the money
is called or drawn down – you do not know the dates
in advance). The invested capital will be lower – when
you start to invest in PE, it will remain very low, for
several years. The committed capital is usually 1.6 to
2 times the allocated capital (the proportion of your
wealth you wish to eventually invest in PE).
Since the cash flows are random, and mostly negative,
there is no good definition of annual returns. One can
look at the J-curve, i.e., the running internal rate of
return (IRR), IRR[0,t] ∼ t, or various multiples:

DPI = Distributed
Paid in

DCC =
Distributed

Committed capital

PICC =
Paid in

Committed

RVPI = Remainig value
Paid in

TVPI = Distributed+ Remaining
Paid in .

Look at their distribution for a given sector, fund size,
region, industry, vintage year (starting date of the
fund), time since inception.
There is no useable notion of “risk” either.
[Apparently, no one tries to model the randomness of
those cash flows – lack of data?]
A buyout fund takes a majority part in a company, us-
ing a lot of debt: since steady cash flows are needed to
service the debt, the target is a mature company, with
good cash flows and too little debt. Buyout returns are
driven by earnings (strictly speaking, the cash flows,
but the EBITDA is often used instead: it is available,
does not include interest payments (they will change),
taxes (they will change: debt is more tax-efficient), de-
preciation and amortization (mere accounting cookery,
not real cash)), earnings growth, “multiple” (P/E, i.e.,
price/earnings ratio, influenced by the market), lever-
age. In the valuation, do not forget to take inflation
into account (or use a real currency).
When investing in a buyout fund, decompose the per-
formance into the contribution of leverage, market and
earnings growth as follows (with {i, j} = {1, 2}), and

compare with peers.

Enterprise value = Debt+ Price
= Debt+ Earnings×Multiple

∆EV = ∆Debt
+ Earningsi ×∆Multiple
+Multiplej ×∆Earnings.

When choosing a buyout, check the accounting data
and projections, the supply and distribution channels,
the anti-trust legislation, the pension scheme (often in
deficit).
Venture refers to a majority share in young compa-
nies, developing new applications of extant technolo-
gies (rather than new, unproven technologies: that
would be too risky), usually in the IT or biotech in-
dustries. Most companies (95%) in which a venture
fund invests fail – the performance of the fund is of-
ten due to a single company succeeding (its value in-
creases 25-fold) – a home-run. Valuing those compa-
nies is problematic: data is scarce, accounting rules are
murky (Europe) or just advisory (US). Each financing
round changes the valuation and increases the dilution.
When investing in a venture fund, look at its multiple
and the proportion of home-runs; compare with the in-
dustry. When choosing a venture company, check the
technical soundness of the project, the potential key
customers, the key personel, and intellectual property
ownership.
Development capital refers to a minority investment
in an established company, with steady cash flows and
a decent market share; the money is needed for a spe-
cific goal (e.g., to develop a new product) or because
one of the current shareholders is leaving (retiring).
Growth capital is similar, but the goal is to grow the
market share further, or maintain it in a growing mar-
ket: since this requires extra marketing and product
development, the profits will drop – but the sales and
the company value will increase.
Both development capital and growth capital are short-
term (3 years) minority investments: minority protec-
tion (e.g., negative control, i.e., veto right) and exit
protection are necessary.

Graphical Markov models
with mixed graphs in R

K. Sadeghi and G.M. Marchetti
(R Journal, 2012)

Directed acyclic graphs (DAG) describe conditional in-
dependence relations in an imperfect way. In partic-
ular, they are not stable under marginalization and
conditioning. They can be generalized by adding arcs
between response variables (when a common cause has
been marginalized)

marginalize

Article and book summaries by Vincent Zoonekynd 733/1044

and lines between explanatory variables (when a com-
mon consequence has been conditionned on)

condition

.

Ribbonless graphs are the smallest class of mixed
graphs, containing DAGs, and stable by marginaliza-
tion and conditioning. The notion of d-separation (to
read independence relations off the graph) can be gen-
eralized to m-separation.
The ggm package can manipulate those graphs (gRain
dealt with DAGs and d-separation, graph, igraph,
gRbase are more general-purpose).

Rfit: rank-based estimation for linear models
J.D. Kloke and J.W. McKean

(R Journal, 2012)
Rank regression estimators are

β̂ϕ = Argmin
β

‖y −Xβ‖ϕ

where
‖ε‖ϕ =

n∑
i=1

φ

(
Rank εi
n+ 1

)
.

The crs package:
nonparametric regression splines

for continuous and categorical predictors
Z. Nie and J.S. Racine (R Journal, 2012)

There are many types of splines: smooting splines (pe-
nalized splines) use observations as potential knots; re-
gression splines use equidistant or equiquantile knots.
Discrete predictors can be accomodated with ker-
nel weighting: replace the indicator functions 1X=x

(which take two values, 0 and 1) with λ1X=x (which
take two values, 1 and λ) – for ordered categorical vari-
ables, use λ|X−x| instead.
The splines come from GSL (Gnu scientific library)
and the metaparameters are estimated by cross-
validation with the Nomad black box optimizer (mesh
adaptive direct search, MADS).

influence.ME: tools for detecting
influential data in mixed effects models

R. Nieuwenhuis et al. (R Journal, 2012)
This package computes the influence (DF betas, Cook’s
distance, percentile change (β̂− β̂−j)/β̂, change in sig-
nificance) of observations, or groups of observations, in
mixed effects models (lme4).

Strategic risk management
and risk monitoring for pension funds

S. van Hoogdalem et al.
Asset liability management (ALM) should use the same
tools as traditional (1-period) portfolio management:

performance attribution, risk decomposition, stress
tests, etc.

Balanced baskets: a new approach
to trading and hedging risks

D.H. Bailey and M.L. de Prado (2012)
The many variants of the minimum variance portfolio
can be used to hedge a position (by fixing one of the
weights, say, w1).
– Minimum variance: Argminw w

′V w, i.e.,

Argmin
w

Var

[∑
i

wiXi

]

– Maximum diversity:

Argmax
w

∑
i wi SdXi

Sd
∑
i wiXi

– Equal risk:

∀i, j wi
∂Risk
∂wi

= wj
∂Risk
∂wj

,

where Risk =
∑
i

wi
∂Risk
∂wi

by Euler’s formula.

There is a variant of the equal risk portfolio, the
diversified risk portfolio, which asks for an equal con-
tribution of each principal component (or each risk
factor, if you have a risk model) – since the largest
components correspond to the main sources of risk,
you probably do not want them in a hedging basket
– but it makes sense for a trading basket.

– Equal correlation:

∀j, k Cor

(∑
i

wiXi, Xj

)
= Cor

(∑
i

wiXi, Xk

)

– Minimax subset correlation:

Argmin
w

Max
I(J1,nK
I ̸=∅

∣∣∣∣∣Cor
(∑

j

wjXj ,
∑
i∈I

wiXi

)∣∣∣∣∣
Some of those approaches can also be used to build
trading (rather than hedging) portfolios, e.g., the max-
imin subset correlation portfolio,

Argmax
w

Min
I(J1,nK
I ̸=∅

∣∣∣∣∣Cor
(∑

j

wjXj ,
∑
i∈I

wiXi

)∣∣∣∣∣.
The article also provides Python implementations.

Article and book summaries by Vincent Zoonekynd 734/1044

Beware of the DAG!
A.P. Dawid (2009)

One could be tempted to interpret directed acyclic
graphs (DAGs) representing graphical models as de-
scribing causal relations: they only describe a set of
conditional independence relations (or, alternatively, a
factorization of the joint probability distribution), and
the direction of the edges is not that meaningful.
Causal independence X ⊥⊥ Y implies conditional inde-
pendence X ⊥⊥ Y | Z, but the converse does not hold:
some causes causes could cancel out, or there may be
confounding (overlooked) causes.
To have a causal interpretation of a DAG, one can add
two types of nodes: intervention nodes (whose value
can be chosen – passively observing the system is not
sufficient for causal discovery: this is the difference
between observational and experimental sciences) and
confounding nodes (for each set S of nodes on the orig-
inal graph, add a node with edges towards each node
in S – that is a lot of nodes, but for a given analysis,
only a handful is usually needed).
The best you can do with a DAG with no observa-
tional nodes is apply Occam’s razor: the conditional
independence relations are consistent with many causal
interpretations; choose the most parsimonious, e.g., to
choose between

p(x, y) = p(x)p(y|x)
and p(x, y) = p(y)p(x|y),

pick the relation with the lowest algorithmic complex-
ity.

The big data bootstrap
A. Kleiner et al.

The bootstrap (resampling with replacement) is expen-
sive for large datasets (you have to build new datasets
of size n): to subsampling (resample m � n obser-
vations without replacement) or m out of n bootstrap
(resample m� n observations with replacement), pre-
fer the bag of little bootstraps (take s subsamples of size
m� n, e.g., m = n0.6, resample them r times with re-
placement to form datasets of size n, not m – since
there are many duplicates, you just need to keep track
of the number of occurrences of each observation): it
is more robust and has better theoretical properties.

A scalable bootstrap for massive data
A. Kleiner et al. (2012)

More details, on the choice of the hyperparameters
(e.g., stop using a subsample when the corresponding
estimate ceases to change), with applications to time
series (e.g., the stationary bootstrap: take a block of
length m� n, take a point at random, with probabil-
ity 1 − p take the next point, with probability p take
another point at random, iterate with more points, re-
peat with more blocks).

Improving GARCH volatility forecasts
with regime-switching GARCH

F. Klaassen (2001)
GARCH forecasts are too high in volatile periods; they
can be improved by using a regime-switching GARCH
model (with two regimes). The straightforward model,

σ2
1,t = ω1 + α1ε

2
t−1 + β1σ

2
1,t−1

σ2
2,t = ω2 + α2ε

2
t−1 + β2σ

2
2,t−1,

is difficult to estimate. Instead, one can replace σ2
i,t−1

in the right handside with

Et−1[σ
2
t−1] = pσ2

i,t+1 + (1− p)σ2
2,t−1

or, better, E[σt − 12|rt = i].

A review of backtesting
and backtesting procedures

S.D. Campbell (2005)
Regulators check the validity of a VaR (value-at-risk)
model by counting the number of exceedances (viola-
tions) in the past year (and they increase the mar-
ket risk capital accordingly). The violations should
be Bernoulli, independent: one can check if they have
the correct distribution (prop.test, binom.test), or
if they are independent (independence χ2 on the con-
tingency table of consecutive observations, runs test –
but this only tests for very short term independence),
or both (χ2 test on the same table).
One could also convert the observations to p-values for
the VaR model and check of they are uniform U(0, 1)
and independent. Since we are only interested in the
tail, we could bin those values (say, [0, 1%], [1%, 2%],
[2%, 5%], [5%, 100%]) and perform a χ2 test (we expect
(β − α)N observations in [VaRα,VaRβ]).
Those tests may have low power and may fail to iden-
tify underreporting.
One could also use a loss function, e.g., that defin-
ing the expected shortfall – but it will just tell you
that VaR estimators are bad CVaR estimators. (But
it makes sense for the regulators to do that: this is how
they use the VaR – to compute the risk capital.)

Extended analysis of backtesting frameworks
for value at risk

G.J. van Roekel (2008)
To test your value at risk (VaR) model, use the fol-
lowing tests, after checking their power, i.e., the pro-
portion of type I and type II errors, for different null
(p = 1%, p < 1%) and alternative (p 6= 1%, p > 1%)
hypotheses.
– Test the number of exceedances, with an exact test
or a likelihood ratio (LR) test, test the time to the
next one.

– Test their independence, with an LR test, using in-
dicator functions “exceedance in [t−k, t+k]” rather
than “exceedance at t”; test the distribution of the

Article and book summaries by Vincent Zoonekynd 735/1044

time between two exceedances: it should be geomet-
ric, i.e., easy to approximate with an exponential
distribution (for instance, you could test the null
that the distribution is exponential vs the alterna-
tive that it is Weibull but not exponential). Tests
for discrete distributions have more power.

– Compare the regulatory capital (derived from the
VaR) with the average expected shortfall (CVaR).

A guide to modelling counterparty credit risk
M. Pykhtin and S. Zhu (2007)

The counterparty exposure of an asset of value v is
vT (its value when the counterparty defaults, at some
time T in the future). Using simplified pricing models,
you can simulate possible evolutions of vt and com-
pute its expectation and quantiles (for instance, for
bonds or swaps, it progressively increases, because of
uncertainty, with a drop at each cash flow, because the
remaining cash flows are decreasing). The credit value
adjustment (CVA) is the risk-neutral expectation of the
loss.

Algorithms, design and analysis II
T. Roughgarden (Coursera, 2012)

The second part of the course covered greedy algo-
rithms, dynamic programming and NP-completeness.
Greedy algorithms never come back on a decision they
made, and therefore run in linear time: e.g., optimal
caching (remove from the cache elements you will not
need any time soon), scheduling (each job has a weight
and a duration, sort them by weight/duration). If they
happen to be correct (rarely), this can often be proved
by induction or with an exchange argument (start with
an optimal solution and transform it into the output
of the algorithm, without ever making it worse).
For the minimum spanning tree (MST) problem,
Prim’s algorithm grows a connected tree (and can be
efficiently implemented with a heap), while Kruskal’s
algorithm grows a forest by adding the cheapest edges
as long as they do not introduce a cycle (and can be
implemented with a union-find data structure). They
are correct and fast, but there are faster algorithms.
Kruskal’s MST algorithm can be used to find the k-
clustering of a set of points that maximizes spacing
(the spacing isMin d(a, b) where a and b are in different
clusters) i.e., the distance between the most alarmingly
close points that are not in the same cluster.
Huffman codes (binary prefix-free codes; they can be
represented as binary trees) are also built greedily,
bottom-up: start with each symbol in a 1-element tree,
merge the two least frequent elements, iterate.
Dynamic programming solves a problem by considering
sub-problems, with an order relation (often inclusion),
from whose solutions it is possible to solve the original
problem. Contrary to divide-and-conqueer, the sub-
problems are overlapping, and it is necessary to cache
(memoize) the intermediate results. Here are a few
examples.

– Independent set (a set of vertices, no two of which
are adjacent) of maximum weight in a path-graph (a
graph that is also a path, i.e., a tree of arity 1) [hint:
either the last element is in the set or not];

– Knapsack with integral sizes [same hint];
– Sequence alignment;
– Optimal binary search tree (minimum average search
time, when the frequency of each term is known);

– For the single-source shortest path problem, use Di-
jkstra’s algorithm, if there are no negative edges, or
Bellman-Ford’s algorithm (slower): look at shortest
paths from s with at most k edges (you can save on
space by keeping a pointer to the previous vertex in
the shortest path) – a distributed version is used for
internet routing;

– For the all-pairs shortest paths problem (APSP), the
Floyd-Warshall algorithm computes the length of the
shortest path from i to j passing through (at most)
1, 2, . . . , k; Johnson’s algorithm modifies the weights,
by adding them pi−pj , where pi is the length of the
minimum path from a new vertex to i: this makes
them nonnegative, so we can use Dijktra’s algorithm.

A probem A reduces to a problem B, denoted A ≼ B,
if a polynomial algorithm for B gives a polynomial al-
gorithm for A. If C is a class of problems, a problem
A ∈ C is C -complete if all problems in C reduce to
A, i.e., A is the most intractable problem in C (but
there can be many problems as difficult as A). Let
P denote the class of problems solvable in polynomial
time. Let NP be the class of problems for which it is
possible to verify a solution in polynomial time, and
whose solutions have polynomial lengths; intuitively,
these are the problems solvable by brute-force search.
It is conjectured, but not proved, that P 6= NP.
There are many NP-complete problems: TSP, 3SAT,
etc.
To solve an NP-complete problem, you can:
– Focus on solvable special cases, e.g., the 2-SAT prob-
lem: when solving a 3-SAT problem, you may be
able to isolate 10 or 20 variables so that, when you
fix them, the problems becomes a 2-SAT problem:
you can then combine brute force search on those
variables and a polynomial 2-SAT algorithm;

– Use heuristics: for the knapsack problem, there are
greedy (sort the idems by decreasing value/weight
– to prove that the the solution is at least 50% of
the value of the optimal solution, consider a “frac-
tional solution”, in which you can cut the objects)
and dynamic-programming-based (rounding) heuris-
tics;

– Find an exact algorithm, exponential-time but faster
than brute-force search: for instamce, dynamic pro-
gramming for the knapsack problem, dynamic pro-
gramming for the traveling salesman problem (2n in-
stead of n!: consider L(S, j), the minimum length of
a path from 1 to j that passes exactly once through
each vertex in S, for all S containing 1 and j), etc.

In the vertex cover problem, you are asked to find a
minimum set of vertices so that each edge has at least

Article and book summaries by Vincent Zoonekynd 736/1044

one extremity in it. It can be solved in special cases,
e.g., trees (dynamic programming) or bipartite graphs
(maximum flow problem); for small graphs, use the fact
that G has a vertex cover of size k iff Gu or Gv has a
vertex cover of size k−1, where Gu is G without vertex
u, and u−v is an edge.
The maximum cut problem (finding the cut with the
largest number of edges) is NP-complete. It is tractable
in special cases: for instance, in bipartite graphs, there
is a cut with all edges, and it can be found by breadth-
first search in linear time. In general, you can use a
local search heuristic: let c(v) (resp. d(v)) be the num-
ber of edges from vertex v that cross (resp, do not
cross) the cut, start with an arbitrary cut, move v if
d > c. Use multiple random restarts to help improve
the solution.
The 2-SAT problem (find an assignment of boolean
variables so that some statement of the form

∧
k εkaik∨

ηkajk , where εk, ηk are the identity or the negation) can
be solved in polynomial time (only the 3-SAT problem
is NP-complete):
– By considering the graph whose vertices are the vari-
ables and their negations, with an edge for each im-
plication implied by the clauses (each is equivalent
to two implications), the problem reduces to finding
the strongly connected components;

– Backtracking (each clause forbids one assignment of
the variables);

– Randomized local search (find an arbitrary unsatis-
fied clause and flip one of the variables, at most 2n2
times, and use log2 n random restarts: the probabil-
ity of finding an assignment if there is one is at least
1− 1/n – this estimate is very conservative, but the
algorithm is quadratic).

The following topics were not covered: maximum flow,
linear programming, computational geometry, parallel
or distributed algorithms, algorithms that run forever,
streaming algorithms (when the data is too large to be
kept in memory), etc.

Heterogeneous computing
W.-M. W. Hwu (Coursera, 2012)

GPU programming is getting more popular, and the
main API is currently CUDA, targeted at NVidia
chips.
A CUDA program is just a C program, with a few
more keywords. The memory can be allocated either
on the host (CPU, malloc, free) or the device (GPU,
cudaMalloc, cudaFree), can be copied between them
(cudaMemcpy). Functions can be declared as callable
and/or runnable from/on the host and/or the device:
kernel functions, prefixed with __global__, are called
from the host as

vecAddKernel<<<blocks,threads>>>(x,y,z, n);

and run on the device, in parallel (blocks×threads
threads); they do not return any value, but can change

the data in the arrays pointed to by their pointer
arguments; they can retrieve the thread block and
thread number through implicitly-defined variables
threadIdx.x, blockDim.x, blockIdx.x.
Threads and blocks are arranged in 1-, 2- or 3-
dimensional arrays. Threads in the same block can
share memory: declare it as __shared__ in the ker-
nel function. Threads in a block can wait for other
threads in the same block to reach the same point, by
calling __syncthreads(). Shared memory and thread
blocks can reduce the amount of data transfered be-
tween the host and the device, and greatly increase the
program speed – the typical example is tiled matrix
multiplication, i.e., multiplying block matrices. Con-
volution (or solving PDEs, e.g., wave propagation) re-
quires halo data: data from neighbouring nodes, close
to the boundary – you may want to process it in pri-
ority to avoid delaying the neighbouring nodes.
Many linear algorithms, such as the sum or the cumu-
lated sum of a vector, can be executed in log-linear time
(parallel prefix sum, or scan), by arranging the compu-
tations in a tree (dividing the number of threads by 2
at each iteration).
There are other “parallel design patterns” such as
compaction (the use of sparse matrices), binning
(the Barnes-Hut algorithm, for the N -body problem),
scatter-to-gather conversion (map/reduce), etc.
Streams allow you to transfer data and compute at the
same time. Manually managing them can be tricky.
MPI is a framework for distributed programming,
where processes (possibly running on different ma-
chines) send and receive messages. The nodes can use
CUDA.
OpenCL is similar to CUDA, but not limited to a single
vendor, and a bit clunkier (the device code is compiled
at runtime and has to be put in a string (sic); it cannot
be called as a normal function: its arguments have to
be pushed on a stack one by one; etc.).
OpenACCjust adds a few #pragmas to a sequential C
program:

#pragma acc parallel loop copyin(M[0:m*n])
copyin(N[0:n*p]) copyout(P[0:m*p])

for(int i=0; i<m; i++){
#pragma acc loop
for(int j=0; j<p; j++){ ... }

}

It is possible to fine-tune the number of workers
(threads) and gangs (thread blocks).
C++Amp is a Microsoft-specific extension to C++
providing a parallel_for_each loop, synchroniza-
tion, and implicit data transfer between host and de-
vice.
OpenMP and Thrust were not covered.

Article and book summaries by Vincent Zoonekynd 737/1044

Software testing
(Udacity, 2012)

Review of:
– The various types of tests: assertions, black box,
white box, unit, integration, validation, differential,
stress, random;

– Coverage metrics: lines of code; statements; loop
(each loop is executed 0 times, once, several
times); paths; modified condition/decision coverage
(MC/DC): each condition in a decision is shown
to independently affect the outcome of the deci-
sion; boundary value; synchronization (each lock
does something); interleaving;

– Oracles (i.e., ways of checking the output): weak or-
acles check for crashes, exceptions, failures in a con-
troled environment (valgrind), assertions; a strong
oracle compares the output with another implemen-
tation, or using an an inverse function to recover the
input, or changes the (random) input in a way that
should not change the output (null-space transfor-
mation).

The emphasis was on random testing:
– Automated whitebox coverage testing: start with
some input, check why the coverage is not 100mod-
ify the input to increase coverage (it is a constraint
satisfaction problem), iterate;

– Fuzzing: throw random data (GUI events, network
activity, file contents) and see if the application
crashes, often to find exploitable security faults; to
fuzz implicit inputs (e.g., timing), just overload the
machine; for a multi-threaded program, you can also
add a sleep() before/after each synchronized oper-
ation;

– Random testing: like fuzzing, after fine-tuning the
probability of the random data to increase code cov-
erage and make the input more realistic – otherwise,
the program notices that the input is invalid and
exits: most of the code is not run; the random in-
put generation can often be described with a finite
automaton.

Software debugging
(Udacity, 2012)

The word “bug” is ambiguous: there is a difference
between defect (the code does not do what it should),
infection (the program state is wrong) and failure (this
becomes visible to the user).
Debugging should be done explicitly, in a scientific
way: if it takes more than 5 minutes, write down what
you are doing, what you think the code is doing, test
that it is indeed the case. This allows you to resume
debugging should you be interrupted, and prevents you
from running in circles.
It is very easy to write debugging tools in Python, with
sys.settrace: running the code step by step, follow-
ing the changes of a variable, etc.
Delta debugging is an automated way of simplifying a

failing test: split the input into n subsets, try to remove
one or more of them, and check if the test still fails; re-
peat with other values of n if needed. You can use to-
kens instead of characters, to make the delta debugger
more aware of the structure of the data. git-bissect
does something similar on the code, rather than the
input.
You should check the invariants of your data structure
at the begining of each public method. It is possible
to automatically discover invariants: start with vari-
able ranges, variables types, variable relations (=, ⩽,
between 2 variables – or more), etc. (cf. Daikon).
There are various types of bugs: Bohr bugs (repeat-
able), Heisenbugs (they disappear or change when you
try to reproduce/probe/isolate them, e.g., the program
fails in the field, but works in the debugger; they
can be caused by malware, the many unspecified be-
haviours in the C/C++ standards, etc.), Mandelbugs
(chaotic, very complex causes), Schrödingbugs (they do
not manifest themselves until someone reads the code
and realizes it should never have worked).
To find the cause of bug, you can reason from the fail-
ure to its cause, or from the inputs to the failure. (Part
of this process can be automated: the computer can
find the conditions under which some assertion fails.)
A backward slice is everything a statement depends on
(recursively), a forward slice contains all statements
that depend on a specific statement; a dynamic slice
is s slice of an execution (a trace), rather than of a
program. Slices can be computed automatically and
give a small subset of the program, with only the lines
executed and influencing the output.
Reproducing failures, when the inputs are complicated,
can be tricky: files, GUI interaction (have the widget
record the events they receive), OS (record the output
of the API calls and replay them), randomness (set the
seed), scheduling (find a way to make thread schedul-
ing deterministic), physics (e.g., the OS or processor
can behave differently when running on battery). Look
for correlations (the phi coefficient) between lines ex-
ecuted, functions called, return value (zero/non-zero,
sign, etc.), etc. and the failure.
If the version control system and the bug database are
linked, you can mine the data they contain, to identify
the most bug-prone parts of the code.

Quantum computation
U. Vazirani (Coursera, 2012)

Quantum computation is just linear algebra on a finite-
dimensional complex vector space, with slightly un-
usual terminology and notation.
A quantum bit (qubit, quantum state) is an element of
C2 of norm 1. The standard basis is noted |0〉, |1〉, in-
stead of the more usual (e1, e2) or ((1, 0), (0, 1)): these
are the classical states. Similarly, a vector u ∈ C2

(more precisely, a state, i.e., a unit vector, u ∈ SC2)
will often be written |u〉 rather than u or ~u. The dual
(complex conjugate) of |u〉 is written 〈u|. The projec-

Article and book summaries by Vincent Zoonekynd 738/1044

http://groups.csail.mit.edu/pag/daikon/
http://www.cs.berkeley.edu/~vazirani/quantum.html

tion on Span |ψ〉 is pψ = |ψ〉 〈ψ|. The scalar product
of |u〉 and |v〉 is written 〈u|v〉. Quantum superposi-
tion refers to the fact that |0〉 and |1〉 are not the only
possible states: any linear combination (of norm 1) is
possible.
A measurement (in C2) is another orthonormal basis,
(|u〉 ,

∣∣u⊥〉); after a measurement, the system that was
in state ψ ∈ C2 is now in state u with probability
|〈u|ψ〉|2 and in state u⊥ with probability

∣∣〈u⊥∣∣ψ〉∣∣2. In
particular, after the measurement, you can no longer
recover any information about the previous state |ψ〉:
a lot of information has been lost.
The Hadamard basis (or sign basis) is

|+〉 = 1√
2
|0〉+ 1√

2
|1〉

|−〉 = 1√
2
|0〉 − 1√

2
|1〉 .

If you measure |+〉 or |−〉 in the (|0〉 , |1〉) basis, you
cannot distinguish the two states: the measurement is
|0〉 or |1〉, each with probability 1

2 , in both cases.
The uncertainty principle says that you cannot know
both the bit (|0〉 vs |1〉) and the sign (|+〉 vs |−〉) of a
qubit with certainty.
The evolution of a quantum system is described by a
unitary operator, such as

H =
1√
2

(
1 1
1 −1

)
Hadamard gate

Uθ =

(
cos θ − sin θ
sin θ cos θ

)
Rotation gate

not =

(
0 1
1 0

)
Not gate

Z =

(
1 0
0 −1

)
Phase flip gate.

The not gate flips |0〉 and |1〉; the phase flip gate flips
|+〉 and |−〉; the Hadamard gate flips the canonical and
sign bases; one has Z = HXH.
Qubits do exist in the real world: polarization of a pho-
ton (cos(θ) |0〉+sin(θ) |1〉 corresponds to a polarization
of angle θ); spin; particle with two states (ground |0〉
and excited |1〉), etc.
Consider a photon, polarized as |+〉, passing through a
(|0〉 , |1〉) polarizing filter: it is measured, giving |0〉 or
|1〉, each with probability 1/2, and discarded if |0〉 – it
exits as |1〉 with probability 1/2. Then, let it go trough
another filter, tilted at 45 degrees, i.e., (|+〉 , |−〉): the
probability that it exits is also 1/2, and it will be in
state |+〉. If you stack n such filters, the probability
that the photon remains at the end is 1/2n – classical
physics suggests 0 if n ⩾ 2.
The states of a system of two quantum bits are unit
vectors in the tensor product C2 ⊗C2. The standard
basis is (|00〉 , |01〉 , |10〉 , |11〉). Elements of the form
|u〉⊗ |v〉 are called decomposable, the others are entan-
gled – giving the state of a system made of two qubits is

not the same as giving the state of two 1-qubit systems:
SC2⊗C2 6= SC2 × SC2 ; in general, S(C2)⊗n 6= (SC2)n.
The Bell state is one such state (the two particles are
in the same state):

1√
2
|00〉+ 1√

2
|11〉 = 1√

2
|uu〉+ 1√

2

∣∣u⊥u⊥〉 .
Quantum computation is often sait to be “exponen-
tially powerful”: this power comes from the tensor
product, dim(C2)⊗n = 2n, where classical systems
have dim(C2)n = 2n. But once a measurement is
made, the entanglement (and the exponential power)
is destroyed.
The no-cloning theorem states that you cannot copy a
qubit, i.e., there is no unitary transformation U such
that U(|ψ〉 ⊗ |0〉) = |ψ〉 ⊗ |ψ〉) for all states |ψ〉. But
quantum teleportation is possible:

∃U ∀ψ ∃u U(|ψ〉 ⊗ |00〉) = |u〉 ⊗ |ψ〉 ;

to build this transformation, use the cnot gate, which
sends the canonical basis to a basis of Bell states.
We have only defined measurements in C2, i.e., for sin-
gle qubits. In general, a measurement (or observable)
is a hermitian operator A. From the spectral theorem,
it can be written as

A =
∑
i

λi |φi〉 〈φi| ,

where the φi are a basis of eigenvectors with eigen-
values λi. The measurement of a quantum state ψ =∑
i αi |φi〉 is λi with probability |αi|2.

The expectation and standard deviation of the mea-
surement X of observable M on state |ψ〉 are

µ = 〈ψ|M |ψ〉
σ2 = E[X2]− E[X]2

=
〈
ψ
∣∣M2

∣∣ψ〉− 〈ψ|M |ψ〉2 .
Those quantities can be interpreted as follows. Con-
sider the distribution as a thick piece of wood (the area
under the curve, thickened); the expected value is the
point at which you can balance this piece of wood, as
a see-saw; when you try to rotate this piece of wood
(around a vertical axis, positionned on the mean), it of-
fers some resistance (momentum of inertia), the same
as that from two point masses, at µ + σ and µ − σ.
They also appear in the uncertainty principle:

∆A∆B ⩾ 1
2

∣∣〈ψ|[A,B]|ψ〉
∣∣

where

∆A =

√
〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2

[A,B] = AB −BA.

The evolution of a quantum system is governed by
Schrödinger’s equation

i~
d |ψ(t)〉
dt

= H |ψ(t)〉 ,

Article and book summaries by Vincent Zoonekynd 739/1044

where H is an observable (a hermitian operator, also
called “energy” – its eigenvalues are the energy levels);
solving the equation gives

|ψ(t)〉 = e−itH/~ |ψ(0)〉

where U = e−itH/~ is a unitary operator (and ~ is only
here to keep the units consistent).
Here are a few building blocks to design quantum al-
gorithms.
The Hadamard transform creates superpositions,

|0 · · · 0〉 7−→ 1

2n/2

∑
x∈{0,1}n

|x〉 ,

on (C2)⊗n, and can be used to build other superposi-
tions. For instance,

|φ〉 = 1√
k

∑
x∈f−1({a})

|x〉 ,

for f : {0, 1}n → {0, 1}n can be constructed as follows:
start with |0 · · · 0〉 |0 · · · 0〉, apply the Hadamard trans-
form on the first half, to get 1

2n/2

∑
x |x〉 |0 · · · 0〉, apply

f , to get 1
2n/2

∑
x |x〉 |f(x)〉, and measure the second

half; if the result is a (you do not get to choose a: it
is random, in the image of f), the state becomes (pro-
portional to) ∑

x∈f−1({a})

|x〉 |f(x)〉 .

The Hadamard transform is a special case of the quan-
tum Fourier transform (QFT),

n−1∑
k=0

αk |k〉 7−→
n−1∑
ℓ=0

1√
n

n−1∑
k+0

αke
i
2π
n k |`〉

on Cn, with basis |0〉 , |1〉 , . . . , |n− 1〉. If you view∑
k αk |k〉 as a function k 7→ αk, it is the classical dis-

crete Fourier transform.
To find the period r in a “periodic state”√

r

n

n/r−1∑
k+0

|kr + `〉 ,

take the QFT (the offset ` disappears, the phase
changes, and the period becomes n/r), measure (you
get a random multiple of n/r), repeat, and take the
gcd of those measurements: with enough of them, you
can recover n/r. If r - n, it is trickier, but it is still
possible to recover enough information.
Those ideas can be applied to factor a number n (Shor’s
algorithm): pick x ∈ Z/n at random, consider

f :

{
Z/m −→ Z/n

a 7−→ xa,

with m� n, build the superposition∑
a∈f−1({y})

|a〉 =
∑

a : xa=y

|a〉 ,

it is periodic; find the period r; use it to factor n,
by letting y = xr/2, so that y2 = 1 (in Z/n), i.e.,
n|(y − 1)(y + 1) (if r is odd or y = −1, start again).
For another, readable presentation of those topics,
check S. Aaronson’s Quantum computing since Dem-
ocritus.

Visualizing data using t-SNE
L. van der Maaten and G. Hinton (2008)

Stochastic neighbour embedding (SNE) is a dimension
reduction technique trying to make the low-dimension
conditional probabilities

q(j|i) ∝ e−∥yi−yj∥
2

as close as possible from the high-dimensional ones

p(j|i) ∝ e−∥xi−xj∥
2/2σ2

i ,

where the variance σ2
i at point i is chosen so that the

entropy at each point

Hi = −
∑
j

pj|i log2 pj|i

be the same (and equal to some user-specified value
– the perplexity, or effective number of neighbours, is
2Hi), for the Kullback-Leibler distance∑

i ̸=j

pj|i log
pj|i

qj|i
.

The Kullback-Leibler distance is asymmetric: there is a
large cost for close points ending up distant, but a small
cost for distant points ending up close. The gradient of
the objective function is easy to compute, and the opti-
mization can use momentum (to escape local extrema)
and noise (of decreasing variance, as with simulated
annealing).
The t-distributed SNE (t-SNE) algorithm uses the joint
probabilities qij instead of the conditional ones qj|i (for
the inputs, if i or j is an outlier, pij ≈ 0, so one may
prefer to cheat and use the symmetrized conditional
probabilities

pij =
pi|j + pj|i

2

instead), and replaces the Gaussian distribution e−d
2

with a Student (Cauchy) one (1+d2)−1. The optimiza-
tion uses gradient descent, with momentum (small at
the begining), an L2 penalty

∑
i ‖yi‖

2 and early ex-
ageration (multiply the pij by 4, and do not worry if
they do not sum up to 1) to help separate the clusters.
If there are clusters in the data, they are much more
clearly separated than with other methods such as
Isomap (find the nearest neighbours of each point,
build the corresponding neighbourhood graph, use the
geodesic distance on the graph), local linear embedding
(LLE) (express each node as a weighted average of its
nearest neighbours, find points in a lower-dimensional

Article and book summaries by Vincent Zoonekynd 740/1044

http://www.scottaaronson.com/democritus/lec9.html
http://www.scottaaronson.com/democritus/lec9.html

space with similar weights – it reduces to a linear alge-
bra problem with sparse matrices), maximum variance
unfolding (MVU) (build the neighbourhood graph, pre-
serve the distances between neighbours and maximize
the distances between non-neighbours – this reduces to
a semi-definite optimization problem).
For large datasets, build the neighbourhood graph,
pick landmarks (i.e., a small number of points), and
estimate the conditional probabilities pj|i using ran-
dom walks (proportion of random walks starting at i
and reaching landmark j before any other landmark).

Learning a parametric embedding
by preserving local structure

L. van der Maaten
Non-parametric dimension reduction techniques
(Isomap, local linear embedding (LLE), Sammon, max-
imum variance unfolding (MVU)) cannot easily be ex-
tended out-of-sample. t-SNE can, by parametrizing
the mapping from the (high-dimensional) input space
to the (low-dimensional) output space using a deep
feed-forward neural net (with layer dimensions n, 500,
500, 2000, 2), trained as auto-encoders are: pre-train
each pair of consecutive layers as a resticted Boltzman
machine (RBM), using contrastive divergence (i.e.,
minimize the Kullback-Leibler distance between the
data and its reconstruction after one Gibbs step, in-
stead of an infinity of steps (thermal equilibrium)),
starting with the input layer, each RBM using the
output of the previous as input; use the resulting
weights as initial weights and use back-propagation
(mini-batch) to optimize the t-SNE objective function.

Neural networks
G. Hinton (Coursera, 2012)

Neural networks were popular until the 1990s but went
out of favour; thanks to the advent of more powerful
computers (GPUs), deep neural networks can now be
trained and the field is progressively merging with that
of graphical models.
The course is a motley collection of neural net archi-
tectures (perceptron, feed-forward net, convolutional
net, recurrent net, Hopfield net, restricted Boltzman
machine, deep belief net, auto-encoders) and related
algorithms (back-propagation, biased heuristics, pe-
nalization, constraints (shared weights), careful weight
initialization (echo state net), generative pre-training,
momentum, bayesian methods, Gaussian processes),
presented in a seemingly random order, preserved be-
low.
1. A neural net is a set of idealized neurons (“units”),
somehow linked together, to perform some machine
learning task (supervised learning (regression, classi-
fication), unsupervised learning (e.g., as a first step
before supervised or reinforcement learning, for dimen-
sion reduction), reinforcement learning). Expect neu-
ral networks to be bad at things the human brain is
bad at (e.g., arithmetics). There are many types of
idealized neurons:

– Linear neuron: y = b+w′x;
– Binary threshold neuron: y = 1b+w′x⩾0;
– Rectified linear neuron: y = (b+w′x)+;
– Sigmoid neuron: y = s(b+w′x);
– Stochastic binary neuron: y = 1 with probability
s(b+w′x), 0 otherwise.

In a feed-forward neural network, information always
flows in the same direction, from the input layer,
through the hidden layers, to the output layers (the
neurons should be non-linear, otherwise it is equiva-
lent to a net with no hidden layers).
Recurrent networks contain cycles; they are more pow-
erful, but more difficult to train.

Input Layer 1 Layer 2 Output

They are often unrolled and used to model sequences:

Input 0

Input 1

Input 2

Hidden 0

Hidden 1

Hidden 2

· · ·

Output 0

Output 1

Output 2

The weights do not depend on time; the hidden states
can keep information for some time.
Symmetric neural networks are a special case of recur-
rent neural networks, where the weights are the same
in each direction. They are more tractable. Teaching
a symmetric net is equivalent to minimizing a simple
function, called the “energy function”.
2. The most ancient neural net structure and learning
algorithm is the perceptron.

Input

Hand-chosen features

Output (binary threshold neuron)

The algorithm is straightforward: feed the data to the
network; if the output is correct, do not change any-
thing; if it outputs 0 instead of 1, add the input vector
to the weights; it it outputs 1 instead of 0, subtract
the output vector from the weights. If the data is lin-
early separable, it converges. But we need to find good
features – ourselves.
3. Feed-forward neural networks with hidden units
can discover relevant features themselves. They are
usually trained with back-propagation, i.e., by min-
imizing the quadratic error (the algorithm itself is just
the chain rule for differentiation, expressed algorith-
mically: different types of neurons (transfer functions)

Article and book summaries by Vincent Zoonekynd 741/1044

http://www.cs.toronto.edu/~hinton/csc321/lectures.html

only change a multiplicative factor), with all the ob-
servations at a time (batch learning), or with one ob-
servation at a time (online learning) or, better, with
groups of observations (mini-batch learning, to reduce
zig-zags on the error landscape).
4. If the output is a non-binary discrete variable, you
can use a softmax,

yi = ezi/
∑
j

ezj

(like a logistic function, but for more than two classes).
For the cost function, you can use (minus) the log-
arithm of the probability of a correct answer or the
cross-entropy, −

∑
targeti × log(outputi).

If this creates too many output neurons, you can add
the discrete output variable to the inputs, and use a
boolean output. (It is also possible to arrange the pos-
sible outputs in a binary tree, of which a single branch
would be processed for each input.)
This can be used to model relational data, e.g.,
subject-verb-object triplets, using subject and verb as
input, and the object as output: this can highlight
regularities in a relational database, or find unlikely
triplets (potential errors).
It also applies to language models: contrary to trigram
models, which cannot understand similarities between
words (e.g., dog/cat), the hidden layers (they can ac-
tually be learnt separately, and reused for other tasks)
provide a representation of the context.
One can use dimension reduction, e.g., t-SNE (better
than PCA or its non-linear analogues when there are
clusters in the data) to represent the feature vectors in
two dimensions.
5. In computer vision, to recognize objects, neural nets
need to account for viewpoint invariance. This can be
achieved by convolutional neural nets: each neuron
in the hidden layer corresponds to (say) a 9 × 9 pixel
area, but there are many similar neurons, constrainted
to have the same weights, to recognize the same fea-
ture in different positions. In the learning algorithm,
the gradients are computed as usual, but modified to
ensure that the constraints remain satisfied.
Good object recognition neural nets can have many (7)
hidden layers, the firsts of which are convolutional.
6. Learning neural nets, sepecially deep ones, is
tricky. The problems are often not caused by local
minima, but by plateaus: for instance, if the learning
rate is too high, the weights become so extreme that
the output no longer depends on the inputs, and learn-
ing stalls. Classification problems also have a plateau
on which the network only outputs the proportion of
each class – learning useful features will take time, all
the more so if the network is deep.
For small datasets (say 10,000 cases) standard opti-
mization algorithms such as conjugate gradient (steep-
est descent in the direction of the gradient, then go in
an ”orthogonal” direction) or hessian-free methods (L-

BFGS uses a low-rank approximation of the hessian)
are saticfactory. They can be combined with stochastic
gradient descent (i.e., mini-batch learning).
Changing the learning rate may improve learning: if
the error gets worse or oscillates, reduce it; if it de-
creases, slowly, increase it; at the end, turn down the
learning rate, to smooth away the fluctuations due to
the different samples. One can also use a separate
learning rate for each parameter (e.g., a node-specific
multiplicative gain, restricted to [.1, 10] or [.01, 100] ap-
plied to a global learning rate).
The initial weights are important: initialize them at
random (otherwise, the units would all have the same
weights: there would be no way to break the symme-
try); and make their size proportional to the square
root of their in-degree (otherwise, the output of neu-
rons with a high in-degree has extreme values).
Preprocessing the input may also help learning: shift
the inputs so that their average be zero, rescale them
so that their variance be 1 (this makes the error sur-
face more spherical); decorrelate the inputs, e.g., with
principal component analysis (PCA).
Momentum can improve convergence and help escape
local minima and plateaus: use the gradient to change
the velocity, rather than the position; use a small mo-
mentum at the begining (0.5), then raise to 0.9 or 0.99)
– that is the most common method to learn large neu-
ral networks: mini-batches, stochastic gradient descent
and momentum. While the usual momentum computes
the gradient, then updates the direction, then jumps,
one can first jump (in the previous direction), then
compute the gradient, then update the direction and
the position (Nesterov momentum).
Rprop only uses the direction of the gradient, not its
amplitude, with a separate learning rate for each pa-
rameter. This only works with full batch learning: with
mini-batches, use rmsprop, i.e., divide the gradient by
a running average of the amplitude of the gradients.
7. Sequences are often modeled with autoregressive
models, autoregressive models with hidden units (no
memory), autoregressive models with hidden states
and dynamics (linear dynamical system, aka Kalman
filters, for continuous states, or hidden Markov models
(HMM), for discrete states – but if there are n states,
you can only store log n bits of information). Recur-
rent neural networks (RNN) are similar to HMM,
but their hidden state is distributed, i.e., they have
more memory, and they can describe non-linear dy-
namics.
For instance, adding two binary numbers of arbitrary
length can be done with a 4-state finite automaton:
it requires log2 4 bits of information, so we expect to
find a RNN that solves this problem with fewer hidden
neurons.
The most common task, predicting the next element of
the sequence, blurs the difference between supervised
and unsupervised learning.

Article and book summaries by Vincent Zoonekynd 742/1044

After expanding a RNN over time, it is just a feed-
forward network, with constraints on the weights: it
can be trained by back-propagation through time.
8. Learning deep networks is problematic: the forward
pass is fine, since the squashing (logistic) functions pre-
vent the activities from exploding, but since the back-
ward pass is linear (we replace the squashing functions
with their derivative), it looks like An, where n is the
number of layers – it will be either very large or very
small. One can use an echo state network (ESN),
i.e., fix the input-hidden and hidden-hidden connec-
tions randomly (setting most of the weights to zero to
have a sparse network, and rescaling them so that the
amplitude of the activity vector remains the same), in-
stead of learning them (it is a random equivalent of the
kernel trick used by support vector machines (SVM)).
This is sufficient for 1-dimensional time series, but for
high-dimensional time series (video, sound), you can
use the ESN as initial weights, and refine them with
back-propagation (say, rmsprop with momentum).
One can also proceed as in electronics, and build RNN
from modules, e.g., “memory cells” able to remember
things over a longer time.
9. The best cure against overfitting (learning the reg-
ularities specific to the training set – sampling error) is
more data. If this is not possible, try a simpler model
with few hidden layers.
Early stopping may help: start with small weights, and
stop before overfitting (look at the performance on the
validation dataset and stop when it gets worse) – the
rationale is that a network with small weights is almost
linear, therefore equivalent to a linear network with no
hidden layers – the capacity will be sufficiently small.
You can limit the size of the weights, with an L1 or
L2 penalty. With an L2 penalty, if two weights play
the same role, each will have half the weight (rather
than, say, 1 and 0 or 101 and -100). With an L1

penalty, you end up with many weights equal to 0;
you can use other penalties, e.g., Min{|x| , 1}, which
penalizes small weights in the same way an L1 penalty
does (which leads to many zero weights), but does not
penalize large weights. You can use weight constraints
instead of weight penalties; you can put the constraint
on a unit (say, L2 norm of its weight vector), rather
than on each individual weight.
Adding noise to the input of a linear net is equivalent
to adding an L2 penalty on the weights (adding an L2

penalty is equivalent to adding a bayesian prior). You
can add noise to the weights in recurrent nets. You can
add noise to the activities, by using binary stochastic
units in the forward pass, and logistic in the backward
pass.
Averaging different models, either models with differ-
ent forms, or models trained on different subsets of
the data (bagging), improves performance. You could
also consider a Bayesian approach: use a single neu-
ral net, but look at the posterior distribution of the
weights, instead of just one set of values, and average

the predictions. For instance, the maximum a poste-
riori (MAP) estimator maximizes a penalized sum of
squares, with the penalty being

Var(noise)
Var(weights) ×

∑
weight2i .

You do not even have to assume the model is linear:

P [Weights|Data] = P [Data|Weights]× P [Weights]
P [Data]

The first factor is unchanged, the second is the prior
(the penalty), the last, a constant.
The Empirical Bayes cheats, and uses the data to de-
cide on the prior: fit the model, look at the variance
of the residuals and of the weights (e.g., in each layer)
use the ratio as the penalty coefficient, iterate.
Use cross-validation to choose the meta-parameters (or
simply split the dataset in three: training data, valida-
tion data, test data).
10. There are many ways of combining multiple neu-
ral networks to improve generalization.
The error in a model can be decomposed into bias and
variance. The bias is the inability of the model to learn
the complexity of the phenomenon. The variance is the
ability of the model to learn (undesired) sample-specific
regularities. If you average the predictions of several
models, the variance terms cancel out.
Bagging trains several models on different “subsets”
of the data, obtained by sampling with replacement.
For instance, bagging decision trees produces random
forests (bagging neural networks would take a long
time).
Boosting uses the same idea, but with weights instead
of samples; the weights are not random, but focus on
the misclassified cases: train a model on the data;
then, train another model on the data, but give higher
weights to test cases with a bad prediction; iterate.
Mixtures of experts combine several models, each
trained on a part of the data (different regimes). A
managing neural net looks at the input, infers the
regime, and asks the corresponding expert. Since each
expert only looks at a subset of the data, this requires
a lot of data. This is not unlike boosting, but with
boosting, the weights were only used in the training
phase, not when using the network.
In the learning phase, one minimizes the squared dis-
tance between the target and the average (weighted)
prediction (better, one could use the log-probability
of the corresponding mixture of Gaussians), where the
weights (competence of each expert for this problem)
also have to be determined: each model tries to com-
pensate the errors of the others, not to give a good
prediction – this fosters cooperation.
Full bayesian learning does not output a single number,
as the MAP estimator, but the full posterior distribu-
tion; you can use it to compute, say, the expectation
of the forecasts. You can use complicated models with

Article and book summaries by Vincent Zoonekynd 743/1044

little data – overfitting is the result of looking at a
single number instead of the whole posterior distribu-
tion. The complexity of the model is a prior belief: it
should not be influenced by the data... The posterior
distribution can be estimated by putting a grid on the
parameters and computing p(W = w|data) for all w on
the grid.
To make full bayesian learning practical, you can use
MCMC to sample from the posterior distribution, in-
stead of a grid. Thanks to sampling noise, it works
with mini-batches.
The dropout method is an approximation of the full
bayesian approach, combining a very large number of
networks, without having to train them all: for each
test case, drop some of the units at random (with prob-
ability .5). Each model only has one test case, but the
models share weights: this provides the needed regular-
ization. This also prevents units from trying to fix the
errors of other units instead of focusing on the task at
hand. For prediction, use all the units, but halve their
weights. For nets with one hidden layer, this gives the
geometric mean of all the 2H models. You can use the
same idea on the input units, but with a high probabil-
ity of keeping the units. Dropout reduces overfitting,
better than early stopping.
11. A Hopfield net is a recurrent symmetric net with
binary threshold units. Learning minimizes the “en-
ergy function”

Energy = −
∑
j

sibi −
∑
ij

sisjwij

where si is the state of unit i and wij the weight of edge
i–j. Local minima of the energy function are memories;
the network can store many memories, in a distributed
way, and recover partial or corrupted memories. To
increase the capacity of the network (the number of
memories that can be stored – local minima close to
one another tend to merge), unlearn: put the network
in a random state, find the nearest local minimum, and
learn its opposite – this is not unlike human sleep.
Hidden units in a Hopfield net encode an interpretation
of the state of the visible units. For instance, in com-
puter vision, visible units could be 2-dimensional lines
on the sensor and hidden units 3-dimensional lines in
space.
To escape from local minima, replace the binary thresh-
old units with binary stochastic units,

p =
1

1 + e−∆Ei

or, even better,

p =
1

1 + e−∆Ei/T

i.e., simulated annealing. The network no longer con-
verges to a single state, but to a probability distribu-
tion on the states, the “thermal equilibrium”, and the

probabilities are proportional to e−E (Boltzman distri-
bution); it can be sampled with Monte Carlo simula-
tions.
A Boltzman machine is a stochastic Hopfield net
with hidden units. They are good at modeling binary
data, e.g., identifying the type of a text from a bag of
words.
The Boltzmann learning algorithm maximizes the
product of the probabilities of the vectors to learn. It
turns out to be equivalent to:

d log p(v)

dwij
= 〈si, sj〉visible units clamped − 〈si, sj〉free;

the two terms can be interpreted as learning and un-
learning. To speed up the computation of those ex-
pectations (you have to wait until the machine settles
in thermal equilibrium), start in the previous state, or
“particle” (data-driven particles for the learning term,
one for each data vector, fantasy particles for the un-
learning term).
12. In a restricted Boltzman machine (RBM),
there are no connections between hidden units or be-
tween visible units, i.e., it is a bipartite network.
RBMs can be taught with contrastive divergence, al-
ternating a learning and an unlearning phase (start
with actual data, compute the hidden states, recon-
struct the visible states (it looks like the initial data,
with a few differences) and iterate many times, until
thermal equilibrium: you end up with a completely
distorted version of the initial states, which can be un-
learned; this works well even if you do not wait until
the thermal equilibrium: just take the first or second
reconstruction (increase that number as the algorithm
progresses)).
Collaborative filtering deals with a large matrix of rat-
ings, with users in one dimension and items in the
other, and most of the data is missing. Language mod-
els (modeling triples user-item-rating) convert each
user into a feature vector, each item into a feature
vector, and combines those vectors, e.g., with a scalar
product, to produce a rating: this is actually a matrix
factorization model, the most commonly used model for
collaborative filtering. RBMs can tackle this problems:
one visible unit per item, 100 hidden units, each train-
ing case corresponds to a user; to deal with missing val-
ues, discard the visible units with missing data: there
are different networks, reasonably small, each with a
single observation, but they share weights.
13. Back-propagation has a bad reputation: it does
not work well with deep neural networks (those with
many hidden layers, unless you impose a lot of con-
straints, as with convolutional nets), or with recur-
rent nets, and support vector machines (SVM) often
perform better. The real problems are small datasets
(neural networs need a lot of data), slow computers
(to deal with the volume of data – GPUs are popu-
lar with neural network practitionners), simplistic net-
works (for simple models, low-dimensional datasets (up

Article and book summaries by Vincent Zoonekynd 744/1044

to 100), or data plagued by noise rather than complex
phenomena, statistics works best), and badly initial-
ized weights.
A belief net (“Bayesian network”, in graphical model
parlance) is a sparsely connected, directed acyclic
graph, with stochastic variables. Contrary to Boltz-
man machines (undirected graphical model, energy-
based, “pairwise Markov networks” in graphical model
parlance), belief nets are causal: they can easily be
used to generate samples.
To initialize the weights carefully, to improve learning,
one can use a generative model.
Learning sigmoid belief nets would be easy if we could
sample from the posterior distribution of the hidden
states. But, because of “explaining away”, it is dif-
ficult: if A and B are independent, improbable, and
both imply C, they are negatively correlated given C
– it is almost an exclusive or. MCMC can be used,
but it is extremely slow: a Markov chain would get
stuck on A or B and would never visit the other. Vari-
ational methods sample from an incorrect but simple
approximation of the posterior.
The wake-sleep algorithm assumes that the posterior
distribution (over the hidden configurations) factorizes
into a product of distributions for each separate hid-
den unit, i.e., that we can forget about explainig away.
Consider two sets of weights: generative weights (the
actual weights, from the hidden units to the observed
ones) and recognition weights (in the other direction).
In the wake phase, use the the data and the recognition
weights, and sample the hidden units; given the state
of those hidden units (considered as a sample from the
posterior), train the generative weights. In the sleep
phase, reverse the role of generative and recognition
weights. The wake phase makes the recognition weights
close to the (wrong) posterior; the sleep phase makes
the wrong posterior close to the correct posterior.
14. RBMs are good at learning features, and those
features can be reused as input of RBMs – and so on.
Surprisingly, if you stack RBMs, the result looks like
a sigmoid belief net – which suddenly becomes easy to
learn.
Start by learning an RBM, with two layers, the data
and a first hidden layer. Use this first hidden layer as
input to another RBM: to learn it, you can initialize the
second hidden layer with the data (the second RBM is
just the first RBM upside down). You can then stack
those two RBMs, to form a deep belief net (DBN) (it
is a hybrid network, partly directed, partly undirected)

Hidden layer 2 Hidden layer 1 Data

The lower layers form a sigmoid belief net (perhaps
with several hidden layers), the top two upper layers
form an RBM. You may waht to use different weights
in the up and down phases.
To generate data, use Gibbs sampling on the top layers
(RBM), until equilibrium; then propagate towards the

visible layer, using the generative weights.
Stacks of RBMs can be used to initialized the weights
before back-propagation: this pre-training is unsuper-
vised (the labels are not used).
RBMs can also model real-valued data: use visible lin-
ear units with Gaussian noise and hidden rectified lin-
ear units.
15. Principal component analysis (PCA) can be im-
plemented with back-propagation:

input vector

code vector (smaller)

output vector.

Use back-propagation to make the output vector as
close as the input vector. This can be generalized with
non-linear layers:

input vector

non-linear layer

code vector

non-linear layer

output vector.

The first part is an encoder, the last a decoder – the
whole is an auto-encoder.
Since back-propagation does not work well with deep
networks, you can use echo-state-net weight initializa-
tion or unsupervised pre-training (use a stack of RBMs
to initialize the encoding weights, use the transpose to
initialize the decoding weights) before fine-tuning with
back-propagation.
Latent semantic analysis, i.e., PCA of the vectors of
word counts (or probability vectors) is often used for
document retrieval. You can use deep auto-encoders
instead of PCA, e.g., start with 2000 words, encode
them to 500 neurons, then 250, them 10, and then
decode them in the same way. Even with 2 dimen-
sions, the plot is much more informative (the clusters
are much more separated) than with (linear) PCA.
The semantic hashing problem is that of finding a
document (text, image) similar to a given document:
use an auto-encoder with logistic units in the code
layer, add noise to the inputs of the code layer (other-
wise, the logistic units would be used in their middle
range, sensitive to noise, but conveying more informa-
tion – instead, you can use binary stochastic units),
and threshold them to get a binary code. Similar doc-
uments are documents with the same (or similar) bi-

Article and book summaries by Vincent Zoonekynd 745/1044

nary codes (for similar documents, flip a few bits, i.e.,
perform an exhaustive search on the neighbourhood).
Semantic hashing also works for image retrieval: first,
use a small (28-bit) binary code to build a (long) short-
list of candidates. Then, use a 256-bit binary code, and
perform an exhaustive search on the shortlist; the lay-
ers could be 1024 pixels, 8192 units, 4096, 2048, 1024,
512, 256 (learning may take days, even on a GPU).
Since an RBM is like a shallow auto-encoder, you
can pre-train with a stack of auto-encoders instead of
RBMs – it works better with denoising auto-encoders,
i.e., by adding noise to the input vector by setting
many of the components to zero (like dropout, but for
the inputs), or contractive auto-encoders, which make
the activity of the hidden units less sensitive to the in-
puts by penalizing the squared gradient of the hidden
activities wrt the inputs.
16. Gaussian processes can be used to optimize the
hyper-parameters, in a Bayesian way: they estimate a
function

f : hyperparameters 7−→ quality of the result

by providing an estimate and an error, i.e., f(x) ∼
N(f̂(x), σx), and one can evaluate the function at the
hyperparameters with the biggest expected improve-
ment on the best values so far

E[improvement|improvement > 0].

Probabilistic graphical models
D. Koller (Coursera, 2012)

1. Knowledge representation
1a. Modelling a set of discrete random variables seems
easy: you just have to give the join probability table.
However, when there are many variables, there are too
many parameters to estimate – perhaps even, too many
to store in the memory of your computer. Graph-
ical models provide a parsimonious description of
discrete probability distributions – think of them as
“factor models” for discrete variables (a factor model
is a parsiminious description of a covariance matrix,
V = eve′ + ∆, with v small, positive definite, e rect-
angular, ∆ diagonal and V large square, often used in
finance to describe stock returns).
With the Bayes formula, you can decompose the joint
probability

P (A,B,C,D,E) =

P (A|B,C,D,E)P (B,C,D,E) =

P (A|B,C,D,E)P (B|C,D,E)P (C,D,E) =

P (A|B,C,D,E)P (B|C,D,E)P (C|D,E)P (D,E) =

P (A|B,C,D,E)P (B|C,D,E)P (C|D,E)P (D|E)P (E).

If you choose the order wisely, some simplifications can
occur: for instance, if A is independent of C, D and
E, you can replace P (A|B,C,D,E) with P (A|B). For

instance, we could have

p = P (A|B)P (B|D,E)P (C|E)P (D)P (E).

The decomposition can be described by a directed
acyclic graph (DAG), with an arrow from x to y if
P (y| . . . x . . .) appears in the decomposition.
Conversely, a DAG defines a decomposition of the
joint probability (to find the order: start with a
leaf, remove it, iterate): a Bayesian network is a
DAG with a conditional probability distribution (CPD)
P (Xi|Parents(Xi)) at each node Xi.
The naive Bayes model, popularized by spam detec-
tion (or, more generally, document classification),

Class

word1 word2 · · · wordn

wordi ⊥⊥ wordj | Class
P (Class,word1, . . . ,wordn) =

P (Class)
∏
i

P (wordi|Class)

can be the first step before a better-informed Bayes
model. Inference is straightforward.
From a developer’s point of view, bayesian networks
are easy to maintain (the model is just data) and can
lead to more flexible user interfaces (since they can eas-
ily deal with missing (unobserved, latent) values, the
user can choose not to answer a question).
Many bayesian networks are built from simpler build-
ing blocks (“ground networks” or templates):
– Dynamic bayesian models (hidden Markov models
(HMM), Kalman filters, , all the chain-like models in
NLP), temporal models (with the Markov assump-
tion and time invariance, they can model arbitrarily
long trajectories);

– Grid models in image processing (similar model for
each pixel or superpixel);

– Object-relational model (e.g., pedigree relations in
genetics; student–course relations in a university; the
BUGS-like plate models, when there are many re-
peated elements).

The distribution of Y |X1, . . . , Xn (say, when the Xi

are binary) requires an exponential number of pa-
rameters: we often want a more consise description
of those CPDs. Tree-structured CPDs encode
context-specific independence

X ⊥⊥c Y |Z,C = c

(it just says that large parts of the table CPD are iden-
tical, and the decision tree is just a way of compressing
it): the multiplexer CPD is one such tree

P (Y |K,X1, . . . , Xn) = 1Y=XK .

Article and book summaries by Vincent Zoonekynd 746/1044

In the noisy OR, each possible cause (say, diseases)
triggers the consequence (a symptom) with some prob-
ability, and the consequence appears if any of the
causes triggered it: this ignores dependence between
causes.

Disease1 Disease2 · · · Diseasen

Symptom1 Symptom2 · · · Symptomn

Undifferentiated symptom

Instead of or, you could use and, max, or a sum (sig-
moid CPD, as in neural networks)

P (Y = 1|X1, . . . , Xn) = sigmoid
(
w0 +

∑
i

wiXi

)
.

1b. Markov networks are undirected graphical models.
A pairwise Markov network decomposes the joint
probability distribution as a product of “factors” (or
“potentials”), one for each edge, e.g.,

P (A,B,C,D) ∝ φ1(A,B)φ2(B,C)φ3(C,D)φ4(A,D);

for instance, the pixels (or superpixels) in an im-
age form a lattice (an undirected graph). The fac-
tors do not have any direct interpretation. Markov
networks (MN) (sometimes called Markov random
fields (MRF) or general Gibbs distribution) do the
same thing with hypergraphs.

P (X1, . . . , Xn) ∝
∏
i

φi(Di),

where the Di are hyperedges. A Markov network can
also be represented as a graph, with an edge between
two vertices if they are in the same hyperedge. By re-
placing the hyperedges with their cliques, we lose some
information.
1c. Conditional Random Fields (CRF) do not
model P (Y,X) but P (Y |X): we can then ignore the
distribution ofX (the correlations do not matter – they
could be difficult to model). Only the normalizing con-
stant changes.

P (X,Y) ∝
∏

fi(Di)

Z(X) =
∑
Y

P (X,Y)

P (Y |X) = P (X,Y)/Z(X).

Log-linear models (feature-based models) are of the
form

P ∝
∏

φi(Di)

φi(Di) = exp(wifi(Di))

where fi is known (“feature”) and the wi are parame-
ters (there can be several factors with the same domain,

and you can impose that the weights be equal). Often,
the features fi are indicartor functions, as in the Ising
model. For metric MRF,

fij(Xi, Xj) = distance(Xi, Xj)

φij(Xi, Xj) = exp(−wijfij(Xi, Xj))

where the distance can be a Kronecker delta, the abso-
lute value of the difference, or some robust cost func-
tion such as d(x, y) = Min(1, |x− y|).
BN are preferable when there is a natural direction
(e.g., a causal network), MRF when there is none (e.g.,
adjacent pixels in an image), CRF when there are vari-
ables with a complicated dependency structure you do
not want to model (e.g., complex features, in image
analysis).
1d. The notions of conditional independence,
causal reasoning (the path from evidence to conclu-
sion follows the edge directions), evidential reasoning
(opposite), intercausal reasoning (from one cause of an
effect to another: P (Cause1|Effect,Cause2), explain-
ing away) and, more generally, inference flow can be
expressed in graph-theoretic terms. Inference can flow
from X to Y if they are linked by edges such as

X −→ Y (causal relation)
X ←− Y (deduction)
X −→W −→ Y

X ←−W ←− Y
X ←−W −→ Y (intercausal relation)

but inference does not flow through v-structures

X −→ Y ←− Z

for instance,

Exam Difficulty

Score.

Student intelligence

Trails with no v-structures, are called active trails.
Things are slightly more complicated with conditional
inference: a trail X1 −→ · · · −→ Xn is active given
Z if, for each v-structure −→ Xi ←− it contains, Xi

or one of its descendants is in Z, and no other Xi is
in Z. It is simpler with undirected graphs: a trail
X1 − · · · −Xn is active given Z if no Xi is in Z.
Bayesian networks can be interpreted as
– a factorization of the joint probability;
– a description of the dependencies among the vari-
ables;

– a description of the conditional independence rela-
tions between the variables.

The following properties are equivalent.
– P ⊨ (X ⊥⊥ Y |Z)
– P (X,Y |Z) = P (X|Z)P (Y |Z)
– P (X|Y, Z) = P (X|Z)
– P (Y |X,Z) = P (Y |Z)

Article and book summaries by Vincent Zoonekynd 747/1044

– P (X,Y, Z) ∝ φ1(X,Z)φ2(Y, Z) for some functions
(“factors”) φ1 and φ2.

If there is no active trail between X and Y given Z,
then X and Z are said to be d-separated given Z
and they are independent given Z. For instance, any
node is d-separated from its non-descendants given its
parents.
The independence map of a directed graph G is the
set I(G) of conditional independence relations coming
from d-separation. A set of independence relations sat-
isfied by a probability distribution P is said to be an
independence map of P . One can show that a prob-
ability distribution P factorizes over a directed graph
G iff I(G) is an independence map of P .
For Markov networks as well, a probability distribution
P factorizes over an undirected graph G iff G is an I-
map for P (at least, if the distribution is positive, i.e.,
never zero – in particular, there are no deterministic
relations).
A graph is a minimal I-map if you cannot remove any
edge – minimal I-maps exist, but need not be unique.
A graph G is a perfect map if I(G) = I(P) – per-
fect maps need not exist. Two graphs are I-equivalent
if they encode the same independencies: there is an
unidentifiability problem if you try to infer the struc-
ture of the graph.
It is possible to convert between BN and MN, but some
independencies are lost: from BN to MN, we lose the
independencies in the v-structures, from MN to BN,
we must add triangulating edges to loops.
2. Inference
We have a network, some data (the evidence), and a
question about it. Unfortunately, most inference prob-
lems on graphical networks are NP-hard.
A conditional probability query is the problem of
computing P (Y) (marginal probability) or, more gen-
erally, P (Y |E = e) (i.e., “reduce” the factors by the
evidence). It is also called a sum-product problem:
the aim is to compute an (exponentially large) sum of
products. In the presence of evidence, or for undirected
graphs, you also need to renormalize the result.
The algorithms include: variable elimination (exact),
belief propagation (biased), variational approximation,
MCMC (often with importance sampling).
The MAP (maximum a posteriori) inference problem
is the problem of finding

MAP(Y |E = e) = Argmax
y

P (Y = y|E = e)

where Y contains all the variables not in the evi-
dence E. This is different from the maximum over the
marginals. It is also called a max-product problem.
The algorithms include variable elimination, belief
propagation, integer programming (efficient, popular),
graph-cut methods (in some special cases), combinato-
rial search.

2a. Variable elimination (VE) integrates out one
variable at a time from the sum-product; a judiciously-
chosen elimination order can reduce the number of op-
erations.
Variable elimination can be visualized as operations
on a graph. First convert the graph to an undirected
graph (you need to add edges for all v-structures, i.e.,
create the cliques associated to the factors); then elim-
inate the nodes one by one (you need to add fill edges
between the neighbours of the node you remove). We
want an elimination order for which the induced graph
(with all the fill edges added) has small cliques.
To find a good elimination order, one can use a greedy
approach, i.e., eliminate the node with the smallest
cost, where the cost is one of
– the number of neighbours in the current graph;
– the number of values in the factor formed (if the
factors are not all binary) (min-weight);

– the number of new fill edges (min-fill – it works much
better);

– the total weight (number of values) of the new fill
edges (weighted min-fill).

To find a good elimination order, one can look for a low-
width (small cliques) triangulation (no loop of length
greater than 3 without a “bridge”) of the initial graph
(the induced graph is triangulated).
2b. Belief propagation (BP) considers a covering of
the graph by subgraphs, which exchange information.
A cluster graph, associated to a Markov network, is
a graph whose vertices (clusters) are sets of variables,
with edges labeled by sets of variables (sepsets) com-
mon to both clusters (not necessarily all the variables
in the intersection), and each factor assigned to a clus-
ter with all the required variables. The factor ψ of a
cluster is the product of the (MN) factors φ associated
to it. Clusters then exchange messages δi→j : initialize
the messages to 1, multiply the messages you received
with the information you have, and send it (suitably
marginalized) to the other neighbours; when sending
to a neighbour, do not use the information you directly
received from it. After some time, compute the beliefs:
β = δψ. They often converge (but sometimes oscil-
late), and are biased (significantly, but for few variables
– BP is useful when there are many variables). Con-
vergence and accuracy are worse in presence of tight
loops or potentials pulling in opposite directions.
Cluster graphs should satisfy the running intersection
property: if two clusters have a variable in common,
there is a unique path between them all of whose
sepsets contain the variable. In other words, for any
variable X, the clusters and sepsets containing it form
a tree (connected, no loops).
The Bethe cluster graph is a bipartite cluster graph,
with a cluster for each variable and for each factor,
and edges between a variable and a factor if it is in its
scope. It is a good first choice.
A cluster graph is said to be calibrated if clusters agree

Article and book summaries by Vincent Zoonekynd 748/1044

on their sepsets.
Even if the beliefs are biased (as estimators of marginal
probabilities), information is not lost: the unnormal-
ized joint probability can be recovered as∏

i βi∏
i,j µi,j

where µi,j = δi→jδj→i are the sepset beliefs.
For clique trees, i.e., cluster graphs that form a
tree, and in which the sepsets are exactly cluster in-
tersections, the belief propagation computations are
equivalent to variable elimination and lead to correct
marginals. Messages from a leaf are final: if you pass
the messages from the leaves inwards (find a node that
has received messages from all its neighbours except
one), belief propagation converges immediately.
You can easily compute all marginals (with vari-
able elimination, you had to redo everything for each
marginal). To answer queries, you may need to recom-
pute some messages, but not all: only those from the
new evidence to the variable of interest.
Clique trees can have large clusters: each sepset sep-
arates the graph into two conditionnally independent
parts (this is a consequence of the running intersection
property).
Do not use synchronous BP – asynchronous BP con-
verges more often and faster. On an arbitrary cluster
graph, propagation order matters:
– Tree reparametrization (TRP): choose a tree at ran-
dom (it works better with larger trees, e.g., spanning
trees), calibrate it, and iterate with other trees (make
sure you sample all edges);

– Residual belief propagation (RBP): pass messages
between clusters whose belief over their common
sepset disagree most (use a priority queue).

To limit oscillations, you can smooth (dampen) the
messages (bias them towards their previous value).
Turbo codes (efficient error-correcting codes) were one
of the flagship applications of loopy BP.
The MAP estimation problem is a Max-Sum problem,
formally identical to the sum-product problem: it can
be solved via variable elimination. Message passing
can be used, but the beliefs at each clique are just
max-marginals; however if the global MAP assignment
is unique, it can be recovered from the max-marginals
(if it is not, perturb the problem to make it unique, or
build the assignment one variable at a time, backtrack-
ing if needed).
Some MAP problems are tractable (via ad hoc algo-
rithms): matching (over a bipartite graph); associative
potentials (when two binary variables are dependent,
they tend to agree more often than not); metric MRF
(a continuous analogue of associative potentials); car-
dinality factors (score(X1, . . . , Xn) = f(

∑
Xi), where

the Xi are binary); sparse pattern factors (the table
CPD is sparse); convexity factors (contiguity in texts,

contiguous activities in temporal data, image segmen-
tation), etc.
The dual decomposition uses optimization tech-
niques to address the MAP problem: separate 1-
variable factors from many-variable factors

MAP(θ) = Max
x

(∑
i

θi(xi) +
∑
F

θF (xF)

)

= Max
x

(∑
i

θi(xi) +
∑
F∋i

λFi(xi)+

∑
F

θF (xF)−
∑
i∈F

λFi(xi)

)

⩽
∑
i

Max
x

(
θi(xi) +

∑
F∋i

λFi(xi)

)
+

∑
F

Max
x

(
θF (xF)−

∑
i∈F

λFi(xi)

)
and solve those subproblems (or “slaves” – choose the
decomposition so that they are tractable); when they
disagree, i.e., x∗Fi 6= x∗i , reduce the fitness on both sides

λFi(x
∗
i)−= α

λFi(x
∗
Fi) += α;

the algorithm converges if
∑
αt = ∞ and

∑
α2
t < ∞.

If the slaves agree, this is the MAP; if not, use heuris-
tics (voting, decompositions into a spanning tree (it
will be consistent), etc.) to “decode” them.
2d. Monte Carlo methods (Gibbs Sampling,
Metropolis-Hastings) can also be used for inference.
2e. Graphical models are also used to support de-
cision making: we do not only want to estimate a
model, we want to find a decision rule that maximizes
some expected utility (MEU). An influence diagram is
a a bayesian network with added “action” nodes and a
“utility” node (if the utility function is separable i.e., a
sum of simpler functions, There can be several utility
nodes).
This diagram can help decide which variable to mea-
sure, by computing the value of perfect information,
the difference between the MEU of the influence dia-
gram with an edge added (from the variable to measure
to the action node) and the MEU of the initial influence
diagram.
3. Learning. Given data and a partial description
of the network (e.g., the structure but not the parame-
ters, or just the nodes, without the edges – in addition,
some of the data can be missing, and some of the nodes
may be unknown (latent variables)), we want a com-
plete description of the graphical model (structure and
parameters).
3a. Maximum likelihood estimation (MLE) is the most
straightforward: the likelihood can be decomposed into
a product of local likelihoods – but use cross-validation
to prevent overfitting (in particular, the likelihood of a
complete graph is always higher).

Article and book summaries by Vincent Zoonekynd 749/1044

Learning is a special case of inference: parameters
can be seen as random variables. Bayesian learning
combines an imaginary Dirichlet sample (the Dirichlet
prior generalizes the Beta prior, for the multinomial
distribution instead of Bernoulli). with real data sam-
ples; it is asymptotically equivalent to the MLE (the
relative size of the prior decreases as more data arrives),
but converges faster.
One can also use maximum a posteriori (MAP) esti-
mators.
3b. Structure learning is trickier. If an arc is missing,
you cannot recover the true distribution, but the net-
work may have good generalization properties. If there
is an arc in excess, you can recover the true distribu-
tion, but the network may have poor generalization
properties.
To learn the structure, one can define some score func-
tion (distance between model and data) and optimize
it: consider all the possible graphs on the nodes you
have, compute a score for each of them, and pick the
graph with the highest score.
The likelihood is not a good scoring function: it is guar-
anteed to overfit – it prefers the fully-connected graph.
You can add a constraint or, better, a penalty on the
complexity of the graph, as in the Bayesian informa-
tion criterion (BIC).

log-likelihood− log(number of instances)
2× number of independent parameters

(the opposite is sometimes called called the MDL (min-
imum description length) criterion). It is asymtotically
consistent.
The bayesian score is

P (model|data) ∝ P (data|model)P (model);

it is dominated by the marginal likelihood
P (data|model). This is not the likelihood but the
marginal likelihood: the likelihood is evaluated at the
best parameters, while the marginal likelihood is av-
eraged over all possible parameters (for a given graph
structure). The marginal likelihood can be easily com-
puted for multinomial models: it is a sum, one term
for each node, only involving information about its
parents. For the structure prior, P (model), you can
use a constant (uniform distribution on the space of
graphs: the marginal likelihood is penalized enough),
or a penalty for the number of edges or parameters.
For the parameter priors (needed to compute the inte-
gral inside P (data|model)), use a Dirichlet prior, i.e.,
the parameters for a network with no edges, or the
parameters from a simple network structure. Asymp-
totically, the Bayesian score is equivalent to the BIC
score: in particular, it is consistent.
The scoring function is decomposable: it is a sum over
the nodes (or “families”: each node and its parents).
In the case of trees or forests, it can be transformed
into a sum over the (undirected) edges, and finding

the optimal tree (or forest) is just a minimum span-
ning tree problem. For more general graphs, the prob-
lem can still be reduced to a graph-theoretic one, but
it is NP-hard: we have to resort to some heuristic,
such as greedy hill climbing or simulated annealing –
to avoid local maxima and plateaux (equivalent net-
works are often neighbours), use random restarts and
a tabu list, and make sure the neighbourhoods are suffi-
ciently large (in particular, you do need edge reversals,
otherwise there are many more local extrema).
The decomposability can help speed up the implemen-
tation: we only need the differences in scores, which
only involve one or two nodes, and do not change un-
less we touch those nodes: just put the possible moves
in a priority queue (heap) sorted by the score differ-
ences.
3c. Hidden variables can simplify the structure of
the network, but make the optimization problem more
complex: because of unidentifiability (e.g., values of
a discrete hidden variable can be permuted), which
leads to the multiplication of local extrema, and non-
decomposability. Missing data pose the same prob-
lem. One could use gradient descent: there is a simple
formula for the gradient, but it requires inference for
each data instance. Expectation maximization (EM)
is faster: it uses the fact that given complete data,
parameter estimation (M step) is easy; and that given
parameters, computing the distribution of missing data
(inference, E step – it is a soft completion of the data:
not a single value but a probability distribution) is
easy (uses the same efficient statistics as complete data
MLE). You should not only look at the likelihood, but
also at the parameter values (they continue to fluctu-
ate even though the likelihood seems to be stable); you
should use cross-validation to know when to stop the
optimization (the longer it runs, the higher the over-
fitting risk); you should use several restarts (random,
or from prior knowledge, or from a simpler (clustering)
algorithm).
Successful uses of probabilistic graphical models mix
and match models (directed and undirected), infer-
ence algorithms (approximate (BP, MCMC) and exact
on some subsets of variables), and learning algorithms
(e.g., SVM for some potentials, CRF for others).

Market Risk Analysis IV
Value-at-Risk Models
C. Alexander (2008)

1. There are many measures of risk: standard devia-
tion, semi-variance, lower partial moments, etc.. The
value at risk (VaR) is a quantile of the distribution
of discounted returns, for a given significance level α
and horizon h. It is not a coherent risk measure, but
once you have a VaR model, you can also compute the
expected shortfall (ES). The VaR (or ES) can be mea-
sured absolutely or with respect to a benchmark.
The expected returns can be neglected in short-term
VaR, but not in very long-term VaR. For long-term

Article and book summaries by Vincent Zoonekynd 750/1044

VaR, the difference between dynamic VaR (continu-
ously rebalance the portfolio to keep the risk exposures
constant) and static VaR (do not touch the portfolio,
let it drift) becomes more pronounced.
The greeks are sometimes incorrectly seen as risk mea-
sures: they are only risk sensitivities – the actual risk
is the product with the risk factor returns.
2. Equity and cash flow portfolios are linear in their
risk factors (strictly speaking, cash flow portfolios are
linear in the discount factors, not the rates, but the lin-
ear approximation is very good). When there is a term
structure of risk factors, principal component analysis
(PCA) can reduce their number.
The parametric linear VaR model is not limited to
Gaussian iid risk factor returns: it can be corrected
for autocorrelation (AR(1)); it can be generalized to
a Student distribution (with heavy tails) or a mixture
distribution (to model different regimes).
To account for volatility clustering, one can estimate
the variance matrix with an exponentially weighted
moving average (EWMA) or, better, a GARCH model.
Model risk can be very high: try several models.
3. Historical simulation, i.e., the use of histori-
cal returns (for the factors or for the portfolio), pro-
vides VaR estimates with no distributional assump-
tions. The returns should be adjusted so that the
volatility be the same as the current volatility:

yt =
σ̂T
σ̂t
xt,

where σ̂ comes from a GARCH (or asymmetric
GARCH (A-GARCH), to account for the leverage ef-
fect) model. In a multivariate setup, divide and multi-
ply by the Choleski matrices instead of the volatilities.
The square root rule, for time scaling, is only valid for
Gaussian iid returns. For stable iid returns, there is
a similar rule, with a different exponent (to be esti-
mated). For non-iid returns, you can use an h-period
ahead volatility forecast from a GARCH model.
To estimate extreme quantiles from historical data, you
need to model the tail, e.g., with kernel density esti-
mators; extreme value theory (EVT) (but you have
to choose a threshold); the Cornish-Fisher expansion
(which tends to over-estimate the VaR); or (better)
the Johnson SU distribution.
To decompose the VaR, decompose the returns

return =
∑
i

βi × returni + εi.

One can compute the VaR of each term (standalone
VaR, not additive), the VaR from all the risk factors
(systematic VaR) or from the residuals (specific VaR),
or use Euler’s identity and numeric differentiation to
have an actual decomposition (marginal VaR, incre-
mental VaR). For instance, for FX risk, you can use

log-returnsGBP = log-returnsUSD + FX log-returns

(you may need to assume that log-returns and ratio-
returns are the same, which may be fine for very short
horizons).
4. Monte Carlo simulations are often preferable to
linear VaR or historical VaR models: just sample from
a statistical model for the risk factor returns.
GARCH (or, better, Markov-switching GARCH) mod-
els can account for volatility clustering. Principal com-
ponent analysis (PCA) will reduce the number of fac-
tors and make them orthogonal. Copulas can model
the dependence between risk factors: even elliptic cop-
ulas as useful, since they allow different marginal dis-
tributions (e.g., Student with different degrees of free-
dom, or Gaussian mixtures).
Importance sampling can be used to improve the preci-
sion (reduce the sampling error) of the VaR – but it is a
quantile, not an expectation: the details are different.
5. The main risk factors for option portfolios are
price, squared price (to account for non-linearities) and
implied volatility. The value delta (or dollar delta) is

∆$ =
∂Price
∂ logS

= S
∂Price
∂S

= S∆.

It can be aggregated over different underlyers – it an-
swers the question “how much would the value of the
portfolio change if all prices simultaneously rose by
1%”. The other value greeks are defined similarily, and
may be used to compute the ∆-Γ approximation

P&L = ∆′$R+ 1
2R
′Γ$R,

where R is the vector of discounted returns for the un-
derlyers.
The corresponding VaR can be computed analytically:
one can compute the moments of the P&L distribution
and either use the Cornish-Fisher expansion or (better)
fit a Johnson SU distribution.
Time scaling may look straightforward if you only look
at prices

P&Lh = h1/2∆′$R+ 1
2hR

′Γ$R,

but it is not clear how to scale vega (the implied volatil-
ity is mean-reverting) – it is preferable to directly use
h-day returns.
While the∆-Γ-vega approximation (the other greeks do
not add any significant information) is fast and often
used for intraday (real-time) VaR, it is inadequate, es-
pecially for hedged portfolios: it is preferable to exactly
reprice the options, using either historical data, or a dy-
namic model for the risk factors (volatility clustering,
mean reversion for risk indices and implied volatility,
etc.).
If there are too many risk factors (say, futures of differ-
ent maturities on various underlyers; implied volatili-
ties for many strikes, maturities and underlyers), you
can use principal component analysis (PCA) to reduce
their number and identify the “main” ones. PCA does
not work well with implied volatilities: instead, you can

Article and book summaries by Vincent Zoonekynd 751/1044

use “volatility beta mapping”, i.e., choose a reference
volatility (usually ATM).
As usual with options, one should not confuse the P
andQmeasures: the VaR is a quantile of the real-world
(P) distribution of returns.
6. There are many sources of model risk:
– Volatility clustering, autocorrelation;
– Heavy-tailed return distributions;
– Choice of risk factors (e.g., vertex choice, for cash
flow portfolios);

– Estimation procedures (e.g., the “ghost artefacts” in
rolling unweighted OLS estimates: the estimators
jump when an outlier enters and leaves the window);

– Inadequate scaling (the regulators encourage this:
they ask banks to use a 10-day VaR to compute their
capital requirement, but only mandate tests on the
1-day VaR, and allow the square root rule...).

You can compute confidence intervals for the VaR esti-
mators (analytically, or via asymptotic results – boot-
strap is not mentionned). Here are a few tests for the
VaR, based on the number of exceedances n1 and the
number of consecutive exceedances n11 (the tests are
only asymptotic, unlikely to be useful unless you really
have a huge amount of data, and the independence test
will overlook clustering unless the exceedances are ex-
actly consecutive).

−2 ln αn1(1− α)n0(n1
n

)n1
(n0
n

)n0
∼ χ2

df=1

−2 ln

(n1
n

)n1
(n0
n

)n0

(
n00
n0

)n00
(
n01
n0

)n01
(
n10
n1

)n10
(
n11
n1

)n11
∼ χ2

df=1

−2 ln αn1(1− α)n0(
n00
n0

)n00
(
n01
n0

)n01
(
n10
n1

)n10
(
n11
n1

)n11
∼ χ2

df=2

There are similar tests for the expected shortfall.
To check of the risk model uses all the information in
the market, regress the exceedance indicator variable
against the lagged risk factors (with several lags) and
compare with the intercept-only model (the intercept
is the significance level α).
If you are willing to assume Gaussian iid returns (test
for autocorrelation, heteroskedasticity, normality), you
could test the bias:

sd
(
Yt+1

σ̂t+1

)
∼ N

(
1,

1

2T

)
.

Instead of looking at a single quantile, you could com-
pare the whole forecasted distribution with the actual
returns, e.g., with a likelihood ratio test (I would use
a Kolmogorov-Smirnov test).
7. While VaR and ES look at extreme events in oor-
mal market conditions, stress tests (scenario analysis)
look at abnormal market conditions.

Some stress tests are computed from the risk factors
returns for a historical event (1987 crash, etc.).
Some rely on single-case scenarios, i.e., a single vector
of risk factor returns: for instance the worst-case loss
stress tests look at the worst possible loss if the risk
factors move by ±6σ – but, since the portfolio may be
hedged along those risk factors, it may be preferable
to look at the losses for large changes in the princi-
pal components (especially if there is a term structure
of risk factors) or if the risk factor returns are on the
ellipse x′Ω−1x = c (this uses the risk model Ω) – for
non-linear portfolios, you should even look inside this
ellipse (“trust region worst case loss”).
Other stress tests rely on distribution scenarios: for
instance, the conditional distribution of the risk factor
returns given that one of them jumped, (fj)j ̸=i|fi > a;
or some subjective view; or a mixture distribution (the
normal regime, from the risk model, and a “crash
regime”, with some crash probability); or a bayesian
blend of the two regimes (product of the probability
distribution functions).
You can use data from a past crisis (sample covariance
matrix, higher moments) to define the “crash regime”
or correct the covariance matrix of (more recent) his-
torical returns. If you manually tweak the correlation
matrix, it can cease to be a valid correlation matrix,
and you may need to correct it.
Exogenous liquidity adjustement of the VaR (by mod-
eling the distribution of the bid-ask spread) has a neg-
ligible effect, but endogenous adjustment (linear or
quadratic market impact, with some price drift if the
liquidation is spread over several days, accounding for
volatility clustering) may be necessary.
8. Regulatory capital is the capital that regula-
tors ask banks to hold to ensure they remain solvent.
It can be computed as 3VaR10-day (either the aver-
age of the 10-day VaR over the past 60 days, or the
latest 10-day VaR, whichever is higher) if the VaR
model has been approved (i.e., if it does not have too
many exceedances). Alternatively, the regulators pro-
vide “standardized rules”: for equities, 8% of the value
of the positions, plus a 4% to 8% charge for specific
risk (insuddicient diversification), and another one for
credit risk – fixed income, commodities, currencies have
similar rules.
Economic capital (EC) is similar, but used internally
and presented to shareholders and rating agencies. It
is often based on ES rather than VaR. Risk budgeting
or economic capital allocation is the allocation of the
economic capital to the various desks of the firm. Con-
trary to real capital (needed by funded activities, and
whose financing cost should be included in the P&L), it
is not additive, because of diversification. Aggregation
risk (use of incorrect correlation when aggreting the
VaR or ES of the various desks to compute the firm-
wide economic capital, or when allocating the economic
capital to the various desks – or incorrect use of correla-
tions when they do not capture the dependences) is the

Article and book summaries by Vincent Zoonekynd 752/1044

most important source of model risk. Risk budgeting
is often done by looking at the efficient frontier in the
P&L×EC space, or by optimizing some risk-adjusted
performance measure, such as

RORAC =
E[P&L]

EC
or

RAROC =
E[P&L]− kEC

EC
(they give the same point on the efficient frontier: the
tangent allocation).

Social network analysis
L. Adamic (Coursera, 2012)

1. Given a network, you can look at the following de-
scriptive statistics.
– The degree of each node, the distribution of the de-
grees (distinguish in- and out-degrees for oriented
graphs), the average degree, its standard deviation
or the Gini coefficient (to measure how diverse the
degrees are);

– The average shortest path;
– The size of the largest connected component (or
strongly-connected, for oriented graphs).

To assess how central a node is, look at:
– Its degree;
– Its betweeness centrality, i.e., the proportion of pairs
of nodes on whose shortest path the node is;

– Its closeness centrality, i.e., the average of the in-
verse of the distances from this node;

– Its eigenvalue centrality,

centralityi =
∑

j neighbour of i
wijcentralityj ,

which can be generalized to C = (α + βC)A, where
A is the adjacency matrix, β a parameter, and α a
normalization constant. The analogue for directed
networks, PageRank, is more complicated: it can
be computed with a random walk on the directed
graph, with some teleportation to avoid getting stuck
in loops (it cannot happen with undirected networks:
if you enter a loop, you can always leave it).

The strength of an edge A–B can be assessed with the
neighbourhood overlap:

number of neighbours of both A and B
nunber of neighbours of either A or B .

The presence of communities can be assessed by the
clustering coefficient:

number of closed triangles
number of connected triplets .

For a directed network, you can count all the 3-node
patterns (“motifs”) and compare with the numbers for
a random graph with the same average degree, or with
the same degree distribution.

Identifying communities is trickier (most of those algo-
rithms do not work on real-world networks, probably
because communities overlap):
– Connected components, strongly-connected compo-
nents;

– Cliques: they betray community structures, but they
overlap, can be incomplete, are not robust; they only
describe a “core” rather than the larger community;

– k-core: a subgraph in which every node is connected
to at least k other nodes;

– Connected components of the graph with nodes the
k-cliques and an edge if two k-cliques differ by only
one node;

– Hierarchical clustering;
– Betweeness clustering: remove the edge with the
highest betweeness, recompute, iterate until the be-
tweeness of the remaining edges is sufficiently low;
the connected components are the communities;

– Modularity: compare the presence of edges within
and between communities with what you would ex-
pect if they were selected at random; start with ran-
dom community assignments and change them to im-
prove the modularity.

2. The simplest network model is the Erdös-Rényi ran-
dom network: the edges are simply selected at random,
independently. There is a giant component, there are
no hubs, the degree distribution is binomial (asymp-
totically Poisson), the average shortest parth is pro-
portional to log n.
Growth models, such as the Barabasi-Albert preferen-
tial attachment model, have hubs, and a more inequal
degree distribution (power law).
Small world networks combine the short distances of
ER random networks with a community structure. The
Watts-Strogatz model starts with a lattice, starts to
randomly rewire it, but stops before getting a ran-
don network. There are hierarchical (Watts-Dodds-
Newman) and geographical (Kleinberg, the probabil-
ity of an adge is proportional to some power of the
distance). When rewiring, you can use simulated an-
nealing to minimize

λ× average shortest path, in number of edges+
(1− λ)× average shortest path, in kilometers.

Changing the value of λ gives networks with hubs or
with short edges
3. A power law (or Pareto distribution) is a probability
distribution such that

P (X = x) ∝ x−α;

in the case of node degree, the variable is discrete. The
Zipf law (the size of the rth largest event is propor-
tional to r−β) is the q-function of the Pareto distri-
bution. Fitting a (discrete) power law distribution is
tricky:
– When regressing the logarithm of the number of
nodes with a given degree against the logarithm of

Article and book summaries by Vincent Zoonekynd 753/1044

http://tuvalu.santafe.edu/~aaronc/powerlaws/

the degree, large numbers of observations are binned
in a single point for low degrees, and there are many
empty bins for high degrees – forgetting them gives
a very biased estimator;

– Logarithmic binning is better, but discards informa-
tion;

– Cumulative binning binning is preferable: the num-
ber of events in J1, nK still follows a power law, with
exponent α− 1;

– The maximum likelihood estimator is (you need to
choose where the power law starts, xmin)

α = 1 + n
(∑

log(xi/xmin)
)−1

– The power law may not extend to the very end of
the tail: you can try to add an exponential cut-off

p(x) ∝ x−αe−x/k.

4. One can study the influence of the network struc-
ture on various processes such as contagion (or infor-
mation diffusion, opinion formation, coordination) or
resilience. Assortative networks (hubs connect to hubs,
as opposed to disassortative nets, such as the web, in
which the hubs are on the periphery) are more resilient.
You can also look at the correlation profile: compare
the number of edges between nodes of degree k and l
with that in a random network; look at the average
degree of the neighbours, as a function of a node’s de-
gree; look at the correlation between the degree of two
adjacent nodes.
5. From a software point of view, networks can be
studies with Gephi (to look at the network), NetL-
ogo (for experiments, and to explain things to others),
iGraph, NetworkX (Python), sna (R).

Cryptography I
D. Boneh (Coursera 2012)

Many historical ciphers are generalizations of the Cae-
sar cipher (rot-3): substitution cipher, Vigener cipher
(k rot-n ciphers), Hebern machine (k substitution ci-
phers, forming a “rotor”), Enigma machine (idem, with
3 to 5 rotors, rotating at different speeds).
Stream ciphers use a similar idea: in the one-time
pad, the message is xored with the key, which has
to be as long as the message (the safety of this cipher
relies on the fact that if X and Y are binary, indepen-
dent, and X is uniformly distributed, then X xorY
is uniformly distributed); most stream ciphers use a
pseudo-random generator instead, e.g., Salsa20 (or the
other eStream ciphers – do not use a linear congruen-
tual generator or random in glibc).
There are many notions of a “secure” cipher. A ci-
pher is semantically secure if E(m1, k) and E(m2, k)
are computationnaly undistinguishable (for cleartexts
m1, m2 chosen by the attacker and a random key k).
A cipher is malleable if you can change the cipher-
text to generate predictable effects on the clear text
(e.g., the one-time pad is malleable: if you know that

the message starts with From:␣ Bob, you can xor it
with From:␣ Bob xor From:␣ Eve to change the sender
name). There are many more, each corresponding to
a type of attack or information leakage we want to
prevent. Not all attacks necessitate flaws in the algo-
rithm: it is easier to attack the implementation, e.g.,
with side channel attacks (measure the time, the power
consumption, the cache misses, etc.) or fault attacks
(overclock the device so that it outputs a wrong result
– this can give some information about the key).
A block cipher encrypts the message by blocks, some-
what hiding its exact length. Many are built from
Feistel networks: cut the block in two (L,R) and con-
sider F1 ◦ · · · ◦ Fn, where Fi(L,R) = (R,Lxor fi(R))
– the Fi are invertible (pseudo-random permutation,
PRP) for arbitrary fi (pseudo-random function, PRF).
DES and AES are block ciphers. (DES and double
DES are broken; there is an attack on the triple DES,
but it is not practical). AES is not a Feistel network:
ci = σ(fi(ci−1 xor ki)) (11 times, with a permutation
σ and PRP fi, starting with c0 = m).
A pseudo-random generator (PRG) G : K → K × K
defines a block cipher: it is a 1-bit PRF, and by iter-
ating it,

k 7→ (G(k)1, G(k)2)

7→ (G(G(k)1)1, G(G(k)1)2, (G(G(k)2)1, G(G(k)2)2)

you get a 2-bit PRF (those 4 values correspond to the
encoding of 00, 01, 10, 11), and eventually an n-bit
PRF (you do not need to compute all 2n values: since
you only want one branch of the tree, there are only n
values to compute). The PRF can then be turned into
a PRP with the Ruby-Rackoff theorem (3-round Feis-
tel). But it is much slower than heuristic block ciphers
(or the stream cipher used).
The naive use of a block cipher, cutting the message
into blocks and encrypting each block separately, with
the same key (ECB, Electronic Code Book), is unsafe:
two identical blocks give identical cipher texts, it is not
safe against replay attacks – even worse, if you encrypt
an image like that, its silouette remains visible.
Cipher Block Chain (CBC) remedies this by xoring
the cleartext with the ciphertext of the previous block
before encryption:

c0 = IV (Initialization Vector)
ci = E(k, ci−1)xormi

To ensure that the initialization vector is not pre-
dictable, you can use a nonce (“number used once”),
and encrypt it (with another key):

c0 = nonce
IV = E(k1, nonce)
c1 = E(k, IV)xorm1

ci = E(k, ci−1)xormi

Randomized countermode (CTR) uses a similar idea,
but is parallelizable: xor the message with with

Article and book summaries by Vincent Zoonekynd 754/1044

F (k, IV), F (k, IV + 1), etc., where F is a pseudo-
random function.
The integrity of a message can be ensured with a mes-
sage authentication code (MAC):

tag = S(message, key)
V (message, tag, key) = ”yes”

Contrary to checksums, MACs have to be robust to
malicious errors, not just random ones. A PRF can
be used as a MAC (it should be secure and sufficiently
long – more than 80 bits), for small messages. For
larger messages, you can chain the MAC computations,
as in, encrypted CBC-MAC:

c0 = F (key,m0)

c1 = F (key,m1 xor c0)
. . .

MAC = F (other key, cn)

or NMAC (nexted MAC):

c0 = F (key,m0)

c1 = F (c0,m1)

. . .

MAC = F (other key, cn‖pad)

(without the last encryption, it is not secure: an at-
tacker can append something to the message).
Padding the last block with zeroes is unsafe. In-
stead, you can add 100 · · · 00, but you may need to
add a dummy block. CMAC provides padding with no
dummy block: replace the final encryption with

cn = F (key, (mn‖100 · · · 00)xor key1)
cn = F (key,mn xor key2)

depending on whether there is padding or not.
The MAC can be parallelized (PMAC):

c1 = F (key1,m1 xorP (key0, 1))
c2 = F (key1,m2 xorP (key0, 2))
return F (key1, c1 xor · · ·xor cn)

If F is invertible (a PRP rather than just a PRF), you
can invert the last step, add some more data, or modify
one of the blocks, and recompute the tag.
A one-time MAC can be computed from a large prime
number q (e.g., 2128 + 51), using two random numbers
k, a ∈ J1, qK as a key: if the message (m1,m2, . . .) is
made of 128-bit integers, the tag is

∑
imik

i+a mod q.
A one-time MAC can be transformed into a many-time
MAC (Carter-Wegman MAC):

tag = (r, F (key1, r)xorS(key2,message))

where r is random, S is a 1-time MAC, F is a PRF. It
is a random MAC: it is not deterministic.

From a collision-resistant compression function oper-
ating on small messages, you can build a collision-
resistant function that operates on larger messages, by
chaining the hash function: e.g., SHA-1 (almost bro-
ken), SHA-256, SHA-512, Whirlpool (slower) .
A collision-resistant function is not a secure MAC: use
a Hash MAC (HMAC) instead (it is very similar to
NMAC, which used two keys, and a PRF instead of a
hash):

S(key,message) = Hash(
key‖outer pad,
Hash(key‖inner pad,message)

).

When checking if the MAC is correct, you need to com-
pare several bytes: the compiler (lazy language, opti-
mizing compiler, ||/&& shortcut, etc.) may want to
stop as soon as it knows the result, telling a potential
attacker whether the first byte was incorrect. Before
the comparison, you can encrypt the correct MAC and
the MAC to test, and compare the encrypted values.
Encryption alone is not secure against tampering (it is
safe against passive attacks only, not active attacks):
always use authenticated encryption instead. We
want a new notion of safety, ciphertext integrity: the
recipient can reject messages if they are not valid; the
attacker cannot create a valid ciphertext; the attacker
chooses the ciphertext. This does not provide any
safety against replay attacks
Encrypt-and-MAC (add the MAC of the plaintext and
send it in clear) is not safe (it leaks information); MAC-
then-encrypt (add the MAC of the plaintext and en-
crypt everything) is only safe in some special cases;
encrypt-then MAC (add the MAC of the ciphertext, in
clear) is safe.
There are many standards that combine a cipher and
a MAC: TLS (to prevent replay attacks, the sender
and the receipient keep track of a counter, incremented
each time, used in the MAC computation, but never
exchanged; suffers from padding attacks, timing at-
tacks, information leakage (the reason why a mes-
sage is rejected); renegotiates the key in case of a
problem to avoid those attacks); 802.11b (MAC-then-
encrypt (the reverse is safer), linear CRC (not a cryp-
tographic MAC), repeated IV, related keys, etc.); SSH
(the length of the message is not authenticated).
In many situations, you have one key, but the algo-
rithm needs several: you can use a key derivation func-
tion (KDF). You could use a PRF, if the source key is
uniform. Use a salt (non-secret, fixed, chosen at ran-
dom) to extract a pseudo-random key from the source
key, K = HMAC(salt, source key) and use HMAC as
a PRF with key K. Do not use password-based KDFs:
there is not enough entropy, and dictionary attacks
work well – if you insist on using them, use a salt and
a slow hash function, e.g., iterate x 7→ hash(x‖salt)
many (106) times.

Article and book summaries by Vincent Zoonekynd 755/1044

Deterministic encryption (no nonce, the ciphertext is
always the same) allows you to search in an encrypted
database but is unsafe, if the messages are small or
repeated (e.g., foreign keys).
Tweakable encryption, E(key, tweak,message), where
each E(k, t, ·) is a PRP, is often used in disk en-
cryption (e.g., xts), with t the sector number and
E(k, t, x) = E(E(k, t), x).
Key exchange can be performed through a trusted
third party (TTP), who shares a key with everyone:
the TTP chooses a random key KAB , encrypts it for
A as E(KA,KAB), sends it to A, encrypts it for B as
E(KB ,KAB), and sends it to A (not B, A will for-
ward to B). This is safe against eavesdropping, but
not against active attacks or TTP corruption.
In the Merkle puzzle scheme, A sends n puzzles to B,
each taking O(n) time to solve. B chooses one, solves
it, and the solution is of the form (id, key) (A had gen-
erated n different keys). B sends the id to A; they both
know the key. There is a gap between the work done
by B and the attacker: O(n2); it is very inefficient.
Public-key encryption relies heavily on number the-
ory:
– Euclid’s theorem (there exists u and v so that au+
bv = gcd(a, b)) can be used to compute inverses in
Z/nZ).

– Fermat’s theorem (xp−1 = 1 (mod p)) can also be
used to compute inverses (x−1 = xp−2), but is less
efficient ((log p)3 instead of (log p)2). It can also be
used to select random prime numbers: pick p at ran-
dom, until 2p−1 = 1 (mod p); You can be fairly con-
fident (P [not prime] < 2−60), but there are better,
non-probabilistic, tests of primality.

– Euler: F×p is a cyclic group.
– Lagrange: ordp(g)|p − 1 (the order of an element of
an abelian group divides the order of the group) can
be used to prove Fermat’s theorem.

– Fermat: xp−1 = 1 (mod p).
– Fermat: xϕ(n) = 1 (mod n) if x ∈ (Z/nZ)× (a spe-

cial case of Lagrange), where φ(n) = |(Z/nZ)×| is
Euler’s totient function.

Many algorithms rely on the difficulty of the following
problems:
– Computing a modular e-th root: the best known al-
gorithms require a factorization of the modulus. In
Fp, x > 0 is a quadratic residue (i.e., a square) iff
x(p−1)/2 = 1 (mod p) (Legendre symbol); if p = 3
(mod 4) and c is a quadratic residue, then

√
c =

c(p+1)/4; if p = 1 (mod 4), the square root can be
found in O((log g)3), with a randomized algorithm;
you can also solve quadratic equations with the high-
school formula.

– Inverse in Z/nZ;
– Roots of a polynomial of arbitrary degree in Fp;
– Discrete logarithm mod p: find x so that gx = a
(mod p) (believed to be hard for F×p (p large) and
elliptic curves; can be computed with the GNFS al-
gorithm for F×p); can be used to create a collision-

resistant hash: H(x, y) = gxhy in G = F×p , with
g, h ∈ G (key) – finding a collision is equivalent to
computing a discrete log;

– Factor a number into a product of two large primes
(soon possible for 1024-bit numbers, hard for 2048-
bit numbers

– Find a root of a polynomial of degree > 1 mod n
(the best know algorithms factor n).

In the Diffie-Hellman scheme, choose a large prime p,
and g a generator of the cyclic group (Z/p)×. A chooses
a in {1, . . . , p−1}, sends ga mod p to B; B chooses b in
{1, . . . , p−1}, sends gb mod p to A They both compute
gab and use it as a key. For a 256-bit key, you need
a 16,000-bit prime. The same idea works with other
cyclic groups, e.g., elliptic curves: a 512-bit curve suf-
fices. It is insecure against man-in-the-midde attacks.
It can work passively: everyone publishes ga, and can
read the gb of everyone else. It only works to commu-
nicate between two parties; it can be generalized to 3
but, beyond that, the problem is still open.
Many public-key encryption schemes are based on trap-
door encryption: a pair of functions that can be gener-
ated randomly, one inverse of the other, but otherwise
very difficult to invert. One is non-deterministic and
used to encrypt messages (public key), the other is de-
terministic (private key, trapdoor).
The RSA functions are x 7→ xd and xe, where N = pq
is a product of two large prime numbers, φ(N) =
(p − 1)(q − 1), x invertible mod N (most are), d is
random and e is such that de = 1 (mod φ)(N); the
functions are inverses because xϕ(N) = 1 (mod N). It
can be used to exchange the key for a symmetric cipher
(rather than encrypt messages, as some textbooks sug-
gest: the functions are deterministic).
We do not know if RSA is safe: we do not know if com-
puting e-th roots is as hard as factoring. Encryption is
much faster than decryption (other public key encryp-
tion algorithms are more balanced: ElGamal). There
are timing or power attacks: computing cd mod N
can expose d; there are fault attacks: a single error
in the computation of cd mod N (check, by elevating
to the e-the power: it should be 1) can leak the de-
composition of N . There are key generation problem:
p is generated before q, when there is not enough en-
tropy: many routers/webservers have the same p (and
different q): compute gcd(ni, nj) for all the pairs of
routers/webservers you can find – if it is not 1, you
have factored ni (0.5% of webservers are affected).

PySP: Modeling and solving
stochastic programs in Python

J.P. Watson et al. (2011)
Stochastic programs can be converted into determin-
istic programs (the objective function, an expectation,
becomes a weighted sum; each decision variable is du-
plicated for each scenario; the constraints are likewise
duplicated; you just have to add non-anticipatory con-
straints, that encode the structure of the scenario tree),

Article and book summaries by Vincent Zoonekynd 756/1044

http://shoup.net/ntb/ntb-v2.pdf
http://shoup.net/ntb/ntb-v2.pdf

but the size of the resulting problem (most optimizers
have a pre-solver, that identifies and removes redun-
dant variables and constraints, but this only halves the
size of the problem) makes it difficult to solve, unless
you exploit the structure of the problem.
Vertical strategies, such as Bender’s decomposition (L-
shaped method, for 2-stage problems) or nested de-
composition schemes decompose the problem by stages.
Horizontal strategies, such as progressive hedging or
the dual decomposition, decompose it by scenarios.
Progressive hedging suggests to:
– Solve the deterministic problems for all the scenar-
ios;

– Average the solutions (the result does not satisfy the
non-anticipatory constraints);

– To each sub-problem, add a penalty for the breached
non-anticipatory constraints, re-solve the problems,
and iterate.

The algorithm can be improved:
– The first iterations do not require a precise solution;
– Detect if a variable converges early; if so, fix its value;
– Detect cycles (tabu search, with a Bloom filter),
which are common with integer variables;

– The sub-problems can be solved in parallel.

Pyomo: modeling and solving
mathematical programs in Python

W.E. Hart et al. (2011)
The article stresses the need for more modularity in
mathematical programming software: one should sep-
arate the structure of the problems (abstract model)
from the data (concrete model) and the solver; use a
high-level programming language (Python, as opposed
to AMPL, AIMMS, GAMS), which makes it easy to
enumerate sets of constaints and allows you to imple-
ment algorithms that require many optimizations (e.g.,
branch-and-cut; Bender’s decomposition for stochastic
programs; problems with an exponentially large num-
ber of constraints in which you can quickly identify the
breached constraints, add them to the problem and it-
erate).
Coopr contains: Pyomo, to specify the problem; and
interface to different solvers; a parallelization frame-
work, build from pickle (serialization) and pyro (RPC),
should you want to solve several subproblems in par-
allel.
The (only?) open-source solvers supported are cbc,
glpk, ipopt, from the coin-or project.
Alternatives include:
– FlopC++: a problem is a C++ class, derived from
MP_Model; thanks to operator overloading, the syn-
tax looks readable – but I suspect the error messages
are not;

– OptimJ, a Java extension – not a library, but an ex-
tension to the language, with its compiler, integrated
with Eclipse, no longer commercially developed.

The Cornish-Fisher expansion in the context
of delta-gamma-normal approximations

S.R. Jaschke (2001)
Proof of the Cornish-Fisher expansion: a series expan-
sion of F−1 ◦ Φ, with F the cumulative distribution
function (cdf) of interest and Φ a known cdf, typi-
cally Gaussian), often used to estimate the value at
risk (VaR) of non-gaussian distributions. The error in-
creases as you progress into the tail, and the approxi-
mated VaR need not even be monotonic. However, the
errors from the Cornish-Fisher expansion are smaller
than those coming from a quadratic approximation (∆-
Γ-normal): to be safe, compare with a Monte Carlo
estimator. Using a reference distribution Φ with fatter
tails may reduce those problems.

Asset liability management
for individual households

M.A.H. Dempster and E.A. Medova (2010)
There are three ways of solving ALM problems: dy-
namic programming; stochastic programming (trans-
form the stochastic program into a huge, sparse, de-
terministic, linear program); various heuristics. Dy-
namic programming suffers from the curse of dimen-
sion; so does stochastic programming, but to a lesser
extent. The authors model 10 asset classes (monthly,
but the investment and consumption decisions are
annual) with geometric brownian motions (equities,
bonds, commodities, alternative investments, real es-
tate) or geometric Ornstein-Uhlenbeck processes (cash,
inflation, treasury bill rate), with correlated noises,
from market data (for some asset classes, you have to
compute the total returns from the prices, by adding
dividends or coupon payments), and use the corre-
sponding scenarios in an ALM problem, looking for
the optimal consumption and investment decisions, to
maximize the expected utility of life-time consump-
tion. The utility is piecewise linear and specified sep-
arately for each goal; it is penalized for bankruptcy
(excess borrowing). The simulation also includes the
death of the investor (variable investment horizon),
and fixed, inflation-indexed or growing liabilities. Con-
sumption is divided between equity-preserving goals
(e.g., housing), often requiring a downpayment and
subsequent mortgage payments (making the problem
path-dependent), and non-capital goals.

Individual asset liability management
E.A. Medova et al. (2008)

Presentation of the corresponding GUI, to specify the
ALM problem and analyze the results.

Discretionary Wealth Hypothesis and ALM
D. diBartolomeo (2010)

Tackle the dynamic asset allocation problem with
transaction costs as follows: always invest in a mean-
variance efficient portfolio, but change the risk aversion
parameter according to the following rule of thumb,

Article and book summaries by Vincent Zoonekynd 757/1044

https://projects.coin-or.org/Coopr
https://projects.coin-or.org/
https://projects.coin-or.org/FlopC++
http://www.ateji.com/optimj/index.html
http://www.actuaries.org.uk/research-and-resources/documents/asset-liability-management-individual-households
http://www.actuaries.org.uk/research-and-resources/documents/asset-liability-management-individual-households
http://www.cambridge-systems.com/content/CambridgeSystemsiALM_QF.pdf

which is not unlike portfolio insurance (PI),

λ = 1
2

Assets
Assets− PV(Liabilities)

and add a penalty to the mean-variance optimization
to account for the transaction costs

transaction costs× turnover
probability that the new portfolio is better .

The present value of the liabilities is computed using a
risk-free recombining binary tree of short interest rates,
so that Assets− PV(Liabilities) is non-negative iff the
probability of bankruptcy is zero.

The 401(k) retirement income risk
F. Sortino and D. hand (2011)

Since the goal of retirement investment is not to beat
the market, but to “retire with dignity”, returns and
volatility are not the right benchmark. Instead, to de-
cide if you should make a catch-up contribution, you
can look at:
– The probability of achieving the goal;
– The present value of the assets and liabilities;
– The desired target return (DTR), i.e., the internal

rate of return required for this present value to be-
come positive.

Optimal investment strategies
in defined contribution pension plans

D. Blake et al. (2011)
Most pension finds separate the accumulation and de-
cumulation phases, asking the wrong questions (how
much do you want to save?), using incorrect targets
(performance, rather than retirement), failing at their
market timing attempts (when volatility is high, re-
turns are low: one should reduce the weight of equities)
and leading to under-funded pension plans.
Only in rare cases (power utility and iid asset returns)
is the 1-period optimal strategy also a multi-period op-
timal strategy. The Kelly principle can be general-
ized to account for (risky) labour income; the resulting
strategy, “stochastic lifestyling”, is reminiscent of the
discretionary wealth hypothesis.
Deciding if/when to annualize is an option exercise
problem (it depends on age, wealth and risk aversion).
Since most pensions are underfunded, most people will
buy an annuity; to avoid low interest rates, it is prefer-
able to spread its purchase over time (phased annuity
purchases).
It is not advisable to seek an absolute guarantee to
deliver the desired pension: such guarantees are very
expensive to secure.

Duration-enhancing overlay strategies
for defined-benefit pension plans

J.M. Mulvey et al. (2011)

Defined-benefit pension plans have fixed liabilities:
they are bonds, with a very high duration (10 to 15
years). Since long-duration assets (long-term bonds)
have lower returns than short-duration assets (stocks,
etc.), you may want to invest in a core portfo-
lio of short-duration assets (100%), and a duration-
enhancing overlay (50% to 100%, long long-duration
bonds, short short-duration bonds) to hedge the inter-
est rate risk.

A robust optimization approach
to pension fund management

G. Iyengar and A. Ka Chun Ma (2011)
The defined-benefit pension problem can be formulated
as follows: find the future contributions wt and the
portfolio composition xt (equity index and bonds of
each maturity) to minimize the present value of the fu-
ture contributions, subject to the requirement to meet
the prescribed (deterministic) liabilities at all times t,
and regulatory requirements

NAV ⩾ β PV(future liabilities).

The time horizon T is sufficiently long so that liabili-
ties beyond T are negligible. (The problem is slightly
more complicated: since the liabilities have to be met,
the firm has to find the money somewhere – it is a
corporate finance decision, involving the use of debt vs
equity vs retained earnings, taxes (interest payments
are tax-deductible), debt rating, etc.).
The constraints are often replaced by chance con-
straints, asking that the probability that the con-
straint is breached be below some threshold ε.
Equity prices follow a geometric brownian motion;
bond yields are described by the Nelson-Siegel model,
whose factors follow a mean-reverting process; the in-
novations for those four factors are correlated.
The chance constraints P [constraint breached] ⩽ ε are
of the form P [Xt ⩾ a] ⩽ ε, where Xt is a stochastic
process defined from the risk factors. Using Ito’s for-
mula, you can compute its stochastic differential equa-
tion, and then linearize it at t = 0, i.e., assume it is
just a brownian motion. The constraint becomes

P [something gaussian] ⩽ ε;

it can be written as a second-order cone (SOC) con-
straint ‖Bx− a‖ ⩽ d′x+ c.

To ensure that all K chance constraints are satisfied
with probability 1− ε, use Bonferroni’s inequality: as-
sume they are independent and set their thresholds to
ε/K. The resulting (SOC) optimization problem is no
longer stochastic: the contributions wt and numbers of
shares xt do not depend on the state of the world at
time t.
The resulting strategy is conservative, perhaps because
of the linearization of the geometric brownian motion.

Article and book summaries by Vincent Zoonekynd 758/1044

Alternative decision models
for liability-driven investment

K. Schwaiger et al. (2011)
There are many ways of formulating the pension prob-
lem, each simplifying a different aspect of it. Here are
four of them.
– A deterministic program, in which you minimize
both the sum of all the contributions and the sum
of the absolute values of the PV01 of the assets and
liabilities (since there are two objectives, the result
is not a single strategy, but an efficient frontier of
strategies).

– A stochastic model (you have to generate scenarios),
with two stages (to simplify), in which you match the
present value (PV, not PV01) of the assets and lia-
bilities; the two objective functions are the expected
contributions and the expected absolute value of the
difference in present values.

– A chance constraint can be added to this model

P [Assets− γLiabilities > 0] ⩾ 1− ε.

The equivalent deterministic formulation (the con-
straint is breached in at most εN of the N scenarios)
involves binary variables.

– The chance constraints can be replaced by inte-
grated chance constraints (this is similar to the
difference between value at risk and expected short-
fall)

E[Assetst − γLiabilitiest] ⩽ PVt(Liabilities(ω));

binary variables are no longer required.

A liability-relative drawdown approach
to pension asset liability management

A. Berkelaar and R. Kouwenberg (2011)
Find the portfolio weights w (constant over time) to
maximize the (logarithmic) utility of the funding ratio
Assets/Liabilities, whose final value can be approxi-
mated as∏
t

(
1 +w′rt − rliabilities

t

)
≈ exp

∑
t

(
w′rt − rliabilities

t

)
,

with a constraint on the variance of the surplus
(Assets − Liabilities) of on the maximum funding ra-
tio drawdown (linear program) or on the conditional
funding ratio drawdown (average of the worst 10%
worst drawdowns, also a linear program)
Allow for some short-selling: many pension-funds use
a return-generating portfolio and a liability-hedging
overlay.
The scenarios (returns for equities, commodities, real
estate, hedge funds) are generated from risk factors
(“state variables”: level, slope and curvature of the
yield curve, default spread (Baa−Aaa), consumption-
wealth ratio) through a vector autoregressive (VAR)
model:

– The yield curve is described by the Diebold-Li
model, i.e., the Nelson-Siegel model in which the
parameters (level, slope, curvature) form a VAR pro-
cess;

– Use a 2-step model to deal with time series with
a shorter history (hedge funds, etc.): first model
(VAR) the long-history variables, then model the
short-history ones, adding the long-history ones as
exogenous variables;

– Modify the intercept of the VAR model to avoid un-
realistic reversion to the (old) long-term averages.

The term structures of return volatility, for different
asset classes, are very different.

Dynamic risk management:
optimal investment with risk constraints

S. Jarvis (2011)
The dynamic asset allocation problem can be solved
with partial differential equations (PDEs).
Asymmetric risk measures are even more important for
dynamic strategies than for static ones: they can cre-
ate very non-gaussian return distributions – prefer the
conditional value at risk (CVaR, expected shortfall) to
the standard deviation.
The optimal dynamic strategy that maximizes the ex-
pected CRRA (constant relative risk aversion) utility
((x1−γ − 1)/(1 − γ) or log x if γ = 1) of final wealth,
when asset prices follow a geometric brownian motion.
is the growth-optimal portfolio (GOP, a generalization
of the Kelly principle); with a CVaR constraint, the
payoff is transformed and looks like a collar . (This
is like an asset and liability management (ALM) prob-
lem, but with no liabilities.)
The optimal strategy can be computed by dynamic
programming on a scenario tree or, better, a recom-
bining tree. Alternatively, since the probability distri-
bution of the payoff is solution of the Fokker-Planck
equation (Kolmogorov forward equation – not to be
confused with the Kolmogorov backwards equation,
which gives the option price), one can solve it numeri-
cally, for many investment strategies, and keep the one
with the highest utility. (Contrary to option pricing,
the payoff is unknown: we are looking for the strategy
that maximizes the utility of the payoff.) The result-
ing distribution looks like a soft CPPI (constant
proportion portfolio insurance).
While the CVaR is an acceptable risk measure for static
(1-period) strategies, it is less so for dynamic ones. A
measure of risk ρ can often be seen as a capital require-
ment: ρ(X) is the amount of capital needed to make
X acceptable, i.e., ρ(X) = Min{m : ρ(X +m) ⩽ 0};
therefore ρ(X + m) = ρ(X) − m. In a multi-period
setting, one would expect ρt(XT) = ρt(−ρt+1(XT)) –
but this does not hold for the CVaR. The only time-
consistent risk measures are the entropic risk mea-
sures

ρt(X) =
1

γ
logEt[exp−γX]

Article and book summaries by Vincent Zoonekynd 759/1044

or, more generally (if you remove the translation in-
variance ρ(X +m) = ρ(X) −m), certainty-equivalent
risk measures

ρT (X) = u−1Et[u(X)].

[The consequence of time-inconsistency, the fact that
one is risk-seeking when the wealth is very high or very
low, looks harmless to me.]

Bank asset-liability and liquidity
risk management

M. Choudhry (2010)
Asset liability management (ALM), in a bank, focuses
on:
– Liquidity risk: the dates of the assets and liabilities

do not match (they are even sometimes unknown:
options, current accounts, credit lines, etc.), so the
bank will need to refinance some of them, and there
is no guarantee that this will be possible at a rea-
sonable price;

– Interest rate risk: even if the dates match, the rates
need not match.

A two-factor HJM interest rate model
for use in asset liability management

S. Kaya et al. (2010)
The G2++ short rate model (a 2-factor Gaussian
model) can be generalized to a term-structure (HJM)
model, and used to price structured products.

Asset liability management modelling
with risk control by stochastic dominance

X. Yang et al. (2010)
Stochastic dominance (first order, second order, and
their variants: interval second order, etc.) constraints
can be included in optimization or stochastic optimiza-
tion problems (they become chance constraints).

Zero-coupon yield curve estimation
with the package termstrc

R. Ferstl and J. Hayden (JSS 2010)
The yield curve is often modelled empirically, from
market data, either in a non-parametric way (linear
interpolation of discount factors (bad) or of their loga-
rithms (better), piecewise interpolation of the instanta-
neous forward rate (equivalent), splines) or by assum-
ing that the curve has a specific shape (Nelson-Siegel,
Svensson – beware, the formula is different if you model
the yield or the instantaneous forward rate), sometimes
with a (VAR, VARMA) time-dependence on the pa-
rameters (Diebold-Li). Here are some implementations
caveats:
– To avoid identifiability problems, you may want to
impose a few constraints, e.g., τ2 − τ1 > ε in the
Svensson model;

– Since the problem is non-convex, you may want to
use a grid search (on the non-linear parameters: τ1,
τ2) to find good starting values;

– The problem is heteroskedastic: use weights (e.g.,
the inverse of the duration, or the bid-ask spread).

The implementation, in the termstrc package, is un-
usable: prefer fBonds (it uses a grid search, but no con-
straints, no weights, no time-dependence, and models
forward rates rather than yields).

Foundations of the Statpro simulation model
M. Marchioro and D. Cintioli (2007)

To estimate risk (value at risk, expected shortfall), re-
sample from the multiplicative (stock prices, implied
volatility, and other positive quantities) or additive
(interest rates, swaps, and other quantities that could
become negative) historical changes.
For fixed income, resample the instantaneous forward
rates rather than the prices. For complex instruments,
price them from simple instruments. For large portfo-
lios, pay attention to missing data (coming, e.g., from
different holidays).

Pricing simple interest-rate derivatives
M. Marchioro (2008)

Clear presentation of the annoying accounting conven-
tions (day counting convention, business day conven-
tion, compounding convention) and overview of the
simplest common interest rates derivatives (forward
rate aggreements (FRA) and swaps). The interest rate
term structure (“yield curve”) can be estimated from
deposit rates (the -ibor rates: overnight, tomorrow-
next, t+2, . . . , until 1 year) and the swap rates (beyond
1 year: since the principal is not exchanged, the risk is
lower). To interpolate the term structure, linear inter-
polation of the logarithm of the discount factor, i.e.,
piecewise constant interpolation of the forward rates,
gives decent results.

Doing bayesian analysis,
a tutorial with R and BUGS

J.K. Kruschke (2011)
Leisurely introduction to Markov Chain Monte Carlo
(MCMC) computations in bayesian statistics, in which
the graphical representation of bayesian models as a
combination of building blocks is more pictorial than
the traditional BUGS one.

Gaussian
µ σ

xi
i = 1..n

Article and book summaries by Vincent Zoonekynd 760/1044

Model Thinking
S.E. Page (Coursera, 2012)

Introduction to complex systems (Markov models,
Lyapunov functions, random walks, Polya’s urn
model, chaos, network models), agent-based models
(Schelling’s segregation model, epidemics models (SIR,
SIS), coordination game, replicator dynamics, wis-
dom/madness of crowds), game theory (prisonner’s
dilemma, auctions, colonel Blotto) with applications
in economy (Solow growth model and the role of inno-
vation), sociology, politics (voting and aggregation of
preferences), etc., with examples in NetLogo – useful
if you need to explain an agent-based model to a non
quantitative audience.

Algorithms, design and analysis I
T. Roughgarden (Coursera 2012)

Introductory algorithms course, covering:
– Sorting: insertion, selection, bubble-sort, merge-
sort, quick-sort; bucket-sort (if the data is U(0, 1)),
counting sort (discrete, repeated values), radix sort;

– Divide-and-conqueer: multiplication of large inte-
gers or matrices (with the Karatsuba and Strassen
improvements); number of inversions in an array;
closest pair; median (adapt quick-sort; or split the
data into groups of 5; recursively compute the me-
dian of medians; use it as a pivot)

– Heuristics for NP-complete graph problems: graph
colouring to assign temporary variables to registers
in a compiler (pick a node with at most k neigh-
bours, remove it, iterate, backtrack if needed, re-
move a node if stuck), minimum cut (select an edge
at random, contract it, iterate, repeat and keep the
best solution);

– Graph search: breadth-first search (BFS: use a
queue, FIFO), to compute distances or connected
components; depth-first search (DFS, backtracking:
use a stack or recursion), to compute a tolological or-
dering (all the edges go forward) of a directed acyclic
graph (you could also look for a sink vertex, remove
it, and iterate) or its strongly connected components
(DFS on the reverse graph, remember the finishing
time of each vertex, DFS in the reverse order)

– Heaps (or priority queues): minimum paths from a
vertex, running median (use two heaps); balanced
binary search trees; union-find (aka disjoint-set) to
store partitions, with two operations, union and find
(the comonent an element is in, e.g., via a represen-
tative element), as a forest of trees (components),
each child pointing to its parent, with short paths
to the root (representative element) – for more ef-
ficiency, when running find(), have all the elements
you see point to the root.

– Hash tables (if you implement your own, use a ran-
dom hash function); Bloom filter (use an array of n
bits and k hash functions; to insert an element, set
the k corresponding bits to 1);

Co-movement of energy commodities revisited:
evidence from wavelet coherence analysis

L. Vacha and J. Barunik (2012)
Wavelets can be used to analyze the coevolution of two
time series: let

Wx(u, s) =
1√
s

∫ ∞
−∞

x(t)ψ̄

(
t− u
s

)
dt

be the continuous wavelet transform of a time series x
(at time t and scale s); the squared wavelet coher-
ence coefficient is

R2
x,y(u, s) =

∣∣S[s−1Wx(u, s)W̄y(u, s)]
∣∣2

S[s−1 |Wx(u, s)|2]S[s−1 |Wy(u, s)|2]

where S is some smoothing operator. It measures the
linear correlation at a given location and scale. The
wavelet coefficient phase difference

φx,y(u, s) = argS[s−1Wx(u, s)W̄y(u, s)]

can highlight delays in the oscillations of the two time
series (add it as arrows (as a vector field) on top of the
wavelet coherence heatmap plot).

On Hurst exponent estimation
under heavy-tailed distributions

J. Barunik and L. Kristoufek (2012)
Expirical comparison of various Hurst exponent esti-
mators: rescaled range (R/S), multifractal detrended
fluctuation analysis (MF-DFA), detrending moving av-
erage (DMA), generalized Hurst exponent (GHE, i.e.,
scaling of the q-moments, often with q = 2) – GHE has
lower variance and bias.

Monte-Carlo-based tail exponent estimator
J. Barunik and L. Vacha (2012)

The Hill estimator of the tail exponent is biased on
small samples – use a simulation-based estimator in-
stead:
– Generate random samples, with the same size, from
various stable distributions;

– Compute their Hill estimators, for various threshold
choices;

– Compare with the Hill estimators (for all those
thresholds) of the actual data (they use the L1 norm
and give the same weight to all the thresholds).

Properties of the most diversified portfolio
Y. Choueifaty et al. (2011)

A few remarks on the diversification ratio (ratio of
the portfolio’s weighted volatility to its overall volatil-
ity), a generalization of the Herfindahl index (entropy)
when assets are correlated and/or do not have the same
risk. that can be interpreted as the (square of the) ef-
fective number of (uncorrelated) assets (or risk factors)
in the portfolio. (This approach is limited to unlever-
aged, long-only portoflios.)

Article and book summaries by Vincent Zoonekynd 761/1044

Orthogonalized equity risk premia
and systematic risk decomposition
R.F. Klein and K.V. Chow (2010)

In a factor risk model, you may want the factors to be
orthogonal, e.g., to have a simple risk decomposition.
Gram-Schmidt orthogonalization depends on the or-
der of the factors, but there is a symmetric variant: let
F = (f1| · · · |fn) be the matrix of (centered) factor re-
turns; we want S so that VarFS = I, i.e., S′F ′FS = I,
i.e., SS′ = (F ′F)−1, i.e., S = (F ′F)−1/2C for an arbi-
trary C ∈ O(n), e.g., C = I.

Derivatives and credit contagion
in interconnected networks

S. Heise and R. Kühn (2012)
Most models of contagion in financial networks (bi-
partite, firms vs banks and insurance companies) only
take into accout who lends to whom, and neglect syn-
thetic credit risk exposure through CDSes – it is not
negligible, and taking it into account requires adding
hyperedges to the network (between three nodes: firm-
bank-insurance or firm bank-bank).

Second-order price dynamics:
approach to equilibrium with perpetual

arbitrage
E. Kempt-Benedict (2012)

The presence of arbitrageurs and rationnally-bounded
economic actors explains the permanent fluctuations
around the equilibrium. (This is the usual informed
traders vs noise traders game, expressed in terms of
supply and demand.)

A multifractal approach
towards inference in finance

O. Løvsletten and M. Rypdal (2012)
Multifractal processes have stationary increments and
satisfy E[|Xt|q] ∝ tζ(q) for some concave function ζ
(linear for self-similar (i.e., stable) processes such as
Brownian motion or Lévy flight). There are many ways
of building such processes or their discrete equivalents.
For instance (multi-fractal random walk):

xn = Xn −Xn−1

xn ∼ N(0, σn)

log σn ∼ Gaussian Process

Cov(log σt, log σs) ∝ log+
T/∆t

|t− s|+ 1

Numerical methods and optimization
in finance

M. Gilli et al. (2011)
The first part of the book covers many numerical
topics, such as the inherent imprecision of floating-
point arithmetic (for which

∑
1/k converges), numer-

ical instability (the algorithm amplifies rounding er-
rors), ill-conditioning (small changes in the input lead

to large changes in the output), the conditioning num-
ber (|xf ′(x)/f(x)|, or κ(A) = ‖A‖

∥∥A−1∥∥ for lin-
ear functions), matrix decompositions (LU, QR, SVD,
Cholesky), structural rank (the maximum rank of
a sparse matrix with the same presence/absence pat-
tern), finite differences (implicit, explicit and θ meth-
ods – Crank-Nicolson is obtained for θ = 1/2), flaws in
pseudo-random number generators and the way they
are used (resetting the seed before each number may
not be a good idea), low-discrepancy sequences, boot-
strap (the Taylor-Thompson algorithm is a smooth
non-parametric bootstrap: take a point at random,
look at its k nearest neighbours, move it towards them
by a random amount, iterate). Examples include Euro-
pean and American option pricing, time series models
(with a clear interpretation of the model parameters),
CPPI, VaR estimation.
The second part is devoted to (unconstrained) opti-
mization. The fixed point method (rewrite the prob-
lem as x = f(x) and iterate xn+1 = f(xn) until conver-
gence) is more useful than one may think: it is the base
of the Jacobi, Gauss-Seidel and SOR algorithms, used
to solve large linear systems (e.g., those coming from
PDEs) or large non-linear systems; it can also be used
to compute the S-estimator (a robust estimator whose
cost function is defined implicitely). Gradient-based al-
gorithms (gradient descent, quasi-Newton, Levenberg-
Macquardt), heuristics (local search, tabu search, sim-
ulated annealing, threshold acceptance, genetic algo-
rithms, differential evolution, particle swarm optimiza-
tion, ant colony optimization) and hybrid methods are
also presented, with examples from portfolio optimiza-
tion, term structure models, option pricing model cali-
bration (via the characteristic function), robust regres-
sion (least median of squares, least quantile of squares,
least trimmed squares).
The book contains many plots, but the lack of titles
and labels makes them difficult to read.

A tutorial on geometric programming
S. Boyd et al. (2007)

A monomial is a term of the form cxa11 · · ·xann , with c >
0 – but the ai are arbitrary real numbers. A posyno-
mial is a sum of monomials. A geometric program
(GP) is an optimization problem of the form “minimize
P0, so that P1, . . . , Pn ⩽ 1 and M1 = · · · = Mm = 1”,
where the Pi are posynomials and the Mj monomials.
The exponents can be arbitrary, but the coefficients
have to be positive and the equality constraints only
have one term.
Geometric programs can be solved efficiently via inte-
rior point methods: if f is a (generalized) posynomial,
then log f(ey) is convex (in terms of f , the convex-
ity condition involves goemetric averages, hence the
name).
Surprisingly many problems are geometric programs,
or can be reformulated as such, or can be approximated
by GPs. Here are some of the transformations (defining

Article and book summaries by Vincent Zoonekynd 762/1044

generalized posynomials).

f(x)−m(x) ⩽ 0 → f(x)/m(x) ⩽ 1

f(x)2.2 + g(x)3.1 ⩽ 1 → f(x) ⩽ t1, g(x) ⩽ t1,
t2.21 + t3.12 ⩽ 1

f0(f1(x), . . . , fn(x)) ⩽ 1 → f0(t1, . . . , tn) ⩽ 1,

f1(x) ⩽ t1, . . . , fn(x) ⩽ tn
Max{f1(x), f2(x)} → t, f1(x) ⩽ t, f2(x) ⩽ t

Trade-off analysis measures the impact of the con-
straints: replace the constraints fi(x) ⩽ 1 and gj(x) =
1 with fi(x) ⩽ ui and gj(x) = vj , consider the value
p(u, v) of the corresponding problem, and compute the
partial derivatives (the logarithm disappears because
we are evaluating them in 1)

Si =
∂ log p

∂ log ui

∣∣∣∣
u=v=1

=
∂ log p

∂ui

∣∣∣∣
u=v=1

Tj =
∂ log p

∂ log vj

∣∣∣∣
u=v=1

=
∂ log p

∂vj

∣∣∣∣
u=v=1

.

You do not have to explicitly compute those quanti-
ties: they come from the dual problem. This is also
useful for infeasible problems: the sensitivities (using
some measure of infeasibility as objective, or a penal-
ized objective) tell you which constraints bear the most
resposabilities.
Here are more transformations

p(x)

r(x)− q(x)
+ f(x) ⩽ 1 → t+ f(x) ⩽ 1,

q(x) + p(x)/t ⩽ r(x)

and approximate transformations (functions whose
Taylor expansions have positive coefficients – for the
exponential and the logarithm, the problem can be
solved exactly: after the logarithmic transformation,
the function is convex).

exp f(x) ≈
f(x)≈b

eb
(
1 +

f(x)− b
a

)a
log q(x) ≈

a≫1
a q(x)1/a − a

There are many generalizations:
– in a mixed linear GP, some variables appear as GP
terms, others as linear terms: only apply the loga-
rithm transform to the GP ones;

– GP problems with posynomial (not monomial)
equality constraints can sometimes be solved by re-
laxation: replace h(x) = 1 with h(x) ⩽ 1 and try to
tweak the solution (especially if it is not unique).

Many problems can be approximated with GPs: a
function f can be approximated by a monomial (resp.
posynomial) if F (y) = log f(ey) can be approximated
by an affine (resp. convex) function. A monomial fit
can be obtained by Taylor expansion, least squares,
penalized least squares (L1 regularization gives fewer
terms), non-linear least squares for the relative er-
ror |g(xi)− fi| /fi, or by minimizing the maximum

relative fitting error (after the logarithm transform,
the problem becomes linear). A max monomial fit
f(x) = Maxk fk(x) can be obtained by adapting the k-
means algorithm (as a starting point, use k perturbed
copies of a monomial fit). A posynomial fit can be
obtained by non-linear least squares (Gauss-Newton,
sequential quadratic programming).
Some generalizations are no longer convex:
– Signomial programming removes the constraint that
the coefficients be positive: start with an initial
guess, use a monomial approximation of the offend-
ing terms (perhaps with a constraint to force the
solution to stay close to the current one); iterate;

– Mixed integer GP can be solved with heuristics
(round the solutions, perhaps after tighening the
constraints; or round one variable at a time, starting
with those closest to an integer; or use branch-and-
bound).

Portofolio selection problems in practice:
a comparison between linear

and quadratic optimization models
F. Cesarone et al. (2010)

The quadratic program with cardinality constraints

Minimize x′Qx

such that
∑

xi = 1

x ⩾ 0

|suppx| ⩽ k

(polynomial if Q is positive definite, but NP hard in
general) can be solved efficiently by noticing that the
minimum is obtained in the interior of a face ∆I of
∆ = [

∑
xi = 1] where the restriction QI of Q is strictly

convex; the solution is then x∗I = (1′Q−1I 1)−1Q−1I 1/
We “just” have to find I such that |I| ⩽ k, x∗I ⊂ ∆̊I

that minimizes (1′Q−1I 1)−1. It turns out that, as we
increase k, the corresponding I ′s are included into one
another: this gives an incremental algorithm to solve
the problem. However, since there are many possible
I’s at each step (as we increase k, they form a tree,
and we want one of the longest branches), the com-
plexity is still exponential in the worst case; one can
try heuristics, e.g., keeping the solutions with the best
values.

Learning from data
Y.S. Abu-Mostafa (Caltech, 2012)

Hoeffding’s inequality measures how well in-sample re-
sults generalize out-of-sample: for proportions, on a
sample of size N ,

P [|µout − µin| > ε] ⩽ 2 exp(−2ε2N).

It also tells us if learning is possible at all: when you
choose between M (independent) models,

P [|Errorout − Errorin| > ε] ⩽ 2M exp(−2ε2N).

Article and book summaries by Vincent Zoonekynd 763/1044

http://work.caltech.edu/telecourse.html

But M is usually infinite. In the case of classification,
what matters is not the number of models, but the
number m(k) of different possible predictions they can
make on the data: if there are k points, there are at
most 2k dichotomies but, in general, since the models
have a specific form (e.g., linear), there will be fewer
dichotomies. If the VC (Vapnik-Chervonenkis) di-
mension (intuitively, the effective number of param-
eters, or the effective degrees of freedom)

dVC = sup{k : m(k) = 2k}

is finite, m(k) is polynomial. We then have

P [|Errorout − Errorin| > ε] = O(NdVCe−αε
2N).

The mutiplicative constant is too large for this inequal-
ity to be useful in itself, but it is believed that the order
of magnitude is close to optimal. As a rule of thumb,
you want N ⩾ 10 dVC.
VC analysis can be contrasted with bias-variance anal-
ysis: the bias (sometimes called “deterministic noise”)
is the error between the best approximation, in the
set of models considered, and of the (unknown) data-
generating mechanism; the variance is the error be-
tween the best approximation and that derived from
the sample data.

Error

N

Errorout

Errorin

in-sample error

generalization error

VC analysis

Error

N

Errorout

Errorin

bias

variance

Bias-variance analysis

To avoid overfitting, use regularization (add a λ ‖w‖2
penalty or, equivalently (by duality), a constraint
‖w‖ ⩽ C) and (10-fold) cross-validation (to select the
regularization parameters and/or the model complex-
ity).
The examples covered included singular value de-
composition (SVD, for recommendation systems); the
perceptron, logistic regression, neural networks; soft-
margin support vector machines (SVM), with details
of the corresponding quadratic optimization problem
and its dual, which gives the support vectors (the
number of support vectors measures the complexity
of the model, not unlike the VC dimension); the ker-
nel trick (k(x, y) = (1 + x′y)k, which gives polyno-
mials of degree up to k, k(x, y) = exp−γ ‖x− y‖);
radial basis functions (apply k-means on the inputs,
regress y ∼

∑
exp−γ ‖x− µi‖, choose γ and k by

cross-validation – this is very similar to SVM with a
gaussian kernel, where the µi are support vectors in-
stead of k-means centers.

Introduction to logic
M. Genesereth and E. Kao (Coursera 2012)

Propositional logic is the logic of truth tables: given
propositional constants p, q, r, etc. and a truth as-
signment, you can check if complex sentences (p ∧ q,
(p ∨ q)⇒ r, etc.) are true or false. A sentence is valid
if it is always true, for all truth assignments; contingent
if it is sometimes true, sometimes false; unsatisfiable if
it is never true; satisfiable if it is sometimes true (valid
or contingent); falsifiable if it is sometimes false (unsat-
isfiable or contingent). A set of sentences ∆ entails a
sentence φ, written ∆ ⊨ φ, if, for all truth assignments
for which ∆ is true, so is φ. Entailment is a satisfiabil-
ity problem: ∆ ⊨ φ iff ∆ ∪ {¬φ} is unsatisfiable.
Satisfiability (SAT) is an NP-complete problem, but
there are some improvements on the naive algorithm
(checking all the truth tables): arrange the possible
truth assignments in a tree (each level corresponds to a
literal, each node corresponds to a partial truth assign-
ment), simplify the problem at each node by partially
evaluating the formula, and prune the tree whenever
possible. Besides deterministic algorithms (DPLL),
there are a few heuristics (WalkSAT).
The Fitch system is a set of rules of inference, to draw
conclusions from premisses (notation: ∆ ` φ). Since it
allows subproofs

φ ` ψ
φ⇒ ψ

(if you are not familiar with this notation: the premises
are above the bar, the conclusions below), its proofs are
shorter that those of other systems (Mendelson, etc.).
A proof system is sound when: if ∆ ` φ, then ∆ ⊨ φ
(i.e., if something is provable, it is true); it is complete
when the converse holds. Fitch for propositional logic
is sound and complete.
Propositional resolution provides a more algorith-
mic way of checking entailment: distribute (φ ∨ (ψ ∧
χ) = (φ ∨ ψ) ∧ (φ ∨ χ)) all the premisses to put them
in clausal form

∧
i

∨
j pij , often written as

{p11, . . . , p1k1}
· · ·
{pn1, . . . , pnkn}

and apply the propositional resolution principle

{p, q1, . . . , qm}
{¬p, r1, . . . , rn}

{q1, . . . , qm, r1, . . . , rn}.

The empty clause is a contradiction. The propositional
resolution principle is not complete (e.g., {p}, {q} 0
{p, q}), but unsatisfiable clauses can be proven to be
so: to prove ∆ ⊨ φ, show ∆ ∪ {φ} ` {}.
Relational logic adds quantifiers, variables (needed
if you want to use quantifiers), relations and functions.
(You will often need an equality relation, syntactic
sugar for an equivalence relation with the substitution
property: ∀x∀y p(x) ∧ (x = y) ⇒ p(y).) We can still

Article and book summaries by Vincent Zoonekynd 764/1044

define the notion of truth assignment and logical entail-
ment but, in presence of functions, the set of sentences
for which you have to provide a truth value (the Her-
brand base) is infinite. Here are a few examples: Z/4
can be described with 4 literals and relations “same”,
“next”, “plus”; N (Peano arithmetic) can be described
with one literal 0, a “successor” function and “same”,
“next”, “plus” relations; lists can be represented with
a “nil” literal, a “cons” function and an “append” rela-
tion; BNF grammars; propositional logic itself (meta-
level logic).
Finite relational logic (i.e., the Herbrand base is finite,
in particular, there are no functions) is equivalent to
propositional logic: to see it, write everything in prenex
form, i.e., with the quantifiers on the outside. It is
compact: every unsatisfiable set of sentences contains
a finite unsatisfiable subset. Omega relational logic (in-
finitely many literals but no functions) is not compact,
but is semi-decidable: if a finite set of sentences is un-
satisfiable, it can be shown in finite time (using the
prenex transformation).
The Fitch proof system is still applicable to relational
logic (with a few more rules: universal and existential
introduction and elimination, for which you have to
pay attention to free variables; domain closure; induc-
tion): if ∆ ⊨ φ, then there exists a finite proof ∆ ` φ
(but if ∆ 2 φ, the search for a proof will take forever).
Relational resolution is useful, but incomplete: it is
based on satisfiability, but relational logic is not decid-
able. To put an expression in clausal form, existential
elimination, ∃a p(x) −→ p(a(y)), adds a new function
(Skolem function) of the enclosing universal variables y.
Once you are only left with universal quantifiers, on the
outside, you can drop them. Unification is also trickier:
you may need to substitute some of the variables and
drop part of the clauses.
Relational resolution can be used for answer ex-
traction: to find x such that p(x), add the clause
{¬p(x), goal(x)}, i.e., p(x) ⇒ goal(x), and continue
until you get {} (no solution), or {goal(a)} (a is a solu-
tion), or {goal(a1), . . . , goal(an)} (one of the ai is a so-
lution). It may also take forever (relational logic is not
decidable). The algorithm can be sped up by removing
tautologies ({p,¬p, . . . }), duplications (Ψ if Φσ ⊂ Ψ)
or clauses containing a literal that is never negated.
In Herbrand semantics, the universe of discourse
contains what the logic describes and nothing else; in
Tarskian semantics, the universe of discourse can be
larger (e.g., the reals and the hyperreals (non-standard
numbers) are both models of the reals). Propositional
logic and relational logic are examples of Herbrand se-
mantics. First order logic is the tarskian equivalent
of relational logic (you can emulate first order logic
with relational logic: just add a new unary function).
Fitch without domain closure and induction is sound

and complete for first order logic:

∆ `Fitch\{dc,ind} φ ∆ ⊨fol φ

∆ `Fitch φ ∆ ⊨rl φ

R in finance 2012
To design a real-time (i.e., you cannot look into the fu-
ture) finite-sample filter approximating some idealized
filter,

yt =
∑
k∈Z

γkxt−k

ŷt =

n∑
k=0

γ̂kxt−k,

express it in frequency space

Γ(ω) =
∑
k

γke
−ikω

and find the γ̂k that minimize∫
|ω|=1

∣∣∣Γ(ω)− Γ̂(ω)
∣∣∣2

You can decompose this quantity into a penalty for
the delay between the real and idealized filter and a
penalty for the amount of remaining noise.
The singular value decomposition (SVD) can be used
to quickly test for cointegration among a large number
of assets.
The dlm package can fit, filter (Kalman), smooth state
space models: ARMA, stochastic volatility, regression
with time-varying parameters (dlmModReg), etc. and
help you cross-validate the result.
The Rcpp package allows you to transparently manip-
ulate R objects in C++, eschewing the gory macros
you have to put up with when using .Call directly
– and the inside package simplifies things even fur-
ther. But you are left with those template-related er-
ror messages... It is even more useful with the advent
of reference classes (R5). In the other direction, you
can use Rinside to, say, include R in a GUI or a web
application (e.g., with the Wt framework).
To mine textual data, use Python and NLTK, of
the tm package and its many plugings (tm.plugin.
webmining, tm.plugin.sentiment, tm.plugin.
tags).
CppBugs is faster than MCMCpack, and (almost?) as
flexible as JAGS.

Evaluating the design of the R language
F. Morandat et al.

Unflattering but objective evaluation of R: the lan-
guage is designed to be used interactively (named and

Article and book summaries by Vincent Zoonekynd 765/1044

optional arguments); the main data type is the vector
(with support for missing values); it encourages vector-
ized operations. It mixes seemingly incompatible pro-
gramming language paradigms: functional and lazy,
but dynamic, imperative and reflexive (parse, eval,
quote, bquote, substitute, deparse). The current
implementation is “massively inefficient”, mainly be-
cause of the laziness of the language (which also fails to
deliver the performance improvements it should bring),
immoderate memory usage (garbage collection is more
expensive, frequent and slow than it should). The two
class systems (S3, S4 – there is also R5 and a few more
in separate packages) look “like an afterthought”. It is
“hopelessly non-thread-safe” and lacks standard data
structures (growable arrays, hash maps). “It is not
the ideal language to develop robust packages.” “As a
language, R is like French; it has an elegant core, but
every rule comes with a set of ad hoc exceptions that
directly contradict it”.
The article also provides a formal semantics of the lan-
guage, and analyzes large amounts of code, to see how
the language is actually used.
The article does not mention the ability to easily de-
scribe statistical models (formula), the data manip-
ulation (reshape2, plyr) and plotting capabilities –
but these are add-ons, rather than parts of the core
language.

The nature of alpha
A.M. Berd (2011)

Even when they do not explicitly trade options, there
is often a negative correlation between the returns of a
hedge fund and market volatility, at least for “con-
vergence” (mean-reverting) strategies: indeed, those
strategies are essentially a short strangle . It is
the opposite for momentum strategies. Measure this
risk, diversify your strategies and, if it is not enough,
add some explicit volatility hedging.

The feedback effect of hedging
in portfolio optimization

P. Henry-Labordère (2004)
Delta hedging can have a destabilizing market impact:
to hedge a call, you buy when the market rises. This is
the opposite of portfolio optimization, which suggests
to buy when the price falls.

Circadian patterns and burstiness
in human communication activity

H.H. Jo et al. (2011)
Human activities (phone calls, tweets, etc.) show
both periodicities (circadian, weekly) and bursts. The
bursts can be modeled with a cascading Poisson
process, i.e., a Poisson process (Xt)t with intensity

λt = λ0 + λ1
∑
s<t

e−(t−s)/τXs.

The periodicity can be modeled with a change of time
Yt = XTt , with dTt/dt periodic (and positive).

Robust pricing and hedging
of double no-touch options

A.M.G. Cox and J. Obłój (2009)
Given a set of calls and digital call prices, with no
arbitrage oportunities (there are a few conditions to
be satisfied: C(0) = S0, C(∞) = 0, C ′(0) ⩾ −1,
D(k) = −C ′(k)), how much latitude do we have to
extend the market model to include other options? In
the case of double-no-touch options, one can devise a
few super- and sub-hedges and show that the corre-
sponding bounds are as tight as possible.

Conquering the Greeks in Monte Carlo:
efficient calculation of the market sensitivities

and hedge ratios of financial assets
by direct numeric simulation

M. Avellaneda and R. Gamba (2000)
When pricing options via Monte Carlo simulations,
you do not get exactly the market prices; however,
you can put weights on the sample paths to exactly
recover them (use the maximum entropy principle to
have uniquely defined weights). Those weighted paths
can then be used to compute sensitivities (“Greeks”).

Vibrato Monte Carlo
and the computation of Greeks

S. Keegan (2008)
Option sensitivities (“greeks”) can be computed via
– Finite differences

∂Price
∂θ

=
Price(θ +∆θ)− Price(θ −∆θ)

2∆θ

– Likelihood ratio

Price = E[Payoff] =
∫

Payoff(S)p(S) dS

∂Price
∂θ

=

∫
Payoff× ∂p

∂θ
dS

=

∫
Payoff× ∂ log p

∂θ
pdS

= E

[
Payoff× ∂ log p

∂θ

]
(but the variance is too high);

– Pathwise sensitivity
∂Price
∂θ

= E

[
∂Payoff
∂Spot

∂SpotT
∂θ

]
– Adjoint method: discretize the PDE

Sn+1 = Sn + a(Sn, tn)h+ b(Sn, tn)Zn+1

= fn+1(Sn, Zn+1)

SN = fN ◦ · · · ◦ f1(S0);

we can compute ∂SN/∂θ from the fi and the ∂fi/∂θ
(not unlike the backpropagation algorithm, to com-
pute the gradient of the loss function in a neural
network), for (Zn)n fixed; and then integrate Z out;

Article and book summaries by Vincent Zoonekynd 766/1044

– Conditional expectation: simulate the price until the
penultimate time step ST−∆T , consider the gaus-
sian distribution ST |ST−∆T = ST |Z1, . . . , ZT−∆T ,
use the likelihood ratio method, and integrate Z out

∂Price
∂θ

=

EZ1,...,ZT−∆T
EZT

[
Payoff

∂ log pST |Z1,...,ZT−∆T

∂θ

]
– The Vibrato method decomposes this expression fur-
ther.

Smoking adjoints: fast Monte Carlo Greeks
More details on the adjoint method to compute Greeks.

Web search queries can predict
stock market volumes

I. Bordino et al. (2012)
It could be useful as a warning signal, but they do not
seem to check for confounding variables (e.g., the day
of the week).

Pricing stocks with yardsticks and sentiments
S.M. Bustos et al. (2011)

Another variant of the CAPM:

E[returni] =
σ(returni)

σ(market without i)E[market without i]

rather than

E[returni] =
Cov(returni,market)

σ2(market) E[market].

Memory effects in stock price dynamics:
evidence of technical trading

F. Garzarelli et al. (2011)
Technical trading is thought to be a self-fulfilling
prophecy; one can test how efficient it is as follows.
A “support” (“resistance”) is a local minimum (maxi-
mum) in a window of width τ ticks; estimate the prob-
ability that prices rebound on (rather than cross) the
latest support or resistance if they enter a band of
width ε around them; fine-tune τ and ε to maximize
this probability (and validate on a test dataset).

Improving recommendation quality by merging
collaborative filtering and social relationships

P. De Meo et al. (2011)
The user rating matrix R can be written as a product
of the user preference matrix, and the item charac-
teristic matrix, R = PQ′ (“non-negative matrix fac-
torization”). The singular value decomposition (SVD)
provides such a decomposition, but does not deal well
with missing values. Tikhonov regularization can help:

(P,Q) = Argmin ‖R− PQ′‖2 + λ(‖P‖2 + ‖Q‖2).

You can add another penalty

µ
∑
x user

∑
y neighbour

of x

‖Px,· − Py,·‖

to account for social relationships.

Non-conservative diffusion and its application
to social network analysis

R. Gosh et al. (2011)
PageRank is the steady state probability distribution of
a random walk on a network. The alpha-centrality can
be defined in the same way, by using a non-conservative
diffusion: the process does not move from one node to a
single other node, but broadcasts to each neighbouring
node, as an epidemic or a fad would do (the number
of viruses or of infected nodes is not conserved) – this
is not unlike the difference between deterministic and
non-deterministic finite automata.

Information filtering via preferential diffusion
L. Lü and W. Liu (2011)

Most recommendation algorithms are based on similar-
ities between users or items or both. One could also use
a diffusion process on the user-object bipartite graph.

Maximum entropy random walks in complex
networks with limited information

R. Sinatra et al. (2011)
You can construct a maximum entropy random walk
on a graph using only local information: make the tran-
sition probabilities proportional to some power of the
degree of the target node.

From brain to earth and climate systems:
small-world interaction networks or not

A. Bialonski et al. (2011)
The omnipresent “small world property” (the aver-
age shortest path length grows at most logarithmically
with the number of nodes) could be an artefact of the
way we sample real-world networks.

Rewiring world trade I:
A binary network analysis
T. Squartini et al. (2011)

Local properties (node degree) are sufficient to describe
the international trade network (ITN, world trade web,
WTW), when viewed as a non-weighted network, but
not when viewed as a weighted (trade volume) network.
To see it, you can build a family of randomized vari-
ants, by local rewiring and look at the distribution
of some global quantities, such as degree correlation
or clustering coefficient. There is a less computation-
intensive method, using the maximum entropy proba-
bility distribution on the set of graphs satisfying the
degree constraints.

Article and book summaries by Vincent Zoonekynd 767/1044

http://comtrade.un.org/

The network of global corporate control
S. Vitali et al. (2011)

The presence of cycles in the cross-holding network of
transnational corporations complicates the estimation
of the control structure (who controls who). (It is
not clear how they address the problem: they seem
to just mitigate it.) The network has a bow tie struc-
ture: financial companies (left half) control transna-
tional companies (knot), transnational companies have
tight circular crossholding relations and control smaller
companies (right half).

Propagation of cascades in complex networks:
from supply chains to food webs

R.D. Smith (2011)
Modelling the bullwhip effect, on a graph (supply
chain, food web), using birth-death processes.

The blogosphere as an excitable social medium:
Richter’s and Omori’s law in media coverage

P. Klimek et al. (2011)
Word frequencies have statistical properties similar to
earthquake energies, before and after an event.

wi ≈ (t− t0)−α before
wi ≈ (t0 − t)−β after

iSAX: indexing and mining
terabyte-sized time series

J. Shieh and E. Keogh
To index large databases of time series, store the time
series in a tree, whose nodes correspond to increasingly
finer and/or more precise discretizations. This is not
unlike wavelet coefficients, R-trees (used to index spa-
tial databases) or k-d trees.

A decision-theoretic formulation
of Fisher’s approach to testing

K. Rice (2010)
Statistical tests can be interpreted in a decision-
theoretic framework:
– A frequentist test minimizes the type II error rate
(“inaccuracy”) under a constraint on the type I er-
ror rate (“embarrassment”);

– A bayesian test assigns a cost to type I and type II
errors and minimizes the expected cost.

A gentle introduction to quantile regression
for ecologists

B.S. Cade and B.R. Noon (2003)
Quantile regression addresses (and measures) het-
eroskedasticity. It can highlight changes in the dis-
tribution that are significant, but not visible on the
mean. It allows you to focus on the tail, where inter-
esting things happen. In ecology, it can help identify

limiting factors (corresponding to distribution trunca-
tion: 7→)

Machine learning markets
A. Storkey (2011)

There are many ways of aggregating statistical models
(“ensemble methods”: boosting, mixtures, etc.). Here
is another one, inspired by financial markets. Statis-
tical models are agents in a market, each with a util-
ity function, trading “bets” (options on the next data
point). The price formation mechanism is similar to
loopy belief propagation. Linear, logarithmic, expo-
nential utility functions lead to the median, (weighted)
mean or geometric mean of the models.

Value-at-risk in portfolio optimization:
properties and computational approach
A.A. Gaivoronski and G. Pflug (2004)

The value-at-risk (VaR), computed from a set of sce-
narios, is neither smooth nor convex – there are local
extrema everywhere. Since the VaR can be expressed
as
Max
i

k+1fi(x) ∝
∑

I⊂J1,nK
|I|=k

∑
i∈I

1 {x : ∀i∈I fi(x)⩽fj(x)
∀i ̸∈I fi(x)⩾fj(x)}

fi(x),

one can replace 1{x : fi(x)⩽fj(x)} with φε(fi(x)−fj(x))
for some smooth φε approximating 1{x⩽0}. The result-
ing smoothed VaR (SVaR) is smooth and has fewer
local extrema. (The authors do not seem to be worried
by the size of the sum.)

Transaction costs, trading volume,
and the liquidity premium

S. Gerhold (2011)
In presence of transaction costs, even if you want to
hold a constant-weight portfolio, you cannot rebalance
it continuously. This suboptimality corresponds to a
liquidity premium:
liquidity premium ∝ bid-ask spread× share turnover.
(The liquidity premium is the difference in expected re-
turns between a risky asset with transaction costs and
a risky asset with the same utility but no transaction
costs.)

Stochastic market efficiency
O. Peters and A. Adamou (2011)

In a stochastically efficient market, it is not possible
to beat the market (in terms of expected growth rate)
by holding the market portfolio and playing with the
leverage: the optimal leverage, from the Kelly princi-
ple, is always 1. This notion is different from that of
price efficiency, which is static (at one point in time).

How efficiency shapes market impact
J.D. Farmer et al. (2011)

Market impact is concave.

Article and book summaries by Vincent Zoonekynd 768/1044

Record statistics for biased random walks,
with an application to financial data

G. Wergen et al. (2011)
Asymptotic behaviour of the record rate Pn = P [Xn >
supk<nXk] for a random walk with drift X.

Quantitative Trading
E.P. Chan (2009)

Elementary and superficial book on how to become an
independent quantitative trader – in short: do not for-
get to backtest your strategies, with clean, survivor-
bias-free data. The book ends with a list of possible
strategies (earnings or macro announcements; gold vs
gold miners pairs trading; Fama-French factor model;
calendar trades: January effect, gasoline May futures
in April, natural gas June futures from January to
April) and a frighteningly incorrect interpretation of
the p-value of a cointegration test.

Financial Risk Forecasting
J. Daníelsson (Wiley 2011)

Clear book on the value at risk (VaR), at a very ele-
mentary level.

Reconstruction of financial networks
for robust estimation of systemic risk

I. Mastromatteo (2012)
The credit network between banks can be described
by a liability matrix, Lij indicating the funds lent by
bank j to bank i.
Only some entries (those above a regulatory thresh-
old, reported to a regulator) and the aggregate val-
ues (total debt and credit, from the balance sheet) are
known, and the matrix is often reconstructed using a
maximum entropy estimator, i.e., by maximizing the
Kullback-Leibler divergence between L and a uniform
distribution: ∑

i,j

Lij log
Lij
Q

But this assumes that the credit relations are as evenly
spread out as possible: the real credit network is more
heterogeneous, the real liability matrix is sparse.
One can try to maximize the sparsity (number of zero
entries) under those constraints, and then compute the
corresponding maximum entropy matrix.

Mean-variance portfolio optimization
when means and covariances are unknown

T.L. Lai et al. (2011)
Mean-variance portfolio optimization assumes that the
expected returns µ and variance matrix V are known:
often, some estimators (sample estimators, factor mod-
els, shrinkage, Bayes, Black-Litterman, etc.) are sim-
ply plugged into the optimization problem. This 2-step
procedure (estimation, then optimization) is subopti-
mal. One can replace the optimization problem

Maximize E[w′rn+1|µ, V]− λVar[w′rn+1|µ, V]

with a stochastic optimization problem

Maximize E[w′rn+1|r1, . . . , rn]− λVar[w′rn+1|r1, . . .]

The corresponding “non-parametric empirical Bayes”
frontier is higher than the shrinkage or bootstrap ones.

Risk minimization in stochastic volatility
models: model risk and empirical performance

R. Poulsen et al. (2009)
In a complete market with a risk-free asset B and a
risky asset S, any European option X can be repli-
cated with a self-financing strategy (α, β).

Xt = αtBt + βtSt

dXt = αtdBt + βtdSt

If the market is not complete (e.g., a stochastic volatil-
ity model), you can still build a replicating strategy,
but it will not be self-financing:

Costt =
∫
dXt −

∫
αtdBt −

∫
βtdBt

is not constant. Some people just use a strategy that
would be self-financing in a complete market, delta-
hedging, and hope for the best. Alternatively, one
could try to minimize some measure of risk associated
to this cost, e.g., E[(CostT −Costt)2|Ft]. The problem
need not have a global solution, but a local extremum
is often sufficient.

A fuzzy pay-off method
for real option valuation

A. Collan et al. (2009)
A fuzzy subset A of X is a map µ : X → [0, 1], in-
terpreted as µ(x) = P (x ∈ A) (it corresponds to a
probability distribution on P(X) with the property
that (x ∈ A) ⊥⊥ (y ∈ B) whenever x 6= y). For in-
stance, µ(x) = δx,x0 corresponds to a single point and

or are fuzzy numbers. They can be used, in-
stead of probability distributions, as the payoff of an
investment, when computing its value (via MCMC) as
the risk-neutral expected present value.

The US stock market leads
the federal funds rate and treasury bond yields

K. Guo et al. (2011)
To find which, of two time series x and y, leads the
other, find a path in their recurrence plot (the ma-
trix of squared distances ds,t = (xt − ys)2) from one
corner to the other, that minimizes the sum of squared
distances. The algorithm can be made more robust to
noise by replacing the dynamic programming equation

Cs,t = ds,t +Min{Cs−1,t, Cs−1,t−1, Cs,t−1}

with

Gs,t = (Gs−1,t +Gs−1,t−1 +Gs,t−1) exp(−ds,t/T)

leading to the “thermal optimal path” (T can be inter-
preted as a temperature).

Article and book summaries by Vincent Zoonekynd 769/1044

Econophysics – complex correlations and trend
switchings in financial time series

T. Preis (2011)
Pattern conformity measures how well we can pre-
dict the evolution of a time series for the next ∆t+

instants from the previous ∆t− instants, using pattern
matching on previous intervals of size ∆t− (the pat-
terns are normalized with their range, to account for
changes in volatility). It can be normalized (in a com-
plicated way) and plotted against ∆t− and ∆t+. It is
a non-linear measure of autocorrelation.
Pattern matching can also be used to study trends and
crashes, on various time scales. Consider the time se-
ries between two local extrema (extrema on centered
intervals of size 2∆t), reparametrize them so that the
time varies between 0 and 1, find matching time series,
look at the volume or intertrade time time series for
those matching price time series, and average them.

Switching processes in financial markets T.
Preis et al.(2011)

Shorter article on the same subject.

Dynamic generalized Hurst exponent
as a tool to monitor unstable periods

in financial time series
R. Morales et al. (2011)

“Scaling behaviour” refers to the relation between the
volatility of the returns on some asset and the hori-
zon τ over which it is computed. The Hurst exponent
H satisfies

Volatility ∝ HorizonH .

More generally, one can look at other moments:

qth moment ∝ HorizonqH(q).

If the generalized Hurst exponent H(q) depends
on q, the times series is said to be multifractal.
The generalized Hurst exponentH(1) can be computed
on a moving window, with exponentially decreasing
weights, and used as a bubble detector.
Similarly, one can study the tail of the returns distri-
bution:

P [log-returns ⩾ r] ∝
n→∞

r−α.

Is there a bubble on LinkedIn’s stock price?
R. Jarrow et al. (2011)

One can apparently detect bubbles by checking if the
squared volatility increases more than linearly with the
price: ∫ ∞

a

Price
Volatility2

<∞.

(If this condition is satisfied, the price process is only
a local martingale under the risk-free measure.)

How to detect an asset bubble
R. Jarrow et al. (2011)

More details about the (kernel-based) variance estima-
tors used.

Why is order flow so persistent?
B. Tóth et al. (2011)

The order flow (signed traded volume, the sign indi-
cating whether the trade was initiated by the seller or
the buyer), computed from transaction data, is persis-
tent over several days, and its autocorrelation can be
decomposed into “order splitting” and herding compo-
nents (you need to know which performed each trans-
action): order-splitting dominates, and anti-herding
(from market-makers) becomes visible at longer time-
scales.

Investment volatility: a critique of standard
beta estimation and a simple way forward

C. Tofallis
Should the usual beta

β =
Cov(Portfolio,Market)

VarMarket

= Cor(Portfolio,Market)× Sd(Portfolio)
SdMarket

be replaced by the simpler and more stable

sign
(
Cor(Portfolio,Market)

)
× Sd(Portfolio)

SdMarket ?

It corresponds to the slope of a line between the
portfolio-vs-market and market-vs-portfolio regression
lines, and minimizes the sum of the products of the de-
viations in the horizontal and vertical directions (tri-
angle areas).

Hedging the smirk
D.S. Bates (2005)

Some of the greeks (∆, Γ) can be computed without
any model, only relying on the fact that option prices
are homogeneous (of degree 1) in the underlying and
the strike (actually, some models do not satisfy this
property): indeed, from Euler’s theorem,

Price = Spot∂Price
∂Spot + Strike ∂Price

∂Strike .

(For Γ = ∂2Price/∂Spot2, use the fact that
∂Price/∂Spot and ∂Price/∂Strike are themselves ho-
mogeneous.)
Since the Black-Scholes implied volatility fluctuates
much less than the option prices (which move with the
underlying), it can be used instead of the price, from

Price = BS(Strike,Volatility)
∂Price
∂Strike =

∂BS
∂Strike +

∂BS
∂Volatility

∂Volatility
∂Strike

Article and book summaries by Vincent Zoonekynd 770/1044

On the assessment of Monte Carlo error
in simulation-based statistical analyses

E. Koehler et al. (2009)
Monte Carlo simulations provide noisy estimators, but
many studies do not report the error coming from the
finiteness of the sample – and many use a frighten-
ingly small number of replications. To estimate this
Monte Carlo error (MCE), plot the estimate versus
the number of samples (ideally for several chains);
bootstrap the Monte Carlo samples you have (boot-
strap after bootstrap); you can also use the fact that
MCE ∝ R−1/2 to justify the number of replications
you chose.

Factor analysis for multiple testing (FAMT):
an R package for large-scale significance

testing under dependence
D. Causeur et al. (JSS 2011)

Knowledge of the dependency structure of the data can
help improve the correction for multiple testing (FDR,
etc.), which usually assumes the tests are independent.

topicmodels: an R package for fitting models
B. Grün and K. Hornik (JSS 2011)

Latent Dirichlet allocation (LDA) models the occur-
rence of words as follows: for each topic, choose a word
distribution (Dirichlet prior – the Dirichlet distribution
is a distribution on [

∑
i xi = 1, ∀i xi ⩾ 1]); for each

text, choose the distribution of the topics present in the
text (another Dirichlet); to generate each word, select
a topic from the topic distribution, and select a word
from the word distribution of that topic. The corre-
lated topic model (CTM) also allows for dependence
between topics. Fit the model with Gibbs simulations
or variational expectation maximization (VEM). In R,
check the lda and topicmodels packages (Jags is more
general, but slower).

Consistently weighted measures
for complex network topologies

J. Heitzig et al. (2011)
One often considers small finite “aggregated” approxi-
mations of large or infinite graphs, for instance, a finite
mesh for the brain, finite approximations of climate
networks whose vertices are points on the Earth and
with an edge between two points if the the time series of
(say) temperatures at those points are significantly cor-
related, network of IP address ranges when we are re-
ally interested in users, network of households to study
people, of countries instead of consumers or compa-
nies, etc. Those aggregations or discretizations can be
biased: for instance, a latitude-longitude mesh of the
Earth gives undue importance to the poles. Graph-
theoretic statistics (centrality, betweeness, etc.) have
to be corrected for this bias: one can usually define
weighted variants of those statistics by looking at how

they change under node splitting.

−→

Phase transition in the detection of modules
in sparse networks

A. Decelle et al. (2011)
The formation of communities, in a graph, can be mod-
elled with stochastic blocks: start with a set of nodes;
assign each of the i to a group ti; add an edge between
two nodes i and j with a probability proportional to the
affinity c(ti, tj) between their groups. The parameters
of the model (number of groups, size of each group,
edge probability) can be estimated via Monte Carlo
simulation but, in the case of sparse networks (O(N)
edges in a network of size N , in particular, the graph
is locally tree-like), belief propagation (BP, sometimes
also called the “cavity method”) gives an asymptoti-
cally exact result in linear time.

Infinitesimal methods
in Mathematical economics

R.M. Anderson (2008)
Non-standard analysis for economists: ultrafilters, ul-
traproducts, hyperreal numbers, Loeb measure.

Programming a robotic car
S. Thrun (2011)

Presentation of a few algorithms you could use to build
a self-driving car.
To estimate the position of a vehicle, you can start with
an initial estimate (a probability distribution) and mul-
tiply it with the estimate from the measurement you
have (this is the Bayes rule); when the vehicle moves,
convolve this distribution with your estimate of the
movement (this is the law of total probabilities). Iter-
ate as the vehicle moves and you receive new measure-
ments. The distribution of the location of the robot
can be described by a discrete probability distribution
(histogram filter), a sample of possible positions (par-
ticle filter) or a Gaussian distribution (Kalman filter –
to understand where the Kalman filter formulas come
from, just write the product and the convolution, first
in dimension 1, then in general). The state space used
includes position, orientation, and speed.
To plan the path the robot will follow, you can di-
vide the world into a grid (or represent the possible
paths as a graph, not necessarily a lattice) and use
breadth-first search (from the starting point), dynamic
programming (same idea, but from the goal) or the A∗
algorithm (similar to breadth-first search, but using a
heuristic function that gives a lower bound on the dis-
tance, e.g., the Euclidian distance, ignoring obstacles).
In the case of a car, the state space includes both po-
sition and orientation. You may want to smooth the
path with an L2 penalty: given the (xi)i, find (yi)i to
minimize

∑
i ‖xi − yi‖

2
+ λ

∑
i ‖yi − yi−1‖

2.

Article and book summaries by Vincent Zoonekynd 771/1044

http://www.udacity.com/overview/Course/cs373

The steering angle is often determined by PID control:
a linear combination of the error (to put the robot back
on track), its derivative (to avoid overshooting) and its
integral (the total error so far, to take care of any sys-
tematic bias).
You can build a map using all the information accu-
mulated so far (graph SLAM algorithm): the posterior
distribution is a product of gaussians, but by expand-
ing it, we end up with a sum of squares – getting to
the estimate of the path of the vehicle and the position
of the landmarks used is just a matrix inversion away.

Constant-Q transform toolbox
for music processing

C. Schörkhuber and A. Klapuri (2010)
On the implementation of the constant Q-transform
(CQT), a wavelet transform whose frequency bins are
geometrically spaced (12 to 96 bins per octave – the
time-resolution of the bins is not constant, it depends
on the frequency), well-suited to human music and au-
ditory perception.

Complex dynamics
in learning complicated games

T. Galla and J.D. Farmer (2011)
Game-theoretic notions of equilibrium are not useful
for complicated games such as financial markets, chess
or go. If players learn their strategy via reinforce-
ment learning, they oscillate along a chaotic attrac-
tor. While reinforcement learning may faithfully de-
scribe how people learn, it is inadequate for compli-
cated games.

Clarifications to questions and criticisms
on the Johansen-Ledoit-Sornette bubble model

D. Sornette et al. (2011)
Review article on the log-periodic power law bubble
model, with common misconceptions and implementa-
tion problems: it only models the expected log-price
(not the log-price: there is a brownian motion in it);
you should use the log-price, not the price; there are
constraints on some parameters (m < 1, etc.); it only
detects endogenous bubbles, not exogenous crashes;
bubbles need not end with a crash, they can transition
smoothly to another regime; the model is very sensitive
to the start of the time window: try several, and look
at the distribution of the results; use robust optimiza-
tion algorithms (taboo search, genetic algorithms, etc.)
and look at ensembles of solutions – there are many lo-
cal extrema; be suspicious of solutions at the boundary
of the search space; test your implementation on syn-
thetic data, e.g., the fitted model plus AR(1) noise or
reshuffled residuals – this gives confidence intervals for
the critical time and tells you how robust to noise the
model is; the output should be a distribution (an en-
semble) of critical times, not a single value.

A stable and robust calibration scheme
of the log-periodic power law model

V. Filimonov and D. Sornette (2011)
Fitting the 7-parameter log-periodic power law (LPPL)
bubble model

E[ln price] = A+(tc− c)m
(
B+C cos(ω ln(tc− t)−φ)

)
is not a 7-dimensional optimization problem: since 3 of
the parameters are linear, you can vary the other 4 and
compute those 3 via linear regression. Furthermore,
by expanding the cosine, one can replace (C, φ) with
(C cosφ,C sinφ): there are then 4 linear parameters,
and the quasi-periodic patterns in the cost function
that were plaguing the optimization disappear.

2010s 2020s

7.0

7.5

8.0

8.5

Detection of crashes and rebounds
in major equity markets

W. Yan et al.
The LPPL model predicts the end of a bubble, but does
not forecast what happens after: it could be a crash or
just a regime change. For this, use pattern recognition
(on the model parameters) and classification trees.

Role of diversification risk in financial bubbles
W. Yan et al. (2011)

The 3-factor Fama-French model (market, size, growth
vs value) is sometimes replaced by a simpler 2-factor
model, including the market and the Zipf factor, the
difference in returns between the market portfolio and
the equal-weighted portfolio. This factor can be added
to the LPPL model.

E

[
log price− γ log price

equal-weighted price

]
=

A+ (tc − c)m
(
B + C cos(ω ln(tc − t)− φ)

)

Inferring fundamental value and crash
nonlinearity from bubble calibration

W. Yan et al. (2010)
In the LPPL model, replace log p with (p−p0)γ , where
p0 is the fundamental value and γ the market over- or
under-reaction. You can use statistical tests to com-
pare this model with the LPPL one.

Article and book summaries by Vincent Zoonekynd 772/1044

http://robots.stanford.edu/papers/thrun.graphslam.html

High frequency volatility
R. Almgren (2009)

Review of realized volatility estimators: Q̂ =
∑

(xj −
xj−1)

2 is contaminated by microstructure noise – sub-
sample, shift the window, and average.

On covariance estimation
of non-synchronously observed

diffusion processes
T. Hayashi and N. Yoshida (2005)

Given two diffusions x and y, observed at times
t1, . . . , tn and u1, . . . , um respectively,∑

i,j

(xti − xti−1
)(yuj − yuj−1

)1]ti−1,ti]∩]uj−1,uj] ̸=∅

is a consistent estimator of their covariance

〈x, y〉[0,T] =

∫ T

0

σ1σ2ρdt.

The corresponding correlation estimator is also consis-
tent.

A tale of two time scales:
determining integrated volatility
with noisy high-frequency data

L. Zhang et al.
Observed high-frequency log-prices Y are contami-
nated with market microstructure noise ε:

Yy = Xt + εt

dXt = µtdt+ σtdBt.

The integrated volatility 〈X,X〉 =
∫ T
0
σ2
t dt can be es-

timated with the realized volatility, i.e., by summing
the squared returns, either all of them, of those on a
subgrid, to reduce the bias (Epps effect) introduced by
the noise ε. Combining those estimators for two scales,

〈̂X,X〉 = [Y, Y](n,k) − 2
n− k + 1

nk
[Y, Y](n,1)

[Y, Y](n,k) =
1

k

n∑
i=k

(Yi − Yi−k)2

is more efficient.

Efficient estimation of stochastic volatility
under noise observations:

a multi-scale approach
L. Zhang (2005)

Or more than two scales:

〈̂X,X〉 =
∑
k

αk[Y, Y](n,k).

Estimating covariation: Epps effect,
microstructure noise

L. Zhang (2009)
The previous-tick estimator of covariance (for asyn-
chronous time series) is increasingly biased as the
frequency increases (Epps effect): if is affected by
discretization, non-synchronicity and microstructure
noise. One can compute the optimal sampling fre-
quency to minimize the mean square error (MSE) of
the estimator, but 2-scale previous-tick estimators can
help reduce the influence of microstructure noise even
further.

Assessing the performance of different
volatility estimators: a Monte Carlo analysis

Á. Cartea and D. Karyampas (2012)
Volatility is often estimated from high-frequency time
series by downsampling the data to remove the mi-
crostructure noise. Instead, one can model the price
as a random walk (unobserved fair price), with added
gaussian noise, and use a maximum-likelihood estima-
tor (it can be implemented with a Kalman filter). Bet-
ter, one can first identify and remove jumps.

Jumps in financial markets:
a new non-parametric test and jump dynamics

S.S. Lee and P.A. Mykland (2007)
To detect jumps, compare (look at the ratio of) the
log-returns and the realized bipower variation (an es-
timator of the instantaneous volatility, consistent even
in the presence of jumps)

σ̂2 =
1

k − 2

∑
j

∣∣∣∣log Stj
Stj−1

∣∣∣∣ ∣∣∣∣log Stj−1

Stj−2

∣∣∣∣ .
The test statistic is asymptotically gaussian in the ab-
sence of jumps, and a sum of a gaussian and (a ran-
dom variable distributes as) the jump size in presence
of jumps.

Detecting jumps
from Lévy jump diffusion processes

S.S. Lee and J. Hannig
To detect Lévy jumps (and not only large, Poisson
jumps), replace the bipower variation with the trun-
cated power variation

σ̂2 =
1

k

∑
j

(
log

Stj
Stj−1

)2

1|log Stj /Stj−1 |⩽g

(small Lévy jumps would bias the bipower variation).
To test for small Lévy jumps, one can look for an excess
of unusually large returns, when compared with the
gaussian distribution. Those jumps cannot be iden-
tified (we can see that there are more large returns
than expected, but we cannot say which come from
the gaussian distribution and which are jumps), but
one can compute a “belief” that a large return comes
from a small Lévy jump.

Article and book summaries by Vincent Zoonekynd 773/1044

Small, previously undetected Lévy jumps in stock
prices can accumulate into previously puzzling de-
tectable jumps in indices.

Beta-arbitrage strategies:
when do they work, and why?

T. Berrada et al. (2011)
A strategy long in low-beta stocks and short in high-
beta stocks outperforms the market, in contradiction
with the CAPM model. This can be explained with
stochastic portfolio theory, i.e., the assumption that the
market never becomes concentrated in a single stock
(beta arbitrage is a form of diversity investing). The
fact that some investors are leverage-constrained am-
plifies this phenomenon.

A proof of the optimality
of volatility weighting over time

W.G. Hallerbah (2012)
When investing in a 2-asset portfolio (one risky, one
risk-free asset), adjust the weights so that volatility
remains constant (use the implied volatility, e.g., the
vstoxx index, as a volatility forecast).

Risk-based asset allocation:
a new answer to an old question?

W. Lee (2010)
Review of those trendy risk-based approached to port-
folio construction: equally-weighted portfolio (very
sensitive to the choice of the universe); mean vari-
ance portfolio (or equal marginal contributions to risk
(MCTR)); most diversified portfolio (

∑
wiσi/σportfolio

maximal – but is is only a differential diversifica-
tion measure); equal risk contribution (wiMCTRi, also
called parity portfolio: the problem is not convex and
numerically challenging).

Liquidity of corporate bonds
J. Bao et al. (2008)

Illiquidity creates transitory price movements, and a
negative autocovariance in price changes (at the trans-
action level). The opposite γ of that covariance can be
used as a measure of illiquidity. If the bid-ask bounce
is the only source of transitory price movements, the
bid-ask spread is 2√γ.

Portfolio stochastic dominance
and bank liquidity risk

S. Pagratis and N. Topalogou (2012)
A random variable X stochastically dominates a ran-
dom variable Y if

∀a P (X > a) ⩾ P (Y > a)

or, equivalently,

∀a FX(a) ⩽ FY (a).

The mean-variance portfolio optimization problem can
be generalized by replacing mean-variance dominance
with stochastic dominance (two gaussian random vari-
ables are stochastically comparable iif they have the
same variance, and the order is given by their means).
[I remain unconvinced: stochastic dominance is very,
very rare: it is a partial order, and you could easily
end up in a situation in which all or most portfolios
are non-dominated – the efficient frontier would be too
thick to be useful.] The portfolio optimization problem
becomes: find λ to maximize

Max
z

(
F0(z)− Fλ(z)

)
subject to

∀z F0(z) ⩾ Fλ(z).

The article uses these notions to check if the balance
sheet of banks (the assets are the loans and securities;
the liabilities are the deposits, repos and off-balance-
sheet commitments; the equity is the difference) is opti-
mal, using the empirical cdf of the assets and liabilities.

Anomalous price impact and the critical
nature of liquidity in financial markets

B. Tóth et al. (2011)
Model to explain the square root in the price impact
of large orders,

∆price ∝
√
size,

which contradicts Kyle’s linear model, based on the la-
tent order book (for small orders, empirical evidence
suggests size0.2 or log(size)).

A momentum trading strategy based on the low
frequency component of the exchange rate

R.D.F. Harris and F. Yilmaz (2008)
Momentum trading strategies (monthly FX data) are
often based on moving averages: this is subopti-
mal (newer observations should have more weight)
and there is no objective way of choosing the pa-
rameters (it is either subjective or sample-specific).
Instead, consider using kernel regression (sometimes
called Savitzky-Golay filter, in digital signal process-
ing (DSP)) or DSP analogues such as the Hodrick
and Prescott filter

Argmin
∑
t

(St − S∗t)2 + λ
∑
t

(∆S∗t −∆S∗t−1)
2

(the first term ensures that S∗ is close to the signal S,
the second ensures smoothness) and just look at the
slope of the smoothed signal.

Collaborative filtering with temporal dynamics
Y. Koren (KDD 2009)

Application of factor models (used to measure risk in
finance) to recommender systems (Netflix, etc.).

Article and book summaries by Vincent Zoonekynd 774/1044

Can we learn to beat the best stock
A. Borodin et al. (2004)

Cover’s universal portfolios use frequent rebalancing
to achieve large returns, especially if stock prices are
mean-reverting, i.e., if they have are negatively auto-
correlated. They can be improved by exploiting cross-
correlation.

Fiducial inference and generalizations
J. Hennig et al. (2009)

Fiducial inference is bayesian statistics with no prior:
the model

data = f(parameters, innovations)

can be rewritten as

parameters = f−1(data, innovations).

If you observe the data and know the distribution of
the innovations, you have a posterior distribution for
the parameters. (In general, f is not invertible, which
complicates a lot of things.)

p-value precision and reproducibility
D.D. Boos and A. Stefanski (2011)

We tend to give a confidence interval to everything:
why not for p-values, as well? A look at their standard
deviations, bootstrap confidence intervals, and proba-
bility of reproducibility P (pnew ⩽ 0.05 | pold ⩽ 0.05)
suggests that they are very imprecise: the order of
magnitude (approximately, the stars displayed by most
statistical software) is the best we can hope for.

Exploring complex networks
via topological embedding on surfaces

T. Aste et al. (2011)
Planar graphs are simpler than arbitrary graphs. In-
stead of trying to embed graphs in the plane, one can
try to embed them in surfaces of genus g (for the lowest
possible g). The maximal n-vertex graphs embeddable
in a genus g surface can be described from two elemen-
tary moves:

−→ and −→

Rationality, irrationality and escalating
behavior in online auctions

F. Radicchi et al. (2011)
Lowest unique bid auctions (people bid, much less than
the price of the object; pay each time, much (100 times)
more that the bid; are told if their bid is the highest or
not; and the lowest unique bid wins) are all-pay auc-
tions, lotteries decided by the outcome of a minority
game: they are only profitable to the auctioneers.

Models for the impact of all order book events
Z. Eisler et al. (2011)

The mid-point price is a linear superposition of the
impact of the previous prices, with decreasing weights
(compute those weights from the autocorrelation func-
tion). This simplistic model can be improved by allow-
ing for volume-dependent impact, different order types
(market or limit), and weights that vary slowly with
time.

Identification of clusters of investors
from their real trading activity in the market

M. Tumminello et al. (2011)
Investing styles (corresponding to the informed vs non-
informed or fundamental vs technical oppositions in
most agent-based market models) can be identified
from transaction data as follows. Build a bipartite net-
work, whose nodes are investors and days, with three
types of edges, corresponding to “buy”, “sell” and “buy
and sell later in the same day”; project it to a network
of investors, with 9 types of edges, and weights corre-
sponding to the number of days; to account for differ-
ent trading activities, truncate the graph to a statis-
tically validated network: compute the statistical
significance of each edge, with a p-value, testing if the
two investors act independently (given the number of
orders of each type they send in the sample), adjusted
for multiple tests (Bonferroni or FDR); finally, apply
some community-detection algorithm such as infomap.

Life time of correlation between stock prices
on established and emerging markets

A. Buda (2010)
To find the “best” window size to compute a correlation
matrix (between stock returns), check how the follow-
ing quantities change: average number of consecutive
days with a correlation above 0.5 (for a pair of stocks,
or average for all pairs in a market); time in which half
the connections in the minimum spanning tree (MST)
have disappeared; average correlation (Epps effect).

A contextual risk model
for the Ellsberg paradox

D. Aerts and S. Sozzo
Quantum interpretation of knightian uncertainty (the
future is random, but you do not know from which
distribution it is drawn): quantum superposition cor-
responds to the use of mixture distributions as priors.

Asymmetric random matrices:
what do we need them for?

S. Drożdż et al. (2011)
Random matrix theory (RMT) can be generalized to
study the distribution of the diagonal and off-diagonal
elements, and the (complex-conjugate) eigenvalues of
cross-correlation matrices Cor(X,Y). The null hy-
pothesis is still that (X,Y) is gaussian iid [I ini-

Article and book summaries by Vincent Zoonekynd 775/1044

http://arxiv.org/abs/0908.1062

tially thought, from the title, that they were study-
ing the eigenvalues of Cor(X) where the distribution
of (X1, . . . , Xn) under H0 is no longer invariant under
the action of Sn].
Applications include the study of time series, X =
(X1, . . . , Xn), Y = (Y1, . . . , Yn) – but I am sceptical
about the effect of autocorrelation (or serial depen-
dence in general): with real-world data, we already
know that H0 is false.

Endogenous bubbles in derivative markets:
the risk neutral valuation paradox

A.F. Maccioni (2011)
In an incomplete market, the presence of risk-neutral
investors (technical traders) lets the prices stray far
away from the fundamental value of the assets. cre-
ating endogenous depressions or bubbles; when those
traders disappear (or stop trading, for an instant),
prices violently bounce back to the fundamental value.

Calculation of aggregate loss distributions
P.V. Shevchenko (2010)

(Good, simple introduction to Fourier methods for nu-
meric computations in statistics.)
A loss distribution is the distribution of

Z = X1 + · · ·+XN

where the Xi are iid and N is a random variable; we
are interested in their value-at-risk (VaR) and expected
shortfall (ES).
Analytically, it can be computed via convolution or
characteristic functions

H(z) =
∑
k⩾0

pkF
(k)∗(z)

χ(t) = ψ(φ(t))

h(z) =
2

π

∫ ∞
0

Re[χ(t)] cos(tz)dt

H(z) =
2

π

∫ ∞
0

Re[χ(t)]
sin(tz)

t
dt

whereH is the cdf of Z, F that ofX, pk the probability
mass function of N , χ and φ the characteristic func-
tions of Z andX, ψ the probability generating function
of N . The moments of the compound distribution Z
can be explicitly computed from those of X and N (to
derive the formulas, use the characteristic functions).
Monte Carlo simulation is the easiest (and slowest) way
of computing the VaR or ES of the compound loss (do
not forget to estimate the error of those computations).
If the individual losses Xi have a discrete distribution,
the distribution of the compound loss Z can be ob-
tained recursively, in O(n3) time. If the probability
mass function pn = P (N = n) satisfies

pn =

(
a+

b

n

)
pn−1

for n ⩾ 1 (there are generalizations for n ⩾ 2), it
can be computed in O(n2) (Panjer recursion). Dis-
cretization and underflow can pose problem. Without
discretizing the losses, the Panjer condition gives an
integral equation satisfied by h.
With the fast Fourier transform (FFT), one can com-
pute the pdf h of the compound loss from its charac-
teristic function χ. As with Panjer recursion, this still
requires discrete losses. Aliasing error (artefacts at the
boundary of the loss distribution) can be reduced by
tilting the distribution, i.e., by replacing f(x) with
e−θxf(x).
For the cdf H, one can use numerical integration meth-
ods (H can be expressed as an integral involving the
characteristic function χ: there is no need to compute
the pdf h), exploiting the oscillatory behaviour of the
integrand.
Since the moments of the compound distribution are
known, you can approximate the distribution with a
simpler one (Gaussian, translated gamma) with the
same moments.
The asymptotic expansion

1−H(z) ∼
z→∞

E[N](1− F (z))

provides a VaR estimator.

Index cohesive force analysis
reveals that the US market became
prone to systemic collapses in 2002

D.Y. Kenett et al. (2011)
The sample variance or correlation matrix of stock re-
turns changes with time. To study those changes, you
can look at the eigenvalues, their entropy, the average
correlation, the average partial correlation (correla-
tion without the market) – the ICF is the ratio cor-
relation over partial correlation. A rasterplot of the
average (partial) correlation by stock can help identify
regime changes: the partial correlation became negli-
gible in 2002.

2007 2009 2011 2013 2015 2017 2019 2021

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 c
or

re
la

tio
n

Detecting novel associations in large data sets
D.N. Reshef et al. (2011)

The MIC (maximal information coefficient) is a mea-
sure of dependence defined (computationally) as fol-
lows. Divide the data into an n×m grid, discretize the
data along this grid, compute the mutual information,

Article and book summaries by Vincent Zoonekynd 776/1044

normalize it (divide by logMin(x, y)); find the division
that maximizes the mutual information; repeat for all
values of n, m with nm ⩽ N0.6 (where N is the num-
ber of observations). The MIC is the maximum value
in this matrix.
It can be interpreted as a generalized correlation coef-
ficient and can identify non-functional relations (a cir-
cle, etc.), but is misled by some patterns – for instance,
both a line and a 2 × 2 checkerboard pattern give the
maximum value. (Also, its power is apparently much
lower than that of the correlation distance.)
From the matrixM of mutual information, one can de-
rive other measures: Max |Mij −Mji| measures mono-
tonicity, MIC− Cor2 measures non-linearity.

Brownian distance covariance
G.J. Székely and M.L. Rizzo (2009)

The distance covariance between two random variables
X and Y with characteristic functions φX and φY is∫

w(x, y) |φX,Y − φXφY |

with w(x, y) ∝ |x|−p−1 |y|−q−1 (p and q are the dimen-
sions of X and Y).
If U is a stochastic process on R, let XU = U(X) −
E[U(X)|U] be the U -centered version of X; in partic-
ular Xid = X − E[X]. The brownian covariance is
defined by

Cov2W,W ′(X,Y) = E[XWX
′
WYW ′Y ′W ′]

where X ′ and Y ′ are iid copies of X and Y , and W ,
W ′ are independent brownian motions. It coincides
with the distance covariance. The result can be gen-
eralized to Lévy fractional brownian motions of Hurst
index H ∈ (0, 1) and w(x, y) ∝ |x|−p−2H |y|−q−2H .

Leverage aversion and risk parity
A. Asness et al. (2011)

There are many reference portfolios: capitalization-
weighted (the common approximation of the market
portfolio), equal-weights, fundamental weights (since
the market portfolio overweights overvalued stocks, one
can try to replace the stock price with some “fair value”
derived from the balance sheet – it is an accounting-
motivated way of shrinking the capitalization-weighted
portfolio towards the equal-weighted one), minimum
variance, tangent (the CAPM theorem claims it is the
market portfolio). The risk parity portfolio is yet an-
other (robust) approximation of the elusive market
portfolio, using equal contributions to risk. This is
theoretically justified if some investors are averse to
leverage: they would overweigh risky assets (stocks) to
achieve higher returns, increasing demand for riskier
assets and lowering their price. Historically, a 170%
bond, 30% stock portfolio performed better than the
market portfolio and the classical 60% bond, 40% stock
one.

Counter-point to risk parity critiques
E. Peters (2010)

A few caveats on the implementation of risk parity
strategies: avoid leveraging assets that are already in-
ternally leveraged (e.g., stocks, whose debt/equity ra-
tio is often 2/1); hedge inflation; do no leverage asset
classes with no expected returns, such as commodities
– only use them to hedge inflation.

The hidden risks of risk parity portfolios
B. Inker (2010)

Remember that the standard deviation does not mea-
sure all the risk, especially for assets with skewed re-
turns – and leverage increases the danger.

Financial Theory
J. Geanakoplos

Yale (2009)
Some universities have started to put some of their un-
dergraduate (i.e., elementary) courses online: this one
is an introduction to finance, describing models, exam-
ples or experiments to illustrate general economic and
financial facts.
Economy
Many price-setting mechanisms (seller-derived (super-
market), haggling, price regulation, tatonnement, pit
(like haggling, but with several buyers and sellers),
bid/ask (as in computer-trading), specialist, etc.) lead
to the same price (this is the law of one price), the price
predicted by the law of supply and demand. This can
be seen in the following experiment: take 10 students,
5 buyers and 5 sellers, assign a preferred price to each,
ask them to trade using the “pit” method (shout the
desired price, above their preferred price for seller, be-
low for buyers, and modify your offer until you find
a counterparty). Even if it were theoretically possible
for everyone to find a counterparty with a profit on
both sides, this is not what happens: the final price p
is such that the number of sellers sellers below p equals
the number of buyers above p – the others could not
find a counterparty.
In this experiment, the average price (for buyers, or
for sellers) did not play any role: only the price at the
margin mattered. The price is decided at the margin:
the market price is the reservation price of the marginal
buyer or seller, i.e., the price for the next person to buy
or sell. This also explains Adam Smith’s water and di-
amonds paradox: water is useful but cheap, while dia-
monds are useless but expensive. Price and value are
not the same thing.
Economic models are usually defined with a set of
agents, each with an initial endowment and a utility
function, trading with one another to change their allo-
cation and maximize their utility function. It was once
thought that the resulting equilibrium was maximiz-
ing the sum of the utilities – this only happens in the
unrealistic case where the marginal utility is constant.
The equilibrium is just Pareto efficient: changing the

Article and book summaries by Vincent Zoonekynd 777/1044

allocations would make someone worse off (but there
are many Pareto-efficient allocations).
To find the equilibrium, just write the following equa-
tions:
– Markets clear, i.e., supply equals demand, i.e., for

each good, the sum of the initial endowments equals
the sum of the allocations;

– All the money is spend, i.e., for each actor, the value
of the initial endowment is the value of the alloca-
tion;

– Everyone maximizes their utility: the Lagrange mul-
tipliers conditions can be written as

1

px

∂UA
∂x

=
1

py

∂UA
∂y

for all goods x, y, and all actors A (U ′ is called
marginal utility).

The prices are only determined up to a multiplicative
constant. There is no “just” price: it depends on utili-
ties and endowments.

0 1

0

1

1 0

1

0

Allocation of good x for agent A

A
llo

ca
tio

n
of

 g
oo

d
y

fo
r

ag
en

t A

Allocation of good x for agent B

A
llo

ca
tio

n
of

 g
oo

d
y

fo
r

ag
en

t B

2−asset, 2−good equilibrium

Indifference curves for A
Indifference curves for B
Pareto frontier
Budget lines (prices)

Assets and time
To jump from economic models to financial models, we
need to add time, assets and (later) risk.
Adding time is easy: let x and y be the same good (say,
apples), but x is now and y next year. For instance, if
the utility is log x+ 1

2 log y, we are impatient, we value
apples more today than next year, i.e., we discount
apples in the future.
We can also add assets: for instance, a piece of paper
giving you the right to receive one apple today x and
one apple tomorrow y is an asset – an apple tree is also
an asset, with the same dividends (1, 1).
The situation may look complicated: we have endow-
ments of x, y, of the asset (1, 1) (and of other assets,
defined by their payoffs or dividends); we have the util-
ity for each actor; we are looking for the price of each
good and asset, and the allocation of each good and
asset. But it can be simplified by just removing re-
dundant assets or goods: assets such as (1,1) are just
linear combinations of goods.

With the introduction of time, the notion of price be-
comes trickier. The prices are expressed in some cur-
rency. In the 1-period set-up, we could “normalize”
the prices by assuming that the price of good x was
1 currency unit. In the 2-period setup, we can do ex-
actly the same: assume that the price of good x is one
currency unit, and look for the price of good y (the
same asset next year) in the same currency – the cur-
rency this year. In the real world, the market price
we would see would be expressed in a different cur-
rency: the currency next year. The difference (strictly
speaking, the ratio, expressed as a rate) between the
currency this year and the currency next year is the
inflation. To model it, we would need to add a “theory
of money” (how much money there is in the economy,
how quickly it circulates, etc.) to our model. The
difference between the price this year (in today’s cur-
rency) and the price next year (in today’s currency) is
the real interest rate. This is what we are interested
in. The price, in today’s currency, of next year’s good,
is called its present value. The difference between the
price this year in today’s currency and the price next
year in next year’s currency is the nominal interest
rate: it combines (muddles) both elements. We will
only use today’s currency.

1 + real interest rate = 1 + nominal interest rate
1 + inflation

The real interest rate is usually positive. It can be
negative when the government tries to boost demand:
it is then preferable to spend now, and even borrow
to spend now, rather than wait until next year. Inter-
est is “crystallized impatience”: we prefer goods today
rather than tomorrow. It may also include differences
in supply between today and tomorrow.
Bonds and rates or return
Bonds (coupon, zero, annuity, perpetuity) can be used
to spread expenses over time. For instance, it a univer-
sity needs 100,000,000 per year, for the next 10 years,
to repair badly maintained buildings, it does not have
to cut its budget by that much: if the cost can be
spread over the life of the university, i.e., if they are
willing to pay forever, they can replace the costs with
a perpetuity with the same present value (PV) and re-
duce the annual cost:

PV(10-year 100 million annuity) = PV(perpetuity).

(You have to choose an interest rate for this, e.g., 5%.)
The notion of present value can also be used to measure
the performance of a hedge fund: since the cash flows
and the assets under management are irregular, the no-
tion of average return can be contentious. The geomet-
ric average of the annual total returns is a biased mea-
sure: it gives the same importance to years with little
capital (and amplifies little profits) and less importance
to years with more capital (and reduces losses, e.g.,
caused by capacity constraints). The internal rate
of return (IRR, sometimes called yield-to-maturity),
i.e., the constant rate for which the present value of all

Article and book summaries by Vincent Zoonekynd 778/1044

the cash flows (both positive and negative) is zero, is
a better alternative, though plagued by its own prob-
lems. It is also biased, because clients tend to leave
after a bad year (so that there is more weight on those
bad years) and invest after good years (so that there
is less weight on those good years). If there is a gap, a
long series of zeroes, in the stream of cash flow, every-
thing that comes after will be discounted a lot and will
have a negligible effect. The IRR is not always well-
defined: for instance, (1,−4, 3) could suggest either
0% or 200%. The IRR assumes that the interest rate
is deterministic and constant (we are throwing away
relevant information: we know the risk-free discount
factors).
There is also a (uniquely defined) modified internal rate
of return (MIRR). The IRR assumes that you can rein-
vest the money at the IRR rate, while the MIRR uses
a reinvestment rate: compute the future value of the
inflows, after n periods, with the reinvestment rate;
compute the present value of the outflows (negative
cashflows), now, with the financing rate; convert into
a rate. In R, check financial::cf. (The classical al-
ternative to the IRR is the present value of the stream
of cash flows for the risk-free interest rate.)
Some people use the “current yield” (the bond rate di-
vided by price) instead, especially if they want to sell
you something: this is “the wrong way of measuring
things, which can get you confused”. (Be wary of any-
thing called “yield”: there are many, many definitions,
and they are almost all misleading.)
Using risk-free bonds of several maturities one can
compute the price today of $1 in n years (that is a
discount factor), and the forward rates (i.e., the
rate between years n− 1 and n: it would be the future
interest rate, it it was deterministic and known – it is
not). Some also compute the yield (and plot the yield
curve), but that is misleading: it is the annual rate
over those n years computed assuming that the inter-
est rate is constant – but we look at the yield curve
because it is not constant. (The yield is not unlike the
implied volatility and the smile: it is computed under
the assumption that it is constant, and we look at how
it varies...)
Profit is sometimes incorrectly measured as the cash
flow you receive after one period, forgetting the change
in present value. In times of crisis, when the value of
the firm drops, many banks and businesses report the
cash flow instead of the profit, to hide the losses. This
kind of deception is very common with bonds: this is
how the “current yield” is defined.

Profit = CF1 + PV1 − PV0

PV0
6= CF1

PV0
= Current yield

Carry trades use this idea to hide losses: for instance,
if the 2-year forward interest rate is 2% and the 5-year
5%, you can buy a 5-year bond (you pay 100 and re-
ceive 5, 5, 5, 5, 105) and sell a 2-year bond (you receive
100 and pay 2, 102). More generally, a carry trade is
a portfolio of two bonds, one long, one short, with a

positive cash flow at the beginning and a negative cash
flow at the end, so that the portfolio value be zero
(easy to do if the yield curve is not flat). If you only
report the cash flow and not the present value of the
outstanding bonds, it looks positive. That is why you
should mark-to-market.
Social Security
Social security (an insurance against living too long)
works as in the following parable: a son gives $100 to
his father (say, for a life-prolonging operation), later
asks his own son to pay back the $100 that helped his
grand-father live a few more years, this son then asks
his own son, and so on – each generation contributes
the same nominal amount, which contributes to the PV
of the first father, e.g., PV = 50+25+12.5+ · · · = 100.
(In case of a baby boom, the amount to repay (per
person) decreases.) In other words, social security
is a (beneficial) Ponzi scheme – money is another
widespread Ponzi scheme.
The overlapping generations model can explain
and quantify what happens. Generation n lives in pe-
riods n and n+1, with endowments (3, 1), i.e., 3 units
when young, 1 when old. Generation 0 only has a
(0, 1) endowment, but also owns land, an asset with
payoff (1, 1, 1, . . .): in period 1, they will consume the
good produced, sell the asset to the next generation,
and buy more good (from the next generation) with
the proceeds. The utility is log xt + log xt+1. One can
compute the equilibrium.
Social security worsens this situation: the (3, 1) endow-
ment is replaced by (1, 1). This is a huge benefit for the
first generation, but every subsequent generation has
to pay the price; the cost does not fall, and remains
the same generation after generation, because of the
interest rate.
The model can be made more realistic by considering a
growing population, growing land dividends, etc.: the
situation improves, but only slightly – the interest rate
would just be higher.
Some economists claim that the baby boom should not
have any effect on the stock market, because we know
in advance how many people will retire, and this infor-
mation is already in the prices. However, the interest
rate fluctuates with the population: this is what im-
pacts the stock markets – demography has an effect
on stock prices. If we compare the utility of the gen-
erations, we find that the utility of baby boomers is
lower.
(The overlapping generations model for social security
can be augmented with random stock dividends.)
Social security can be fixed as follows:
– Separate the legacy debt from social security;
– Create a new security, an annuity indexed on the
average wage: its performance will track that of the
stock market, but with fewer, slower fluctuations;
the market will price it;

– If you want some redistribution, by paying 10% to

Article and book summaries by Vincent Zoonekynd 779/1044

14% of your income (depending on how much you
earn), 12% would go in your social security account.

Uncertainty
To fully leave Economy for Finance, we need to add un-
certainty to our models: the future state of the world is
a random variable, but with a known distribution (we
exclude knightian uncertainty, i.e., uncertainty about
the probability distribution).
Uncertainty can have a surprising effect on the dis-
count factor. We see a big difference between today
and tomorrow, but very little between one year and
one year and one day. But the discount factor is sup-
posed to decrease exponentially. This can be explained
if the interest rate is unknown, stochastic, and (unre-
alistically) follows a geometric Brownian motion: the
expected discount factor decay (asymptotically) in t−α
(hyperbolic discount).
Evidence shows that prices already include a lot of in-
formation. For instance, prices of orange juice (concen-
trated, mainly from Florida) include weather informa-
tion; weather forecasts cannot help forecast prices, but
prices can help forecast weather. The rational expec-
tations assumption goes further and claims that the
current price is the expectation of the present value of
the future price (this is not entirely true: we will see
later how risk changes prices – the difference is the risk
premium).

Current price = E[PV(future price)].

From bond prices, one can estimate the probability
of default of a country or company (just compare the
price with a risk-free bond, i.e., compute the default
spread).

Bond price = 1− P (default)
1 + r

=
1

(1− default spread)(1 + r)

With several maturities, one can check how this prob-
ability changes with time. The CDS contains the same
information.
Shakespeare’s play the Merchant of Venice is about
collateral to control default risk (people not keeping
their promises): a defaulted loan makes you lose “a
pound of flesh”, choosing the wrong casket forces you
to remain single, losing the ring entails your death.
In the black-and-red game, you draw cards from a 52-
card deck, receive $1 for each red card, pay $1 for each
black card and stop when you want (in particular, you
cannot lose: if you wait until the end of the deck, you
are flat). What is the value of this game and what
is the “optimal” (maximum expected payoff) strategy?
This optimal stopping time problem can be solved
via dynamic programming (“backward induction”): let
V (a, b) be the expected value of the game if there are a
red and b black cards left, and compute it recursively.

Va,b =

(
a

a+ b
(1 + Va−1,b) +

b

a+ b
(−1 + Va,b−1)

)
+

Callable bonds are another optimal stopping prob-
lem (use, e.g., a geometric brownian motion for the
interest rate and compare the price of a bond and a
callable bond; use a binomial or trinomial (recombin-
ing) tree): the borrower has the option to prepay the
bond at any time. Mortgages are a special case.
Mortgages: history
Mortgages have been around since Babylon (1000 BC).
They used to be coupon bonds (say, 7 7 7 7 7 · · ·
107), with a “balloon payment” at the end – but peo-
ple would often default just before. After the 1929
crisis, amortizing mortgages, with identical dividends
(e.g, 8 8 8 · · · 8) became more popular: the present
value (or “remaining balance”), and the risk for the
bank, decreases with time.
Then, Freddie and Fannie pooled mortgages and sold
them: the risk was limited (the loans were standard-
ized, with stringent conditions on the borrowers), dis-
tributed (loans from different regions were pooled), and
securitization made mortgages liquid (you could easily
resell your Freddie or Fannie shares).
Then, CMO (Collateralized mortgage obligations) cut
the pool into pieces: for instance, floaters (constant
cash flow plus interest rate), reverse floaters (constant
cash flow minus interest rate) and a residual piece for
the defaults and the prepayments. There were arbi-
trage opportunities when the price of the pieces did not
match the price of the pool. Hedge funds were selling
the riskiest parts and hedging the rest; other investors
were selling the easy parts and worrying about the risky
parts remaining on their balance sheets. However, the
chain from home owner to mortgage pool to CMO to
investor was getting longer, and the same collateral was
re-used at each step.
Then, new mortgage markets appeared, besides agency
(Freddie, Fannie) mortgages: jumbo prime (large mort-
gages, that were previously excluded); alt-A (almost
prime); subprime; uncollateralized.
Then, mortgage pools were cut into pieces (bonds):
AAA, AA, A, BBB (the defaults and prepays are put
into the lowest piece first, until it is full). CDS (credit
default swaps), insurance on each of those bonds, also
appeared.
Then, CDOs appeared (take many BBB pieces, pool
them together, and split them, into AAA, etc.), and
CDO squared (do it again, take many AA CDOs, pool
them together, and split them).
Mortgages
Mortgages are just callable bonds, and computing their
prices should be an optimal stopping problem. How-
ever, borrowers do not prepay their mortgages opti-
mally: banks estimate the proportion of people who
will prepay in order to lower the cost of the mortgages
and be more competitive – for the borrower, there can
be an actual arbitrage opportunity. Modelling the pre-
pay rate as a function of the interest rate poses a sur-
vival problem: people who have prepaid are more alert

Article and book summaries by Vincent Zoonekynd 780/1044

http://shakespeare.mit.edu/merchant/merchant.4.1.html

or attentive than those who remain: the more people
prepay, the less likely the remaining ones are to pre-
pay. Agent-based models work better: Each agent has
a “prepay cost” (that depends on the credit rating of
the borrower) that measures how attentive he is to the
interest rate, and acts rationally wrt this cost; one can
calibrate the distribution of this prepay cost with the
data. Other parameters can be added: attentiveness,
value of the mortgage, location, pay of the borrower,
etc.
The value of the mortgage depends on the interest rate,
as an option does, but the shape of the payoff is tricky,
dangerous, when the interest rates are low – that part
should be carefully hedged.

Interest rate

M
or

tg
ag

e
va

lu
e

0

1

0 1 2 3 4 5

Hedging
A hedge fund is an asset manager that uses leverage,
hedging, is lightly regulated (i.e., the clients are so-
phisticated investors) and has high fees. Hedge funds
typically go bankrupt when they do not hedge properly
or encounter liquidity problems (e.g., margin calls).
Here is a hedging example. Someone is willing to bet
that team A will win at 60/40 odds, while the book-
makers offer 50/50: how do you profit from this dis-
crepancy of views? You can accept the bet, but place
an opposite bet with the bookmakers, for a carefully
chosen value, so that you have a sure profit in all cases
– there are no probabilities involved.
When time is involved, dynamic hedging may be re-
quired. For instance, imagine someone is willing to
bet that team A will win over team B, over the next
10 matches, at 60/40 odds, but the bookmakers of-
fering 50/50 odds only allow you to bet on individual
matches: how do you profit? The solution is similar,
but you have to change your bet after each match.
Dynamic hedging also occurs in finance: for instance,
if the market price of a mortgage is lower than what
your model predicts (e.g., because the market does not
account for prepayments), but is extremely sensitive to
interest rates, you can hedge interest rate fluctuations
away.
Everyone wants to hedge, but some risk will remain
(markets are not complete).

Earlier, we have claimed that the price was the ex-
pected payoff: it is actually less, to compensate for the
risk. The difference is the risk premium. [What we
really did was use the present value of the future cash
flows as utility, maximize expected utility, and com-
pute the corresponding price: that kind of utility is
unrealistic, but the rest of the reasoning is correct.]
Utility should be concave, to account for diminishing
utility, i.e., risk aversion – this is Jensen’s inequality:
we prefer $1 for sure to $1 on average. To avoid infi-
nite expected utilities, you may also want utility to be
bounded (for instance, how much would you pay for
the game: “flip a coin until you have tails and receive
2n (or 22

n) dollars, where n is the number of tosses
needed”?).
With quadratic utility, U(x) = ax − x2, the expected
utility only depends on the mean and variance of x.
An Arrow-Debreu security is an asset that pays
$1 in one state of the world, and $0 elsewhere. CDS
and binary options are almost Arrow-Debreu securi-
ties: they are event-dependent, not state-dependent.
In a complete market, the price of an Arrow-Debreu
security is proportional to its probability.
The mutual fund theorem says that in an incom-
plete market, everyone diversifies by holding the ag-
gregate economy and cash: the only thing that differ-
entiates economic actors’s allocations is the proportion
of cash.
This assumes that all investors are rational, have ac-
cess the the same information and investment oppor-
tunities, know the correct expected returns and vari-
ances, and have quadratic utility (but not necessarily
the same utility). Of course, we do not know what the
“market” portfolio – but it is larger than we think.
The advantage of diversification can be seen with two
assets: if Cor(X,Y) < 1, the variance of Z = λX+(1−
λ)Y can be lower than that of X and Y (try to plot
those random variables, as λ varies, in the σ(Z)×EZ
plane).

Article and book summaries by Vincent Zoonekynd 781/1044

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.000

0.002

0.004

0.006

0.008

0.010

Risk

R
et

ur
n

Efficient frontier
Efficient frontier with a risk−free asset
Indifference curves (for some investor)
Tangent portfolio
Minimum variance portfolio
Assets

The Sharpe ratio of an asset or portfolio is the slope
of the line going through it and the risk-free asset:
(EX − r)/σ(X). You should maximize your Sharpe
ratio. A stock is worth more if it increases the Sharpe
ratio. This can be quantified by the covariance pric-
ing theorem:

Price = (1 + r)−1EX − αCov(Market, X),

i.e., the risk is not measured by the variance, but by the
covariance. The price is determined by the marginal
utility, by the utility of a marginal buyer, by how
much diversification the asset adds to the market port-
folio – not by something intrinsic. (This still assumes
quadratic utility.) This can be somewhat unintuitive.
For instance, if GE and a startup have the same ex-
pected returns, which has the highest price? You might
think it is GE, because it has a lower risk, as measured
by the variance. It is actually the startup, because it
has a lower risk, as measured by the correlation with
the market.
In particular, (EX,Cov(Market, X)) should be on a
line.
The CAPM worked well for 20 to 30 years, but no
longer works. The same goes for the Black-Scholes
model: the Gaussian daily returns assumption was al-
most valid in the 1970s, but no longer is.
Leverage cycle
The leverage cycle can be modelled as follows: two
assets (gold, risk-free, and an oil well, with an uncertain
payoff), two states, many actors, with identical endow-
ments (1,1) but heterogeneous beliefs on the probabil-
ities of those states. Actors can borrow gold using oil
wells as collateral from less optimistic investors, with
various leverages. There is not a single supply and de-
mand equation, but many, one for each possible value
of the leverage. (It turns out that only one of those
loans is actually traded: the leverage is uniquely de-
fined.) The availability of leverage increases the price.

Crashes appear in the 2-period model: after a bad
news, the most optimistic investors are bankrupt, the
leverage drops, marginal buyers are less optimistic and
pay less, and the price drops.
This is what happened with the subprime mortgage
crisis. The apparent risk was low because the secu-
ritized mortgages were collateralized (by the houses)
and investors were also buying insurance, in the form
of CDSes, from insurance companies. However, thoses
CDSes were not collateralized. If the BBB mortgage
bonds went, so would the CDSes, CDOs and CDO
squared. High leverage creates high prices: more buy-
ers are willing to buy at a high price, because they can
borrow – the marginal buyer can afford more when
leverage is high. When people noticed that something
was going wrong, margin (collateral) requirements in-
creased, leverage decreased, price fell, worry rose, col-
lateral requirements increased, etc.
Leverage poses many problems:
– A few investors, with high leverage, control the mar-
ket (they are the marginal buyers) – what if they are
not rational?

– Leverage spreads inequality.
– Leverage increases (leverages) volatility, which im-
pacts economic activity.

– Some companies are deemed “too big to fail”.
– After a leverage crash, the is a debt overhang: no
investments (from home owners and businesses) and
no loans (from banks).

Preventing those problems is not that hard (in hind-
sight, it is never hard):
– For mortgages, just write down the principal of the
loans (the alternative is to evict the home owners,
but this is bad for everyone: people lose their home;
banks only get back part of their money, after a few
years, when the house is sold, at an abnormally low
price (auction), even accounting for the drop in value
because it was not maintained (or was vandalized)
after the eviction). This is problematic because the
bond owner and the home owner are not in contact –
there is an intermediary, with no incentive to write
down the principal.

– To prevent the leverage collapse, banks should lend
with less collateral, e.g., by forbidding quick changes
in the margin requirements.

– To replace the natural buyers, the government
should invest more.

– To prevent or observe the next leverage crisis, one
(the Federal Reserve) should not only monitor inter-
est rates, but also the collateral.

Hyperbolic discounting is rational: valuing the
far future with uncertain discount rates
J.D. Farmer and J. Geanakoplos (2009)

In a multi-period world, we want the discount factor
for future utilities to be stationary and time-consistent.

Utilityt(x) =
∑
s⩾t

Dt→sUtility(xs)

Article and book summaries by Vincent Zoonekynd 782/1044

With known, deterministic rates, the discount factor
decreases exponentially. However, if the the interest
rate is stochastic, described by a geometric Brownian
motion, then the expected discount factor exhibits a
power law decay, at least after some time (a couple of
generations).

Dt→s =

s∏
τ=t

(1 + rτ)
−1

E[Dt→s] ∼
s→∞

(s− t)−α

There is no such effect for more realistic mean-reverting
models.

1 2 5 10 20 50 100 200

0.1

0.2

0.5

1.0

Time (years)

E
xp

ec
te

d
di

sc
ou

nt
 fa

ct
or

Geometric brownian motion
Constant rates

Discussion of “the leverage cycle”
H.S. Shin (2009) after J. Geanakoplos

Real-estate is a leveraged investment: home buyers us-
ing a mortgage with a 5% downpayment are leveraged
20 times. The leverage cycle can be modeled as fol-
lows. In a 1-period world, consider two assets, cash and
stock, with the stock price distributed as U(q−z, q+z)
in period 1, and two types of investors, trying to
maximize the same expected utility under different
constraints: unleveraged investors have a leverage at
most 1, leverage investors have a value-at-risk (VaR)
constraint (since the price distribution is uniform and
known, the constraint can be formulated as “they can-
not be bankrupt”). When the asset price increases, the
VaR constraint is less binding, non-leveraged investors
can invest more, demand increases, and price increases
even further – there is a similar downward spiral.

Demography and the long-run predictability
of the stock market

J. Geanakoplos et al. (2004)
Markets ups and downs, over the past century, seem to
coincide with baby booms and busts: part of the effect
can be explained by the equity premium, higher when
the population is older. This can be modelled with an
overlapping generations model, an incomplete market,
and age-dependent utilities; the effects remains even
after adding families (children helping parents), social
security (idem), bequests (the opposite).

Game Theory
B. Polak (Yale, 2007)

Game theory is the study of decision making, not when
facing an unchanging world, as often in economics, but

when facing someone else, who can also take decisions
that will affect your payoff.
There are many notions of a “good” (or bad) decision.
A Pareto efficient situation is a situation that can-
not be changed to make one player better off without
making the other worse off: since it usually requires
cooperation between the players, it rarely happens.
A strategy is dominated by another strategy if it is al-
ways worse, whatever the other player does. (If you re-
place “worse” by “worse or as bad as”, that is a weakly
dominated strategy.)
You can try to find a “good” decision, iteratively,
by discarding the dominated strategies for both play-
ers, which gives a new game, and continuing to dis-
card the dominated strategies until there are none left.
However, this assumes that both players are rational,
known that the other is rational, know that the other
knows they are rational, etc. – i.e., players are rational
and this is common knowledge. In practice, it does
not work.
A Nash equilibrium (NE) is a situation in which
each player’s decision is a best response to the other
player’s decision. Since the definition is circular, you
can expect a few problems: it need not exist, need not
be unique, need not be Pareto efficient, and weakly
dominated strategies can be Nash equilibria (but strict
ones cannot).
Randomized decisions can create (mixed) equilibria
in situations with no pure equilibria, such as the rock-
paper-scissors game. A pure strategy that is part of
a mixed strategy NE is itself a best response (to the
other participant’s strategy, which is usually a mixed
strategy): mixed equilibria cannot be strict. To find a
mixed strategy NE, look for mixes that make the other
party indifferent. Mixed strategies can be interpreted
as randomized strategies or as a population whose ele-
ments have different behaviours.
A strategy S is evolutionary stable if, when a new
strategy appears, with a small proportion in the pop-
ulation, it disappears. Then, (S, S) is a Nash equilib-
rium. Conversely, if (S, S) is a strict Nash equilibrium,
then S is evolutionary stable – this does not work with
weak equilibria.
The payoffs of a simultaneous game can be represented
as a matrix of (with two values in each cell, one for the
row player, one for the column player). The decisions
and payoffs in a sequential game can be represented
as a tree. Backward induction gives a “good” solu-
tion to the game, but it assumes that the other player
is rational – and it need not be Pareto efficient: there
can be moral hazards.
Backward induction assumes that the other player will
play it his/her best interest, i.e., that they will not
choose something that would be bad for them and for
us. It assumes they will not “screw up”. It does not
give a worst-case strategy.

Article and book summaries by Vincent Zoonekynd 783/1044

You can tweak a simultaneous game by changing the
payoffs (incentive design: give some of your payoff
to the other player, in some situations, to encourage
him/her to choose that path – you will get a smaller
share of a larger pie), or pruning the tree of unwanted
branches by restricting your choices (build a new fac-
tory, which becomes a sunk cost; burn your ships to
show your commitment, etc.).
Zermelo’s theorem says that in a sequential game with
perfect information and a finite number of moves, ei-
ther player 1 can force a win, or player 1 can force a
tie, or player 2 can force a win.
With imperfect information, many Nash Equilibria are
clearly bad choices. A Nash Equilibrium is a subgame
perfect equilibrium (SPE) if it also induces a NE on
all subgames.
Repeated games can lead to wars of attrition: past
costs are sunk, they do not play any role in new de-
cisions, and can accumulate, forever. This happens
in wars (costly wars over very small frontier areas),
companies fighting for a market regardless of the cost
or bribery auctions (“all pay auction”: two companies
bribe a government until one out-bribes the other).
Repeated games try to enforce cooperation by balanc-
ing threat of future punishments and prospects of fu-
ture rewards. If there is a time limit, they can exhibit
the lame duck effect (politicians or CEOs approach-
ing retirement): in the last period, you no longer need
to cooperate, because there is no future – and, by back-
ward induction, there is no reason to cooperate at the
beginning either. In some cases, it can work: if there
are several Nash equilibria, you can use one as a reward
and the other as a punishment, to encourage coopera-
tion.
This effect can disappear in repeated games with a ran-
dom number of periods (e.g., in the prisoner’s dilemma,
one can use the grim trigger strategy: cooperate until
the other defects – to show that it is an equilibrium,
discount the future using the probability that the game
will continue).
When information is asymmetric, some players may
want to reveal the information while other will try to
hide it – but the information has to be verifiable: claim-
ing “our product is the best” is not sufficient, even if
it happens to be true. Not revealing information is in-
formative: it means that it is not in your interest to do
so (information unravelling: “Silence speaks volume”).
Revealing verifiable information can be costly. For in-
stance, in a world with two types of workers, good and
bad, and two types of pay, high and low, employers
and good workers want the distinction to be known,
bad workers do not. If the cost of education is suffi-
ciently different for good and bad workers, good work-
ers will spend time to earn a degree, but bad workers
will not: this is a separating equilibrium. This can
lead to qualification inflation: if the cost difference is
too small, good workers will try to earn even more de-
grees. (This model assumes that education does not

teach you anything, or at least nothing useful for your
future job: it is socially wasteful, uses resources but
does not improve productivity)
Auctions are becoming more important (governments
selling oligopoly rights (phone markets, natural re-
sources), ebay, IPOs, microstructure of stock markets,
etc.). In a common value auction, the value is the
same for everyone, but it is unknown. In a private
value auction, the values are different for everyone and
unrelated. (Reality is between those two extremes: an
oil well has a common value, but different companies
may have different exploitation costs; a house has a
private value (consumption), but since you eventually
resell it, other people’s values matter.)
In a common value auction, if everyone bids their (un-
biased) estimated value, the winner will overpay: this
is the winner’s curse. If you win, it is bad news.
(This often happens with IPOs.) You should bet un-
der the assumption that you will win, i.e., you should
ask yourself “What is your estimate? You have won,
so your estimate is too high: do you want to correct
your estimate?”.
There are many types of auctions: first price sealed
bid auction; second price sealed bid auction (or victory
auction: the highest bidder gets the good, but pays the
second highest bid); ascending open auction (the price
progressively rises, and people progressively drop out
– very similar to the second price sealed bid auction);
descending open auction (or Dutch auction: the price
progressively falls until someone accepts it – identi-
cal to the first price sealed bid auction). The optimal
strategies are different: in a private value second price
sealed bid, you should bid your value: it is a weakly
dominant strategy; in a private value first price sealed
bid auction, bidding your value is weakly dominated:
you should bid slightly less. Surprisingly, the expected
revenue generated by these auctions is the same.
Here are some of the games or real-world situations
used to illustrate those notions.
Coordination games are variants of the prisoner’s
dilemma: competing or colluding firms, overfishing,
global warming (contractual enforcement is needed: it
is not just a communication problem), etc.
In the number game, each of n participants chooses a
number between 1 and 100, the winner is the one clos-
est to 2/3 of the average (this shows that, in practice,
if you delete dominated strategies until the end, you
lose: rationality is not common knowledge).
Alice and Bob both wear a pink hat but do not know
the colour of their hat: “Someone is wearing a pink
hat” is shared knowledge, but not common knowledge.
In the election game (linear city model), two politi-
cians decide on their position on the political spectrumJ1, 10K; each position has the favour of 10% of the pop-
ulation; people vote for the closest candidate (or one
of the closest candidates, at random, in case of a tie):
iterative deletion of dominated strategies leads to both

Article and book summaries by Vincent Zoonekynd 784/1044

candidates choosing a medium position (5 or 6). This
also applies to product placement or petrol station lo-
cation (the best location is next to a competitor, not
in an area with no competition).
In the investment game, each of N players can invest
$0 (no loss, no profit) or $10; if more than 90% choose
to invest, they receive $5 more, if not, they lose their
$10. There are two Nash equilibria: everyone invests,
or no one does. It is a cooperation game, but con-
trary to the prisoner’s dilemma, there is no dominated
strategy: contractual enforcement is not needed, com-
munication or leadership often suffices to move to the
better Nash equilibrium. Bank runs, monopolies (the
use of Microsoft products as a de facto standard) or
fashion trends are similar examples.
The Cournot duopoly (two firms competing on the
quantity produced) is a game of strategic substitute,
the opposite of a coordination game: if you produce
more, the other party produces less (in a coordination
game, if you produce more, the other party has an in-
centive to produce more). The Nash Equilibrium does
not maximize total profit; monopoly or collusion does,
but collusion is not a Nash equilibrium: the firm would
have an incentive to produce more.
In Bertrand competition, the two firms compete on
prices, not quantities: the outcome is similar to perfect
competition.
In the candidate-voter model, each voter is a potential
candidate, and their political opinion is in [0, 1]; there
is a reward for the winner, a cost to run, and a cost
proportional to the square of the distance between the
voter and the elected candidate. There are many Nash
equilibria: a single candidate exactly in the middle, two
candidates symmetrically positioned around the centre
(but not too far from the centre, otherwise a centrist
candidate could run and win). This mimics what hap-
pens in real elections: if a new candidates appears on
one side, the other side wins.
In the location model, two types of people have to
choose to live in one of two cities; they prefer a hetero-
geneous environment, but want to avoid being isolated
among too many people of the other type. The hetero-
geneous situation is better for everyone, but it is not
stable.
Consider n lions, ranked by seniority, and one sheep.
Only lion 1 can eat the sheep, but lion 2 will then have
the opportunity to eat him in his post-meal nap, and
so on for the other lions. Should lion 1 eat the sheep?
(Use backward induction and consider the behaviour
of the last lion.)
In a Cournot duopoly, if firm 2 has a spy that tells them
what firm 1 will be doing, and firm 1 knows it, then
firm 1 has a first mover’s advantage. For firm 2,
more information, more choices can hurt.
In the game of Nim, there are two piles of stones. You
can remove as many stones as you want from either
pile, but if you take the last stone, you lose. (The strat-

egy is to make the two piles equal.) There is a second
mover’s advantage if the two piles are equal, but a first
mover’s advantage otherwise. Here is a 2-dimensional
variant: the stones are in a n×m array; choose a stone
and remove it and all the stones north-east of it; you
lose if you remove the last stone.
Two duellists are walking towards each other; if their
skills (probability of hitting the adversary as a function
of the distance) are known, when should they shoot?
(Not too early (if pn < 1 − pn+1, shooting is a domi-
nated strategy), not too late (use backwards induction
to show that you should act as soon as pn ⩾ 1−pn+1).)
A similar situation appears in economics, when two
companies are developing a new product, want to re-
lease it before the other to occupy the market, but do
not want to release it too early because it is not com-
pletely finished.
The chain store paradox shows the advantage of not
being rational (or, at least, having the other party be-
lieve you are not): several firm consider entering a new
market, currently controlled by a monopolist; if it is
more costly for the monopolist to fight the new en-
trants than to leave them a share of the market, the
monopolist should not fight – but if they have the rep-
utation of being irrational (systematically or randomly
fighting, even if it is not profitable), they can deter new
entrants.
The dictator game (you are given $1, you can give
part of it to the other player, who cannot do anything)
and the ultimatum game (you are given $1, you can
give part of it to the other player, who can accept or re-
ject the offer, in which case no one receives anything).
show that we are not always rational. Bargaining is
similar to the ultimatum game, but with several peri-
ods, and a discount factor (the value to share decreases
with time). The first offer is always accepted; the first
mover’s advantage disappears as the number of peri-
ods increases; if discounting is almost negligible, and
similar (and known) for both players, an even split is
optimal. However, if the value for each player is not
known, the result of the bargaining is suboptimal.
When designing incentives, do not overlook the strate-
gic effects. Consider two firms competing in a Cournot
equilibrium. One has the opportunity to invest in new
equipment: it is expensive, but will reduce production
costs. It the quantity produced does not change, it
may not be profitable, but if the other firm knows that
the investment has been made, there is a strategic ef-
fect: they will reduce their production, we will increase
ours, and the new investment will become profitable.
Similar effects appear in the tax code.

Comparison of correlation analysis techniques
for irregularly-sampled time series

K. Rehfeld et al. (2011)
The auto-correlation and cross-correlation of
irregularly-sampled time series can be estimated by
considering the time series as regular; linearly in-

Article and book summaries by Vincent Zoonekynd 785/1044

terpolating to have regular time series; binning the
observations pairs by lag, i.e., considering a regression

(xt − x̄)(xs − x̄) ∼ |t− s|

with a rectangular kernel; or using a similar regression
with a gaussian (this is what gives the best results) or
a sinc kernel.

A drunk and her dog:
an illustration of cointegration

and error correction
M.P. Murray (1994)

A set of random walks

xn − xn−1 = un

yn − yn−1 = vn

can be turned into cointegrated random walks by
adding error correcting terms

xn − xn−1 = un

yn − yn−1 = vn + a(yn−1 − xn−1).

When looking for cointegration relations in data, make
sure they are meaningful (here, xn−1− yn−1 is the dis-
tance between the drunk and her dog).

A drunk, her dog and a boyfriend:
an illustration of multiple cointegration

and error correction
A. Smith and R. Harrison

The model can be generalized by adding a boyfriend

xn − xn−1 = un

yn − yn−1 = vn + a(yn−1 − xn−1)
zn − zn−1 = wn + b(zn−1 − xn−1),

the drunk’s attraction for her dog or boyfriend, the
boyfriend’s aversion for the dog, etc.
By looking at the data alone, you cannot always an-
swer the question “who is attracted by whom?”: you
only have the subspace of cointegration relations. If the
cointegration relations are β′xn (this means that this
series is stationary), the error correction model (ECM)
is xn−xn−1 = αβ′xn−1+un; we can estimate αβ′ (and
its rank, i.e., the number of independent cointegration
relations), but not α and β separately.

Nonparametric goodness-of-fit tests
for discrete null distributions

T.B. Arnold and J.W. Emerson
R Journal (2011)

The Kolmogorov-Smirnov and Cramér von Mises tests
use the L∞ or L2 (or generalizations) distances be-
tween the cumulative distribution functions as test
statistics: for continuous distributions, the distribution
of the test statistic does not depend on the hypothe-
sized distribution. For discrete distribution it does: the
dgof package can compute the corresponding p-values.

Ckmeans.1d.dp: optimal k-means clustering
in one dimension by dynamic programming

In one dimension, the (usually NP-hard) k-means prob-
lem is amenable to dynamic programming (consider
Di,m, the minimum within sum of squares when clus-
tering x1, . . . , xi into m clusters) – for situations where
reproducibility is important.

Tweets and peers: defining industry groups
and strategic peers based on investor

perceptions of stocks on Twitter
T.O. Sprenger and I.M. Welpe (2011)

Traders tag their company-related messages with the
ticker (e.g., $AAPL, which gets indexed as @MV_AAPL):
company co-occurrence can be used to define indus-
try groups; the classification reflects structural changes
more quickly than traditional methods (looking at the
variance matrix of the returns, looking at analysts in
common, etc.).

Zipf’s law unzipped
S.K. Baek et al. (2011)

The omnipresence of Zipf’s law (distribution of city
sizes, word frequencies, etc.) can be explained using in-
formation theory: when putting M balls into N boxes,
find N(k), the number of boxes of size k to maximize
the entropy (this can be reformulated in terms of mu-
tual entropy). Contrary to the law of large numbers,
it is not a process of aggregation, but of division.

Stability of the world trade web
over time – an extinction analysis

N. Foti et al. (2011)
Yet another study of the world trade web (WTW)
dataset, modelling what happens to the trade network
if one or more nodes or edges are removed or modified.

Full characterization
of the fractional Poisson process

M. Politi et al. (2011)
You can build counting processes (random variables
N(A) that count the number of points in a Borel set
A) by specifying the distribution of the inter-event
times: with exponential inter-event times, this is a
Poisson process (Markov, i.e., memory-less), but other
power-law distributions, e.g., Mittag-Leffler, give a
non-Markov process.

Price dynamics
in a Markovian limit order market
R. Cont and A. de Larrard (2011)

Most models of the limit order book are only amenable
to simulations; by considering a simplified model, with
the level-1 order book filled or depleted by Poisson pro-
cesses for market, limit or cancellation orders, unit or-
der sizes, unit spread, and a prescribed order book
distribution after a tick changes, one can compute

Article and book summaries by Vincent Zoonekynd 786/1044

http://www.correlatesofwar.org/datasets.htm

many quantities of interest: distribution of the dura-
tion between price changes, autocorrelation of the price
changes, volatility, etc.

A stochastic model for order book dynamics
R. Cont et al. (2010)

A more complicated (continuous time) model.

Option pricing and estimation
of financial models with R

S.M. Iacus (Wiley, 2011)
This book (and the accompanying sde, yuima,
opefimor packages) explains how to estimate
continuous-time models with R and use them to price
options. The theoretical chapters also contain exer-
cises to ensure that the reader understands the notions
introduced.
R already provides dpqr (density, probability (cumu-
lative density function, cdf), quantile (inverse of the
cdf) and random sample) functions for standard dis-
tributions; the fBasics package adds a few more: nig
(normal inverse gaussian, i.e., hitting time of a random
walk), gh (generalized hyperbolic), stable.
Some of those distributions are only defined from their
characteristic function (this is the case for infinitely
divisible distributions in general: these are the distri-
butions whose characteristic function is given by the
Lévy-Khintchine formula). The fast Fourier transform
(fft) can be used to move between cumulative dis-
tribution function F (cdf) or the probability density
function f (pdf) and characteristic function φ.

F (x) =
1

2
− 1

2π

∫ ∞
−∞

e−itxφ(t)

it
dt

= F (0)− 1

2π

∫ ∞
−∞

e−itx − 1

it
φ(t)dt

f(x) =
1

2π

∫ ∞
−∞

e−itxφ(t)dt

The mle function can be used to maximize a log-
likelihood: the result itself is the same you would get
with a general-purpose optimizer (optim), but you can
call functions such as summary, vcov, confint on the
result to have more information (fidistrplus pro-
vides more, moment-based, estimators, and allows cen-
sored data).

Score = ∂LogLik
∂θ

E[Score] = 0

Information = Var
∂LogLik
∂θ

= −E∂
2LogLik
∂θ2

Var(Unbiased estimator) ⩾ 1

Information

Telegraph processes (random motion with constant
velocity ±c, and direction changes given by a Pois-
son process) lend themselves to explicit computations
(but beware: they have finite variation and allow for
arbitrage opportunities). Their limit, as the Poisson
density increases, is a random walk.
Lévy processes can be defined as (limits of) the
sum of a Brownian motion with drift and (several)
compound compensated Poisson processes. Alterna-
tively, they are stochastically continuous (intu-
itively: there can be jumps, but they are random, and
if there are infinitely jumps on a compact (infinite ac-
tivity), they are not too large) processes with station-
ary independent increments. They are characterized
by their characteristic function. Ito’s formula can be
generalized to Lévy processes.
The numDeriv package can compute derivatives, in-
creasing the precision by evaluating the function at
more carefully chosen points (e.g., t + h and t − h in-
stead of t and t + h) or with more general methods
(Richardson interpolation).
Non-homogeneous Poisson processes can be simulated
with the acceptance-rejection method (“thinning”):
sample events with constant intensity λ ⩾ λ(t); for
each event, take a random number in [0, λ]; if the num-
ber is not in [0, λ(t)], reject the event.
The sde::sde.sim function can sample from the so-
lution of a stochastic differential equation, using the
Euler or Milstein scheme (based on first or second or-
der Taylor expansion); the yuima package generalizes
this to multi-dimensional processes, Markov switching
diffusions and Lévy processes (a Lévy process is a time-
changed Brownian motion).
Stochastic models (the drift and sensitivity of a dif-
fusion) can be estimated via maximum likelihood
if the transition probability is known (normal, log-
normal, CIR, etc.), or via quasi-maximum likeli-
hood, i.e., by replacing the continuous stochastic dif-
ferential equation with its first order discretization (im-
plementation in the sde and yuima packages).
Interest rates are often modelled as

dXt = f(Xt)dt+
√
g(Xt)dBt

where f and g are (Laurent) polynomials (of given
degrees and unknown coefficients – or arbitrary func-
tions). They can be fitted (with bias) via 2-stage re-
gression:

Xt+1 −Xt ∼ f(Xt)

res2t+1 ∼ g(Xt)

Xt+1 −Xt ∼ f(Xt), with weights w = g(Xt)

The fBasics package provides many functions to fit
non-gaussian distributions (nigFit, hypFit, ghFit,
stableFit).
The Black-Scholes PDE (partial differential equation),
for the price of a European option, is just a conse-
quence of Ito’s formula, for a self-financing portfolio.

Article and book summaries by Vincent Zoonekynd 787/1044

More generally, since the Gaussian density is a solu-
tion of the heat equation, one can show that (functions
of) expectations of functions of a random walk are also
solution of some PDE.
The fOptions::GBSOption function computes Black-
Scholes option prices.
The equivalent martingale measure can be computed
in as follows.

λ =
µ− r
σ

Mt = exp
(
−λBt − 1

2λ
2t
)

Q(A) = E[1AMT] (martingale measure)
Wt = Bt + λt brownian motion under Q

Monte Carlo option pricing can be sped up by paral-
lelizing the computations, e.g., with the foreach and
doSnow or doMC packages.

library(doMC) # multicore
library(foreach)
registerDoMC(4) # 4 cores
p <- foreach(m=1:4) %dopar% f(m)

Now that the parallel package is a core package, the
following suffices.

library(parallel)
r <- mclapply(
1:1e5, f,
mc.cores=detectCores()

)

Option sensitivities (“greeks”), i.e., partial derivatives
of option prices can be computed in many ways:
– Using simple formulas, but they often involve the
derivative of the payoff, which is rarely differentiable;

– Using the same formulas, after integration by parts,
to get rid of the derivative;

– By numerical approximation of ∂C/∂S;
– By Monte Carlo simulation (the sensitivities can be
expressed directly as integrals, without having to
compute the option price);

– Monte Carlo simulation for C(S, t) and C(S + h, t)
(using the same random seed for both to improve
precision).

Asian options can be priced via an asymptotic expan-
sion dXε

t = a(Xε
t , ε)dt + b(Xε

t , ε)dWt around a deter-
ministic process using Malliavin calculus (?).
Options on baskets are priced in exactly the same way.
fOptions::GBSCharacteristics computes sensitivi-
ties, fExoticOptions and fAsianOptions implement
many pricing algorithms, GBSVolatility computes
the implied volatility, sde::cpoint looks for structural
breaks (in the volatility of a diffusion).
American options can be priced via dynamic program-
ming, using the grid of the finite difference method,

or using regressions to move back in time (Longstaff-
Schwartz least squares method). The Monte Carlo es-
timator is biased, but one can easily compute an up-
per and a lower bound. There are also various ap-
proximations, e.g. with a sequence of Bermudan op-
tions (which can only be exercised at specific times)
and Richardson’s extrapolation, or by finding an ODE
approximately satisfied by the early exercise premium
i.e., the difference between the prices of the American
and European calls (quadratic approximation).
If the price is an (exponential) Lévy process, the equiv-
alent martingale no longer unique. Upper and lower
bounds for the no-arbitrage price are known, but the
interval is very large. One can try to transform the
density f of Z1 in some way, so that the density re-
mains infinitely divisible, but turns the process into a
martingale; for instance, an Esscher transform,

fθ(x) ∝ eθxf(x),

or a mean-corrected martingale measure,

Z̃t = Zt +mt.

The prices of European calls and puts can be expressed
as integrals involving the characteristic function (of the
real-world distribution) of the price at expiry, and can
be computed via numeric integration or FFT.
The benchmark approach suggests to stay with the
physical measure, but to devise a discount factor that
discounts both time and risk, i.e., so that the dis-
counted price be a martingale. This stochastic discount
factor (or deflator) corresponds to an asset, called a
benchmark, used as a numéraire: if prices are expressed
in terms of the benchmark, they are martingales. The
growth-optimal portfolio is a benchmark.
The book ends with a discussion of change point de-
tection, estimation of the covariance of asynchronously
observed diffusions (Hayashi-Yoshida estimator), reg-
ularized estimators (lasso) and clustering with the
Markov operator distance.

UseR! 2011
(I did not attend the conference but just read the pre-
sentations online: they were only made available six
months after the conference, and only half the talks
had a PDF file.)
The results of most statistical analyses are known to
be “asymptotically” correct: they are only valid if you
have enough data (estimators are asymptotically gaus-
sian, the p-values displayed are asymptotically uniform
under the null hypothesis, etc.). For small samples,
the results are not only imprecise because there is not
enough data to reduce the statistical noise, they are
also biased. It is often possible to reduce this bias,
with higher order asymptotic expansions (of the
distribution of the estimators or test statistics). The
pbkrtest package does that for mixed models; the
metaLik package does that for mixed models used for
meta-analyses (i.e., to aggregate data from different

Article and book summaries by Vincent Zoonekynd 788/1044

studies); the brglm package does that for binomial
GLM (“binomial” means that we are predicting pro-
portions).
Sweave is no longer the only way of generating PDF
reports from R:
– The brew package uses templates (not unlike Php)

to generate HTML, LATEX, or any other kind of file;
– The Emacs org-mode, with babel, not only helps you
organize your notes (if you like to put everything
you do in a single text file, that grows by 1MB ev-
ery year – it is more powerful than supposedly mod-
ern note-taking applications such as Tomboy), it can
also include bits of code, in any language (elisp, shell,
Python, R, C, etc.), that are executed and whose re-
sults are displayed (as text, as a table, as plots), and
can generate PDF, HTML, etc.

– knitr is a replacement for Sweave.
– The tikzDevice package generates plots using pgf

commands, suitable for inclusion in LATEX files: one
advantage is the consistent use of fonts and font sizes
between the text and the plots.

– Tables can be included in your LATEX, reports thanks
to the xtable, tables, Hmisc (and the latex and
describe commands), or compareGroups (for the
complicated tables generated by ddply) packages.

– The sparkTable package can add sparklines to your
tables.

Interactive plots remain one of R’s weaknesses, but
– the animatoR package can generate animations (e.g.,

to illustrate random phenomena in introductory
statistics courses);

– the googleVis package can generate interactive
plots in JavaScript or Flash, similar to the animated
bubble plots popularized by H. Rosling.

– It is possible to create interactive SVG documents
(that can be displayed in a web browser, or included
in a web page), e.g., with the gridSVG package (the
example also included the conversion of a PDF file
(a map) to a vector format, for further processing,
with grImport).

– The interactive graphics available with R (iplots,
rgl, rggobi, playwith) still pale when compared
with Javascript (D3, jit, Raphaël, processing) or
even Python.

Since the development of R packages is not centralized,
we often end up with several packages doing similar
but complementary things, with completely different
interfaces. There is some continued work to compare,
standardize, refactor those implementations, but the
road will be very long...
– The betareg package, implementing beta regression
(used to model quantities in the interval (0,1): one
could also use logit or probit regression, but that
would model logit(y), which has no interpretation
– we can directly model the quantity of interest in-
stead) can leverage the flexmix package for latent
class (mixture) beta regression (in the betamix func-
tion) and the party package for beta regression trees

(betatree function).
– The ordinal package provides a unified interface
to the various packages dealing with ordinal re-
gression (aka ordered probit/logit): MASS::polr,
Design::lrm, VGAM::cumulative, MCCglmm.

– The binombinomTools package does the same for bi-
nomial regression (predict a proportion), using some
of the functions in boot, faraway, car, MLDS.

– The theme of the plots generated via base graph-
ics, ggplot2 and lattice is completely different: the
uniPlot package can uniformize them, in case you
mix them in the same document.

– The ROI and optimix packages (both) try to pro-
vide a single interface to the various optimization
(mathematical programming) algorithms available.

– R, Jags and ADMB have been compared on a few
dozen sample problems.

– There are no fewer than 25 density estimation func-
tions in R: a comparison of their speed and precision
suggests to use KernSmooth or ASH.

If you use R more as a programming language than a
statistical environment:
– There are no fewer than three packages for unit tests:
testhat (if you hesitate, use this one), RUnit and
svUnit.

– The ROpenCL package (inspired by PyOpenCL)
lets you program your GPU, and may supercede
gputools, rgpu (obsolete), or cudaBayesreg (which
are mostly NVidia-specific).

– CXXR is a reimplementation of R in C++, in case
you need to tweak R’s internals, e.g., to add new
types (big integer, etc.) – could it be used to re-
place most R structures with out-of-memory data,
in a way completely transparent to the end user?

– There are no fewer than three object-oriented
paradigms in R: S3 (function-centric), S4 (class-
centric) and R5 (mutable objects, à la Java, aka ref-
erence classes). The need for specific packages (R.oo,
proto, mutatr, etc.) may disappear.

– The RStudio IDE is getting more and more popular:
it may have already replaced Eclipse/StatET (which
I never managed to install properly: too Javaesque).
But Emacs/ESS is still there.

– R Commander still serves as a base to build domain-
specific GUIs (for users who do not want to, or think
they cannot, use R, but eventually will), but the
gwidgets package (for real GUIs, for users who will
not use R) is getting more widely used.

– R is now available “in the cloud”, mostly through
commercial companies (some small companies, tar-
getting niche markets, start to compete with giants
like Amazon), but many universities and research or-
ganizations do the same (for instance, Rc2 is used to
allow students to access R in a workbook-like fash-
ion).

– Commercial support for R is available through com-
panies such as Revolution Analytics, who also pro-
vides a few parallel external-memory algorithms and
a GUI.

– It is now easy to perform parallel computations in R,

Article and book summaries by Vincent Zoonekynd 789/1044

http://orgmode.org/
http://orgmode.org/worg/org-contrib/babel/
http://mbostock.github.com/d3/
http://thejit.org/
http://raphaeljs.com/
http://processingjs.org/
http://wiki.python.org/moin/NumericAndScientific/Plotting
https://github.com/hadley/devtools/wiki/R5
http://rstudio.org/

with the parallel, foreach, multicore and snow
packages – but it is not magical: you still have to
split the data or computations and merge the results
yourself.

There are many, many types of regression models: the
relation can be linear, non-linear (with a given func-
tional form) or non-parametric (with no given func-
tional form); we can try to directly predict the quantity
of interest (Gaussian model), or some parameter of the
model (GLM), or some quantity that depends on the
model (e.g., quantile regression) or the whole distribu-
tion of those quantities (Bayesian statistics); the cost
function can be a sum of squares, a robust cost func-
tion, or include a penalty term (regularized regression,
e.g., ridge (L2), lasso (L1) or elastic net (both)); the
observations can be weighted, or even dependent: the
shape of the correlation matrix is usually known, and
can correspond to temporal or spacial correlation, or to
groups in the data; the model can have several levels, as
in “for each subject, take the model parameters at ran-
dom following some probability distribution, then take
10 samples from those models for each subject, and try
to recover the initial probability distribution” – this is
actually equivalent to imposing a correlation structure
on the data; the model can have “nuisance” parame-
ters, i.e., parameters whose value we are not interested
in (e.g., subject-specific parameters in the previous ex-
ample, or the hidden states in a hidden Markov model,
etc.).
If you just want to analyze data, you expect to be
able to mix and match those blocks at will – un-
fortunately, it does not work like that, not only be-
cause those methods were developed independently, by
statisticians (not programmers), as proofs-of-concept,
for a particular application, but also because the al-
gorithms are complicated, time-consuming, and often
incompatible. Some progress is being made, not really
in uniformizing everything, but in filling in the missing
combinations: lmer, glm, glmnet, glmer, glmmlasso
(penalized mixed GLM), lqmm (quantile regression and
mixed models), etc.
I always complain that copulas are useless (or, at least,
unused and difficult to use) in high dimensions, where
dependency is trickier to estimate. Gaussian Copula
marginal regression (in the gcmr package) is such
an example. You can model a time series yi as

y = F−1θ (εi)

where F is the (marginal) distribution, from some fam-
ily of distributions (e.g., Gaussian with mean and vari-
ance to determine – this is where you would add pre-
dictive variables, e.g., N(a + bx, σ), with a, b, σ to
determine) and the innovations

ε ∼ N(0,Ω)

are multivariate normal, with Ω describing the depen-
dency structure, e.g., ARMA for a time series (as with
GLS or mixed models). The model can be fit via max-
imum likelihood (there are complications for discrete
data).

The missMDA package implements iterative PCA,
i.e., PCA (principal component analysis) with missing
values, imputated via expectation maximization (EM).
Multiple imputation generates several values for each
missing observation (otherwise the data does not look
as variable as it should): in the PCA plots (check the
FactoMineR package), observations (or variables) are
replaced by ellipses or clouds or points. The same ideas
can be applied to qualitative variables (multiple corre-
spondance analysis (MCA)).
A qualitative variable with n possible values can be
described with a multinomial model, which requires
n − 1 parameters (the probabilities). The model can
be simplified (multinomial processing tree model) by
describing the process leading to the outcome with a
tree, whose nodes are Bernoulli trials (whose probabil-
ities have to be determined) and whose leaves are the
possible values. (I am puzzled: the number of parame-
ters is the same, unless you assume that some of those
parameters are equal – it is not really a simplification,
just a rearrangement of the model parameters.)
To find the value of a parameter θ of a modelM(θ) de-
scribing your data, Approximate Bayesian Com-
putation (ABC) suggests to generate random data
from M(θ), for various values of θ, and compare with
your data, using some summary statistics. This is
just a parametric-bootstrap-based generalized method
of moments (GMM). The ABCME package chooses the
moments itself by minimizing entropy.
The ClustOfVar package clusters variables with
PCAMIX (as you cluster observations, in PCA, etc.),
even if you have both continuous and discrete variables.
Emulation is the process of replacing complicated,
time-consuming (deterministic) functions of many vari-
ables with a statistical approximation; it has been used
in meteorology for some time now, and starts to spread
to other domains.
There is a lot of activity around social media mining:
data can be retrieved from the web with the RCurl,
XML or RJSONIO packages, cleaned with mvoutlier, the
missing data can be imputed with mice, modelled with
regression trees with the BayesTree or party pack-
ages. Bayesian networks are sometimes used, through
the bnlearn and pcalg packages.
Examples in various domains were presented, such
as finance (the robHMM package, for robust HMM or
Markov switching models, can be applied to value vs
growth portfolio selection or option pricing, with two
volatility regimes accounting for kurtosis and skew-
ness), astronomy (galaxy positions, from the hyper-
LEDA database), business (e.g., how to manage inven-
tory to avoid or limit the bullwhip effect: if demand
fluctuates, the fluctuations are amplified along the sup-
ply chain because of the lack of visibility of the end-
user actual demand), quality control (six sigmas) and
metrology, biology (as usual), teaching, geographical
information systems (GIS), etc.

Article and book summaries by Vincent Zoonekynd 790/1044

http://leda.univ-lyon1.fr/leda/view.html
http://leda.univ-lyon1.fr/leda/view.html

Nomograms for visualising relationships
between three variables

J. Rougier and K. Milner
(UseR! 2011)

Nomograms are an old-fashioned way of representing
linear or non-linear relations between three variables,
as in a y ∼ x1+x2 regression. It is sometimes easier to
add more information (another response variable, dif-
ferences between several groups, etc.) to a nomogram
than to the more modern-looking levelplot.

Gaussian copula marginal regression
G. Masarotto and C. Varin

More details.

Implementing models in quantitative finance:
methods and cases

G. Fusai and A. Roncoroni
(Springer, 2008)

The first part of the book presents algorithms you may
need or find useful when implementing quantitative fi-
nance models, concisely, with non-trivial examples.
Antithetic variables can reduce the variance of
Monte Carlo estimators: if X and Y have the same
distribution, then E[f(X)] = 1

2 (EfX + EfY), but if
Cor(fX, fY) < 0, the variance of the corresponding
estimator is lower. This is often used with Y = −X,
to ensure that the sample points symmetrically spread
out.
Control variables use a similar idea: notice that
EfX = E[fX−α(gX−EgX)], and choose a function
g close to f , but for which you can compute EgX, and
select α to minimize the variance of the corresponding
estimator. This can be used to price an Asian option
with arithmetic average (f , no closed formula) from
the price of an Asian option with geometric average
(g, closed formula available). This can also be used to
price options in a non-Black-Scholes model (f) using
the Black-Scholes prices, i.e., the value of the∆-hedged
strategy (g).
Importance sampling can be used to accurately
price out-of-the-money options, by sampling from the
exercise region. Option pricing usually uses drift-
less processes (the risk-free measure): with importance
sampling, you can actually add a drift, so that the pro-
cess visits the exercise region more often, and select it
to minimize the variance of the estimator.
Diffusion processes can be sampled exactly (if they
can be expressed as a function of a brownian mo-
tion, Xt = f(Wt), you just have to sample from a
brownian motion), using the exact transition distribu-
tion Xt+ε|Xt (if it is known), or by discretizing the
stochastic differential equation: the Euler method uses
a first-order approximation with gaussian innovations
(you could use Bernoulli innovations: the convergence
is only in law, and not pathwise, but this is sufficient
to compute expectations); the Millstein scheme uses
a second-order approximation.

Gaussian processes can be sampled for various series
expansions: the Karhouven-Loeve expansion (complex
sine function, that come from the diagonalization of
the covariance operator, Cov(Xt, Xs) = Min(t, s)), the
Haar function expansion (=

∫
) or the Paley-

Wiener expansion (with real sine functions).
To simulate Poisson processes, you can simulate the
inter-event times (exponential) until you reach the end
of the desired period (countdown simulation); or first
sample the number of events in the period: (since Pois-
son processes are memory-less) the event times are
then independent and uniformly distributed (condi-
tional simulation). This can be generalized to jump
processes: if the jump intensity is variable, or even
random, first sample the event times from a Poisson
process with a higher jump intensity, then reject some
of the events.
Stochastic dynamic programming can be used to price
American options

Price = sup
τ stopping time

Erisk-free[erτ × Payoff(Sτ)].

There are several possible discretizations of the prob-
lem to a linear lattice or tree: you can choose the up
and down jump sizes and their probabilities to give
a correct approximation of E[∆x] (first order) or both
E[∆x] and E[∆x2] (second order) – since there are four
parameters, you can still impose equal jump sizes, so
that the binomial tree reduces to a lattice.
Using stochastic dynamic programming for optimal in-
vestment requires the estimation of V (tk, w, s), the
maximum value attainable in [tk, T], starting with with
wealth w and asset prices s, for all k – these are func-
tions of n+ 1 variables (w, s).
The partial differential equations (PDE) occurring in
finance are parabolic, i.e., there is only one second
order term, of the form ∂xx, as in the heat equation
(other types of PDEs include the elliptic type, like the
Laplace equation, defining harmonic functions, and the
hyperbolic type, like the wave equation, ∂tt − ∂xx or
∂tt − ∆). To determine a solution, you need to im-
pose some initial (or final) and boundary conditions,
involving the function itself (Dirichlet condition) or its
derivative (Neumann condition) or both (Robin condi-
tion).

t

x

t

x

For option pricing, the payoff is the initial condition,
and the boundary conditions come from the asymptotic
option price or the presence of a barrier (e.g., knock-
out barrier options). (Discrete monitoring of barrier
options was mentioned, but the boundary conditions
did not look sufficient to me: there were too may holes
in the boundary to uniquely define a solution.)
By a change of variables, the Black-Scholes equation
can be reduced to the heat equation. For the heat

Article and book summaries by Vincent Zoonekynd 791/1044

equation, the three approximations of the derivative,

f(t+ h)− f(t)
h

,
f(t)− f(t− h)

h
,

f(t+ h)− f(t− h)
2h

,

(forward, backward, central) lead to three algorithms,
explicit (the computation of f(t + h, ·) from f(t, ·) is
just a recurrence relation), implicit (we have to solve a
tridiagonal linear system) and Crank-Nicolson (idem),
of orders O(h), O(h), O(h2). Those algorithms are sen-
sitive in discontinuities in the initial condition (option
payoffs are rarely C 1) and high values of α = δt/δz2

(the volatility always appears as ασ2).
Tridiagonal systems can be solved via the LU decom-
position (it is bi-diagonal), i.e., Gaussian elimination,
or via iterative methods, xn+1 = f(xn), after rewriting
the equation as x = f(x), which progressively increase
the precision of the result. For the Jacobi method,
write A = D+L+U (diagonal, lower and upper trian-
gular) and Ax = b becomes x = −D−1(L+U)x+D−1b.
The Gauss-Seidel method uses the same formula,
but with xn+1,i instead of xn,i if it has already been
computed: xn+1 = −D−1Lxn+1 − D−1Uxn + D−1b.
The Gauss-Seidel method can also be written xn+1 =
xn − (D + L)−1(Axn − b), where Axn − b is the cur-
rent error, used to correct the current estimate. The
SOR (successive over-relaxation) method corrects a
little more, xn+1 = xn−ω(D+L)−1(Axn−b), with ω ∈
]1, 2[. There are also non-stationary iterative methods
(xn+1 = fn(xn), i.e., the function changes each time),
such as the conjugate gradient (it assumes that the ma-
trix A is symmetric: if not, solve A′Ax = A′b instead).
In all cases, the speed of convergence depends on the
eigenvalues of iteration matrix.
To numerically compute an integral on a small inter-
val [a, b], the Newton-Cotes method approximates
the integrand with a polynomial of degree 1 (trape-
zoid rule), 2 (Simpson) or more and evaluates it at
evenly-spaced points in [a, b] (use the Lagrange poly-
nomials Li(x) =

∏
k≠i(x − xk)/(xi − xk) to find the

weights in
∫ b
a
f ≈

∑
wif(xi)). The precision and speed

of convergence (as the intervals become smaller) can
be improved with Richardson extrapolation (Romberg
method) or by using the first derivative, if known
(extended trapezoid). By choosing both the weights
and the subdivision points, Gaussian quadrature∫ b
a
f ≈

∑
wif(xi) can integrate exactly polynomials

of degree up to 2n − 1. This can be generalized to
products of polynomials with a given function φ (or-
thogonal polynomials wrt φ), and, thus, integrals on an
infinite interval (which can also be estimated by just
truncating the interval).
The Laplace transform can transform some PDEs
(e.g., the Black-Scholes one) into ODEs, which can
often be solved explicitly. The Laplace transform
L f(x) =

∫∞
0
e−xtf(t)dt is often considered difficult to

invert numerically: indeed, its values are weighted av-
erages of the initial function f , and the weights e−xt do

not change much. But if you have an analytic expres-
sion for L f , you can recover f , in a numerically stable
way, by integrating in the complex plane (Bromwich
inversion formula). As usual, convergence can be im-
proved even further with series acceleration methods
(Euler summation).
There is also a chapter on copulas and their estimation.
The second part of the book presents 17 case studies.
Random data (bootstrap) can help see the effect of es-
timation risk in portfolio construction (you do not have
the real values of the expected returns and the variance
matrix, but just estimations).
Market sensitivity (beta) cab be estimated with
least median of squares, least trimmed squares, it-
eratively reweighted least squares (IRLS), shrink-
age, bayesian estimates, exponentially weighted least
squares, Kalman filter.
One can test technical trading rules (MACD) (the null
hypothesis is that the profits of the strategy can be
explained by the model, i.e., that they are not signif-
icantly different from zero) with a simulated p-value:
estimate a reasonable model (GARCH, etc.) for the
data, sample from this model N times, look at the cor-
responding distribution of profits, and compare with
the actual profits (from the real, non-simulated data)
and conclude.
The risk-neutral density can be estimated from option
prices by parametrizing the volatility surface in some
way and using

q(x) = erτ
∂2Call
∂K

∣∣∣∣
K=x

but the resulting second derivative may present sin-
gularities, fail to be positive, or fail to integrate to 1.
Instead, one can look for the density as a mixture of
gaussians: the option prices are then weighted sums
of Black-Scholes prices, and the problem reduces to a
non-linear regression.
American options can be priced with dynamic pro-
gramming, finding Vt, the value of the option at time t
if it has not been exercised yet, by regression Vt ∼ Vt+1

(If Zt = Max(K − St, 0) is the payoff at time t, Vt
is Vt = Max(Zt, e

−r∆EtVt+∆ is called the (discrete)
Snell envelope of Z). Dually, switching from the
buyer to the seller, one can compute the optimal hedge
(the details are not given):

V = inf
M martingale

S sup
t

(
e−rtPayoff(t)−Mt

)
The martingale M∗ minimizing this quantity is not
known, but heuristic choices often give good results
and acceptable hedging strategies.
Stochastic volatility models, such as the Heston model

dS = µSdt+ σSdW1

dσ2 = α(σ̄2 − σ2)dt+ βσdWfrm−e
Cor(dW1, dW2) = ρ < 0

Article and book summaries by Vincent Zoonekynd 792/1044

(prefer the Milstein schem to simulate it: the Euler
scheme does not converge very quickly for square root
processes) can account for kurtosis, negative skewness,
volatility clustering, but not the price of deep out of
the money options: they can be explained by adding
jumps to the model. The Fourier transform of the risk-
neutral probability density of the log-price at expiry is
available, and can be used to calibrate the model (op-
tion prices do not have a Fourier transform: multiply
them by an exponential dumping factor to make them
square integrable). The calibration is more numeri-
cally stable if one uses implied volatilities instead of
prices. Try to minimize several loss functions, e.g., the
mean square error, the relative mean square error, or
the mean absolute difference.
Here are a few ways of pricing an Asian option (whose
payoff depends on the average price)

– Approximate the distribution of AT = 1
T

∫
Stdt

as log-normal, Edgeworth log-normal, or reciprocal
gamma (this is what it is, asymptotically, if prices
are log-normal) with the desired first moments (they
are easy to compute).

– Use inequalities, e.g.,

E[X+] = E[E[X+|Z]] ⩾ E[E[X|Z]+],

and choose Z so that the difference

0 ⩽ E[X+]− E[E[X|Z]+] ⩽ 1
2E
√
Var(X|Z)

be small.

– Solve the PDE (it is not straightforward to derive,
but with a judicious change of numeraire, you get a
1-state-variable PDE).

– The Laplace transform of the option price wrt time
can be computed explicitly (either using the PDE,
or using the fact that a geometric brownian motion
is a time-changed Bessel process).

– You can also use the double Laplace transform, wrt
strike and time (or volatility).

A Latin square (Latin hypercube) of size n is an n×n
matrix (an nd array) of zeroes and ones, with exactly
one 1 in each row and column (in each hyperplane). To
select a Latin square at random, just take two permu-
tations σ1, σ2 ∈ Sn, set aσ1(i),σ2(i) = 1 and leave the
other elements to zero. To sample n points in [0, 1]2,
using a Latin square to better spread them out, take n
points at random in [0, 1]2, take a Latin square at ran-
dom, translate and rescale the random points to put
them in each cell of the Latin square.

1

2 3

4

⊗ −→

In dimension 1, a low discrepancy sequence (van der
Corput) can be constructed as follows:

– Write increasing integers (0, 1, 2, 3, etc.) in base b
(0, 1, 10, 11, 100, etc.);

– Write the digits in reverse order and add a decimal
point in front of them (0, .1, .01, .11, .001, etc; i.e.,
0, 1

2 ,
1
4 ,

3
4 ,

1
8 , etc.).

This is not unlike the Farey sequence (0, 1, 1
2 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
7 , etc.), in number theory Sobol sequences

generalize this idea in higher dimensions. To estimate
the error of a quasi Monte Carlo computation using
statistical methods, you may want to scramble the se-
quence first (to make it random).
The discrete maximum of an (arithmetic) Brownian
motion (used by look-back options) can be computed
using the z-transform.
Agent-based models can be used to describe electric-
ity prices – the stylized facts are different from those
of stock prices: seasonality, spikes, strong mean rever-
sion, time-dependent volatility. The times series mod-
els used to price options on energy prices (these are
real options: the optionality is the ability to switch
the plant or generator on) have to account for those
stylized facts. Swing contracts (a kind of American
option, where you can buy a commodity at a given
price, in an arbitrary quantity, every day in the year)
can be priced with dynamic programming.
Mortgage prepayment is important to value MBS
(mortgage-backed securities): borrowers with an im-
proving credit rating are more likely to pre-pay their
debt earlier to switch to lower rates – leaving only bad
borrowers. Econometric forecast of the prepayment,
using historical data, does not perform well, but the
behaviour of the borrower, choosing to switch to new
rates or not, can be modelled as an American option,
and the optimal prepayment strategy can be computed
via dynamic programming.
Structural models of default, used to price CDS (credit
default swaps), compare the enterprise value (a geo-
metric Brownian motion or some other stochastic pro-
cess) with the debt of the company

τ = inf{t : Enterprise Valuet ⩽ Debt}.

Reduced form models of default directly model the
default time, with an intensity process. For basket
default swaps, one usually mixes those default times
with a 1-factor Gaussian copula (the factor can be in-
terpreted (chosen?) as the business cycle, some stock
index, interest rates, etc.).
Monte Carlo simulations, in high dimensions, can be
sped up and simplified as follows:
– Perform a principal component analysis (PCA) on
the data to simulate, to reduce the dimension;

– Replace the continuous distribution (of the factors
retained from the PCA) with a small number (10
to 2, depending on the importance of the factor) of
points or “scenarios”;

– Sample from the resulting (discrete) distribution,

Article and book summaries by Vincent Zoonekynd 793/1044

To estimate the parameters of a diffusion (or a jump-
diffusion) via maximum likelihood, you need the tran-
sition probabilities. They can be estimated via Monte
Carlo simulation: just split the intervals between two
observations into smaller intervals, and simulate the
diffusion using the Euler scheme. (Simulated maxi-
mum likelihood, SML)
The drift and diffusion coefficients of a diffusion process
are its instantaneous first moments – higher moments
are zero. Jump diffusion processes produce non-zero
higher instantaneous moments.

dX = µ(X)dt+ σ(X)dW + dJ

µ(x) = lim
h→0

1

h
E[Xt+h −Xt|Xt = x]

σ2(x) + λ(x)E[Y 2] = lim
h→0

1

h
E[(Xt+h −Xt)

2|Xt = x]

λ(x)E[Y j] = lim
h→0

1

h
E[(Xt+h −Xt)

j |Xt = x]

Non-parametric (kernel) estimators of those moments
give non-parametric estimates of drift µ, diffusion σ,
jump intensity λ and jump distribution Y (you have
to make some more assumptions on the distribution of
jumps, e.g, Gaussian with zero mean).
GARCH models (and their generalizations) can be es-
timated from the volatility surface, by considering it
as a moment (in the generalized method of moments,
GMM).

The accountant’s guide to the universe
Heaven and hell by the numbers

C. Hovey (2010)
Could accounting be made more interesting by apply-
ing it to non-conventional enterprises, such as crime, or
deciding whether one should go to heaven or hell? The
book presents several economic and accounting notions
(bounded rationality, free markets, creative destruc-
tion, present value, double-entry book-keeping, balance
sheet, income statement) for those two examples. The
result is pleasantly funny, but you will not learn any-
thing: the notions of credit and debit are not explained
(I vaguely remember from my accounting courses that
“debit” means the opposite of what it means for my
bank account – at least, half the time), some of the nu-
meric examples are wrong (the publisher dropped some
of the credit or debit columns) or have to be accepted
on faith (present value computations), and the reluc-
tance to use negative numbers complicates things (you
never know in which direction the money is going).
Computer scientists will prefer M. Kleppmann’s graph-
theoretic explanations.

Quantifying and modeling
long-range cross-correlations

in multiple time series
with applications to world stock indices

D. Wang et al. (2011)

Random matrix theory (RMT, comparing the distribu-
tion of the eigenvalues of a sample correlation matrix
with the distribution coming from the sample correla-
tion matrix of iid gaussian variables) can also be ap-
plied to cross-correlation. In a financial context, you
should look at both the correlation of returns and abso-
lute returns – the latter decay more slowly. Using a 1-
factor (sic) model, the authors find 10 uncorrelated in-
dices that may form a low-risk portfolio. (Other meth-
ods could be used, e.g., detrended cross-correlation
analysis, DCCA).

Predicted and verified
deviations from Zipf’s law

in ecology of competing products
R. Hisano et al. (2011)

Zipf’s law (stable distribution with power law tails) ap-
pears in the following situation:
– A finite population of “entities” It changes with
time, with entities entering or leaving the universe
according to a Poisson process;

– Each entity i ∈ It is described by a geometric Brow-
nian motion Si(t), starting with some random value
at time ti (when i enters I);

– Then, for t� 1 fixed (and |It| � 1), the distribution
of the Si(t), i ∈ It, has power law tails .

Utility theory front to back
inferring utility from agents’ choices

A.M.G. Cox et al.
The optimal investment problem often assumes that
the utility function is given, but determining which
utility function faithfully describes the preferences of
a given investor is tricky, and usually done by look-
ing at her choices when faced with 1-period invest-
ment problems. This article tries to infer the util-
ity function from the actual (observed) consumptions
choices in a continuous-time framework (deterministic
or stochastic (Black-Scholes)). Not all consumption
choices come from a utility function (they have to sat-
isfy some PDE), and the utility function (or, even, the
sign of the relative risk aversion) is not entirely deter-
mined by the consumption choices.

Topological isomorphism
of human brain and financial market networks

P.E. Vértes et al. (2011)
The growing graph, minimum spanning tree and the
various graph-theoretical measures (modularity, etc.)
of (the variance matrix of) fMRI and financial data are
very similar.

The common component
of idiosyncratic volatility

J. Duarte et al. (2011)
One more factor should be added to the Fama-French
model

returns ∼ market+ size+ book-to-market,

Article and book summaries by Vincent Zoonekynd 794/1044

http://martin.kleppmann.com/2011/03/07/accounting-for-computer-scientists.html
http://martin.kleppmann.com/2011/03/07/accounting-for-computer-scientists.html

corresponding to the “idiosyncratic volatility” (the first
principal component of the variance matrix of the
residual return – it is always a good idea to add sta-
tistical factors to your risk model, to catch anything
you may have overlooked, or anything that may have
changed); it can be interpreted as the position in the
business cycle.

An empirical analysis
of dynamic multiscale hedging
using wavelet decomposition

T. Conlon and J. Cotter (2011)
You can assess the influence of the investment hori-
zon on the minimum variance portfolio (or mean-
variance, or mean-Gini – Gini’s mean difference
is E[12 |X − Y |] = 2Cov(X,FX(X)), where X ⊥⊥ Y
are distributed as the portfolio returns) by looking at
the wavelet transforms of the returns time series and
expressing the variance matrix, the portfolio weights,
the higher moments of the portfolio, etc., as functions
the the wavelet coefficients (maximum overlap discrete
wavelet transform). Only the “optimal hedge ratio”
case, i.e., the 2-asset case, is treated (one asset is the
portfolio you hold and want to hedge, its weight is im-
posed to be 1, the other is the hedge portfolio, already
computed, whose weight has to be determined).

Anchor modeling
L. Rönnbäck et al. (2010)

Anchor modeling is a rebranding of entity-relation
(ER) modeling, that describes a database schema in
terms of actors (entities), attributes (historicized or
not), knots (dimension tables, i.e., attributes with
a small or fixed number of values), ties (relations)
and, more importantly, advocates that changes to the
database be implemented as extensions rather than
modifications – this ensures backward compatibility.

Financial models with Levy processes
and volatility clustering

S.T. Rachev et al. (2011)
The main claim of the book is that non-gaussian distri-
butions should and can be used in practice, to model
stock prices, to price options, to optimize portfolios
– even if those distributions do not have an easy-to-
use probability distribution function, their character-
istic function is simple, and sufficient for all practi-
cal purposes – at worst, you have to compute one or
two integrals, via the FFT (Fast Fourier Transform),
quadratures, or Monte Carlo simulations).
(Beware: the book has apparently not been proof-read
and contains innumerable incorrect formulas; many ex-
planations are also seriously lacking – the original ar-
ticles are often clearer.)
The gamma distribution Γ(c, λ) is the law of Y1+ · · ·+
Yc where Yi ∼ Exp(λ) iid. The variance gamma dis-
tribution VG(c, λ+, λ−) is the law of G+ − G− where
G± ∼ Γ(c, λ±). The inverse Gaussian distribution

is the law of the first time at which a random walk
reaches a given value τ = Min{t : Xt = m}.
Stable (or α-stable) distributions can be defined by
(and used through) their characteristic function. One
can define many variants of the stable distributions,
e.g., by cutting the tails and replacing them with Gaus-
sian tails (truncated stable distributions) or by tweak-
ing the characteristic function (tempered stable dis-
tributions) or (equivalently) by multiplying the Lévy
measure of the α-stable distribution (α-stable distri-
butions are infinitely divisible, and can therefore be
expressed using the Lévy-Khinchine formula) by some
tempering function (e.g., e−t).
(Tempered) α-stable distributions can be fitted either
by fitting their characteristic function, or via maximum
likelihood, using a numerical approximation of their
density function.
A compound Poisson process is a process of the
form Xt =

∑Nt
k=1 Yk, where the Yk are iid (arbitrary

distribution) and Nt ∼ Pois(tλ) is a Poisson process.
A pure jump process is a limit of compound Poisson
processes: let S ⊂ R be a countable set (jump sizes),
λ : S → R+ some function, Nλ(s)

t Poisson processes
of intensity λ(s), and Yt = γt +

∑
s∈S sN

λ(s)
t . In the

expression of the characteristic function of Yt, one can
replace the measure

ν(A) =
∑

s∈S∩A
λ(s)

(expected number of jumps of size in A per unit of
time) with a more general measure – it is the Lévy
measure of the pure jump process.
A non-Gaussian infinitely divisible random variable
X1 (e.g., gamma, α-stable, inverse gaussian, variance
gamma) defines a pure jump process.
Non-decreasing pure jump processes (gamma, inverse
gaussian, Poisson) can be interpreted as a “cumu-
lated trading activity” and used to define time-changed
Brownian motions: the inverse gaussian gives the nor-
mal inverse gaussian (NIG); the gamma distribution
gives the variance gamma process.
A Lévy process is a process with independent station-
ary increments, càdlàg and stochastically continuous

∀t ∀ε > 0 lim
s→t

P
[
|Xs −Xt|

]
= 0.

It is the sum of a Brownian motion and a pure jump
process. An exponential Lévy process is the exponen-
tial of a Lévy process.
It is possible to simulate a random variable from its
characteristic function (if the tails are not too fat), us-
ing

f(x) ⩽ 1

2π

∫ ∞
−∞
|φ|

f(x) ⩽ 1

2πx2

∫ ∞
−∞
|φ′′| ,

Article and book summaries by Vincent Zoonekynd 795/1044

by rejection – it is easy to sample from

g(x) ∝ Min

(∫ ∞
−∞
|φ| , 1

x2

∫ ∞
−∞
|φ′′|

)
.

Lévy processes can be simulated, by writing them as

Xt = Y εt + Zεt ,

where Zεt is the compound Poisson process containing
the jumps of size larger than ε, and Y εt is either ne-
glected or replaced by an easy-to-simulate process (e.g.,
a Brownian motion). There are ad hoc algorithms to
simulate from the tempered α-stable distributions and
a few special cases (NIG, VG, etc.).
The Girsanov theorem links the (known) real-world
probabilityP to the risk-neutral oneQ (needed to com-
pute option prices).
For elliptical distributions,

f(x) ∝ g((x− µ)′Σ−1(x− µ)),

the correlation completely describes the dependence.
Elliptical distributions can account for the fat tails and
tail-dependence in asset returns but, because of radial
symmetry, not for the larger dependence in the lower
tail. Elliptic distributions can be written as

X = µ+RAS

where S ∼ U(Sd−1), R is a random variable in Rd and
A is a d × d matrix, with R ⊥⊥ AS. Instead, one can
let the distribution of R depend on the direction AS:
let s : Rd → [0, 1] be a function, measuring the tail
dependence in a given direction, (Rt)t∈[0,1] a family of
positive random variables, and consider the multi-tail
generalized elliptic distribution

X = µ+Rs(AS)AS.

The tail function s could come, for instance, from the
first principal component v1 of Σ = AA′,

s(x) = α+1⟨x,v1⟩>0(x) + α−1⟨x,v1⟩<0(x).

Portfolios of non-gaussian assets can be optimized with
a scenario-based approach (fit the data, simulate re-
turns, optimize of those scenarios), which also allows
for more flexibility the measure of risk.
Option prices can be computed for tempered stable
processes, but some integrals remain – there are conver-
gence problems with (non-tempered) stable processes:
that is why tempered stable distributions were intro-
duced.
Options can also be priced with GARCH models (e.g.,
with truncated stable innovations), in discrete time,
but more technical complications emerge (non-unique
risk-free measure, etc.). GARCH parameters, when
used for option pricing, are usually estimated from op-
tion prices, completely ignoring the underlier – models
with non-gaussian residuals may be able to reconcile
the underlier and the options.

The following pictures explain why early exercise of
an American call option is never optimal (it is always
more profitable to sell the American option as a Eu-
ropean one than to exercise it) and why early exercise
of an American put option is sometimes optimal (if it
were not, the price would be the same as that of a
European put, but that is not possible because, for a
deep-in-the-money option, it is more profitable to exer-
cise it immediately rather than sell it at the same price
as a European option – however, this does not tell you
when to exercise the option).

European Call
Immediate exercise

StrikeDiscounted strike

European Put
Immediate exercise

StrikeDiscounted strike

Mixed effects models and extensions
in ecology with R

A.F. Zuur et al. (Springer, 2009)
This book explains, with no mathematical overhead,
what to do when the assumptions of the linear regres-
sion model (linearity, gaussian noise, homoscedasticity,
independence – they can be checked by plotting the
residuals versus the fitted values, the predictors, and
with a Gaussian quantile-quantile plot) are not satis-
fied.
Additive models use splines or local regression to ac-
count for non-linearity.
gam::gam(y~loess(x,span=.5))
mgcv::gam(y~s(x,fx=FALSE,k=-1,bs="cr"))
mgcv::gam(y~s(x)+s(x,by=g==1)+factor(g))

Generalized least squares (GLS) can take care of het-
eroscedasticity (you can also transform the data);
there are many specifications of the variance (group-
dependent, linear in one of the predictors, etc.); you
can check that the heteroscedasticity has been removed
by plotting the normalized residuals.
nlme::lme(y~x*g,weights=varIdent(form=~1|g))

When the observations are grouped, you may be
tempted by a 2-stage approach: first compute a regres-
sion in each group, then study the distribution of the
corresponding regression parameters (either fit their
distribution, or regress them against group-specific
variables). Mixed models are a more efficient 1-step
procedure.
Random effects
nlme::lme(y~1,random=~1|g))
Random intercept
nlme::lme(y~x,random=~1|g))
Random intercept and slope
nlme::lme(y~x,random=~1+x|g))

It turns out that mixed models can be described in two
equivalent ways: either a procedural way, as above (à
la Bugs), or by just specifying the shape of the variance

Article and book summaries by Vincent Zoonekynd 796/1044

matrix, as in a GLS model (for instance, the random
effects model corresponds to a block-diagonal correla-
tion matrix, with ρ in all the off-diagonal entries of the
diagonal blocks).
gls(y~x,

correlation=corCompSymm(form=~1|g),
method="REML")

This also works with splines
mgcv::gamm(y~x1+s(x2),random=list(g=~1)),

temporal correlation (beware of missing values: if you
remove holes in a time series, i.e., skip values, the au-
tocorrelation plots will be incorrect)
gls(y~x,correlation=corAR1(form=~t))
gls(y~x,

correlation=corARMA(
c(.3,-.3), # starting values
p=2,q=0,form=~t))

mgcv::gamm(y~x,
correlation=corAR1(form=~t|g),
weights=varIdent(form=~1|g)),

temporal correlation with irregularly-spaced observa-
tions
gls(y~x,correlation=corGaus(form=~t|g))

or spacial correlation
gls(z~u,correlation=

corGaus(form=~x+y,nugget=TRUE)).
Spacial correlation manifests itself by clusters of resid-
uals. The variogram,

γ(h) = 1
2 Var[Z(x+ h)− Z(x)]

is useful for weakly stationary and isotropic data:
gstat::bubble, gstat::variogram, nlme::Vario-
gram, geoR::variog.
The restricted maximum likelihood (REML) gives un-
biased variance estimators. Even for linear regression,
Y = Xβ + ε, the maximum likelihood estimator of the
variance is biased – the more parameters, the larger
the bias. However, if A is a matrix such that AX = 0,
then AY = Aε, i.e., AY ∼ N(0, σ2AA′), gives an unbi-
ased estimator of the variance σ2. The same procedure
can be applied to a mixed model, Y = Xβ + Zb + ε,
bi ∼ N(0, D), εi ∼ N(0,Σi), which can be written as
Yi ∼ N(Xiβ, Vi), where Vi = ZiDZ

′
i + Σi: if AX = 0,

then Yi ∼ N(0, AViA
′) can be used to estimate the

variance.
The model selection procedure goes as follows: in-
clude as many fixed effects and interaction terms as
possible; determine the random components (REML);
determine the fixed components (ML); fit the model
(REML). Use the following functions: drop1, step,
anova, lmtest::lrtest.
Count data are not gaussian and can be modeled with
a Poisson (VarX = EX), negative binomial (number
of successes until k failures in a series of independent
Bernoulli trials, overdispersed: Varx ⩾ EX), or bino-
mial (count data in J0, nK, binary data) distribution.
These belong to the natural exponential family,

f(x, θ) = h(x) exp
(
θ · x−A(θ)

)
,

a special case of the exponential family

f(x, θ) = h(x) exp
(
η(θ) · T (x)−A(θ)

)
.

To use those distributions in a generalized linear model
(GLM), start with the description of the maximum-
likelihood estimation of the linear model

ηi =
∑
j

βjxij

yi ∼ N(ηi, σ)

and replace the gaussian distribution yi ∼ N(ηi, σ)
with one of the following.

yi ∼ Pois(exp ηi)
yi ∼ NB(exp ηi, k)
yi ∼ Binom(1, logit−1ηi)
yi ∼ Binom(ni, logit−1ηi)

If there is some over-dispersion, but not too much,
you can tweak the likelihood to account for it (quasi-
maximum-likelihood).
glm(y~x, family=poisson)
glm(y~x, family=quasipoisson)
MASS::glm.nb(y~x,link="log")
mgcv::gam(y~s(x),family=negative.binomial(1))
mgcv::gam(y~s(x),family=binomial)
glm(y~x,family=binomial) # logit
glm(y~x,family=quasibinomial)
VGAM::vglm(y~x,family=negbinomial)

For binary data, prefer the clog-log link to the logit
or probit if the numbers of zeroes and ones are very
different.
Those models can be extended to zero-truncated (re-
move the zeroes), zero-inflated (mixture of zero and a
Poisson or negative binomial distribution), zero-altered
(aka hurdle or 2-part: mixture of zero and a zero-
truncated distribution) distributions.
VGAM::vglm(y~x,family=posnegbinomial)
pscl::zeroinfl(y~x|g,
dist="poisson",link="logit")

pscl::hurdle(y~x|g,
dist="negbin",link="logit")

The opposite of the log-likelihood, to be minimized, is
a sum; by adding some constant (the log-likelihood of
a saturated model), we can ensure that the terms are
positive, the deviances – we are minimizing a sum of
“squares”.
The generalized linear model (GLM) minimizes the
sum of deviance residuals; if, instead, we minimize the
sum of Pearson residuals, we can modify it to account
for dependency between observations, as with mixed
models: this method is called generalized estimat-
ing equations (GEE) (the equations in question are
the first order conditions of the minimization problem:
the derivatives of the modified sum of squared residu-
als, wrt to the parameters to estimate, should be zero).
geepack::geeglm(y~x,
family=poisson,id=g,corstr="ar1")

Article and book summaries by Vincent Zoonekynd 797/1044

It is possible, but more complicated, to merge mixed
models and generalized linear models (in the log-
likelihood, you have to integrate out the random
effects, e.g., with quadratures or Monte Carlo sim-
ulations or simpler/faster but more biased methods).
MASS::glmmPQL(y~x,random=~1|g,

family=binomial)
lme4::lmer(y~x+(1|g),family=binomial)
glmmML::glmmML(y~x,cluster=g,family=binomial)
mgcv::gamm(y~s(x),random=list(g=~1),

family=poisson)
library(help=BRugs)

All about high-frequency trading
M. Durbin (McGraw Hill, 2010)

High-frequency traders are the descendants of yester-
day’s market-makers, trying to profit from the bid-ask
spread, but the notion now encompasses all strategies
relying on execution speed, many of which are based
on the market micro-structure (the order book).
High-frequency trading (HFT) typically combines sev-
eral asset classes (stocks, ETFs, futures, options) and
many exchanges and alternative trading systems (ATS,
the best known being the ECN, and the various dark
pools – contrary to exchanges, they do not display
quotes). Passive traders send limit orders (executed
at a given price, if and when there is a counterparty)
while active traders submit market orders (executed
immediately against the available limit orders). A
quote is the datum of the current best bid (highest
limit buy order), best ask (lowest limit sell order) and
the corresponding volumes. The depth of the order
book (other limit orders, with their volumes) is also of
interest.
There are several types of traders: the investor (aka
buy-side, i.e., they buy, and only sell as a consequence,
sometimes called liquidity-taker); the market-maker
(aka sell-side, specialist, liquidity-provider), who uses
mainly limit orders, and earns the spread between the
bid and the ask (he buys at the bid and hopes to sell
at the offer shortly after) – there is some risk because
the prices do change: market makers will reduce the
spread to reduce this risk; the arbitrageur uses re-
lations known to hold between the prices of different
assets, for instance, the price of a stock should be the
same on all exchanges, the put and call option prices
should be related through the put-call parity, etc.; the
predictor is similar to the arbitrageur, but relies on re-
lations that hold on average, over time (statistical ar-
bitrage), e.g., pairs trading. The high-frequency trader
is just a market-maker; he is on the sell-side; the algo-
rithmic trader is his counterpart on the buy-side, and
tries to minimize market impact. Some markets impose
a “minimum spread”: there is a rebate for limit orders
and a fee for market orders; this is a kind of “minimum
revenue” for market-makers.
Here are some investor strategies:
– Join the makers: send a limit order at the current

bid or ask, and wait for market orders to come, es-
pecially if there is a strong imbalance between the
bid and ask volumes – over the long time, you will
get the VWAP.

– Poke for bargains: send a (limit) order inside the
spread, and see if there is any reaction – market mak-
ers may be willing to trade at a lower spread than
currently displayed – some exchanges allow hidden
limit orders, called reserve orders – and repeat with
a price closer to the bid or ask until someone reacts.

– Iceberg order: limit order whose large size is hidden
(you do not have to do it yourself: the exchange can
do it for you, and only display x shares at a time).

– Time slicing: similar to the iceberg order, but wait
some random time before displaying the next slice.

– Out-smart the market-makers: coax the market-
makers into following one of their well-known strate-
gies (e.g., by mimicking a sell iceberg when you ac-
tually want to buy).

Here are a few market-maker strategies:
– Wait for the other side: if you bought at the bid,
send a limit sell order at the ask and wait, hoping
that the price does not change.

– Lean your market: instead of sending a limit sell
order at the ask, you can lower the ask, reducing
the spread and your potential benefit, but increas-
ing your chances of seeing the order filled.

– Scratch the rebate: in markets with a rebate for limit
orders, you can reduce the ask down to the bid and
still earn the rebate.

– Hide your best prices: keep the spread wide, wait
for limit orders, and fill them with market orders
(you do not earn the rebate). Market-makers have
therefore two spreads: a wide passive spread, and a
narrower active spread.

– Take out slow movers: market-makers’ spreads
moves as the prices move; a market-maker’s active
spread may cross the passive spread of a slower
market-maker.

– Penny jump: if there is a big order in the order book,
put a smaller one just before: the big order will limit
your losses (if you buy the shares and the price moves
in the wrong direction, you can sell them back).

– Push the elephant: when a large buy limit order
comes, you may suspect a “join-the-makers” strat-
egy, i.e., that the investor is willing to pay slightly
more; you can try to increase the price, by raising the
ask (buy a small quantity at a higher price); the ele-
phant may raise his bid a few times, after which you
can profit from him. This is a kind of front-running,
but using only public information (probably legal);
it is also a form of price manipulation (which may
or may not be legal).

– Tow the iceberg: same strategy, with an iceberg
(hidden elephant).

– Delta-hedging: Market-maker strategies for stocks
involve a round-trip: you buy at some price and sell
the same asset later at another price (or the oppo-
site). For options, because of the large number of
contracts, this may not be possible: instead of com-

Article and book summaries by Vincent Zoonekynd 798/1044

pleting the round-trip, you may simply delta-hedge.
– Jump the delta: Look for large option trades, esti-
mate the amount of stock needed to hedge the po-
sition, expect a trade in the underlying, and try to
get in front of it (to avoid this front-running, market-
makers may prefer to hedge with an index instead of
the underlier).

Here are some arbitrage and statistical arbitrage strate-
gies:
– ETF versus basket, futures versus basket, futures
versus ETF, futures versus futures (on the same un-
derlying, with different lot sizes);

– Futures versus options (put-call parity);
– Volatility arbitrage: option prices or, equivalently,
implied volatility, should be a smooth function of
strike and time-to-expiry: some contracts may be
over- or under-priced;

– Spread arbitrage: some composite options, such as
spreads, strangles, straddles, butterflies, are quoted,
and their price may differ from that suggested by
puts and calls;

– Pairs trading: estimate the fair price or “micro-
price” of a stock, as mid-price+α, and look for bids
or asks on the wrong side of the micro-price.

– Futures lag (not explained clearly): try to estimate
how much each stock of an index lags behind the
futures;

– Event-driven: when a dividend is announced, the
price will jump or drop almost immediately, but you
may have time to buy or sell just before (or, at least,
before it moves all the way); dividends also impact
option prices, directly (they appear in the formula),
and indirectly (through the price changes);

– Trend-following, e.g., you can compare 5-minute and
5-hour moving averages and buy or sell when they
cross;

– Mean-reversion: the market tends to over-react, e.g.
to imbalances in the order book.

The IT infrastructure is geared towards performance
(C++, distributed programming, load balancing,
TCP/IP off-load engine (TOE), GPU, parallel process-
ing – no mention of FPGA), relies on good program-
ming practices (design for change), an even-driven ar-
chitecture (“pub-sub”, i.e., “publish-subscribe”, either
in hardware (TMX Message Switch) or in software
(RendezVous, by Tibco)), and direct market access
through collocation (put your machines in the same
building as the exchange) and the use of native APIs
(each exchange has its own API, faster than the FIX
standard).
It has the following components:
– Thinkers contain the strategies, their parameters,
the universe (set of assets), the compliance rules.

– Listeners receive data from the exchange, filter it
for erroneous or unnecessary data (large changes,
small quantities, changes that immediately revert),
keep track of the state of the market (open/closed,
high/low volume, etc.).

– Pricers compute prices, alphas, micro-prices (price+

α+ correction for the inventory we have), bids, asks;
for options, the implied volatility (volatility curve or
surface, corrected for inventory) is first computed,
and then used to compute the option prices (if the
model is complicated, they may be precomputed),
bids and asks.

– Traders send trades to the exchange; they usually ask
the exchange to perform some safety controls (au-
tomatically remove the quotes if there is too much
activity), and check the heartbeat of the system (re-
move all the quotes if the exchange does not receive
the next heartbeat). The passive trading (limit or-
ders) part is called the “quoting engine” and the ac-
tive trading (market or IOC (immediate-or-cancel)
orders) part is the “electronic eye”. There is also a
component to locate assets we may want to short,
and another one to perform (delta-, and also rho-)
hedging.

– Managers keep track of the positions (inventory),
look out for bad trades, measure risk (exposure, i.e.,
size of the positions, Greeks, what-if analyses, etc.),
compute the P&L (the theoretical (“front office”)
one, using the micro-prices, used for trading, and
the “mark-to-market” (“back-office”) one, using ac-
tual market prices), ask the traders to stop trad-
ing or reduce their position if some risk limits are
exceeded, completely stops the system in case of a
problem (the connection to the exchange was lost,
one of the components crashed, etc.).

High-frequency trading (HFT) leads to lower bid-offer
spreads, better price consistency (faster information
transfer between various exchanges), and is not subject
to human panics (I do not entirely agree on this point:
the failure mode is just different, but can be as dra-
matic); however, many strategies are akin to price ma-
nipulation, increase volatility (I partly disagree: HFT
stabilizes volatility, but maintains it above a certain
level), bad trades can lead to contagion and cascade
effects, most of the trading now seems to be unrelated
to the underlying companies.

Securities lending, shorting and pricing
D. Duffie et al. (2002)

Short selling has an impact on prices: the price is the
the value of the stock plus that of the option to lend
it to short sellers. The value of the option depends
on supply, demand, and the bargaining power balance
between lenders and borrowers.

Portfolio consumption choice
with stochastic investment oportunities

and habit formation in preferences
C. Munk (2007)

To ensure that future consumption does not fall below
the habit level, increase the weight of bonds reduce
that of stocks.

Dynamic asset allocation
with stochastic income and interest rates

Article and book summaries by Vincent Zoonekynd 799/1044

C. Munk and C. Sørensen (2009)
Considering labour income in optimal long-term port-
folio choice seems to suggest that labour income is
equivalent to a bond, so that you can reduce or com-
pletely remove bonds from your portfolio. This is no
longer true if income or interest rates are stochastic
and dependent, e.g., if your income (employment sta-
tus) fluctuates with the business cycle.

The variance gamma process
and option pricing

D.B. Madan et al. (1998)
A gamma process is an infinitely divisible process Xt

with X1 ∼ Gamma.
A variance gamma process is a brownian motion with
drift evaluated at random times given by a gamma pro-
cess (a subordinated process). Since it has finite vari-
ation, it can be decomposed as the difference of two
non-decreasing (gamma) processes.

Modelling the spacial dynamics
of culture spreading

in the presence of culture strongholds
L. Lizana et al. (2011)

Information spreads on a network (or a lattice), ran-
domly, from a central source, with new information
replacing old information, creating a concentrical wave
pattern. The same phenomenon also describes word
distribution, newly-coined words replacing older ones
– for instance, Japanese swear words (ばか, あほ, etc.)
seem to emmanate from the old capital, Kyōto.

Temporal patterns of happiness and
information in a global social network:

hedonometrics and twitter
P.S. Dodds et al. (2011)

For each tweet, the authors compute:
– A happiness level, between 0 and 10, defined as a
weighted average of the happiness level of the words
it contains – the words were assigned a happiness
level manually, using volunteers (or underpaid work-
ers) at Amazon’s Turk. (The article suggests that
the data is available online.) Stopwords should be
removed: they muddy the signal.

– The word diversity, measured by entropy
∑
p log p

or some of its generalizations
∑
pα (e.g., α = 2 is

related to the Gini coefficient); it can be converted
into an “effective number of words” (the number of
words yielding the same entropy if they all have the
same frequency). Word diversity and happiness seem
unrelated.

One can look at seasonal changes (there are weekly and
daily patterns), the effects of some events (Christmas,
financial crises, etc.), or compare texts that contain a
given word or expression with the background happi-
ness and word diversity. The differences are displayed
in a word shift graph, that shows the words with the
largest contributions to the change in happiness, and
whether it in an increase or a decrease in the frequency
of a positive or negative word.
The lack of context may pose problem: “children” is
a positive word, but when it appears together with
“victim”, it (incorreclty) reduces the negativity. Since
words are not stemmed, there can be an increase in
“dead” and a decrease in “die” (this may be meaning-
ful: it is a change in tense).

Article and book summaries by Vincent Zoonekynd 800/1044

Deterministic and stochastic control:
applications to finance

N. Touzi (2010)
Classical optimization studies problems of the form

Minimize φ(x)
Where x ∈ K

If φ is C 0 and K compact, the problem has a solu-
tion. The continuity condition can be relaxed to lower
semi-continuity, i.e.,

lim inf
x→x0

φ(x) ⩾ φ(x0)

instead of
lim
x→x0

φ(x) = φ(x0),

i.e., there can be some noise in the function, but it
must be “upwards”, so as not to affect the minimiza-
tion problem.
If φ is differentiable and K = Rn, a necessary con-
dition for x to be a solution is that the gradient in x
be zero: Dφ = 0. If the problem is constrained, i.e.,
K Rn, the condition becomes

∀y ∈ TxK Dφ(x) · y ⩾ 0

where TxK is the tangent cone of K at x (in particular,
it is Rn if x is interior). If, in addition,

∀h ∈ TxK \ {0} D2φ(x)(h, h) > 0

then the point is a (local) minimum.
The Kuhn and Tucker condition (aka Lagrange
multipliers) translate these conditions into useable
formulas (by explicitely describing the tangent cone)
when the set of admissible solutions is of the form:

K = {x ∈ Rn : ∀i ∈ J1, pK bi(x) ⩽ 0}.

The Lagrangian is

L(x, λ) = φ(x) + λ · b(x).

If x is a solution, then there exists λ ∈ Rn such that

DL(x, λ) = 0

λ · b(x) = 0.

(You may need to remove a few pathologies, such as
linear dependencies between the Dbi(x).)
Calculus of variations is still interested in minimiza-
tion problems, but this time, we are looking for a func-
tion that minimizes some integral:

Find x : [t0, t1] −→ Rn C 1

to minimize
∫ t1

t0

F (t, x(t), ẋ(t))dt

such that x(t0) = x0 and x(t1) = x1.

(The final condition can be replaced by a set of equal-
ities or inequalities on the coordinates of x(t1).) Pe-
nalized regression can be formulated in this way. The

local Euler equation is a necessary condition, in the
case of equality constraints (x(t1) = x1):

d

dt

∂F

∂ẋ
=
∂F

∂x
.

(To prove it, assume that x is a solution, take a C 1

function h with h(t0) = h(t1) = 0, consider the cost
of x+ εh, integrate by parts.) This condition remains
valid if you are looking for a piecewise C 1 function in-
stead, provided you write it as an integral

∂F

∂ẋ
=

∫
∂F

∂x
dt+ constant.

The constraints x(t1)i = x1i or x(t1)j ⩾ x1j or
x(t1)k ⩽ x1k lead to the transversality conditions:
∂F

∂ẋi
⩾ 0 or ∂F

∂ẋi
⩽ 0 if the condition is binding (for

a minimization problem, the inequality is in the same
direction as the constraint); ∂F

∂ẋi
= 0 if the condition

is not binding or if there is no constraint (there is no
transversality condition for equality constraints).
If the F (t, ·, ·) are convex for all t, then those conditions
are sufficient.
A Lagrange problem is a generalization of calculus
of variation:

Find u

to minimize
∫ t1

t0

F (t, x(t), u(t))dt

where ẋ(t) = f(t, x(t), u(t))

and x(t0) = x0

Since u controls x via the ODE, this is sometimes called
an optimal control problem. There are equivalent
formulations where tyhe cost function only depends on
the final value of x (Mayer formulation). One usually
imposes some conditions on f to avoid explosions, e.g.,
Lipschitz and linear growth. The Hamiltonian of the
problem is

F (t, x, u, p) = F (t, x, u) + p · f(t, x, u).

If u is a solution of the Lagrange problem, then there
exists a function p, called the adjoint state, such that

ṗ(t) = −∂H
∂x

(t, x(t), u(t), p(t))

p(t1) = 0 (transversality condition)
H(t, x(t), u(t), p(t) = Min

v
,H(f, x(t), v, p(t)).

These equations (if you want to solve them, also add
ẋ = ∂H/∂p, which comes from the definition of H) are
called the Pontryagin principle (or the hamiltonian
system, if you remove the one with the minimum). By
adding a few more conditions, you can have a set of
sufficient conditions.
One can use dynamic programming to solve the same
(Lagrange) problem. Let J(t, ξ, u) be the cost on [t, t1]

Article and book summaries by Vincent Zoonekynd 801/1044

if x(t) = ξ and J(t, ξ) the next cost on [t, t1] if x(t) = ξ.
Then, the dynamic programming principle states that

J(t, ξ) = inf(

∫ s

t

+J(t, x(s))).

The dynamic programming equation (a PDE involving
J : the Pontryagin principle was a system of ODEs) is
a necessary condition, under some continuity assump-
tions:

inf
v
H(t, ξ, v, π) = −∂V

∂t
.

(Those continuity assumptions are not reasonable, but
you can get rid of them if you consider viscosity solu-
tions.)
Let Xt,x

· be the solution of

dX = µdu+ σdW

Xt,x
t = x.

For f : Rn −→ R, let

Af(x) = lim
h→0

E[Xt,x
t+h]− f(x)
f

.

The operator A is called the generator of the diffusion,

A = µ
∂

∂x
+ 1

2 tr

(
σσ′

∂

∂x∂x′

)
.

The expectation v(t, x) = E[g(Xt,x
T)] satisfies

∂v

∂t
+Av = 0

v(T, ·) = g

(This result can be generalized to v̇+Av+ kv+ f = 0
with initial conditions (Cauchy problem and Feynman-
Kac representation) or to Au − ku + d with bound-
ary conditions (Dirichlet problem).) This gives a cor-
respondance between expectations and solutions of
PDEs: we can use PDE tools (e.g., finite elements)
to estimate expectations or use stochastic tools (e.g.,
Monte Carlo simulations) to solve PDEs.
Let X be the stochastic process describing the price of
an asset, u be a trading strategy (control process, to
be determined), J(t, x, u) the expected utility on [t, T]
of the wealth resulting from the trading strategy u if
the initial price is Xt = x, and V (t, x) the expected
utility of the optimal strategy. By changing X, we can
assume that the cost J only depends on the final value:
J(t, x, u) = E[g(XT)|Xt = x]. The control process can
be: deterministic (open loop control), Markovian (us
depends on the current price Xs, but not on previous
prices) or adapted to FX (feedback control: it can de-
pend on all previous prices). If V is smooth (it is, un-
der restrictive but reasonable assumptions: Lipschitz,
bounded),

V (t, x) = sup
u
E[V (t+ ε,Xu

t+ε)]

(dynamic programming principle, directly applicable
in a discrete-time framework). By letting ε → 0, we

have the Hamilton-Jacobi-Bellman (HJB) partial dif-
ferential equation. If V is not smooth, we still have
inequalities of the form (for s > t)

V (t, x) ⩾ sup
u
E[lim inf V (s)]

V (t, x) ⩽ inf
u
E[lim supV (s)]

and would look for viscosity solutions of the PDE.
The optimal stopping problem, i.e., finding a stopping
time τ to maximize

J(t, x, τ) = E[g(Xt,x
τ)]

where X is a diffusion

dX = µdt+ σdW

Xt = x

(not a controlled process: that would be a mixed
stochastic control and stopping problem) can also be
solved via dynamic programming. Once

V (t, x) ==
∑
τ

J(t, x, τ)

is known, the optimal strategy follows: just check if
you are in the stopping region

{(t, x) : V (t, x) = g(x)}

or the continuation region

{(t, x) : V (t, x) > g(x)}.

If V is smooth (this is the case under restrictive but
reasonable assumptions),

V (t, x) = sup
τ
E[1τ<θg(Xτ) + 1τ⩾θV (θ,Xθ)]

for all stopping times θ. (In discrete time, let θ = t+1.)
Using Ito’s formula, one can show that V is a solution
of

Min{−(∂t + A)V, V − g} = 0

where A is the infinitesimal generator of the diffusion
X,

A φ = µ ·Dφ+ 1
2 tr(σσ

′D2φ).

Control problems can also be solved by verification,
but the conditions can be difficult to check; it can be
used for the optimal allocation between a risky asset
(whose price follows a known but arbitrary diffusion)
and a risk-free asset under terminal power utility. A
more theoretical example of a verification argument is
given to study the asymptotic behaviour of a double
stochastic integral

∫ t
0

∫ u
0
bvdWvdWu at t = 0.

A super- (resp. sub-)solution of a partial differential
equation (PDE) F = 0 is a smooth function u such
that F (x, u,Du,D2u) ⩾ 0 (resp. ⩽ 0). Whether a C 2

function is a supersolution of a PDE can be determined
by looking at C 2 test functions:

∀x0, φ x0 = Argminu−φ =⇒ F (x0, u,Dφ, d
2φ) ⩾ 0.

Article and book summaries by Vincent Zoonekynd 802/1044

(Rigorously speaking, we need a technical condition: F
should be elliptic, i.e., non-increasing in D2u.) The
notion of super- or sub-solution can therefore be gener-
alized to non-smooth functions (only the test functions
have to be smooth). A viscosity solution of a PDE
is a (non-necessarily smooth) super- and sub-solution.
[Question: how does this differ from distributions and
Sobolev solutions?] Some symmetry arguments are no
longer valid: F = 0 and −F = 0 need not have the
same solutions. There is a change of variable formula
(but you have to replace F by −F if the change of vari-
able is decreasing) and a stability theorem (you can
take limits). If Du ⩾ 0, then u is non-decreasing; if
−D2u ⩾ 0, then u is concave (here, ⩾ 0 means “is a
viscosity solution” – there is no specific notation.
The condition “x0 is a minimizer of u − φ” can be re-
placed by “x0 is a local minimizer of u−φ”, which only
involves x0, p = Dφ(x0) ∈ Rd and A = D2φ(x0) ∈
Sd (symmetric matrices). The corresponding sets of
(x0, p, A) triplets are called superjets and subjets, and
may lead to simpler proofs. For instance, one can
proove the unicity of viscosity solutions (on a bounded
open set, if the value on the boundary is given).
The dynamic programming equation (DPE) for the
stochastic control and optimal stopping problems re-
mains valid in the viscosity sense when V is not contin-
uous (under some harmeless assumptions: continuity).

Fuzzy clustering of short time-series and
unevenly distributed sampling points

C.S. Möller-Levet et al.
Commonly-used measures of distance between time se-
ries (Euclidian distance, correlation, etc.) do not take
the temporal order into account. Instead, one can use
the Euclienan distance between the slopes of the time
series,

d(f, g)2 =

∫
|f ′ − g′|2

(this also works for unevenly-spaced time series): this
is the STS distance.
It can be used by clustering algiorithms, e.g., fuzzy
clustering: find cluster centers (prototypes) vi and
cluster memberships uij (with uij ∈ [0, 1] and

∑
i uij =

1) to minimize

∑
ij

uijd(xj , vi)
2.

The problem is usually solved iteratively: select the vi
at random; estimate uij |vi; estimate vi|uij ; iterate.

Dynamic orthogonal components for
multivariate time series

D.S. Matteson and R.S. Tsay (2011)
Multivariate times series modeling studies the time

evolution of µt and σt:

Ft = σ〈yt, yt−1, . . . 〉
yt = µt + et

µt = E[yt|Ft−1]

Σt = Cov(yt|Ft−1) = Cov(et|Ft)

Traditional dimension reduction (PCA), when applied
to time series, remove the cross-sectional dependencies,
but not the dependence accross time.
To compute dynamic orthogonal components (DOC)
in volatility: find a linear transformation of the data
s = Ax such that cos(st, st−ℓ) be as diagonal as pos-
sible; model the si (univariate time seirs) as ARMA
processes.
To compute DOC in volatility: remove the trend (e.g.,
using DOC in mean), find a linear transformation
s = Ax such that Cov(st|Ft−1) and Cov(s2t , s

2
t−ℓ) be as

diagonal as possible; model the (univariate) time series
si using a GARCH or stochastic volatility model.

R Journal (2010)
Inverse problems are problems for the form “find x
such that y = f(x)”, i.e., “find the inverse of f”. If
f : E −→ F is linear, injective, then f−1 exists, but
need not be continuous in infinite dimensions. The
Radon transform (tomography) is one such example:
it is too sensitive to noise (observation errors). If
f : E −→ F is linear with E finite-dimensional and F
infinite-dimensional, the problem is overdettermined:
some form of regularisation is needed. An inverse prob-
lem is well-posed if the solution exists, is unique,
and depends continuously on the problem; it it is not
unique or not continuous, it is ill-posed. Well-posed
problems can be ill-conditionned: even if they are
continuous, they can amplify observations errors; the
condition number is the factor by which they amplify
those errors.
The following packages can solve differential equa-
tions: deSolve (initial value problems (IVP), dif-
ferential algebraic equations (DAE: differential equa-
tions plus conservation law), delay differential equa-
tions (DDE)), ReacTrans (some partial differential
equations (PDE): diffusive-advective transport equa-
tion), bvpSolve (boundary value problems (BVP)),
rootSolve, PBSddesolve (DDE), sde (stochastic dif-
ferential equations (SDE), pomp. (The odesolve pack-
age is deprecated.)
The codetools package provides some functions for
code source analysis. Objects have a source attribute,
that contains their unparsed code (otherwise, we would
have to deparse it, and it could end up being slightly
different), and a srcref attributes that points to the
code (it is used by IDEs). They can be used when
displaying errors or when setting breakpoints. Check
the following functions: traceback (call stack after
an error), browser (explicitely insert a breakpoint),
recover, dump.frames, sys.calls, setBreakpoint
(to set a breakpoint, without explicitely adding a

Article and book summaries by Vincent Zoonekynd 803/1044

browser() in the code). You may also want to check
the tools and utils packages.
The hglm package fits hierarchical generalized models,
(e.g., mixed models with heteroscedastic residual vari-
ance; Poisson model with gamma random effects; etc.).
The interface is still awkward, immature: you have
to provide the matrices to describe the model, rather
than the model itself; providing the model (say, in the
Bugs/Jags syntax) and having the computer parse it
to extract the matrices would be more user-friendly.
Data cloning is the use of MCMC software for maxi-
mum likelihood estimation (the output is not a distri-
bution but a point estimate and a confidence interval).
Since MCMC simulations require a prior (when doing
bayesian computations by hand, you can remove the
prior, which is often just a factor in a formula, but you
cannot remove it from MCMC simulations – stricly
speaking: replace it by an improper prior), you can
reduce its influence by cloning the data k � 1 times
(progressively increase the value). The dclone package
(with rjags, code) provides some low-level functions
for data cloning.
The stringr package provides consistent functions to
manipulate strings: names, argument order, behavious
with factors, etc. will no longer be unexepcted. All the
function names start with str_.
The bayesGARCH package can fit GARCH(1,1) models
with Student T innovations.
Case study: cudaBayesreg, bayesian computations in
CUDA.
Group testing (aka pool testing) is used when study-
ing low-prevalence diseases: patients are pooled into
groups and you only know if someone from the group
is affects, i.e., instead of observing X ∈ {0, 1}, you
only observe ∃i ∈ J1, nK : Xi = 1. The binGroup
package extends the binom package to this setup.
A spike and slab prior for a Bayesian model is a prior
in which each parameter is constrained to be either
0 or in some interval, with only a limited number of
non-zero parameters. The spikeslab package approx-
imates it with a 3-step process: dimension reduction,
model averaging (BMA) and variable selection (elastic
regression path, computed with gnet – you will also
see graphically which parameters are important).

Data compression using dynamic Markov
modelling

G.V. Cormack and R.N.S. Horspool
The Computer Journal (1987)

Huffman coding is not optimal: for a binary message
and words of size n, it assumes that the probabilities of
the words are multiples of 2−n; in addition, it assumes
that the words are independent. This can be improved
by increasing the word length, but this also increases
the size of the frequency table: some compromise has
to be found.
It is easy to fit a Market model to a stream of (bi-

nary) characters, once you know the structure of the
Markov chain: just use the sample frequencies, biased
to ensure that the probabilities are neither 0 nor 1.
Updating the probabilities as we receive the stream of
characters gives an adaptive algorithm.
To find the structure of the Markov chain (we do not
want the best (highest penalized likelihood) one, just a
sufficiently good one), start with a simple model, such
as

•
01

or

•

• •

• • • •

and, when a node has enough data, split it. (This is a
bit unclear.)
To encode a message knowing the Markov model that
generated it, transform it into an interval as follow
(Guazzo algorithm): start with [0, 1]; as a new char-
acter arrives, split the interval in two proportionnally
to the probabilities from the Markov model and keep
the subinterval corresponding to the character. The
bounds of the interval require an increasing precision:
it may be helpful to replace the probabilities by ap-
proximations (rounding) that do not require that much
precision. The compressed message is the final inter-
nal, or any number (a simple fraction) in it (you may
need the length of the message as well).

Point and figure charting: a computational
methodology and trading rule performance in
the S&P 500 futures market J.A. Anderson

“Point-and-figure charting” is a technical analysis
method method that uses price time series after a
change of time: only price jumps above a threshold
are included.

Time consistency and moving horizons for
risk measures

S.N. Cohen and R.J. Elliott (2009)
Risk measures are often studied for a fixed horizon: you
should check how they (and the optimal decision you
made using them) change when the horizon changes.

Econophysics: empirical facts and agent-based
models

A. Chakraborti et al. (2009)

Article and book summaries by Vincent Zoonekynd 804/1044

Contrary to the systems studied by statistical mechan-
ics, systems in social sciences are very far away from
equilibrium: this explains why there are no universal
laws and why the individuality of economic actors does
not completely disappear.
Most statistical properties (stylized facts) of financial
data disappear after a change of time (subordination)
from calendar time to even time (reception of orders),
transaction time (execution of order), tick time (price
change instants), volume time, return time.
Tick data are asynchronous and call for non-trivial
variance matrix estimators. The Fourier estimator
uses the relation between the Fourier coefficients of
the returns time series (easy to compute) and those of
the coefficients of the variance matrix; the Hayashi-
Yoshida estimator uses a variant of this idea. Ran-
dom matrix theory can be used to “denoise” the sample
correlation or variance matrix: only keep the eigenval-
ues that are significantly larger than those you would
expect in a random matrix. The distribution of the
coefficients of the sample variance matrix; the mini-
mum spanning tree (and its invariants: mean occupa-
tion layer (use a large company as the center, or one
involved in several sectors), etc.) can also be of inter-
est.
The article ends with a review of agent-based models
for the market order book, wealth distribution (and
wealth exchanges), herding (minority game and its
many variants).

Impact of random failures and attacks on
Poisson and power law random networks

C. Magnien et al. (2009)
(Very clear article explaining mean-field approximation
to non-physicists; in a nutshell: assume that the (large)
graph you have is a tree.)
Real-world networks are often modelled as random net-
works with a predefined degree distribution (Poisson
(exponential decay, i.e., in practive, rates are close to
the average) or power law (slower, polynomial decay:
larger values are not uncommon)): start with a set of
nodes, add edge stubs (accordig to the chosen distribu-
tion), and link them at random. This is a generalisa-
tion of the Erdös-Rényi model (limited to the Poisson
distribution).
Many theoretical results about random graphs are
asymptotic: they are approximations, valid when the
graph grows unreasonably large. In this context,
whether we are looking at truncated distributions
(X|X ⩽ k) or not makes a big difference, especially
for power law distributions: if you use the truncated
distribution instead of the real one, the asymptotic re-
sults you obtain are more likely to be valid for large
finite (real-world) graphs as well.
The mean-field approximation assumes that the
probability that two neighbours of a given node are
linked is negligible. In other words, the network locally
looks like a tree. The properties of the network can be

examined using generating functions, for instance

G0(z) =
∑
k

P (X = k)zk

G1(z) =
∑
k

P (X = k + 1|X ⩾ 1)zk

〈X〉 = E[X] = G′(0)

Since the graph is (sufficiently close to) a random tree,
looking at the existence of a giant component is akin
to studying branching processes – hence the om-
nipresence of generating functions. More precisely, the
generating function H of the (asymptotic) distribution
of cluster sizes safisfies

H(z) = 1−G1(z) + zG1(H(z)).

(Generating functions are just a way of encoding distri-
butions and expressing recurrence relations that would
otherwise be horribly complicated.) The same equa-
tion can help you compute the proportion of nodes to
remove to break down the giant component.
The notion of giant component is an asymptotic notion:
it is a component that grows linearly with the graph
(the mean-field approximation uses a similar but non-
equivalent notion: the average size of the components
tends to infinity). For finite graphs, you can use the
relative size of the largest component: if it is above 5%,
you can call it giant.
Experimental results are sometimes in contradiction
with the theoretical ones, perhaps because they are just
asymptotic, perhaps because we have overlooked some
important properties of the graphs – we only looked
at the degree distribution, assumed that nothing else
mattered, and claimed that the graphs were random.
To better model real-world graphs, one can use:
– Constructive models, e.g., preferential attachment
(Barabási-Albert);

– Rewired random networks.
Robustness of a graph to failure (random node removal,
random edge removal) or targetted attacks (remove
nodes with the highest degree, randomly remove nodes
of degree at least 2, remove edges between nodes of
degree at least 2) can be evaluated using:
– The existence of a giant component (or the propor-
tion of nodes to remove to break it down);

– The average inverse geodesic distance (harmonic
mean), which remains meaningful for non-connected
graphs. 1

N(N − 1)

∑
i ̸=j

1

dij

−1
Random power law networks are robust to random fail-
ures: you have to remove almost all nodes or edges to
break down the giant component.

Random graphs with arbitrary degree
distribution and their applications

M.E.J. Newman et al.
Physical Review (2001)

Article and book summaries by Vincent Zoonekynd 805/1044

For more on the use of generating functions to study
random graphs.

Introduction to membrane computing
G. Păun

There are many biology-inspired algorithms (neural
networks, evolutionary computing, ant colony opti-
mization, etc.) or computational models (DNA com-
puting). Membrane computing, aka P -systems, is an-
other such computational model, based on the remark
that in a living body (made of cells, i.e., membranes,
containing organelles, i.e., membranes, sending and re-
ceiving vesicles, i.e., membranes, contained in organs,
i.e., membranes, etc.), almost everything happens on
or through a membrane. A membrane comuting sys-
tem is a tree (each node can be thought as a membrane,
contained in the parent node, each node contains a set
of symbols and rewriting rules (think of TEX, or ran-
dom grammars: only one of the applicable rules, se-
lected at random, is applied in each node at each time
step), with a few specific symbols to create or destroy
membranes, or absorb/secrete symbols from/to neigh-
bouring nodes.
This is just a computational model (not unlike a Turing
machine or a quantum computer), with no real world
applications.

Lagrange multiplier tests for parameter
instability in non-linear models

B.E. Hansen (1990)
To test for structural change, one can:
– Split the sample into, estimate the parameters on
each subsample, and compare them;

– Compare (Anova, AIC, etc.) the model with a break-
point with the model without;

– Idem, but for all possible breakpoints (the break-
point is rarely known);

– Model the parameter as a random walk and test if
its variance is zero;

– Use a Lagrange multiplier test (the estimation prob-
lem can be formulated as “minimize the likelihood
ratio such that the parameter be constant”): you
consider all possible breakpoints but do not have to
reestimate the model for each of them.

Jumps and microstructure noise in stock price
volatility

R. Sen (2007)
Functional data analysis (FDA) can be used to sepa-
rate the jump component (microstructure noise) from
the realized volatility (i.e., the volatility estimated
from high frequency data), after removing the drift by
smoothing: FDA is just principal component analy-
sis (PCA) on functions rather than (finite-dimensional)
vectors, here, to model the autocovariance structure of
the continuous part of the variance process.

Commodity modelling: Schwartz 2-factor
model

P. Erb (2009)
Commodity prices can be modelled as:
– A mean-reverting process (Ornstein-Uhlenbeck);
– A geometric brownian motion whose drift is a mean-
reverting Ornstein-Uhlenbeck process.

(There is also a 3-factor model, and HJM-type models
that also account for the term structure (Hinz), but no
details are given).
You can use those models to price options on commodi-
ties.

A Few notes on book design
P. Wilson (2009)

This used to be the first part of the memoir document
class user guide.
Besides the usual advice, the book also provides some
font-related vocabulary:
– Serif or sans serif;
– Bracketed serif (smooth transition between the stem
and the serif) or unbracketed serif; slab serif (egyp-
tian) fonts can be bracketed or not;

– Vertical or inclined axis (angle of the nibbed pen);
– Small or large counter (loop of some letters: a, e);
– Gradual or abrupt contrast (width difference be-
tween thick and thin strokes);

and, less clearly, some font classifications (there are
several overlaping or inconsistent classifications, and
few actual examples are given):
– Gothic, or blackletter fonts (used by Gutenberg) in-
clude the textura (square characters: Goudy Text,
Cloister Black), rotunda (round characters: Goudy
Thirty) and bastarda (the most common: Fraktur,
etc.) families;

– Oldstyle, venitian (Centaur, Berkeley Oldstyle, Jen-
son);

– Oldstyle, Aldine/French (Bembo, Garamond
Palatino, Sabon);

– Oldstyle, Dutch/English (Calson, Janson);
– Transitional, or neoclassical (baskerville, URW An-
tiqua, Bell);

– Transitional newspaper (better legibility, larger
counter, higher x-height, increased contrast) (New
Century Schoolbook, Times);

– Modern (exagerated contrast: Didot, Bodoni);
– Square serif or Victorian (Clarendon, Bero Serif);
– Sans Serif or grotesque or gothic (Helvetica, Futura,
Gill Sans);

– Script, Cursive (Brush Script, Zapf Chancery);
– Display or decorative fonts.

R Journal
(June 2011)

It has become difficult to follow the development of
all the packages, identify those that are useful, well-

Article and book summaries by Vincent Zoonekynd 806/1044

http://en.wikipedia.org/wiki/Membrane_computing
http://ppage.psystems.eu/

maintained, and reliable (many are just “proof of con-
cept”):
– The task views, cranberries and crantastic tend to
be too exhaustive;

– The easiest is to look at the packages most often
mentionned on R-help or R-planet (?); you can also
check how this changes with time;

– Check the code quality, as measured by the
codetools package (cyclomatic complexity, cod-
ing convention consistency, etc.), from the pack-
age metadata itself (licence, number of authors, how
many other packages they are maintaining, how ac-
tive they are on R-help, etc.), or from the version
control system (frequency of the relases, number of
authors, etc.);

– One could also apply some graph algorithms to the
package dependency graph, e.g., looking at the node
degree, or applying the page rank algorithm to find
the most influencial (used) packages.

The testhat package helps you write regression tests
as easily as if you were using stopifnot, but is more
verbose (for instance, you can group the tests, display
helpful error messages when they fail, etc.)
Social network analysis (with the sna and tm packages)
can be combined, for instance to analyze mailing lists
(thread-author-text triplets)
– Build a network of authors;
– For each word (discard rare words), look at the sub-
network of authors using it;

– Build a bipartite graph of authors and words, with
edge weights given by the centrality of the authors
in the previous graph (the centrality can also help
you identify and discard common words);

– Remove the words from the bipartite graph.
Differential evolution (with the DEOptim package) is
just the traditional algorithm genetic algorithm, but
the various operations are no longer combinatorial but
modified to be meaningful for real numbers: four in-
stance, “mutation” could be

x′1 = x1 + F (x2 − x3)

where x1, x2, x3 are random members of the popula-
tion. Compared to traditional optimization algorithms
(optim, nlminb), it more efficiently avoids local ex-
trema.
Differential optimization can be applied to portfolio
optimization, for instance, when you include the con-
tribution to risk (standard deviation or expected short-
fall) in the optimization problem: risk-parity portfo-
lio or equally-weighted risk contribution (ERC)
portfolios (since DEOptim does not allow constraints,
you can turn them into Lp penalties).
Bayesian model averaging (BMA), which combines sev-
eral models to yield better forecasts, can be used as a
post-processing step and does not need any knowledge
of the model details (ensembleBMA package); it can be
used for weather forecasting.

The rasterImage and grid.raster function can ef-
ficiently plot pixmaps (heatmaps of microarray data,
image processing, etc.). You may want to add
interpolate=FALSE.

Parametrizing correlations: a geometric
interpretation

F. Papisarda (2006)
Estimators of the correlation matrix need not be cor-
relation matrices at all (e.g., the sample correlation
matrix, if there are missing values). Instead, you can
parametrize the matrix as C = BB′ with

bij =

cos θij

j−1∏
k=1

sin θikif j < n

n−1∏
k=1

sin θikif j = n

The nth column of B can be interpreted as the kth
basis vector, rotated by angles θkj , in the (ej , ej+1)
planes.

Statistical properties of world investment
networks

D.M. Song et al. (2008)
Properties of the network that looks at which country
invests in which country (CPIS data from the IMF).

Crossing Intervals of non-Markovian gaussian
processes

C. Sire (2008)
Persistence(τ,M) = P [∀t ∈ [0, τ] Xt < M].

Behavioural and dynamical scenarios for
contingent claims valuation in incomplete

markets
L. Boukas et al. (2009)

In an incomplete market, the no-arbitrage argument
does not lead to a unique risk-neutral probability and
a unique price for contingent claims: there is a whole
interval of arbitrage-free prices. However, the market
price is unique: how doe we arrive at that unique price?
– Among all the risk-neutral probabilities, take that
with the minimum entropy

– Both buyer and seller have some belief (subjective
real-world probability) about the future state of the
world and are trying to maximize some utility func-
tion; by comparing the maximum utility with or
without the ability to buy/sell the claim, we can
compute a maximum/minimum acceptable price for
the claim; if the buyer’s price is higher than the
seller’s, a transaction can occur, for instance, with
a 1-bid sealed (blind) auction; each party, not know-
ing the other’s price, will choose a bid that minimizes
the maximum regret (?); we can imagine that this
transaction

Article and book summaries by Vincent Zoonekynd 807/1044

– If the buyer’s price is lower but both parties are
compelled to engage in the transaction, they can en-
ter some kind risk-sharing scheme, minimizing their
combined risk, measured as the average (some con-
vex combination) of the drop in utility of each party
(but they have to be honest and trust each other);

– If the parties do not have strong beliefs about the fu-
ture state of the world (real-world probability), but a
set of probabilities instead, they can change their be-
liefs (as little as possible, as measured by the price
difference) to come to an agreement (this also re-
quires honesty and trust).

R in Finance 2011
Programming
Functional programming is possible in R, with the
futile.paradigm package and new operators: %when%
(for guards), %must%, %isa%.
Beyond S3 and S4 classes, several packages pro-
vide object-oriented facilities: R.oo, proto, mutatr,
futile.paradigm. While object-oriented program-
ming involves both classes and objects, prototype
programming (popularized by Javascript) only deals
with objects. In R, this can be achieved with environ-
ments:

parent <- new.env()
parent$x <- 1
parent$y <- 3.14
child <- new.env(parent=parent)
child$y <- 2.71
child$x # Does not work
with(child, x) # 1
sibling <- list2env(
as.list(child),
parent=parent.env(child)

)

The proto package does the same thing, but you do
not have to know anything about environments. Pos-
sible applications include GUI programming (the code
may look simpler than using directly, say, gWidget) or
the gsubfn package.
The rparallel package can parallelize computations
(on several threads, on a single multicore machine, for
embarassingly parallel problems), with applications to
Monte Carlo simulations or boosting.
CUDA-C can speed up SDE simulations (stochastic
volatility model) to calibrate the volatility smile (“cali-
bration” means “moment estimator”: you play with the
model parameters until something simple computed
from the output (a “moment”) matches the same quan-
tity for the real-world data).
The xtime, xts, xtdf, indexing, mmap packages can
help you deal efficiently with time series.
The R ecosystem
Dexy is a tool to generate software documentation and

reproducible research, that claims to be the next gener-
ation Sweave: it works with any programming language
(R, Python, etc.) or markup format (HTML, LATEX,
etc.), is aware of dependencies between datasets and
documents, caches intermediate results to avoid hav-
ing to rerun lengthy computations if nothing changed,
lets you reuse the result of the computations in differ-
ent documents. Contrary to Sweave, it encourages you
to separate code and documentation. It can be seen as
a combination of Make and Sweave (or templating sys-
tems, such as Jinja) or, simply, as a document-oriented
Make.
R can run “in the cloud”, thanks to packages such as
Rhive (Map/Reduce, Hadoop) or segue (simplistic,
to run CPU-bound computations on Amazon’s EMR
(Elastic Map Reduce)).
R can be used in web applications (from Rhttpd (the
internal web server, used to display the documenta-
tion) or rApache) with the rook package.
Repast Simphony is a framework to simulate agent-
based models (Java, Groovy, Logo); the results can be
analyzed in R.
NEOS (Network-enabled Optimization system, an API
to send optimization problems over the network, as
a web service, in standard formats such as AMPL or
GAMS) can be used from R, thanks to the XML, XMLRPC
and RCurl packages.
RStudio was mentionned several times.
R can be interfaced with Python (Pysampler (?),
PyNum, PySci).
Column stores (e.g., Sybase IQ) are becomming more
widespread.
RServe can now be accessed from .NET
R can be used from OneTick, a (commercial) visual
data-flow environment.
Finance
R can be used as a quantitative strategy development
platform, with the following packages: quantstrat,
FinancialInstrument, quantmod, blotter, TTR,
xts, indexes, RTAQ, signalextraction, lspm,
PortfolioAnalytics, PerformanceAnalytics.
Betfair is a UK betting website, with an API, acces-
sible from R: for instance, you can look at the order
book of an event (say, a horse race) and see how it
changes with time. Methods from quantitative finance
(e.g., algorithmic trading) may be applicable.
Jumps in high frequency data can be identified by
looking at the returns/volatility ratio for some robust
volatility estimator (e.g., spotVol in RTAQ); one can
also look for jumps in the liquidity, as measured by
the order imbalance

∑
Order Sign×Order Size∑

Order Size

Article and book summaries by Vincent Zoonekynd 808/1044

http://www.rinfinance.com/agenda/2011/Vermes+Zhao.pdf
http://www.dexy.it/
http://jinja.pocoo.org/
http://www.rinfinance.com/agenda/2011/JDLong.pdf
http://developer.yahoo.com/hadoop/tutorial/
http://repast.sourceforge.net/
http://www.rstudio.org/
http://www.rinfinance.com/agenda/2011/BrianPeterson.pdf
http://www.rinfinance.com/agenda/2011/BrianPeterson.pdf
http://www.rinfinance.com/agenda/2011/BryanLewis.pdf

or the order book depth
Mean Ask Depth−Mean Bid Depth

Mean Depth .

The twitteR, RGoogleTrends, Infochimps, tm, XML,
RCurl packages can be used to infer the market senti-
ment.
Cap-weighted indices do not perform that well: you
may prefer a minimum variance, minimum expected
shortfall, or tangential (maximum Sharpe ratio) port-
folio instead. Try to estimate the returns and the vari-
ance matrix robustly: time series factor model (the
risk factors are known time series: oil, etc.), cross-
sectional factor model (the exposures to the risk factors
are known, e.g., industries), statistical models (PCA,
ICA). For the minimum expected shortfall portfolio,
they use the sample expected shortfall: this is a simple
linear optimization problem. The presentation does
not explain clearly how they suggest to robustly esti-
mate the returns, needed to compute the tangent port-
folio (which quickly disappeared from the discussion).
If two assets X and Y are thought to be related, one
can estimate the regression Y = α + βX and buy the
portfolio Y − βX. But this hedge ratio is asymmet-
ric: instead, replace the least squares regression by the
(PCA-based) total least squares (TLS).
Hawkes processes are used to model earthquakes;
they account for mainshocks, potentially preceded by
(often a single) foreshock and followed by (several) af-
tershocks, and can also account for dependence be-
tween earthquakes in different regions. (They are sim-
ply point processes whose intensity depends on previ-
ous shocks.) They are strangely similar to volatility
time series, and can be used to model financial times
series, as the sum of two Hawkes processes, one posi-
tive, one negative; the more positive (resp. negative)
the process becomes, the larger the intensity of the
negative (resp. positive) process becomes (mutually
exciting Hawkes processes). One can easily compute
the expected realized volatility at a given scale τ and
tune the parameters to replicate the observed relation
between realized volatility and scale. With two assets,
you can also calibrate the relation between realized cor-
relation and scale.
Optimization based on the expected shortfall (ES, aka
expected tail loss (ETL) or conditional value at risk
(CVaR)) is getting more and more popular for risk
budgeting Any homogeneous risk measure (standard
deviation, semi-standard deviation, VaR, ES) can be
decomposed into a sum of risk contributions (Euler):

Risk(w) = w · ∂Risk
∂w .

Factor Model Monte Carlo (FMMC) was mentionned
several times, with terse details: first fit your factor
model (using robust and/or non-parametric methods if
possible), use it to simulate data (and backfill missing
values), use the simulated data to estimate the distri-
bution of the returns of your portfolio or strategy, use

this (empirical) distribution to compute the risk mea-
sures you are looking at. It is not very clear whether
they simulate (from an estimated distribution) or re-
sample (i.e.„ shuffle the data) – both make sense.
The variance matrix of assets returns can be easily es-
timated even if the assets have a different history, via
repeated regressions: start with the assets with the
shortest history; for each asset i, estimate the regres-
sion ri ∼ ri+1 + · · · + rn (parameters β̂i and variance
v̂i); the variance matrix can be computed, recursively,
from the β̂i and v̂i. If there are is not enough data, you
can use shrinkage (ridge regression, lasso) or a Bayesian
prior, which also provides you with confidence intervals
(implementation in the monomvn package);

Dependence between Financial Models
D.S. Matteson

R In Finance 2011
The distance covariance between two random vari-
ables X and Y ,

V 2(X,Y) = ‖φX,Y (t1, t2)− φX(t1)φY (t2)‖w
where φ is the characteristic function, w a weight func-
tion (use td+1, where X has values in Rd – X and Y
can have different dimensions) is a measure of depen-
dence. It can easily be estimated (just use the empirical
characteristic functions).

aij = ‖xi − xj‖
bij = ‖yi − yj‖
Aji = aij − āi· − ā·j + ā··

Bji = bij − b̄i· − b̄·j + b̄··

V̂ (x, y) =
1

n2

∑
ij

AijBij

It depends on the marginal distribution, but you can
make it distribution-free by forcing the margins to be
uniform (this is sometimes called the probability inte-
gral transform), i.e., by looking at the copula of (X,Y).
The distance covariance can be used as a (distribution-
free) test of serial dependence

H0 : Xn ⊥⊥ (Xn−1, . . . , Xn−p)

and tell you when to stop adding elements to a time
series model.
The distance covariance can be used to define a joint
dependence test of (X1, . . . , Xn) (it is not symmetric):∑

i

V̂ (ui, (ui+1, . . . , un)).

Minimizing the test statistic leads to an independent
component analysis (ICA) – a competitor to the classi-
cal FastICA (maximize some (robust) measure of non-
gaussianity) and ProDenICA algorithms. This also
gives a test for the existence of independent compo-
nents (the alternative hypothesis of the test is that no
matter how you rotate the data, you cannot get rid of
the dependence).

Article and book summaries by Vincent Zoonekynd 809/1044

http://www.rinfinance.com/agenda/2011/GuyYollin.pdf
http://www.rinfinance.com/agenda/2011/PaulTeetor.pdf
http://www.rinfinance.com/agenda/2011/ClementDunand.pdf
http://arxiv.org/abs/1101.3422
http://www.rinfinance.com/agenda/2011/DougMartin.pptx
http://www.rinfinance.com/agenda/2011/DougMartin.pptx
http://www.rinfinance.com/agenda/2011/EricZivot.pptx
http://www.rinfinance.com/agenda/2011/RobertGramacy.pdf
http://www.rinfinance.com/agenda/2011/DavidMatteson.pdf
http://people.orie.cornell.edu/matteson/papers/MattesonTsay_dCovICA.pdf

Measuring and testing dependence by
correlation distances G.J. Székely et al. (2007)
Definition of the distance covariance and distance cor-
relation.

Statistical Analysis of financial time series
and option pricing with R

S.M. Iacus
R In Finance 2011

Cluster analysis often requires some notion of distance:
for time series, one can use the Euclidian distance (it
will not give good results but is useful as a benchmark),
the correlation, the short time series distance (STS, the
Euclidian distance between the slopes of the price time
series,

∫
|f ′ − g′|2: it also works for irregularly-sampled

time series), the dynamic time warp distance (DTW),
or the Markov operator distance. The transition oper-
ator of a (discrete) stochastic process X is

Pf(x) = E[f(Xn+1)|Xn = x].

It is entirely defined by the scalar products

〈Pφ, ψ〉 = 1
2E[φ(Xn)ψ(Xn−1) + ψ(Xn)φ(Xn−1)].

Evaluated on the functions 1, x, x2, · · · , xn, this gives
a matrix: the Markov operator distance is the Eu-
clidian distance between such matrices. This can help
identify time series with a similar dynamics (e.g., diffu-
sions with a similar drift and volatility), but completely
disregards the relation between the innovations driving
those time series (most of this talk is about estimating
the drift and volatility of a diffusion). This is imple-
mented in the MOdist function in the sde package.
Parameters of financial models, e.g., µ and σ in a geo-
metric brownian motion

dX = µXdt+ σXdW

or θ in a CIR model

dX = (θ1 + θ2X)dt+ θ3
√
XdW

(there is a very long list of such models in the presen-
tation) can theoretically be estimated by maximizing
the likelihood ∏

i⩾0

p(xi+1|xi)p(x0).

The transition probabilities are rarely known, but ap-
proximations are available, leading to Quasi-MLE es-
timators (the qmle function in the yuima package).
They can also be estiamted with a 2-stage regression
(the shape of the functions f and g will depend on your
model):
– Estimate the drift with a regression

Xt+1 −Xt ∼ f(Xt)

– Estimate the volatility by regressing the squared
residuals: ε2t+1 ∼ g(Xt)

– Recompute the first regression, with weights set to
the inverse of the variance predicted by the second
regression

Model selection often uses the AIC, i.e., the likelihood
penalized by the number of parameters in the model.
Instead, one can use an L1 penalty, as in the lasso re-
gression; to choose the coefficients of the L1 penalties,
just use the inverse of the absolute value of the uncon-
strained parameter estimates. (This is implemented in
the yuima package.)
Least squares can be used to look for stuctural changes:
estimate the model (e.g., a diffusion) before and after
the change point and compute the sum of the squared
residuals, for each possible change point; choose the
point that minimizes this sum of squares. (The ap-
proach presented was different but not very clear: it
is limited to breaks in the volatility (the drift is unaf-
fected by the structural change) and does not require
the drit to be evaluated). This is implemented in the
cpoint function in the sde package or the CPoint func-
tion in the yuima package.
The yuima package can simulate and estimate the
stochastic processes most commonly encountered in fi-
nance: diffusion,

dX = µdt+ σdW

fractional gaussian noise,

dX = µdt+ σdWH

and diffusions with jumps (Levy processes).
Option pricing in R often relies of Rmetrics (fOptions,
fAsianOptions, fExoticOptions) or RQuantlib, but
is mostly limited to the Black-Scholes model: if you
need to go beyond that (jumps, etc.), you have to rely
on Monte Carlo simulations. The yuima package pro-
vides an alternative: asymptotic expansions; it al-
lows you to estimate some integral (say, the payoff of
the option) of a stochastic process that is “close” to one
that is manageable (e.g., deterministic), for instance

dXt = µXtdt+ εXtdWt

for ε small.

Modeling microstructure noise
with mutually exciting point processes

A. Bacry et al. (2010)
Clasical approaches to high frequency data include:
– The latent price is a diffusion process, but only a
noisy version of it is observed

– Models of the evolution of the whole order book
(rather than the price alone)

A difference of two Hawkes processes (marked point
processes, used to model earthquakes), linked (the
more positive the difference becomes, the more the in-
tensity of the negative process increases) can reproduce
some stylized facts of high frequency time series:
– Strong macroscopic mean reversion

Article and book summaries by Vincent Zoonekynd 810/1044

– Signature plot: the realized volatility on a window
of scale τ depends on τ (it is higher at smaller time
scales)

– Epps effect: idem for the realized correlation be-
tween the returns of two assets (it is lower at smaller
time scales)

Sampled at large time scales, those processes look like
diffusions.
What is the shape of the Risk-Return relation?

A. Rossi and A. Timmermann (2010)
One expects the risk-return relation to be monotonic,
but the evidence is not compelling.
The question can be settled using boosted regression
trees (BRT, regression trees allow for non-linear, non-
monotonic relations, and boosting, or more generaly
ensemble methods, can cope with a large number of
variables without overfitting). First, estimate (using
BRT) conditional returns and conditional volatility
(“conditional” means “using all the information avail-
able at that time”, as in “Et[·]”)

Stock Return = f(Risk Factors) + noise
Conditional Return := f(Risk Factors)

Conditional Volatility :=
√
Var noise

(risk factors can include market or sector returns,
macroeconomic variables, etc.). Then, still using BRT,
estimate the relation between the conditional returns
and the conditional volatility: it is not monotonic.
This unintuitive result may be due to the choice of the
risk measures. Alternatives include investment oppor-
tunities (I wonder how one would measure that) or

Cov(Returns,Consumption Growth).

Daily consumption growth is not available, but if
one replaces it with a business activity index (the
ADS index combines 10-year and 3-month treasury
spreads (daily), initial jobless claims (weekly), employ-
ment (monthly), production (monthly), personal in-
come (monthly), sales (monthly), GDP (quarterly) in a
dynamic factor model estimated with a Kalman filter),
the relation looks monotonic. Such a measure of risk
can be seen as “volatility corrected for consumption or
business activity”.

Think Positively
K. Pluto and D. Tasche (2005)

Probabilities of default (PD) can be estimated using
the maximum entropy principle; to be more conser-
vative, one can look at confidence intervals instead of
estimators, or even 1-sided confidence intervals – this
approach can give useable results even if there are few
or no defaults (low default portfolios), but does not
work for small portfolios (or isolated assets).
The article presents a related approach, the most pru-
dent estimate. Dependence (between assets, or over
time) can be modeled with a Tobit model: defaults

events are triggered by a (component of a multivari-
ate) gaussian random variable exceeding some thresh-
old; for cross-sectional dependence, a 1-factor model is
sufficient (?); for intertemporal dependence (the ran-
dom variables (Xit)t can be interpreted as the price, or
the “latent value” time series) the correlation suffices:
Cor(Xis, Xit) = ρ|s−t|.
You may want to rescale those estimates, so that the
average of the probabilities of default be the probabil-
ity of default of the whole portfolio: you usually end
up with the probability of default of all grades above
that of the portfolio.

Twitter mood predicts the market
J. Bollen et al. (2010)

The vocabulary used in tweets seems to have some
predictive power on future DJIA returns: Opinion-
Finder uses a positive versus negative lexicon, while
Google Profile of Mood States (not public) uses the 6-
dimension (calm, alert, sure, vital, kind, happy) (com-
mercial) PoMS lexicon used by psychometricians and
extended to include commonly cooccurring terms.
The numeric results look too high.

Dynamic Asset Allocation
Using Stochastic Programming and

Stochastic Dynamic Programming Techniques
Gerd Infanger (2010)

Dynamic asset allocation, for individual investors, of-
ten reduces to “keep the same portfolio x% stock,
(100−x)% bonds”, or sometimes “(100−age)% stock”.
This is clearly suboptimal. Stochastic programming
can provide the optimal strategy for a given utility
function. This can be done in two ways:
– Dynamic programming: recursively compute
V (t, w, x), the expected final utility of the best strat-
egy if your wealth is w at time t and you invest x%
of it in stocks on [t, t+ 1].

– Simulate 10,000 to 100,000 scenarios and transform
the stochastic program to a non-stochastic one (the
author wrote a software, GAMS/DECIS, to per-
form this transformation). As often with that kind
of problem, the number of constraints is too large
(1020), but one can easily identify breached con-
straints and add them to the problem, until a so-
lution is found.

GraphLab: a new framework
for parallel machine learning

Y. Low et al.
High-level abstractions for graph-based computations,
such as Map/Reduce, are too restrictive: they impose
the shape of the graph.

Article and book summaries by Vincent Zoonekynd 811/1044

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.8236
http://www.cs.pitt.edu/mpqa/opinionfinderrelease/
http://www.cs.pitt.edu/mpqa/opinionfinderrelease/
http://www.stanford.edu/class/msande348/handouts/Dynamic%20Asset%20Allocation.pdf
http://www.stanford.edu/class/msande348/handouts/Dynamic%20Asset%20Allocation.pdf
http://www.stanford.edu/class/msande348/handouts/Dynamic%20Asset%20Allocation.pdf

•

• • •

• • •

•

(no name)

map

reduce

Low-level abstractions (MPI, PThreads) are too low-
level. GraphLab is in-between: the shape of the graph
is arbitrary.
– Contrary to DAG (directed acyclic graph) models,
the graph need not be acyclic, and can model itera-
tive algorithms;

– Contrary to the systolic abstraction, the decision on
which computations should be done next is not made
beforehand, but as the algorithm progresses;

– Contrary to MPI/PThreads, the programmer is iso-
lated from synchronization, data race and deadlock
problems.

The framework also provides some scheduling facilities
(but they could be optimized). The data is stored in
the nodes or in the vertices (for data shared by two
nodes). Since it is based on PThreads, it is limited to
a single machine.

Pregel: A System
for Large-Scale Graph Processing

G. Malewicz et al. (Google)
SIGMOD 2010

Pregel is another abstraction for graph-based (?) bulk
synchronous parallel computations (BSP): each node
(on a separate machine or processor) runs its computa-
tions and can send messages to its neighbours, a master
keeps track of the progress and of changes in the graph
structure (you can add or remove vertices), the compu-
tations stop when all nodes tell the master they want
to stop. I do not really see the link between graphs
and BSP.

Statistical Approaches
for Network Anomaly Detection

C. Callegari (2010)
Networks attacks can be detected by:
– Clustering, i.e., unsupervised classification: smaller
clusters are attacks;

– Markovian models (e.g., to model TCP states; first-
order, time-homogeneous models are simpler and
have a better ROC curve);

– Entropy (compress the incoming (log) data with
LZW (Lempel-Ziv-Welch), Huffman coding, or dy-
namic Markov compression, and look at its size)’

– Count-min sketch (use a counting Bloom filter to
estimate the average traffic from each IP address
and identify deviations from this average, you do not
have to store the data separately for each IP adress
(there are too many): the data is aggregated and
distributed);

– Principal component analysis;
– Wavelets (or rather framelets, that provide several
time series showing features at different scales; this
is very similar to several band-pass filters; that is the
most intuitive method presented).

Learning for stochastic dynamic programming
S. Gelly et al. (2009)

Estimating the cost function V (t, x) in a continuous-
time dynamic program is untractable in high dimen-
sions, but learning algorithms (neural networks, k-
nearest neighbours, kernel regression, regression trees,
adaptive discretization, mixture model, etc.) can help.

On a stochastic knapsack problem
and generalizations

A.P. Morton and R.K.Wood (1998)
The problem (a knapsack problem where the value of
the items is random, the cost function is some expecta-
tion or quantile function, but the weight of the items,
i.e., the constraints, are deterministic) can be reformu-
lated as a (deterministic) integer program.

Lectures on stochastic programming:
Modeling and theory

A. Shapiro et al. (SIAM, 2009)
The notation used to describe stochastic optimization
problems (the cost function to optimize is defined as an
expectation, the constraints involve quantiles (value at
risk), the problem has a time dimension and we are
looking for an optimal (feasible) strategy) is very, very
heavy. The book deals with the theory underpinning
stochastic optimization (duality, etc.), rather than the
algorithms that could be used to solve those problems.
It assumes that you are already well-versed in classical
optimization, for instance, that you understand that
duality gives an equivalence between constrained opti-
mization (or regression) and penalized optimization (or
regression). The problem can sometimes be recast as a
classical optimization problem (e.g., when the random
variables have a discrete distribution) but the number
of variables explodes. Dynamic programming is a valid
approach if the dimension of the problem is sufficiently
low (2), but studying the convexity of the quantities to
optimize can help overcome the curse of dimensional-
ity.

SIGMOD 2010
Temporality
Databases keep track of the quantiles of the data they
contain but rarely keep the history of those quantiles as
the database evolves: this could be useful to optimize
queries in temporal databases.
Recommendation systems (Amazon, Netflix) could be
improved by looking at temporal patterns (after buy-
ing volume 2 of a series of novels, volume 3 is a good
recommendation, but volume 1 is not).

Article and book summaries by Vincent Zoonekynd 812/1044

http://en.wikipedia.org/wiki/Bulk_synchronous_parallel
http://en.wikipedia.org/wiki/Bulk_synchronous_parallel
http://www.iaria.org/conferences2010/filesICIMP10/ICIMP_Tutorial_Christian_Callegari.pdf
http://www.iaria.org/conferences2010/filesICIMP10/ICIMP_Tutorial_Christian_Callegari.pdf
http://webhome.cs.uvic.ca/~nigelh/Publications/DMC.pdf
http://webhome.cs.uvic.ca/~nigelh/Publications/DMC.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/cmencyc.pdf
http://www.isye.gatech.edu/people/faculty/Alex_Shapiro/SPbook.pdf
http://www.isye.gatech.edu/people/faculty/Alex_Shapiro/SPbook.pdf

Because of accountability requirements, bitemporal
databases (that keep track of all the changes (correc-
tions) that occur on the data) are getting more com-
mon (there are almost-standard temporal extensions
of SQL and XQuery), but keeping track of schema
changes (there is a limited number of operations: cre-
ate, drop, split, merge, copy, join tables; add, remove,
rename columns) is trickier: you can keep all tables
and columns that ever existed, add a start_time and
end_time to all tables and somehow coalesce the data
from the various versions.
Versioned databases ((bi)temporal databases, for text)
lead to specific queries, e.g., the durable top-k: the
first k elements that were always in the top N in the
[t1, t2] time interval (with N as small as possible).
Incorrect or imprecise data or results
Sensor data can be turned into uncertain databases
(aka probabilistic databases): instead of storing a
value, store a probability distribution (e.g., U(25, 35)
instead of 30), which can be multivariate and/or dis-
crete, e.g.,

P (foo, bar) = .3 P (foo, baz) = .6 P (bar, baz) = .1.

A probabilistic threshold query (PTQ) returns all
the tuples satisfying the condition with probability
above a given threshold.
Approximate evaluation of boolean expressions in (cor-
related) databases.
Use online algorithms for long-running SPJG (select-
project-join-group) queries: users want to see the first
results quickly; early result can be approximate
To anonymize time series data (which tend to present
temporal correlation), use Fourier perturbation: do not
add noise to the data itself, but to some coefficients of
its discrete Fourier transform.
Relational operations (join, etc.) for incomplete, im-
precise or erroneous databases, using mixtures of gaus-
sians to model the data in the tables and choose the
confidence intervals
To provide consistent answers from an inconsistent
database (resulting from the integration of several
databases), use a minimally repaired version of the
database and flag the results as “inconsistent” or “con-
sistent”.
To explain why a given tuple is not in the result of a
query, you can: represent the query as a tree and iden-
tify the node that rejected it; minimally transform the
database to include the tuple; minimally transform the
query to include the tuple.
When presenting the “top results” of a query to a user,
one may want to use a user-specified ordering,
SELECT TOP 10 ...
ORDER BY

∑
i

wiAi

where the attributes Ai are part of the data, and the
weights wi defining the preference function are given
by the user. If the user is unsure of his weights, we

can display the skyline (efficient frontier) results, i.e.,
those that are at the top, for some choice of weights
(actually, this is not equivalent) and try to infer the
weights from the skyline results the user prefers. The
resulting weights, for one or several choices, can be
displayed on a parallel plot.
Non-tabular data types (graphs), new types of
queries
To search for a graph or a subgraph in a graph
database, look at frequent and infrequent graph frag-
ments. The same idea applies to supervised classifica-
tion of graphs (e.g., to distinguish program flow graphs
with and without bugs): look for discriminative sub-
graphs, i.e.„ subgraphs frequent in one set but not in
the other.
The frequent itemset problem can be extended to
graphs with a bag of labels on their vertices: you then
look for itemsets that appear on nearby nodes. For
each node and each label, look at the number of neigh-
bours at distance k with that label; this can be approx-
imated by a Markov model (influence propagation, film
recommendations in a social network, etc.).
Unstructured or textual data is often explored though
k-nearest neighbour (k-NN) queries.
Knowkedge is increasingly represented as RDF state-
ments (aka subject-verb-object (or subject-attribute-
value) sentences, or directed graphs with coloured
edges), e.g., DBpedia.
Statistics
Hidden Markov models can be used to infer the internal
state of a system (intrusion detection using log files).
You can identify outliers in relational data as fol-
lows: turn the foreign key constraints into a graph-
ical model (relational dependency network (RDN));
approximate the conditional probability distributions
of the nodes, e.g., using regressions (this may automat-
ically identify missing constraints); use the resulting
confidence intervals to identify outliers and/or clean
the data.
Optimizations
Very long boolean expressions can be evaluated effi-
ciently, without having to convert them to disjunc-
tive/conjunctive normal form (DNF/CNF, “normal-
ized” means that the alternating AND/OR tree has
depth at most 2), which requires exponential space:
you can lazily convert the expression to a normal form;
you can encode the boolean tree as a list of Dewey ids
(number the children of each node from 1 to n, use
a special symbol * for the last child of an AND node,
and process them in order); you can encode the boolean
tree as a set of intervals, the expression begin satisfied
if those intervals cover [0, 1] (use [0, 1] for the root, the
children of an OR node have the same interval as their
parent, the intervals of the children of an AND node
for a partition of the interval of their parent), for the
implementation, discretize the intervals (replace [0, 1]

Article and book summaries by Vincent Zoonekynd 813/1044

by {1, 2, 3, 4, . . . , n}). Those algorithms are used by
advertising exchanges, in which websites, advertisers
and intermediaries form a graph, with boolean condi-
tions on the edges describing the desired profile of the
clients (they could be static or automatically generated
and modified to optimize the number of clicks) and one
wants to evaluate the expressions on all the paths (not
just the edges) between a website and all advertisers.
Most databases process queries independently of one
another: exploiting dependencies between queries
(from different users, or subqueries of a single large
query involving many aggregations) can speed up data
retrieval.
Computing the correlation of N time series of size T
can be done faster than Ω(TN2).
Some people write Ajax-producing SQL queries.

Distilling free-form natural laws
from experimental data

M. Schmidt and H. Lipson
Science (2009)

Symbolic regression is an evolutionary algorithm
that searches a space of mathematical expressions, less
constrained than linear or non-linear regression; in-
stead of producing a single solution, it can provide a set
of solutions on the accuracy–parsimony Pareto front. It
can be used to identify invariants (convervation laws)
in physical systems.
Trivial or approximately trivial invariants (cos2 θ +
sin2 θ, 17+1/(1+x2)/100) can be discarded by looking
at how predictive the conservation law is:
– Given y and a conservation law f(x,y) = 0, you
should be able to find x;

– The conservation lay f(x) = 0 produces other con-
servation laws ∂f/∂xi = 0, which should be predic-
tive as well.

The laws you find depend on the data provided to the
algorithm:
– For instance, for a physical system, with only posi-
tions, you will have the description of the manifold
in state space; with velocities, you will have energy
laws; with acceleration, you will have the equations
of motion;

– With restricted datasets, you will have approxima-
tions (e.g., if you only have small angles, the conser-
vations laws will replace sin θ by θ);

– With a limited set of building blocks, you will have
approximations (e.g., sin θ ≈ θ − θ3/3!, if there is
no sine function) or equivalent formulations (sin θ =
cos(θ − π/2) if you have cosine but not sine);

– With several datasets, you can have more general
laws (e.g., with datasets corresponding to different
masses, you can identify the role the mass plays).

The algorithm can be made aware of units.
Knowledge discovery can be made incremental:
– You can seed the algorithm with known formulas

(e.g., the conservation laws for a double pendulum
are likely to contain quantities that look like those
for a single pendulum);

– Looking at subexpression frequencies accross differ-
ent systems can help identify meaningful quantities
(momentum, potential energy, etc.);

– Since many formulas contain repeated terms, the
laws are not coded as an expression tree (it would
have to have identical subtrees, which is not very
parsimonious), but as a list of assignments of the
form xi+1 ← f(x1, . . . , xi).

The time to convergence is exponential in the com-
plexity of the formula and quadratic in the number of
variables.

Can a biologist fix a radio?
or, What I learned studying apoptosis

Y. Lazebnik (2002)
To understand the stagnation of research in biology
(thousands of articles published every year on very nar-
row subjects (often, a single protein or gene), failing to
lead to new drugs or a better understanding of biolog-
ical phenomena), the author suggests to imagine how
a biologist would try to study and fix a radio (open it,
describe it, try to manually remove elements, randomly
destroy some elements (by shooting the radio), etc.).
Biologists lack a quantitative language, with which they
could make predictions; they lack a systems approach
(when graphically representing the subject of their re-
search, they put put it at the center of a diagram and
come to the conclusion that it is related to everything
else).

Can a systems biologist fix a tamagochi?
L. Cardelli (2007)

(Epistemology in the information age)
The previous article focused on hardware reverse en-
gineering (a radio), but does not work with biological
organisms, which are more like software (the article
uses the tamagochi as an example):
– Principle approach: try to find the principles that
govern the organism: creator, documentation, func-
tion, etc.;

– Mechanistic approach: identify the parts, check how
they are connected, how they react to perturbations;

– Behavioral approach: reactions to stimuli, in a pop-
ulation;

– Environmental approach: how the organism evolved;
behaviour in and interactions with its environment.

(Biological analogues of) software reverse engineer-
ing tools may be useful: tracing, breakpoints, core-
dumps, stackdumps, packet sniffing, reverse compila-
tion, power analysis, etc.

Categories for the practicing physicist
B. Coecke and E.O. Paquette

Article and book summaries by Vincent Zoonekynd 814/1044

The R Inferno
P. Burns (2009)

Very long list of common problems and caveats for (not
only) begining R users.

From the fundamental theorem of algebra
to astrophysics: a “harmonious path”

D. Khavinson and G. Neumann
Notices of the AMS (55)

The effect of gravitational lenses can be described by
polynomials in z and z̄ (of the form h(x + iy) =
P (z)+Q(z̄), P,Q ∈ C[X]; they are actually harmonic,
i.e., ∆h = 0). The number of images is the number of
roots. It is trickier than with (analytic) polynomials:
for instance, h(z) = zn − x̄n has an infinite number of
roots.

Missing data: our view of the state of the art
J.L. Schafer and J.W. Graham
Psychological methods (2002)

To deal with missing data, avoid old methods (case
deletion, simple imputation) and prefer:
– Maximum likelihood, i.e., including the missingness
of the data in the model; just discarding the factors
(in the formula for the maximum likelihood) involv-
ing missing data is not a good idea; the estimation
can be performed with the EM algorithm;

– Bayesian multiple imputation: replace the missing
values with an estimate of their distribution (not a
single value, as with simple imputation), or a set of
values, yielding several plausible complete datasets
– surprisingly few such surrogate datasets are suffi-
cient (3 to 10).

You should be aware of the distinction between:
– Data missing completely at random (MCAR): miss-
ingness does not depend on X or Y ;

– Data missing at random (MAR): missingness does
not depend on X, but may depend in Y ;

– Data missing not at random (MNAR): missingness
depends on Y .

Also check the Multiple imputation FAQ.

Hash visualization: a new technique to
improve real-world security

A. Perrig and D. Song
Humans are bad ar comparing hash strings: instead of
strings, one can use images, generated by an expres-
sion tree, built from the hash string and a (stochastic)
grammar (use the hash string to choose which branch
of the grammar you should take). This is not unlike
L-systems.

Continuity analysis of programs
S. Chaudhuri et al.

POPL 2010

It is not too difficult to decide whether a mathemat-
ical expression represents a continuous function (for-
mal algebra systems should be able to simplify most
expressions of the form f(x) − limh→0+ f(x + h)); for
imperative programs, it is trickier, but can be done (in
most cases).

Mathematics and the internet: a source of
enormous confusion and great potential

W. Willinger et al.
Notices of the AMS (56)

The popular claim that “the internet is a scale-free
network; it is robust to random attacks but very vul-
nerable to targetted attacks” may be incorrect:
– It is based on traceroute data, that ignores the
fact that routers have multiple interfaces and cannot
see the low-level infrastructure (below the IP layer
– this is used, invisibly, to make the nework faster
and more robust);

– It assumes that the network is random: this is not
true, since the addition of a small number of edges
can greatly increase robustness – ISPs are probably
already doing that, to increase their quality of ser-
vice (QoS);

– Vulnerabilities are at the edge of the network: if an
ISP disappears, all its clients are disconnected.

Genetic optimization using derivatives:
the rgenoud package for R

W.R. Mebane and J.S. Sekhon
Genetic optimization algorithms can be improved by
modifying each candidate solution by a local search, so
that they all be local extrema.

Gestion d’arbres
par représentation invervallaire

SQLPro (2003)
Trees, in SQL, can be efficiently represented by inter-
vals:
– Leaves are 1-element intervals, (from 1 to n);
– A node is represented by the set of leaves it leads to;
– The order on the leaves is chosen so that each node is
represented by an interval; in particular, leaves with
the same parent are adjacent.

This is very efficient if the tree is static, but insertion
is O(n) (you have to shift half the tree on average).

Music: broken symmetry,
geometry and complexity

Gary W. Don et al.
Notices of the AMS (57)

Gabor transforms (aka spectrogram, sonogram,
short-time Fourier transform: the FFT on a sliding
(smooth) window of constant size) has musical appli-
cations, such as:
– Help singers analyze and improve their vibrato;
– Analyze reverberation;

Article and book summaries by Vincent Zoonekynd 815/1044

http://www.stat.psu.edu/~jls/mifaq.html

– Show (quantify) beatings between overtones;
– Decompose a piece into sections (and perhaps also
identify similarities between sections);

– Show the structure of those sections (in a more
graphical, directly understandable way than tradi-
tional notation);

– Transcribe birdsong (zoomusicology);
– Analyze acoustic phenomena, such as the Shepard
tone (it does appear in Renaissance music, as voice
painting for an infinite upward movement).

The Gabor transform can be seen as the dot products
with a set of vectors, the Gabor frame (it is not a
basis because the windows overlap); the generalized
inverse (the dual Gabor frame) can be used to define
filters (amplify some region of the spectrogram, remove
noise, slow down without changing the pitch, change
the pitch, etc.) or for synthesis (draw the spectrogram
and transform it into sound – it is a form of granular
synthesis, the elements of the Gabor frame being the
grains).
The scalogram (continuous wavelet transform, CWT)
is similar but lets the window size vary.
The percussion scalogram is obtained as follows: fil-
ter the signal (e.g., only retain frequencies in a given
band, to isolate an instrument); compute its spectro-
gram; build a pulse train (a 0-1 signal) by comparing
the intensity of the spectrum with a given threshold;
take the scalogram of the pulse train. This can help
compare the rhythm of various instruments.
The entropy of the intervals between two percus-
sive strikes is a measure of the complexity of the
rhythm. However, this discards time: you may pre-
fer the Markov-1 entropy (average of the entropy of
the transition probabilities) (?).
There is no mention of the cepstrum, more appro-
priate to study pitch classes (rather than pitches), or
the Mel-frequency cepstrum (MFC), used in speech
recognition.

Time-frequency analysis of musical rhythm
X. Cheng et al. (2010)

More details on the percussion scalogram, and exam-
ples of combined analysis of rhythm and melody, using
both the spectrogram and the percussion scalogram:
– It can distinguish between strong and weak beats:
there is no amplitude information in the pulse train,
but strong beats happen to be longer;

– The Haar CWT may look more approproate to study
a pulse train, but it leads to less readable a picture,
with “cubist” artefacts;

– The article ends with some advice on the choice of
parameters.

The percussion scalogram is only a first step towards
a better graphical notation or representation of the
hierarchical rhythmic structure of a piece – the arti-
cle uses (ugly) ascii art to mimick the already inade-
quate tratitional notation, only replacing the hierarchi-

cal cues (measures, slurs) with parentheses. The task
looks similar to the (automated) genome annotation
problem in biology.

Music and mathematics
T. Fiore

Music can (sometimes) be analyzed as combinatorics
or group actions on the following sets:
– Pitch classes: Z/12 or Z/7;
– Pitch class sets: (Z/12)n/Sn;
– Chords: (Z/12)3.
You can build group actions from transposition (trans-
lation) and inversion

(a, a+ b, a+ b+ c) 7→ (a, a− b, a− b− c);

this defines an action of the dihedral group D24 on
(Z/12)3.
The PLR group acts on the set S of major and minor
chords (the orbits of (0, 4, 7) and (0, 3, 7) under the
action of Z/12 acting by addition) and is generated
by the following transformations: P (parallel major or
minor, e.g., Cmaj 7→ Cmin), R (relative major or mi-
nor, e.g., Cmaj 7→ Amin), L (leading tone change, e.g.,
Cmaj 7→ Emin). This is another action of the dihedral
group D24. Chord progressions are paths in S, and
often follow elements of the PLR group.
The formulas do not seem to make sense.

P (a, b, c) = (c, ·, a)
L(a, b, c) = (c, ·, b)
R(a, b, c) = (b, a, ·)

Musical actions of dihedral groups
A.S. Crans et al. (2007)

More details on the two actions of D24 on (Z/12)3.

The topos of triads
T. Noll (2005)

Instead of group actions on Z/12, you can consider
monoid actions. For instance, the affine transforma-
tions z 7→ az + b on (Z/12)3/S3 that preserve the
major triad (0, 1, 4) (the author encodes pitch classes
with the circle of fifths: 0=C, 1=G, 2=D, etc.) for
an 8-element monoid T . The topos of triads is SetT ;
some of its properties (subobject classifier, etc.) have
musical interpretations.
[The math review is more readable than the article.]

Visual hierarchical key analysis
C.S. Sapp (2005)

To graphically represent modulation and harmony
changes in a piece of music, plot it in a triangle, with
the colour of point (x, y) representing the key (from

Article and book summaries by Vincent Zoonekynd 816/1044

the Krusmansl-Schmuckler key-finding algorithm) of
the subset of the piece of length 1 − y centered on
x (where y ∈ [0, 1], 2x ∈ [1 − y, 1 + y], and the total
length of the piece is 1).

Midi Toolbox: Matlab tools for music
T. Eerola and P. Toiviainen (2004)

Once your mathematical software can read, play, write
Midi files, you can also:
– Plot a piece as a piano roll,
– Look at the distribution of pitch classes or intervals,
– Look at the pitch class transition matrix,
– Look at the autocorrelation of the melodic contour,
– Apply key-finding algorithms: the Krumhansl-
Schmuckler algorithm just compares, by looking at
the the correlation, the distribution of pitch classes
with corpus-based references for major () and
minor (– proportions of C, C#, D, etc.);
there are also SOM-based algorithms (self-organizing
maps) and meter-finding algorithms (look at the au-
tocorrelation of the note-onset time series);

– Compute the melodic complexity (entropy),
– Compare pieces in a corpus, etc.

Statistical methods for corpus exploitation
M. Baroni and S. Evert (2006)

Introduction to statistics (tests, estimators, etc.) for
linguists.
In R, use binom.test for tests about proportions (e.g.,
the proportion of passive sentences in English).
For a longer introduction to statistics (anova, tests),
check The Foundations of Statistics: A Simulation-
based Approach, by S. Vasishth and M. Broe (Springer,
2010).

EuroSciPy 2010
Scientific computing in Python relies on SciPy; spe-
cific bundles of modules, targeted at a given domain,
are packaged into “SciKits”.

Supply and demand shifts
in the shorting market
L. Cohen et al. (2006)

Comparison of short supply, short demand and future
returns: in markets with bad information flow, there is
a relation, suggesting that short selling plays a role in
price discovery.

Asset prices under short-sale constraints
Y. Bai et al. (2006)

Short sale constraints have contradictory effects on the
markets:
– It limits the ability to share risk, limits the supply
of stocks, and leads to an increase in price;

– It limits how much information flows into the prices
(some informed investors cannot invest as much as

they would like to), increases uncertainty and volatil-
ity, drives investors away and decreases prices (as
usual: opacity in financial markets leads to price
drops and crashes).

The authors use a model of the market with two pe-
riods, two investors, with different endowments and
utilities.

The large scale structure
of semantic networks: statistical analyses

and a model of semantic growth
M. Steyvers and J.B. Tenenbaum (2005)

Natural language semantic networks (WordNet, Ro-
get’s thesaurus, word associations) are not completely
unstructured: rather than a rigid structure, they have
some statistical properties (small world, scale-free,
etc.) that can be explained by a preferential attache-
ment model.

25 years of IIF time series forecasting: a
selective review

J.G. De Gooijer and R.J. Hyndman (2005)
Review of recent and not-so-recent progress in time
series forecasting: state space models (exponential
smoothing, Kalman filter, structural models aka dy-
namic linear models), ARIMA (VAR, ECM), season-
ality, non-linear models (threshold, regime switching,
neural nets), long memory (ARFIMA: 0 < d < 1

2),
GARCH (GARCH(1,1) if often sufficient), evaluation
of the quality of a forecast, combining forecasts (sim-
ple average (robust), weighted average with weights
from OLS or OLS with a

∑
wi = 1 constraint, time-

changing weights), prediction intervals or densities
(bootstrap) (do not forget to account for power un-
certainty).
There has been little progress on: count data forecast-
ing, panel data.

Domain-specific languages:
an introductory example

M. Fowler (2007)
Java is too verbose to implement simply a state ma-
chine: XML can help, low-overhead markup languages
(YAML, JSON) are better, but DSL (domain-specific
languages), which add some simple control structures,
are even better – M4 was an early example. A “pro-
gram” in a DSL is often simpler than a program in a
general language, and can be easily represented graph-
ically (cf. graphical programming languages: Pure-
Data, Scratch/Etoys/Squeak).

Economics needs a scientific revolution
J.P. Bouchaud (2008)

Economics is based on very strong assumptions (ax-
ioms), that prevail on empirical evidence: the market-
place has been deified. These dogmas are perpetuated
through the education system: we need more natural

Article and book summaries by Vincent Zoonekynd 817/1044

sciences in the curriculum. For instance, models based
on those incorrect axioms actually assume that there
will be no crisis. markets are wild: they are not in a
state of equilibrium and will never be. Financial inno-
vations should be tested by independent agencies, as
for all potentialy dangerous industries.

Trust! Why it has been lost
and how to regain it

D. Sornette (2008)
The recent crises (ITC, housing, MDS), each feeding
the next, are the result of a loss of trust and a lack
of governance, rather than incorrect mathematical for-
mulas. They come from endogenous instabilities (spec-
ulative euphoria) rather than exogeneous factors: they
are therefore predictable. Crises are often beneficial:
they create an excess capacity that has a long-term
impact on new technologies (rail in the UK just before
the industrial revolution, the IT bubble, etc.). Mar-
ket movements, business cycles, unexpected downturns
will not disappear: they are part of a healthy economic
system.
Regulations are needed, but they are often too simple
or too complex, and have unintended consequences –
they give an illusion of control to regulators. We need
to develop a “culture of risk” (I would call it “risk liter-
acy”) for managers in governments, regulatory bodies,
financial institutions – and also in the general public.

Dynamics of market correlations:
taxonomy and portfolio analysis

J.P. Onnela et al. (2003)
The minimum spanning tree built from the correlation
matrix of daily asset returns is unstable: to see if it is
significantly different from one period to the next, we
can look at numerical properties of the graph (akin to
topological invariants, in algebraic topology), such as
its degree distribution (or just the tail of the distribu-
tion, if the graph is scale-free: f(n) ∼ n−α)
or the avearge distance to the “central” vertex (e.g.,
that with the highest degree, the highest weighted de-
gree (use the correlation coefficients as weights) or that
giving the lowest average distance). One can also look
at the proportion of edges present in the tree on two
consecutive months. (The authors use a 4-year win-
dow: crises will create a discontinuity twice, when they
enter and leave the window.)
The branches of the MST may be similar to some sector
classifications.
The minimum portfolio (based on the sample covari-
ance matrix, i.e., the same matrix used to build the
minimum spanning tree), mainly contains leaves of the
MST; the maximum return portfolio is still far from
the center, but not as much. This just says (graphi-
cally) that optimal portfolios are diversified (far from
the center).

The virtues and vices of equilibrium
and the future of financial economics

J.D. Farmer and J. Geanakoplos (2008)
Equilibrium theories usually arise from game theory:
models with several agents (producers and buyers),
each with some initial goods (endowment), some ability
to transform those goods (technology), and some con-
vex utility; they claim that there is a supply-demand
(Arrow-Debreu) equilibrium. But this equilibrium may
be unnatural or problematic: at equilibrium, supply
magically matches demand: at the end of the day,
there is no unsold inventory; the equilibrium need not
be stable or even unique; there could be some attrac-
tor (the economy is a dynamical system) preventing
you from reaching the equilibrium; it may change with
time; the convex utility is contradicted by behavioural
economics.
There are two justifications for the economy being
in an equilibrium: the tatonnement mechanism (eco-
nomic agents progressively adjust their consumption
and production and approach the equilibrium) and om-
niscience (if everyone knows the equilibrium and every-
one knows that everyone knows about it (and knows
that everyone knows, etc. – common knowledge), it is
in everyone’s interest to use the equilibrium prices).
The economic equilibrium theory can be extended into
a financial equilibrium theory, by adding time, uncer-
tainty and financial securities; because of uncertainty,
utility is often replaced by expected utility.
Equilibrium often entails efficiency (in complete mar-
kets, i.e., if it is always possible to offset any future
risk): Pareto efficiency (there is no change in prices
that would benefit everyone); information efficiency
(prices are unpredictable, e.g., are martingales, i.e.,
all the information available is already included in the
prices; this implies that the price of assets coincide with
their fundamental value – the present value if there is
no uncertainty); arbitrage efficiency (absence of arbi-
trage).
Contrary to the large number of macronomic empiri-
cal laws that stress mere correlations, equilibrium the-
ories (based on an agent model) can produce cause-
consequence relations: they are useable for policy de-
cisions. They do not incorporate psychological biases
and the bounded rationality of economic agents: this is
unrealistic, but parsimonious and hopefully sufficiently
good.
Even if equilibrium models are wrong, they are useful:
one can use them to find and exploit deviations from
equilibrium; one can assume that there is no arbitrage
in one market (e.g., interest rates) to help exploit ar-
bitrage opportunities in another market.
Equilibrium theories emphasize understanding over
predictability, and often make auxilliary assumtions:
they are (almost) not falsifiable. The presence of power
laws if often advanced as an argument against equilib-
rium, because in physics, power laws appear in phase
transitions and never in an equilibrium – but they are

Article and book summaries by Vincent Zoonekynd 818/1044

not incompatible with the notion of equilibrium. The
progress towards equilibrium is unnaturally slow (de-
cause instead of years, if one only has daily market
data).
The causes of the recent crisis are manifold: structural
changes (regulatory changes supposed to protect peo-
ple with a bad credit record), statistical mistakes (look-
ing at the mean instead of the whole distribution), per-
verse incentives (rating agencies), people trying to hide
what was happening. Even if they are wrong, equilib-
rium theories and game theory can be useful (e.g., to
study perturbations around equilibrium) but should be
combined with behavioural and experimental finance
and more structural models (e.g., how does the contin-
uous double auction mechanism (i.e., the use of limit
orders and markets orders, as in most financial mar-
kets) influence prices?). Biology can provide some in-
spiration as well: for instance, one could study the tax-
onomy and evolution of financial strategies, or the mar-
ket environment (investors, brokers, regulators, banks,
governments, etc.). Financial markets are a complex
system.

R in Finance 2010
Indirect inference suggests to use an auxilliary
model, farther away from the data, but easier to fit.
R can interact with more and more third party sys-
tems: iBrokers, OneTick, etc.
Repast Symphony is a (free, Java) tool to simulate
agent-based models; the results can then be ana-
lyzed in R.
Esper is an SQL-like processing language for asyn-
chronous data; the callback functions run when an
event is received can be written in R; it can use Re-
dis as a key-value store.
R can provide a complete toolchain for fund man-
agers: data (quantmod, indexes, RTAQ, xts), sim-
ple computations on data (TTR (technical analy-
sis), signalextraction), trade selection (quantmod,
quantstrat), risk control (PortfolioAnalytics,
lspm), backtest or performance monitoring (blotter,
FinancialInstrument, PerformanceAnalytics), etc.
The indexing package provides direct access (using
the [operator) to vectors stored on disk and mapped
to memory on demand (MMAP); an index is kept in
memory to speed up data access.
The following packages were also mentionned:
signalextraction, ghyp (for non-gaussian distribu-
tions), Rhive (Map/Reduce with Hadoop, on Ama-
zon’s EC2 cluster), tm (text mining, the computations
can be distributed with Hadoop/Hive).
GPUs can be used for high-performance programming.

Les nouvelles formes d’organisation du travail
Xavier de la Vega (SH, 2010)

Company structures can be classified into one of the

following four types, which can be expressed in terms
of graph theory:
– Clique (unstructured company, often very small);
– Trees (strong vertical structure: taylorism, pio-
neered by Ford, dominant in southern Europe and
emerging countries);

– Graphs full of small custers or cliques and with
a small diameter and average distance (horizontal
structure: lean production, pioneered by Toyota,
dominant in the UK and the US, combining low
inventory (just-in-time production), diversity of the
products/tasks (a given employee can perform sev-
eral tasks, so as to better adapt to changes in de-
mand), and quality; it became more widespread with
the advent of computers);

– Dynamic networks, i.e., graphs changing over time
(learning organizations, dominant in Norther Eu-
rope, based on autonomy (you are given objectives,
but are free to choose how to achieve them) and com-
munication between workers).

Multiple testing corrections
Silicon Genetics (2003)

When performing multiple statistical tests (often, tens
of thousands), p-values have to be corrected, for in-
stance with the following methods:
– Bonferroni correction: p∗ = Min(1, np);
– Bonferroni step-down (Holm) correction,

p∗ = Min
(
(n− k + 1)p, 1

)
,

where k is the rank of the p-value (sort them in as-
cending order);

– Westfall and Young correction: resample the data
to have an estimate of the distribution of the sorted
p-values under the null hypothesis, and consider the
sorted p-values significant as long as they are under
their resampled estimates;

– Benjamini and Hochberg correction:

p∗ =
n

n− k
p.

The first 3 methods control the familywise error rate
(FWER), while the last controls the false discovery rate
(FDR).

Maximum entropy distribution inferred
from option portfolios on an asset

C. Neri and L. Schneider (2009)
Maximum entropy estimators make no distributional
assumptions: given a set of option prices for the same
underlier and maturity, one can compute the distribu-
tion of prices at expiry that maximizes entropy and
agrees with the option prices. The article provides de-
tailed computations for calls and digitals, with theo-
retical justifications.

Article and book summaries by Vincent Zoonekynd 819/1044

http://esper.codehaus.org/
http://code.google.com/p/redis/
http://code.google.com/p/redis/

Social effects in science: modelling agents
for a better scientific practice

A.C.R. Martin (2009)
Scientific discovery can be seen as an opinion dynam-
ics model on a social network, endowed with two error-
correcting mechanisms:
– Experiments, i.e., interaction with nature, seen as

an external field;
– Retirement of old scientists.

The bivariate normal copula
C. Meyer (2009)

20 pages of formulas.

Estimation of the instantaneous volatility
A. Alvarez et al. (2010)

Study of the speed of the convergence of

ε1−p/2
∑
i

∣∣Xiε −X(i−1)ε
∣∣p −→ mp

∫ t

0

σps ds

where dXt = atdt + σtdWt is a stochastic volatility
model (σt is a càdlàg martingale) and mp a constant,

mp = E |Z|p , Z ∼ N(0, 1).

Most efficient homogeneous
volatility estimator

A. Saichev et al. (2009)
Common estimators of volatility based on OHLC
prices, such as

σ̂RS =

√
(H −O)(H − C) + (L−O)(L− C)

T

σ̂GK =

√
k1(H − L)2 − k2((C −O)(H + L)− 2(H −O)(L−O))− k3(C −O)2

T

(for some magic values of k1, k2, k3) are not the most
efficient. This article studies quadratic estimators (i.e.,
quadratic forms on H−O, L−O, C−O) or more gen-
erally homogeneous estimators, and identifies the best
one, depending on the model describing the underlying
stochastic process.

Impact of the tick size
on financial returns and correlations

M.C. Münnix et al. (2010)
The distribution of stock returns (e.g., tail behaviour),
the correlation between stock returns, are known to de-
pend on the horizon in a non-obvious way. This could
be due to rounding, i.e., to the tick size (either imposed
by the exchange, or through psychological reasons lead-
ing to clusters at some multiples of the tick size – the
effetive tick size) and can be compendated for.

A new composite index
of coincident economic indicators in Japan

S. Fukuda and T. Onodera (2001)
Coincident indicators (that give the state of the econ-
omy, i.e., the position in the business cycle) such as
industrial production, sales, employment, income (in-
come is used in the US but not in Japan) are naively
combined (average growth rate) by the Japanese Eco-
nomic Planning Agency to produce a “composite index
(CI) of coincident indicators”. It is biased towards in-
dustrial production, can be inconsistent with leading
indicators (that try to predict the state of the economy
in the coming year) or even the economic situation. It
can be replaced by a less naive model, assuming that all
those indicators come from a single hidden factor, that
can be estimated with a Kalman filter (Stock-Watson’s
“single index dynamic factor model”).

Multiscaled cross-correlation dynamics
in financial time series

T. Colon et al. (2010)
Correlation matrices of stock returns have been studied
in the following situations:
– Whole spectrum of the sample correlation matrix,
estimated on a fixed period of time;

– Evolution, with time, of the largest eigenvalue of the
correlation matrix estimated on a moving window of
fixed size.

This article suggests to:
– Look at the whole spectrum, not just the first eigen
value;

– Look at the dependence on both window position
and window size, as in wavelet analysis, or look at the
matrix of wavelet correlations instead: the cor-
relation between the wavelet coefficients at a given
location and scale.

The effect of discrete vs continuous-valued
ratings on reputation and ranking algorithms

M. Medo and J.R. Wakeling (2010)
Iterative refinements of user and object reputation (à
la PageRank) give more accurate ratings than naive
averages, but restricting the ratings to a discrete set of
values (e.g., a 5-star system) significantly degrades the
performance of the algorithm.

Using Permia and Nsp for constructing
a risk management benchmark
for testing parallel architecture

J.-P. Chancelier et al. (2009)
Premia is a non-free library developed by the Inria to
price derivatives. Nsp is a free Matlab-like language
developed by the École des Ponts, not unlike Octave,
Scilab or R. They also use MPI for parallelism.

Article and book summaries by Vincent Zoonekynd 820/1044

Recurrence networks – a novel paradigm
for non-linear time series analysis

R.V. Donner et al. (2009)
There are many ways of constructing a graph (or net-
work) from a time series (or a (single) trajectory of a
dynamical system):
– The recurrence network, whose adjacency matrix
is given by the recurrence plot,

Rij(ε) = 1∥xi−xj∥⩽ε

(you may want to remove self-loops; as you change
ε, you actually have a family of networks);

– The visibility graph (whose vertices are points in
time, and there is an edge between t1 and t2 if the
[xt1 , xt2] segment remains abive the curve);

– The transition matrix (a weighted graph), whose ver-
tices are discretized values of the time series, and
whose weights are the transition probabilities;

– The correlation network (whose vertices are seg-
ments [t, t + T], and whose edge weights are
Cor(xt1,t1+T , xt2,t2+T).

Some properties of the time series may be visible on
the network (for instance, the recurrence plot of an er-
godic time series represents the invariant density, in the
phase space), and some graph-theoretic metrics may be
infomative:
– Degree (number of neighbours);
– Edge density (average degree);
– Local clustering coefficient (testing if there are more
triangles around a vertex than in a random network);

– Average clustering coefficient;
– Local degree anomaly (difference between the degree
of a node and the average degree of its neighbours);

– Assortativity (measuring if links tend to form be-
tween vertices of similar or dissimilar degree – this
is similar to the local degree anomaly, but based on
edges rather than vertices);

– Matching index (how many neighbours two vertices
have in common);

– The matrix of shortest path distances; the average
path length; the network diameter;

– Closeness centrality of a vertex (inverse of the aver-
age distance to other vertices);

– Betweenness centrality of a vertex (on how many
shortest paths it is);

– Edge betweenness (idem, with an edge).

Financial crises and the evaporation of trust
A. Anand (2009)

Financial crises can be modeled with a credit network:
a dynamic network, whose nodes represent lenders and
whose vertices represent loans. From time to time,
information about a node (bank) is revealed (leaked)
and other lenders may then decide (in a game-theoretic
way) to foreclose their positions with it. In this model,
the only cause of default is the breakdown of trust.
The opacity of the network increases the risk of a bank
run: it makes it easier to fall into an “equilibrium”

leading to a bank run than to leave it or to fall into an
“equilibrium” that does not lead to a bank run (there
are many “equilibria”, most of which break down when
information is leaked).
Crises are a financial example of hysteresis – trust is
easy to lose, but hard to restore.

Optimal split of orders across liquidity pools:
a stochastic algorithm approach

S. Laruelle et al. (2009)
Application of stochastic approximation (a
continuous-time analogue of reinforcement learning
– used here in a discrete setting) to splitting orders
across several dark pools – the algorithm progressively
learns which pool is the best, in terms of volume and
price. The article details an alternative algorithm,
based on optimization under constraints.

Continuous-time trading
and the emergence of probability

V. Vovk (2009)
http://www.probabilityandfinance.com/

There are two main approaches to probability theory:
the axiomatic approach (measure theory) and the fre-
quentist approach. This article uses a third one: game
theory. Even without explicitely giving a probability
distribution, one can define a game-theoretic notion of
“almost surely”, i.e., identify events of probability 1
(on the space Ω of continuous functions [0,∞) −→ R):
“with probability one” means “unless there exists a
trading strategy (it has to be adapted to the filtra-
tion Ft generated by Ω – there is no measure, just a
filtration) that increases the capital it risks manyfold”.
The article does not really introduce this framework,
but it uses it to state and prove that the process of
quadratic variation exists, and that replacing the time
by this quadratic variation process gives a brownian
motion – the result is known for martingales, i.e., if
you have a probability distribution. (Informally, this
says that in market time log-prices are a Brownian mo-
tion.)

Nonparametric methods
for volatility density estimation

B. van Es and P. Spreij (2009)
In a model of the form

Y = X + noise,

if you know the distribution of Y , of the noise, and
want that of X, you have a deconvolution problem,

DY = DX ∗Dnoise.

With enough independence assumptions, kernel esti-
mators or wavelet estimators are fine. To estimate
the density of the volatility in a GARCH or stochas-
tic volatility model, the lack of independance calls for
extra caution – but kernels can still do the job.

Article and book summaries by Vincent Zoonekynd 821/1044

http://www.probabilityandfinance.com/

Admissible strategies
in semimartingale portfolio selection

S. Biagini and A. Černý (2010)
A self-financing strategy H is a predictable stochastic
process satisfying

H · St = V0 +

∫ t

0

Hs dSs

where S is the semimartingale of discounted prices
and V0 is the initial wealth. This definition is not re-
strictive enough and includes undesirable or unrealistic
strategies: one usually adds further restrictions, such
as “never be bankrupt” or (more commonly) “H is a
supermartingale”. This article examines those restric-
tions and how they arise from the choice of a utility
function. (The article uses the notion of Orlicz space:
the Lp spaces can be generalized by replacing |·|p by
any non-decreasing function, for instance the lower tail
of a utility function −U(− |·|). Strictly speaking, since
the utility is not homogeneous and can even take in-
finite values, there are two spaces: the Orlicz space
contains functions which have a scalar multiple of finite
norm; the Moore subspace contains functions all of
whose multiples have a finite norm.)

Modelling financial risk
R. Pfaff

R in Finance 2010
Overview of the tools one may need to model risk, from
one or two time series.
The PerformanceAnalytics package provides various
estimators of the most common measures of risk, value
at risk (VaR) and expected shortfall (ES), e.g., assum-
ing that the distribution is gaussian, and adding a cor-
rection for skewness and kurtosis (Cornish-Fisher).
Extreme value theory suggests to refine those estima-
tors in one of the following three ways:
– By looking only at the tail of the data (i.e., the

observations above a certain threshold – the peaks-
over-threshold (POT) method) and fitting it to a
generalized Pareto distribution (GPD). The mean-
residual-life plot (aka conditional mean exceedance
(CME) plot), E[X − a|X ⩾ x] ∼ x, can help select
the threshold: the plot will onften have a non-linear
part, a linear part, and noise; you want to fit the
GPD to the linear part (check the POT package and
its vignette).

– An alternative, but less efficient use of the data, is
to look at the distribution of the maximum return
for each year or month (the block-maxima method)
and fit it to a genralized extreme value (GEV) dis-
tribution (under reasonable assumptions, the limit
distribution is in this family).

– Poisson Point Processes are mentionned, with no de-
tails.

You may also want to check the VaR, ismev, QRMlib
packages (the last two accompany books on quantita-
tive risk management).

To fit the whole distribution, you can use a hener-
alized hyperbolic distribution (GHD, with 3 parame-
ters in addition to the location and scale, check the
ghyp package), or a special case, such as the nor-
mal inverse gaussian (NIG), the hyperbolic distribution
(HYP, check the HyperbolicDist package for the pdqr
functions and some fitting algorithms), etc. (also check
the SkewHyperbolic package). The actuar package
contains common loss distributions (with fewer param-
eters).
Serial dependence skews the estimators or risk
(VaR, ES) that rely on iid returns: check
the tseries::garch (GARCH), fGarch::garchFit
(ARMA-GARCH), bayesGARCH (MCMC estimation
of a GARCH(1,1) model with Student innovations),
rgarch (on RForge). packages. There are also some
multivariate GARCH packages, as well: ccGARCH (con-
ditional correlation GARCH), gogarch (generalized or-
thogonal GARCH).
To account for dependence, do not rely on correlation
(there are many fallacies, such as the meaning of a zero
correlation or the extreme values not being −1 and 1)
but prefer the rank correlation, Kendall’s tau, the in-
dex of upper (and lower) dependence

λupper(X,Y) = P [Y > F−1Y (q) |X > F−1X (q)]

or a copula. (e.g., Gaussian, Gumbel, Clayton or Stu-
dent, estimated by the method of moments from the
rank correlation or Kendall’s tau, or by maximum like-
lihood). Non-symmetric copulas are not mentionned;
no R packages are mentionned.
A copula-GARCH model can be estimated as follows:
– Fit the time series independently, as GARCH(1,1)
models with Student innovations, S unless you have
a very good reason to think that the serial depen-
dence is negligible;

– Estimate the copula of the residuals;
– Compute the chosen risk measure (VaR, ES, draw-
downs, etc.) using simulations.

RQuantLib: interfacing QuantLib from R
D. Eddelbuettel and K. Nguyen

R in Finance 2010
QuantLib is a C++ library, using Boost, with bind-
ings for many languages (Python, etc. via Swig; the
R binding is manual), for option pricing. implement-
ing various products and methods (Black-Scholes, fi-
nite differences, binomial, Monte Carlo, Monte Carlo
with low discrepancy sequences, etc.).

example(EuropeanOption)
example(BinaryOption)
demo(OptionSurfaces)

Fixed income products were recently added: you
can build a discount curve (DiscountCurve,
FittedBondCurve) and price bonds (ZeroCouponBond,
FixedRateBond, etc.). A GUI (RQuantLibGUI), cur-
rently only for bonds, based on the traitr package

Article and book summaries by Vincent Zoonekynd 822/1044

(inspired by Python’s traits UI module) has also been
added.

Extending and embedding R with C++
D. Eddelbuettel

R in Finance 2010
To speed up computations in R, you can:
– Use faster functions, that only compute the data
needed and none of the diagnostics, for instance
lm.fit instead of lm

– Use .C to call a C function: you have to cast the ar-
guments to the right type in R, to compile the shared
library (R CMD SHLIB) and load it (dyn.load); the
C code only deals with pointers;

– Use .Call to call a C function: it is more transpar-
ent on the R side, you can use arbitrarily complicated
types, but you have to cast the arguments in C from
the SEXP type using macros, leading to hard-to-read
code; you still have to compile and load the shared
library;

– Use Rcpp, that relies on the STL to replace those
macros and enhance code readability, at the expense
of speed (it will be faster than pure R code, but
slower than .C);

– Use the Inline package, that uses any of those three
approaches, but transparently compiles and loads
the shared library;

– Combine any of the above with optimized libraries,
such as GSL or the C++ Armadillo linear algebra
classes (the Gnu Scientific Library (GSL) is a C li-
brary, with no platform-specific optimizations and
a sometimes awkward C-like syntax; it is not lim-
ited to linear algebra; Armadillo is a (LGPL) C++
wrapper around Lapack and Atlas, with (compile-
time) delayed evaluation of some operations to more
efficiently combine them, using templates).

RInside works in the other direction: it allows you to
call R from C++.

Statistical finance for investors
unfamiliar with quantitative methods

using stockPortfolio in R
N. Christou and D. Diez

R in Finance 2010
Three functions to download stock returns from Ya-
hoo; estimate the variance matrix and the expected re-
turns; and compute “the” optimal portfolio (they mean
the tangential portfolio), with or without short-selling.
They provide several (mostly undocumented) estima-
tors of the variance matrix and the expected returns:
– Sample variance matrix;
– Constant correlation model: the correlation of any
two stocks is always the same;

– Multigroup model: the correlation can take two val-
ues, depending on whether the stocks are in the same
industry or not; industry membership has to be pro-
vided;

– Single index model (a 1-factor model, where the risk

factor has to be provided).

Business objectives
and complex portfolio optimization

P. Carl et al.
R in Finance (2010)

Simple optimization problems (linear, quadratic, con-
ical) are well addressed by the fPortfolio package,
but for real-world problems and less trivial business
objectives, such as the expected shortfall (aka condi-
tional value at risk (CVaR), often the Cornish-Fisher
CVaR computed from historical data) or the condi-
tional drawdown at risk (mean of the worst p% draw-
downs), and constraints, such as position limits (no
single asset should be more than x% of the portfolio)
or CVaR limits (no single asset should have a contribu-
tion to the CVaR over x%), the PerformaceAnalytics
package provides an “approximatively correct [solu-
tion] rather than [a] precisely wrong [one]”, using two
methods:
– Random portfolios: start with random weights and
modify them so that the constraints are met (this
is an optimization problem with constraints but no
objective functions); this will give a set of portfolios
on the boundary of the feasibility domain and some
in the interior;

– Differential Evolution, i.e., a genetic algorithm used
to evolve a population of portfolios to optimize sev-
eral objective functions (maximize return and mini-
mize risk), so as to cover the (efficient) boundary of
the feasibility domain.

Since those computations deal with many (indepen-
dent) portfolios, they can easily be parallelized.
The package also provides many plots: portfolios in
the risk×return space (you can compare your port-
folio with an equal-weighted or equal-risk (equal-
contribution-to-CVaR) benchmark); cumulative re-
turns; monthly returns (and expected shortfall) over
time; drawdown; portfolio weights by asset (or asset
type) over time; contribution to the portfolio espected
shortfall (or value at risk) by asset, over time.

RProtoBuf: Protocol Buffers for R
R. Fran cois and D. Eddelbuettel

R in Finance 2010
Protocol Buffers is a serialization format (like JSON,
BSON (binary JSON, used by some unstructured
databases, such as MongoDb), YAML, ASN, or even
XML) and corresponding C++ library, developed by
Google. The RProtoBuf packages allows you to read
and write data in this format, and can be used when
your data does not easily fit in a CSV file. It is possible
to (manually, for the moment) use Rcpp to speed up
data access.

Testing, monitoring and dating
structural changes in FX regimes

A. Zeilis

Article and book summaries by Vincent Zoonekynd 823/1044

http://www.gnu.org/software/gsl/
http://arma.sourceforge.net/
http://code.google.com/p/protobuf/

R in Finance 2010
The strucchange package can be used to assess when
a country changed the control on its currency:
– Consider FX returns with respect to a currency not
involved in the affair, e.g., CHF;

– Regress the returns against those of currencies po-
tentially involved (USD, EUR, GBP, JPY);

– Test if the coefficient for the dollar is significantly
different from 1, if the other coefficients are signifi-
cantly different from 0;

– Look for a regine change.
[duplicated?]

Portfolio optimization
with CVaR budgets

K. Boudt et al.
R in Finance 2010

The risk budget (risk is measured by the expected
shortfall (ES, CVaR), estimated from historical mo-
ments via the Cornish-Fisher estimator) can be used
in the portfolio construction process (with the DEOptim
package):
– As an objective: minimize the CVaR of the portfolio,
or minimize the maximum contribution to CVaR;

– As a constraint: equal-risk portfolio (all assets are re-
quired to have the same contribution to the portfolio
CVaR, to downweigh “hot spots”) or 60/40 alloca-
tion between (the contribution to CVaR of) equities
and bonds.

Entropy correlation distance method
applied to study correlations

between the gross domestic product
of rich countries

A. Ausloos and J. Miśkiewicz (2009)
Another distance between positive time series (for clus-
tering, minimum spanning tree, etc.): the correlation
between their moving-window entropies.

Spiraling towards market completeness
and financial instability

M. Marsili (2009)
There seems to be a singularity (like S. Hawking’s black
holes) in the space of possible financial markets, as we
increase the complexity of financial instrumetns to in-
crease market completeness – this also increases any
market imperfection (lack of transparency, asymmet-
ric information, etc.).

The premium of dynamic trading
C.H.Chiu and X.Y.Zhou (2009)

The efficient frontier of a set of assets is usually com-
puted for a single period. It can be generalized to a
multiperiod (or even continuous-time) setting. The ef-
ficient frontier is (unsurprisingly) higher but is still a
line if there is a risk-free asset.

Characterizing individual
communication patterns

R.D. Malmgren et al. (2009)
Human-generated events (e.g., sending emails) can be
modeled as a 2-state Markov chain (active/inactive),
the agent emitting a signal (Poisson process) with a
different rate in each state.

Personalized recommendation via integrated
diffusion on user-item-tag tripartite graphs

Z.-K. Zhang et al.
Many recommendation algorithms are just diffusions
(random walks) on bipartite (user-item and user-tag)
or tripartite (user-tag-item) (hyper)graphs.

Hypergraph topological quantities
for tagged social networks

V. Zlatić et al. (2009)
Another article on the same subject – nothing new.

Understanding
the Lee-Carter mortality forecasting model

F. Girosi and G. King (2007)
The Lee-Carter mortality model approximates the ma-
trix ma,t of the logarithms of mortality rates in (age)
group a and year t as a rank-1 matrix (use the singular
value decomposition (SVD) to find it)

m = βγ′

where β is the base mortality in each group and the
mortality index γ models the time evolution of the mor-
tality rates, often as a random walk. The resulting pro-
cess (m·,t)t is a multi-dimensional random walk with
strong constraints on the variance matrix. If the rank-1
assumption is not valid (look at the eigenvalues), you
may want to consider a rank-k approximation or an
unconstrained random walk.

The Lee-Carter model
for forecasting mortality, revisited

S.H. Li and W.S. Chan
The Lee-Carter model is not robust. You may want to
add a contamination model that looks for:
– Additive outliers:
– Innovational outliers:
– Level shifts:
– Temporary changes:

The role of a matchmaker
in buyer-vendor interactions

L. Lü et al. (2009)
Around the stable mariage problem: match
men/women, employers/job seekers, land-
lords/tenants, buyers/sellers to maximize some total
utility

u = (xy + yk)1/k

Article and book summaries by Vincent Zoonekynd 824/1044

(changing k creates more or less inequality). The
“matchmaker” is just a personification of the perfect
knowledge of all utilities, as opposed to auctions or the
(potentially never-ending) quest for a sufficiently good
match.

A dynamic model of
time-dependent complex networks

S.A. Hill and D. Braha (2009)
We have acceptable models of (random, static) net-
works, but few of dynamic networks. Here is one, in
which the hubs (highly connected nodes) can change
quickly, as observed in daily email datasets:
– Start with a (static) underlying network;
– For each day, build a subnetwork via a node-
reinforced random walk: choose the next node of
the random walk among the neighbours of the cur-
rent node, with probabilities

p ∝ 1 + λ× number of visits.

Effective and efficient similarity index
for link prediction of complex networks

L. Lü et al. (2009)
One can try to predict missing or future links in a net-
work (the recommendation system of an online shop
is a link prediction system in the bipartite client×item
graph; there are applications in gene×protein networks
as well) by looking at node similarity measures, such
as:
– The number of common neighbours (A2)xy;
– The Katz index, i.e., the weighted number of paths

between two nodes, with less weight on longer paths,(∑
k⩾2

βkAk
)
xy

;

– The first two terms of this series, (A2 + εA3)xy.

Limits of declustering methods for
disentangling exogenous from endogenous

events in time series with foreshocks, main
shocks and aftershocks

D. Sornette and S. Utkin (2009)
A time series of events (earthquakes, financial crises,
etc.) can be modeled as a Hawkes process (aka ETAS
(epidemic-type aftershock) model)

λ(t,M,Ht) = µ(t,M) +
∑
ti<t

h(t,M, ti,Mi)

whereM is the magnitude of the event, the first term is
the background density (alone, it would lead to a Pois-
son process), the second term is the response function
to past events (measuring their propensity to trigger
aftershocks). Algorithms to disentangle those events
(i.e., label them as “exogenous” (background) or “en-
dogenous” (aftershock)) do not perform well.

Detecting network communities
by propagating labels under constraints

M.J. Barber and J.W. Clark (2009)
The label propagation algorithm (LPA) to identify
communities (assign a label to each vertex at random;
change the label of a vertex to that of the majority of
its neighbours, iterate until convergence) finds a local
optimum of some optimization problem – it turns out
that the global solution is the situation in which all
vertices have the same label... A penalty can be added
to bring the optimization closer to what we expect.

Structure of shells in complex networks
J. Shao et al. (2009)

Exercise on generating functions and networks; the
shell (wrt a node) is the set of nodes ` edges away
from it.

Market bubbles and crashes
T. Kaizoji and D. Sornette

A readable, non technical, superficial review article:
– Bubbles are frequent and follow the following pat-
tern: new oportunity (beware when the media start
to talk about “new ...” – you could try to build a
bubble index by counting the number of occurrences
of the word “new” in the press – add synonyms, as
well), rising prices, investments in increasingly illiq-
uid assets, crash.

– Markets are not efficient: current prices are not the
present value of future cash flows.

– Evidence that this can be explained by limits on
arbitrage (e.g., short sales restrictions) are mixed:
some look convincing (such restrictions should lead
to overvaluation), but so is the evidence that those
limits can be circumvented (by using options instead
of short sales: the put-call parity, from tick data
(rather than close prices, which are quotes on which
one cannot trade), is valid);

– Rational investors do ride bubbles; by anticipating
them, they actually create them: they know that
noise (irrational) traders will follow them;

– Rational investors do not arbitrage bubbles out, be-
cause then do not know when to do so – the bubbles
therefore continues to grow;

– Physicists use statistical mechanics to model markets
as the aggregation of many “agents” and describe
bubble bursts as phase changes;

– Bubbles are characterized by faster-than-exponential
growth

log(price) = α+ β(t0 − t)γ + noise, γ < 1, β < 0

(this is often visible on a 6-month window; you could
use this to build a bubble detector)

– ODE with “explosive” behaviour can be generalized
to SDEs (“stochastic finite time singularities”);

– The log-periodic power law model is just men-
tionned.

Article and book summaries by Vincent Zoonekynd 825/1044

Financial bubbles, real estate bubbles,
derivative bubbles and the financial

and economic crisis
D. Sornette and R. Woodard (2009)

Another similar review article, with histical data,
– To explain the causes of the crises, do not spend your
time identifying the first domino to fall: instead, try
to understand why the dominoes were laid out like
that.

– Technical and rational mechanisms (what is rational
for a single investor need not be so for the market as
a whole) play a small role, behavioral mechanisms
dominate.

– More details on the log-periodic power law, and ac-
tual examples

log(price) = α+β(t0−t)γ(1+ε cos(ω log(t0−t)+φ))

Complex systems: from nuclear physics
to financial markets

J. Speth et al. (2009)
Log-periodic oscillations (à la Sornette) can result from
a Weierstrass random walk: take a step of length
bja with probability proportional to 1/M j (b > 1,
M > 1, vary j ∈ N×).

The Markov modulated Poisson process
and Markov Porsson cascade

with applications to web traffic modelling
S.L. Scott and P. Smyth

(Bayesian Statistics, 2003)
A Markov modulated Poisson processe (MMPP, or
Markov Poisson cascade, when the states are ordered
to make the model identifiable) is a Poisson process
whose rate varies according to a (finite-state, hidden)
Markov process, used to model events with irregular
bursts of activity (an n-state MMPP is equivalent to
a superposition (sum) of n (fixed-rate) Poisson pro-
cesses, some of which may be inactive, the inactivity
being controled by an n-state Markov chain). They
can be fitted with the EM algorithm or MCMC data
augmentation.

Causal links between US economic sectors
G.H.T. Lee et al. (2009)

To analyze a bubble or crash (after the fact), take
hourly sector log-returns, segment each of them by
recursive regime change tests (likelihood ratio test of
a gaussian distributions versus two gaussian distribu-
tions; you can reoptimize the segment boundaries at
each step), stop when some threshold is reached, as-
sign the segments to either a “high” or a “low” volatil-
ity regime, plot all segmented time series (the segments
are different for each sector) with a level of grey indi-
cating the volatility level, try to spot the begining of
the crisis and the recovery (a month of high, resp low,
volatility), compare the start and end of the crisis for

each sector – often, the first to enter is also the last to
leave.

The StressVaR: a new risk concept
for superior fund allocation

C. Coste et al. (2009)
The risk of a (portfolio of) hedge fund(s) can be esti-
mated as follows:
– Select several good 1-factor risk models (rather than
a single multi-factor model – this can be seen as a
form a bayesian model averaging (BMA) or a regu-
larized multifactor model);

– Take the maximum of the value-at-risk (VaR) pre-
dicted by those models (rather than the VaR of their
linear combination).

Adaptive model for recommendation of news
M. Medo et al. (2009)

Most recommendation systems use a global rating sys-
tem, and only narrow down the centers of interest of
the users by categories or keywords – some distinguish
between short- and long-term interests; some use im-
plicit ratings (based on access or reading time). The
authors use an epidemic-like process to propagate rel-
evant news among users with a similar interest profile;
the timeliness of the news is ensured by the exponen-
tial spreading of epidemics (if the users find the news
relevant) and a continuous time decay.

Financial bubble analysis
with a cross-sectional estimator

F. Abergel et al. (2009)
The authors claim that the proportion of stocks with
performance beyond some threshold z since “some” ref-
erence date (and its asymptotic behaviour ∼z→∞ z−α)
can be used as a bubble indicator – but then, they only
check that the cross-sectional variance can be used as
a bubble indicator.

Stability analysis with applications of a
two-dimensional dynamical system arising

from a stochastic model for an asset market
V. Belitsky and A.L. Pereira (2009)

To examine the stability of stock markets, you can
build a 2-dimensional dynamical system for the price
and the excess demand (for a single asset).

Joint modelling of
gas and electricity spot prices

N. Frikha and V. Lemaire (2009)
Gas and electricity prices are important for power
plants and energy companies: they represent their
costs and revenues. They exhibit the following fea-
tures: seasonality, trend, spikes, heavy tails, auto-
correlation, long-memory, cross-correlation. (After re-
moving the trend and seasonality), they are often mod-

Article and book summaries by Vincent Zoonekynd 826/1044

eled by Ornstein processes

X(t) =
∑
i

Yi(t)

dYi = −λiYidt+ dLi

where the Li are brownian motions (leading to
Ornstein-Uhllenbeck processes) or Lévy processes (to
model the spikes – one could also use OU processes with
very quick mean reversion); some of those Li appear
in both the gas and electricity models, to account for
cross-correlation. The authors replace the Lévy pro-
cesses by considering OU processes and more general
diffusions

dY = −λY dt+ σ(Y)dW

where σ is chosen to give the observed stationary distri-
bution (if you know the drift and the stationary distri-
bution of a diffusion, you can compute its volatility),
modeled as a (quasi-saddlepoint approximation of a)
normal inverse gaussian (NIG) distribution.

Eroding market stability by proliferation
of financial instruments
F. Caccioli et al. (2009)

The proliferation of financial instruments make the
markets more efficient, more complete, but it also
brings them closer to an unstable state – a phase tran-
sition. This comes from the interplay of supply and
demand and the price impact of transactions.
The article also contains a concise definition of fi-
nancial markets (markets that allow intertemporal ex-
changes fo wealth) and a clear description of the 1-
period asset pricing framework:
– There are two times, t = 0 (today) and t = 1 (to-
morrow);

– There is a finite set Ω of possible states ω at time
t = 1, each probabilities pω;

– There are K risky assets, that cost 1 today and pay
rk,ω tomorrow;

– There is one risk-less asset, that costs 1 today and
pays 1 tomorrow;

– There is no arbitrage, i.e., there is no portfolio whose
return is positive or 0 in all states and positive in at
least one state;

– This implies the existence of an equivalent martin-
gale measure q such that

∀k Eq[rk] =
∑
ω

qωrk,ω = 0

– A contingent claim is a contract that pays fω in stale
ω; if there exists a replicating portfolio θ, i.e., a port-
folio θ such that

∀ω ∈ Ω fω = f0 +
∑
k

θkrk,ω

the contingent claim is said to be marketable and its
price is VF = Eq[f] =

∑
ω qωfω;

– The market is complete if there are at least #Ω
independent vectors among r1, . . . , rK ; then, all
claims are marketable and the risk-neutral measure
is unique.

A general “bang-bang” principle for predicting
the maximum of a random walk

P.C. Allart (2009)
The best predictor (adapted stopping time) of the max-
imum (on [0, T]) of a random walk with drift is ob-
tained with τ = 0 if the drift is negative and τ = T if
it is positive.

Risk concentration and diversification:
second-order properties
M. Degen et al. (2009)

First order (I would say zeroth order) approximations
of the risk concentration

C(α) =
VaRα

∑
iXi∑

iVaRαXi

or the risk diversification 1− C(α), for instance,

F (tx)

F (t)
−→t→∞ x−1/ξ =⇒ C(α) −→α→1 n

ξ−1

are not sufficient: the convergence is too slow. One
can devise a second-order (first-order) approximation.
In the case of non-coherent risk measures (such as the
value-at-risk), the diversification benefit can even be
negative.

N <- 1e6
library(actuar)
x <- rburr(N,1,1)
y <- rburr(N,1,1)
f <- function(z) quantile(z,.99)
f(x+y)/(f(x)+f(y)) # > 1...

Adaptive model for recommendation of news
M. Medo et al. (2009)

Most recommendation systems use a global rating sys-
tem, and only narrow the centers of interest of the
user by categories or keywords – some also distinguish
between short- and long-term interests; some use im-
plicit ratings (based on reading time or access). The
authors use an epidemics-like process to propagate rel-
evant news among users with a similar rating profile;
the timeliness of the news is ensured by the exponen-
tial spreading of epidemics (if the users find it relevant)
and a continuous time-decay.

A coupled markov chain approach to risk
analysis of credit default swap index products

R. Hochreiter and D. Wozabal (2009)
Confusing attempt to add some dependency (sector
membership) to the transition matrix generating rat-
ing changes:

Article and book summaries by Vincent Zoonekynd 827/1044

– Each assets’s rating is a Markov chain (with states
AAA, AA, etc.) whose transition matrix is known;

– If two assets are in the same sector, their rating are
not independant and can be modeled by a Bernoulli
mixing model.

Universal power laws
in the threshold network model:

a theoretical analysis
based on extreme value theory

A. Fujihara et al. (2009)
Asymptotic analysis of the threshold network
model – random networks on a set of nodes obtained
by randomly assigning a weight to each node (accord-
ing to a given probability distribution) and linking any
two nodes when the sum of their weights exceeds a
given threshold.

Leverage causes fat tails
and clustered volatility

S. Thurner et al. (2010)
Limits on leverage cause funds to sell in falling mar-
kets, amplifying the fall. Limits based on volatility
(allow a high leverage when the volatility is low) are
even worse. (The article also recall what a margin call
is: what you have to pay to a lender when the value of
your collateral drops below an agreed limit.)

Atmospheric complexity
or scale by scale simplicity?

S. Lovejoy et al.
Geophysical Research Letters (2009)

The fractal nature of the atmosphere (similar struc-
tures are present at different scales) could simplify
weather forecast – the article only presents evidence
of these fractal structures, but no applications. [This
structure can be seen as a form of symmetry, Z acting
by n : x 7→ λnx, which should lead to a conservation
law (Noether’s theorem), that could simplify the PDEs
– or simply allow macroscopic forecasts without look-
ing at the microscopic data.]

Correlation breakdown,
copula credit default models and arbitrage

R. Tzani and A.P. Polychronakos (2009)
Complete nonsense: when the market and the model
(Gaussian copula for CDSes...) disagree, the market is
wrong and the model is right – and you are bankrupt.

A computational view of market efficiency
J. Hasanhodzic et al.

AlphaSimplex, MIT (2009)
In a market with periodic returns, modified by the im-
pact of bounded-memory traders, traders with more
memory make more profits.

Market impact and trading profile
of large trading orders in stock markets

E. Moro et al. (2009)
Market impact of hidden orders (large trading orders,
executed incrementally) increases as the square root of
the order size; once the order is finished, the impact
reverts to half its peak value

The scale of market quakes
T. Bisig et al. (2009)

The multiscale structure of log-price time series can be
described by the “term structure of volatility” (volatil-
ity of the time series of returns over intervals of size τ ,
as a function of τ); it is a function, but its values can
be combined in some ad hoc way to produce a single
numeric “scale of market shocks”. The authors present
(somewhat confusingly) a similar measure based on the
irregular time series of “directional changes of ampli-
tude greater than λ”, for various values of λ. This is
similar to the term structure of volatility, but measured
on market time, rather than clock time.

Modeling scientific citation patterns
and other triangle-rich acyclic networks

Z.X. Wu and P. Holme (2009)
Empty article presenting a model of network evolution,
whose parameters are: the out-degree distribution; the
aging of the relevance of papers (nodes); the formation
of triangles.

On the relationship between
trading network and WWW network:
a preferential attachment perspective

A. Mirzal (2009)
The page rank algorithm (the rank of a page depends
on the rank of the pages pointing to it, with less weight
for pages with too many links),

page ranki =
∑
j→i

page rankj
out-degreej

is an eigenvalue problem

p = p ·O−1L
p : vector of ranks
O : diagonal matrix of out-degrees
L : incidence matrix

often solved iteratively (after some rescaling to ensure
convergence).
The HITS (hypertext-induces topic search) algorithm
considers two types of ranks, “hub” and “authority”
(you can see this as a hidden fuzzy bipartite structure)

authorityi =
∑
j→i

hubj

hubj =
∑
j→i

authorityi

Article and book summaries by Vincent Zoonekynd 828/1044

is another eigenvalue problem

authority = hub · L
hub = authority · L

i.e., the vectors of authority and hub scores are eigen-
vectors of L′L and LL′ (to ensure unicity and conver-
gence, it may be necessary to rescale and/or regularize
those matrices, as with ridge regression).
The same ideas can be used to study trading networks,
i.e., networks of buyers, sellers and resellers. [There
may be a link between the price discovery process and
the convergence of those algorithms.]

A penalized matrix decomposition, with
applications to sparse principal components

and canonical correlation analysis
D.W. Witten et al.

The first r components of the singular value decompo-
sition of a matrix X,

X = UDV ′, U ′U = 1, V ′V = 1, D ⩾ 0,

give its best rank-r approximation (for the Frobenius
norm)

r∑
k=1

dkukv
′
k = Argmin

Y, rankY⩽r
‖X − Y ‖2F .

This can be generalized by adding a penalty for u and
v, leading to a penalized rank-r approximation, and
a penalized matrix decomposition (PMD). The
suggested penalty combines the lasso (an L1 penalty,∑
u |ui|) with the fused lasso (

∑
|ui − ui−1|).

The PMD can be used to define sparse principal
components (other formulations exist, based on re-
gression properties or the variance minimization prop-
erty of the principal components).
The article also provides (efficient) algorithms to com-
pute those decompositions.

Sparse inverse covariance estimation
with the lasso

J. Friedman et al. (2007)
A sparse variance matrix estimator, based on the lasso
(L1 penalty); the sparsity of the matrix gives an undi-
rected (sparse) graph between the variables.

Ant-based clustering and topographic mapping
J. Handl et al.

Ant-based sorting is a topographic mapping algo-
rithm (i.e., an algorithm that maps observations from
a high-dimensional space to a plane or some other low-
dimensional space, such as multi-dimensional scaling
(MDS) or self-organizing maps (SOM)) in which agents
(ants) pick up observations (randomly), transport and
drop them (randomly) where there are similar obser-
vations around. The algorithm can be improved as
follows:

– Increase the penalty for dissimilarity, to help sepa-
rate the clusters;

– Add some short-term memory, so that each ant
knows if a newly picked up observation is similar
to those around a previous drop point;

– Progressively increase the radius of of perception of
the ants;

– For a limited time, take into account the number of
occupied cells (the density), to help spread out the
clusters (only for a limited time, because we want
the clusters to be globular, cluster-like);

– The article also suggests some empirical changes to
the pickup and drop probabilities, and gives some
advice on the choice of the parameters);

– If you want clustering, and not only topographic
mapping, apply some clustering algorithm such as
agglomerative clustering to the result.

The performance of the algorithm was examined with
the F measure (from the ideas of precision and recall
in information retrieval)

Gi = desired groups
Ci = clusters produced

pij =
#Gi ∩ Cj

#Cj

rij =
#Gi ∩ Cj

#Gi

Fij =
2pijrij
pij + rij

F =
∑
i

#Gi
#X

Max
j

Fij ,

the Dunn index

D = Min
inter-cluster distance
Max cluster diameter

and the intra-cluster variance.
For clustering, the algorithm fails to recognize the clus-
ters in presence of a hierarchical structure (it only
recognizes the top of the hierarchy), fails to recog-
nize small clusters in general; but scales much better
than competing algorithms. For topographic mapping,
MDS performs better in low dimensions, SOM in high
dimensions.

A hybrid particle swarm ant colony
optimization for design of truss structures

A. Kaveh et al. (2008)
(This is just a random article on the subject, among
hundreds of others: it does not bring anything
new.) Particle swarm optimization (PSO) is a
population-based optimization algorithm, in which the
particles (candidate solutions) move, influenced by
– Their momentum;
– The best solution they have found so far;
– The position and momentum of the particles around
them, i.e., (indirectly) the best solution their neigh-
bours have found so far;

Article and book summaries by Vincent Zoonekynd 829/1044

– In the ant colony optimization (ACO) variant,
they are also influenced by (pheromones left around,
indicating the momentum of) particles that were
there some time ago.

This may not work well in high dimensions, because
of the curse of dimensionality, except if, as here, con-
straints drastically reduce the search space.

Choosing colors for Data Visualization
M. Stone (2006)

– We perceive contrasts of colours in three dimensions:
hue, value and chroma; try to use all three.

– Excessive hue variations create clutter: also use con-
trasts of value and chroma.

– Avoid saturated colours (only use them to highlight).
– To be legible, graphical (or textual) elements should
have a contrast of value with the background (con-
trast of hue or chroma is insufficient); smaller sizes
require more contrast. Indeed, some artists first
“block in the values” and only add colour at a later
stage.

– Only use 2 or 3 hues, e.g., analogous or complemen-
tary or split-complementary (i.e., one colour and two
colours close to its complementary).

– A white background is preferable: it provides a refer-
ence for colours (the “white balance” of your digital
camera).

Dot Plots: A Useful Alternative to Bar Charts
N.B. Robbins (2006)

Barcharts can become cluttered when there are many
observations (the ink/information ratio is high), when
there are several variables (stacked bar charts are al-
most always a bad idea), or when the zero is not mean-
ingful or too far from the bulk of the data: in those
cases, you can use dotplots instead.

Practical rules for using colors in charts
S. Few (2008)

A list of simple rules, with examples and counterexam-
ples:
– Use a consistent background, to allow a reliable com-
parison of the colour or value of the plot elements
(think of grey squares of the same intensity, on a
grey gradient);

– The colour of the objects should contrast with the
background (counterexample: a heatmap, i.e., a ta-
ble whose cells are coloured, where the important
values sometimes end up in black on a dark back-
ground);

– Only use colour with a purpose in mind;
– The differences in colour should be meaningful (the
viewer will instinctively try to interpret those differ-
ences: at the very least, this would distract him from
what he should be looking at; the typical counterex-
ample is a barchart whith a different colour for each
bar);

– Use neutral colours (greys, browns, pastels) for most
information, and bright/dark saturated colours for
what requires more attention;

– Do not cover large areas with saturated colours: that
looks garish, unsophisticated, unprofessional (the
Brewer palettes are fine for large areas);

– Small elements (thin lines, dots in a scatterplot) re-
quire brighter/darker and more saturated colours to
be easily distinguished; this is the reason why the
Brewer palettes (designed for maps) are inadequate
for line plots or scatterplots;

– Use a single hue to encode sequential values (or two
for diversing ones, i.e., if there is a clearly defined
“zero”);

– Use a dull, hardly visible colour for less important
elements (axes and borders could be grey, the back-
ground could be white);

– Do not use red and green together, even if they seem
widely understood as “traffic light colours”: most
colourblind people cannot distinguish them (red and
blue is fine);

– Choose a few palettes in advance (and for each, a
variant with more saturated colours for scatterplots
and lineplots) and keep them at hand;

– Do not use visual effects (3D, reflections, etc.).

Introduction to cycle plots
N.B. Robbins (2008)

For progressively changing periodic patterns:

xyplot(x ~ week | day_of_week)

Sequential implementation
of Monte Carlo tests

with uniformly bounded resampling risk
A. Gandy

The power of a Monte Carlo test can be improved by
replacing the sum

n∑
1

1Ti⩾T

with the whole path of the partial sums

k∑
1

1Ti⩾T , k ⩾ 1,

and comparing them with boundary paths.

A simple forward selection procedure
based on the false discovery rate control

Y. Benjamini and Y. Gavrilov (2009)
Variable selection, in a regression model, can be seen
as a penalized regression with an L0 penalty; this can
be generalized to other penalties, including non-linear
ones (a non-linear function of the L0 or L1 norm of the
coefficients). Variable selection algorithms often per-
form statistical tests to decide whether to add a new

Article and book summaries by Vincent Zoonekynd 830/1044

http://www.perceptualedge.com/articles/b-eye/choosing_colors.pdf
http://www.perceptualedge.com/articles/b-eye/dot_plots.pdf
http://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_using_color.pdf
http://www.perceptualedge.com/articles/guests/intro_to_cycle_plots.pdf

variable, all with the same threshold for the p-value;
instead, one can use the false discovery rate,

FDR =
#true rejected null hypotheses

rejected null hypotheses

to progressively change this threshold.

Bayesian methods
for measuring operating risk

C. Alexander (2002)
If you do not have enough loss data to fit an extreme
distribution, add a bayesian prior, in the form of a
bayesian network (i.e., more variables, with known de-
pendency relations between them), to incorporate do-
main knowledge.

Retrospective exact simulation
of diffusion sample paths with applications

A. Beskos et al. (2006)
Most algorithms sampling from the paths of a diffusion
do not sample from the stochastic process itself, but
from a different but hopefully close discrete process.
The (confusing) article presents an exact simulation
algorithm, based on rejection sampling.

Exact simulation of diffusions
A. Beskos and G.O. Roberts (2006)

Still not understandable, in spite of the examples.

MCMC methods for multi-response
generalized linear mixed models:

the MCMCglmm R package
J. Hadfield

Journal of Statistical Software (2006)
The MCMCglmm package fits generalized linear mixed
models; it is more restricted than Bugs/Jags, but
faster. Presenting the same example in the Bugs lan-
guage (which is straightforward to understand) would
help understand the syntax of the function.

Exploratory data analysis leading towards
the most interesting binary association rules

A. Iodice D’Enza et al.
Given a binary dataset, e.g., a basket×item boolean
matrix Z representing the sales of an online shop, as-
sociation rules are pairs of items, A =⇒ B, with
a large enough support P (A∩B) and a large enough
confidence P (B|A) – this can be generalized to tu-
plets. Association rule mining algorithms, such as the
Apriori algorithm, usually select all pairs with a large
enough support, and among them, take those with the
largest confidence. The computations can be formu-
lated in linear algebraic terms,

Support = 1

n
Z ′Z

Confidence = Z ′Zdiag(Support)−1

but the matrices are too large. Dimension reduction
through incremental k-means (add the baskets one
by one) can make (those matrices block-diagonal and)
the computations amenable.

Volatility forecasts and the at-the-money
implied volatility: a multi-components ARCH
approach and its relation with market models

G. Zumbach
Risk Metrics (2007)

A multiscale ARCH process is an ARCH(∞) process
of the form

rt+1 = σtεt+1

εt ∼ N(0, 1)

σ2
t =

n∑
k=1

wkσ
2
t,τk

σ2
t,τ = e−1/τσt−1,τ + (1− e−1/τ)r2t

i.e., the squared volatility is some linear combination
of exponential moving averages, with different time
scales, of the squared returns. These factors play a
role similar to the risk factors of a risk model. One or
two different time scales (say, 3 weeks and 3 years) may
suffice. The long-memory ARCH uses a large number
of components, but the characteristic times and the
weights have simple forms (geometric increasing and
logarithmic decreasing),

τt/τk−1 = ρ

wk ∝ 1− log τk
log τ0

This can be generalized to a continuous-time model.

Stability of graph communities
across time scales

J.-C. Delvenne et al. (2009)
Gauging the quality of a clustering (community struc-
ture) in a graph is difficult: here is another measure to
consider. Let (Xt)t be the random walk on the graph
and Ti,t = 1Xt∈C the boolean variable denoting mem-
bership to community C (it is no longer Markov). Its
autocorrelation function (plot it with a log-scale for the
lag) is a measure of the stability of the community.

Mapping change in large networks
M. Rosvall and C.T. Bergstrom (2009)

You can assess the significance of a clustering or par-
tition of a network (a kind of dimension reduction) by
comparing with that of bootstrap samples; the evolu-
tion of those clusters can be represented in an alluvial
diagram. This is exemplified by the emergence of neu-
roscience from molecular biology, psychology, psychia-
try, neurology, medicine.

Article and book summaries by Vincent Zoonekynd 831/1044

Random hypergraphs and their applications
G. Ghoshal et al. (2009)

Folksonomies (sets of 〈user, ressource, tag〉 triplets,
in collaborative tagging websites such as flickr, citeU-
like, delicious, bibsonomy) or RDF databases (sets of
〈subject, object, verb〉 triplets) can be represented by
tripartite hypergraphs. Some care is needed to
extend classical graph-theoretic notions: the degree
of a vertex is the number of hyperedges containing
it (rather than the number of neighbours of a given
colour); there is a degree distribution for each vertex
type (colour) and the three are linked (they cannot
be chosen independently: they must imply the same
number of hyperedges); there are various kinds of pro-
jections (onto one or two colours, using vertices of one
or two colours). Some properties of hypergraphs can be
studied by looking at the generating functions of the
three degree distributions: degree distribution of the
projections, existence of a giant component, percola-
tion (i.e., proportion of vertices you can remove with-
out breaking the giant component). A random tripar-
tite graph can be defined by specifying the degree dis-
tribution (they have to be compatible, i.e., they should
all suggest the same number of hyperedges), choosing
hyperedge stubs ar random for each vertex, and joining
them at random. The proportions of those random tri-
partite hypergraphs do not match those of real-world
ones, mainly because they fail to account for multiple
tagging (the same user giving different tags to the same
ressource).

The empirical properties
of large covariance matrices

G. Zumbach (2009)
When estimating a covariance matric from time series,
you may want to estimate it on a moving window (or
with decaying weights) and consider the evolution of:
– The top eigenvalues (spectrum);
– The distribution of the eigenvalues (spectral den-
sity);

– The subspace spanned by the top eigenvalues (it can
change, even if the eigenvalues look stable);

In the spectrum, there is no clear separation between
noise and non-noise eigenvalues as suggested by ran-
dom matrix theory (RMT). The dynamics of the co-
variance and the correlation matrix are very different
(some people suggest they have significantly different
characteristic time scales and suggest to model correla-
tion and volatility separately, as in the constant corre-
lation GARCH model, with a quickly moving volatility
and a slowly changing correlation.

Executing large orders
in a microscopic market model

A. Weiss (2009)
Comparison of a microscopic market model (that ex-
plicitely models the limit order book, or even a gen-
eralized order book, which contains the opinion of a

fair price for all investors, to account for hidden liquid-
ity) and a macroscopic model (that models the limit
order book bore implicitely, e.g., with two parameters,
“shape” and “resilience”): how do optimal trading
strategies for one model fare in the other? This is an
(imperfect) way of measuring the robustness (to model
specification) of those strategies.

Computational modeling of collective human
behavior: example of financial markets

A. Kirou et al. (2008)
A market model in which traders use information both
global and local (from their social network).

Studies of the limit order book
around large price changes

B. Toth et al. (2009)
After a large price jump (a single-stock event, not a
market crash), all quantities progressively go back to
normal, following a power law. This relaxation can be
simulated by a multiagent model.

Production copula
H. Iyetomi et al. (2009)

The production equation

Production = F (Labour,Capital)

(e.g., the Cobb–Douglas model, Production ∝
LabourαCapitalβ) should be replaced by (a statistical
model or, more generally) the probability distribution
of

(Production,Labour,Capital)
to account for the heterogeneity of economic agents.
The article models the marginal distributions and the
copula separately – but their model has fatter tails than
the data... Their copula is a non-exchangeable (i.e.,
hierarchical) Gumbel copula.

Smoothing of multivariate data
Density estimation and visualization

J. Klemelä
Wiley (2009)

In this multivariate data analysis book, the author uses
two types of plots to display information, in very dif-
ferent contexts:
– Rooted trees, whose nodes are labeled by num-
bers, such as the heights of the nodes (for nice plots
it should increase as you move away from the root)
or the nth coordinate of the point (if it came from
the dataset);

– Volume plots, built from a rooted tree whose nodes
are labeled with two numbers interpreted as the al-
titude of the node and its width; the tree plot looks
like stacked slabs of tree. (It is not uniquely defined:
each time there is a branching, you can choose the
order of the branches.) This is a 1-dimensional ana-
logue of a treemap;

Article and book summaries by Vincent Zoonekynd 832/1044

Here are a few examples.
Plotting the barycenter of each connected component
of each level set [f = λ] or upper level set [f ⩾ λ] of a
density f versus λ gives a tree. Plotting a segment for
each connected component of each level set [f = λ] (of
length the volumes of the level sets, suitably renormal-
ized, e.g., by using the radius of a ball with the same
volume), and stacking those segments, gives a volume
plot: it displays the modes and spreads of the original
distribution (the notion of “mode-preserving transfor-
mation” or mode isomorphism can be formalized). The
shape of the peaks gives information about the skew-
ness and the fatness of the tails. The volume plot is
actually a 1-dimensional analogue of the treemap.
In a volume plot, you can replace the volume of the
levelsets by any interesting function. You can also re-
place the density by any function built from the data at
hand – think of all the functions you use in scagnostics
plots. For instance, if you have a shape (say, a sin-
gle level set), the distance from a reference point gives
a foliation, called the radius transform of this shape.
The corresponding tree, the shape tree, formed from
the connected components of S \B(P, r) when r varies,
shows the appendages of the shape. You can change
the reference point to hide or reveal more appendages;
you can also change the metric. This is called a tail
plot (or a radius plot).
With a cloud of points, you can remove and plot the
most central point, and iterate, until the cloud ceases
to be δ-connected (a set is δ-connected iif for any two
points, there is a chain of points going from one to the
other, so that the distance between two consecutive
points be less than δ – the problem is that you have
to choose δ – instead, you could cluster the remaining
observations); you then process the components sepa-
rately. When plotting this tail tree (e.g., using the
distance from the center versus the ith coordinate of
the last point removed), it is more insightful to use the
observations removed rather than the barycenters of
the ρ-connected components. This can help guess the
number of tails and their shapes: the book provides a
large list of examples, in dimension 2, for common cop-
ulas. The number of tails concerns me: in dimension d,
2d tails is not uncommon. Since a tail tree is just a tree
structure on a set of points, one could consider other
tree structures, such as the minimum spanning tree
(MST) or the shortest-path tree (a rooted analogue of
the MST).
With a density (or its copula), the tail plots of the level
sets can be arranged into a persepctive plot.
With a cloud of points, you can estimate the density
and look at the mode plot. However, density estimates
usually depend on a smoothing parameter: by letting
it vary, you have a family of volume plots, that can be
represented as a perspective plot.
To visualize the effect of the smoothing parameter, you
can also take the modes of the density estimate for dif-
ferent values of the smoothing parameters and arrange

them into a tree

L1
L2

L3

L1
L2

L3

Modes of a multivariate density

M1

M2

M3

coordinate 1

M1

M2M3

M1

M2M3

Appendages (tails) of a shape

T1

T2

T3

T1
T2

T3

coordinate 2

T1
T2

T3

Tails of a cloud of points

The R code is available in the denpro (for the plots,
which are very tricky to fine-tune – no ... argument,
half-missing contours) and delt (for the density esti-
mation algorithms) packages.
The first part of the book also reviews many types
of statistical plots and descriptive statistics for high-
dimensional datasets. The depth of a point (in a cloud
of points, or wrt a density) can be defined as (1+d)−1,
where d is the Mahalanobis or Euclidian L2 or L1 dis-
tance to the “center”; as the half-space depth (the min-
imum proportion of points in a half space containing
your point); as the simplicial depth (the probability
that your point is inside a simplex whose vertices are
random points from the cloud or the distribution); as
the convex hull peeling depth (points on the convex
hull have depth 1; remove them; points on the convex
hull of the remaining points have depth 2; etc.).
Functions or probability densities can be examined
by pp-plots, qq-plots, ff-plots; perspective or contour
plots (but these are not adequate to visualize tails);
slices, projections (marginal densities), or more gener-
ally Radon transforms (tomography).
The spread can be examined by looking at the volume
of the upper level sets

λ ∼ Volume({x : f(x) ⩽ λ}).

You may want to normalize those volumes (replace
them by the radius of a ball of the same volume); you
may want to replace the sequence of nested sets f ⩽ λ
(the inspiration comes from Morse theory) by [f = λ]
or by depth regions or by minimum volume sets (sets
of minimum volume with a given probability).
Multivariate quantiles are defined by replacing
p(X − u)+ + (1 − p)(X − u)− in the definition of a

Article and book summaries by Vincent Zoonekynd 833/1044

quantile by

‖X − u‖+ p〈v,X − u〉, p ∈]0, 1[, v ∈ Sd.

The book suggests a few plots to examine clusters, but
they were not convincing. For instance, you can plot
the depth of a point against its ith coordinate, and add
edges. In a parallel level plot, you choose the number of
clusters and plot the clusters separately in this way, on
top of each other – it will always look informative, even
if your choice of cluster number is wrong. Graphical
matrices present the same problem.

coordinate 1

1.88−2 1.69−3.03

The second part of the book is very technical and ex-
plains how to prove inequalities and establish conver-
gence results for density estimators.
Among the interesting technicalities are the correla-
tion between a real-value and a vector valued random
variable,

Cor(X,Y) = Max
ϕ

Cor(Y, φ′X),

the mixing coefficient, β(X,Y) = 1
2

∫
|fX,Y − fXfY |,

can also be computed as

1
2 sup

A ,B

∑
A∈A
B∈B

P (X ∈ A, Y ∈ B)− P (X ∈ A)P (Y ∈ B)

where A , B are partitions, which can be used to define
asymptotic (or “local”) analogues of the assumptions
of “indentically distributed” or “stationary”.
It is always a good idea to preprocess your data, either
by sphering it or lookting at its copula (it works fine
with financial data).
Densities can often be well approximated by simple
density classes, such as mixtures, products (as in inde-
pendent component anlysis) or copulas (the tail plots
can help choose an adequate family of copulas).
Density estimation algorithms can benefit from effi-
cient data structures, such as those used in the video
game industry: for instance, an evaluation tree is a
binary search tree that represents a setwise constant
function, often enhanced by bounding boxes; it can be
used to store a density estimate.
The third part of the book presents density estimators.
Local averaging estimators include histograms; average
shifted histograms (ASH), which approximate a kernel
estimator with a triangular kernel; kernel estimators.
You can use volume plots to check that the density

estimation is correct – even in high dimensions, when
you cannot really “plot” it.
Series estimators include Fourier series, wavelets, pro-
jections on a lower-dimensional subspace, including
shrinkage estimators, which also tweak the coefficients
– the projection is not orthogonal.
Those estimators often minimize some empirical risk
(MLE, etc.) and reduce the problem to a finite (com-
binatorial) one: choose the best density among a finite
(huge) set of candidates (δ-net), or a lower-dimensional
subspace, or a (countable, infinite) dense set in a lower-
dimensional subspace (unless direct computation is
possible, these are usually approximated by increas-
ingly finer finite sets)
A greedy adaptive density estimator starts with a
uniform density on a rectangle, splits it in two in the
best possible way (to minimize some measure of em-
pirical risk), and iterates. A CART histogram (a
histogram is just a locally constant density) proceeds
greedily, but also penalize for the complexity of the
density, and prunes the result. Dyadic histograms
only split the rectangles in their middle: they are ac-
tually Haar wavelet decompositions. Bootstrap aggre-
gation, i.e., averaging the density estimates on several
bootstrap samples, can improve the result.
Stagewise minimization models the data as a mixture,
but increases the penalty as more terms are added.
Boosting can be interpreted as a gradient search.

Bayesian methods in finance
S.T. Rachev et al.

Wiley (2008)
(The book is printed on low quality, nose-irritating,
dust-mite-friendly paper.)
Clear and detailed introduction to bayesian statistics
and its applications to portfolio management – nothing
new.
Mean-variance portfolio allocation instability problems
can be fixed by robust methods, portfolio resampling
or bayesian methods. Bayesian methods take a non-
informative or informative prior, mix it with the sample
data, and output a posterior distribution of expected
returns and variance matrix; in the non-informative
prior case, the returns are the sample returns, while in
the informative prior case they are shrunk towards the
prior; in the non-informative prior case, the variance
matrix is scaled up; for gaussian returns, the posterior
distribution is a Student distribution.
More generally, instead of a gaussian model N(µ,Σ),
one can “bayesianize” a regression – in an asset man-
agement context, regressions are called asset pricing
models and the main examples are the CAPM (r ∼ f1,
where f1 are the market returns), the Fama-French 3-
factor model (r ∼ f1+f2+f3 where the fi are the mar-
ket excess returns, the returns difference between large
and small caps, and the returns difference between high
and low price-to-book stocks), and the arbitrage pric-

Article and book summaries by Vincent Zoonekynd 834/1044

ing theory (APT, r ∼ f1 + · · · + fn, where you can
freely choose the fi). You end up with a posterior dis-
tribution for the regression coefficients. You can blend
several models with bayesian model averaging (BMA).
The Black-Litterman framework allows an investor
to start with an asset pricing model (e.g., the CAPM,
in particular the expected return of all assets is the
same) and progressively incorporate more information,
in the form of forecasts on the returns of assets or port-
folios of assets, each with a confidence level.
A market is said to be efficient if one cannot predict
future price changes from past prices (weak efficiency),
from current public information (semistrong efficiency)
or from current public or private information (strong
efficiency). In other words, tests of efficiency compare
the following models.

returnst ∼ factorst
returnst ∼ factorst + informationt−1

Economists often use a 2-step procedure: first estimate
the beta of each asset, using time series regressions
ri,t ∼ ft, then estimate a cross-sectional regression,
(i.e., for a single date t) and test if the intercept is
zero. In a bayesian setup, you can look at the poste-
rior distribution of this intercept.
But this two 2-step process is incorrect (this is the “er-
ror in variables” problem). Instead, one can look for
consequences of the efficient market hypothesis (EMH):
for instance, under the CAPM, the market portfolio
(or your benchmark portfolio) should be efficient (un-
der the APT, some combination of the factor portfo-
lios should be efficient). The tests then consider some
measure of inefficiency, such as the difference in re-
turns between the benchmark and the efficient portfo-
lio with the same risk (vertical distance to the efficient
frontier), or the difference in risk-adjusted returns µ/σ
(Sharpe ratio) between the Benchmark and the tan-
gent portfolio (a kind of “angular distance” to the effi-
cient frontier) or the difference in certainty-equivalent
returns (the returns of a risk-free portfolio with the
same utility, i.e., the difference in utility converted
into returns). In a bayesian context, one can sample
from the posterior distribution of the inefficiency mea-
sure (it is not tractable: you have to use simulations).
Adding constraints (they change the efficient frontier)
is straightforward.
On can also directly test for returns predictability,

returnt ∼ factort−t
factort ∼ factort−1.

In a bayesian setup, one can estimate the posterior
distribution of expected returns, and look at how it
changes as the horizon increases: the impact of esti-
mation uncertainty grows, making stocks less and less
attrative. [Isn’t this in contradiction with the received
wisdom that stocks are good for the long term and
bonds better for the short term?]
The Bayes factor is not mentionned.

The estimation of stochastic volatility (SV) mod-
els, contrary to GARCH models, is not straightfor-
ward. Approximations, such as the quasi-maximum
likelihood, or biased methods, such as the method of
moments, are not reliable. The efficient method of
moments uses an auxiliary, easy-to-fit model, such as
the GARCH model:
– You have a complicated model M (θ), e.g., a stochas-
tic volatility model;

– You have a less satisfactory but tractable model
M0(ζ);

– Estimate the parameter ζ̂ of the tractable model M0

on the data;
– For a value θ of the parameters of the complicated
model, simulate data and estimate the parameters
ζ̂θ of the tractable model on the simulated data;

– Minimize
∥∥∥ζ̂ − ζ̂θ∥∥∥ (you can use a maximim-

likelihood-based distance instead).
The fact that the sum of the GARCH parameters
α + β is often almost 1 (it should be less than one for
the model to be stationary and anything you do with
it meaningful) could be an artefact of a misspecified
model, e.g., time-dependent parameters. The linear
model with student GARCH noise can be estimated
via Gibbs sampling and can easily be generalized to
a Markov regime-switching model (MSGARCH), by
adding latent variables.
The stochastic volatility models are also latent-variable
models: in this case, the number of unknown parame-
ters (the model parameters and the unobserved volatil-
ity) is of the same order as the sample. They can be
fitted by a Gibbs single-move sampler (i.e., one up-
dates a single parameter or non-observed variable at a
time), but this converges very slowly if there are au-
tocorrelations between the latent variables (and there
are in the case of time series). This can be remediated
by Kalman-filter-based multimove samplers.
The models can be extended to allow for jumps: add
Bernoulli variables qt to denote the presence of a jump
and log-normal variables jt for the amplitude of the
jump; you can add jumps in the volatility as well: there
are then fewer jumps and they are easier to interpret.
The distribution of asset returns are not gaussian: one
can model them with a mixture of gaussians, an asym-
metric Student T distribution, a stable distribution,
an extreme value distribution (EVD), a skew-gaussian
distribution (mixture of a gaussian and a truncated
gaussian). Copulas are mentionned and the authors
are aware of the need for and lack of tools to han-
dle and estimate copulas in high dimensions; they can
be used to generalize the Black–Litterman framework
(copula opinion pooling). Coskewness (third moment
between a stock and the market or a benchmark) or al-
ternative measures of risk (expected shortfall (ES), aka
conditional value at risk (CVaR)) can be incorporated
into portfolio optimization.
A risk model is a concise way of describing the depen-
dency between stock returns: it is sometimes written

Article and book summaries by Vincent Zoonekynd 835/1044

as a linear model,

r = α+ fe+ noise,

where f are the factor returns, sometimes as a decom-
position of the variance matrix of returns V into factor
exposures e and factor variance v: V = eve′. Bayesian
methods can be used when estimating risk models. The
risk or variance of a stock can be decomposed into
the contribution of each factor (and their interactions);
this can be generalized to other measures of risk.

Simulation and inference
for stochastic differential equations

S.M. Iacus
Springer (2008)

The first chapter of the book reviews stochastic pro-
cesses and stochastic differential equations (SDE):
– Random number generation (Mersenne Twister);
– Monte Carlo simulations : the convergence of

1
n

∑
g(xi) to Eg(X) is very slow, in

√
n, but is in-

dependent of the smoothness of g;
– Variance reduction: preferential sampling, antithetic
sampling (low discrepancy sequences, i.e., quasi-
random numbers, are not covered), control variables
(find any relation between the quantity of interest
and any other quantity, easier/faster to compute,
for instance the call-put parity);

– (Total) variation, quadratic variation

[X,X]t = lim sup
0=t0<···<tN=t

|X(tk+1)−X(tk)| ;

– Conditional expectation;
– Martingales;
– Brownian motion, geometric brownian motion,
brownian bridge (to simulate a brownian motion);

– The Karhunen-Loève expansion of the brownian
motion expresses it as a countable sum:

W (t)(ω) =

∞∑
i=0

Zi(ω)φi(t)

φi(t) =
2
√
2T

(2i+ 1)π
sin

(2i+ 1)πt

2T

Zi ∼ N(0, 1) iid;

– Diffusion processes, i.e., SDEs of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

their stationary distribution, infinitesimal generator
(only the formula is given, we are not told what it is
nor why it is called like that);

– Ito’s formula;
– If the diffusion coefficient σ of a SDE only depends
on the state variable Xt (and not on t), the Lam-
perti transform turns it, via the Ito formula, into
a SDE with unit diffusion coefficient.

– Girsanov’s theorem is a change-of-measure theo-
rem, that can be used to compute a Radon-Nikodým
derivative, i.e., a likelihood ratio.

This chapter ends with a list of (17) useful families
of stochastic processes (Ornstein–Uhlenbeck (aka Va-
sicek), etc.) with unproven formulas (explicit solution,
invariant law X∞, covariance function Cov(Xt, Xs),
conditional covariance function Cov(Xt, Xs|X0 = x0),
conditional law Xt|X0 = x0, etc.) and properties.
– The Jacobi diffusion process

dXt = −θ
(
Xt −

1

2

)
dt+

√
θXt(1−Xt)dWt

is reminiscent of copulas: its invariant distribution is
uniform U(0, 1); in particular, you can use it to build
a process with a prescribed invariant distribution F
as Yt = F−1(Xt).

– Social scientists often consider feedback models (for
population dynamics, political polarization, etc.),
i.e., models with a drift of the form b(x) = r(θ− x),
whose diffusion coefficient σ2 is constant, linear or
polynomial in x, leading to a gaussian, Gamma or
Beta stationary distribution.

– Epidemiologists often consider ordinary differential
equations (ODE), to which you can just add a noise
term σ(Xt)dWt to get a SDE.

The second chapter examines numerical simulations.
The quality of a simulation Yδ (where δ is the step
size) of Y is assessed by looking at how the dis-
tance E |Yδ(t)− T (t)| changes, for t fixed and δ getting
smaller – O(δ1/2) is passable, O(δ) is better.
The Euler scheme is the naive discretization of the
SDE: replace the d signs with ∆ signs. Note that the
discrete paths you get are not discretizations of paths
you would get from the SDE itself: except for the brow-
nian motion itself, there is a bias, you are sampling
from a distribution of discrete paths close to but dif-
ferent from the desired one. For instance, the paths of
the Cox-Ingersoll-Ross model

dXt = (θ1 = θ2Xt)dt+ θ3
√
XtdWt

are (a.s.) positive and therefore well-defined (if 2θ1 >
θ23), but those of the corresponding Euler scheme is not.
The Milstein scheme uses a second order Taylor ex-
pansion (via Ito’s theorem).

Yi+1 = Yi + b∆t+ σ∆Wt +
1

2
σσx((∆Wt)

2 −∆t)

If the diffusion coefficient σ only depends on the state
variable Xt (and not on t), you can remove it with the
Lamberti transform; things then magically improve:
the (simpler) Euler scheme of the transformed process
is the Milstein scheme of the initial one; in particular,
its order of convergence is 1.
Higher order Taylor expansions (KPS scheme, sec-
ond Milstein scheme) further improve the convergence;
they are comparable to the Runge-Kutta method for
ODE.
In some rare cases, the conditional distribution Xt|Xs

is known and exact simulation is possible: for the brow-
nian motion, it coincides with the Euler scheme, but

Article and book summaries by Vincent Zoonekynd 836/1044

it is also available for the geometric brownian motion
(GBM, aka Black-and-Scholes model), the Ornstein-
Uhlenbeck (Vasicek) process and the CIR process.
The Euler scheme replaces the SDE by one whose drift
and diffusion are constant (this approximation is con-
stant between any two consecutive steps, but it changes
at each step): instead, one can approximate the drift
by a linear function of X: the Ozaki (and Shoji-Ozaki,
if the drift also depends on time) method uses such a
local linearization.
Diffusion bridges can be simulated for ergodic pro-
cesses (i.e., those with no “arrow of time”): simulate
two paths, one forwards, one backwards, and combine
them if/when they intersect.
Exact sampling via rejection sampling is alluded to; it
can be extended to diffusion bridges.
The third chapter addresses the estimation problem:
you have a discretized sample path from a (time-
homogeneous) diffusion process, you know (assume) it
belongs to some family of SDEs (e.g., geometric brown-
ian motion), and you want to estimate the correspond-
ing parameters. As often, we will only have asymptotic
results, in various setups: large sample (∆ constant,
T →∞); high frequency (∆→ 0, T constant); rapidly
increasing (∆→ 0, T →∞).
In real situations, even though your sample path looks
fine (two or three parameters, hundreds of obser-
vations, the path looks smooth, sufficiently rich to
present (not one but) many “patterns” that numerolo-
gists/chartists would be eager to interpret) there is not
enough data and the asymptotic results are not valid.
In the ideal ergodic case, if we have a complete (con-
tinuous, not discretized) path, we know the invariant
distribution; the (parameters intervening in the) dif-
fusion coefficient can be estimated from the quadratic
variation

〈X,X〉t =
∫ t

0

σ2(Xs, θ) ds;

the remaining parameters can be estimated by max-
imizing the log likelihood (the likelihood ratio is the
Radon-Nikodým derivative)∫

b

σ2
dXs −

1

2

∫
b2

σ2
ds.

In the discrete case, you could discretize those contin-
uous estimators (they are not that efficient).
You can obtain discrete estimators directly, by replac-
ing the integral by a sum – but you have to know
the transition probabilities: it works for the Ornstein-
Uhlenbeck model, the geometric brownian motion, the
CIR model.
If the transition probabilities are not known, use one of
the discrete schemes used to simulate trajectories of the
SDE (Euler, Milstein, KPS, Ozaki, etc.): their transi-
tion probabilities are known. If ∆ � 1 and N∆ � 1,
then the Euler scheme is sufficient, if not, then none of
those pseudo likelihoods is satisfactory.

The likelihood of xt+∆|xt can also be estimated by sim-
ulating (with the Euler scheme and a step size δ smaller
than ∆) trajectories starting at xt.
Various expansions (Taylor, Hermite polynomials, etc.)
of the likelihood can also be used, leading to approx-
imated likelihood estimators.
Bayesian methods (MCMC simulations) can also be
used.
Estimating functions (aka moments) are functions
f such that Ef(X, 0) = 0 iff θ = θ0. If you choose the
function wisely (e.g., apply the infinitesimal gener-
ator of the diffusion to any function h), this is ana-
lytically tractable and often consistent and asymtoti-
cally gaussian. You can also use the first and second
moments of the transition density: the resulting esti-
mators are consistent and robust to model misspecifi-
cation.
The generalized method of moments is almost
identical, but suggests you use more moments than
needed: the model is overidentified.
The last chapter examines miscellaneous topics. The
AIC (the log-likelihood, corrected for the dimension of
the parameter space) could be used to compare models
– but beware: it does not work.
Diffusions are amenable to non-parametric estimation.
For instance, you can estimate the stationary density
(with a usual kernel estimator), estimate the drift pa-
rameters (if this part of the process is parametric)
and use the Kolmogorov equations, which link station-
ary distribution, drift and diffusion, to estimate the
(non-parametric) diffusion. In a high-frequency setup,
you can estimate the drift and diffusion as Nadaraya-
Watson kernel regression estimators

b(x) = lim
t→0

1

t
E[Xt − x|X0 = x]

σ(x)2 = lim
t→0

1

t
E[(Xt − x)2|X0 = x].

Change-point models can also be estimated with the
Euler scheme.
The book is interesting but unpolished:
– Some formulas are wrong (not misleading, just
meaningless); others are badly typeset, for instance,
the limit in probability is written “pminus lim”: why
not use “plim” or “p-lim” (with a hyphen and con-
sistent typeface) instead?

– The R code, most of which is available in the sde
package (check the sde.sim, DBridge, dcEuler,
ksmooth, cpoint functions), tends to return invis-
ible objects: invisible objects are useful for functions
called for their side effects and whose return values
are rarely used, such as plotting functions; but if
the return value is just too complicated or long to
be printed, it is less misleading for the end-user to
implement a print method;

– Some theoretical notions are missing or confusing:

Article and book summaries by Vincent Zoonekynd 837/1044

the author talks of weak and strong solutions of
a SDE but never defined them; the definitions of
strong and weak order of convergence look fishy (the
weak seems stronger than the strong).

Beautiful Data
T. Segaran et al.

O’Reilly (2009)
Empty.

Recent advances in harmony search
Z.W.Geem et al. (2008)

Harmony search (HS) is a music-inspired optimiza-
tion algorithm, comparable to genetic algorithms, but
it does not assume the genes are 1-dimensional: choose
the value of each variable independently (no cross-
overs, genes are not linear), either at random of from
the harmony memory, i.e., the current population (you
can end up with more than two parents), and apply
some pitch adjustment (mutation). This can be re-
fined by putting back some dependency between the
variables (ensemble HS (EHS)) and/or progressively
changing the parameters (e.g., lower the mutation
probability, as in simulated annealing: improved HS
(IHS)).
There have been some applications in music (organum
composition) and engineering (designing various struc-
tures, such as geodesic domes).

AI methods for algorithmic composition:
a survey, a critical view and future prospects

G. Papadopoulos and G. Wiggins
The following classes of composition algorithms have
been investigated:
– Stochastic processes, such as Mozart’s dice game (a
musical analogue of R. Queneau’s Cent mille mil-
liards de poèmes), Markov chains (this requires a
corpus, in which melody and rythm are often sep-
arated); artificial neural networks, machine learn-
ing, stochastic grammars (which try to reflect large
structures but fail to accout for “ambiguity” or the
2-dimensional structure of music – this is also my
main criticism of Haskore: musical structures can-
not be represented by a tree, we need a directed (but
still acyclic) graph);

– Non-linear systems, iterated functions (but there is
no way to evaluate the quality of the result);

– Knowledge-based systems: constraint satisfaction
problems (CSP);

– Genetic algorithms (GA) (since it is almost impos-
sible to design a good fitness function, you end up
using humans: interactive GA).

Few of those use a geometric model of pitch space
(pitches can be arranged in a lattice, e.g., with thirds
in one direction and fifths in the other).

Frankensteinian methods
for evolutionary music composition

P.M. Todd and G.M.Werner
One can also consider coevolutionary algorithms,
with two populations, of composers and critics.

Group Theory and SAGE: a primer
R.A.Beezer (2009)

SAGE is a common interface to several computer al-
gebra systems (CAS) (Gap for group theory, Maxima
for symbolic computations, etc.) but fails to follow the
evolution of the components – that would be easy if
they had an exentensive test suite, such as all the com-
putations in one of the many online documentstions.
For finite groups (mainly subgroups of Sn for n ⩽ 50),
it looked fine, but symbolic computations (Maxima)
and plotting (MatPlotLib) are broken (this may be
Ubuntu-specific).

Adventures in group theory:
Rubik’s cube, Merlin’s machine

and other mathematical toys
D. Joyner (2008)

Applied group theory with Sage.
To solve the Rubik’s cube (many other puzzles are
covered): try to find sequences of moves (of the
form aba−1 (conjugation by internal automorphism),
aba−1b−1 (commutator), (ab)n) that keep a lot of the
facets unchanged; use them to first put the corners in
the right places, then the edges, then the corners in the
right orientations, then the edges. This can be formal-
ized as a decomposition g0 = g1g2g3g4 where g0 ∈ G
is the permutation representing the current configura-
tion;

{1} = G4 ⊂ G3 ⊂ G2 ⊂ G1 ⊂ G;
G1 is the subgroup that fixes the corner positions; G2,
the subgroup that fixes the corner and edge positions;
G3, the subgroup that fixes the corner and edge posi-
tions, and the corner orientations;

g0 ∈ g1G1

g−11 g0 ∈ g2G2

g−12 g−11 g0 ∈ g3G3

g−13 g−12 g−11 g0 ∈ g4G4.

The Merlin machine (an n ×m array of buttons with
lights; pressing a button switches its light and that of
its neighbours; your goal is to switch all lights on (or
off) from an arbitrary initial position) is a matrix in-
version problem: the initial state b is a vector if size
nm (with coefficients in Z/2Z); the possible moves are
also vectors of size nm, which can be arranged into a
matrix A; solving the puzzle is equivalent to solving
Ax = b (this is not always possible: A need not be
invertible).
The Cayley graph of a group with prescribed genera-
tors G = 〈g1, . . . , gn〉 has the elements of G as vertices

Article and book summaries by Vincent Zoonekynd 838/1044

and an edge x → y if y = gix for some generator gi.
A solution to a puzzle is a path in the Cayley graph of
its group. The diameter of the Cayley graph gives (a
bound on) the minimum number of moves required to
solve the puzzle.

Differential calculus and Sage
W. Granville and D. Joyner

Sage relies on Maxima, which is woefully unstable (but
Maxima is written in Lisp: how can they get a segmen-
tation fault in Lisp?).
Sage notebooks are web-based equivalents of Maple’s
workbooks: you can use LATEX for mathematical ex-
pressions; they rely on Twisted for the access from a
web browser.
Sage functions can be written in Python (but, of
course, Python function cannot be symbolically differ-
entiated).
Here is some sample code (press tab after the name of
a function such as expand or simplify):

x=var('x')
integral(x^2,x,0,1)
n(integral(x^2,x,0,1))
integrate(x^2,x)
a,b,c,d,e,f,x,y=var('a,b,c,d,e,f,x,y')
solve(ax^2+bx+x==0,x)
solve([ax+by+c==0,dx+ey+f==0],x,y)
tan?
diff(sin(x),x,4)
partial_fraction(1/(1-x^2),x)
limit(1/t,t=Infinity)
limit(1/t,t=0,dir="plus")
show(plot(x^2,-2,2))
maxima("sum(3*k+1,k,2,5)")
sum([f(i) for i in range(20)])

Sage for Newbies
T. Kosan (2008)

Integral calculus and Sage
D. Hoffman et al. (2009)

A calculus book relying on Sage: most of the code is
actually Python and the pictures are awful (low resolu-
tion, lossily-compressed bitmaps, scaled by a different
(random?) and ever changing factor in the horizontal
and vertical directions).

Asymptote: the vector graphics language
Asymptote is a variant of Metapost (a language to de-
scribe and produce PDF figures to be included in LATEX
files) with a C++-like syntax: semi-colons, parenthe-
ses around function arguments; standard data types
(real, triple, vector, matrix, string); standard libraries
(operations on strings, arrays, vectors, matrices – in-
cluding mathematical operations such as matrix inver-
sion or the Fast Fourier Transform (FFT)); plotting li-

braries (any kind of plot with axes, even with logarith-
mic or broken scales, 3-dimensional plots, diagrams,
etc.); ability to include code directly in your LATEX
files (in the asy environment; use the asy command to
produce the plots). The labels are typeset in LATEX,
with some Unicode if needed (cyrillic fonts, Asian lan-
guages through the old CJK package – no mention of
XƎTEX). They seem to have kept all the good features
of Metapost, except the constraint-solving capabilities
– but given the emphasis on “scientific” (i.e., numeric)
plots, this may not be an issue.
For an extensive gallery of examples, including
many showing that the constraint-solving feature was
not that important, check http://www.piprime.fr/
asymptote.

Primes in P
M. Agrawal et al.

There exists a polynomial algorithm to determine
whether a number is prime. The algorithm is very
simple (but not that fast: O((log n)21/2)) and based
on a generalization of Fermat’s little theorem:

a prime ⇐⇒ (X + a)n ≡ Xn + a (n)

for a ∈ Z, n ∈ N, n ⩾ 2, a ∧ n = 1.
The complexity classes are the following:
– P: there exists a polynomial algorithm to determine
if a number is prime

– co-NP: to prove that a number is not prime, it suf-
fices to provide a “non-primality certificate” (the de-
composition into a product of prime factors); the ver-
ification (product) can be done in polynomial time;

– NP: to prove that a number is prime, it suffices to
provide a certificate from which one can check that
the number is indeed prime (since Prime is P, the
certificate can be empty);

– NP-Complete: a problem is NP-complete if all NP
problems can be reduced to it in polynomial time.

A comparison of
random forest and its Gini importance

with standard chemometric methods
for the feature selection and classification of

spectral data
B.H. Menze et al

BMC Bioinformatics (2009)
Regularized methods can tackle large numbers of pre-
dictors, but do not identify and discard irrelevant
variables (variables are often called “features”): in
chemometry, one often applies them after some fea-
ture selection algorithm, e.g., with the random forest
Gini importance (total change in entropy brought by a
given variable or set of variables in a random forest).

Planet: massively parallel learning
of tree ensembles with MapReduce

B. Panda et al.

Article and book summaries by Vincent Zoonekynd 839/1044

http://www.piprime.fr/asymptote
http://www.piprime.fr/asymptote

VLDB 2009
Classification trees or regression trees (a “common data
mining task” at Google) can be parallelized.

A course in credibility theory
and its applications

H. Bühlmann and A. Gisler
Springer Verlag (2005)

On the use of bayesian models, or more generally hier-
archical models, in actuarial science (i.e.. “insurance”)
– they use a different vocabulary: “credibility theory”
means “hierarchical model”.

Dynamical bias in the coin toss
Coin tossing is not random: with probability 0.51, the
coin lands as it started.
Coin spinning is even worse: depending on the age of
the coin, the probability of tails can be as high as 0.9.

Tag cloud drawing:
algorithms for cloud visualization

O. Kaser and D. Lemire
Tag clouds, in most websites, are often just an alpha-
betic list of words of varying sizes, with no attention
given to esthetics, ease of use (the alphabetic order is
far from optimal) or space usage. Here are a few ideas
to improve them:
– Keep the alphabetic order but use a decent (TEX-

like, dynamic-programming-based algorithm (com-
pute the badness bij of a line containing words i to
j) instead of the greedy, Word-like one) line-breaking
algorithm; you may want to shuffle the words a dozen
times and keep the best layout;

– Sort the tags by decreasing height and add them one
by one, greedily, to the first available line; create a
new line if needed;

– Take the relations between the tags into account
(model them as a weighted graph) and use some
heuristic from the placement problem in EDA
(Electronic Design Automation), e.g., force-directed
methods (view the graph edges as springs), simu-
lated annealing, or heuristics for the (NP-hard) min-
cut placement problem, which recursively cuts the
set of tags in two (left/right or top/bottom) so that
the cut size (total weight of the edges between the
two parts; also add the influence of external edges)
be small and the bipartition balanced; the result can
be implemented with nested HTML tables (but it
looks very tabular).

Using trees to depict a forest
B. Liu and H.V. Jagadish

VLDB 2009
When a database query returns too many results, in-
stead of ranking them, present a “representative” sub-
set, obtained by clustering.

A demonstration of SciDB:
a science-oriented DBMS

VLDB 2009
Scientific database applications have the following re-
quirements:
– Non-tabular data-types: n-dimensional arrays,

ragged arrays, nested arrays, sequences, graphs,
meshes;

– Provenance tracking, snapshots (“named ver-
sions”, i.e., you can modify the data without tam-
pering with other users’ work and without having to
copy it), no-overrite storage manager (just an “up-
date time” dimension);

– Grid storage (because of the volume of data: 100
tetabytes);

– Ability to work on data without having to load it
(HDF-5, NetCDF file formats);

– Database operations (join, etc.) should account for
imprecision, e.g., by adding a “precision” to a col-
umn and considering values differing by less than
this threshold as equal; more elaborate models could
assume the data in a column is gaussian, estimate its
mean and variance, and output results with a confi-
dence interval;

– User-defined functions (e.g., in C++).
SciDB does not exist: it is just a wishlist.

ConvergenceConcepts: an R package to
investigate various modes of convergence

P. Lafaye de Micheaux and B. Liquet
R Journal (2009)

If you have a sequence of random variables, or random
number generators (or several samples – it may even
work with a single path, if it is sufficiently “representa-
tive” and “ergodic”), you can study their convergence
as follows:
– Plot several samples paths (Xn)n and check if they
leave [−ε, ε] for n > N : if most do not, then Xn → 0
a.s.;

– Estimate the proportion of paths that leave this in-
terval,

aN = P [∃n ⩾ N : |Xn| > ε],

if it converges towards zero (in most (textbook) ex-
amples, it is really clear-cut), the sequence converges
almost surely;

– In the plot of the sample paths, instead of the
[N,+∞[× [−ε, ε] infinite rectangle, just consider the
narrower {n}× [−ε, ε] rectangle: if the proportion of
paths outside it

pN = P [|xN | > ε]

decreases to 0 as N increases, there is convergence
in probability;

– For the convergence in law, you can plot the cumula-
tive distribution function (cdf) and check if it moves
towards the supposed limit; one could also use an
animated quantile-quantile plot (or ppplot, or his-

Article and book summaries by Vincent Zoonekynd 840/1044

togram, etc.) or a plot of the |Fn(x)− F (x)| ∼ x+n
surface;

– For Lp convergence, just compute an estimator of
E |Xn −X|r,

ên =
1

|Ω|
∑
ω

|xn(ω)− x(ω)|r .

The GUI is ugly but interactive.

Almost Sure Convergence to 0
Convergence in probability

The peaks are rarer and rarer

Convergence in law
Convergence L^p

The peaks are not growing higher

Understanding convergence concepts:
a visual-minded and graphical

simulation-based approach
P. Lafaye de Micheaux and B. Liquet

The American Statistician (2009)

asympTest: a simple R package
for classical parametric statistical tests

and confidence intervals in large samples
J.-F. Coeurjolly et al.

R Journal (2009)
Mean comparison tests are robust to non-gaussianity,
but variance comparison tests (the 1-sample χ2 vari-
ance test; or the 2-sample Fisher ratio test, var.test)
are not, even for large samples.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Variance comparison tests are not robust (N=10,000)

Theoretical p−value

C
om

pu
te

d
p−

va
lu

e

Gaussian
Student, df=4
Uniform
Exponential

Robust tests and confidence intervals can be obtained
by considering asymptotically gaussian quantities such

as
S2
n − σ2

σ̂S2
n

.

copas: An R package
for fitting the Copas selection model

J. Carpenter et al.
R Journal (2009)

The Copas model accounts for publication bias (more
significant or smaller studies (with more extreme re-
sults) are more likely to be published) and is used to
improve meta-analyses in medical studies.

Use R 2009 Conference
Examples
Year after year, there are fewer and fewer exam-
ples that boil down to a simple linear regression:
they are replaced by non-linear (sometimes non-
parametric) and/or hierarchical linear (or survival,
logictic, Markov, spatial, even spatio-temporal mul-
tiscale (country/micro-region/region)) penalized mod-
els, sometimes with added boosting or a bayesian prior;
some presenters use the bootstrap to have more robust
confidence intervals.
Examples included
– Non-linear models in biochemistry, to estimate drug

interactions, dose-response curves;
– Shape analysis;
– Text mining (for gene names in biology);
– Meta-analysis (aggregating several studies, e.g., with
microarray data);

– Time series (building a business cycle (recession) in-
dicator from NBER data: transform and/or filter the
data, use non-linear and/or Markov switching (MS)
models);

– Forecasting multivariate time series (to optimize a
frozen goods supply chain or forecast electricity com-
sumption);

– Multivariate analysis (with FactoMineR);
– Design of experiments (DOE), survey design (com-
pute the sample size, in each stratum, for a given
desired precision, to estimate fisheries revenues)

– Subject randomization system (subjects for a ran-
domized trial arrive one by one; we then learn in
which strata (gender, age, etc.) they are; we decide
to give them treatment A or B by flipping a coin; we
can hasten the convergence by keeping a running dif-
ference nA−nB for each stratum and using a biased
coin to redress any unbalance).

The large-scale ThomasCook example was interesting:
– They store the data in an SQLite table (modified to
hold 30,000 columns – with PL/R, they had ended
up writing R code that called PostgreSQL that called
R: it was a nightmare to debug);

– They use R for ETL (Extract, Transform, Load),
with some Python (BeautifulSoup) for screenscrap-
ping;

Article and book summaries by Vincent Zoonekynd 841/1044

http://faculty.washington.edu/ezivot/econ583/convergenceConcepts.pdf
http://faculty.washington.edu/ezivot/econ583/convergenceConcepts.pdf
http://faculty.washington.edu/ezivot/econ583/convergenceConcepts.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Cheng+Sheu.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Hofner+Hothorn+Kneib.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Allignol+Schumacher+Beyersmann.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Ferreira+Bertolde+Holan.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Ferreira+Bertolde+Holan.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Sharp+Friskin+Hosking+Logie.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Radivoyevitch.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Harbron.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Harbron.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Theussl+Feinerer+Hornik.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Thorin+Mallem+Noireaud+Desfontis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Katina.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Friedrich+Gundel.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Marot+Foulley+Mayer+Jaffrezic.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Fontdecaba+SanchezEspigares+Munoz.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Despagne.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Walz+Ziemer+Amberti.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Walz+Ziemer+Amberti.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/LeRay+Molto+Husson.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Gromping.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/VanIseghem+Demaneche+Daures+Leblond.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Henry+Wood+Narasimhan.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Henry+Wood+Narasimhan.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Wijffels.pdf
http://www.joeconway.com/plr/

– glmpath to select variables;
– randomForest (on the selected variables) to predict
the speed at which the planes will fill;

– The prices are optimized with the random forest
model;

– They add a fuzzy inference engine (based on the sets
package) to prevent canibalization (you lose clients
to yourself) and allow the business to add their im-
put to the model;

– They provide a graphical interface with wx-
Python/RPy2 (and py2exe to create Windows ex-
ecutables that do not require Python on the clients);
R remained on a central server (some call it SaaS:
Software as a Service).

Plots
Kaleidoscope plots are those impressive, dense,
polar coordinate plots, judiciously using transparent
colours, you sometimes see in bioinformatics, often pro-
duced by Circos (GPL, unrelated to R). There was one
on the title page of Beautiful code, Compelling Evi-
dence, which explains how to use Haskell and OpenGL
to produce graphics. The basic idea stems from the
graph layout problem: if you are completely clueless
about how to plot a graph, just put the vertices in
a circle; if the graph is weighted, draw the edges as
varying-width ribbons;

A directed graph

finally remark that a contingency table is a (bipartite:
rows and columns) weighted graph

Two qualitative variables

and draw it in polar coordinates (pay attention to the
order of the segments and the ribbons, label the seg-
ments, add axes). Use it if you want artistic plots (that
make the user wonder what the plot is about) or if your
data is too large to be amenable to more traditional
plots.

Two qualitative variables in polar coordinates

Visual analytics are statistical graphics made by
artists or good communicators: they should capture
the audience’s attention and convey the speaker’s
ideas. The most salient such example is GapMinder
(a flash-based application to display multivariate time
series, as animations) and its narrative power (it helps
you efficiently tell a story, but might not be the best
tool to discover that story). As statisticians, we can
try to reduce the information displayed to what is rel-
evant and add model information (distribution, prior,
expected values under H0, etc., for instance a map of
cholera cases can be complemented by well positions
and their Voronoi tessellation). R provides graphics
for diagnostics, presentation (but no animations or in-
teractivity), and not much for data exploration (iplot,
iplot eXtreme, ggobi) – redundant functions do not
help (for instance, you can draw a histogram in any
of the following ways: hist, truehist, histogram,
qplot(...,geom="histogram"), iplot).
An information dashboard (ID) presents all the in-
formation needed in a single, easy-to-read page; it can
use bargraphs, stacked bargraphs, linegraphs, scatter-
plots, boxplots, sparklines, treemaps, bullet graphs
(a thick horizontal line from the origin to represent a
single value, with a tick for a reference point (target,
last year’s value, etc.), and a coloured background to
represent how good the value is (3 values, from dark
(bad) to light (good) grey; do not rely on colours); do
not forget a textual label, with units (smaller), and a
scale)

0 50 100 150 200 250 300

Bullet Plot

arbitrary units

or horizon plots (to plot a time series, represent both
positive and negative values above the axis, with a dif-
ferent color (blue/red), put the possible values into
three bands, of darker colours, and overlay them) –
no piecharts.

Article and book summaries by Vincent Zoonekynd 842/1044

http://mkweb.bcgsc.ca/circos/
http://www.renci.org/wp-content/pub/tutorials/BeautifulCode.pdf
http://www.renci.org/wp-content/pub/tutorials/BeautifulCode.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Theus.pdf
http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Porzak.pdf
http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
http://www.perceptualedge.com/blog/?p=390
http://www.perceptualedge.com/articles/08-21-07.pdf

Index

N
A

Index

N
A

Index

N
A

Index

N
A

Index

N
A

The iPlot package adds interactive graphics to R,
but cannot be used for large datasets: there is no
OpenGL in Java and the data is duplicated between R
and the JVM. The soon-to-be-released iPlot eXtreme,
in C++, should address those problems.
The PairViz package uses graph and igraph to or-
der the variables in a parallel coordinate plot using
graph-based algorithms (hamiltonial or eulerian path);
this can be combined with scagnostics if there are
many variables.
R can be linked to external visual exploratory analy-
sis tool: ggobi, Visplore (opensource, but early alpha),
etc.
To plot the results of a clustering,

bwplot(value ~ variable | cluster)

you can add a reference point (the global average of
each variable), fine-tune the order of the clusters, of
the variables, highlight important variables (or grey
out unimportant ones – this will depend on the clus-
ter).

Statistical Tests
Multiple testing often assumes the tests are inde-
pendent and then controls the family-wise error rate
(FWER, probability of having at least one wrongly re-
jected null hypothesis), the false discovery rate (FDR,
proportion of wrongly rejected null hypotheses) or the
false non-discovery rate (FNDR, proportion of wrongly
non-rejected null hypotheses). If you simulate data
similar to yours, you can have an idea of the distribu-
tion of the FDR and FNDR and see how it changes
as the correlation of the data increases. It is possible
to include some knowledge of the corelation structure
into the testing procedure: these “factor-adjusted test
statistics”, implemented in the FAMT package (factor
analysis for multiple testing), can improve both FDR
and NDR.
When estimating a p-value by Monte Carlo simula-
tions (bootstrap, permutations, etc.), some people do
not want the p-value but are happy with just know-
ing if p ⩽ α for some predefined threshold α. Because
of this, we can do with slightly less data (than if we
wanted p, i.e., all values of α) by looking at the path
(
∑

1⩽i⩽n Ti)n⩾1 of partial sums of the test statistic and
checking if it remains in or leaves some box- or tunnel-
shaped region (sequential Monte Carlo p-values).

The car::Anova function implements nested linear
tests (type II tests, i.e., tests of H1|H2, where H1 =⇒
H2) and unconditional linear tests (type III tests) with
an F statistic.

Matching
When comparing the two models y ∼ x and y ∼
treatment + x, where the treatment is a binary vari-
able, some people like to have two observations for each
possible value of the covariates, one for each value of
the treatment. This is usually not the case, but we
can instead “fabricate” new observations: matching
is very similar to regression, but it is not linear (it
could be seen as a “non-parametric regression devel-
oped by non-statistitians”). This looks like an imputa-
tion (or inference with missing data) problem, but it is
apparently addressed with ad hoc methods: coarsened
exact matching (CEM) is one of them – there are 10
matching packages for R... An application to program
evaluation (“program” means sanitation improvement,
etc.) was presented.

Penalized Estimators
Penalized estimators (such as non-parametric regres-
sion) are good but biased by construction: you can
try to estimate and reduce the bias; the ibr package
implements such an iterative bias reduction – but
there were too few details in the presentation.
Penalized regression minimizes RSS + σ2kλ, where
RSS is a sum of squares, k is the model size, and
λ the penalty for complicated models. AIC (Akaike
information criterion) uses λ = 2 but overfits large
datasets; BIC (bayesian information criterion) uses
λ = log n. Adaptively penalized regression mini-
mizes RSS + σ2φ(k, n), where φ is motivated by the
FDR (false discovery rate), i.e., the expected num-
ber of wrongly rejected H0 in a multiple test (it has a
higher power than the too conservative FWER (family-
wise error rate), which controls the probability of one
or more incorrectly rejected H0; with the FDR, you do
not have a single p-value, but a sequence (for the first,
second, etc. test): p/m, 2q/m, 3q/m).
A full regularization path (i.e., a penalized estima-
tor, for all values of λ: lasso, with its L1 penalty;
ridge, with its L2 penalty; elastic net, with both:
1
2 (1 − α) |β|2 + α |β|) can be efficiently computed by
coordinate descent (discretize the path, estimate
one coordinate at a time until convergence, repeat for
the next point on the path, etc.). Coordinate descent
should work any time your optimization if of the form
something + λ × penalty, for instance to build undi-
rected graphical models (it gives you a sequence of
graphs) or to complete a matrix (e.g., a movies× rates
matrix, not observed completely).
In credit rating, to estimate the probability of de-
fault, you can replace the (linear) logit model by a
generalized additive model (GAM). (There are (too)
many such estimators in R, not only gam and mgcv; if
you hesitate, use gam (more stable for small datasets),

Article and book summaries by Vincent Zoonekynd 843/1044

http://www.agrocampus-ouest.fr/math/useR-2009/slides/Urbanek.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Hothorn+Zeileis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Boubela+Filzmoser+Piringer.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Leisch.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Kloareg+Friguet+Causeur.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Kloareg+Friguet+Causeur.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Gandy.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Monette+Fox.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Monette+Fox.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Porro+Iacus+King.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Cornillon+Hengartner+Matzner-Lober.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Galili+Gavrilov+Benjamini.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Hastie.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Muller.pdf

unless you have a lot of relatively clean data.)
The Influence.ME package provides regression diag-
nostics (influential observations, etc.) for mixed mod-
els; the merBoot package uses bootstrap to provide em-
pirical p-values for mixed models.

Non-linear models
The nlstools package provides a few functions to help
fit non-linear models: preview to help you (graphi-
cally) choose the starting values; nls to fit the data;
overview as an alternative to summary; plotfit to
display the data and the fitted curve – also check
nlsResiduals, test.nlsResiduals, nlsContourRSS
(to identify ill-conditioning), nlsConfRegions,
nlsJack, nlsBoot.

Univariate data
To estimate the mode of unimodal data, you can com-
pute density estimators with wider and wider kernels,
look at their local maxima and remember their posi-
tions when they disappear: you get a dendogram-like
plot – this can actually ge generalized to higher di-
mensional data (apply some dimension reduction al-
gorithm afterwards, if needed): check the denpro and
delt packages.
The R2lUniv package provides graphical summaries of
multivariate data, in LATEX, but is not as nice and com-
pact as Hmisc::describe.
The DTDA package provides functions to analyze trun-
cated data (estimator of the cumulated distribution
function (cdf), etc.).
The fitdistrplus package helps you fit distributions
(as MASS::fitdistr), but allows for censored obser-
vations, provides skewness/kurtosis plots (with the
dataset, bootstrap replications, and the regions attain-
able by the models you are considering) and goodness-
of-fit tests (Anderson-Darling test to compare the data
and the fitted model – it accounts for estimated pa-
rameters).
The Tobit model

y1 = βx+ ε

y = y1 · 1y1>0

can be generalized to multiple hurdle models

y = βx+ ε

ε ∼ N(0, V)

y = y1 · 1y1>0,y2>0,...,ym>0

with the mhurdle package.
The mlogit package fits multinomial logit mod-
els (wasn’t there already an implementation in
nnet::multinom?).

Time Series
Markov Switching models can be fitted by expec-
tation maximization (EM): estimate the state at each
time; then the parameters in each state; iterate.

You can mine a large number of time series by com-
puting a few metrics for each of them (average, volatil-
ity, minimum and maximum of the derivative, etc. –
use the methods of functional data analysis (FDA))
and plot the resulting multivariate dataset (1- or 2-
dimensional plots, PCA (principal component analy-
sis), etc.). This is the idea behind scagnostics, ap-
plied to time series.
In a threshold autoregressive model (TAR) model, the
autogression (AR) coefficient depends on the previ-
ous value (often, one allows two values depending on
the sign; sometimes three values corresponding to “sig-
nificantly positive”, “significantly negative”, “small”).
The idea can be generalized to threshold cointegra-
tion: two time series are threshold cointegrated if they
have a threshold stationary linear combination y, i.e.,
yt+1 = α(yt)yt + εt+1, with |α(yt)| < 1 if |yt| is large.
The Kalman filter can be robustified to resist to either
outliers or regime changes (or even both, but with a
delay) with the rLS and ACM algorithms (not detailed
enough).
With the seewave package, R can process sound sam-
ples (the plots are nice and the PDF presentation even
contained an animation) – of course, since R tends to
store data in memory, this is only limited to sound
samples.
Breakpoint models are used in bioinformatics to
model the ratio

number of copies of a gene
number of copies in the reference

as a locally constant function of the position on the
chromosome; the breakpoints can be estimated with
dynamic programming – could dynamic programming
be applied to other breakpoint problems? I rarely see
it outside bioinformatics.
The usual RMetrics presentation(s) focused on date
arithmetics (the timeDate and timeSeries packages
are aware of weekdays, businessdays, for a given fi-
nancial center – but I did not really understand their
explanation of the recordIDs slot) and portfolio opti-
mization.

Spatial Models and GIS
The GeoXp package provides a few plots for spatial
data: driftmap (not defined), angle map,

f(x1)− f(x2) ∼ angle(x2− x1),

where the angle is with respect to the horizontal axis),
neighbourhood map (number of neighbours versus dis-
tance to the nearest neighbour), Moran plot (to check
for spatial autocorrelation, plot the value of the vari-
able of interest at a point versus the average value in
a neighborhood of this point – you could also use two
different variables), outliers (Mahalanobis distance be-
tween pairs versus Euclidian distance between pairs);
those plots could be be linked to a map.

Multivariate Data

Article and book summaries by Vincent Zoonekynd 844/1044

http://www.agrocampus-ouest.fr/math/useR-2009/slides/Nieuwenhuis+Pelzer+TeGrotenhuis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Ruckdeschel+Spangl.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Baty+Charles+Flandrois+Delignette-Muller.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Burger+Dhorne.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/RiouFranca+Genolini.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Moreira+DeUnaAlvarez+Crujeiras.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Delignette-Muller+Pouillot+Denis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Carlevaro+Croissant+Hoareau.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Croissant.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Varadhan+Subramaniam.pdf
http://www.rgrossman.com/dl/proc-094.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Stigler.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Ruckdeschel+Spangl.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Sueur+Aubin+Simonis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Chalabi+Wuertz.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Chalabi+Wuertz.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Wuertz+Chalabi+Ellis+Hanf.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Wuertz+Chalabi+Ellis+Hanf.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Antoni+Dhorne+LeGuyadec.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Zambrano+Bigiarini.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Laurent+RuizGazen+ThomasAgnan.pdf

To the list of multidimensional scaling algorithms,
cmdscale, isoMDS, sammon, you can add isomap, which
tries to find a (non-linear) 2-dimensional submanifold,
smooth but close to the data. As always, try all al-
gorithms and try to replace the dissimilarities by their
ranks (it does not matter if the matrix is not metric).
The biclust package implements many biclustering
algorithms (for binary, quantitative, ordinal or quali-
tative variables).
Hierarchical clustering can be performed on principal
components (some claim that discarding the last fac-
tors of a factor analysis makes the clustering more
robust, others claim the opposite); the clusters can
be defined by representative individuals (actual data
points), variables (as in biclustering) or axes (as in a
biplot).
fMRI data can be analyzed through spatial and even
(spatio-)temporal ICA (independent component anal-
ysis) if you have a sparse description of the singular
value decomposition (SVD); also check the PTAk pack-
age for principal tensor analysis – a similar idea was
presented a few years ago at SigGraph.
Canonical correspondance analysis (CCA) and par-
tial least squares (PLS) are very similar: the former
looks for linear combinations α′X and β′Y of X and
Y that maximize Cor(α′X,β′Y), the latter maximizes
Cov(α′X,β′Y). Both can be regularized: the ridge
(replace (XX ′)−1 with (XX ′−λI)−1) is popular with
CCA, the lasso (an L1 penalty) with PLS.
Data envelopment analysis (DEA, i.e., the con-
struction of efficient frontiers in the input × output
or risk× reward space) can use CCA as a first step, to
select the variables to use; beware of outliers: DEA
focuses on extremes. DEA can also be applied to
medicine.
Distributed quantile estimation (compute a few
quantiles on each client, convert them into an esti-
mated cumulated distribution function (cdf), send it
to the server which then averages those cdfs) can be
generalized to higher dimensions with PCA (only com-
pute the quantiles on the first principal components);
this idea can be applied to monitoring (e.g., to spot
when a coffee machine is about to run out of coffee by
listening to it).
Multiple tests and variable selection can be improved
by accounting for correlation (with a correlation-
adjusted T score). For instance, in genetics, you can
group genes in the same pathway (or, if you do not
have this information, in the same correlation neigh-
bourhood). For feature selection, you should control
the FNDR (false non-discovery rate) rather than the
FDR (false discovery rate).
Several presentations focused on multiple imputa-
tion: exploring/visualizing the structure of missing
values with the VIM package (there is also a GUI); fixing
the separation problem (more variables than observa-
tions would remove all the randomness from the impu-

tation procedure) by adding a bayesian prior with the
mi package; reducing the bias in variance estimates af-
ter multiple imputation with a misspecified model with
“estimating equations” (no details).

Trees
The partykit package unifies the various tree pack-
ages (rpart, knnTree, Rweka, party, randomForest,
gbm, mboost) and should facilitate the implementation
of other algorithms; it also provides a PMML interface
(PMML is an XML file format to exchange statisti-
cal models between applications, mainly used in data
mining).
Random forests are not only used for prediction or fea-
ture selection, but also to measure how important each
variable is; contrary to univariate measures, they can
take interactions into account. The permutation im-
portance of Xj is the average decrease in classifica-
tion accuracy after permuting Xj . This is problematic
because a variable can appear important because it is
independent from the variable to predict, or just from
the other variables. Conditional permutation impor-
tance (implemented in the party package) can help
focus on the former.
The standard benchmark to measure the performance
of a tree algorithm is C4.5 – its licence does not allow
you to use it, but it has been reimplemented as J4.8
in Weka, available through RWeka. Other algorithms
include: CART (classification and regression trees)
in the rpart package; unbiased recursive partitioning
(QUEST in the LohTools package) and conditional
inference trees (CTree in the party package). They
all perform well, except C4.5/J4.8 without cross vali-
dation (cross-validation improves all those algorithms
and is already included in some of them: if not, do not
forget to add it).
Classification trees (CART, in the rpart package)
can be generalized to a multivariate gaussian outcome
(longRPart).
After a hierarchical classification, one usually cuts the
dendogram, but you do not have to do it horizontally
– permutation tests can help you find a good, non-
horizontal cut.

Graphs
While the graphical model R packages landscape is
getting less empty, it remains more heterogeneous
than other domains, and is still plagued with external,
Windows-only and/or closed source solutions, rarely
useable in a professional context: WinBugs, MIM, Ge-
nie/Smile (closed-source, but free to use, even commer-
cially), etc. Here are a few examples besides the clas-
sical gR (actually a combination of several packages)
and gRbase:
– The ReBaStaBa package describes an already con-

structed bayesian network (bayesian networks pro-
vide a concise description of a joint distribution);

– The IdR (influence diagrams in R) package, can ap-

Article and book summaries by Vincent Zoonekynd 845/1044

http://www.agrocampus-ouest.fr/math/useR-2009/slides/Epifanio.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Kaiser+Leisch.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Bordier+Dojat+LafayedeMicheaux.pdf
http://vision.ai.uiuc.edu/~wanghc/research/siggraph05.html
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Dejean+Gonzalez+LeCao.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Noncheva+Mendes+daSilva.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/vanEikeren+DowHygelund.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Baier+Neuwirth.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Ahdesmaki+Strimmer.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Ahdesmaki+Strimmer.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Templ+Alfons+Filzmoser.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Su+Gelman+Hill.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Reilly.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Hothorn+Zeileis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Michaelson+Ackermann+Beyer.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Strobl+Zeileis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Strobl+Zeileis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Stewart+Abdolell+LeBlanc.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Vistocco+Bruzzese.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Vistocco+Bruzzese.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Klinger+Friedrich.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Klinger+Friedrich.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Denis+Delignette-Muller+Pouillot.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/FernandezdelPozo+Bielza.pdf

parently learn the graph structure from the data –
too few details in the presentation.

Graph (or link) data abound, from the web (links be-
tween Wikipedia articles) to linguistic databases. An
ontology is a list of words, with links between them;
contrary to a taxonomy, those relations are not limited
to speciation/generalization but can be arbitrary com-
plicated; polysemy and synonyms are often prohibited
(to avoid the mess of gene and protein names); on-
tologies can be used to represent knowledge and make
deductions (an ontology can be seen as a graph the-
orist’s reinvention of Prolog). OWL (Web Ontology
Language) may appear powerful, but is not robust
at all; good old RDF (resource description language:
it lists triplets (subject, predicate, object), or equiva-
lently (node1, edge type, node2), i.e., describes a graph
with coloured edges – contrary to OWL, it does not
allow for constraints on the predicates such as cardi-
nality, transitivity) is sufficient for most practical pur-
poses.
The igraph and pagerank packages provide graph-
theoretic algorithms; for instance, they can be used
to create a tag cloud using multidimensional scal-
ing (MDS) for the positions. You may also want to
check Wordle (non-free, but free to use), which takes
the shape of the words into account, or Many Eyes’s
bubble chart (apparently no licence), which uses a cir-
cle packing algorithm and amounts to a square root
transform.
The sna package (social networks) can be combined
with the tm package (text mining) to analyze mailing
lists.
The result of a centroid-based clustering algorithm (k-
means, PAM (partition around medoids), etc.) can be
assessed with:
– The silhouette plot, d(x, c2(x)) ∼ d(x, c1(x)), where
c1(x) and c2(x) are the centroids closest and second
closest to obervation x;

– Topology-representing networks (TRN) or neigh-
bourhood graphs, weighted graphs with the centroids
as vertices and the weight between c1 and c2 is
the number of points x such that c1(x) = c1 and
c2(x) = c2 or the average mean average distance.

The gcExplorer package relies on Rgraphviz, graph
and symbols (to add plots (barplots, etc.) in the graph
vertices) to display these, interactively.

Machine Learning
Association rule mining can be seen as a form of
“non-symmetric correspondance analysis” for binary
data: it can rely on brute force or multiple corre-
spondance analysis (MCA); some algorithms also use
exogenous data (e.g., socio-demographic data for a
client× item dataset).
The set package provides (finite) set operations, that
can easily be generalized to fuzzy sets (just replace
the topos of truth values {0, 1} by the interval [0, 1]);
applications include relations (order, partial order,

equivalence, etc.) and how to average them (e.g., vot-
ing systems) – this leads to non trivial optimization
problems.
The TopkLists package implements algorithms to av-
erage ordinal data, i.e., rankings, when m raters pro-
vide the top k elements in a list of N (more voting
systems).

Dynamical Systems
Surprisingly, R is sufficiently fast to simulate dy-
namical systems (e.g., in ecology), i.e., large systems
of differential equations; check the following pack-
ages: desolve (rather than odesolve, which could
only tackle small/toy problems) for dynamical systems;
rootSolve for the steady state solution; linSolve for
least square solutions (when your linear system is unde-
termined, just add Min ‖x‖2 to turn it into a quadratic
program); simecol for applications in ecology.

High Performance Computing
bigmemory, which uses the Boost C++ interprocess li-
brary, paliates the lack of multithreading in R through
shared memory or file-based matrices; it also provides
iterators to hide (or make implicit) the parallelism pro-
vided by multicore, snow, nws. Also check ff (matri-
ces limited to 231 − 1 elements), ffdf (as fast as big-
memory), sqlite (sufficiently fast), BufferedMatrix
(inefficient), filehash (sufficiently fast).
RCpp allows (eases) the use of C++ and STL con-
tainers; conversely, RInside allows you to call R from
C++; also check rdyncall to use C libraries from R.
Several packages provide some parallelism: multicore;
snowfall, nws, Rmpi; gridR (with parallel computa-
tions, beware of random number generators: the ran-
dom numbers on each node should look independent).
Threads (as opposed to parallelism) are needed to pro-
cess real-time (streaming) data. R will remain mono-
threaded for the foreseable future; in the meantime, use
several process (with some C/C++ where needed) and
shared memory (with bigmemory) between processes.
R can be used in simple web applications (the user
fills in a form and a plot is updated), thanks to the
RApache module, with some Ajax (Prototype, Scritac-
ulous, YUI, jQuery, Dojo, Ext), XML or JSON (better
than XML for large datasets), and hwriter (for static
reports, I use Sweave).
RdWeb is a (still immature) web interface to parallel
computing in R (RApache and Rserve do not focus on
parallelism); it requires a batch system (at, openPBS,
Torque, etc.)
A task scheduler is a hybrid between make and
at/crontab: it automatically executes tasks after a
given time, when some conditions (file availability, etc.)
are met and allows tasks to be dependent on one an-
other (you can write a quick and dirty task scheduler
with make and crontab: from the crontab, launch make
-k -j 100 in a directory every minute; tasks simply

Article and book summaries by Vincent Zoonekynd 846/1044

http://www.agrocampus-ouest.fr/math/useR-2009/slides/Quesada.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Klinke.pdf
http://www.wordle.net/
http://manyeyes.alphaworks.ibm.com/manyeyes/page/Bubble_Chart.html
http://www.ams.org/notices/200311/fea-stephenson.pdf
http://www.ams.org/notices/200311/fea-stephenson.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Bohn+Feinerer+Hornik+Theussl.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Bohn+Feinerer+Hornik+Theussl.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Scharl+Leisch.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/IodiceDEnza.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Meyer+Hornik.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Schimek+Budinska+Lin+Mysickova.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Soetaert.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Soetaert.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Petzoldt.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Emerson+Kane.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Smith.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Oehlschlagel+Adler.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Eddelbuettel.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Adler+Philipp.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Schmidberger.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Winston.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Ooms.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Pau+Huber.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Nakano+Nakama.pdf

fail if their starting conditions are not met; track which
tasks have run or are currently running by creating
empty files with predefined names). The Coalition task
manager (in Python, with Twisted Matrix, on Google-
Code) handles dependencies, load balancing; it does
not seem to provide repeated tasks (“every day”), or
tasks starting after a given time. There is nothing spe-
cific to R (and there should not be): it just launches
executables, which can be R scripts.
A workflow engine allows you to write (the equiva-
lent of) Makefiles (i.e., describe dependencies between
tasks) graphically and run them on a grid, such as Kn-
ime, which focuses on data pipelines: it provides all
the operations you can want on tables of data, the most
common data mining algorithms and plots (Weka), and
interfaces with R and BIRT (a J2EE reporting system).
The Nimrod toolkit combines a workflow system
(Kepler), a design of experiments framework (DOE,
more precisely “computer experiments”, whatever that
means – simulations?) and gaussian processes (with
the mlegp package).
Biocep-R is a javaesque application server: huge, ex-
haustive, unwieldy and fully buzzword-compliant.
The hive package uses Hadoop (a distributed com-
puted framework, with a distributed file system, try-
ing to run the computations near the data, initialy de-
velopped by Yahoo and currently maintained by the
Apache foundation) for text mining tasks (with the tm
package).
Most of those cloud computing frameworks (Amazon
EC2, etc.) can generate or use models in the PMML
format (designed to exchange statistical models be-
tween applications).

GUI
JEdit can be used as an IDE for R (many people advise
Eclipse/StatET): it interfaces with the codetools
package (warnings are presented as spelling mistakes
would be in a text editor); provides a tree view of the
code (based on the R parser), completion popups (for
colours or plotting symbols, you have the actual colour
or symbol), an object browser, a debugger.
The building blocks for SciViews (an R GUI) are avail-
able as individual, reuseable packages; some were used
to build other GUIs such as Zoo/PhytoImage, an R-
based graphical software for image analysis; it also uses
the ImageJ image processing Java library (public do-
main).
Mayday is a visualization platform (in Java, interac-
tive, aware of meta data, with the ability to write plu-
gins) for numeric matrices; it now has an interactive R
shell, based on RLink, a replacement (or a layer above)
rJava.

Windows
Many mentions of rcom and statconnDOM (R–C# link)
to interface R and Excel (there is even a book on the

subject – frightening) or generate powerpoint files.

R Ecosystem
In many domains, R provides very similar functions
in different packages each with its own syntax. Some
(well needed but) isolated unification works have be-
gun, for instance Zelig (statistical models), partykit
(recursive partitioning algorithms) or optimx (for op-
timization: it provides a single interface and compares
the various algorithms, to help the user choose the best
for the problem at hand).
Instructional presentations included sparse matrices
with the Matrix package (used for linear mixed mod-
els by lme4) and spatial autocorrelated (SAR) models;
S4 classes (the dispatch is based on the type of all
arguments, not just the first as with S3 classes); imple-
menting new statistical distributions (the dpqr func-
tions, and a few others), as exemplified in the distr
and VarianceGamma packages, with some good general
software engineering advice.
Provenance tracking tries to answer the question
“where does this variable come from? how was it mod-
ified?”; it is implemented in CXXR (a C++ reimple-
mentation of R, designed to easily produce experimen-
tal versions of the R interpreter): the pedigree func-
tion is similar to history, but the audit trail it returns
only gives the commands that affected a given object.
The Open Provenance model aims at provenance track-
ing across systems.
Reproducible computing can be easily obtained by
recording (“blogging”) everything you type, including
outputs and plots, in a way reminiscent of Maple work-
sheets. Social data networks (Many Eyes, Swivel, the-
data.org, etc.) are starting to appear (but they often
present pure coincidences as hard evidence).

Multivariate copulas at work
M. Fischer

RMetrics Workshop 2009
While binomial copulas are galore, “higher dimen-
sional” ones (dimension 3 or 4, not the 200 or 2000 I
needed a few years ago) used to be rare. The situation
is slowly changing:
– Elliptical copulas;
– Archimedian copulas

C(x1, . . . , xn) = φ−1(φ(x1) + · · ·+ φ(xn))

which can be written multiplicatively (set θ(x) =
exp−φ(x))

C(x1, . . . , xn) = θ−1
(∏

i

θ(xi)

)

– Generalized archimedian copulas: use archime-
dian copulas to group variables two at a time, in a

Article and book summaries by Vincent Zoonekynd 847/1044

http://www.agrocampus-ouest.fr/math/useR-2009/slides/Etienne+Corvazier+Legros.pdf
http://twistedmatrix.com/
http://code.google.com/p/coalition/
http://code.google.com/p/coalition/
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Risselada+Friedrich+Ebeling+Klinger.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Risselada+Friedrich+Ebeling+Klinger.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Diamond+Abramson+Peachey.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Chine.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Theussl+Feinerer+Hornik.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Guazzelli+Lin+Zeller.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Francois+Chine.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Grosjean+Francois+Barton.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/abstracts/pdf/Denis+Irigoien+Francois+Grosjean.pdf
http://rsbweb.nih.gov/ij/
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Battke+Symons+Nieselt.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Neuwirth.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Heiberger.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Jones.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Hothorn+Zeileis.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Nash+Varadhan.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Dalgaard.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Maechler+Bates.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Scott+Wuertz+Dong.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Silles+Runnalls.pdf
http://www.agrocampus-ouest.fr/math/useR-2009/slides/Wessa+vanStee.pdf
http://www.freestatistics.org
http://manyeyes.alphaworks.ibm.com/
http://www.swivel.com/
http://www.rmetrics.org/Meielisalp2009/Presentations/

fully-nested way

x1 x1 x1 x1

C1

C2

C3

or using an arbitrary tree;

x1 x1 x1 x1

C1 C2

C3

– Generalized multiplicative archimedian copu-
las: replace the independent copula

∏
by another

copula C0

C(x1, . . . , xn) = θ−1(C0(x1, . . . , xn));

this can be seen as a (Sn-symmetric) deformation of
C0;

– Liebscher copulas combine several multiplicative
archimedian copulas

C(x1, . . . , xn) = Ψ

(
1

m

∑
j

∏
i

θj(ui)

)
;

– The Koehler-Symanowski copulas are build as
follows: take n iid random variables

Y1, . . . , Yn ∼ Exp(λ = 1);

choose random variables to model bivariate associa-
tions

Gij ∼ Γ(αij , 1), i < j;

(and trivariate associations if you want: Gijk ∼
Γ(αijk, 1)) and try to put them all in a formula, e.g.,

Ui =

1 +
Yi∑

j

Gij

∑
j
αij

– Starting from a (graphical model) decomposition

f(x1, x2, x3) = f(x3)f(x2|x3)f(x1|x2, x3)

one can express a copula as a (complicated) product
of bivariate copulas; this is the pair copula decom-
position (PCD).

A maximum likelihood fit of those on several financial
datasets suggests to forget plain archimedian copulas:
elliptic (Student) or pair copulas provide a better fit.

Pair-copula constructions
of multiple independence

K. Aas et al.
Detailed presentation of pair copulae. The decomposi-
tions are not described by a single graphical model but
by a (maximal) nested set of (tree) graphical models
– a D-vine. Imposing some conditional independence
greatly simplifies the model.

Package development in R:
Implementing GO-GARCH models

B. Pfaff
RMetrics Workshop 2009

The univariate GARCH model can be extended to
a multivariate model by direct generalization (VEC,
BEKK, factor models: keep the same formulas, with
matrices instead of real numbers, and impose some con-
ditions on them to keep the number of parameters rea-
sonable); by linear combinations of univariate GARCH
models (GO-GARCH (generalized orthogonal), latent
factor GARCH) or even non-linear combinations (dy-
namic conditional correlation, general dynamic covari-
ance models).

Consistent return and risk forecasting
for portfolio optimization
using kernel regressions

J. Hindebrand and T. Poddig
RMetrics Workshop 2009

Separately estimating expected returns and risk model
(variance matrix) is suboptimal (when your only source
of information is the time series of returns). The au-
thors suggest to estimate both from past returns using
kernel regression (apparently sometimes called “gen-
eral regression neural network” (GRNN)) which can
be seen as a smoothed k nearest neighbours algorithm.
The risk can be estimated “explicitely”, from the resid-
uals

σ̂2 =
1

k

∑
(ŷi − yi)2

or “implicitely”

ŷ =
1

k

∑
yi

σ̂i =
1

k

∑
(ŷ − yi)2

(the sums are over the k nearest neighbours; for ker-
nel regression, replace those averages by weighted av-
erages).

Financial crises
and the exchange rate volatility

for Asian economies
T. Oga and W. Polasek

RMetrics Workshop 2009
Markov switching AR-GARCH models are amenable
to bayesian MCMC estimation.

Markowitz and two managers
K. Rheinberger

RMetrics Workshop 2009
In many companies, portfolio managers work indepen-
dently and their strategies or portfolios are combined
by higher authorities (i.e., they decide on the capital al-
located to each). This is suboptimal: if the asset classes
are correlated, the optimal global portfolio need not be
obtainable as a combination of efficient subportfolios.

Article and book summaries by Vincent Zoonekynd 848/1044

http://www.rmetrics.org/Meielisalp2009/Presentations/
http://www.rmetrics.org/Meielisalp2009/Presentations/
http://www.rmetrics.org/Meielisalp2009/Presentations/

Simple parallel computing in R with Hadoop
RMetrics Workshop 2009

MapReduce (also called Cloud Computing or
SAAS (software as a service)) is a trendy name for
“distributed divide and conqueer” where the task di-
vision step is aware of the location of the data on the
distributed file system (DFS) to limit network usage. R
can use Hadoop, a (Java) MapReduce implementation,
initially developped by Yahoo and now maintained by
the Apache foundation.

Modeling and evaluation
of insurance risk using actuar

RMetrics Workshop 2009
The actuar package provides some functionalities for
actuarial science, which is just “risk management” with
a different vocabulary:
– Distributions often used to model losses (on top of
the usual dpqr functions, you also have moments
E[Xk], limited moments E[Min(X,x)k] and moment
generating functions E[etX]);

– Minimum distance estimators (MDE) for the
Cramer-von Mises, modified χ2 or layer average
severity distances (these are not clearly defined);

– Handling (plotting, fitting) of censored data (both
sides);

– Various estimators of the distribution of X1 + · · ·+
XN from those of N and the Xi (assumed iid): Pan-
jer algorithm (uses discretized distributions), simula-
tions, normal approximations (these algorithms are
not detailed);

– Ruin models, i.e., estimation of

P
[
∃t > 0 : U(t) < 0

]
where

U(t) : surplus at time t
u : initial surplus
ck : premium collected at time k

N(t) : number of claims in [0, t]

Xn : value of the nth claim

U(t) = u+
∑
k⩽t

ck −
∑

n⩽N(t)

Xn

from the distributions of N and X;
– Simulations of hierarchical models.

An overview of random number generation
C. Dutang

RMetrics Workshop 2009
The default random number generator (RNG) in R
(the runif function) is the Mersenne twister (MT),
a linear congruential RNG modified by some bitwise
operations. The randomtoolbox package implements
other RNG (mainly generalized MT: WELL, SFMT)
and quasi-random number generators (aka low dis-
cepancy sequences):

– For the Van der Corput sequence, choose a prime
number p, write successive numbers 1, 2, 3, . . . , n in
base p, n =

∑
j ajp

j and return φp(n) =
∑
j aj/p

j+1;
if you choose several prime numbers, you have a mul-
tidimensional low discrepancy sequence, the Halton
sequence; in R, the halton(n,k) function returns
the first n elements of the k-dimensional Halton se-
quence;

– The torus algorithm (or Kronecker sequence)
is

un = (fracn√p1, · · · , fracn
√
pd)

where fracx = x− bxc is the fractional part.
RNGs can be tested by looking at
– The histogram of generated data;
– The autocorrelation function (ACF);
– The order test, which checks in which order xi−1, xi
and xi+1 are);

– The Poker test: take d consecutive numbers from
your sequence, count how many there are in each
[(k − 1)/d, k/d[interval (k ∈ J1, dK), compare with
the expected values using a χ2 test.

Discrepancy can be defined as

Dn(x,A) =
1

n
#
{
i ∈ J1, nK : i ∈ A

}
D∞n (x,P) =

∑
A∈P

|Dn(x,A)|

for some P ⊂P([0, 1]d).

GMM and GEL with R
P. Chaussé

RMetrics Workshop 2009
The generalized method of moments (GMM) fits a
model to your data by considering several quantities
or moments (e.g., average, variance, median, quantiles,
higher moments, truncated moments, etc.) and fine-
tuning the parameters so that the theoretical quan-
tities be as close from the observed ones as possible.
More precisely, find several moments g = (g1, . . . , gn)
so that E[g(θ,X)] = 0 and compute

θ̂ = Argmin
θ

‖ḡ(θ)‖2

ḡ(θ) =
1

T

∑
t

g(θ, xt).

Since the moments are not “independent”, the Euclid-
ian distance is not the best choice: you will prefer

θ̂ = Argmin
θ

ḡ(θ)′Wḡ(θ)

for some W . The most efficient estimator is obtained
with

W =
∑
s∈Z

Cov(g(θ, xt), g(θ, xt+s)

Article and book summaries by Vincent Zoonekynd 849/1044

http://www.rmetrics.org/Meielisalp2009/Presentations/
http://developer.yahoo.com/hadoop/tutorial/
http://www.rmetrics.org/Meielisalp2009/Presentations/
http://www.rmetrics.org/Meielisalp2009/Presentations/
http://www.rmetrics.org/Meielisalp2009/Presentations/

which can be estimated (with an HAC (heteroscedas-
ticity and autocorrelation consistent) estimator) as

Ω̂(θ∗) =
∑

|s|⩽T−1
kh(s)Γ̂s(θ

∗)

Γ̂s(θ
∗) =

1

T
g(θ∗, xt)g(θ

∗, xt+s)
′

kh : some kernel

For instance, one could try any of the following:
– Estimate θ∗ withW = 1; compute Ω̂(θ∗); estimate θ̂;
– Iterate the above until convergence;
– Optimize properly:

θ̂ = Argmin
θ

ḡ(θ)′Ω̂(θ)ḡ(θ).

The limiting distribution is known.
In finance or economy, you can use the CAPM, the util-
ity function and other meaningful quantities to define
moments.
In R, just provide your moments and your data to the
gmm function.
I did not understand what GEL (generalized empirical
likelihood) was.

A tale of two theories:
Reconciling random matrix theory

and shrinkage estimation
as methods for covariance matrix estimation

B. Rowe
RMetrics Workshop 2009

Both methods try to remove the noise in the spectrum
of the sample covariance matrix: random matrix the-
ory (RMT) violently shrinks the low values to zero;
shrinkage smoothly shrinks all values to their mean
(or to a predefined value). Combining the two meth-
ods turns out to be a bad idea.

The structure and function
of complex networks

M.E.J. Newman
arXiv:cond-mat/0303516

Given a network, one can compute the following nu-
meric quantities (invariants):
– Harmonic mean geodesic distance between all pairs
(the arithmetic mean would have problems with non-
connected vertices);

– Clustering coefficient:

C =
1

n

∑
Ci

Ci =
Number of triangles connected to vertex i
Number of triples centered on vertex i ;

– Degree distribution;
– Network resilience: progressively remove vertices,
staring with the highest degree ones, and plot of the
mean distance between edges versus the fraction of
vertices removed;

– Assortativity coefficient, to measure mixing pat-
terns between vertex types

r =
tr e−

∥∥e2∥∥
1− ‖e2‖

where eij is the fraction of edges between vertices
of types i and j; those types can be numeric (e.g.,
the degree, leading to the degree correlation) and
even continuous.

Here are a few models of randon graphs:
– Poisson random graphs (choose the degree of each
vertex; join the vertices at random), aka Erdős–
Rényi graphs;

– Configuration model (replace the Poisson distribu-
tion by another one); they fail to account for tran-
sitivity;

– Exponential random graphs: choose a few numeric
properties of graphs, ε1, . . . , εk, e.g., number of ver-
tices, number of vertices of a given degree, etc.;
choose a few numbers β1, . . . , βk (inverse tempera-
tures); sample graphs with probability

P (G) ∝ exp−
∑
i

βiεi(G).

These are amenable to (Monte Carlo) simulations,
but not analytical derivations, except in the case of
Markov graphs (the absence/presence of edges are
independent unless the edges share a vertex). Un-
fortunately, they model transitivity in an unnatural
way: there are too many complete cliques.

– Small world model: put all the vertices on a cir-
cle (or any other low-dimensional lattice), connect
each vertex to its k nearest neighbours, rewire edges
at random with probability p (a variant adds edges
with probability p: this can be seen as the average
of a lattice and a random graph);

– The Barabási-Albert model is a model of network
growth, i.e., it tries to explain where the graph
properties come from: add vertices one by one, link
them to previous nodes, with a higher probability for
nodes with a high degree (preferential attachment);
the earlier Price model was similar but used directed
edges.

Fully mixed epidemiological models, such as SIR
(suceptible-infected-recovered: after catching the dis-
ease, people (die or) become immune)

Ṡ = −βIS
İ = βIS − γI
Ṙ = γI

or SIS (reinfections are possible)

Ṡ = −βIS + γI

İ = βIS − γI

can be generalized to a network. Other processes on
networks include percolation and search.

Article and book summaries by Vincent Zoonekynd 850/1044

http://www.rmetrics.org/Meielisalp2009/Presentations/

strucchange: an R package
for testing for structural change

in linear regression models
A. Zeilis et al.

The strucchange package implements tests based on
the following empirical fluctuation processes:
– OLS-CUSUM: cumulated sum of the residuals (a
brownian bridge);

– recursive CUSUM: cumulated sums of the residuals,
where the ith residual comes from the model esti-
mated on the first i observations;

– Recursive MOSUM: idem, on a moving window;
– Fluctuations: parameters of the model estimated on
an expanding window, suitably renormalized (con-
trary to the residuals, this is a multidimensional pro-
cess);

– Moving estimate: idem, on a moving window.
In case of a structural change, these processes “fluc-
tuate more”; they can be compared with boundaries
of the form b(t) = λ (MOSUM: it is stationary),
b(t) = λ

√
t (brownian motion) or b(t) = λ

√
t(1− t).

However, the crossing probability is easier to compute
for linear boundaries: we lose some power at the be-
gining and end of the interval.

r <- epf(y ~ x, type="fluctuation")
plot(r)
sctest(r)

Instead of those significance tests, which have no clear
alternative hypothesis, you may prefer an F test, which
tests against the alternative that there are two different
models, one before and one after an (unknown) break-
point; they compare the sum of squared residuals for
the model with and without a breakpoint at observa-
tion τ with an F statistic Fτ and aggregate them as
supFτ , MeanFτ or logMean expFτ .

f <- Fstats(y~x)
sctest(f)

The package also provides monitoring.

A unified approach
to structural change tests

based on F statistics,
OLS residuals and ML scores

A. Zeileis
The following classes of structural change tests are ac-
tually generalized M -fluctuation tests, built from the
empirical fluctuation process (efp):
– CUSUM (the absolute maximum of the cumulative
sums of the residuals rescaled by an estimate σ̂2 of
the error variance – it is not a real test, there is no
clear alternative hypothesis, but it is often used as
an exploratory tool);

– SupLM = sup
t∈[0,1]

‖efpt‖
2
2

t(1− t)
(in the alternative, the

model parameters have two values, before and after
some (unknown) breakpoint);

– The Nyblom-Hansen statistic, where in the alterna-
tive H1, the parameters follow a random walk, boils
down to

1

n

n∑
i=1

∥∥∥efpi/n∥∥∥2
2
.

To detect multiple breakpoints, you may want to use a
moving sum (MOSUM) instead of a cumulative sum.
These tests can be extended to a monitoring setup,
where the observations arrive one by one: estimate the
model on [0, 1] and compute the empirical fluctuation
process beyond 1; the critical values become a curve
b(t)t>1 instead of a constant.

Permutation tests for structural change
A. Zeileis and. T. Hothorn

The SupF (or SupLM: the test statistic can be trans-
formed to look like an F or a Student T one) tests
whether the average of a series of random variables
(Xk/n)k∈J1,nK is a constant µ against the alternative
hypothesis Hπ that it is µ1 before some breakpoint
τ ∈ [0, 1] and µ2 after, by considering the statistic

RSSπ
RSS0

,

suitably renormalized

Zπ =

√
(n− 1)

(
1− RSSπ

RSS0

)
,

where RSS0 and RSSπ are the sums of squared residu-
als under H0 and Hπ, and aggregating them as

D = Max
π

Zπ.

This statistic can be compared with the following dis-
tributions:
– D∞: the unconditional limiting distribution, i.e., the

limiting distribution, for n→∞; it is

sup
π∈[0,1]

π(1− π)B(π),

where B is a brownian bridge;
– Dσ|Y : the conditional distribution, obtained by ran-
domly permuting the observations (usually com-
puted via simulations; only in very rare cases is it
analytically tractable);

– D∞|Y , the asymptotical conditional distribution,
which can be computed analytically:

Z ∼ N(0,Σ)

Zπ,τ =
π(1− τ)√

π(1− π)τ(1− τ)
(π ⩽ τ)

This can be generalized to structural changes in bi-
nary variables, multivariate series, stratified observa-
tions, parametric models.

Article and book summaries by Vincent Zoonekynd 851/1044

Implementing a class of structural change
tests: an econometric computing approach

A. Zeileis
Structural change tests can be performed as follows:
– Compute the residuals of your model, (ri)i∈J1,nK;
– Robustify those residuals,

(
ψ(ri)

)
i∈J1,nK, where ψ is

an M -estimation scale function; we only want the
sum of the robustified residuals to be zero;

– Compute their cumulative sum process (Zt)t∈[0,1]
(the article is not very clear if we take the cumula-
tive sum of the residuals or build a process from the
model coefficients estimated on an expanding win-
dow: we cannot get a multidimensional process with
just the residuals);

– Estimate the asymptotic covariance matrix of the
scores Ĵ ; we then have

Cov(Zt, Zs) = Min(t, s)Ĵ ;

you can (should) use an HAC (heteroskedasticity and
autocorrelation consistent) estimator for J ;

– Compute the decorrelated fluctuation process

efpt = Ĵ−1/2Zt;

it converges to a brownian bridge (since the residu-
als sum up to zero, we have Z0 = Z1 = 0); you may
choose to use the whole matrix Ĵ or just its diagonal
elements;

– Aggregate this multidimensional process, for in-
stance:
· Take the maximum of the components at each
point in time, then take the maximum accross time
(maxBB);
· Take the L2 norm of the components at each point
in time; then take the average over time (Cramer
von Mises statistic);
· Take the range (i.e., Max−Min) over time, for
each component; then take the maximum of those
ranges (range test).

This is implemented in the strucchange package and
will work for any model for which you can compute the
residuals (Poisson, logistic, beta regressions, etc.).

Minority games
C.H. Yeung and Y.-C. Zhang

arXiv:0811.1479

A readable review article.

Copula-based
non-linear quantile autoregression

X. Chen et al.
A copula-based Markov model (for a stationary time
series (Yt)t) just specifies the copula C of (Yt−1, Yt) and
the marginal distribution of Yt. This is often estimated
by a 2-step precedure: first, estimate the marginal dis-
tribution, then, estimate the copula (using either the
empirical marginal distribution or the fitted one).

One can look at the τth quantile of Yt|Yt−1 = x:

F−1
(
C(τ, ·)−1(F (x))

)
.

The article considers the case of a parametric copula
and marginal distribution, but those parameters de-
pend on the quantile τ This is more robust to model
misspecification.

Quantile autoregression
R. Koenker and Z. Xiao (2006)

Quantile autoregression (QAR) is a special case of ran-
dom coefficient autoregression (RCAR)

yt = θ0(Ut) + θ1(Ut)yt−1 + · · ·+ θp(Ut)yt−p

Ut ∼ U(0, 1).

For instance

θ0(τ) = σΦ−1(τ)

θ1(τ) = Min(γ0 + γ1τ, 1)

leads to a mixture of unit root or explosive behaviour
(when θ1 = 1) and mean-reverting behaviour (when
θ1 ∈ (0, 1)) – this is actually sufficient to make the
process stationary.
Since the functions θ are unknown, this is a non-
parametric model. (Most of the theoretical troubles
come from the requirement that those functions be
monotonic.) You can test for asymmetric dynamics
by checking if θ1 depends on τ at all.

March madness, quantile regression
bracketology and the Hayek hypothesis

R. Koenker and G.W. Bassett
More details on this example.

Issues on quantile autoregression
J. Fan and Y. Fan

Quantile autoregression (QAR) is related to func-
tional coefficient autoregression (FCAR) models

yt = α0(Ut) + α1(Ut)Yt−1 + · · ·+ αp(Ut)Yt−p + εt

where Ut is observed. The special case Ut = Yt−d is
known as functional autoregression (FAR). Identi-
fiability is a real problem, and in case of lack of mono-
tonicity, the estimators are not consistent.

Feature selection in “omics” prediction
problems using cat scores and false

non-discovery rate control
M. Ahdesmäki and K. Strimmer

arXiv:0903.2003

Linear discriminant analysis (LDA) is a supervised
learning algorithm that assumes the data is a mixture
of gaussian distributions with the same variance matrix
Σ; the LDA discriminant score of a new observation x
for cluster k is

dk(x) = logP [k|x] = µ′kΣ
−1x− 1

2µkΣ
−1µk + log πk

Article and book summaries by Vincent Zoonekynd 852/1044

where µk is the center of cluster k and πk its weight
(or a priori probability). Estimating the inverse Σ−1

is problematic: diagonal discriminant analysis
(DDA, aka naive Bayes classification) assumes it is
diagonal. The nearest shrunken centroids (NSC, aka
PAM, partitioning around medoids) algorithm is a reg-
ularized version of it.
The article suggests a regularized LDA (regularize the
variances (shrink to the median) and the correlation
matrix (ridge regularization) separately) to account for
correlations, i.e., for non-spherical clusters.

Monitoring networked applications with
incremental quantile estimation

J.M. Chambers et al.
arXiv:0708.0302

Sequential quantile estimation algorithms compute
quantiles in a “cumulative” (online) way, as data ar-
rives:
– Exact algorithm exist (e.g., based on the quick sort)
to track a single quantile, but they have to keep a
potentially large buffer of data; they can be modified
to track a set of quantiles;

– Stochastic approximation is similar, but assumes the
data has a continuous distribution to approximate
between the quantiles.

Incremental quantile (IQ) estimation is a quick-
and-dirty algorithm that allows both online quan-
tile estimation and aggregation of quantiles from dis-
tributed agents; it uses cumulative distribution func-
tions (CDF), which are easy to aggregate, rather than
quantiles:
– On each agent, wait until you have enough data; turn
it into a cumulative distribution function (CDF);
blend it with the previous CDF estimate;

– From time to time, send it to the server, and start
the computation afresh;

– On the server, aggregate the CDFs received from the
agents and compute the desired quantiles.

The CDFs can be stored and sent as a set of quantiles
(for increased precision, we may want more quantiles
than the final users actually receive).
This can be useful in distributed QoS (quality of ser-
vice) measurement.

Text mining infrastructure in R
I. Feinerer et al.

Journal of statistical software (2008)
The tm package provides a framework to manage collec-
tions of texts (with their metadata; to avoid memory
problems, you can just keep the metadata in mem-
ory and leave the texts on disk) and relies on other
packages for stemming (Rstem, snowball (Weka)),
synonym substitution (wordnet), part-of-speech tag-
ging (openNLP), term-document matrix computation
(Matrix, for sparse matrices), machine learning al-
gorithms (for unsupervised learning (document clus-

tering): hierarchical clustering, k-means; supervised
learning (document classification): k-nearest neigh-
bours (kNN), support vector machines (SVM); or more
text-specific tasts: information retrieval, keyword ex-
traction), string kernels (kernlab).
The string kernel of two strings x and y is the scalar
product JΦ(x),Φ(y)K of their embeddings in some high-
dimensional space: knowing this scalar product is suffi-
cient for most linear-algebra-based algorithms, the ac-
tual coordinates are not needed. Examples include:

– k(x, y) =
∑
s⊑x,y

1
s0=s|s|=

(bag of words)

– k(x, y) =
∑
s⊑x,y

1|s|⩽n (full string kernel)

– k(x, y) =
∑
s⊑x,y

1|s|=n (string kernel)

– k(x, y) =
∑
s⊑x,y

λ|s| (substring kernel).

Forecasting the term structure
of government bond yields

F.X. Diebold and C. Li (2003)
The forward rate can be approximated as

ft(τ) = αt + βte
−λtτ + γtλte

−λtτ

where the three time series α (level), β (slope) and γ
(curvature) can be estimated with an AR model (why
did λ disappear?).

Comparing smooth transition and
Markov switching autoregressive models

of US unemployment
P.J. Deschamps (2007)

Comparison of a Markov switching autoregressive
model (MSAR) and a logistic smooth transition au-
toregressive model (LSTAR)

yt+1 = (α0 + α1yt) +Gt(β0 + β1yt) + εt

Gt =
1

1 + e−(ast+b)

where st is observed, e.g., st = yt − yt−12. There are
variants with other shapes for the transition function
G (it need not be symmetric) and/or more than two
states.

Two-dimensional correlation
optimized warping algorithm

for aligning GC×GC-MS data
D. Zhang et al.

Two-dimensional time warping can be applied to spec-
trometry.

Fast text mining using kernels in R
I. Feinerer and A. Karatzoglou

String kernels

k(x, x′) =
∑
s∈A∗

nums(x)nums(y)λs

Article and book summaries by Vincent Zoonekynd 853/1044

usually require O
(
(|x|+ |y|)2

)
operations, but they can

be computed from the suffix tree of the texts in lin-
ear time; using a suffix array (not defined), as im-
plemented in the kernlab package is (still linear but)
more efficient.
Spectral clustering is just a complicated name for
clustering (using traditional techniques) after PCA-
dimension reduction using the kernel trick.

Invariant coordinate selection
D.E. Tyler et al.

Most multivariate data analysis methods are based on
the variance matrix, or more generally one measure
of dispersion. Invariant coordinate selection (ICS)
uses twomeasures of dispersion, V1 and V2, and looks at
the eigenvalues and eigenvectors of one wrt the other,
i.e., looks for p ∈ R and h 6= 0 such that V2h = ρV1h;
these are also the eigenvalues of V −1/21 V2V

−1/2
1 . For

elliptical data, any two measures of dispersion are pro-
portional V2 = λV1: ICS highlights departure from
gaussianity.
Examples of scatter (or dispersion) matrices include:
– The variance matrix;
– The weighted variance (the weights could depend on
the Mahalanobis distance);

– M -estimates of the variance, i.e., an adaptively-
weighted variance;

– Higher breakdown robust scatter matrices: MVE,
MCD, S-estimates, τ -estimates, etc. (they are com-
putationnally expensive);

– A dispersion matrix wrt to the origin (i.e., the loca-
tion estimator is constant);

– A dispersion matrix of the pairwise differences,
Disp (xi − xj)i,j

– Fourth central moments;
– Tyler’s shape matrix.
Outliers are often spotted by looking at the Maha-
lanobis distance for one measure of dispersion: besides
(before) a plot of the first eigencoordinates, a scatter-
plot of those distances for several measures of disper-
sion may also be helpful.

Tools for exploring multivariate data:
the package ICS

K. Nordhausen et al.
Journal of Statistical Software (2008)

A more application-oriented presentation of invariant
coordinate selection (ICS). The ICS transformation can
be described as:
– Whiten the data wrt the first measure of disper-
sion: x 7→ (x − 1′x̄)Disp−1/2 (stopping after that
step is not satisfactory: the square root is not
unique and the whitening transformation is not
affine-equivariant);

– Perform a principal component analysis (PCA) on
the whitened data, wrt the second measure of dis-
persion.

Scala by Example
M. Odersky

Scala is a functional and object-oriented language, with
static typing and type inference (somewhat inferior to
Haskell), whose main advantages are:
– It is a script-like language, easy to write and read;
– It runs on the Java Virtual Machine (JVM) and

can therefore leverage all existing Java libraries and
the Java infrastructure and knowledge you may al-
ready have;

– It provides a rather exhaustive implementation of
parallelism patterns: Erlang’s actors, lazy variables,
explicit parallelism, Java threads, etc.;

– Method names can contain weird characters (*:,
etc.), facilitating the creation of libraries that look
like domain-specific languages (DSL).

Its main drawbacks are:
– The type inference is not as good as Haskell’s (e.g.,
you have to provide the return type of recursive func-
tions);

– Function types can be unreadable, with the name of
the variable (function) in the middle of the type, as
in C;

– There are still too many parentheses.
Here is a summary of the syntax.
When you define a variable, it can be left uneval-
uated (def, this is useful for functions, which are
just blocks), immutable (val), mutable (var), lazy
(lazy val) or evaluated in the background (var x =
future(f(1))).

def f(
g : Int => Int, // Function argument
a : Int,
b : => Int, // Not evaluated immediately

): Int = { ... }
class Foo(a:Int, b:Int) {...} // private members
class Bar(...) Extends Foo {
...
override def toString ...

}
val x = new Foo(1,2);

A trait is a Java interface, designed to be added to a
class, i.e., designed for multiple inheritance; abstract
classes are designed for single inheritance.
Case classes provide implicit constructors, implicit
getter methods and pattern matching, i.e., implicit
tests on the type of objects – this is just syntactic sugar,
but it increases code readability.

abstract class A
case class A1(n:Int) extends A
case class A2(n:Int, m:Int) extends A
...
e match { case A1(n) => n

case A2(n,m) => n+m }

Type parameters (aka templates or generic types)

Article and book summaries by Vincent Zoonekynd 854/1044

can also specify lower and upper bounds on types.

class Set[A]
// A implements the Ordered trait:
class Set[A <: Ordered[A]]
// A can be converted into
// something that implements Ordered
class Set[A <% Ordered[A]]

Inheritance relations can be automatically
lifted to generic types, so that if A<:B, then
Stack[A]<:Stack[B]. In some cases, this mapping
is not covariant but contravariant: e.g., if A<:B, then
Fun[B,C]<:Fun[A,C].

class Stack[+A]
class Fun[-A,+B]

Functions are just objects with an apply method; f(x)
is just a shorthand for f.apply(x); arrays implement
the same interface and use the same syntax.
Tuples, written (a,b), are just a shorthand for the
Tuple2[A,B] type.
Besides Array (Java’s mutable arrays), Scala provides
a List type (homogeneous, immutable, unsuitable
for random access), as in Lisp, with the usual map,
foreach, forall, exists (called all and any in some
other languages) methods. The for comprehension is
a shorthand for those list operations.

for(x <- xs if f(x)) yield g(x)

Streams are lazy (potentially infinite) lists; they have
(almost) the same methods. Iterators, i.e., classes with
hasNext and next methods, are an imperative ana-
logue of streams; prefer them to streams if you know
previous values can be discarded.
Methods can have implicit arguments (actually, even
the method name can be implicit: these are implicit
conversions (casts)), but this does not look as useful
the named and implicit arguments of most scripting
languages.
Detailed examples include an auction service (actors),
type inference, electric circuit simulation, N -queen
problem (list comprehensions), building N, Newton’s
method and more general fixed point problems, stacks
(type parameters).
This introduction does not mention some important
features of Scala, such as the ability to include XML
directly in the code (not as strings), with the <> de-
limitors, in the same way most languages allow you to
enter strings directly (not as arrays of characters), with
the " delimitor.

Regularized discriminant analysis
J.K. Friedman

Journal of the American Statistical
Association (1989)

Your data comes from a mixture of distributions,∑
k λkfk(x), and you want to find from which class

k a given observation x comes from. If you knew the
prior probabilities λk and the conditional distributions
fk, you would just use the Bayes rule. If those con-
ditional distributions are multivariate gaussian with
identical (resp. different) variance matrices, obtained
from the plug-in (aka sample) estimators, this is linear
discriminant analysis (LDA) (resp. quadratic discrim-
inant analysis (QDA)). Some people also use diagonal
discriminant analysis (DDA).
You can use a regularized estimator of those variance
matrices.

Partial least squares: a versatile tool for the
analysis of high-dimensional genomic data

A.-L. Boulesteix and K. Strimmer (2006)
Should you want formulas to compute partial least
squares (PLS) yourself, here they are. Let X be the
predictive variables (one observation per row, few rows,
many columns) and Y the variable to predict. The data
is assumed to come from latent components T ,

X = TP ′ + noise
Y = TQ′ + noise

Once you have those latent components T , you can es-
timate Ŷ by least squares. The latent components are
of the form T = XW , where W is defined by some
iterative optimization procedure (there are many of
them: PLS1, PLS2, NIPALS, Kernel-PLS, SIMPLS,
etc.) such as

∀i Maximize w′iX ′Y Y ′Xwi
such that w′iwi = 1

and ∀j < i w′iX
′Xwj = 0.

In R, check the pls, pls.pcr, plsgenomics, gpls
packages.

Multi-objective optimization
using genetic algorithms: a tutorial

A. Konak et al.
Reliability engineering and system safety

(2006)
Multiobjective optimization do not lead to a single but
to a set of solutions (the Pareto set, aka efficient fron-
tier) – transforming the problem into a single-objective
one is rarely satisfactory: it involves arbitrary choices
(weights, utility function) that often have a huge (and
badly understood) effect on the solution.
Genetic algorithms (GA) naturally produce a popula-
tion of solutions, but care should be taken: the solu-
tions found should
– be uniformly distributed (genetic algorithms tend to
produce clusters (genetic drift): to prevent this, you
can try to decrease the fitness of densely populated
areas)

Article and book summaries by Vincent Zoonekynd 855/1044

– explore the whole spectrum of the efficient frontier
(genetic algorithms tend to focus on the middle and
miss the extremities – you may want to store non-
dominated solutions in a separate list, to avoid losing
them).

There is a very large number of multi-objective genetic
algorithms: the authors provide a comparison table
(check PAES, NSGA-II, SPEA-2).

Multi-objective generic algorithms: problem
difficulties and construction of test problems

K. Deb
A set of test problems for multi-objective genetic algo-
rithms.

Spectral graph theory and its applications
D.A. Spielman (2004)

An interesting applied linear algebra course, that ex-
plains how to read the properties of a graph from
the eigenvalues and vectors of its incidence matrix
or Laplacian matrix. The Laplacian of an edge is(

1 −1
−1 1

)
and the Laplacian of a graph is the sum of

those of its edges. Applications include graph colour-
ing, error correcting codes, random matrices and ran-
dom graphs, graph approximation (find a sparser graph
whose Laplacian matrix is close, in spectral norm – this
can be used to speed up linear system solving).

Maximum overhang
M. Paterson et al.

arXiv:0909.0093, arXiv:0910.2357
Funny...

An evaluation of mathematics competitions
using item response theory

J. Gleason
Notices of the AMS (2008)

An introduction to item response theory (IRT).

Little B: Biological modeling
Little B is a Lisp-like biological simulation language –
basically, to define large systems of ordinary differen-
tial equations (ODE) from simple blocks. Only have a
look if you think Lisp has too few parentheses...

OpenModelica Users Guide
P. Fritzson et al.

Modelica is a Pascal-like, object-oriented, equation-
based, domain-specific language (DSL), targeted at
physical (event-based) simulations, probably similar to
Matlab’ Simulink; there are interfaces to/from Matlab
or Maple. OpenModelica is a free implementation with
an Eclispe-based IDE (integrated development envi-
ronment).

WaveScript User Manual
A (functional) language to describe (and run) data flow
graphs. The compiler is written in Scheme and con-
verts the code to C or MLtron (there is also an unsup-
ported C++ backend through XStream).
It is not a “higher order data flow language”: the graph
does not change at runtime.

Scale theory, serial theory and voice leading
D. Tymoczko (2007)

When turning a harmonic progression into a set of
melodies (i.e., you have a chord voicing, often spread
over several octaves, you have chosen the next chord,
but you still have to decide on the voicing), composers
try to use efficient voice leading, i.e., try to limit how
far each voice moves; this facilitates the perception of
independent musical lines (in addition, you may want
those voice leadings to avoid crossings and be bijec-
tive). The number of voice leadings may look daunting
(especially for large chords, e.g., hexachords), but the
problem is not.

Freer than Max – porting FTM to Pure Data
I. m Zmölnig (2007)

The FTM library, that provides complex data struc-
tures to data flow languages, is now available for Pure
Data – it is an alternative to Pure Data’s “graphical
data structures” and the PDContainer (C++ STL) li-
brary.

Analytical features
to extract harmonic or rythmic information

G. Cabral et al.
Description of an automated musical feature (note,
chord, rythm, timbre) extraction tool; it just combines
known algorithms:
– Time-based pitch recognition algorithms compare
(by looking at the correlation or just the distance)
the signal with its lags; it works better for low fre-
quency signals;

– Frequency-based pitch recognition algorithms (e.g.,
the harmonic product spectrum (HPS)) try to find a
frequency f for which the spectrum has peaks at 2f ,
3f , 4f , etc. (I expect this to fail for lamellophones);
the cepstrum is mentionned but not defined;

– For better pitch recognition, you can combine sev-
eral algorithms;

– Chord recognition algorithms split the spectrum into
regions, compute the energy in each, assign it to the
12 notes, normalize the resulting vectorm and apply
some machine-learning algorithm.

Can the Red Queen help catch the Snark?
A co-evolutionary waveform

transformation approach
M. Caetano et al.

SBCM 2007

Article and book summaries by Vincent Zoonekynd 856/1044

One can generate constantly changing sounds with op-
timization algorithms such as genetic algorithms: those
algorithms tend to converge, but you can use them to
model two populations, predators and preys, and have
them coevolve.

Applications of group theory
on granular synthesis

R. Fabbri and A. Maia
SBMC 2007

Granular synthesis is an extreme case of additive syn-
thesis: create a sound by combining (adding) hundreds
or thousands of sound particles, defined as small areas
or clouds in the time×frequency space (with a gaussian
envelope and a width of 10ms to 20ms). The evolution
of those grains with time is often defined by stochastic
methods or finite automata. The article suggests to
use group theory instead, with the symmetric group or
some of its subgroups (alternating, dihedral and cyclic
groups). The group action is not clearly defined; it
could be:
– The action of the symmetric group on the set of all
sound particles, not just those currently used;

– Some action on the parameters of the particles (fre-
quency, duration, amplitude).

At each step, a random element from the group is se-
lected to transform the set of particles.
The implementation relies on Sage, NumPy, PyAUdi-
olab, MatplotLib, wxPython.

Methods for evaluating clustering algorithms
for gene expression data

using a reference set of functional classes
S. Datta and S. Datta

BMC Bioinformatics (2006)
How good are the results of your hierarchical cluster-
ing? In a biological context, you can use gene ontology
(GO) databases to compute a biological homogeneity
index and a biological stability index.
This could be generalized to a non-biological setup:
– For the homogeneity index, find another source of
data and check if the clusters are consistent with it;

– For the stability, just resample and compare.
Also check the pvclust package.

Phantom probability
Y. Izhakian and Z. Izhakian

arXiv:0901.0902

To model the fact that the probability of an event,
P (A) ∈ [0, 1], is not known precisely, you can try to
replace [0, 1] by something else. I would have tried the
ring of probability distributions on [0, 1], but you can
follow the lead of synthetic geometry, or algebraic ge-
ometry and its dual numbers, which adds a nilpotent
element ε to the real line R[ε]/〈ε2〉, and add an idem-
potent (phantom) element ℘: R[℘]/〈℘2 = ℘〉. Intu-
itively, use a+ b℘ to mean “I estimated the probability

as a+℘b, where ℘ is the probability of some other event
on which I know nothing”. This can be generalized to

R[℘1, . . . , ℘n, . . .]〈
℘i℘j = ℘Max(i,j)

〉
where the ℘i are more and more hidden – you could
have made them independent, R[℘1, . . .]/〉℘2

i = ℘i〈.
Almost everything in probability theory (limit theo-
rems, etc.) can be generalized to probabilities with
values in a phantom ring.

Synthetic differential geometry
M. Schulman (2006)

Decision making in phantom spaces
Y. Izhakian and Z. Izhakian

Classical decision theory assumes that the probabilities
of all events are known: it addresses risk (we do not
know which event will be realized) but not uncertainty.
With phantom probability theory, this can be general-
ized to situations where some but not all probabilities
are known (each unknown probability is a nilpotent
phantom probability). Plots of the efficient frontier
have one more dimension for each phantom dimension.

A survey of product-integration with a view
toward application in survival analysis

R.D. Gill and S. Johansen
The annals of statistics (1990)

If X is a real (i.e., the matrix coefficients are signed
measures) matrix-valued measure on (0, t], then its
product integral is

Y (t) = P
s∈(0,t]

(
1 +X(ds)

)
= lim

0=t0<t1<···<tn=t
Max|ti−ti−1|→0

∏(
1 +X

(
(ti, ti−1]

))
It could also be defined by the Voltera equation (aka
Kolmogorov forward equation)

Y (t) = 1 +

∫
s∈(0,t]

Y (s−)X(ds).

Here are some applications:
– Link between survival and hazard functions:

T : positive random variable (survival time)
S(t) = P [T > t] (survival function)

λ(t) = −d logS(t)
dt

(hazard rate)

Λ(A) =

∫
A

λ(u)du (survival measure)

S(t) = P
(0,t]

(1− dΛ)

– In a censored context, the product-limit (Kaplan-
Meier) estimator is the product integral of the em-
pirical commulative hazard function (Nelson-Aalen
estimator): this formulation can help derive proper-
ties of those estimators;

Article and book summaries by Vincent Zoonekynd 857/1044

http://www.sagemath.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/

– For multivariate censored data, there is no classical
estimator (the naive one would depend on a choice
of coordinates) but the product-integral can provide
a (complicated but) well-defined one;

– All this can be generalized to Markov processes (the
survival analysis model uses 3 states: alive, censored,
dead) by using matrices of size the number of states
– it even works for countable state space Markov
chains (e.g., Markov branching processes).

Current State of Java for HPC
B. Amedro et al.

Inria (2008)
Java is useable for high performance computing (HPC),
e.g., with the ProActive library (LGPL, developed at
the Inria) as an MPI replacement, but the performance
greatly depends on the virtual machine (JVM) used
and communications can be a bottleneck.

Versatile and declarative dynamic
programming using pair algebras

P. Steffen and R. Giegerich
BMC Bioinformatics (2005)

When you need to implement several dynamic pro-
gramming algorithms (they are everywhere in bioinfor-
matics), you may want to factor out the algorithm into
an algebraic dynamic programming (ADP) algorithm;
what remains is then almost purely declarative:
– The alphabet used by the input sequence;
– The set of candicate solutions: they can be expressed
as a set of trees, described by a grammar;

– A way to compute the score of a candidate tree (re-
cursively).

Least angle regression
B. Efron et al. (2003)

An introduction to the Kalman filter
G. Welch and G. Bishop (2001)

Portfolio optimization in R
R in Finance 2009

Most portfolio optimization problems can be solved
within R:
– For mean-variance optimization with no con-
straints (except perhaps a long-only one), use the
portfolio.optim function in the tseries package;

– For the whole efficient frontier, call the function in-
side a loop;

– For the maximum Sharpe ratio portfolio, search on
that efficient frontier;

– For mean-variance optimization with linear con-
straints (linear transaction costs, maximum weights,
sectors or countries, etc.), use solve.QP in the
quadprog package;

– Expected shortfall (ES, aka conditional value at risk,
CVaR) optimization, is only a linear problem (but

beware: it is a scenario-based optimization) is just a
linear problem: you can use the Rglpk_solve_LP
function in the Rglpk package (it can also do
mixed integer linear programmin (MILP), but not
quadratic programming);

– For more general constraints and/or perfor-
mance/risk measures, such as

Ω(r) =

∫ ∞
r

(1− F (u)) du∫ r

−∞
F (u) du

the drawdown (which can be plotted as an under-
water graph, with the chart.Drawdown function),
the Rachev ratio R = CVar+α/CVar−α , you can
check the DEoptim package.

A few remarks:
– Drawdown optimization looks very good in-sample,
but it is a scenario-based optimization: how does it
perform out-of-sample?

– There is no mention of constraints on the number
of assets or of mixed integer quadratic programmins
(MIQP): what about Rsymphony (it is open-source)?

– There is no mention of stochastic programming –
but it is not reasonable (yet?) for more than 2 or 3
assets.

Working with xts and quantmod
R in Finance 2009

The xts package relies on zoo to provide time-based
indexing:

x <- xts(rnorm(N, Sys.Date()-1:N))
x["2009-01-01"]
x[index(x) >= Sys.Date()-5]
x["2009-01-01/2009-01-05"] # Interval
x["2009-01"] # One month of data

You may also want to check the to.period (convert to
OHLC (open-high-low-close)), endpoints (to extract
weekly, monthly, etc. data), period.apply functions.
The quantmod package abstracts data access, from lo-
cal (RData, CSV, SQLite, MySQL) or public sources
(Google, Yahoo, Oanda, FRED). The getSymbols
functions assigns to local variables of the same name.

getSymbols("AAPL;IBM")
getSymbols("USD/EUR", src="oanda")

You may also want to check: getDividends, getQuote,
getSplits, getFX, getMetals, getOptionChain.
There are also a few plotting functions.

candleChart(
GSPC, subset="2009-01-01",
theme="white", TA=NULL

)
chartSeries(IBM)
addBands()
?newTA # to add your own TA indicators

Article and book summaries by Vincent Zoonekynd 858/1044

http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://www.google.com/finance
http://finance.yahoo.com/
http://www.oanda.com/
http://research.stlouisfed.org/fred2/

AddMACD(32,50,12)
reChart(
subset="2009",
theme="white", type="candles"

)
?chartSeries3d # For yield curves, etc.

Data can be loaded on-demand (lazily) and cached in
memory or in a file.

attachSymbols(
DB=DDB_Yahoo(),
pos=2, prefix="E."

)
search()
str(ls("DDB:Yahoo"))

For more, check TTR, blotter, PerformanceAnalytics.

Statistics for Financial Engineering:
Some R Examples
R in Finance 2009

After clearly explaning the difference between linear,
non-linear and non-parametric regression, the author
presents three applications of statistics in finance.
The probability of default (PD) is often modeled as

P [default | rating] = exp(β0 + β1rating);

which can be transformed via a Box-Cox transfor-
mation p 7→ (κ + p)λ (unless the problem dictates
another family of transformations); you cannot naively
take the logarithm, because the probability can be zero
(many textbooks do this, and have to throw observa-
tions away, resulting in a biased estimator). Whatever
transformation you choose, do not forget the residual
analysis. (The presenter wrote a book about trans-
formations.)
Most stylized facts about an interest rate time series
(Rt)t are visible in the following plots:

Rt ∼ t, ∆Rt ∼ t, ∆Rt ∼ Rt−1 (∆t)
2 ∼ Rt−1.

They can be modeled as a diffusion process

∆t = µ(Rt−1) + σ(Rt−1)εt

where the drift µ and the volatility σ can be non-
linear (e.g., σ(r) = β0r

β
1) or non-parametric. With

50 years of data, non-parametric regression (e.g., with
the SemiPar package – the presenter wrote a book on
non-parametric estimation with the package author),
non-parametric regression performs better: the para-
metric model will be outside the confidence interval of
the non-parametric one. In this case, the residuals look
GARCH

garch(x=res^2, order=c(1,1))

but the GARCH residuals still have some AR(1) noise

garchFit(
formula = ~arma(1,0)+garch(1,1),
data = res

)

and are far from Gaussian

garchFit(
formula = ~arma(1,0)+garch(1,1),
data = res,
cond.dist = "std"

)

This 2-step process may be suboptimal.
The last example tries to predict future returns (start-
ing with the worst):
– The average of the previous returns;
– The CAPM, forecast = β · previous returns;
– Bayesian shrinkage:

forecast = λ·previous returns+(1−λ)·market returns

– The previous market returns (this is the best fore-
cast, but all stocks end up with the same forecast).

The bayesian shrinkage can be implemented with
WinBUGS/R2WinBUGS (OpenBugs/BRugs is no
longer on CRAN, and OpenBugs was written in a ob-
scure, commercial, non-textual, Pascal-like language
(the source file is a binary file); JAGS is not men-
tionned):

µi ∼ N(α, σ2
1)

ri,t ∼ N(µi, σ
2
2);

this is a data-driven shrinkage: the amount of shrink-
age is σ2

1/σ
2
2 .

Risk Capital for Interacting Market and
Credit Risk: VEC and GVAR models

R in Finance 2009
International financial regulations (Basel II) assume
that market and credit risk are independent and con-
sider that assumption conservative: actually, the inter-
action between market and credit risk can be benign or
malign. For small fluctuations, this can be seen from
a Taylor expansion: let x be the risk factors (market,
credit); let f(x) be the value of your portfolio, then

f(x+ ε) = f(x) + f ′(x) · ε+ f ′′(x) · ε · ε+ o(|ε|2),

where the bilinear form f ′′(x) can be positive, negative,
or neither. This shows the problem for small fluctua-
tions: we would like a decomposition

f(x+ ε) = f(x) + gmarket(x, εmarket) + gcredit(x, εcredit)

for large fluctuations as well – this works iff the port-
folio is separable, i.e., f(x) = fmarket(x) + fcredit(x).
The rest of the presentation is a confusing example (the
GVAR in the title is apparently a vector autoregression
(VAR) with fewer parameters).

Article and book summaries by Vincent Zoonekynd 859/1044

http://rinfinance.quantmod.com/presentations/
http://www-ice.iarc.fr/~martyn/software/jags/
http://rinfinance.quantmod.com/presentations/

ICA for multivariate financial time series
R in Finance 2009

Since independent component analysis (ICA) is an op-
timization problem, you can easily add constraints; you
could define a constrained PCA in the same way.
This presentation also tries to give technical details on
how ICA is estimated (but it quickly becomes a list
of formulas with no explanations) and how a time di-
mension can be added (but their “time-varying mixing
matrix” looks like a moving window estimator).

Random portfolios: Practice and Theory
R in Finance 2009

Random portfolios can be seen as a kind of boot-
strap or permutation test.
The basic idea is the following: since we add so many
constraints, many things only depend on the con-
straints; random portfolios can measure the perfor-
mance or risk coming from the constraints and isolate
the value added by the portfolio manager.
Random portfolios (and matched portfolios) can re-
place a benchmark or a peer group: they will be less
biased and lead to tests with a higher power; they
can also incorporate more information, such as the po-
sition at the begining of the period and the turnover
constraint.
Random portfolios can also help measure the (some-
times unwanted) impact of constraints: you can com-
pare the performance and risk of random portfolios
for several sets of constraints (e.g., loose or tight con-
straints on sector weights). [This was new.]
Generating random portfolios is problematic. [This is
also new.]
– A rejection strategy is not reasonable (there are too
few portfolios satisfying the constraints);

– Algorithms to sample inside a polytope do not apply
if there are non-linear constraints;

– You can compute an optimal portfolio for random
returns, but this may be biased;

– You can use a random search: start with a random,
unconstrained portfolio and minimize a penalty for
broken constraints; however, you will be close to a
binding constraint (this does not worry me: we are
in high dimension, everything is close to the bound-
ary) and the sampling will not be uniform (this is
not very worrying: this is almost exactly what a
portfolio manager does, except that he starts with
non-random returns).

Matching portfolios
D. Kane

R in Finance 2009
To measure the performance of a portfolio, one may
look at the average capitalization, the momentum, and
the book market value of its constituents and com-
pare with the corresponding quintile portfolio: but you
have a single portfolio and the more factors you add,

the emptier those quintile portfolios become. Match-
ing views those portfolio characteristics (except those
in which the portfolio manager claims expertise) as
constraints and build a portfolio matching those con-
straints.
I do not see the difference with random portfolios.

Quantile regression in R
R in Finance 2009

The definition of a quantile can be formulated as a lin-
ear optimization problem and this generalizes readily
to a regression setup

αt = Argmin
α∈R

n∑
i=0

ρτ (yi − α)

ρτ (u) = (τ − 1u<0)u.

Even with a linear model, quantile regression can high-
light non-linear features, such as the conditional distri-
bution of the data (this is not as general as the distribu-
tion of y|x, but almost: there is a model, which assumes
a linear relation between the quantiles of x and (a lin-
ear combination of) y, but that relation can depend on
the quantile; in particular, we can end up with non-
gaussian, and even multimodal, distributions) or the
dependence of the regression coefficients on the quan-
tile (for an additive gaussian model, we would expect
the intercept to be the inverse cumulative distribution
function of the quantile and the other coefficients to be
constant).
Two plots: conditional densities (this is similar to a
violin plot, but with an underlying linear model); coef
∼ quantile.
In a time series setup, you can use quantile regression
to estimate a quantile autoregression (QAR): it it
will be non-gaussian, but still partly parametric.
Quantile regression is actually equivalent to CVaR
(conditional value at risk) portfolio optimization; by
approximating the weight function of a spectral risk
measure by a locally constant function, quantile regres-
sion can be used to optimize portfolios for any “pes-
simistic” risk measure (this has nothing to do with
quantile regression: it applies to linear programming
in general).
The presentation ends up with a non-gaussian regres-
sion

score ∼ team 1+ team 2+ home advantage

(all the predictors are qualitative variables, the variable
to predict is a count variable: this would classically be
estimated by a Poisson model – but we would have to
check this distributional assumption). With quantile
regression, we keep the linearity of the model, but re-
move any distributional assumption; the model can be
estimated as a (not unreasonably) large but sparse lin-
ear program and one can sample from the distribution
of scores, in a half-bayesian fashion.

Article and book summaries by Vincent Zoonekynd 860/1044

http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/

Quantile regression can be seen as a prior-less bayesian
regression with no distributional assumptions.

Using R for hedge fund of funds management
E. Zivot

R in Finance 2009
When faced with non-gaussian data, use the Cornish-
Fisher expansion to compute the value at risk (VaR)
or the expected shortfall (ES, CVaR).
If the time series of returns do not have the same
length: select the best risk factors; compute the ex-
posure of the funds to those factors; simulate the
missing returns; use those simulated returns to esti-
mate the marginal contribution to risk (MCTR) or
risk attribution for VaR or ES. This is available in the
PerformanceMetrics package.
This reminds me of the problem of estimating a vari-
ance matrix Var(x1, . . . , xn) when there are many miss-
ing values: the maximum-likelihood estimator can be
computed explicitely (this is “just” linear algebra, al-
beit horrible), but an MCMC simulation is easier to
implementat (and less likely to be buggy). However,
even for toy examples, the convergence is horribly slow.
The presentation mentions but does not tackle the fol-
lowing problems:
– Biases (survivorship, reporting, backfill);
– Serial correlation (performance smoothing; illiquid
positions).

Particle learning
R in Finance 2009

Not understandable. None of the articles they refer to
are available.

Performance Analysis in R
R in Finance 2009

Clear presentation of what the PerformanceAnalytics
package can do: measure, compare, decompose the
performance or risk of portfolios.

Market Microstructure Tutorial
R in Finance 2009

Market microstructure is the study of why markets are
not efficient and how to profit from it (or, equiva-
lently, help make them more efficient); this includes
behavioural effects.
The Glosten-Milgrom model considers two traders: one
(informed) always buys (or sells, this is fixed at the
begining); the other (non-informed) buys or sells with
probability 1/2 (they just buy or sell, the model does
not consider the need to find a counterparty); only
one trader (selected at random) trades at each point
in time. We define the bid (respectively, ask) as the
probability that the informed trader is buying (resp.
selling) given that the last trade was a buy (resp. sell).
The bid and ask converge towards the true price (0

or 1) (i.e., the market goes where the informed trader
wants: market manipulation is indistinguishable from
price discovery).
The Kyle model considers a market maker facing in-
formed and non-informed traders and sets the price
to the expected true price given the total order size
he sees; the informed trader chooses the order size to
maximize profit. There again, information leaks very
quickly.

Event study: a change-point model approach
R in Finance 2009

Hidden variable (aka latent variable, or regime switch-
ing if that variable is discrete) models can be estimated
via Monte Carlo simulations. In this example, we con-
sider spells of iid gaussian random variables
[[PLOT]]
and estimate the model by Gibbs sampling, with a
bayesian prior:
– Estimate the state at each point in time;
– Estimate the parameters in each spell;
– Estimate the transition probabilities;
– Iterate.
(At each step, we consider the whole time series.) This
can be repeated with a different number of regimes,
and the best model can be selected by looking at the
Bayes factor.
In a financial setting, breakpoints need not coincide
with announcements: they can occur before.

Detecting structural breaks in tail behavior
W.H. Liu

R in Finance 2009
The Hills estimator of the tail index (and the tail index
itself) only makes sense for power law tails and, even
in that case, is known to be very noisy. Replacing the
power law by a general extreme value (GEV) distri-
bution does not solve those problems: tests for struc-
tural breaks (I do not know them: SupLN, OLS-based
CUSUM, Nyblom-Hansen, generalized M-fluctuation)
return a surprisingly high number fo potential regime
changes.
For risk management purposes, estimators of GEV
models are as problematic as the Hills estimator.

Portfolio Optimization with R/RMetrics
R in Finance 2009

Quick overview of what is available in RMetrics
for portfolio optimization – there is an ebook with
the same title (it excludes: quadratic (non-linear)
constraints, integer constraints, non-linear objectives,
Black-Litterman copula pooling (BLCP), quadratic
lower partial moments (QLPM), copula tail risk: these
will be covered in a second volume). The list of pack-
ages looks exhaustive: Rglpk, Rsymphony, Rlpsolve,
quadprog, Ripop, Rsocp, Rdonlp2, Rnlminb.

Article and book summaries by Vincent Zoonekynd 861/1044

http://rinfinance.quantmod.com/presentations/
http://www.thejournalofrisk.com/public/showPage.html?page=jor_v11n2a4
http://www.thejournalofrisk.com/public/showPage.html?page=jor_v11n2a4
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://www.rmetrics.org/ebook.htm
http://cran.r-project.org/web/packages/Rsymphony/index.html

Econometrics and practice: mind the gap!
Y. Chalabi and D. Würtz

R in Finance 2009
There is an unreasonable number of variants of the
GARCH model, but fitting them poses many practi-
cal issues (bugs, parameter initialization, optimization
schemes, etc.).
The presentation slides contain some sample code: it is
surprisingly straightforward (it would be trickier to es-
timate a stochastic volatility model, i.e., a model with
two sources of randomness: you would need to consider
a time series of (hidden) innovations).
The stationary assumption is often violated.
We might be tempted to use robust methods to throw
outliers away, but we cannot afford it: we would un-
derestimate risk. Instead, you can include them in
the model, either as isolated points or as a different
regime: MS-GARCH (Markow-Switching GARCH)
is one such example.
Indirect inference can help fit a difficult-to-fit model
g by using an (easier-to-fit) model f :

– Estimate the auxiliary model f in the data y: θ̂;
– For all possible values of the parameters ρ of the

model g, generate a sample ỹ, and estimate the aux-
illiary model f on it: θ̃(ρ).

– Find the parameters ρ that minimize the distance∥∥∥θ̂ − θ̃(ρ)∥∥∥ .
Introduction to high-performance

computing with R
D. Eddelbuettel

R in Finance 2009
You can profile your code with the system.time,
Rprof, Rprofmen, tracemem functions; the profr
and proftools package; the prof2dot.pl, valgrind,
kcachegrind, sprof, oprofile, Google PerfTools
tools.
Vectorization, with the *apply or outer functions, or
just-in-time compilation with Ra (a set of patches for
R, available for Debian/Ubuntu – a very search-engine-
unfriendly name) and the jit package, can speed
things up.
For the best performance, you can rewrite the most
time-consuming parts of the code in C/C++: with .C,
the C function uses C types; with .Call, it uses R types
(SEXP); with Rcpp, the conversion between R and C++
types (templates) is transparent. The inline package
and the cfunction function allow you to put the C
code (with .Call or .C conventions) directly inside the
R code – as with Perl’s Inline::C module.
In the other direction, RInside allows you to evalua-
tion R code from a C/C++ program.
Other high-performace topics were not mentionned:
– Parallel computing: MPI, nws, snow;
– Out-of-memory computations: biglm, ff, big-

matrix9;
– Scripting and automation.

A latent-variable approach
to validate credit rating systems with R

B. Grün et al.
R in Finance 2009

Credit rating of several firms (obligors) by several
raters (banks, rating agencies) can be modeled as a
mixed model: let the observed score Si,j be the probit
of the announced probability of default for obligor i
according to rater j:

Si,j = Si + µj + σjZi,j ,

where Si is the latent (consensus) rating and µj the
bias of rater j.
This can be generalized into a dynamic model by as-
suming the latent probability is AR(1) and examined,
by Gibbs sampling, with the rjags and coda pack-
ages. In particular, you can look at: bias and variance
of raters, consensus rating; and the residuals can be
further analyzed.
In practice, you have to map the ordinal rating of the
rating agencies (AAA, etc.) into probabilities: this
hides the bias.

RMeCab
MeCab is a Japanese morphological analyzer, i.e., a
tool to cut sentences into words (there are no spaces
between words in Japanese). It looks more robust than
its competitors (ChaSen, CaboCha) and can now be
used from R.
After installing R, MeCab, MeCab-ipadic (beware,
they apparently only provide a binary package, even
for Linux):
install.packages(
"RMecab.tar.gz",
destdir=".", repos=NULL

)
library(RMecab)

To split a sentence into words, and get the POS (part-
of-speech) of those words:
RMeCabC("猫が鼠を食べた。")

The default output of the command-line tool (word,
POS0, POS1, POS2, POS3 (more and more detailed),
conjugated form (?), dictionary form, pronunciation,
pronunciation (yes, twice)):
RMeCabText("text.txt")

The frequency dataframe, with primary key word-
POS0-POS1 (sort it before use):
RMeCabFreq("text.txt")

The term-document matrix:
docMatrix("corpus/")
d <- docMatrix(
"corpus/",
pos=c("名詞","形容詞"))

cor(d)
N-grams:

Article and book summaries by Vincent Zoonekynd 862/1044

http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://rinfinance.quantmod.com/presentations/
http://cran.r-project.org/web/packages/rjags/index.html
http://cran.r-project.org/web/packages/coda/index.html
http://ja.wikipedia.org/wiki/MeCab

Ngram("text.txt", N=4)
However, my current (NLP) interest is lexicography
and I am skeptical about the ability of R/MeCab to
handle very large datasets (say, all of Wikipedia).
I still have to read the book, Rによるテキストマイニング入門
(石田基広, 2008).

Pessimistic Portfolio Allocation
and Choquet Expected Utility

Details on the relation between
– Choquet expected utility (very similar to cumulated
prospect theory: when computing the expected util-
ity, we give more or less importance (we distort the
probability of) favourable or unfavourable events);

– coherent (or spectral, or pessimistic) risk measures.

Estimation and decomposition of downside
risk for portfolios with non-normal returns

K. Boudt et al (2007)
Some people are apparently still using gaussian para-
metric value at risk (VaR) estimators...
After recalling the Edgeworth expansion of a cumula-
tive distribution function (around the Gaussian)

G(z) = Φ(z) +

r∑
i=1

Pi(z)

and the Cornish-Fisher (CF) expansion of the corre-
sponding quantile function

G−1(α) = zα + φ(zα)

r∑
i=1

P ∗i (zα)

zα = Φ1(α)

the authors compute the modified VaR (mVaR)
and the modified expected shortfall (mES), cor-
responding to the second order Cornish-Fisher expan-
sion, i.e., a Gaussian distribution modified to have non-
trivial skew and kurtosis.
By differentiating the mVaR or mES with respect to
portfolio weights, one can compute risk attribution.
Since the estimation of higher moments is noisy, the
authors suggest to clean the data before computing
skewness and kurtosis: they do not remove or truncate
outliers, but just shrink them (the cleaning threshold
should be beyond the desired VaR threshold).

SemiPar, an R package
for semiparametric regression

M.P Wand et al. (2005)
The main R functions for semiparametric regression are
gam::gam, SemiPar::spm, mgcv::gam; you may also
want to check the lmeSplines and fields packages.
SemiPar is younger than gam, but allows for bivariate
terms and better plots.

r <- spm(y ~ f(x))

plot(r)
points(x, y)
plot(r, drv=1) # First derivative

You can impose the smoothing parameter (e.g.,
spar=3), the number of degrees of freedom (df for
a single term, adf (approximate degrees of free-
dom) if there are several terms) or the basis (e.g.,
basis="trunc.poly", degree=5 – by default, cubic
radial basis functions).

u ~ x + f(y) # semi-parametric
u ~ f(x) + f(y) # additive model
u ~ f(x,y) # bivariate smoothing

For bivariate smoothing (used in spatial statistics, you
may want to check and/or alter the nodes: there may
be too few or too many). For higher dimensions, you
can use a geoadditive model

u ~ f(x,y) + f(z)

The function also accepts binary data (family="binom-
ial"), count data (family="poisson"), or mixed
models (with the usual horrible syntax).

Unit root quantile autoregression inference
R. Koenker and Z. Xiao

Financial time series are often autoregressive with
a root near unity: for quantile auto-regression, this
changes the asymptotic distributions, but the correct
tests are more powerful (for non-gaussian innovations)
than tests based on a gaussian model.

Conditional quantiles of volatility
in equity index and foreign exchange data

J.W. Galbraith (2001)
Quantile regression rt ∼ rt−1 + σt can highlight asym-
metric behaviour in time series of foreign exchange re-
turns.

VAR, SVAR and SVEC Model:
Implementation within R package vars

B. Pfaff
Journal of Statistical Software (2008)

The vars package estimates vector autoregressive
(VAR) models

yt = A1yt−1 + · · ·+Apyt−p + ut

or structural VAR (SVAR) models

Ayt = A∗1yt−1 + · · ·+A∗pyt−p +Bεt

(for the model to be identifiable, you have to add re-
strictions (prior knowledge) on A and/or B) or struc-
tural vector error correction (SVER) models (not ex-
plained clearly). The package should be used in con-
juction with the urca package, whose author system-
atically refuses to output p-values and only provides
test statistics and a couple of critical values.

Article and book summaries by Vincent Zoonekynd 863/1044

Generalized linear mixed model analysis
via sequential Monte Carlo sampling

Y. Fan et al. (2007)
Generalized linear mixed models (GLMM) are no-
toriously more complicated to estimate than linear
mixed models or generalized linear models. Sequen-
tial Monte Carlo (SMC) sampling is an alternative
to Monte Carlo Markov Chain (MCMC) sampling: it is
a static analogue of particle filters. You have to add a
time dimension to the problem, for instance, by adding
the observations one by one (the time-indexed family
of posterior distributions is more and more precise) or
by sampling from the family of posterior distributions
(π1−t

0 πt)t∈[0,1], where π is the desired posterior and π0
the prior or a gaussian distribution centered on an ap-
proximate fit.

Parsimonious classification
via generalized mixed models
G. Kauermann et al. (2007)

Supervised classification can be performed via a gen-
eralized additive logistic model (logictic GAM)

P (Y = 1) = f1(x1) + · · ·+ fp(xp)

where the unknown functions fi are estimated as gen-
eralized splines or, equivalently, as a mixed model

fi(x) =
∑
j

ui,jbj(x)

uij ∼ some prior

where the bj are the basis functions and the uj their
coefficients.
See also the gam.step function for a similar approach.

Anomalous returns
in a neural network equity-ranking predictor

J.B. Satinover and D. Sornette (2008)
A nonlinear AR(10) model fitted on quaterly retruns
with a neural returns can beat the S&P500 (or would
have, in the 1990s), even if you include trading costs
(but with a much higher volatility).

Detecting speculative bubbles
created in experiments

via decoupling in agenbt-based models
M. Roszcynska et al. (2008)

Bubbles are periods when everyone makes the same in-
vestment decisions (one could argue that short-selling
helps prevent bubbles, by allowing people to make op-
posite investment decisions).

Decomposition of proper scores
J. Bröcker (2008)
arXiv:0806.0813

Scores are a way of measuring the quality of estimators
of probabilities (or estimators of probability distribu-
tions).

An estimator p̂ of the probability of a binary random
variable Y is reliable if

∀p P [Y = 1 | p̂ = p] = p.

Given an observation y ∈ [0, 1] of Y , the Brier score
of p̂ is (y− p̂)2; with several observations and forecasts,
you would take the average of those quantities. This
sum of squares is used in decision theory.
This can be generalized to non-binary (discrete or con-
tinuous) random variables (the article is not always
clear); some properties of the Brier score lead to its de-
composition into reliability and sharpness (information
content).

Model of information diffusion
D.V. Lande

Cellullar automata (the game of life) on a 2-
dimensional grid can be used to model information dif-
fusion. (I am skeptical about the lack of influence of the
graph structure: a 2-dimensional graph and a small-
world graph are very different – physicists are already
used to seeing differences between 2- and 3-dimensional
phenomena...)

“Bubbles in society”
The example of the United States

Apollo program
M. Gisler and D. Sornette

Bubbles, i.e., collective over-enthusiasm, are (unavoid-
able and) beneficial: they foster innovation and allow
the development of new technologies; examples include
wars, cold wars, space programs, etc.

The w-index:
a significant improvement on the h-index

Q. Wu (2008)
One can reduce the number of citations papers of a
researcher get (or any finite sequence of positive num-
bers) to a single index,

sup{w : he has w papers cited at most 10 times}.

If you plot the number of citations against the paper
number w (after ranking the papers in decreasing ci-
tation order), this is the intersection of the curve with
the n = 10w line. Of course, this “10” is arbitrary...

Probing the improbable:
methodological challenges for risks

with low probabilities and high stakes
T. Ord et al.

When estimating very low probabilities (e.g., asteroid
impact), you should consider that the argument could
be incorrect, for many reasons:
– Theory (e.g., choice of Newtonian mechanics or gen-
eral relativity);

Article and book summaries by Vincent Zoonekynd 864/1044

– Model: is it broad/detailed enough (which celestial
bodies to include, influence of their shape or struc-
ture, etc.); retraction rates of academic papers sug-
gests that the proportion of inadequate models is at
least 10−3;

– Calculations: intentional simplification (if a physi-
cist is doing the computations) or errors: the prob-
ability of computational errors varies between 1%
(drug doses in hospitals) and 90% (if you use spread-
sheets).

(The problem is sometimes obvious in the conclusion:
claims that something “is impossible” are almost al-
ways wrong.)
The estimate can be improved by providing several
models.
Contrary to what the title suggests, the article only
focuses on the probabilities, not on the stakes: there
can be unpleasant situations where

∫
Stake dP =∞.

Nonlinear dimension reduction with kernel
sliced inverse regression
Y.-R. Yeh et al. (2007)

The sliced inverse regression (SIR), a linear dimension
reduction technique (not explained clearly: in a regres-
sion setup y ∼ x, look for y = f(βx), where βx has
much fewer columns than x and f is a linear or non-
libnear function, by looking at Σx|y and Σx) can be
extended with the “kernel trick”.

The Fast-τ estimator for regression
M. Salibian et al.

A τ -estimator is defined as

β̂ = Argmin
β

s2(β) 1n

∑
i

ρ2

(
yi − βxi
s(β)

)
1
n

∑
i

ρ1

(
yi − βxi
s(β)

)
= 1.

(The second equation defines s.) If ρ1 = ρ2, it is
an S-estimator (and the first equation simplifies to
β̂ = Argminβ s(β)). The breakdown is determined by
ρ1; the efficiency by ρ2.
Contrary to common belief, τ -estimators can be effi-
ciently implemented.

Robust performance testing
with the Sharpe ratio

O. Ledoit and M. Wolf
Journal of empirical finance (2008)

The tests traditionally used to compare Sharpe ratios
are not robust to fat tails, autocorrelation or volatility
clustering. One can use the same test statistics, but
“assume” that their limiting distribution is N(0,Ψ),
with Ψ unknown (instead of known) and estimated
with an HAC (heteroskedasticity and autocorrelation
robust) estimator. The resulting p-values are higher,
i.e., apparent differences are less significant.

Correlation, hierarchies and networks
in financial markets

M. Tumminello et al.
arXiv:0809.4615

Hierarchical clustering from a correlation matrix (min-
imum spanning tree (MST), average linkage MST, etc.
– try several algorithms) can also be used to filter the
correlation matrix: if C1 and C2 are two separate sub-
trees joined by an edge (or an internal node),

∃c ∀i ∈ C1 ∀j ∈ C2 Cor(i, j) = c

(as a result, there are as many (potentially) differ-
ent values in the correlation matrix as internal nodes:
n− 1). The structure of the filtered correlation matrix
can replace the traditional factor model V = eve′. This
hierarchical nested factor model has one factor for
each internal node, but a bootstrap will often suggest
that only a few are significant: fuse the non-needed
nodes with their parent.
To check the goodness-of-fit of this hierarchical nested
factor model, compare the Kullback–Leibler distance
between the filtered matrix and the (raw) observed one
with what you would expect of the observed matrix if
the filtered matrix was the right one (with a multivari-
ate Gaussian or Student distribution).
To check the stability of the filtering algorithm, check
the average Kullback–Leibler distance bewteen filtered
bootstraped matrices: random matrix theory (RMT)
is bad, shrinkage and hierarchical nested factor models
are good.

Stock market volatility:
an approach based on the Tsallis entropy

S.R. Bentes et al.
arXiv:0809.4570

Entropy is often used in a cross-sectional way, on the
distribution of prices (or market capitalizations) of
stocks at a given date, but you can also use it in a
time series fashion, on the distribution of the returns
of a single stock, as yet another measure of volatility.
They authors fail to properly define and motivate the
Tsallis entropy

Sq(p) =
1−

∫
pq

q − 1

they prefer over the Shannon entropy

H(p) =

∫
−p ln p.

Smile dynamics:
a theory of implied leverage effect

S. Ciliberti et al. (2008)
arXiv:0809.3375

The volatility surface, if you only want a Taylor ex-
pansion around the money, can be studied without a
complete model of the returns of the underlying (e.g.,

Article and book summaries by Vincent Zoonekynd 865/1044

http://arxiv.org/abs/0809.3375

local volatility (the volatility is a deterministic function
of the price), stochastic volatility, GARCH, jumps and
Lévy processes, multiscale fractals, SABR, etc.): the
term structure of the skewness (and higher moments)
suffices

Σ(K,T) = σ

(
1 +

ζ(T)

6
M +

κ(T)

24
(M2 − 1) +O(M3)

)
M =

1

σ
√
T

(
Ke−rT

S
− 1

)
where K is the strike, T the maturity, M the money-
ness, ζ(T) the skewness (of the returns of the under-
lying over intervals of size T), κ(T) the kurtosis. The
term structure of the skewness

ζ(T) =
ζ(1)√
T

+
3√
T

T∑
t=1

(
1 =

t

T

)
ρleverage(T)

can be computed from the leverage correlation function
(that quantifies the leverage effect, i.e., the correlation
between past returns and future squared returns)

ρleverage(t) =
E[rir

2
i+t]

σ3

which can be approximated as

ρleverage(t) = −Ae−t/τ .

The dynamics of the implied volatility are between
those suggested by the sticky strike (Σ = Σ(K,T) (does
not change as time passes), an upper bound, correct for
short maturities) and the sticky delta (Σ = Σ(M,T),
lower bound, good approximation for longer maturi-
ties).
In the same way a 1-factor model of the returns of a
stocks allows the volatility to be decomposed into a
market volatility and an idiosyncratic volatility, it also
allows for the decomposition of the skewness (into three
terms).
Similarly, long-range volatility clustering would induce
a non-trivial term structure on the kurtosis.

An extensive set of scaling laws
and the FX coastline

J.B. Glattfelder et al.
arXiv:0809.1040

The laws are all of the form something ∝ (∆x)k or
something ∝ (∆t)k where ∆x is the price change (that
could be interpreted as an “intrinsic time”), ∆t a time
interval and “something” is the Lp average (p ∈ {1, 2})
of:
– Absolute returns in ∆t;
– Number of ticks in ∆t, or ∆x;
– Number of direction changes in ∆t, or ∆x;
– Maximum price move (drawdown) in ∆t;
– Waiting time for a price move of ∆x (in absolute

value or not);
– Total variation in ∆t, or ∆x,

Solvable stochastic dealer models
for financial markets

K. Yamada et al.
arXiv:0807.0481

Yet another agent-based model, whose agents have dif-
ferent horizons and try to predict future prices with
moving averages.

Bayesian analysis of value-at-risk
with product partition models

G. Bormetti et al.
arXiv:0809.0241

Empty article suggesting to use gaussian mixtures (in-
stead of a gaussian model) to estimate value-at-risk
(VaR). (“Product partition” is the physicalese word for
“gaussian mixture”.)

Minimal agent based model
for financial markets I:

origin and self-organization of stylized facts
V. Alfi et al.

arXiv:0808.3562

Stylized facts could be a finite size effect: they could
disappear as the number of agents grow.
The authors build their (uninteresting) model on:
– Short-horizon investors;
– Herding
– The only available information is the price time se-
ries, ie, everyone is a chartist, with either a long or
short horizon, and looks at what others are doing.

Towards a common framework
for statistical analysis and development

K. Imai et al.
Journal of computational and graphical

statistics (2008)
What about “refactoring statistical analysis” (or,
equivalently, on “ontology of statistical analysis”) in
the way you refactor (statistical) software? The arti-
cle advocates the zelig package (a unfified interface
to models implemented in other packages), explains
how R’s formulas can be generalized to accomodate
constants and more complex models, presents Zelig’s
dynamically-generated GUI and the dataverse network
(a data-sharing/publishing platform).

Efficient emulators for multivariate
deterministic functions

J. Rougier (2007)
Climate models can be seen as (deterministic) func-
tions f : RN −→ RM , x 7→ y = f(x) with N very
large. Since they are expensive to evaluate, they are
often replaced by statistical approximations or emula-
tors, i.e., regressions y ∼ x from a small number of
evaluations, where both x and y are vectors and have
a spatial dependency structure modeled by a gaussian
process.

Article and book summaries by Vincent Zoonekynd 866/1044

http://thedata.org/

In case the output is a vector and you are more familiar
with scalar outputs, you can:
– Forecast the coordinates independently
– Perform a principal component analysis (PCA) or,
better, a canonical correlation analysis (CCA) on the
output space;

– uncurrify the function to be evaluated, i.e., replace
x 7→ (y1, . . . , yn) by (x, i) 7→ yi (this assumes that
the yi are commensurate);

– Replace x 7→ f(x) by x 7→ N(f̂(x), V (x)) where f̂(x)
is the predicted value and V (x) its precision.

The article explains how to use linear algebra to ap-
proximate and speed up the estimation of this gaussian
process.

Residual-based shadings for visualizing
(conditional) independence

A. Zeileis et al.
Mosaic plots (that display contingency tables) and as-
sociation plots (that display the Pearson residuals of a
log-linear model rij = (nij − n̂ij)/

√
nij) can be aug-

mented by shadings or colours to display the signifi-
cance of (i.e., the p-value of a statistical test for) de-
parture from independence:
– The usual χ2 of independence, χ2 =

∑
ij r

2
ij can be

replaced by M = Maxij |rij |, so that the whole test
is significant iff a cell is significant;

– The critical values of this test (used to decide
whether to colour or not) are data-dependent: they
can be computed by permutation tests;

– The traditional colourings rely on the HSV (hue, sat-
uration, value) colour space (a cone, whose vertex is
black, whose base has a fully saturated rim and a
white center) and can be misleading (saturation is
not uniform accross hues); it can be replaced by the
HCL (hue, chroma, luminance) space (a double cone,
with a white vertex on one side and a black vertex
on the other, and a fully saturated rim in the middle
– that rim is slightly broken: admissible chroma and
luminance values depen on the hue);

– Instead of changing just the saturation, you can also
change both chroma and luminance;

– When there is nothing significant, use a medium grey
(not white); as significance increases, increase the
range of hues (a more colorful picture looks more
significant).

Those ideas are implemented in R in the vcd package:
check the mosaic, assoc and cotabplot functions.

Singular value decomposition
and its visualization

L. Zhang et al. (2005)
To stuy a periodic signal (of known periodicity, e.g.,
for hourly data you would expect a daily pattern), you
can put the data in a matrix (dates in rows, time in
columns – you can already plot this matrix as a surface
to see intraday and interday patterns) and perform a
singular value decomposition (SVD): it expresses the

matrix as a sum of rank-1 matrices. Plotting the data
corresponding to matrices 1, 1+2, 1+2+3, etc. can
highlight patterns in the data. Potential applications
are similar to those of functional data analysis (FDA).

Delineation of irregularly shaped disease
clusters through multiobjective optimization

L. Duczmal et al.
Journal of computational and graphical

statistics (2008)
To detect a spatial cluster, in epidemiology, compute
the Kulldorff scan statistic

incidence insidecases inside

incidence outsidecases outside

for each (connected) potential cluster and select the
one with the highest values (for circular clusters, this
statistic is well approximated by a Gumbel distribu-
tion). This will select non-significant tree-like “clus-
ters”: you can add a penalty, such as the compactness

Area
Parameter2

and maximize

(
incidence insidecases inside

incidence outsidecases outside

)(Area
Parameter2

)α

for some value of α (higher values favour circular
shapes, while the actual cluster may be around a road,
river, shore or plume or air pollution).
Instead, one can use a genetic algorithm to find clusters
in the scan statistic vs compactness Pareto set (i.e.,
efficient frontier). (Most machine learning algorithms
can be generalized to multi-objective optimization.)

Modeling spatial-temporal binary data
using Markov random fields

J. Zhu et al.
The spatial linear model

xi,j ∼ y + xi+1,j + xi−1,j + xi,j−1 + xi,j+1

can ge generalized for spatio-temporal data

xi,j,t ∼ y+xi+1,j,t+xi−1,j,t+xi,j−1,t+xi,j+1,t+xi, j, t− 1.

The article does this in the context of a binary (au-
tologistic) model (infected or not) an suggests to es-
timate it properly (previous attempts were estimating
the spatial and temporal components separately), via
Gibbs sampling.

Autologistic regression analysis of
spatial-temporal binary data via Monte Carlo

maximum likelihood
J. Zhu et al. (2008)

Terser but illustrated article on the spatio-temporal
autologistic model

Article and book summaries by Vincent Zoonekynd 867/1044

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

Hierarchical structure and the prediction
of missing links in networks

A. Clauset et al.
arXiv:0811.0484

A hierarchical random graph is build from a den-
dogram with a probability assigned to each internal
node, by linking two vertices with the probability com-
ing from their closest common ancestor.
Conversely, one can use a maximum likelihood
(MCMC) approach to find the hierarchical random
graph closest to a given network.
Once found, this hierarchical organization can also be
used to predict missing connections.

Statistical properties of information flow
in financial time series

C. Eom et al.
arXiv:0811.0448

The information flow between stocks can be studied by
looking at
– the Granger causality within all pairs of stock
retruns.

– the minimum spanning tree of the correlation matrix
of their returns.

Serial corelation and heterogeneous volatility
in financial markets:

beyond the LeBaron effect
S. Bianco et al.

0810.4912

The LeBaron effect, i.e., the negative correlation be-
tween volatility and autocorrelation,

〈x3txt−1〉 < 0,

exists in high-frequency data.

Look-ahead benchmark bias in portfolio
performance evaluation

G. Daniel et al.
arXiv:0810.1922

If you are assuming that the composition of your
benchmark (often, an index) is constant and use the
constituents from the end of the test period, you have a
textbook example of a look-ahead bias and/or survivor
bias (many indices are defined as the top N stocks in
some market). The authors measure that bias: it can
be as large as 8% per annum for the S&P 500.

Volatility effects on the escape time in
financial market models

B. Spagnolo and S. Valenti
arXiv:0810.1625

One can use the probability distribution of escape times
to analyze (or build a more formal statistical test of)
the goodness of fit of a financial time series model.

Scale free effects in world currency network
A.Z. Górski et al.
arXiv:0810.1215

Yet another article on the minimum spanning tree of
the correlation matrix of exchange rates; this one also
looks at what happens if one changes the reference cur-
rency.

From time series to complex networks:
the visibility graph

L. Lacasa et al.
arXiv:0810.0920

Here is an algorithm to turn a time series into a
graph (feel free to imagine yours and check if/how
time series properties translate into graph proper-
ties): one vertex for each observation, two vertices are
linked if one can “see” the other in the flatland world
plot(.,type='h'). A periodic time series becomes a
random graph; a fractal time series becomes a scale-
free network.

Portfolio optimization under habit formation
R. Naryshkin and M. Davidson

arXiv:0810.0678

The classical 1-period portfolio optimization problem

Maximize E[U(WT)]

(maximize the expected utility of final wealth) can be
replaced by the (also classical) multiperiod (or contin-
uous time) optimal investment/consumption/bequest
problem

E

∫ T

0

e−ρtU(Ct)dt+ e−ρTB(WT)

(maximize the discounted utility of consumption and
utility of bequest, where T is the terminal time, Ct
the consumption, Wt the wealth, U the utility of con-
sumption, B the utility of bequest). This model has
several drawbacks: the utility of consumption remains
constant (or predefined). it should actually depend on
the previous consumption

C̄t =
1

t

∫ t

0

Cudu

to account for habit formation or intolerance to a de-
cline in the standard of living.
The article suggests a utility of the form

U = T

(
Ct

C0 + βC̄t

)
,

for which the solution can be approximated with a dis-
crete stochastic programming method (for two assets,
it is O(n3), but it is exponential in the number of as-
sets).

Article and book summaries by Vincent Zoonekynd 868/1044

Distributed multilevel modeling
D. Afshartous and G. Michailidis

Because of confidentiality reasons or storage limita-
tions, you may want to estimate a multilinear model on
distributed data (one database for each group) without
exchanging too much data between the nodes. This is
possible; it is not an approximation. The article also
contains a terse refresher on multilevel models, with
formulas for all the estimators you may want.

Introduction to statistical learning theory
O. Bousquet et al.

Good tutorial about the theory of supervised classi-
fiers and the general inequalities you use to study them
(these are inequalities with few assumptions: you are
already familiar with the Markov and Chebychev ones,
but there are many others).
No fishy arguments to sell you some magical algorithm
as in some other articles on the subject.

Should risk managers rely
on maximum likelihood estimation method

while quantifying operational risk?
B. Ergashev (2007)

Operational risk is usually estimated with a loss dis-
tribution approach (LDA): for each risk cell C (line of
business, event type, etc.), estimate the distribution of
the severity of losses and the frequency of losses (ex-
ponential, log-normal, log-normal-gamma, log-logistic,
Weibull, generalized Pareto, g-and-h, log-???; Pois-
son, binomial, negative binomial); these are then ag-
gregated to produce the distribution of the total loss.
To complicate things, the data we are given are of-
ten stripped of “small” losses (say, under USD10,000);
some risk cells are almost empty; and the model need
not be specified properly.
The model can be estimated using a maximum likeli-
hood estimator (MLE) or some kind of “distance” be-
tween distributions (between the empirical distribution
of the data and that of the model) such as the Cramer
von Mises statistic

CvM(F,G) =

∫
[G(x)− F (x)]2f(x)dx

or the Anderson–Darling statistic, almost identi-
cal, but with more weight on the tails

AD(F,G) =

∫
[G(x)− F (x)]2

F (x)[1− F (x)]
f(x)dx

or a quantile-based distance

QD(F,G) =
∑
p

[
F−1(p)−G−1(p)

]2
where the sum is over a set of quantiles p ∈ [0, 1], such
as R’s ppoints(N) or the author’s “equally spaced”
(sic)

p =
1− ε
k

, k ∈ J1, NK.

The estimation procedure should be robust to local ex-
trema, e.g., simulated annealing (SA). The distance-
based methods estimate the severity of kisses distribu-
tion and the frequency of losses separately, while the
MLE approach can estimate the joint model. The arti-
cle finds the quantile distance estimation superior, with
a log-T/Poisson model, simulated data in an ideal sit-
uation, simulated data with insufficient data in some
cells, simulated data from a mixture of log-gaussians
(I am not sure the data from such mixtures is bad
enough).
You may also look at other metrics:

– Kolmogorov: dK(F,G) =
∑
x

|F (x)−G(x)|

– Lévy: dL(F,G) = inf{ε > 0 : ∀x F (x−ε) ⩽ G(x) ⩽
F (x+ ε)}

– Total variation: dTV (F,G) = 1
2

∫
|f(x)− g(x)| dx

– Kullback–Leibler (aka entropy divergence)

K(F,G) = −
∫

log(g/f)f(x)dx

– Hellinger distance: H(F,G) =

√∫
(
√
f −√g)2dx

– Fisher information:

I(F ||G) =
∫
‖∇ log f −∇ log g‖ f(x)dx.

Activity spectrum
from waiting-time distribution

M. Politi and E. Scalas
arXiv:08013043

Waiting times in high-frequency financial data do not
follow an exponential distribution, but can be modeled
by a continuous mixture of exponentials

ψ(τ) =

∫ ∞
0

g(λ)λe−λτdλ.

Finding the activity spectrum g(λ) from the density
of durations ψ or the more directly accessible survival
function (an inverse Laplace transform) is a numeri-
cally unstable task and can be tackled by a regulariza-
tion method such as Tikhanov’s (this could be another
name for ridge regression).

Personal recommendation via modified
collaborative filtering

R.-R. Liu et al.
arXiv:0801.1333

An application of bipartite networks.

Article and book summaries by Vincent Zoonekynd 869/1044

Voter models on heterogeneous networks
V. Sood et al.

arXiv:0712.4288

Two examples of dynamical systems on heteroge-
neous graphs (i.e., graphs whose node degree dis-
tribution is “broad” – the results can be qualitatively
different from those obtained on a lattice):
– Voter model: each note has a state (0 or 1), a
randomly-chosen node imports its new state from
a randomly chosen neighbour;

– Invasion model: idem, but replace “import” by “ex-
port”.

Critical comparison of several order-book
models for stock-market fluctuations

F. Slanina
arXiv:0801.0631

There are many order book models but none repro-
duces the features of empirical data: return distribu-
tion, absolute return autocorrelation, Hurst exponent:
– Stigler: limit orders (buy, sell) arrive at random
times and are executed if possible, or stay;

– BPS: buy and sell particles are introduced from both
ends of the allowed price interval [p1, p2], diffuse (fol-
low a random walk), and annihilate when they meet.

Those models can be augmented with cancellations
(evaporation); the other models mentionned (Genoa,
Maslov) are more promising but not detailed.

Fluctuating epidemics on adaptive networks
L.B. Shaw and I.B. Schwartz

arXiv:0801.0606

Classical epidemic models (SIR, SIRS) can be studied
on a fixed network or on a network changing to avoid
contagion.

Asymptotic theory of statictics and probability
A. DasGupta (Springer, 2008)

A reference book, but a readable one (the style is lively
and you can open it at any chapter, the author will not
assume you have already read the previous 500 pages),
covering everything you may want to know about con-
vergence or limits in probability and statistics.
I only read the two chapters available on the publisher’s
website.
Chapter 2 presents various metrics on the space
of probability distributions (Kolmogorov, Lévy, total
variation, Kullback–Leibler (minimum distance esti-
mation is a synonym for KL estimation), Hellinger,
etc.); reviews the various notions of convergence and
the relations between them; recalls the Poisson ap-
proximation (i.e., convergence to a Poisson distribu-
tion); explains that gaussian distributions are extremal
(if you fix the variance) for the maximum entropy and
the minimum Fisher information problems.

Chapter 29 explains what “the bootstrap works”
means, and reminds us that it could fail (infinite vari-
ance, non-differentiable functions, support of Fθ that
depends on θ, θ ∈ ∂Θ, tangency problems, etc.) – in
that case, the m/n bootstrap may still work. For time
series prefer fixed block sizes (there is an optimal block
size that depends on the spectrum of the series); the
bootstrap will not work for long-memory time series.

Comparison of volatility measures:
a risk management perspective

C.T. Brownlees and G.M. Gallo (2008)
http://ssrn.com/abstract=107321

Volatility refers to any estimator that converges to the
integrated variance

lim
τ→0

E

[
1

τ

∫ T+τ

T

(rt − r̄)2dt

]
.

This assumes that you have an underlying continuous
model of stock prices. Ideally, the estimator should be
robust to the misspecification of this model.
Volatility estimators can be assessed by comparing
them with a reference volatility, an implied volatility
(VIX) and by checking the value at tisk (VaR) and the
expected shortfall (ES).
The authors find that the daily range is preferable
to the realized volatility (which does not look at the
overnight returns – the article lists several realized
volatility estimators), which is better than a GARCH
model.

Modern Multivariate Statistical Techniques
A.J. Izenman (Springer, 2008)

The sample chapter looked empty.

Statistical Design
G. Castella (2008)

Not understandable.

Multifractal analysis of Chinese stock
volatilities based on partition function

approach
Z.-Q. Jiang and Z.-X. Zhou

arXiv:0801.1710

The multifractal analysis of a positive time series
(the realized volatility) can be carried out as follows:
– Put the time series into boxes of size s;
– Sum the volatilities in each box;
– Normalize, i.e., divide by the sum of all boxes;
– Compute:

χq(s) =
∑

boxes
(normalized volatility)q

χq(s) ∼ sτ(q)

α =
dτ

dq

f(α) = qα− τ(q).

Article and book summaries by Vincent Zoonekynd 870/1044

Effect of Asian currency crisis
on multifractal spectra

G. Oh et al.
arXiv:0801.1475

The multifractal detrended fluctuation analysis (MF-
DFA) of a time series (or returns) is performed as fol-
lows:
– Make sure the mean is 0;
– For each s, divide the data into boxes of size s; re-
move a linear (or polynomial of degree m, or spline)
trend; compute the average of the squared residuals;
take the Lp average Fp(s) of the value in each box;

– Fit Fp(s) ∼ sh(q).

Bayesian core: a practical approach
to computational bayesian statistics

J.M. Marin and C.P. Robert
Springer (2008)

Interesting.

Generalizing Swendsen-Wang
for image analysis

A. Barbu and S.-C. Zhu
To sample from probability distributions on graphs
(graph colourings), the Gibbs sampler performs poorly
if the variables are linked (e.g., if they form a grid, as
in image analysis). The Swendsen-Wang (SW) method
paliates this by clustering the nodes at random (turn all
the edges between nodes of different colours off, turn
some of the remaining edges off at random, take the
connected components – you have a different clustering
each time) and changing the colour of whole clusters at
a time. However, since there is no Metropolis-Hastings
(MH) rule, it only works for the Ising-Potts model. It
can be seen as a data-augmentation procedure: we ac-
tually sample from the joint distribution

Potts model× Random Cluster Model

by moving, à la Gibbs, in only one marginal chain at a
time.
This can be improved as follows:
– Use the data to get an a priori probability that two
adjacent nodes have the same colour (say, a mea-
sure of pixel intensity similarity, if you are trying to
segment an image) and use that probability when de-
ciding which edges to turn off; this gives more mean-
ingful clusters (if the probabilities are completely
wrong, no real harm is done: the constant proba-
bility of the SW model is wrong as well);

– Allow the number of colours to increase or decrease:
the new colour of the cluster can be a new one or an
existing one.

– Use a Metropolis-Hastings (MH) acceptance proba-
bility.

The algorithm can be applied to image segmentation
(identify the various elements of an image: car, sky,
building, tree, lion, etc.).

Large graphs can be handled as follows:
– Multigrid clustering: only apply the algorithm to a
subset of the data (e.g., a slice of a cube, a single
image in a video, etc.);

– Multilevel clustering (for instance, in motion seg-
mentation, this would give you a hierarchy of cluster-
ing: pixels, pixels moving in the same way (cheetah
limbs), actual objects (cheetah)).

Maximum spanning trees, asset graphs and
random matrix denoising in the analysis

ofdynamics of financial networks
T. Heimo

arXiv:0806.4714

You might want to denoise your correlation matrix us-
ing random matrix theory (RMT) before computing a
minimum spanning tree (MST) (useful but notoriously
unstable). This is actually a bad idea: the denoised
matrices are even less stable and have lost most of the
clustering information.

Global recessions as a cascade phenomenon
with heterogeneous, interacting agents

P. Ormerod (2008)
Which countries are in recession can be modeled on
a (small world) graph: each node will go in recession
the next year with probability α, will go out of reces-
sion with probability β, and will also go in recession
if sufficiently many of its neighbours go in recession.
As usual, the physicist’s intuition that the shape of
the network is irrelevant and can be assumed a lattice
breaks down for small world graphs.

How to quantify the influence of correlations
on investment diversification

M. Medo et al.
arXiv:0805.3397

A definition of the effective portfolio size of a bas-
ket: the number of stocks, with iid returns (and there-
fore equal expected returns and risk) for which the min-
imum variance portfolio has the same risk. You can use
the tangential portfolio instead.

Evolutionary Monte Carlo methods
for clustering

G. Goswami et al.
Journal of computational and graphical

statistics (2007)
Clustering algorithms either try to solve an optimiza-
tion problem, more or less greedily. For instance, k-
means tends to get stuck in a local optimum; you
can compensate for this by running them several times
and choosing the best solution; and/or you can start
with a partition coming from a hierarchical clustering.
MClust is similar to k-means but uses a mixture of
gaussians and the BIC (bayesian information criterion)
to choose the number of clusters.

Article and book summaries by Vincent Zoonekynd 871/1044

You can avoid that local optimum problem altogether
by sampling from some posterior distribution.
This article suggests an improvement over MCMC
sampling based on parallel tempering (PT) (you
have several MCMC chains, each with its tempera-
ture, sampling from distributions of the form g(z) ∝
exp(−H(z)/T), and we want to sample from the cold-
est) by adding the following operators:
– Crossover: select two chains (parent 1 and 2), con-
sider the intersection of the clusterings

⋆ ◦ ◦
◦ ◦ ◦
◦ ◦ ■
parent 1

⋆ ◦ ◦
◦ ◦ ◦
◦ ◦ ■
parent 2

⋆ ◦ ◦
◦ ◦ ◦
◦ ◦ ■

intersection

A2 B2

A1

B1

choose two clusters A and B in each parent and ex-
change the intersection A1 ∩A2 and B1 ∩B2

■

⋆
child 1

■

⋆
child 2

– Crossover (idem, but only select one cluster in the
first parent – which remains unchanged)
◦ ◦ ◦

⋆ ◦ ■
−→

◦ ◦ ◦

⋆ ◦ ■
(unchanged)

and
◦ ◦ ◦

■ ◦ ⋆

– Crossover (idem, but do not reallocate the whole in-
tersections, but only part of them (chosen at ran-
dom)
⋆ ◦ ◦
◦ ◦ ◦
◦ ◦ ■

−→

⋆ ◦ ◦
◦ ◦ ◦
◦ ◦ ■

(unchanged)

and
■ ◦ ◦
◦ ◦ ◦
◦ ◦ ⋆

– random exchange: swap two adjacent tempered
chains.

In all cases, use the Metropolis-Hastings probability of
the set of all tempered chains to decide whether to keep
the clusterings.
This evolutionary Monte Carlo clustering (EMCC) al-
gorithm can be used with a “Dirichlet process prior”
(not defined), with an energy function H(z) coming
from an objective function to optimize (k-means) or a
log-likelihood (mixture of gaussians, as in MClust); it
can also be used for variable selection (just cluster the
variables).

Time series decomposition and analysis
in a study of oxygen isotope records

M. West (1995)
The bayesian periodogram, i.e., the posterior distribu-
tion of ω in a simple model

xt = a cosωt+ b sinωt+ εt,

can help identify quasi-cyclical components. Being a
whole distribution, it has a finer resolution than the
classical, discrete (FFT (Fast Fourier Transform)) pe-
riodogram, which can miss frequencies between the
Fourier frequencies.
The author suggests to fit an AR(p) model (or an au-
toregressive state space model, i.e., an AR(p) model
observed with noise) to the data, in a bayesian way:
you can look at the distribution of the roots of the
characteristic polynomial to test whether the data is
stationary (the roots are in the [|z| < 1] disc), you can
also identify noise (roots with a small real part, i.e., an
argument close to ±π/2); after somehow sorting those
roots, you can look at the distribution of the arguments
of the first ones: they correspond to the frequency of
the quasi-cyclical component of the dataset (it is not
extremely clear if they directly look at the roots or at
the bayesian periodogram of the fitted AR(p)).
In a bayesian context, you can use a mixture distribu-
tion to account for or model outliers with a contami-
nation model: replace ε ∼ N(0, v0) by

ε ∼ (1− π)N(0, v0) + πN(0, v1)

with π small and v1 > v0.
Regime switching can be studied in a non-bayesian set-
ting: cut the data in 2 or 3.
An apppendix explains how to sample from (simulate)
the posterior distribution of an AR(p) model or a more
general state space model (SSM).

Stock price jumps:
news and volume play a minor role

A. Joulin et al.
arXiv:0803.1769

Empirical observations suggest that price jumps are
not cause by news (they are followed by increased
volatility while news are followed by a lower volatil-
ity) or large transaction volumes, but rather by very
small-scale liquidity squeezes – market microstructure
is a nonlinear system with feedback and has a non-
mean-reverting effect.

Feasibility of portfolio optimization
under coherent risk measures

I. Kondor and I. Varga-Haszonits
arXiv:0803.2283

The authors remark that (unconstrained) optimization
of coherent risk measures (expected shortfall (ES), etc.)
is sometimes unfeasible, the risk measure not being
bounded below.
Shouldn’t the conclusion be that constraints are nec-
essary? The article has a more worrying shortcom-
ing: the authors assume that the returns are elliptical
(fine) and use a naive estimator of the dispersion ma-
trix – unifying risk model estimation and optimization
is good unless you botch the first step and end up with
a singular matrix...

Article and book summaries by Vincent Zoonekynd 872/1044

To their defense, they correctly identify the cause of
the problem: if you rely on the empirical returns dis-
tribution, an asset will strongly dominate the others
with non-zero probability.

Log-normal continuous cascades:
aggregation properties and estimation.

Application to financial time series
A. Bacry et al.
arXiv:9894.0185

The article is not understandable, but the introduction
gives a definition of multifractality as a generalization
of the “square root of time rule” to non trivial term
structures:
– Square root of time: E[X2

t] ∝ t1/2;
– Scaling behaviour: E |Xq

t | ∝ tζq;
– Multifractal: E |Xq

t | ∝ tζ(q), where ζ is concave but
not linear.

How much random a random network is:
a random matrix analysis

S. Jalan and N. Bandyopadhyay
arXiv:0805.4343

To quantitatively measure the randomness of a net-
work, one can compare the distribution of the eigen-
values of its adjacency matrix with those of a random
matrix, e.g., using the ∆3 statistic (approximately, the
sum of square residuals of a linear fit of the cumulated
distribution function (a staircase function) of the (em-
pirical) distribution of the eigenvalues).
The article does not explain why we should expect the
adjacency matrix of a random network to look like a
random matrix.

Bayesian approach to clustering real value,
hypergraph an bipartite graph data:

solution via variational methods
A. Vasquez

arXiv:0805.2689

A physicist remarks that mixture models (or rather
bayesian model averaging (BMA) of mixture models,
since you rarely know the number of clusters) can be
generalized to biclustering, i.e., simulataneous cluster-
ing among both subjects and variables.

Note on two-phase phenomena
in financial markets

S.M. Jiang et al.
arXiv:0801:0108

Looking for a regime change (a “bifurcation”) from a
unimodal to a multimodal distribution in 1-minute in-
dex returns: the authors find that this is linked to the
return tails – this looks like an artefact of the way they
are modeling those distributions.

A brief history of generative models
for power law and lognormal distributions

M. Mitzenmacher
Power law distributions, aka fat tail distributions, i.e.,
P [X ⩾ x] ∼x→∞ cx−α, i.e., logP [X ⩾ 0] is well ap-
proximated by an affine function in log x for large x,
are very similar to log-normal distributions

log f(x) = − (log x)2

2σ2
+
(µ
σ2

log x
)
− log

√
2πσ − µ2

2σ2

(especially if σ is large) and can be used interchange-
ably.
Power laws can be generated by preferential attach-
ment:
– Start with a 1-mode graph;
– Add a new node, link it to a uniformly-chosen node
with probability α or, with probability 1 − α to a
node chosen randombly and proportionnally to its
degree.

This can describe the world wide web or, say, the dis-
tribution of species (degrees) among genera (nodes).
The relation between word frequency and word length
can stem from an optimization problem (Huffman cod-
ing) – but simpler models, using randomness without
optimization, yield similar power law distributions.
Multiplicative processes lead to log-normal distribu-
tions (e.g., Black-Scholes), but if Xt is a geometric ran-
dom walk and T an exponential random variable, then
XT follows a power law.

Topological structures
in the equities market network

G. Leibon et al.
arXiv:0805.3470

A multiresolution clustering of N time series (think:
stock returns) can be obtained as follows:
– Cluster the time series, using your prefered cluster-
ing algorithm (the article suggests “hierarchical spec-
tral clustering” but assumes the reader already un-
derstands what it is);

– Compute the average time series in each cluster
(think: sector returns);

– Project the time series on the subspace spanned by
those average time series (this allows each time se-
ries to be considered as a member of several clusters,
with weights);

– Start again with the residuals: if you are lucky, the
next step can be interpreted (think: countries);

– Iterate until the eigenvalues of the correlation matrix
of the residuals look like those of a random matrix,
i.e., until the residuals are indistinguishable from the
Gaussian ensemble.

The introduction of the article contains ideas that
could be developed further. For instance, random ma-
trix theory (RMT) studies the distribution of the eigen-
values of the correlation matrix of gaussian iid vari-
ables: in statistical terms, this can be seen as the null

Article and book summaries by Vincent Zoonekynd 873/1044

hypothesis of a test. One could use the same ideas
with another null hypothesis: a given correlation ma-
trix, e.g., coming from a clustering (this could be used
to test if sectors are sufficient to explain return corre-
lations).

Comparison of detrending methods
for fluctuation analysis

A. Bashan et al.
arXiv:0805.4081

Short-range correlation in a time series is characterised
by the exponential decay of the autocorrelation func-
tion

ρ(s) ∼ exp(−s/τ),

where the decay time τ can be obtained as

τ =

∫ ∞
0

ρ(s) ds (?).

When this integral diverges, there are long-term corre-
lations; quite often, the decay can be approximated by
a power law

ρ(s) ∼ s−γ , γ ∈ (0, 1).

The estimation of this exponent γ directly from the
autocorrelation function ρ is very noisy: one can do
better.
One can study the scaling behaviour (in finance, this
could be called the “term structure of volatility”), i.e.,
how the properties of the time series (e.g., the stan-
dard deviation) change with the sampling frequency
(e.g., whether the economist’s “square root of time”
rule is valid). More specifically:
– Somehow detrend the time series;
– Compute the fluctuation function F (s) on scale s,
i.e., the standard deviation of the time series resam-
pled at period s;

– Try to estimate α such that

F (s) ∼s→∞ sα;

this is linked to the power law decay in the autocor-
relation function by α = 1− γ/2; when α = 1

2 , there
is no long-range dependency; when α ∈ (12 , 1), there
is; when α ∈ (0, 12), there is negative long-range de-
pendency; when α ⩾ 1, the series is not stationary.

There are many ways of detrending the time series:
– Do not do anything: this is (almost) Hurst’s R/S;
– Substract the moving average on a window of size s;

always check that your chosen detrending method
does not introduce bias: here, use a centered win-
dow;

– Fit a linear function on a moving window of size s
and take the residuals; people often take non-
overlapping windows and then worry about the dis-
continuities this introduces;

– Fit a polynomial of degree d on a moving window
of size s and take the residuals; this is the detrended
fluctuation analysis (DFA)

– Use a local (linear or polynomial) regression;
– Use Fourier analysis to remove known frequencies;
this is limited to periodic, regular, known trends;

– Embed the time series in a higher-dimensional vec-
tor space, perform some kind of dimension reduction
to identify the “trend” and take the residuals;

– Apply digital high-pass filters (Butterworth, Cheby-
chev, elliptical filters (?)).

Agents for traffic simulation
A. Kesting et al.

arXiv:0300

Funny article on simulating road traffic with heteroge-
neous agents operating in a shared environment; some
of the visualization methods are... interesting – for
instance, the coffee-meter to measure the driving com-
fort.

Efficient navigation in scale-free networks
embedded in hyperbolic metric spaces

D. Krioukov et al.
arXiv:0805.1266

Routing algorithms on a graph (e.g., the internet) usu-
ally work by laborious information exchanges between
neighbouring nodes – but if the graph is embedded in
a metric space, if each node knows its “coordinates”,
those of its neighbours and those of the target (strictly
speaking, there are no coordinates in a metric space:
each node only needs to know the distance between
each of its neighbours and the target), one can use a
greedy routing strategy: send packets to the neighbour
closest to the destination. This could explain the Mil-
gram experiment (sending letters to unknown persons,
identified by name, location and job, by sending it to
the friend “closest” to the target, leading to the “six
degrees of separation”).
Real-world network suggest a negatively curved space.
However, determining the metric embedding will likely
require laborious information exchanges

Accurate estimator of correlations
between asynchronous signals

B. Toth and J. Kertesz
arXiv:0805:2310

Asynchronicity biases the naive correlation estimator
towards zero. Just model the asynchronicity, for in-
stance xt and yt could be AR(1) processes with miss-
ing values, or Ornstein-Uhlenbeck (OU) processes (not
random walks: we want stationary processes) observed
at discrete (different) times and try to manufacture
an estimator from the cross-correlation of locf(x) and
locf(y).

Power law in customer’s expenditures
in convenience stores

T. Mizuno
arXiv:0802.0105

Article and book summaries by Vincent Zoonekynd 874/1044

http://en.wikipedia.org/wiki/Small_World_Experiment
http://en.wikipedia.org/wiki/Small_World_Experiment

Yet another example of a power law distribution, in
point-of-sale (POS) databases.

The structural role of weak and strong links
in a financial market

A. Garas et al.
arXiv:0805.2477

Apparently, one can cluster (or apply modern/trendy
tools of graph theory: scaling theory, percolation, frac-
tal analysis, community detection (this one is not men-
tionned), etc.) using the correlation or their daily re-
turns. Removing the 99% links with the largest corre-
lation keeps the network connected.

New approach
to community detection in networks

A.D. Medus and C.O. Dorso
arXiv:0808.0375

Community detection (this is the graph-theoretical
word for clustering, a community being a subgraph
“whose nodes are more connected between themselves
than to external nodes”; it is often easier to look for
non-overlapping clusters, i.e., partitions; it can be used
for “dimension” (graph size) reduction) algorithms usu-
ally try to maximize some merit factor such as the
modularity of a partition of the graph∑

subgraphs

external links
E[# external links | degrees] .

This is an NP-complete problem, mainly because the
modularity is a non-local merit factor; furthermore, ev-
idence suggests that modularity cannot find clusters
smaller than a certain size.
There are local alternatives: a strong community is a
subgraph C such that

∀i ∈ C kin
i > kout

i

(where kin
i is the number of edges between node i and

other nodes in C, and kout
i is the number of edges be-

tween node i and nodes outside C); a weak community
is a subgraph C such that∑

i∈C
kin
i >

∑
i∈C

kout
i .

One can find a partition into communities by maximiz-
ing ∑

C

∑
i∈C

kin
i − kout

i∑
i∈C

ki

under the constraints

∀C ∀i ∈ C kin
i > kout

i

or
∀C

∑
i∈C

kin
i >

∑
i∈C

kout
i .

You may want to replace the strict inequalities > by ⩽.

Multifactor analysis of multiscaling
in volatility return intervals

F. Wang et al.
arXiv:0808.3200

Many articles study the distribution of return intervals

inf{ t : Volatilityt > q }.

This one is empty.

The distribution of first-passage times and
durations in FOREX and future markets

N. Sazuka et al.
arXiv:0808.0372

The distribution of the first passage time

Tp = inf{ t : Pricet ⩾ p }

is well approximated by a Weibull distribution with a
power law tail.
Since inter-trade durations are not exponentially-
distributed, we cannot use Lévy processes to model
tick data.

A model for interevent times with long tails
and multifractality in human communications:

an application to financial trading
J. Perello et al.
arXiv:0805.1353

Interevent times are not Poisson; the can be modeled
by mixture distributions (Poisson and something else).

Higher-order potential forces observed in
bubbles and crashes in financial markets

K. Watanabe et al.
arXiv:0808.3339

Bubbles and crashes can be identified from a non-linear
AR(1) model

yt+1 = f(yt) + noise

where f moves from through to .

Improved subset autoregression
A.I. McLeod and Y. Zhang

Journal of Statistical Software (2008)
Some time series, e.g., those with periodic features,
have a complicated autoregression structure: for in-
stance, only the first, second and eleventh partial auto-
correlations are significanatly non-zero (an AR(2) pro-
cess with 11-year periodic patterns). You can fit this
model more parsimoniously than an AR(11) with the
FitAR package.

Article and book summaries by Vincent Zoonekynd 875/1044

Power law distributions in empirical data
A. Clauset et al. (2007)

arXiv:0706.1062

Some interesting and clear remarks about power law
estimators:
– Whether the data is continuous or discrete does mat-
ter: when using estimators for continuous data with
discrete data (because you do not like zeta func-
tions), beware of the bias they introduce;

– With fat-tailed data, least-squares-based estimators
such as the classical histogram regression

log p(x) = α log x+ β,

should be avoided; prefer maximum likelihood esti-
mators such as the Hills estimator;

– To find the cutoff beyond which your data follows a
power law, you can compare the data with the cor-
responding quantiles (with a Kolmogorov–Smirnov
test): if the threshold is too low, they do not match,
if it is too high, they do not match either because
there is too much noise; use the bootstrap if you
want a confidence interval on this threshold.

Boom and bust in continuous time
evolving economic model

L. Mitchell and G.J. Ackland (2008)
Economic systems (modelled here by companies com-
peting on prices – lower prices mean higher sales but
lower margins) need not converge to an equilibrium,
but can exhibit cycles; this is similar to the Lotke–
Voltera oscillations in ecology.

Heavy-tailed statistics
in short-message communications

W. Hong et al. (2008)
Not all event patterns are Poisson.

Fat tails, long memory, maturity and ageing
in open-source software projects

D. Challet and S. Valverde
arXiv:0802.3170

You can do a lot of interesting data analysis from a
version control system (CVS, SVN, etc.) log, e.g., look
at the distribution of the number of lines changed, or
inter-commit time, for a given file, a given developer or
the whole project; look at the cross-correlation between
changeset size and intercommit time. This highlights
different periods in the lifecycle of the project – if you
manage programmers, you can use this idea to monitor
your employees.
CVS’s deficiencies (no tracking of file moves or re-
names) create visible artefacts in some of the plots.

The log-periodic-AR(1)-GARCH(1,1) model
for financial crashes

L. Gazola et al.

The oscillations before a crash, with slow rises and
faster drops, accelerating before the singularity, can
be modeled as

pt = A+ (tc − t)β(B + C cos(w log(tc − t) + φ)) + ut.

The article suggests to use an AR(1) model with
GARCH innovations for the noise term ut.

A non-parametric investigation of risk premia
C. Peroni

Simplistic credict risk models, of the form

corporate rate = government rate+ risk premium

i.e., corporate spread = risk premium are not con-
firmed by historical data: there are too few defaults
to account for such a high risk premium. Affine multi-
factor models,

corporate spread ∼ government term structure,

(you can use some form of dimension reduction on the
term structure: principal component analysis (PCA),
factor analysis, kernel PCA, etc.) can be improved by
– allowing non-linearities (use a generalized additive
model (GAM) on the (discrete) time structure);

– adding macroeconomic variables (inflation).

Stochastic volatilities and correlations,
extreme values and modeling

the macroeconomic environment
under which Brazilian banks operate

T. Barnhill and M. Souto (IMF)
Most estimators of volatility and correlation perform
equally poorly – stick to the simplest one, the expo-
nentially weighted moving average (EWMA).
When estimating how well those estimators perform,
do not compare their immediate results (volatility fore-
casts) but their P&L impact, as they are used in port-
folio management.

Credit derivatives and risk management
M.S. Gibson (2007)

Empty article, stressing that credit derivatives do not
eliminate risk; the following risk sources remain and
may be tricky to quantify:
– credit risk;
– counterparty risk;
– model risk;
– rating agency risk;
– settlement risk.

Financial Modeling
under non-gaussian distributions

E. Jondeau et al.
Springer Finance (2007)

This is a reference book (if you want details about
any statistical test useful (or misleading, misused) in
finance, it should be there), but not a very good one: it

Article and book summaries by Vincent Zoonekynd 876/1044

emphasizes the value of the statistic of the tests rather
than the p-value; the plots are often uninsightful (for
instance, the differences between a gaussian density
and a non-gaussian density are invisible unless you use
a logarithmic scale on the vertical axis) and lack axis
names and units; it compares the log-likelihood of non-
nested models with a different number of parameters
(better use the BIC instead); etc.
Financial returns present the following stylized facts:
– Fat tails;
– Asymmetry (negative skew);
– Aggregated normality;
– Absence of serial correlation;
– Volatility clustering (all measures of volatility are se-
rially correlated);

– Time-varying cross-correlation.
There are tests for all of those (but beware: some are
only asymptotic; others assume that the mean and
variance are known, not estimated).
Those stylized facts can be explained by the mi-
crostructure of financial markets (the book only con-
siders order-driven markets), leading to either:
– Stable distributions (amenable to computations,
through their characteristic function – the density
can then be approximated via numeric integration);

– Subordinated processes, i.e., the prices are geomet-
ric random walks in market time (aka event time or
theta time), reflecting intermittent information ar-
rival (this could be an interview question: if Xt is
a brownian motion and the market time It has log-
normal increments, what is the distribution of XIt?)

– Mixture of distributions (estimated via the gener-
alized method of moments (GMM), with the corre-
sponding χ2 test);

Current models of the order book (there is a detailed
description of the EKO model of the quote arrival pro-
cess) are not satisfactory.
GARCH models, and their generalizations, for in-
stance, those based on duration between trades, such
as ACD (autoregressive conditional duration) model
(?) or CAR (compount autoregressive) model (?) can
model some of the stylized facts.
GARCH models have an aggregation problem: if daily
returns are GARCH, then weekly returns need not be
GARCH; if stock returns are GARCH, then portfo-
lio returns need not be GARCH. You can get both
temporal and cross-sectional (portfolio) aggregation
by enlarging the class of GARCH processes to weakly
GARCH processes (which includes GARCH-like pro-
cess with ARMA, non-gaussian innovations).
The GARCH model is over-simplified: it uses a single
source of randomness, for the returns;

εt = σtzt

σ2
t = ω + αε2t−1 + βσ2

t−1;

stochastic volatility models have another one, for the

volatility;

εt = σtzt

σ2
t = expht

ht = ω + βσ2
t−1 + vt;

they can be estimated with a Kalman filter.
Realized volatility, i.e., volatility estimated from high-
frequency data, is a discrete analogue of the quadratic
variation (which leads to some more tests).
You can also test for the presence of jumps in the data.
Time-varying volatility is not sufficient to explain
fat tails: the innovations seem to be genuinely non-
gaussian.
You can still use GARCH estiamtors that assume the
innovations are gaussian, even if they are not, and
plug in estimates of the first two moments; these quasi-
maximum likelihood estimators (QMLE) are often con-
sistent but the resulting tests have to be robustified.
Not all values of skewness and kurtosis are attainable
(the (wrongly stated) condition is simple: a set of de-
terminants have to be positive); if you want a distribu-
tion inside some amenable family, the range of possible
values is even smaller.
Beyond a few ad hoc non-gaussian distributions (say,
the skewed Student T distribution), you can easily get
one by a series expansions around the gaussian distri-
bution: multiply the gaussian probability distribution
function φ by a polynomial – if you are not careful, you
end up with a non-positive “density”. Common choices
are the Gram–Charlier expansion

1 +
a

6
H3(x) +

b

24
H4(x)

and the Edgeworth expansion

1 +
a

6
H3(x) +

b

24
H4(x) +

a2

72
H6(x)

where the Hermite polynomials are

Hi(x) = (−1)i 1

φ(x)

∂iφ

∂xi
.

The probability distribution function (pdf) g of a
skewed version of a distribution with pdf f and cu-
mulative distribution function (cdf) F can be obtained
by hidden truncation,

g(z) = 2f(z)F (ξz).

The entropy distribution is that with the lowest entropy
among the distributions with the desired moments; if
you only specify mean and variance, you get a gaussian
distribution, i.e., p(x) ∝ expP (x) for a degree 2 poly-
nomial P ; if you ask for the first k moments, P just
becomes a polynomial of degree (at most) p. Entropy
distributions tend to be multimodal.
You can build gaussianity or goodness of fit tests from
the moments, the whole density function or its restric-
tion on some intervals.

Article and book summaries by Vincent Zoonekynd 877/1044

GARCH models can be generalized by considering sev-
eral time-varying moments – but beware, not all pos-
sible values of those higher moments come from an ac-
tual density function (but the GARCH-like specifica-
tion of the time dependency of the higher moments can
still be used to test for their time-dependence). More
generally, you can consider autoregressive conditional
density (ARCD) models.
There are several multivariate GARCH models, such
as:
– the vech model, where each element of the covari-
ance matrix Vt is a linear combination of the previ-
ous squared residuals εi,t−kεj,t−k and the elements
of the previous covatiance matrices Vt−ℓ

– the diagonal vec model is the special case where
Vi, j, t only depends on εi,t−kεj,t−k and Vi,j,t−ℓ;

– the BEKK model ensures that Vt is positive definite
(add more time lags if you want):

Vt+1 = Ω+A′εtε
′
tA+B′VtB;

– In higher dimensions, you can use an orthogonal
GARCH (PCA-GARCH) model, a factor GARCH
model, or a flexible GARCH model (?).

It is often easier to model the correlations and the
volatilities separately (most of the previous models do
not guarantee that the variance matrix remains posi-
tive definite):
– The constant conditional correlation (CCC) model:
the correlation matrix is constant, only the volatili-
ties are time-dependent;

– The dynamic conditional correlation (DCC) model,

ut =

(
εit
σit

)
i∈J1,nK

Cort = (diagQt)
−1/2Qt(diagQt)

−1/2

Qt = (1− δ1 − δ2)Q̄+ δ1ut−1u
′
t−1 + δ2Qt−1

Q̄ = Cov u

– The ARMA-like time-varying correlation (TVC)
model,

Rt = (1− θ1 − θ2)R+ θ1Rt−1 + θ2Ψt−1

where Φt is the sample correlation matrix of the nor-
malized residuals;

– The general dynamic covariance (GDC) model
(which nests most of the above).

Many 1-dimensional distributions do not have a natu-
ral multivariate generalization (the gaussian, Student
or more generally elliptical distributions are excep-
tions); there are (several) skewed generalizations of the
multivariate gaussian or Student distributions.
Choosing a copula family imposes restrictions on the
various measures of concordance (Kendall’s tau, Spear-
man’ rho, etc.); for instance, many popular copulas
only allow for positive dependence.
Here are a few copulas:

– Gaussian;
– Student;
– Frank, i.e., archimedian with

φ(t) = log
e−θ − 1

e−θt − 1
;

– Clayton, i.e., archimedian with

φ(t) = (t−θ − 1)/θ;

– Gumbel, i.e., archimediam with

φ(t) = (− log t)θ;

– Plackett;
– Marshall-Olkin.
Margins and copula can be estimated together or sepa-
rately and you can mix parametric and non-parametric
models.
You can test the goodness of fit of a copula.
You can build a GARCH-like model by replacing the
variance by the parameter(s) of the family of copulas
you have chosen.
With copulas, moment computations often become an-
alytically intractable.
There are two approaches of extreme value theory
(EVT), that lead to estimators of the same quanti-
ties: you can focus on the distribution of maxima over
subsamples, or on the tail (or peaks over thresholds
(POT)), i.e., the distribution of exceedances over a
threshold.
If the (rescaled) maximum of X1, ...Xn converges, then
it converges to a generalized extreme value distribution
(it emcompasses the Frechet (fat tails), Gumbel (thin
tails) and Weibull distributions)

Hξ(x) = exp(−(1 + ξy)−1/ξ)

(for ξ = 0, take the limit). The parameter ξ is the
tail index; its inverse 1/ξ is the shape index. You can
graphically estimate this parameter with a quantile-
quantile plot and formalize this with a regression.
If the distribution of X is in the domain of attraction
of the extreme value distribution Hξ, then the extreme
distribution function

Fu(x)− P [X − u ⩽ y|X > u]

can be approximated by the generalized Pareto distri-
bution

Gξ,ψ(x) = 1−
(
1 +

ξ

ψ

)−1/ξ
You can also plot the mean excess function,

e(u) = E[X − u|X > u].

The tail index can be estimated with the Pickands es-
timator, the Hills estimator (popular, but it assumes
we are in the domain of attracion of the Frechet dis-
tribution) or the Deckers–Einmahl–de Haan (DEdH)

Article and book summaries by Vincent Zoonekynd 878/1044

estimator (a variant of the Hills estimator, that cor-
rects for this problem, and appears more stable).
There is no satisfactory way of determining “where”
the tail starts for those estimations.
For (non-iid, stationary) time series (under mild condi-
tions), Hξ gets replaced by Hθ

ξ (for the same ξ), where
θ ∈ [0, 1] is called the extremal index.
On the other hand, the subsample maxima approach is
(asymptotically) unaffected by the dependence struc-
ture.
High quantiles can be estimated from the extrema or
the tail approach.
Most of the results only hold for 1-dimensional vari-
ables: the EVT limit theorems (analogues of the cen-
tral limit theorem) only hold in one dimension...
With several (say, two) variables, if you get the copula
wrong (and you sure will), the tail distribution will be
wrong. There are three ingredients to the tail:
– The tail of the margins;
– The asymptotic dependence, which is unrelated to
the dependence of the bulk of the data; it can be
measured by

χ = lim
u→1

P [V > u|U > u]

χ̄ = lim
u→1

2 logP [U > u]

logP [U > u, V > u]
− 1

(and can be estimated from (1-dimensional) tail in-
dex estimators);

– The time dependency.
To plot the tail of a bivariate random variable, consider
the Frechet transformation

S = − 1

logFX(X)
.

Prefer expected shortfall (ES) to value at risk (VaR)
(not coherent, i.e., does not recognize that diversifica-
tion reduces risks; ignores extreme risks) or variance
(symmetric, ignores extreme risks).
VaR can be computed from a “historical simulation”,
with moving window artefacts (the VaR estimates
jump); the expected shortfall does not erase those arte-
facts. EVT-based estimators do not have this problem.
The GARCH-EVT model separates the conditional
volatility and the tail distribution (compute the
GARCH residuals via quasi-maximum likelihood
(QML), i.e., assuming gaussian innovations (this is
consistent even if they are not gaussian); estimate the
tail of the residuals; filter (?) the initial data).
The book mentions quantile regression, purportedly
to define the conditional autoregressive value at risk
(CAViaR), but their presentation is confusing and fur-
ther clouded by typos.
RiskMetrics estimates volatility by an exponential (au-
toregressive) moving average of squared returns.

Computing the VaR of a portfolio can be tricky; if you
have derivatives, you should take into account the non-
linearity of those instruments.
In portfolio construction, you can approximate the in-
vestor’s utility with mean, variance and higher mo-
ments; you can also add downside risk (VaR, ES) con-
straints.
There are several approaches to option pricing:
– Binomial lattice;
– Replicating portfolio;
– No-arbitrage: build a risk-free portfolio with the op-
tion and the underlying; since it is risk-free and there
is no arbitrage, its dynamics, i.e., a stochastic dif-
ferential equation (SDE), are known; since we also
know the dynamics (SDE) of the underlying, we get
that of the option; this eventually leads to a par-
tial differential equation (PDE) which can be solved
with the Feynmann–Kac formula (?);

– Martingales, i.e., risk-neutral density (this can be
seen as a “change of base”, performed to simplify
the computations – and indeed, some parameters,
such as the investor’s preferences and the growth of
the stock even disappear);

– Pricing kernel (?).
The risk-neutral density (RND) can be estimated from
the option prices. This is a non-parametric approach:
there is no model of the underlying prices evolution.
The authors have apparently never heard of functional
data analysis (FDA) and happily present estimates of
a density function with negative values; mixtures of
distributions; Edgeworth expansions (this is the sec-
ond time they explain this, but it became abominously
confusing); maximum entropy (good to estimate den-
sity functions); splines (FDA), kernel (local) regression
can give acceptable results, though, but not in the tails.
The book also explains the relation between risk-
neutral ans objective density: the latter incorporates
the investor’s preferences and the trend (?).
The last chapter presents option pricing in a stochas-
tic volatility model, i.e., with time-dependent volatil-
ity, and the volatility, modeled by a square root pro-
cess, comes from a second source of randomness; and
in jump models (Lévy processes are often amenable if
you use the characteristic function).
I have not read the appendices on stochastic calculus.

Music constraint programming
T. Anders (2007)

Computer aided composition (CAC) is often based on
stochastic processes such as Markov chains, automata,
grammars (cellular automata, fractals, L-systems, etc.)
or on constraint programming – the topic of these pre-
sentations.
Music theory studies structures inside musical pieces,
such as
– melody (how notes follow one another, in time);

Article and book summaries by Vincent Zoonekynd 879/1044

– harmony (how notes can be combined, at the same
time, to form a “chord”, and how chords follow one
another);

– counterpoint (how melodic lines fit together);
– harmonic counterpoint (counterpoint on an underly-
ing harmonic progression)

– musical form (macrostructure)
– orchestration (choice of instruments)
Musical representation is inherently bidimensional: a
musical piece can be seen as a set of melodies, played
at the same time; a set of chords, played in succes-
sion; a set of measures, played in succession; etc. List-
based (or tree-based) representations (e.g., Haskore)
will choose one of those representations and accessing
the others will be extremely clumsy. Instead, those
inclusion relations can be represented by an acyclic
graph: an event (note) is both in a melody and a
chord, the chords and bits of melodies are in measures,
melodies and measures are in the piece.
Constraint programming can be used to compose mu-
sic; traditionnal programming concepts (abstract data
types, object-oriented programming) come in handy,
and even functional programmin becomes useful: the
constraints (rules) are functions returning a boolean
value, and you may want to transform them, i.e., to
specify (dynamically) where to apply them.
The constraint store is the set of possible values of
the variables, often expressed as a cartesian product
of their domains. The search algorithm progressively
reduces it:
– Propagate the constraints, while keeping the set of

potential solutions a box, i.e., x ∈
∏Jai, biK; for in-

stance, given x1 = 3, x2 ∈ J1, 10K and x1 ⩾ x2, the
search space can be reduced to {3} × J1, 3K;

– Distribute the constraints: when you can no longer
propagate any constraint, choose a variable, and split
its domain: for instance, x1 ∈ J1, 10K can be decom-
posed into x1 = 1 and x1 ∈ J2, 10K, or x1 ∈ J1, 5K
and x1 ∈ J6, 10K; the algorithm then proceeds recur-
sively, on each branch of this tree.

When distributing the constraints, you have to choose
which variable to distribute (variable ordering)
– First-fail principle: start wil the variables that are
the most likely to fail (it the search in a branch has
to fail, it had better fail early), e.g., variables with a
small domain or with a lot of constraints;

– left-to-right variable ordering: earlier notes first,
longer notes first – variable ordering is used in man-
ual composition: you classically write the harmonic
progression before the actual pitches, the melody be-
fore the accompaniement;

and how to distribute it (value ordering)
– take the first (lowest) value;
– take a value at random (for musical purposes, this is
better: the result will be more “varied”);

– use some domain-specific heuristic.
Some rules might be too complicated to be evalu-

ated with the information currently available (e.g.,
harmonic constraints when the rythm is still undeter-
mined): their context is inaccessible and should be re-
solved as early as possible.
Constraint programming is easy to parallelize.
Should you want to play with constraint programming
in general, you can have a look at Mozart (an imple-
mentation of the Oz multi-paradigm programming lan-
guage) or Gecode (C++).
Check the author’s thesis for more details on
Strasheela.

Concepts, techniques and
models of computer programming
P. Van Roy and S. Haridi (2003)

This book about programming languages paradigms,
more recent than Finkel’s, is based on Oz (and its im-
plementation Mozart/Oz), a multi-paradigm program-
ming language – or rather, Oz was designed to illus-
trate all the paradigms presented in the book – it is
more a paedagogical language than a real-world one.
This multiplicity is apparent in the variety of “equal”
operators: == (test), = (binding), := (assignment), =:
(constraint propagation). But if you want a language
with more rarely-present features, such as dataflow
variables or constraint programming, it might be a good
choice.
A word of caution: Mozart/Oz is not portable – it only
runs on 32-bit machines.
The book is based on a series of kernel languages, the
basic features of Oz, plus the topic of the current chap-
ter, without any form of syntactic sugar or linguistic
abstraction (loops, etc.): these are simpler to reason
with.
The book also contains some Fortran-bashing (replac-
ing a comma by a dot created another valid program
that contributed to the loss of a satellite) and some
shared-state concurrency bashing (because of a race
condition in its stateful concurrent software, a medical
radiation machine actually killed people).
Declarative computation model
The various scoping, typing, evaluation policies are
presented:
– static (or lexical) scoping (a function, or closure, can

use variables from the environment in which it was
defined – this can be used to hide implementation
details, since that environment is often no longer di-
rectly accessible);

– dynamic scoping (a function can use variables from
the environment from which it is called, e.g., Vision’s
special (carret) variables);

– weakly typed (you cannot get type errors: the com-
puter will silently convert everything – even if you
are trying to compare, say, a real number with a list
of strings);

– strongly typed (you can get type errors);

Article and book summaries by Vincent Zoonekynd 880/1044

http://strasheela.sourceforge.net/documents/TorstenAnders-PhDThesis.pdf
http://strasheela.sourceforge.net/
http://www.librecours.org/documents/5/521.pdf
http://www.librecours.org/documents/5/521.pdf
ftp://ftp.aw.com/cseng/authors/finkel/apld/
http://www.mozart-oz.org/
http://www.mozart-oz.org/documentation/fdt/index.html

– dynamically typed (some type checks are made at
runtime, you may get type errors during the execu-
tion even though the program compiled fine);

– statically typed (the type checks are made at compile
time, you cannot get type errors at run-time; Alice
is apparently a variant of Oz with static typing; also
note that statically typed languages need not be ex-
plicitely typed: some let the compiler infer the type
of each variable);

– eager (supply-driven) evaluation (execute code
thouroughly, when it appears);

– lazy (demand-driven) evaluation (only execute code
when and if it is needed – this allows infinite data
structures, such as “the list of all integers”, because
they will never be evaluated completely; in Oz, de-
fine lazy functions with fun lazy instead of fun);
the authors suggest that languages should be eager
by default and allow some functions to be lazy;

– non-strict evaluation may perform more operations
than lazy evaluation (which is guaranteed not to do
any non-needed work) in the hope that they will be
needed later (Haskell is not lazy but non-strict).

Kernel language semantics: interesting discussion on
how the environment store can be implemented.
Variables can only be assigned once; they are then
bound to a value; before that, they are unbound, or
bound to other (unbound) variables. This is the single-
assignment store.
As a result, there is no difference between input and
output variables in a procedure: a procedure just adds
information (bindings) to the store; variables that were
unbound and become bound can be seen as outputs,
while variables that were already bound can be seen as
inputs. Functions are mere syntactic sugar: x=f(y,z)
is equivalent to f(?x,y,z) (the question mark is an
indication for the programmer: it is ignored by the
compiler).
Declarative programming techniques
A (superficial) chapter is devoted to declarative pro-
gramming techniques:
– difference between recursive computation and iter-
ative computation (it looks recursive, but it uses a
bounded stack);

– state transformations, such as accumulators, to turn
recursive computations into iterative ones – this can
be seen as a functional programming design pattern,
that becomes invisible when the language provides
it (states or mutable variables);

– currying;
– foldl, foldr, map, filter;
– difference lists;
– complexity and amortized complexity, with the
banker’s method (put “credits” aside, for each opera-
tion, use them, if available, when needed, to perform
costly operations)
and the physicist’s method (use a potential function
to measure how good the current state is and whose
differences represent the cost of the cleaning oper-

ations, e.g., the number of operations required to
rebalance a tree, or Θ(1) thereof);

– Serialization (pickling).
For instance, most of the description of a graphical
user interface (GUI) should be declarative (see a later
chapter).
A functor is a parametrized module, that depends on
some “interfaces” (aka abstract data types or ADT
– there is apparently nothing in Oz to define types:
they will only be in the programmer’s mind, as C++’s
traits), for which the user will have to choose concrete
implementations. A module is an instance of a functor.
More generally, a functor is a function that returns a
module – no language extension is needed, but Oz pro-
vides a linguistic abstraction.
An open program is a program that interacts with other
programs (or humans), only known at run time; its ex-
ecution is therefore not deterministic.
Declarative concurrency
Because of single-assignment, Oz’s threads (similar to
a shell’s background processes) do not lead to observ-
able non-determinism or race conditions. The causal
order is the partial order between the execution steps.
Threads can be ready or suspended; a scheduler decides
which to run, trying not to starve them.
If you add exceptions to the concurrent model, it is no
longer declarative, because the state “before the excep-
tion was thrown” is execution-dependent.
Dataflow variables can be used to communicate be-
tween threads: synchronization is implicit (no locks,
etc.), dependencies can be dynamic (dictated by the
data, not harcoded), they also allow computations with
partial values. A dataflow variable can be seen as both
stateful (it can change state, i.e., become bound – but
only once) and stateless (its binding is monotonic: in-
formation can be added but neither removed nor al-
tered).
Single-assignment variables are related to futures (an
unbound object whose contents are being computed
in separate thread) and I-structures (arrays of single-
assignment variables).
Instead, you can use streams (analogue to Unix pipes).
They can be demand-driven (lazy), supply-driven (ea-
ger, but if you generate data faster than you can con-
sume it, you will run out of memory) or with a bounded
buffer.
This chapter details applications such as logic gates
(lift boolean operators to streams) and coroutines.
Mozart/oZ has a parser generator tool, gump, to extend
the language with linguistic abstractions.
To accomodate demand-driven concurrency, the ker-
nel language is augmented with a trigger store and a
ByNeed primitive (that asks for its argument to be com-
puted). (There is a problem, though: in X==Y, if nei-
ther X or Y is bounded or needed, they both remain
unbound and unneeded; this may be a deadlock.)

Article and book summaries by Vincent Zoonekynd 881/1044

Declarative concurrency can be used to let the com-
puter determine the order of the computations, in a
data-dependent way – for instance, to draw a tree,
you can could let the computer compute the coordi-
nates of the points, without bothering exploring the
tree yourself; or to solve the Hamming problem, i.e.,
to enumerate all integers of the form 2a3b5c,
H=1|{Merge3{Times 2 H}{Times 3 H}{Times 5 H}}.
Logic programming generalizes this: the constraint
propagation is no longer local and the constraints are
no longer equalities.
Laziness can have beneficial effects on complexity: it
can turn an O(f(n)) average complexity algorithm
(say, a queue implementation, which is problematic for
(pure) functional languages) into a worst-case O(f(n))
complexity.
There is however a mismatch between computers (op-
timized to modify data) and the declarative model
(which does not modify data). You can overcome
some of those efficiency problems with state, memo-
ization (but this changes the signature of the function
– think Haskell monads – it looks awkward because
it is), instrumentation (counting function calls – this
sounds like aspect oriented programming (AOP)). Fur-
thermore, the stateful model is more expressive: com-
plex algorithms are simpler – in particular, for graph
algorithms – my big problem with Haskell...
Interaction with the outside/real world brings ob-
servable nondeterminism: communicating with (inde-
pendent) clients; displaying a video stream, skipping
frames when needed; interacting with stateful compo-
nents (hardware, libraries, UI); implementing specifi-
cations, protocols expressed in terms of state.
Impedence matching suggests to mix several computa-
tion models, for instance:
– a sequencial component in a concurrent model (you
need a “thread-safety enhancing” layer);

– a declarative component in a stateful model;
– a centralized component in a distributed system;
– a non-security-conscious component in a security-
conscious environment (you need a “protector” –
sandbox, jail, chroot, etc.);

– a non-failure-safe component in a failure-safe system
(you need a fault-tolerance layer).

Message passing concurrency
Message-passing concurrency can be obtained by
adding ports to the kernel language; they generalize
streams: several threads can send messages to a port,
a stream knows where the data is coming from.
Message passing can be used to implement RMI (re-
mote method invocation – this can probably be seen
as a synonym of message passing) and multi-agent sys-
tems (MAS, such as lift control systems – also used for
hard disk heads). The message passed can be a con-
tinuation, i.e., a block of code or an indication of the
computations to run after the message has been pro-
cessed – the reciepient of the message is responsible for

the next steps of the program.
This chapter also contains an introduction to Er-
lang/OTP (Erlang is the language, OTP is the imlpe-
mentation or, rather, a set of libraries) – if you need
that in a mainstream language, check the POE (Perl)
and Twisted (Python) frameworks.
Here are a few concurrent message-passing patterns:
several ports within a single thread (but you have to
do the scheduler’s job); a queue (two ports, clients can
send data to it, or retrieve data, in a FIFO manner);
thread and subthread termination detection.
The non-deterministic concurrent model (aka concur-
rent logic programming) is between the declarative con-
current and the message passing one: it allows you to
merge two streams (if you want more, it becomes awk-
ward and inefficient; you would expect compiler to have
been developped to make this efficient, but you would
be wrong).
A port can be seen as a state: it is a list of values,
which can be generated and used anywhere (contrary
to a stream); if you only look at the latest value avail-
able, it behaves like a (stateful) variable. Cells imple-
ment the same idea, without concurrency: the model
remains sequential.
Explicit State
State can be implicit (only present in the program-
mer’s mind, as with accumulators) or explicit: the ker-
nel language can be extended with cells, that can be
written to. Thus, Oz ends up with three equality op-
erators: == (equality test), = (mathematical equality,
binding), := (assignment). Also beware of the differ-
ence between equality between cells (X==Y) and their
contents (@X==@Y).
The authors try to motivate the need for states by en-
capsulation and compositionnality – unconvincingly.
Invariants (and encapsulation) can help reason with
stateful programs (or components).
Component-based programming (encapsulation): pro-
cedures (functions and blocks of code); functors (com-
pilation units, modules); threads; object-oriented pro-
gramming adds another way of composing components:
inheritance (but is adds unwanted dependencies; de-
sign patterns are the art of avoiding the resulting prob-
lems).
An abstract data type (ADT) can be:
– open (its structure is visible and tweakable);
– secure (encapsulated; security can be obtained
through unforgeable tokens provided by the compiler
or the VM, or just with lexical scoping)

– declarative (immutable, but you quickly end up cre-
ating a large number of instances; those instances
have to be passed around)

– stateful (single instance; it can be a state in the scope
of the procedures that need it and need not be passed
around)

– unbundled (the data and the operations on the data

Article and book summaries by Vincent Zoonekynd 882/1044

http://en.wikipedia.org/wiki/Elevator_algorithm
http://www.erlang.org/
http://www.erlang.org/

are stored separately – the compiler and/or virtual
machine (VM) can ensure that the ADT remains se-
cure, if needed);

– bundled.
Declarative languages (Scheme, Prolog) tend to pro-
vide open, declarative, unbundled ADTs; object-
oriented ones (Java, Smalltalk) tend to provide secure,
stateful, bundled ADTs.
You can use state to implement revocable capabilities
(functions you may no longer be allowed to call after
some time – just redefine them to raise an exception).
The book distinguishes the following (irrelevant?)
parameter-passing mechanisms:
– call by reference
– call by variable (a special case of call-by-reference,
when the argument is a cell – in procedural lan-
guages, this is often called call-by-reference);

– call by value (the procedure cannot change the value
of it argument);

– call by value-result (call-by-variable, when the ar-
gument is supposed to be modified to hold the re-
sult, e.g., a procedure that would increment its ar-
gument);

– call by name (the argument is a function that re-
turns a reference; a procedure with such arguments
is a thunk);

– call by need (call-by-name, but the argument is only
evaluated once).

Explicit state allows the implementation of stateful
(mutable, and even extensible) collections (arrays, dic-
tionnaries, etc.).
Contracts (or invariants: what should be true before
and after each operation – you can use assertions) can
be used to formally prove partial correctness; to show
that loops are not infinite, find some integral positive
quantity that decreases at each iteration.
The state chapter contains a few digressions on soft-
ware design:
– do not dilute responsabilities;
– share knowledge;
– document the interfaces;
– start small;
– the components can communicate with procedures,
coroutines, synchronously, asynchronously, via mail-
boxes (asynchronously with pattern matching) or a
tuple space (a mailbox with several reciepients);

– the interfaces should be independent of the compu-
tation model used for the implementation

and on the future of programming:
– “Components will make programming accessible to
application users”; this is already the case for sta-
tistical or digital signal processing applications (R,
matlab, puredata, etc.);

– Professionnal programmers will combine larger com-
ponents – currently, they are still too complicated
(Java Beans) and their interfaces are too vaguely

documented.
State does not blend well with concurrency: whenever
possible, use message-passing concurrency.
Object-Oriented Programming
Inheritance allows ADTs to be built incrementally,
avoiding code duplication, but spreading the imple-
mentation. (“Early on, it was believed that inheritance
would solve the problem of software reuse. This has not
worked out in practice.”)
In Oz, a class is a record containing a set of attribute
names and a set of methods; methods have named and
optional arguments; dynamic binding (virtual meth-
ods) and static binding (non-virtual method) are de-
cided when the method is called, not when it is de-
fined; it allows encapsulation and access control (pri-
vate, public)
Reflection (e.g., examining, and perhaps even chang-
ing inheritance relations at runtime), through a meta-
object protocol, can be used for debugging, customiza-
tion, separation of concerns (AOP?): method wrapping
(intercepting each method call, looking at and possibly
modifying its arguments), serialization (creation of a
chunk – a few chapters earlier, it was a pickle), cloning,
etc.
You should not use inheritance to structure your pro-
gram, but only to create types. (Will this be exem-
plified in the chapter on GUIs?) In particular, inheri-
tance should not break invariants of the parent class;
you should not violate the substitution property. Some
people also subclass to fix (patch) parent classes, need-
lessly complicating the inheritance graph.
Avoid multiple inheritance when the classes inherited
from have something in common.
A mixin is a class often used in multiple inheritance,
that does not need to know anything about the classes
it will be mixed with; for instance, a Batcher class,
with a single batch method, that takes a list of mes-
sages (or 0-argument methods) and sends them to
self.
Class diagrams (UML) are useful but not a panacea:
they do specify the functionality (in particular, invari-
ants) of the class; they do not reflect the dynamic be-
haviour of the application; they display the structure
of the application at a rather low level.
The OOP chapter contains an introduction to Java,
should you need one, and gives a design pattern exam-
ple: the composite (just a tree type).
Object-based programming is object-oriented program-
ming without inheritance.: it provides encapsulation,
state shared by several methods.
If you need to define several functions f1, ..., fn that
can operate on several types T1, ..., Tm, you can opt
for a type decomposition (define a virtual class T , let
T1, ..., Tm inherit from it, and implement all the meth-
ods; you can easily add a new type, but adding a new
function requires modifying all the classes) or a func-

Article and book summaries by Vincent Zoonekynd 883/1044

http://puredata.info/

tional decomposition (within each function, check for
the type of the argument and act accordingly; it is
very easy to add a new function, but cumbersome to
add a new type – you have to modify all the functions).
S3 classes in R are a functional decomposition – I call
this method-oriented programming.
An active object is a port object which is an instance
of a class, i.e., an instance of a class, listening for (con-
current) messages and launching a method for each re-
ceived message. The Flavius Josephus problem illus-
trates active objects: n = 20 soldiers are standing in a
circle are committing a sequential collective suicide, by
killing every k = 3rd (remaining) soldier – what should
be your position if you want to remain alive?
Active objects can be used to implement a simple con-
current event manager.
Shared state concurrency
Coroutines can be seen as a manual scheduling of
threads in a sequential environment.
Prefer the message-passing model for multi-agent pro-
grams, consider the shared-state approach for data-
centric programs (programs that access and update a
large, central database).
The maximally concurrent model uses one thread per
instruction; only data dependencies affects their exe-
cution; you do not have to explicitely create threads –
you might not want to use it, though.
The kernel language provides an atomic Exchange op-
eration that can be used to implement concurrent
ADTs (ADTs whose operations can be run simultane-
ously).
Shared-state concurrent programming uses various
forms of locks to create atomic actions:
– simple lock;
– reentrant lock (when a thread is inside a lock, it can

enter it again (e.g., by calling the same function re-
cursively)). monitor (wait points, to wait before, not
after, entering a lock; e.g., a thread filling a bounded
buffer would wait for enough room to be available in
the buffer before requesting a lock to add an ele-
ment; monitors use wait and notify operations; of-
ten, methods are guarded, i.e., they wait until some
condition is satisfied before starting);

– light (ACI) transactions (abortable, atomic, not per-
sistent) or full ACID transactions – but how to add
them to a programming language is still an open
question, you will implement them by hand or rely
on some library (or database) – databases can use
optimistic concurrency control with two-phase lock-
ing (first grant locks without releasing any lock; then
release locks without granting any lock; in strict 2-
phase locking, all the locks are released at the same
time) and deadlock avoidance (using the wait-for
graph).

A Tuple space (aka Linda) is a (concurrent) multiset
with non-blocking pattern matching capabilities (you

can add objects to the tuple space; you can extract
one object of a given “type” to the tuple space, in a
blocking or non-blocking way).
Relational programming
A procedure is a map (in the mathematical sense: it
takes inputs and returns outputs); it can be replaced
by a relation (in mathematical terms, you are replacing
the category of sets by that of correspondances): the
“function” can be multi-valued (or even sometimes fail
to return a value) and the input and output arguments
need not be the same for each call. You can do that
in the declarative model, but you would end up with a
lot of unbound variables: the relational model adds a
search operation, that tries to assign a value to all cur-
rently unbound variables, while respecting all the con-
straints. There is often also a fail statement, which
indicates that the current choice is wrong (and that an-
other one should be tried): this allows for constraints
that cannot be expressed by bounding variables, such
as inequalities.
The search space can be huge and generate-and-test
programs exhaustively examine it: this kind of non-
algorithmic programming, without fine-tuning, can be
used in databases (the amount of data is huge, but the
search space small) or for toy (but perhaps instructive)
examples.
Encapsulated search runs the program in an environ-
ment that controls how the search tree is explored
(depth first, breadth first, etc.) and how many so-
lutions are returned (just one, all of them, on-demand
generation of new solutions, etc.); it also hides multi-
ple bindings to the rest of the application. It can be
obtained by adding a Solve function to the model.
Propositional logic only uses ∨, ∧, ¬ (you can use those
to define ⇒, ⇔) and can be used to express, prove or
disprove tautologies. First-order predicate logic adds
quantifiers (∀, ∃) and allows atoms to have arguments;
for instance, it can be used to express genealogical re-
lations and questions. For performance reasons, lan-
guages based on first-order predicate logic (Prolog) re-
strict the form of the axioms, e.g., to Horn clauses

∀x1, . . . , xk a1 ∧ · · · ∧ an =⇒ a

and allow the user to provide operational knowledge
(e.g., instead of specifying what a sort algorithm should
do, specify what an efficient sort algorithm should do).
Pure Prolog does not allow higher-order programming,
full prolog (which adds useful constructs with no cor-
responding logical semantics) only partially supports
it.
Logic programming can be seen as a new “control
structure” that can be added to other models (but the
more stateful your program, the trickier it becomes).
Relational programming was traditionally used for nat-
ural language processing (NLP) – or, more generally,
to parse ambiguous languages.
Relational programming can also be used to store re-

Article and book summaries by Vincent Zoonekynd 884/1044

http://en.wikipedia.org/wiki/Josephus_problem

lations in a database; a deductive database can deduce
tuples not explicitely stored (e.g., paths in a graph).
This chapter also contains an introduction to Pro-
log; most Prolog applications actually solve algorithmic
problems (expert systems, deductuve databases, pars-
ing – most of the program is declarative, but the pro-
grammer somehow gives algorithmic cues to the com-
puter).
Prolog is limited to backtracking, i.e., depth-first
search.
Relational programming still evolves:
– Pure declarative, higher-order languages (Mercury);
– Multi-paradigm languages that allow a clearer sep-
aration of the declarative and non-declarative parts
of the program (Oz);

– Constraint programming, either as a language fea-
ture (Oz, SICStus Prolog) or as a separate library
(GeCode, Ilog).

Graphical User Interface Programming
GUI design is usually restricted to a single computa-
tion model such as:
– imperative (Tcl/Tk);
– object-oriented (Java);
– functional (Haskell and its fudgets);
– declarative (HTML);
– graphical.
The book advocates a multi-paradigm approach, with
a declarative base augmented by objects and threads
(it does not look very different from what is tradition-
nally done; except that the widget description really
is a data structure and (can but) does not have to be
built in a procedural way):
– The structure of the widgets, their types, their initial
values, their behaviour after simple events (resize)
are purely declarative;

– Actions (procedures run when external events occur)
are procedural;

– Handlers (objects that change the interface) are also
procedural.

This allows you, for instance, to completely change the
GUI (say, from Gtk to QT) while it is being used.
Distributed programming
There are various types of distributed systems:
– Shared memory multiprocessor;
– Distributed memory multiprocessor;
– Distributed memory multiprocessor with partial fail-
ure (so far, these are HPC (high-performance com-
puting) and/or HA (high availability) clusters);

– Open distributed system (with naming and security
problems).

Distributed programming is more complicated than
concurrent programming:
– the processes are completely separated (they cannot
share state or dataflow variables; the data has to be

converted (marshaled/serialized/pickled and unmar-
shaled/unserialized/unpickled) and sent around);

– ressources (disk, memory, licence of commercial soft-
ware, etc.) are localized;

– networks are several orders of magnitude slower than
memory;

– failures are more common;
– not all components of the network may be trustwor-
thy;

– nodes may be added or removed at runtime.
In the network-transparent approach (which assumes
that none of those problems occur), the objects are lo-
cal to a given node or machine (that synchronizes their
usage and ensures their consistency) and respond to
messages, whatever their origin – this is equivalent to
concurrent programming.
Streams and ports can be readily used (the two ends of
a stream can be launched in different processes). Other
locking mechanisms can be used (e.g., distributed mu-
tual exclusion using token passing).
Objects can be stationary (they remain on the same
node – this is desireable if they access some local
ressources, e.g., disk) or mobile (the data is copied
around (this is a cache) and the right to update the
state is also moved around – this can be complemented
by an invalidation mechanism that allows several nodes
to hold a copy of the object).
Dataflow objects can be shared in an asynchronous
way.
Distributed binding and distributed garbage collection
can be slightly trickier.
This approach can be augmented:
– Network awareness (explicit use of message-passing
for performance)

– Naming (language entities can be refered to by an
(unforgeable) reference, name or ticket – a ticket ex-
ists outside the system – in particular, you will not
be able to reclaim the memory used by an object if a
ticket has been issued for it – tickets therefore often
have an expiry time);

– Partial failure tolerance: you can detect (permanent)
process failure (fail-silent) and (temporary) network
failure, either in a synchronous, lazy way (you only
notice the component is unavailable when you try
to access it) or in an asynchronous, eager way (with
a heart-beat mechanism to check what is alive and
what is not; you may want to either wait or raise an
exception when trying to access a failed ressource);
your application design should allow faults to be
confined; fault tolerance is extremely difficult with
shared states: prefer message-passing concurrency;

– Active fault tolerance (through replication and
failover)

– Security (resilience to malicious failures), at sev-
eral levels: application, language (check the E pro-
gramming language), language implementation (you
should not be able to tamper with compiled binaries
or the virtual machine (VM)), operating system, net-

Article and book summaries by Vincent Zoonekynd 885/1044

http://www.mercury.csse.unimelb.edu.au/
http://www.gecode.org/
http://en.wikipedia.org/wiki/E_programming_language
http://en.wikipedia.org/wiki/E_programming_language

work, hardware.
Constraint programming
Alternate the following two steps:
– Local deduction: combine the constraints to re-
duce the space of possible solutions (the computa-
tion space), while keeping it manageable (e.g., a
box

∏Jai, biK); to facilitate this, the constraints are
completed by propagators, i.e., function that explain
how the constraint can help reduce the computation
space (Oz already provides some of them; they can
be seen as a generalization of the use of Horn clauses
in Prolog);

– Search: split the problem P into P ∧C and P ∧¬C,
where C is a cleverly-chosen new constraint; this
choice is called a distribution strategy; the search
strategy is the way the resulting tree is explored
(depth-first, breadth-first or some domain-specific
heuristic).

ChucK: a concurrent, on-the-fly,
audio programming language

G. Wang and P.R. Cook
International Computer Music Conference

(2003)
ChucK is a strongly-timed audio programming lan-
guage, based on data flows: data and time are clearly
separated. The real-time problems are the computer’s
job: you just code in frozen time and say “proceed to
the next sample” – or beat, or user-generated event
(Midi, network, etc.). It features lightweight threads
(“shreds”) and a massively overloaded operator => (as-
signment, dataflow, etc.). Contrary to its predeces-
sors, it does not seem to have escaped from the 1950s
(Csound, SuperCollider) and is a real programming
language, not a graphical one (Pure Data).
Also check G. Coleman’s tutorial.
Beware: ChucK is not portable, it only runs on 32-bit
machines.

Combining analysis and synthesis
in the ChucK programming language

G. Wang, R. Fiebrink, P.R. Cook (2007)
The ChucK language has been extended with analysis
operations (FFT, etc.); contrary to synthesis opera-
tions, they are not automatically computed for each
sample (but usually less often) and have to be called
(slightly) more explicitely; consequently, a new opera-
tor =^ (upchuck) was introduced besides => (chuck).

The Audicle: A Context-Sensitive, On-the-fly
Audio Programming Environ/mentality

G. Wang and P.R. Cook
International Computer Music Conference

2004
The Audicube is a 3-dimensional IDE for ChucK, ex-
ploiting the real-time and on-the-fly nature of the
language – think Compiz/Fusion (the faces of the

cube) and VRML (inside each face), to visualize data-
flow relations, time relations (and program execution),
parent-child thread relations, thread or process infor-
mation à la top.

Music, a mathematical offering
D. Benson (2006)

Elementary (in its prerequisites) but excellent book
that disspells a lot of misconceptions about the links
between music and mathematics (in spite of a couple
of overly vague mathematical statements such as “if
the function f is absolutely integrable, i.e., L1, then
f(t)→ 0 as |t| → ∞ except perhaps on a set of measure
zero”, the book is eminently readable).
Here are some of the topics covered.
Sine waves are considered “pure” not because of Fourier
analysis (you could use other bases) but because they
are solutions of differential equations of the form y′′ +
ay′ + by = 0, which describe the vibration of our
eardrums (hence, the sounds we hear) and most “sim-
ple” systems (string and wood instruments).
Bessel functions, i.e.the Fourier decomposition

sin(φ+ z sin θ) =

∞∑
n=−∞

Jn(z) sin(φ+ nz)

appear in the description of percussion and brass in-
struments, FM synthesis and planetary motion (this
last point was unclear).
Whether two sounds are consonnant or dissonant does
not only depend on the ratio of their fundamental
frequencies, but also on their timbre (i.e., spectrum):
when the spectrum has peaks (partials) at integral mul-
tiples of the fundamental frequency (string and wood
instruments – such partials are called harmonics), the
common belief that simple ratios are consonnant is cor-
rect; but when the partials are not integral multiples of
the fundamental (percussions and brass instruments),
this is no longer true – you can even tweak the spec-
trum so that any interval you choose be consonnant
or dissonnant. Pure sine wave (no partials at all) are
not dissonnant if they are sufficiently far apart. The
“consonnance function” for a given spectrum can be
obtained as a linear combination of that of pure sine
waves (which are obtained experimentally).
You cannot define an “instantaneous spectrum” (you
have to have a non-zero window size; the smaller the
window the more smeared the spectrum – this is actu-
ally Heisenberg’s uncertainty principle), but the Hilbert
transform can give you an instantaneous frequency.
The harmonics of a sound can be seen as a form of pe-
riodicity in its spectrum, which could be studied by an-
other Fourier transform: on a logarithmic scale, this is
called the cepstrum, F lnFf ; it is used in voice recog-
nition to separate the partials (which are then called
formants).
The book also presents a few musical paradoxes: Shep-
ard scale (a scale whose pitch seems to be always in-

Article and book summaries by Vincent Zoonekynd 886/1044

http://soundlab.cs.princeton.edu/publications/chuck_icmc2003.pdf
http://soundlab.cs.princeton.edu/publications/chuck_icmc2003.pdf
http://www.csounds.com/
http://supercollider.sourceforge.net/
http://puredata.info/
http://www.iua.upf.es/~gcoleman/chuck/tutorial/tutorial.html
http://soundlab.cs.princeton.edu/publications/uana_icmc2007.pdf
http://soundlab.cs.princeton.edu/publications/uana_icmc2007.pdf
http://soundlab.cs.princeton.edu/publications/audicle_icmc2004.pdf
http://soundlab.cs.princeton.edu/publications/audicle_icmc2004.pdf
http://www.maths.abdn.ac.uk/~bensondj/html/music.pdf

creasing, ad infinitum); virtual pitch (the pitch we hear
is that of the fundamental, even if it is not present and
only some of its integral multiples are there); combi-
nation tones, i.e., hearing f1 + f2, f1 − f2, 2f1 − f2,
f1−2f2 when frequencies f1 and f2 are sounded – this
is not the beat phenomenon (we would hear 1

2 (f1 + f2)
and 1

2 (f1 − f2) but results from the non-linearities
(quadratic and cubic terms) in our ear – probably in
the neural feedback.
When you compose music, limiting yourself to a set of
allowable pitches or scale simplifies your work. For in-
stance, you can start with a note and add “pleasant”
multiples of it, such as octaves (2/1) and fifths (3/2).
The pythagorean scale does just this: start with a note,
add a fifth, another, and so on, but each time you ex-
ceed one octave, remove one octave; stop when you get
close enough from your starting point. You never reach
exactly the starting frequency, because log 3/ log 2 is ir-
rational – its increasingly accurate rational approxima-
tions (via continued fractions) give rise to increasingly
large scales (5, 12, 41, 53, etc.).
This set of notes is already a compromise, but we often
want more: we want other simple ratios to be there.
We have the octave 2/1, the fifth 3/2, the fourth 4/3
(this is an octave minus a fifth, so we already have
it), the third 5/4 – more generally, harmonics brought
down to the same octave a/2b. For instance, we could
use the 3-note scale 1:5/4:3/2 (often written 4:5:6 to
emphasize that we are using the 4th, 5th and 6th har-
monics – this is called a major third). Just intonation
is obtained by taking three major thirds (CEG (I), the
previous one FAC (IV) and the next one GBD (V)),
giving 7 notes – should you want 12, you can fill in the
5 remaining ones as you want.
Classical harmony tends to move from triad to triad:
the mean-tone scale asks for exact major thirds 5:4 and
wants the note in the middle to be exactly in the mid-
dle: CDE, FGA and GAB are eaxctly 1 :

√
5/2 : 5/4

(the two remaining semitones are made equal). The
problem is that the farther you move on the circle of
fifths, the worse the fifths become (wolf fifth)
The well-tempered scale (or irregular temperament, or
circulating temperament) tries to correct this.
Equal temperament is the easiest scale: 12 equally-
spaced notes. This is the most common nowadays.
The number of notes comes from the continued frac-
tion approximating log 3/ log 2. Regarding continued
fractions, you might want to notice that the golden ra-
tio [1, 1, 1, 1, . . .] is as far away as possible from the
rationals.
In all those scales, the octave was pivotal: but you can
remove it (especially with instruments with only odd
harmonics, such as open-ended wood instruments like
the clarinet) and consider, for instance, 13 notes in one
octave and a half (Bohlen and Pierce) or focus on the
ratios 3/2 and 4/3 instead of 2/1 and 3/2 (W. Carlos).
Since the Fourier transform of a digital signal is peri-
odic, it can be written as a function of z = exp 2πiν∆t

instead of ν: this is the z-transform.
Sound synthesis is slightly touched upon:
– additive synthesis: this is how cathedral organs work;
– AM synthesis (amplitude modulation): the ADSR
enveloppe (attack-decay-sustain-release) is actually
an example of AM synthesis;

– FM synthesis (frequency modulation), whose Fourier
coefficients are Bessel functions; the book contains a
small introduction to Csound, qualified of “tedious”
– I would have said “antiquated”;

– Granular synthesis (no details)
– Phase vocoder: transform the windowed discrete
Fourrier transform;

– Chebychev polynomials: applying the function T2 :
x 7→ x2 − 1 doubles the frequency, i.e., T2(cos νt) =
cos 2νt; the other Chebychev polynomials are defined
similarly and you can combine them, e.g., to turn
sime waves into square waves.

The book ends with a chapter on symmetry – or group
theory. Musical pieces exhibit some form of symmetry,
in the rythm (temporal) or the time×pitch space: you
can recognize the seven frieze types. (To avoid bore-
dom, this is often just an approximate symmetry: for
instance, the same motive can be transposed a step
higher, while being constrained to remain in the same
scale – some intervals will subtly change.) Change ring-
ing (or campanology) is an Oulipo-like constraint on
Church (bell) music composition, involving constrained
paths in the symmetric group Sn.
In spite of its qualities, the book almost looks unfin-
ished: when you reach the end, you still want more,
you have the impression that only the surface has been
scratched, that only the starting points have been ex-
posed – in particular, there is hardly anything about
composition, harmony, counterpoint, sonification or
stochastic processes.

Optimization methods in portfolio
management and option hedging

H. Pham (2007)
Very clear (and complete) introduction to continuous-
time portfolio management. After recalling the von
Newmann–Morgenstern utility theory, with a clear mo-
tivation for the absolute and relative risk aversions and
details on the Allais paradox (expected utility cannot
reflect human preferences)

PX1
= 0.33δ2500 + 0.66δ2400 + 0.01δ0

PX2
= δ2400

PY1
= 0.34δ2500 + 0.66δ0

PY2
= 0.33δ2500 + 0.67δ0

X2 > X1, Y2 > Y1

the author presents, on a discrete example, the two ap-
proaches to final-utility-maximizing multi-period port-
folio management:

Article and book summaries by Vincent Zoonekynd 887/1044

http://en.wikipedia.org/wiki/Oulipo

– Dynamyc programming;
– The margingale approach:
· Find the risk-neutral measure, i.e., a measure Q
for which the stock prices are a martingale; the
price of a claim H is then x = EQ[H];
· Find the claim H solving the optimization problem

MaximizeE[U(H)]

such thatEQ[H] = x

· Find a portfolio strategy leading to this wealth H.
The continuous-time analogues are then detailed, to-
gether with a few examples:
– Optimal strategy in a 1-stock Black-Scholes world
(actively-rebalanced with constant weights);

– Superreplication cost, i.e., minimum initial capital
of a strategy whose payoff almost surely dominates
a given payoff g(XT), in a Black-Scholes world with
non-constant volatility (no assumption whatsoever
on the volatility, beyond measurability)

dXt

Xt
= αtdWt

– Optimal strategy for a diffusion model

dSt
St

= µtdt+ σtdWt

– Quantile hedging: since superhedging

P [Payoff ⩾ Desired payoff] = 1

can be expensive, one might prefer VaR (value at
risk) hedging

P [Payoff ⩾ Desired payoff] ⩾ 1− α;

conversely, one can choose the initial investment x
and look for the strategy that maximizes

P [Payoff ⩾ Desired payoff].

Stochastic control theory
for optimal investment

M.T. Castillo and G. Parrocha
The Cramer–Lundberg model, in non-life insurance, is

Surplus = Initial capital+ Income−Outflows

R(t) = r + ct−
N(t)∑
k=1

Xk

dR = cdt− dS

where the aggregate claim S(t) =
∑N(t)
k=1 Xk is a com-

pounded Poisson process (or a Cox process or a general
renewal process – those notions are not defined).
In order to control (diversify) the risk, an insurance
company can invest part of its assets: the articles con-
siders that a constant amount a is invested, a propor-
tion b(t) in a risky asset, a proportion 1 − b(t) in a

riskless asset.

dRisk = cdt− dS
dPrice0
Price0

= ρdt

dPrice1
Price1

= µdt+ σdW

dI = a(1− b)dPrice0Price0
+ ab

dPrice1
Price1

dU = dR+ dI

U(0) = u

Maximize P [@t U(t) < 0]

Finding the investment process b is a stochastic con-
trol problem, which can be solved with the Hamilton–
Jacobi–Bellman (HJB) equation.
(The mathematical details in the article look fishy: be-
fore knowing anything about the solution, not even
its existence, they start to assume it is twice differ-
entiable...)

Some applications and methods of large
deviations in finance and insurance

H. Pham (2007)
Clear but rather technical presentation of large devia-
tion theory and its applications in finance.
Large deviation theory is concerned with the asymp-
totic expansion of the probability of large events: for
instance, the central limit theorem states that

P

[∣∣∣∣ 1n∑Xi − µ
∣∣∣∣ ⩾ a] −→n→∞ 0

and Cramer’s theorem states that

P

[
1

n

∑
Xi ⩾ a

]
∼n→∞ e−nΓ

∗(a)

Γ(θ) = lnE[eθX]

Γ∗(x) = sup
θ∈R

[θx− Γ(theta)] .

Γ is called the cumulant generating function (cgf); it is
the logarithm of the Laplace transform; Γ∗ is called the
Fenchel–Legendre transform of Γ; you also encounter it
as the dual of a convex function in variational analysis.
The idea behind the proof is that of importance
sampling: change the probability distribution (in a
tractable way, using an exponential family) to make
the rare events more probable,

µθ(dx) = exp [θx− Γ(θ)]µ(dx).

Indeed, large deviation theory can be used to prove the-
oretical convergence results for importance sampling.
Cramer’s theorem can be generalized: the Gärtner–
Ellis theorem relaxes the independence assumption;
Freidlin–Wentzell theory estimates the probability that
a diffusion (a solution of a stochastic differential equa-
tion) leaves some domain, when the noise is small,

Article and book summaries by Vincent Zoonekynd 888/1044

given that it remains in it when there is no noise at
all (so that the event is indeed rare).
More generally, large deviation principles (LPD) state
(more formally) that

P [Zε ∈ dx] ∼ε→0 e
−I(x)/εdx

for some rate function I. In this context, Varadhan’s
theorem generalizes the Laplace method

lim
n→∞

1
n ln

∫ 1

0

enϕ(x)dx = Max
x∈[0,1]

φ(x)

to

E
[
eϕ(Zε/ε)

]
∼ε→0 C exp

[
1

ε
sup
x

[φ(x)− I(x)]
]
.

Applications include:
– The Cramer–Lundberg approximation of the ruin
probability of an insurer (initial reserve, regular pre-
miums, iid claims arriving at the jump times of a
Poisson process) when the reserve is large and its
importance sampling extimator;

– Generalization to insurance-finance: if there is a drift
in the asset prices, the insurer should invest and fol-
low a buy-and-hold strategy – replacing the mini-
mum ruin probability criterion with a less conserva-
tive one would lead to more complex/dynamic opti-
mal strategies.

– Importance sampling to price very out-of-the-money
options (change the drift to make exercise more prob-
able);

– value at risk VaR) estimation of a credit risk port-
folio, in a 1-factor gaussian copula model, when the
portfolio is large or the probability of default small.

– VaR of a passive strategy in the long term, when it
gets closer and closer to the index it is tracking.

Specialising simulator generators for
high-performance Monte-Carlo methods

G. Keller et al.
A scientific application of the pragmatic programmer’s
tip number 29, “Write code that writes code” – this
could also be applied to (MCMC simulations of) mixed
models (WinBugs, Jags).
This approach shifts part of the compiler design prob-
lem towards the end programmer; it looks similar to
lex/yacc (or flex/bison) and the use of hardware de-
scription languages.

The need for open source software
in machine learning
S. Sonnenburg et al.

Journal of machine learning (2007)
Open source tools are mature and suitable for large-
scale real-world problems; their wider use would result
in greater reuseability and interoperability – this is al-
ready the case in bioinformatics.

The article contains summary tables (definition, ad-
vantages, licences) screaming to be reused in bullet-
point/Powerpoint/executive summary presentations.
The authors trace free software back to Sir Isaac New-
ton: If I have seen further, it is by standing on the
shoulders of giants.

Proceedings of the
Linux Audio Conference 2007

A few articles about ambisonic recording and wave field
synthesis (WFS), scripting languages (PySndObj) and
the usual suspects (Pure Data, etc.).

High-dimensional modelling and simulation
with asymetric normal mixtures

A. Tsanakas and A. Smith (2007)
A gaussian mixture is a random variable of the form
X =

√
HZ, where Z ∼ N(0, 1) and H > 0 (for in-

stance, H could follow a discrete distribution with two
values σ2

1 and σ2
2).

In higher dimensions, this becomes X =
√
HLX,

where Σ = LL′ is the desired dispersion matrix and
E[H] = 1 (H is still 1-dimensional).
This can be generalized by also randomizing the mean,
yielding asymmetric gaussian mixtures,

X = γ−1(H − 1)u+
√
HLZ

Z ∼ N(0,1)
H > 0, E[H] = 1, VarH = γ2

u ∈ Rn, u′Σ−1u ⩽ 1

Σ positive definite.

In high dimension, the dispersion matrix Σ can be
parametrized by a Kronecker product.

Markov chain Monte Carlo convergence
diagnostocs: a comparative review M.K.

Cowles and B.P. Carlin
J. Amer. Statist. Assoc. 91 (1996)

Presentation and comparison of 13 convergence diag-
nostics – beware, all can fail.

Constructing free energy approximations and
generalized belief propagation algorithms

J.S. Yedidia et al. (2004)
Surprisingly clear presentation of the belief propaga-
tion algorithm (BP) for factor graphs.
Instead of looking for the optimal probability distri-
bution Popt, the free energy approximation looks for a
simpler distribution Q (say, one where all the variables
are independent (this could be seen as an “average” of
one-variable modells), or more generally a simply con-
nected graphical model) that minimizes the Kullback–
Leibler distance D(Popt||Q) – the magic is that it can
be computed without knowing Popt.

Article and book summaries by Vincent Zoonekynd 889/1044

http://www.pragprog.com/
http://www-fis.iarc.fr/~martyn/software/jags/
http://ssrn.com/abstract=1005894
http://ssrn.com/abstract=1005894

Variational approximations between mean field
theory and the junction tree algorithm

W. Wiegerinck (2000)
Another article on the same subject.

Understanding belief propagation
and its generalizations

J.S. Yedidia et al. (2002)
Earlier article on generalized belief propagation.

A differential approach to inference
in bayesian networks

A. Darwiche
The author associates a polynomial (in several vari-
ables) to a bayesian network so that operations in the
network (parameter estimation, marginal probability
computations, etc.) are evaluations of the polynomial
or its derivatives. The size of the polynomial is expo-
nential, but manipulations on the parsing tree of the
polynomial (which the author calls an “arithmetic cir-
cuit”) can make those evaluations can be amenable.

A logical approach to factoring belief networks
A. Darwiche

A more formal article on the subject.

An introduction to variational methods
for graphical models

M.I. Jordan et al.
Machine Learning 37 (1999)

Variational methods come from the following remark:
a convex function f is characterized by the affine func-
tions above it,

f(x) = Max{φ : φ′x ⩾ f∗(φ) }.

To prove an assertion about f , it might suffice to prove
it for all or one of those affine functions – in particular,
this can lead to upper bounds of quantities involving f .
This idea can be applied to the likelihood of a graphi-
cal model: under mild assumptions (e.g., all the prob-
abilities are from the exponential family), a graphical
model is characterized by the set of independent mod-
els (graphical models with a discrete, edge-less graph –
these are called mean-field models) more (or less) likely
than it.
In particular, a graphical model can be fit by finding an
independent model close to the optimal model – this
is different from finding the independent model best
fitting the data.
The fit can be improved by allowing more structure on
the approximate graphical models: for instance, you
can progressively complexify it, towards the graphical
model being studied, until it becomes untractable.

Model-independent mean field theory
as a local method for approximate propagation

of information
M. Haft et al. (1997)

Another presentation of mean field theory (MFT), that
suggests to average several mean field solutions (this re-
ally sounds like bayesian model averaging (BMA): for
instance, you could approximate a grid by horizontal
chains and vertical chains and hope to get a reason-
able result by averaging those two simply connected
models).

The bayesian structural EM algorithm
N. Friedman

The structure and parameters of a bayesian network
can be learned “l̀a Gibbs”, with an EM (expectation-
maximization) algorithm: find the best structure for
the current parameters, find the best parameters for
the current structure, iterate until convergence.

Learning bayesian network models from
incomplete data using importance sampling

C. Riggelsen and A. Feelders
Data augmentation (DA) is a simulation-based EM (ex-
pectation minimization) algorithm.

Probabilistic Graphical Models
M. Hauskrecht (2005)

Lecture notes, with a very useful list of references.

Probabilistic reasoning over time
in Artificial Intelligence: A Modern Approach

S. Russell and P. Norvig
A readable introduction to dynamic bayesian networks
(DBN): backward-forward message passing (for hidden
Markov models (HMM)), application to the Kalman fil-
ter and extended Kalman filter (EKF), transient fail-
ure model, persistent failure model, particle filter, with
applications to speech recognition (it also mentions A∗-
search, with no details) and exercises.

Graphical models
and automatic speech recognition

J.A. Bilmes
in Mathematical foundations of speech

and language processing (2003)
Yet another introduction to graphical models, this time
targeting automatic speech recognition (ASR).
Among the examples:
– Chain graphs (partly directed, partly undirected);
– Decision trees (yes, this is how trees look like, when
turned into a bayesian network)

Article and book summaries by Vincent Zoonekynd 890/1044

– A multivariate gaussian distribution is an undirected
graphical model: the (blocks of) zeroes in the inverse
of the variance matrix correspond to edges removed
from the clique formed on the variables

X1 X2

X3 X4

X1 ⊥⊥ X4 |X2, X3

– A multivariate gaussian distribution is a directed
graphical model, the Choleski matrix yielding a
“tree”, its zero entries pruning it;

– Principal component analysis (PCA):

X

Y
C

µ

ε X = CY + µ+ ε

0,1
0, σ21

– Factor Analysis (FA):

X

Y
C

µ

ε X = CY + µ+ ε

0,1
0,∆

This chapter also mentions GMTK (graphical model
toolkit), “open source” but with no source code avail-
able (not under active development).

Introduction to Monte Carlo methods
D.J.C. MacKay

A presentation of importance sampling, rejection sam-
pling, Gibbs sampling and the Metropolis algorithm,
with some of their improvements: hybrid Monte Carlo
(augment the state space with momentum variables),
overrelaxation (in Gibbs sampling, do not sample from
the conditional distribution, but bias it away from the
current value), simulated annealing.

An introduction to MCMC
for machine learning

C. Andrieu et al.
Machine Learning (2003)

Concise presentation of MCMC (Markov Chain Monte
Carlo), terser than Liu’s book, with insightful pictures
to represent rejection sampling

reject region

accept region

and particle filters.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ (1)

(2)

· • • · · • • · · · (3)

◦◦ ◦◦ ◦ ◦◦ ◦◦ ◦ (4)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ (5)

Graphical models and their role in databases
A. Deshpande

VLDB 2007 Tutorial
A graphical model is a decomposition of a joint distribu-
tion on many (typically millions) variables as a product
of distributions on fewer (two or three) variables.
In a directed graphical model or bayesian network, the
decomposition is described by a directed acyclic graph
(DAG), and the factors, called potentials, are condi-
tional probabilities:

p(x1, . . . , xn) =
∏
x

p
(
x | parents(x)

)
.

In an undirected graphical model or Markov random
field (MRF), the decomposition is described by the
cliques (complete subgraphs) of a graph, and the po-
tentials need not be probabilities (hence the need for
the normalization factor Z):

p(x1, . . . , xn) =
1

Z

∏
C Clique

ψC(xC).

Those directed or undirected graphs model conditional
independence relations between sets of variables.
One can then compute marginal probabilities or the
most likely labels of the remaining variables:

p(xB) =

∫
p(xA, xB) dPB

xB |xA = Argmax
xB

p(xA, xB).

Inference on a chain is easy:
p(x5) =

∑
x1,x2,x3,x4

p(x1, x2, x3, x4)

=
∑

x1,x2,x3,x4

p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)

=
∑
x1

p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x2)
∑
x4

p(x4|x3)p(x5|x4)

=
∑
x1

p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x2)
∑
x4

p(x4|x3)p(x5|x4)︸ ︷︷ ︸
B3(x3)︸ ︷︷ ︸

B2(x2)︸ ︷︷ ︸
B1(x1)

Article and book summaries by Vincent Zoonekynd 891/1044

http://ssli.ee.washington.edu/~bilmes/gmtk/

This can be generalized to simply-connected graphs,
under the name variable elemination algorithm: e.g.,
for a hidden markov model (HMM), this is the Viterbi
algorithm.
For more a general directed acyclic graph, just consider
its junction tree (some articles claim this is an approx-
imate algorithm, others (this one) that it is exact but
NP-hard):
– Form the moral graph: join the parents of each node
and forget the orientation;

– Triangulate the graph;
– The junction tree has vertices the maximal cliques of
the triangulated (or chordal) graph and edges their
separators.

But this is NP-hard, because the cliques can be very
large: you can try with approximate junction trees,
whose nodes are arbitrary clusters in the triangulated
graph and use loopy belief propagation (not detailed) if
loops arise. When all else fails, MCMC (Gibbs) sam-
pling still works.
Depending on the application, the structure of the
graph can be imposed or learnt (this is NP-hard); sim-
ilarly, the parameters can be imposed (from domain
knowledge) or learnt.
A time dimension can be added: for instance, the hid-
den variable model

becomes a Kalman filter

speedt−1 speedt

positiont−1 positiont

observedt−1 observedt

or more general dynamic bayesian networks (DBN) –
this example is only partially oriented (this is called a
chain graph)

General applications include:
– Error correcting codes: turbo codes;
– Medical diagnostic: QMR (Quick medical reference);
– Vision (Potts model or, for binary variables, Ising

model).

Database-specific applications include:
– Approximate aggregate over some of the many
columns of a table (i.e., marginal of the joint dis-
tribution of the columns);

– Estimate intermediate result sizes (e.g., that
of income>90 000 and homeowner=yes) for query
plan optimization;

– Join uniformity estimation (how likely is a tuple from
one relation to join with tuples from another);

– Probabilistic relational models (PRM, sometimes
called statistical relational models), to extend or re-
place the relational model to represent uncertainties
in the data;

– Record matching;
– Deduplication (with a logistic regression or a sup-
port vector machine (SVM), this can end up as a
simple linear combination of the differences of the
features of the records): duplication can appear in
several columns and duplicates found in one can help
find more in another (joint deduplication); dedupli-
cation can look for similarities in attributes (cells in
a table) or records (rows).

Information extraction (e.g., named entity recognition
(NER)) applications include:
– Protein and gene names from publications;
– Room attributes from hotel websites;
– Addresses and qualifications from resumes for human
ressources databases;

– Job postings in newsgroups;
– Emails in help centers;
– News monitoring.
Sensor networks present more challenges: the data
are not only large, incomplete and imprecise, they
are streaming (calling for dynamic bayesian networks),
spacial (calling for added space dimensions, as we
added time) and distributed – the part of the network
describing the spacial distribution of the sensors can
also describe the location of the databases and help
devise distributed, in-network algorithms.

Representing and querying correlated tuples
in probabilistic databases

P. Sen and A. Deshpande
Graphical models can be used to estimate tuple depen-
dencies in a database, for query plan optimization.

Bayesian networks without tears
E. Charniak

AI Magazine (1991)
An early introductory article on bayesian networks,
that allow to model probability distributions on many
discrete variables without requiring “absurdly many
numbers”: construct a directed acyclic graph (DAG)

Article and book summaries by Vincent Zoonekynd 892/1044

http://www.openclinical.org/aisp_qmr.html

whose vertices are the variables and such that two vari-
ables x amd y are conditionnally independent given a
set of variables Z if and only if x and y are d-separated
given Z, i.e., there is no d-connecting path between
them – that is a path whose every interior node is ei-
ther (i) linear or diverging and not in Z,
or (ii) converging and in Z or with a descendant
in Z (this notion can also be explained with the ten
rules of Bayes ball.)
The computation of every node’s belief is NP-hard
in general – but linear for polytrees (simply-connected
graphs).
Applications include: medical diagnostic (often with
some decision theory), map learning, story understand-
ing.

An introduction to graphical models
K.P. Murphy (2001)

After giving a few examples of graphical models, such
as factor analysis,

x(hidden) N(0, I)

y(observed) N(µ+Wx,Σ)

mixture of gaussians:

i discrete

x N(µi,Σi)

linear dynamic models (Kalman filters)

xi−1 xi

N(Axi−1 + b, V)

yi−1 yi

N(Cxi + d,W)

or Pearl’s classical artificial intelligence example
(whether the sprinkler is switched on depends on
whether it is cloudy; when I come back the grass is
wet: does it means it rained?)

cloudy

sprinkler rain

wet grass

the article mentions, without any detail, inference
algorithms, exact (variable elimination, with memo-
ization (dynamic programming) if you need several
marginals) or approximate (sampling (Monte Carlo)
methods, variational methods (mean field approxima-
tion), loopy belief propagation (Pearl’s algorithm, e.g.,
used to decode turbo codes)).

Learning a bayesian network can be more or less com-
plicated, depending on whether you know the graph
structure (if not, you can greedily add edges) and on
the presence of hidden variables – adding a hidden vari-
able can simplify a graph:

7−→

Graphical models
M.I. Jordan

Hierarchical bayesian models (as in BUGS) are a spe-
cial case of graphical models.
The decomposition of the joint probability distribution

p(x1, · · · , xn) =
1

Z

∏
C

fC(xC)

can also be represented with the associated factor
graph: a bipartite graph, whose round edges are the
variables and square edges the potentials fC .
Marginal distributions can be computed (exactly) with
the variable elimination algorithm: just write the hu-
mongous sum and shift the summation signs as far right
as possible; this amounts to chosing an elimination or-
der on the variables – chosing the best one, that will
lead the the fewest operations, is NP-hard. If you need
several marginals, just add memoization to the elimi-
nation algorithms – this is the sum-product algorithm.
One can replace sums by maximums (simply because
maximum and product still for a commutative semi-
ring) to get the most probable value of a set of vari-
ables.
Sampling algorithms can be used for approximate com-
putations: for Gibbs sampling, you just have to condi-
tion on the Markov blanket of a node (its neighbours
in the unoriented case; its parents, children and co-
parents in the oriented case).
Variational inference proceeds as follows:
– Formulate the problem as an optimization problem;
– “Perturb” it, to make it simpler, typically by adding
or removing constraints (inner or outer approxima-
tion)

– Solve the new problem.
Applications include:
– Phylogenetic trees: graphical models can account for
dependence between sites and lateral gene transfer
(the graph structure is unknown: we can relax the
requirement that it be a tree);

– Multi-locus linkage analysis in pedigrees (large pedi-
grees often contain many loops);

– Error correcting codes, such as low-density parity
check (LDPC) codes, whose factor graphs look like

Article and book summaries by Vincent Zoonekynd 893/1044

(the codes actually used are selected at random)

transmitted message

message

parity bits

– Computational linguistics, with a host of generaliza-
tions of hidden Markov models (HMM): higher order
Markov chains,

coupled HMM,

factorial HMM,

Recursive conditioning
A. Darwiche

Cutset conditioning is an inference algorithm for graph-
ical models that replaces the problem by several sim-
pler ones, obtained by conditioning on (fixing the val-
ues of) a set of nodes (a cutset): this can discard loops.
Recursive conditioning applies the same idea but re-
ally cuts the graph in two at each step (you still have
to choose the elimination order on the nodes). You can
tune the amount of memoization used by the algorithm
to control the tradeoff between its space and time com-
plexity – it is an any-time, any-space algorithm.

Bounded RD
S. Monti and G.F. Cooper

Another algorithm derived from recursive decomposi-
tion (cutset conditioning) that progressively refines in-
terval bounds on marginal probabilities.

Inducing features of random fields
S. Della Pietra et al. (1995)

The authors build stepwise maxent models as follows.
Start with a graph, whose vertices are the variables to
be included and whose edges represent time of spacial
relations – or just take a complete graph. First add
atomic features and then features of the form

atomic feature× active feature

where the support of the candidate feature is connected
in the underlying graph. To estimate the gain of a can-
didate feature, you can freeze the weights of the active
ones: this allows the quick evaluation of thousands of
features.
The article also presents the improved iterative scaling
(IIS) algorithm.

A comparison of algorithms for maximum
entropy parameter estimation

R. Malouf
Presentation of the improved iterative scaling (IIS) al-
gorithm.

Adaptive smoothing of digital images:
the R package adimpro

J. Polzehl and K. Tabelow
Journal of statistical software (2007)

Image smoothing can be adaptive and edge-preserving:
the intensity of the smoothing varies locally, with more
smoothing in “homogeneous” (for some model) regions.

Interactive multivariate data analysis in R
with the ade4 and ade4TkGUI packages

J. Thioulouse and S. Dray
Journal of statistical software (2007)

Just a GUI for the ade4 package, that also provides fac-
tor analysis of a mixture of quantitative and qualitative
variables (dudi.hillsmith and dudi.mix functions).

Numerical computing and graphics
for the power method transformation

using Mathematica
T.C. Headrick et al.

Journal of statistical software (2007)
The power method constructs a non-gaussian random
variable Y from a gaussian one Z,

Y =

n∑
k=0

ckZ
k.

It is actually used in the other direction, to transform
non-gaussian data into gaussian-looking data; the co-
efficients are chosen so as to match the cumulants of
the data – this is a method of moments estimator.
This can be generalized to multivariate data, often as
follows:
– Each Yi is a polynomial function of a single gaussian
variable Zi, chosen to have the right cumulants;

– The Zi are jointly gaussian, with a correlation ma-
trix chosen to produce the second cross-moments of
Y .

Article and book summaries by Vincent Zoonekynd 894/1044

Efficient training of conditional random fields
H. Wallach (2002)

Graphical models are a way of describing a joint dis-
tribution as a product of functions of fewer variables.
For instance, with independent variables

p(x1, . . . , xn) =
∏
i

p(xi);

or with a Markov chain

p(x1, . . . , xn) = p(xn|xn−1, . . . , x1)×
p(xn−1|xn−2, . . . , x1)×
· · ·
p(x2|x1)p(x1)

= p(xn|xn−1)p(xn−1|xn−2) · · ·
· · · p(x2|x1)p(x1)

= p(x1)
∏
i>1

p(xi|xi−1).

More generally, an oriented graph (with no cycles), de-
fines an oriented graphical model (or bayesian network)
with the decomposition

p(x1, . . . , xn) =
∏
i

p(xi|xparents(i)).

Independence Markov chain

HMM MEMM
Those models suffer from the label bias problem (never
explained clearly).
Undirected graphical models (also called Markov ran-
dom fields) model conditional independence relations:
there is one node for each variable and, given sets of
variables A, B and C, A is independent of C given B iff
B separated Q and C, i.e., iff each path from a vertex
in A to a vertex in C contains a vertex from B. The
Hammersley–Clifford theorem then says that the joint
distribution can be written as

p(x1, . . . , xn) ∝
∏

c maximal clique
ψc(xc)

where the factors ψc, called potential functions, need
no longer be probability distributions.
Conditional random fields (CRF) are undirected graph-
ical models for p(y|x) (instead of p(y, x)), often with
exponential potential functions

ψc(yc|x) = exp
∑
k

λkfk(c, yc, x).

They do not exhibit the label bias problem.
The often-touted algorithms to fit maximum entropy
models, iterative scaling and their generalized and im-
proved variants (IS, GIS, IIS), that do not require the
gradient to be computed, are outperformed by general
optimization algorithms such as quasi-Newton methods
(here called “variable-metric”) such as (limited mem-
ory) BFGS: indeed, the gradient and the parameters
are proportional.

An introduction to conditional random field
for relational learning

C. Sutton and A. McCallum
Another, more detailed, review article on conditional
random fields (CRF), with applications mostly in
HLT/NLP (human language technology, natural lan-
guage processing) names entity recognition (NER, i.e.,
recognition of person or place names in texts), infor-
mation extraction (IE, i.e., automatic building of rela-
tional databases), POS (part-of-speech) tagging, shal-
low parsing (recognising groups of words in sentences),
word sense disambiguation (WSD), etc.
The authors also model long-distance dependencies
with a skip-chain CRF.

Conditional random fields: probabilistic
models for segmenting and labeling sequence

data
J. Lafferty et al.

Proceedings of the international conference
on machine learning (2001)

The initial article about conditional random fields
(CRF) and maximum entropy Markov models
(MEMM): prefer that by C. Sutton and A. McCallum,
above.

Unsupervised statistical models
for general object recognition

P. Carbonetto (2001)
Graphical models can also be used in image analysis, to
align regions of an image (obtained by some segmenta-
tion algorithm) with human-provided annotations, and
then predict those annotations.
One can neglect long-range dependencies by replacing
likelihood

by pseudo-likelihood

Article and book summaries by Vincent Zoonekynd 895/1044

Graphical models are usually estimated by iterative
scaling (see somewhere below) or by heuristic algo-
rithms such as belief propagation: form the junction
tree of the graph, i.e., the graph whose vertices are the
maximum cliques and whose edges are their separators
(it is a tree iff the graph is chordal: triangulate it first);
and propagate beliefs as for a Markov chain.
The article also contains a clear (and correct – many
people still think it is a data imputation algorithm)
explanation of the expectation-maximization (EM) al-
gorithm, to estimate a model with hidden or missing
values:
– In the E-step, estimate the distribution of
hidden|observed; if the hidden variables are discrete,
you compute their frequency table; if the hidden
variables are jointly gaussian, you compute their
mean and variance; often, there is often no actual
computation at this step, the distribution is just a
formula that will be used in the next step;

– In the M-step, consider the joint distribution

observed, hidden|parameter,

integrate out the hidden variables using the distribu-
tion from the E-step, and maximize the correspond-
ing expected log-likelihood; you may want to add a
prior on the parameters to avoid overfitting;

– Repeat ad libidum.

A simple introduction to maximal entropy
models for natural language processing

A. Ratnaparkhi (1997)
Given a pair of discrete random variables z = (x, y)
and a data sample, we want to estimate the probabil-
ity distribution P (z) – but the random variables x and
y have so many possible values (y can be the part-of-
speech (pos) of a word and x the word and its context)
that even with a large dataset, not all (x, y) combina-
tions are observed.
The maximum entropy (maxent) estimator is the prob-
ability distribution with the largest entropy among
those “compatible” with the data. One selects features
z 7→ fi(z) (for instance, boolean indicator that the
word has a given prefix or is preceded by a given word)
and ask that their expected value equal their observed
mean. In other words, a maximum entropy estimator
is an underdetermined generalized method of moments
(GMM) estimator; it is the solution of a constrained
optimization problem.
It can be shown that that estimator is

{
Argmax
p∈P

H(p)

}
=

{
Argmax
p∈Q

L(p)

}
= P ∩Q

where

P = { p : ∀i Epfi = Ep̃fi }
p : model probabilities
p̃ : observed probabilities

Q =
{
p : p(z) ∝

∏
α
fi(z)
i , αi > 0

}
H(p) =

∑
p(z) log p(z) entropy

L(p) =
∑

p̃(z) log p̃(z) log-likelihood,

i.e., the maximum entropy estimator is also the maxi-
mum likelihood estimator for probability distributions
of the form p(z) ∝

∏
α
fi(z)
i ; these are sometimes called

log-linear models, Gibbs models, exponential models,
multinomial logit models.
This duality between maximum entropy and maxi-
mum likelihood leads to the generalized iterative scal-
ing (GIS) algorithm to find the αi. It assumes that

∀z
∑
i

fi(z) = C

∀z ∃i fi(z) = 1

∀i ∀z fi(z) ⩾ 0

and proceeds as follows

α
(0)
i = 1

α
(n+1)
i = α

(n)
i

(
Ẽfi
E(n)fi

)1/c

E(n)fi =
∑
x

p(n)(z)fi(x)

Ẽfi =
∑
x

p̃(z)fi(z) =
1

|Sample|
∑

x∈Sample
fi(z).

While Ẽ is easy to compute (it is just a sum over the
sample), E(n) usually involves an exponentially large
number of terms; if z = (x, y), it can be approximated
as a sum over the sample {(x1, y1), . . . , (xN , yN)}:

E(n)fi ≈
∑
j

p̃(xj)
∑
y

p(n)(y|xj)fi(y, xj).

Reduction of maximum entropy models
to hidden Markov models

J. Goodman
Maximum entropy models can be reformulated as hid-
den Markov models (HMM): just turn the formula in
the GIS (generalized iterative scaling) algorithm into a
graph (the HMM depends on the sample, though).

A gaussian prior
for smoothing maximum entropy models

S.F. Chen and R. Rosenfeld (1999)
To avoid overfitting a maximum entropy model, one
can:

Article and book summaries by Vincent Zoonekynd 896/1044

– Add more constraints (it is already a constrained op-
timization); but even reasonable constraints such as
forbidding zero probabilities can make the problem
unfeasible;

– Shrink the n-gram model towards the (n −
1)-gram model, i.e., avoid zero probabilities
in p(wn+1|xn · · ·w1) by shrinking it towards
p(wn+1|xn · · ·w2);

– Replace the constrained optimization

Minimize D(q || punif) such that U(q) = 0

by a penalized entropy maximization

Minimize D(q || punif) + τU(q)

where U(q) is often a weighted average of the squared
constraint breaches

U(q) =
∑
i

1

σ2
i

(∑
x

q(x)fi(x)− p̃(x)fi(x)

)2

;

– Replace the constraints Efi = Ẽfi by fat constraints∣∣∣Efi − Ẽfi∣∣∣ < ε; this is equivalent to an entropy pe-
nalized by a step function;

– Apply the smoothing to the equivalent maximum
likelihood problem: this can be interpreted as a gaus-
sian prior.

Maximum entropy estimation in economic
models with linear inequality restrictions

R.C. Campbell and R.C. Hill
You can define a maximum entropy estimator for lin-
ear regression, i.e., the estimation of β in y = xβ + ε,
as follows: impose βi ∈ [βmin

i , βmax
i], and write it as

βi = p1iβ
min
i + p2iβ

max
i where p1i + p2i = 1; p can

be interpreted as a probability; proceed similarly for
the error terms (some suggest εj ∈ [−3σ̂, 3σ̂], where σ̂
comes from some other estimator); solve the optimiza-
tion problem

Maximize
∑

p ln p

such that y = xβ + ε

p1 + p2 = 1.

This can also be used for the general linear model
(GLM).

Maxent models,
conditional estimation and optimization

D. Klein and C. Manning
HLT-NAACL, ACL (2003)

Generative models (or joint models, such as naive Bayes
classifiers, hidden Markov models (HMM), probabilis-
tic context-free grammars, n-gram models) predict
joint probabilities p(y, x), while discriminative models
(or conditional models, such as logictic regression or
support vector machines (SVM) – logistic regression is
actually the conditional analogue of the naive Bayes

classifier) only predict conditional probabilities p(y|x).
Since the latter do not have to predict the marginal
distribution p(x), they usually perform better.
An exponential (or log-linear, or maxent) model is a
model of the form

pλ(y|x) ∝ exp
∑
i

λifi(x, y)

where the fi are called features (often binary variables
such as “the word is capitalized”, “the previous word
is a verb”, “the word is ‘car’”, “the word ends in ‘-ic’”,
“the word starts with ‘re-’”, “the word is in a dictio-
nary of place names”, etc. – often, there are hundreds
of thousands of them, but only a handful are non-zero).
Those models tend to overfit the data and need to be
smoothed, e.g., with a prior (adding virtual data or
dropping features with low counts are bad ideas – ac-
tually, including features that are always zero in the
training set makes wrong answers less likely; along the
same idea, redundant features, such as 2-grams and
1-grams, are an insurance against the lack of data).
This presentation also clearly presents general-purpose
optimization algorithms: line search, gradient ascent (a
line search in the direction of the gradient; the search
path is then a succession of orthogonal segments), con-
jugate gradient (modify the gradient towards the pre-
vious search direction to avoid those right angles), La-
grange multipliers for constrained optimization.

Bivariate option pricing
using dynamic copula models

R.W.J. van den Goorbergh et al.
Insurance mathematics and economics (2005)

Rainbow options, i.e., options on several underlyings
(call-on-max, put-on-min, call-on-min, put-on-max)
can be priced by modelling the (two) underlyings as
follows:
– Each underlying follows a GARCH process with
gaussian innovations;

– The dependence between the innovations is de-
scribed by a copula, from a family of copulas
parametrized by Kendall’s τ , depending on time:

τt = γ0 + γ1 logMax(σ2
1,t, σ

2
2,t).

Wouldn’t it be better to model dependence using coin-
tegration instead of copulas?

One size fits all
Part 1: An idea whose time

has come and gone
Part 2: Benchmarking results

M. Stonebraker et al. (2005, 2007)
Traditional database management systems (DBMS)
try to provide a single solution to all your data prob-
lems; but now that some of those problems have re-
ceived more attention, specialized systems outperform
them by one or two orders of magnitude:

Article and book summaries by Vincent Zoonekynd 897/1044

http://www.sai.msu.su/~megera/postgres/history/rel-db-hist.png

– Traditional DBMS cater to datawarehousing with
bitmap indices (instead of B-trees), materialized
views and optimizer tactic for star schema queries
are outperformed by column stores (Vertical, Mon-
etDB), that do not retrieve whole rows, allow for
compression and better indexing or sorting; and re-
member that the TPC-H datawarehouse benchmark
is biased to overlook problems of generalist DBMS...

– Traditional DBMS tackle stream processing (mon-
itoring traffic congestion and suggesting alterna-
tive routes; tracking military vehicles and personel;
financial feeds) in a 2-stage process (update the
database, then use the data); furthermore log-based
recovery and synchronization needs do not fit well
in a real-time setup; Stream engines (Streambase,
Coral8, Apama) do not have that legacy;

– Text search (Google with GFS, BigTable and
MapReduce);

– Scientific databases require specialized storage
(dense or sparse matrices or higher dimensional ar-
rays, compression (MPEG, etc.)) and optimized op-
erations on them (matrix multiplication, pivot, in-
terpolation, concatenation, approximate search for a
small subarray); some of the authors are developing
such a system, called ASAP.

The end of an architectural era:
It’s time for a complete rewrite

M. Stonebraker et al
VLDB 2007

Traditional DBMS are also beaten in the OLTP arena
(they authors’ H-store prototype wins the TPC-C
benchmark by almost two orders of magnitude):
– Log-based recovery goes against high availability
(HA);

– Dynamic locking is outperformed by optimistic
transactions (run the transaction as if there were no
locking problems, unroll if and when a problem oc-
curs – this is called transactional memory in multi-
threaded programming languages), especially with
short-lived OLTP transactions;

– Traditional DBMS were designed at a time when
data could not fit in memory: main memory
databases can outperform them;

– The multithreading overhead is not needed, since
OLTP transactions are extremely short (larger trans-
actions should be sent to a different, OLAP system);

– Traditional DBMS are optimized for a shared mem-
ory or shared disk environment, not shared-nothing
grids (with peer-to-peer communications), which
provide higher reliability and hot upgrades;

– Traditional DBMS were designed in a time when
hardware was expensive and people cheap and there-
fore require a lot of human fine-tuning: self-tuning,
self-healing – self-everything – systems are eventu-
ally cheaper;

– JDBC increases the overhead and complicates or
hides the program logic.

It’s time to stop calling circuits “hardware”
F. Vahid (2007)

The software-hardware frontier is getting blurrier:
sequential programming, event-based programming,
data flow programming, FPGA (field programmable
gate array, i.e., “programmable chip”) cover the whole
spectrum from temporal modelling (formerly software)
to spacial modelling (formerly hardware). FPGAs are
still underused – some people talk of using them to
speed up financial computations.

ks: Kernel density estimation
and kernel discriminant analysis

for multivariate data in R
T. Duong

Journal of statistical software (2007)
A kernel density estimate if

f̂H(x) =
1

n

∑
i

KH(x−Xi)

where Xi are the observations,

KH = |H|−1/2K(H−1/2x),

K is a kernel (such as K(x) = (2π)−d/2 exp(− 1
2x
′x),

its choice is not crucial), and H is a positive definite
matrix.
The article explains how to choose H, beyond the
naive choice of “sphering the data” (replacing X by
(VarX)−1/2X and choosing a diagonal H, check the
sm and KernSmooth packages), based on the (asymp-
totic) mean integrated square error

MISE(H) = E

∫
Rd

(
f̂H(x)− f(x)

)2
dx.

Self- and super-organizing maps in R:
the kohonen package

R. Wehrens and L.M.C. Buydens
Journal of statistical software (2007)

To map a high-dimensional data set to two dimensions,
one can use:
– Principal component analysis (PCA);
– Multidimensional scaling (MDS): similar to PCA,
but starts directly from the distance matrix, not the
coordinates – there are also non-linear variants;

– self-organizing maps (SOM): a variant of the k-
means algorithm that takes into account proximity
between cluster centers.

SOM can also be used for supervised classification:
learn two maps in parallel, one with the predictive vari-
ables, the other with the variable(s) to predict; often
each will have its own distance and the algorithm will
use a linear combination of these. Super-organizing
maps generalize this to more than two layers.

Article and book summaries by Vincent Zoonekynd 898/1044

http://www.amazon.co.uk/Data-Warehouse-Toolkit-Complete-Dimensional/dp/0471200247
http://lambda-the-ultimate.org/node/2091
http://www.jstatsoft.org/v21/i07
http://www.jstatsoft.org/v21/i07
http://www.jstatsoft.org/v21/i07
http://www.jstatsoft.org/v21/i05
http://www.jstatsoft.org/v21/i05

Copulas: a personal view
P. Embrechts

A review article on current topics, uses, misuses, prob-
lems and workarounds in copula theory, with interest-
ing references:
– Copulas were designed to study continuous variables
(or rather: variables with continuous margins): with
non-continuous variables, everything that could pos-
sibly go wrong will;

– Fitting a copula to your data is only half the story:
do not forget goodness of fit tests!

– Correlation is not always a good measure: given two
continuous marginal distributions F1 and F2, the set
of attainable correlations is a closed interval that can
be much smaller than [−1, 1] – e.g., with LN(0, 1)
and LN(0, 42), it is [−2.5 10−4, 1.4 10−2]...

– There is no good answer to the question “which cop-
ula to use?”: at the very least, you should have a
look at elliptic and extreme value copulas, but do
not expect them to suffice – our copula catalogue is
still mostly empty (some would even say useless);

– Even if you do not know which copula to choose,
there is hope: given several sources of risk
X1, . . . , Xn (market risk, operational risk, etc.), the
knowledge of their marginal distribution, and a risk
aggregation function ψ(X1, . . . , Xn), we can find
bounds of this aggregated risk

ψmin ⩽ ψ(X1, . . . , Xn) ⩽ ψmax

For instance, inf{VaRα(
∑
Xi), Xi ∼ Fi}; one some-

times also assumes properties for the copula, instead
of optimizing on the set of all copulas.

A primer on copulas for count data
C. Genest and J. Nešlehová

Astin bulletin (2007)
The definition of a copula assumes that the margins are
continuous: otherwise, the “copula function” C(u, v) is
no longer uniquely defined – and even worse, naive def-
initions are never a copula. Given two discrete random
variables X and Y , one can consider the set of copulas
C such that

∀x, y FX,Y (x, y) = C(FX(x), FY (y)).

(One of those copulas has good properties, though: the
bilinear extension, i.e., the simplest piecewise affine,
continuous copula.)
Even if the variables are independent of monotonic-
dependent (this notion becomes tricker than func-
tional monotonic dependence), this set is rather large:
one can compute pointwise bounds of those copulas;
these lead to bounds on Spearman’s correlation and
Kendall’s τ (the difference between those bounds is at
least one). The definitions of Kendall’s τ and Spear-
man’s ρ do not account for ties; in particular, depend-
ing on the marginal distribution, they may not span
all of [0, 1]; they can be replaced by Kendall’s τb

τb(X,Y) =
τ(X,Y)√

P (X1 6= X2)P (Y1 6= Y2)

and Spearman’s grade correlation coefficient (many
other concordance measures have been suggested); de-
pendence in the copula (positive quadrant dependence,
left tail dependence, positive likelihood ratio depen-
dence) leads to dependence in the initial variables (for
the bilinear extension, this is even equivalent).

The joy of copulas:
bivariate distributions with uniform marginals

C. Genest and J. MacKay
American Statistician (1986)

Elementary (but interesting) exercises leading to the
definition of archimedian copulas, an example of a sin-
gular distribution with smooth margins

φ(t) = (1− t)α, α ⩾ 1

C(x, y) = φ−1(φ(x) + φ(y)),

and a “geometric” interpretation of Kendall’s τ for
archimedian copulas

τ = 4

∫ 1

0

φ(t)

φ′(t)
dt+ 1.

Copulas: tales and facts
T. Mikosch (2005)

Copulas do not really fit in the theory of stochastic
processes and time series analysis – this is worrying,
since the banking and finance industry, responsible for
the copula epidemic, mainly use them in this context.
More work needs to be done on copula estimators and
goodness of fit tests (Should we estimate margins and
copula simultaneously? Should we use a parametric fit
of the margins or their empirical distribution to fit the
copula? Does a good fit for the margins and for the
copula lead to a good fit for the multivariate distribu-
tion?).
The effects of increasing dimension (on, say, the quality
of copula estimators) remains largely unstudied: most
authors stick to the 2-dimensional case. For stochas-
tic processes, you would even need infinite-dimensional
copulas.
Our catalogue of copulas is still mostly empty: archi-
median copulas are rarely meaningful in practical sit-
uations, elliptic copulas are bad at measuring “tail
dependence” (I use quotes because the notion of up-
per and lower tail dependence is limited to the 2-
dimensional case), there is no canonical multivariate
distribution on which to build an extreme value copula
(the Gumbel copula is popular, but is far from being
the only choice).
The author also disagrees with the need to transform
the margins, and with the choice of a uniform distri-
bution.

Article and book summaries by Vincent Zoonekynd 899/1044

Discussion of
“copulas: tales and facts” by T. Mikosch

C. Genest and B. Rémillard
Extremes (2006)

Harsh criticism of the previous article.

Copulas: tales and facts – rejoinder
T. Mikosch

After summarizing the responses to the article (e.g.,
someone mentionned that pseudo-likelihood copula
estimators (use the empirical distribution of the
marginals to fit a parametric copula) are inefficient),
the author also clarifies what he means by “dependence
structure” for stochastic processes: the whole distribu-
tion, which is determined by all the finite-dimensional
marginals – this includes the 1-dimensional margins
and therefore leads to large misundertandings with
copula specialists.

Everything you always wanted to know about
copula modelling but were afraid to ask

C. Genest and A.-C. Favre
Journal of hydrologic engineering (2007)

The following graphics can help modelling with copu-
las:
– Scatterplot of ranks, i.e., plot of the sample copula;
– The Chi-plot plots the pairs (λa, χi) where

Hi =
#{ j 6= i : Xj ⩽ Xi, Yj ⩽ Yi }

n− 1

Fi =
#{ j 6= i : Xj ⩽ Xi }

n− 1

Gi =
#{ j 6= i : Yj ⩽ Yi }

n− 1

χi =
Hi − FiGi√

Fi(1− Fi)Gi(1−Gi)
F̃i = Fi − 1

2

G̃i = Gi − 1
2

λi = 4 sign(F̃iG̃i)Max(F̃ 2
i , G̃

2
i);

large values of λ are outliers, large values of χ signal
non-independence;

– TheK-plot is the quantile-quantile plot of theHi ver-
sus the distribution coming from independent vari-
ables (on this plot, you can also draw the curve ob-
tained with perfect positive dependence).

The article also reviews a few copula estimators:
– If you are fitting a copula from a 1-parameter familly,
you can choose this parameter so as to produce
the observed Kendall’s τ or Spearman’s ρ (this is
a method or moments estimator); this can lead to
actual tests;

– Maximum pseudo-likelohood estimators modify the
log-likelihood ∑

i

log cθ(FXi, GXi)

with the empirical marginal distributions∑
i

log cθ

(
Ri
n+ 1

,
Si

n+ 1

)
where Ri and Si are the ranks of Xi and Yi;

– 2-step estimators: first estimating the maginal dis-
tributions, then the copula (this is another pseudo-
likelihood);

– Kernel (non-parametric) estimators.
When modelling data with copulas, people often for-
get to check how good the fit is: the article presents an
actual test; some graphics can also help:
– Compare the plot of the sample copula and that of
simulated data from the fitted copula;

– The quantile-quantile plot of

Ĉ

(
Ri
n+ 1

,
Si

n+ 1

)
against Cθ̂(U, V) where (U, V) ∼ Cθ̂.

The authors also remark that most measures of depen-
dence are of the form∫∫

J(u, v) dC(u, v)

where J can be chose optimally if you know the familly
of copulas your data comes from; J(u, v) = uv gives
Spearman’s ρ, J(u, v) = 4C(u, v) − 1 gives Kendall’s
τ , J(u, v) = Φ−1(u)Φ−1(v) gives the van der Waerden
statistic.
Also note that, for gaussian distributions, correlation,
Spearman’s ρ and Kendall’s τ are very similar.

Correlation and dependence in risk
management: properties and pitfalls

P. Embrechts et al. (1999)
Correlation is a misleading measure of dependence for
non-elliptic distributions, such as derivative returns in
finance or loss in insurance; the article lists some of
those fallacies:
– Marginal distributions and correlation need not de-
termine the joint distribution, in particular, the
value at risk (VaR) of linear portfolios is not de-
termined by the marginal distributions and the cor-
relation;

– Given the marginal distributions, not all correlations
in [−1, 1] are attainable;

– The worst-case VaR (quantile) of X + Y need not
occur when ρ(X,Y) is maximal, i.e., when X and Y
are comonotonic (the variance will be maximal, but
not the quantiles): the best you can say is

VaRα(X + Y) ⩽ inf
Cℓ(u,v)=α

F−11 (u) + F−12 (v);

this is not surprising since VaR is not a subadditive
risk measure; consequently, low correlation need not
mean high diversification.

The article also recalls:

Article and book summaries by Vincent Zoonekynd 900/1044

– the link between correlation and regression

ρ(X,Y) =

VarY −Min
a,b

E[(Y − (a+ bX))2]

VarY

b =
Cov(X,Y)

VarX
a = E[Y]− bE[X].

– other measures of dependence: rank correlation,
Schweizer and Wolff

ρS(X,Y) = 12

∫∫
(C(u, v)− uv)dudv

δ1(X,Y) = 12

∫∫
|C(u, v)− uv| dudv

δ2(X,Y) =

(
90

∫∫
|C(u, v)− uv|2 dudv

)1/2

δ3(X,Y) = 4 sup
u,v
|C(u, v)− uv|

comonotonicity, positive quadrant dependence

∀x, y P [X > x, Y > y] ⩾ P [X > x]P [Y > y],

positive association

∀g1, g2 increasing
E[g1(X,Y)g2(X,Y)] ⩾ E[g1(X,Y)]E[g2(X,Y)].

If all correlations are either ρmin(Fi, Fj) or ρmax(Fi, Fj)
and satisfy some compatibility conditions, then the
joint distribution is uniquely determined; it is called
an extremal distribution.
It is not known if all linear correlation matrices are rank
correlation matrices, but a sufficient condition is that
the matrix of the 2 sin(πρij/6) be a linear correlation
matrix (this is then the correlation matrix of the gaus-
sian distribution with the prescribed rank correlation
matrix, which you can use in simulations).
The article does not tackle serial and cross-correlation
and estimators (of correlation, rank correlation and
copulas).

On Blest’s measure of rank correlation
C. Genest and J.F. Plante

Canadian journal of statistics (2003)
Many measures of concordance, for a copula C, are of
the form ∫

[0,1]2
f(u, v) dC(u, v).

For instance:

ρ(X,Y) = 12

∫
[0,1]2

uv dC(u, v)− 3

τ(X,Y) = 4

∫
[0,1]2

C(u, v) dC(u, v)− 1

This article examines the asymptotic distribution of
Blest’s measure of rank correlation, an estimator of

ν(X,Y) = 2− 12

∫
[0,1]2

(1− u2)v dC(u, v)

and suggest to symetrize it as

ξ(X,Y) =
ν(X,Y) + ν(Y,X)

2

= −4 + 6

∫
[0,1]2

uv(4− u− v) dC(u, v).

Correlation in a bayesian framework
A. DasGupta et al.

Journal of multivariate analysis (2000)

Asymptotic distribution of Cor(θ, θ̂), where θ is a pa-
rameter in a model (seen as a random variable) and θ̂
an estimator of θ.

A characterization of quasi-copulas
C. Genest et al.

Journal of multivariate analysis (1999)
A quasi-copula is a function Q : [0, 1]2 −→ [0, 1] so
that for each track B (a path from (0,0) to (1,1), non-
decreasing in both coordinates) there exist a copula CB
that coincides with Q on B.
Not all quasi-copulas are copulas.

Forecasting multifractal volatility
L. Calvet and A. Fisher (2001)

The multifractial model of asset returns (MMAR) is a
brownian motion B compounded with a random trad-
ing time θ

logPt − logP0 = B[θ(t)]

where the trading time θ is the cumulative distribution
of a multifractal measure.
Given two sequences of positive real numbers m0 and
m1 such that

∀t m0,t +m1,t = 1,

define a sequence of probability measures on [0, 1] as
follows: µ0 = λ is the Lebesgue measure; µ1 has weight
m0,1 on [0, 12) and weight m1,1 on [12 , 1); µ2 splits each
of the intervals [0, 12) and [12 , 1) in two, and assigns a
fraction m0,2 (resp. m1,2) to the left (resp. right) one;
etc. In formulas,

µn =

(
1∑

i1=0

· · ·
n∑

in=0

mi1,1 · · ·min,n1[x,x+2−n]

)
λ

where x =
∑n
k=1 ik2

−k. This is a binomial measure
on [0, 1]. Instead of splitting each interval in two, one
can uniformly split them into b subintervals. Instead of
using deterministic sequences mk,t, one can use a dis-
crete random variable M taking values m0, . . . ,mb−1

Article and book summaries by Vincent Zoonekynd 901/1044

with probabilities p0, . . . , pb−1: this is a random multi-
fractal measure. One can ask that the weight be exactly
preserved at each step or only on average: E[M] = 1/b.
The Poisson multifractal also randomizes the splitting
points (with a Poisson process). The authors have yet
to study option pricing and stochastic portfolios in this
context.

Multifractality in asset returns:
theory and evidence

L. Calvet and A. Fisher (1996, 2001)
Earlier article on the MMAR.

Volatility comovement:
a multifrequency approach

L.E. Calvet et al. (2004)
Multifractal volatility can be generalized to bivariate
time series; the model can be estimated via maximum
likelihood (in closed form) or a particle filter.

Theoretical foundations of asset allocation and
pricing models with higher-order moments

E. Jurczenko and B. Maillet (2006)
A random variable X D4-dominates Y if it is prefered
over Y for each utility function in

D4 = {U : R→ R : U ′ > 0, U ′′ < 0, U ′′′ > 0, U ′′′′ < 0 }.

(This chapter was not interesting.)

Community structure
in social and biological networks

M. Girvan and E.J. Newman (2001)
To the usual stylized facts of social networks
– Small world: the average distance between two nodes
is small, often logarithmic in the number of vertices;

– Power law degree distribution;
– Network transitivity (or clustering): the probability
that two nodes are connected is higher if they are
connected to a third, measured by the clustering co-
efficient

C = 3
Number of triangles

number of connected triples of vertices

the authors add one more: those graphs can be par-
titionned into communities. The following algorithm
performs better than hierarchical clustering. The be-
tweenness of an edge is the number of shortest paths
that run through it; if there are several shortest paths
between two nodes, they are given the same weight so
that those weights sup up to one. Communities appear
when you remove edges with the highest betweenness.

A general approach to integrated risk
management with skewed, fat-tailed risks

J.V. Rosenberg and Tl. Schuermann (2005)
Recipes to aggregate different sources of risk (mar-
ket, credit, operational), measured by the value-at-risk
(VaR), without really falling in the gaussian trap.

Bayesian analysis for penalized spline
regression using WinBUGS

C.M. Crainiceanu et al.
Journal of statistical software (2005)

Penalized models can be seen as bayesian models (in-
deed, the penalty can be turned into a prior distribu-
tion). As a result, one can tweak bayesian inference
software (e.g., Bugs, Jags) into fitting penalized mod-
els.

A software tool for the exponential power
distribution: the normalp package

A.M. Mineo and M. Ruggieri
Journal of statistical software (2005)

General error distributions (GED), aka exponential
power distributions (EPD), aka normal distributions of
order p, are a family of distributions generalizing the
gaussian distribution and designed to be used as er-
ror distributions. They have three parameters: mean,
shape (p = 2 for the gaussian, p = 1 for the Laplace
and p =∞ for the uniform distribution) and dispersion
(σp = (E |X − µ|p)1/2).
Along with the usual d, p, q, r functions, the package
also provides an lmp function for regression with EPD
errors.

EbayesThresh:
R programs for empirical Bayes thresholding

I.M. Johnstone and B.W. Silverman
Journal of statistical software (2005)

When fitting data with wavelets, we want most of the
coefficients to be zero – to this end, we have to thresh-
old them. This article suggests to model the coeffi-
cients as a mixture of a Dirac density in zero (co-
efficients to be thresholded) and a Laplace distribu-
tion (aka double exponential), to which noise has been
added. They use bayesian methods to perform the
thresholding.
This can be applied to other situations where you have
a series of random variables, measured with noise, most
of which are zero.
The same idea is also used for discrete distributions,
e.g., with the zero-inflated Poisson distribution (ZIP)
– check the zicounts package in R.

A boosting approach for automated trading
G. Creamer and Y. Freund

Workshop on data mining for business
applications, KDD 2006

Article and book summaries by Vincent Zoonekynd 902/1044

Monkeying with the goodness-of-fit test
G. Marsaglia

Journal of statistical software (2005)
To test if qualitative variables x1, . . . , xn are iid and
follow a given distribution, one can:

– Look at Q1 =
∑ (observed− expected)2

expected ;
– Look at the same thing, Q2, for pairs (x1, x2),
(x2, x3), . . . ;

– Look at Q2 −Q1.

A clue for cluster ensembles
K. Hornik

Journal of statistical software (2005)
What to do when a clustering algorithm is not stable.

A comparison of immune
and genetic algorithms for two real-life tasks

of pattern recognition
A.O. Tarakanov and Y.A. Tarakanov

Journal of unconventional computing (2005)
Immunocomputing (IC), i.e., k-nearest neighbours af-
ter dimension reduction via singular value decomposi-
tion (SVD), perform better than neural nets, which
perform better than genetic algorithms (GA) – on
those datasets, chosen because IC was working on
them.

Negative selection algorithm
for aircraft fault detection

A. Dasgupta et al.
Negative selection algorithms (NSA) are just a k-
nearest neighbours algorithm after a principal compo-
nent analysis (PCA) and/or k-means dimension reduc-
tion step.

On-line negative databases
F. Esponda et al.

Negative selection (the immune system recognizes the
self by storing information about the non-self) can ob-
scure information and help design privacy-enhancing
negative databases.

Squashing flat files flatter
W. DuMouchel et al.

Instead of adapting statistical methods to large
datasets, you can make large datasets smaller: random
sampling is an option, but surrogate data can perform
better: cluster the data in a large number of clusters
(k-means or simply bins, with a weight on each bin),
examine the statistical properties of the cluster centers,
e.g., moments, and generate random (or non random)
data with similar properties.
The caveat is that the “statistical properties” you repli-
cate must capture the information you want.

Downside consumption risk and expected
returns

V. Polkovnichenko (2006)
Yet another article showing that investors are averse
to dowside risk: with rank-dependent expected utility
(RDEU), utility is weighted by decision weights which
are transformations of the cumulative objective prob-
abilities of ranked events – cumulative prospect theory
is a special case of RDEU.

Equilibrium underdiversification and the
preference for skewness

T. Mitton and K. Vorkink
Review of financial studies (2007)

Preference for skewness, i.e., maximization of

E[X]− 1

2τ
VarX +

1

3φ
SkewX,

as with “Lotto investors”, explains underdiversified
portfolios.

Opinion divergence and post-earnings
announcement drift

K.L. Anderson et al. (2007)
Opinion divergence can be measured as
– The Herfindhal measure of divergence,

HI =
N∑
i=1

(
Vi

Vtotal

)2

where Vi is the volume traded by market maker i on
that day;

– The standardized unexplained volume (SUV), i.e.,
standardized residual (on the day of interest) of the
regression (over the past two months)

volume ∼ returns+ + returns−
– The standardized price volatility (SPV), i.e., the
standardized residuals of the regression of the daily
volatility against volume and returns.

On the interaction between ultra-high
frequency measures of volatility

G.M. Gallo and M. Velucchi (2007)
Comparison of realized variance

∑
x2t and bipower

variance ∑
|xtxt−1|

(the latter is supposed to be robust to jumps) in the
context of multiplicative error models (MEM), i.e.,
GARCH-like models used to model positive quantities
(volume, duration, range, etc.): they are almost undis-
tinguishable.

Neoclassical factors
L. Zhang and L. Chen (2007)

The Fama–French model can be replaced by a 3-factor
model: market, investment/assets, earnings/assets;
this also captures momentum effects.

Article and book summaries by Vincent Zoonekynd 903/1044

Asset based style analysis for equity strategies:
the role of the volatility factor

D.E. Kuenzi and X. Shi
Journal of alternative investments (2007)

When trying to explain or replicate hedge fund returns,
do not forget to include a volatility factor (calls and
puts (the authors’ advice), change in VIX, straddle,
convertible bonds), lest you remain blind to all non-
linear effects, such as Lo’s “capital decimation” strat-
egy.

Who moves stock prices? Monthly evidence
B. A. Ødegaard (2007)

Change in institutional ownership might help predict
monthly returns.

A better tool than Allen’s relations for
expressing temporal knowledge in interval data

F. Morchen
Theory and practice of temporal data mining

(2006)
Allen’s relations between intervals, used in tempo-
ral reasoning (before, meets, overlaps, starts, finished,
equals), are not robust enough for data mining. The
time series knowledge representation (TSKR) uses a
musical analogy (tones, chords, phrases) and only con-
siders the interaction of participating intervals and ac-
counts for noise.

Quantile trees for marketing
C. Perlich and S. Rosset

DMBA 2006
Quantile regression can be used to focus on customers
with high growth potential.

Adaptive event detection
with time-varying Poisson processes

A. Ihler et al.
KDD 2006

(Bugs-like) graphical model example.

Data mining in the real world
F. Fogelman Soulié

Data mining is widely used for customer relation man-
agement (CRM), fraud detection, credit scoring, etc.
and extreme data mining, i.e., data mining in databases
beyond 10TB, is starting to emerge. It is characterized
by:
– Heterogeneous data;
– Poor data quality (missing values, outliers – or even
“unlabeled data”, i.e., “massively missing values”);

– Large volume (billions of rows, thousands of
columns), that prevents the user from hand-chosing
the variables and calls for data duplication avoidance;

– Fast model calibration (ideally hours, should be lin-
ear in the number of rows or columns);

– Automated model quality assessment (they use a ro-
bustness indicator, KR, from Vapnik’s structural risk
minimization theory);

– Real-time model application;
– Industrialization (we would say “productionaliza-
tion”) within the same project, not as a separate,
long-term project;

– Model control (check deviations on the data distri-
bution);

– Data mining standards (JDM, PMML) to export the
results;

– Process control and workflow;
– Exploratory modeling (the end-user will want to un-
derstand the model);

– Predictive modeling;
– Unskilled users.

A review of some semiparametric regression
models with application to scoring

J.L. Berthet and V. Patilea
“Scoring” means predicting a binary variable, whose
values are interpreted as “bad” (“default”) or “good”
(“non-default”); the problem is usually asymetric:
while the “good” observations are homogeneous, there
are many ways of being “bad”. Between parametric
methods (logistic regression, linear discriminant anal-
ysis (LDA)) and non-parametric methods (k-nearest
neighbours (kNN), classification trees, neural net-
works, support vector machines), one can also consider
semiparametric methods, such as logistic generalized
additive model (GAM):

P [non-default] = m1(X1) + · · ·+mn(Xn)

P [non-default] = m(λ1X1 + · · ·+ λnXn)

This is very similar to a dimension reduction before the
logistic or GAM reduction, but the dimension reduc-
tion step takes the variable to predict into account (this
sounds like the difference between principal component
regression (PCR) and partial least squares (PLS)).

Stochastic skew in currency options
P. Carr and L. Wu

Journal of financial economics (2007)
Traditional jump-diffusion stochastic volatility models
fail to account for the time-varying skew of the risk-
neutral distribution.

Time reversal invariance in finance
G. Zumbach (2007)

Most time-series models are time-reversal invariant –
price time series are not...

Group dynamics of the Japanese market
W.S. Jung et al. (2007)

When building a minimum spanning tree (MST) on
the correlation matrix of stock returns to find sectors,
you might want to remove the influence of the global
market (here, S&P500) first.

Article and book summaries by Vincent Zoonekynd 904/1044

Information flow between composite stock
index and individual stocks

O. Kwon and J.-S. Yang (2007)
Individual stocks are influenced by the market.

Multiagent cooperative search for portfolio
selection

D.C. Parkes and B.A. Huberman
Investment strategies can be averaged (as in bayesian
model averaging (BMA) or “multi-alpha”).

Information diffusion based explanations of
asset pticing anomalies

A. Bolmatis and E.G. Sekeris (2007)
For not-so-liquid stocks, you might want to replace the
Fama-French factors by
– Age (number of days since the IPO);
– proportion of non-trading days in the past year.

The supervisor’s portfolio: the market price
risk of German banks from 2001 to 2003 –

analysis and models for risk aggregation
C. Memmel and C. Wehn

Bundesbank (2005)
The value-at-risk (VaR) of a portfolio can be estimated
from the time series of the VaR of its constituents.

Non-linearities in exchange rate dynamics:
chaos?

V. Vandrovych (2006)
The hypothesis that exchange rates are chaotic is re-
jected by the correlation dimension and the Lyapunov
exponent.

Shortfall: a tail of two parts
R. Martin and D. Tasche

Risk (2007)
Expected shortfall can be decomposed into a system-
atic and a specific part:

Y = Xβ + ε

E[Y |Y > y] = E[X|Y > y]β + E[ε|Y > y].

Under gaussian (or some other distributional) assump-
tions, this can be explicitely computed.

Cointegration and exchange market efficiency:
an analysis of high frequency data

A. Trapletti et al. (1999)
Were markets efficients, a triangle of high frequency
exchange rates would be cointegrated and the cointe-
gration term would be a martingale difference (test-
ing properties of the cointegration term instead of the
cointegration itself is easier: it does not require a long
period – just a lot of data, but with tick data, there is
enough).

Markets are not efficient; arbitrage opportunities, prof-
itable trading strategies do exist.

Predicting tick-by-tick price fluctuations by
evolutionary computations

M. Tanaka-Yamawaki
Genetic algorithms (GA) can predict the direction of
the next tick given previous tick directions.

The volatility effect:
lower risk without lower return

D.C. Blitz and P. van Vliet (2007)
Stocks with low volatility earn higher risk-adjusted re-
turns: equity investors overpay for risk.

Optimal hedge ratio estimation
and effectiveness using ARCD
E. Kostika and R.N. Markellos

A GARCH-like model (auto-regressive conditional den-
sity) for generalized Student distributions, allowing
time-varying variance, skewness and kurtosis.

Efficient time series matching by wavelets
K.P. Chan and A.W.C. Fu

The Haar wavelet transform can be used to redure the
dimension of time series, before indexing with an R-
tree.

Similarity search over time series data
using wavelets

I. Popivanov and R.J. Miller
ICDE (2002)

Wavelet transforms can be used as a data reduction
rechniaue for time series data – contrary to popular
belief, the Haar wavelet is not always the best choice.

Time series feature extraction
for data mining using DWT and DFT

F. Mörchen (2003)
When using the discrete Fourrier transform (DFT, as
in JPEG) or the discrete wavelet transform (DWT, as
in JPEG2000) for time series dimension reduction, you
can select the largest coefficients instead of the first
ones.

An econometric model of serial correlation
and illiquidity in hedge fund returns

M. Getmansky et al.
Journal of financial economics (2004)

Time-varying leverage and high water mark incentive
fees cannot account for all the autocorrelation in hedge
fund returns: illiquidity (e.g., non-synchronous trad-
ing) and/or return smoothing play a larger role.
This calls for an econometric model of smoothed re-
turns: observed returns are a moving average of true
economic (unobserved) returns. a hidden Markov chain

Article and book summaries by Vincent Zoonekynd 905/1044

Mimicking portfolios with conditioning
information

W. Ferson et al.
Journal of financial and quantitative analysis

(2006)
To replicate a non-investible asset, you can look for the
linear combination of assets in your universe whose re-
turns have the largest correlation – this is an example
of partial least squares (PLS).

Option pricing with aggregation of physical
models and nonparrametric statistical learning

J. Fan and L. Mancini (2007)
Traditional option pricing models can be combined
with nonparametric (machine learning) approaches to
correct their errors.

Asian options versus vanilla options
G. Ye

Asian options need not be cheaper than vanilla options.

Market timing
with candlestick technical analysis

B.R. Marshall et al. (2007)
Technical analysis (TA) is not profitable....

The impact of option strategies in financial
portfolios performance: mean-variance and

stochastic dominance approaches
F. Abid et al. (2007)

Stochastic dominance is very rare: given to investment
strategies, you should not expect one to dominate the
other. However, if the strategies are related (say, a
1-parameter family of strategies, or a strategy with or
without an overlay), all hope is not lost.

Individual vs aggregate preferences:
the case of a small fish in a big pond

D.W. Blackburn and A.D. Ukhov (2006)
The risk preferences (utilities) of individual investors
sometimes aggregate in a counterintuitive way: an
economy of risk-seeking agents can be risk-averse as a
whole. The notion of a “representative agent” is there-
fore not well defined...

Long memory modeling
of realized covariance matrices
R. Chiriac and V. Voev (2007)

A time-dependent variance matrix can be modeled
with an ARMA (here, a fractionally integrated ARMA)
model on its Cholesky matrix.

Estimating high-frequency based
(co-)variancces: a unified approach

I. Nolte and V. Voev (2007)
Microstructure noise and non-synchronous observation
complicates the estimation of the covariance of diffu-
sion processes. Those effects can be studied and reme-
died by examining the effects of changes in the sam-
pling frequency.

Quantile estimation
with adaptive importance sampling

D. Egloff and M. Leippold (2007)
Importance sampling can also be used to estimate
quantiles, not just expectations.

How well do financial and macroeconomic
variables predict stock returns: time series

and cross-sectional evidence
A.S. Reng Rasmussen (2006)

Yet another list of variables to predict future returns.

Article and book summaries by Vincent Zoonekynd 906/1044

What happened to the quants in August 2007?
A.E. Khandani and A.W. Lo (2007)

This may have been caused by the unwind of a large
portfolio.

The paradox of quantitative investing
and ways to deal with it

T. Suwabe et al.
Goldman Sachs (2007)

The authors build a BMA-CAPM (bayesian model av-
eraging capital asset pricing model) on a hundred vari-
ables, to decompose the momentum (in excess of the in-
dustry average) into common and specific components:
the latter can be used as a reversal (it used to works),
the former as a momentum (noisier, only works in the
past three years).
One could also try:
– a time-series (Northfield-like) risk model (this means
one regression per date and per stock);

– support vector machines (SVM) or regularization
path regression (least angle regression (LAR), lasso,
etc.) instead of BMA.

Costly short-selling and stock price
adjustment to earnings announcements

A.V. Reed (2007)
Costly short-selling, or short-selling constraints, re-
duces the speed at which the price adjusts to private
information, increases volatility (around earnings an-
nouncements), reduces the information content of price
and volume. (This looks like a textbook example of the
omitted variable syndrome...)

A stochastic volatility model with fat tails,
skewness and leverage effects

D.R. Smith (2007)
One can try to reproduce the leverage effect,
Cor(rt, vt+1) < 0, i.e., shocks are correlated with fu-
ture volatility, as follows.
– This first attempt exhibits leverage, but not negative
skewness;

yt = µ+ ext/2 + εt

xt+1 = ω + φtxt + ηt(
εt
ηt

)
∼ N

((
0
0

)
,

(
1 ρσ
ρσ σ2

))
– If you ask that shocks be correlated with contempo-
raneous volatility, this is no longer a martingale;

– Use the first model with a copula instead of a gaus-
sian distribution.

Who needs hedge funds?
A copula-based approach

to hedge fund return replication
H.M. Kat and H.P. Palaro (2005)

Hedge fund replication usually tries to mimic the dis-
tribution of the returns of a hedge fund, but hedge
funds are often used as an overlay to an already exist-
ing portfolio: the authors suggest to also replicate the
dependency between the hedge fund and the existing
portfolio, as follows.
– Infer the joint distribution of the hedge fund and
the existing portfolio using copulas (gaussian, Stu-
dent, Gumbel, Cook-Johnson (aka Clayton), Frank,
symmetrised Joe-Clayton (SJC)) and marginal dis-
tributions (gaussian, Student, Johnson SU);

– Among all the payoff functions, find the cheapest
that produces this distribution (this is Dybvig’s pay-
off distribution pricing model (PDPM) generalized
to a 2-dimensional payoff distribution); it suffices
to consider path-independent payoff function (any
payoff distribution generated by a path-dependent
payoff function can also be generated by a path-
independent payoff funcion); if the Sharpe ratio of
the underlying asset is high enough and the corre-
lation with the investor’s portfolio low enough, the
payoff function will be non-decreasing;

– Price and find a replicating strategy for this payoff
function.

Estimation of value at risk using Johnson’s
SU -normal distribution

P. Choi (2001)
Value at risk (VaR) estimation can be univariate (you
only have the returns of a portfolio) or multivariate
(you know the returns of the constituents of your port-
folio, i.e., you want to estimate a quantile of

∑
i witrit,

where r and perhaps also w is a random variable); it
can be conditional (e.g., conditional heteroskedasticity,
but you could also have models with conditional third
or fourth moments; the article also mentions exponen-
tial smoothing (RiskMetrics), which is a special case
of IGARCH) or unconditional (extreme value theory
(EVT)).
The article studies VaR estimation in a GARCH model
with SU -normal innovations.
A random variable Y is SU -normal if it is of the form

Y = sinh(λ+ θX)

where θ > 0 and X is standard gaussian. Those distri-
butions can be skewed and have fat tails.

Reinforcement learning: a survey
L.P. Kaelbling et al.

Journal of artificial intelligence research (1996)
In reinforcement learning, the agent has to make
choices and receives some feedback on those choices.
Contrary to supervised learning, he is not told which
action would have been the best; furthermore, the con-
sequences of an action need not be immediate.
The agent typically tries to maximize one of the follow-
ing quantities (they do not lead to the same optimal
policies):

Article and book summaries by Vincent Zoonekynd 907/1044

– N -step optimal control

E

[
N∑

t=n+1

rt

]
, n ∈ J0, NK

– N -step receding horizon control

E

[
n+N∑
t=n+1

rt

]

– Infinite-horizon discounted model

E

[∞∑
t=1

γtrt

]

– average reward model (this one does not penalize for
long learning times)

lim
N→∞

E

[
1

N

N∑
t=1

rt

]

Asymptotic convergence results are useless: a fast con-
vergence to a near-optimal solution is better than a
sluggish convergence to the optimal.
Algorithms have to make a trade-off between explo-
ration (of the possible choices and their consequences)
and exploitation.
Dynamic programming can be used to maximize those
performance measures.
With a 1-step, immediate-reward model, one can use
greedy strategies, Boltzman exploration or interval-
based techniques (for each action, store the number of
trials and the number of successes and compute a con-
fidence interval on the probability of success). These
algorithms can be adapted to multi-step, immediate-
reward problems.
Markov decision processes (MDP) can be used to
model delayed reward. If the decision process were
known (we do assume that the states and transition
probabilities are known, though), we could compute
the value of each state for the discounted model and,
from there, the optimal policy.
Value iteration estimates the value of each node and
derives a strategy (since a strategy is a finite object, it
converges in a finite number of steps); policy iteration
directly estimates the policy.
But we do not know the model.
The adaptive heuristic critic algorithm is similar to pol-
icy iteration, but the value function is computed iter-
atively, from the TD(0) algorithm:

V (s)← V (s) + α(r + γV (s′)− V (s))

where r is the reward, s the current state, s′ the next
state. The TD(λ) algorithm also updates states that
were recently visited.
The Q-learning algorithm (if you do not know which al-
gorithm to implement, use this one) estimates Q(s, a),

the expected discounted reinforcement of taking action
a while in state s, with the TD(0) or TD(λ) algorithm,
with a decreasing α. You must first explore the states
(but the algorithm is robust) and, after convergence,
you can act greedily.
Other algorithms (certainty equivalence, Dyna, priori-
tized sweeping learn the model at the same time as the
optimal policy: they make a better use of the data and
converge faster.
In case of very large state spaces, you can aggre-
gate some states and solve a coarser problem (multi-
grid methods, state aggregation); you can also replace
the mappings (transition probabilities, value functions,
policies, etc.) by a simpler representation obtained by
supervised learning.There are other generalization al-
gorithms.

Computer science and game theory
J.Y. Halpern

arXiv:cs/0703148

Complexity plays a role in game theory:
– Agents can have bounded rationality, i.e., have lim-
ited computational power (e.g., they can be finite
automata); this can lead to cooperation in the pris-
oner’s dilemma;

– Many problems about Nash equilibrium are NP-
hard;

– One cannot design a non-dictatorial voting scheme
immune to manipulation by voters, but this manipu-
lation can be made computationnally unreasonable;
there are similar problems in combinatorial auctions
(auctions where you can bet on bundles of objects;
but pricing 2N objects is too long);

– Agent-based games (e.g., Byzantine agreement are
very similar to distributed computing, networking
protocols, fault-tolerance, mediator-less cryptogra-
phy.

This (concise) article also mentions random graphs,
bayesian and Markov networks, reinforcement learn-
ing.

What every investor should know
about commodities

part 1: univariate return analysis
H.M. Kat and R.C.A. Oomen (2006)

Commodities do not offer a risk premium: the average
return is not significantly different from zero; the re-
turns depend (slightly) on the business cycle, on mon-
etary conditions, on the futures curve (upward sloping
(contango) or downward sloping (backwardation)).
Commodities are not more volatile than stock, as mea-
sured by the 2.5%–97.5% range, the standard devi-
ation, the GARCH(1,1) γ = α + β parameter (it
measures the persistence of volatility); they are more
volatile in backwardation; energy is more volatile in re-
cessions and less in expansion phases; volatility shocks
tend to persist (γ > 0.9).

Article and book summaries by Vincent Zoonekynd 908/1044

Commodity returns are not skewed, when skewness is
measured as normalized third moment, as L-moment

X.75 − 2X.50 +X.25

X.75 −X.25
,

as the normalized difference between mean and median

X̄ −X.50

1

T

T∑
i=1

|xi −X.50|

or as the GARCH skew parameter.
All commodity returns have fat tails, as measured by
the fourth moment, the L-moment

X.875 −X.625 +X.375 −X.125

X.75 −X.25
,

a ratio of fractile ranges

X.975 −X.025

X.75 −X.25

or the number of degrees of freedom of a GARCH(1,1)
model with Student innovations.
Commodity returns are autocorrelated.

What every investor should know
about commodities

part 2: multivariate return analysis
H.M. Kat and R.C.A. Oomen (2006)

Commodity returns are correlated within groups but
not between groups, except “softs”.
Commodity returns are weakly correlated with stock or
bond returns, as measured by correlation or Kendall’s
tau, but this depends on the business cycle; there is
little persistence in correlation dynamics, as measured
by a GARCH(1,1)-DCC model, except metals.
There is tail dependence, as measured by the sym-
metrized Joe Clayton copula (SJC), which has two pa-
rameters for tails and head dependence, within groups
but not between groups; there is no difference between
head and tail dependence: correlation is sufficient.
There is no tail dependence between commodities and
stocks or bonds.
Commodity futures are correlated with unexpected in-
flation, as measured by inflation minus interest rate or
change in inflation.

On more robust estimation of skewness
and kurtosis: simulation and application to

the S&P500 index
T.H. Kim and H. White (2003)

One can define quantile-based measures of skewness:

SK1(α) =
X1−α − 2X.5 +Xα

X1−α −Xα

SK2 =

∫ 1/2

0

(X1−α − 2X.5 +Xα)dα∫ 1/2

0

(X1−α −Xα)dα

=
E[X]−X.5

E[|X −X.5|]

SK3 =
E[X]−X.5

σ(X)

(SK3 is not compatible with “skewness ordering” – but
this notion is not defined) and kurtosis (those mea-
sures are usually corrected by substracting the value
for a gaussian distribution):

KR1 =
(X7/8 −X5/8) + (X3/8 −X1/8)

X3/4 −X1/4

KR2(α, β) =
E[X|X > X1−α]− E[X|X < Xα]

E[X|X > X1−β]− E[X|X < Xβ]

KR2(α, β) =
X1−α −Xα

X1−β −Xβ

(with α = 0.05, β = .5 in KR2 and α = 0.025, β = .25
in KR3).

Significance tests harm progress in forecasting
J.S. Armstrong (2005)

Significance tests should be avoided:
– readers and authors misinterpret them;
– the choice of the null hypothesis is problematic;
– there is a publication bias agains non-rejection of the
null;

– it distracts the authors from other issues: they often
fail to assess importance (with effect sizes or confi-
dence (with confidence intervals).

Furthermore, if you have enough data, everything is
statistically significant.

Forecasting with many predictors
J.H. Stock and M.W. Watson (2005)

Handbook of economic forecasting
The authors review several classes of forecasting al-
gorithms: forecast combination (without any discus-
sion of bagging or boosting), bayesian model averaging
(BMA, rarely used, but better than an equal-weighted
combination of predictors), empirical Bayes methods
(the prior is not a prior, it comes from the data) and
dynamic factor models (no mention of biased estima-
tors or regularization paths).
In a dynamic factor model (DFM), unobserved AR fac-
tors f and their lags explain the observed variables Xit:

ft + Γ1ft−1 + · · ·+ Γkft−k = ηt

Xit = λi0ft + · · ·+ λiℓft−ℓ + ut

Article and book summaries by Vincent Zoonekynd 909/1044

while a (static) factor model would be

Xit = λift + uit.

Dynamic factor models can be reformulated as static
factor models and estimated by maximum likelihood;
there are also principal-component-analysis-based ap-
proximations.
The article interprets this model in terms of the spec-
tral density matrix without bothering to define it.
Dynamic principal component analysis (PCA) is simi-
lar; the corresponding latent variables can be obtained
by performing a PCA dimension reduction on the spec-
tral density.

Principal components at work: the empirical
analysis of monetary policy with large datasets

C.A. Favero et al. (2002)
Comparison of two estimators of dynamic factor
models, based on static (time-domain) and dynamic
(frequency-domain) PCA (principal component analy-
sis): the performance is similar, but dynamic PCA is
more parsimonious.

Moment problems
via semi-definite programming:

applications in probability and finance
P. Popescu and D. Bertsimas (2000)

The Markov, Chebychev, Chernoff inequalities provide
bounds on some probabilities P [X ∈ Ω] given some mo-
ments or joint moments of arbitrary random variables.
More generally, one can try to solve the following op-
timization problem:

Maximize E[φ(X)]

such that ∀i E[fi(X)] = qi

for all random variable X : Ω −→ Rm.
For instance, in finance, one can look for bounds on the
price of an option given the moments of the underly-
ing and/or other option prices (we only have to assume
that the option price is the expected discounted payoff
under the risk-neutral measure; we do not know any-
thing about that measure except that it is a probability
measure).
The feasibility of that optimization problem can be ex-
pressed in terms of positive semi-definitiveness – e.g., in
a multi-dimensional context, the second centered mo-
ment (the variance matrix) should be positive semi-
definite.
In the dual problem (under reasonable conditions,
there is a strong duality theorem), the expectation dis-
appears but we have an inifite number of constraints:

Minimize y′q
such that ∀x ∈ Ω y′f(X) ⩾ φ(x).

Fortunately, those constraints can often be expressed
as semi-definite constraints and the problem can be
solved.
In higher dimensions, beyond the second moment, the
problem of finding optimal bounds is NP-hard.
This is a review article: there are more detailed publi-
cations by the same authors.

Second order cone programming approaches
for handling missing and uncertain data

P.K. Shivaswamy et al.
Journal of machine learning research (2006)

In the support vector machine (SVM) binary classifi-
cation optimization problem

Minimize 1
2 ‖z‖

2
+ C

∑
i

ξi

such that ∀i yi(〈w, xi〉+ b) ⩾ 1− ξi
∀i ξi ⩾ 0

uncertainty can be introduced by transforming the con-
straints into

P
[
yi(〈w, xi〉+ b) ⩾ 1− ξi

]
⩾ 1− κi.

The Chebychev inequality gives a worst-case bound on
this probability, provided you know the first two mo-
ments of x.
This can be generalized to classification into more than
two groups and to regression.

Applications of second order cone
programming

M.S. Lobo et al. (1998)
Many optimization problems can be recast as sec-
ond order cone programs (SOCP): quadratically-
constrained quadratic programs (QCQP), optimization
problems in which the objective is a sum or max of
norms; FIR (finite impulse response) filter design, ro-
bust linear programming, robust least squares, robust
portfolio optimization.
Interior-point methods adapted to SOCP are faster
than those adapted to the more general semidefinite
programs (SDP).

Second-order cone programming
F. Alizadeh and D. Goldfarb (2002)

More detailed article on the same subject.

Introducing Mr. Risk
A. Meucci

Very simple (but readable and rigorous) article about
portfolio construction: variance matrix (i.e., risk
model) construction, optimization, warning on the con-
fusion between linear and log-returns, myopic alloca-
tion (multi-period asset allocation in the special case
where the weights are constant), portfolio insurance
via delta hedging, decomposition of homogeneous risk
measures (e.g., the value at risk) using Euler’s formula.

Article and book summaries by Vincent Zoonekynd 910/1044

The last chapter presents sensibility analysis: after
choosing a few risk factors, you can express the future
price of an asset as a function of those risk factors; this
can be approximated by a Taylor expansion,

∆price = ∂price
∂risk ∆risk+ 1

2∆risk′ ∂
2price
∂risk2

∆risk.

For instance, in fixed income, you can use time and
yield as risk factors; the corresponding derivatives are
called carry and duration

C =
∂π

∂t
D = − 1

π

∂π

∂y
;

this leads to the duration approximation

∆π ≈ C∆t− πD∆y.

Similarly, the delta approximation is a first-order ap-
proximation of the price change of a (vanilla) option
using stock indices.
Second-order approximations can be used to compute
the value at risk (VaR) of a portfolio.
The article ends with a detailed example: the risk of a
portfolio of mortgages.

Caml trading: experiences in functional
programming on Wall Street

T. Minsky
The monad reader (2007)

Benefits of functional languages in finance.

Financial econometrics
A.W. Lo (2007)

This soon-to-be-published book (this was only the pref-
ace) is a collection of old articles. The table of contents
is interesting, though:
– Models of asset returns: time-varying moments, fat
tails, long memory, regime shifts, cointegration;

– Asset pricing models: CAPM and its tests, multifac-
tor models (APT), performance measurement, tests
of market timing or security selection ability;

– Dynamic asset pricing models: variance bounds con-
troversy (?), equity premium puzzle, consumption-
based CAPM, stochastic discounted factor model,
incomplete markets, term structure;

– Market microstructure: price discovery (walrasian
tatonnement, etc.), price discreteness, irregular trad-
ing intervals, bid-ask spread, binomial “trees”, state-
space density estimation, price jumps, serial correla-
tion, functional central limit theory (?)’

– Non-standard finance: survivorship bias, data
snooping, bayesian methods, event study, gener-
alized method of moments, robust statistics, non-
linear dynamical systems, neural networks, technical
analysis, random matrix theory.

A jigsaw puzzle of basic risk-adjusted
performance measures

H. Scholz and M. Wilkens
Journal of performance measurement (2005)

Performance measures based on total risk
– Sharpe ratio;
– RAP (risk-adjusted performance or Modigliani’s
M2): expected returns of the portfolio, leveraged so
that its volatility equals that of the market portfolio;

– DRRAP (differential returns based on RAP): differ-
ence in expected returns between the market port-
folio and the portfolio, leveraged to have the same
volatility as the market portfolio;

– TRA (total risk alpha): difference in expected re-
turns between the portfolio and the market portfolio,
leveraged to have the same volatility as the portfolio
studied;

can be modified by replacing the total risk σ by the
market risk β:
– Treynor ratio;
– MRAP (market-risk-adjusted performance);
– DRMRAP (differential returns based on MRAP);
– Jensen’s alpha.
The authors explain those definitions with pictures.

Symmetric versus asymmetric conditional
covariance forecasts: does it pay to switch?

S. Thorp and G. Milunovich
Journal of financial research (2007)

Multidimensional, asymmetric GARCH models in
portfolio optimization can lower realized portfolio risk.

Model comparison of coordinate-free
multivariate skewed distributions with an

applucation to stochastic frontiers
J.T.A.S. Ferreira and M.F.J. Steel

Journal of econometrics (2007)
Most multivariate families of distributions used to
model skewness are not coordinate-free: the coordinate
axes play a special role, skewness is only alloed in some
(coordinate-dependent) directions – those families are
not closed under orthodonal transformations.
Coordinate-free multivariate skew distributions can be
obtained as follows: choose n univariate skewed distri-
butions, apply an invertible n-dimensional affine trans-
formation.
Univariate skewed distributions can be obtained as fol-
lows, from a symmetric distribution with pdf (proba-
bility distribution function) f and cdf (cumulative dis-
tribution function) F :
– Hidden truncation: s(x) ∝ f(x)F (αx);
– Inverse scale factor (scale the distribution by a
different factor depending on the sign): s(x) ∝
f(γ−sign xx);

– More generally, one can consider s(x) = f(x)p(F (x))

Article and book summaries by Vincent Zoonekynd 911/1044

http://www.google.co.uk/search?q=CAPM+regression+tests+elmar+merten

for various choices for p, e.g.,

p(u) =
uτ−1(1− u)1/τ−1

B(τ, 1/tau)
.

Enjoy the joy of copulas
J. Yan (2006)

Presentation of the copula R package to sample from,
plot or fit gaussian, Student, Clayton, Frank or Gum-
bel copulas in any dimension.

Analyst recommendations, mutual fund
herding and overreaction in stock prices

N.C. Brown et al. (2007)
Mutual funds herd after consensus analyst changes –
exploiting their overreaction can earn you 6% per year.

A robust version of the KPSS test based on
indicators

R.M. de Jong
Journal of econometrics (2006)

In the KPSS test, instead of demeaning the data xi ←
xi− x̄, just use xi ← sign(xi−medianx): this does not
change the asymptotic distribution, relaxes assump-
tions about the moments and increases the power of
the test in presence of fat tails (but reduces it other-
wise).

Multivariate archimedian copulas, d-monotone
functions and `1-norm symmetric distributions

A.J. McNeil and J. Nešlehová
Archimedian copulas are exactly the `1-symmetric cop-
ulas that avoid the origin.
The article also characterizes functions that generate
d-dimensional archimedian copulas.

On the interaction between ultra-high
frequency measures of volatility

G.M. Gallo and M. Velucchi (2007)
The realized variance (i.e., variance estimated from
tick data)

∑
x2t and the bipower variance

∑
|xtxt−1|,

robust to jumps, are almost undistinguishable in the
context of multiplicative error models (MEM), i.e.,
GARCH-like models used to model positive quantities
(volume, duration, range, etc.).

Estimating copula functions from limited data
D. Allwright et al. (2006)

The problem of estimating the value at risk (VaR) of a
random variable without any distributional assumtion
(or when the distribution has too many parameters,
say, a 2-parameter Pareto distribution or a mixture of
gaussians or exponentials) remains the same in higher
dimension: it is impossible when pn > α, where p is the
quantile to estimate, 1−α is the confidence level and n
the number of observations (say, p = 0.99, α = 0.05).

Zero-intelligence realized variance estimation
J. Gatheral and R.C.A. Oomen (2007)

Realized variance estimators (i.e., variance estimators
using high frequency data) should avoid market mi-
crostructure artefacts such as the bid-ask bounce – one
can do better than aggregate the data, i.e., throw away
99% of it. The article compares twenty such estima-
tors on simulated data (using the zero-intelligence limit
order book model: orders arrive at random, following
a Poisson distribution, and are randomly cancelled).
Their conclusions are:
– Do not forget to correct for any bias in your estima-
tor;

– Prefer mid-quotes to trade prices, they are much less
noisy;

– Use subsampling or kernel estimators (a kernel vari-
ance estimator is a linear combination of Cov(xt, xt),
Cov(xt, xt−1), Cov(xt, xt−2), etc., with well-chosen
decreasing coefficients).

Issues in creating a sentiment measurement
based on internet stock message boards

Y.C. Zhang and P.E. Swanson
Internet message boards (thelion.com, Yahoo finance,
the motley fool, raging bull, etc.) can be used to build
a sentiment index; reply messages should be given a
lower weight (0.125); the maximum entropy text clas-
sifier (not clearly presented) performs better than the
naive Bayes one.

Some methods for training mixtures of experts
P. Moerland (1997)

Ensemble learning algorithms typically combine sev-
eral learning algorithms (or experts) using fixed weights
(the weights were determined from the training sam-
ple but they do not change and depend on each new
observation).
On the contrary, you could have several experts con-
trolled by a gating expert assigning weights to each of
them, depending on the observation to classify.

Voting with a parametrized veto strategy:
solving the KDD cup 2006 problem by means

of a classifier committee
D. Tikk et al.

SIGKDD Explorations (2006)
Combine several (neural-network-based) supervised
learning techniques with a committee vote, using
weights from the average performance of a 10-fold
cross-validation test and the confidence value of each
algorithm, with a veto to control the maximum allowed
error rate.

Maximizing classifier utility when training
data is costly

G.M. Weiss and Y. Tian
SIGKDD Explorations (2006)

Article and book summaries by Vincent Zoonekynd 912/1044

http://ssrn.com/abstract=972731
http://ssrn.com/abstract=972731
http://ssrn.com/abstract=988998
http://ssrn.com/abstract=988998
http://ssrn.com/abstract=970358
http://ssrn.com/abstract=968576
http://ssrn.com/abstract=968576

Formalization of what emergency medicine already
does – for instance, this is one of the motivations of
decision trees, which use few variables.

Portfolio management using value at risk
A comparison between genetic algorithms

and particle swarm optimization
V.A.D. Filho (2006)

Non-linear, multi-modal optimization problems, such
as value-at-risk (VaR) portfolio optimization (the ar-
ticle is limited to 50 assets) can be solved by particle
swarm optimization (PSO) or genetic algorithms (GA).
In PSO, particles (portfolio weights vectors) fly around
and their velocity is updated from their previous veloc-
ity (with a linearly decreasing inertia), the best posi-
tion encountered so far by the particle and the whole
swarm:

vi,t+1 = wvi,t + c1r1(besti − xi) + c2r2(bestswarm − xi)
r1, r2 ∼ U(0, 1).

Constraints can be taken care of in different ways:
– bumping: when a particle hits a boundary, its ve-
locity is set to zero (but the particles may become
trapped near local extrema near the boundary);

– random positioning: when a particle hits a bound-
ary, it is put somewhere else, randomly;

– amnesia: when a particle hits a boundary, it contin-
ues as if there were no boundary but stops recording
the best position so far;

– penalty function.
In the GA, individuals are selected for reproduction
by a roulette wheel (with a probability proportional to
their fitness) or by a tournament (paris of individuals
are selected ar random and the best one is chosen); the
crossover can be basic

(x, y) 7→ (x1..k t yk+1..n, y1..k t xk+1..n)

or arithmetic

(x, y) 7→
(
px+ (1− p)y, (1− p)x+ py

)
;

the mutation operator is

(xk, xℓ)← (xk + r, xℓ − r)
k, ` ∼ U(J1, nK)
r ∼ U(0, 1).

PSO is faster but GA are more robust.

Stochastic analysis of an agent-based model
A. Veglio and M. Marsili

arXiv:0705.4025

An agent-based herding model.

Extending Black–Litterman analysis beyond
the mean-variance framework
L. Martellini and V. Ziemann

Journal of portfolio management (2007)
The authors extend the Black–Litterman framework
to take into account skewness and kurtosis: the simply
replace the benchmark portfolio (used to compute the
implied alpha) by the minimum VaR (value at risk)
portfolio, where the VaR is computed from a Cornish–
Fisher expansion and the CAPM (capital asset pricing
model) is replaced by a 4th moment CAPM. The clas-
sifical Black–Litterman formula is then applied.
This is an approximation of Meucci’s generalization:
he considered the whole returns distribution, not just
its first moments.

On dynamic measures of risk
J. Vcitanić and I. Karatzas (1998)

An agent has some initial capital x, some liability C to
be met at time T and tries to find a strategy π so that
his wealth at time T exceeds the liability:

Xx,π(T) ⩾ C.

He can do so privided the initial capital x is large
enough,

x ⩾ Erisk-neutral

[
C

S0(T)

]
(where S0 is the price of the risk-free asset). If not, its
risk can be measured as

inf
π
Ereal-world

[
C −Xx,π(T)

S0(T)

]+
or even, to account for model uncertainty,

sup
P∈P

inf
π
EP

[
C −Xx,π(T)

S0(T)

]+
.

The Epps effect revisited
B. Tóth and J. Kertész

arXiv:0704.1099

Stock correlations decrease as the sampling frequency
increases: this is the Epps effect. The classical expla-
nations:
– the maximum cross-correlation is the same but is not
attained at a zero time lag;

– asynchronicity of ticks
are not sufficient. The article provides a physicist’s
explanation for the remaining effect.
Also check arXiv:0704.3798, by the same authors.

Price discovery in the US stock and stock
options markets: a portfolio approach

R. Holowczak et al. (2006)
Many articles try to guess the direction of the informa-
tion flow between the stock and option markets, i.e., in

Article and book summaries by Vincent Zoonekynd 913/1044

which market price discovery occurs (with inconclusive
results).
To remove the non-linear effects of options, the authors
consider synthetic forwards, i.e., portfolios made of a
put-call pair, with a linear payoff.
Price discovery seems to occur in stock markets, except
in case of unusual option trading activity.

Structural breaks in financial time series
E. Andreou and E. Ghysels (2006)

Not accounting for structural changes can lead to over-
complicated models.
Here are some partial-sum-based (CUSUM) statistics
to test for a structural break:

– Fluctuation =
X̄Jm+1,nK − X̄J1,mK

σ/(n−m)
;

– PS =
m+k∑
i=m+1

(
Xi − X̄J1,mK);

– PG =
n∑
i=1

Xi − Min
1⩽i⩽n

n∑
i=1

Xi.

The asymptotic framework developped by Kuan,
Hornik and Leisch to detect structural changes in lin-
ear regressions can be adapted to non-linear processes
(GARCH, etc.) and can help determine various thresh-
olds beyond which those partial sum statistics should
be considered suspicious.
To spot multiple breaks, one can use penalized like-
lihood methods or, for stochastic volatility (GARCH,
etc.) models, minimum description length (MDL)-
based tests (no details given).
The bulk of the article is devoted to checking the con-
ditions under which those tests are valid.

Notes sur les mesures de performance
D. Herlemont
YATS (2004)

The Sharpe ratio is not compatible with strong domi-
nance and can be manipulated (just write out-of-the-
money puts); non-gaussian arbitrage oportunities can
have an arbitrarily small Sharpe ratio.
A Bonnet–Nagot risk measure π satisfies:
– X ⊥⊥ Y =⇒ Max

α,β
π(αX + βX) = π(X) + π(Y)

– The maximum is reached for α = λ(X) and β =
λ(Y) where λ(Z) only depends on Z.

Up to an affine transformation, a Bonnet–Nagot mea-
sure of risk coincides with the Sharpe ratio for gaussian
distributions.
They can be characterized in terms of the log-Laplace
transform HX(λ) = − lnEe−λX as

π(X) = sup
λ

I (HλX)

where I : C∞(R,R) −→ R is linear and continuous.
Examples include:

– The Sharpe ratio:

ISR(H) = H ′(0) +
1

2
H ′′(0)

– The Hodges (or Stutzer) measure:

IHodges(H) = H(1)

– The Bonnet–Nagot measure:

IBN(H) = H(1) + aH(α).

(The link with Acerbi’s coherent measures of risk is
mentionned but not explained.)
The Stutzer measure is actually the rate of conver-
gence to zero of the ruin probability (studied in large
deviation theory); the Stutzer criterion is a (riskier) al-
ternative to the Kelly criterion, which maximizes the
rate of growth instead.

Information uncertainty and stock returns
X.F. Zhang (2004)

Greater information uncertainty produces higher re-
turns following good news and lower returns following
bad news; “news” are measured by forecast revisions or
short-term momentum; uncertainty is measures by firm
size, fir age, analyst coverage, analyst forecast disper-
sion, returns volatility, cash flow volatility. In other
words: the more volatile or uncertain the stock, the
better momentum works.

The underlying dynamics of credit correlations
A. Berd et al.

Journal of credit risk (2007)
The default of a basket of companies is usually mod-
elled as follows:
– Consider boolean, time-dependent loss variables
Yit = 1Rit⩾dit , where Rit are latent variables and
dit thresholds (e.g., Rit = Rt is the time of default
of company i and dit = t);

– For fixed t, study the copula of the latent variables
(use a 1-factor gaussian copula);

– Consider the loss distribution, i.e., the distribution
of
∑
i `iYi.

The correlation surface ρ(K, p) is the correlation pa-
rameter of the gaussian copula that produces the same
expected loss for the tranche [0,K] and default proba-
bility p.

Pricing forward contracts in power markets by
the certainty equivamence principle:

explaining the sign of the market risk premium
F.E. Benth et al. (2006)

Explanation of the risk premium for commodities, from
a 2-agent model (consumer and producer), each with
a different utility, and an underlying with a stochastic
price.

Article and book summaries by Vincent Zoonekynd 914/1044

Asset price dynamics with heterogeneous
groups

G. Caginalp and H. Merdan
Physica D (2007)

Asset price dynamics can be modeled by a system of
differential equations, similar to the predator-prey sys-
tems in biology.

Generalized canonical regression
A. Estrella (2007)

Linear regression assumes that there is a single depen-
dent variable

y =
∑
i

βixi + ε;

with several dependent variables, one can use multiple
regression

∀j yj =
∑
i

βijxi + εj

(often with some added structure to account for depen-
dencies between the yj) or canonical regression:∑

j

αjyj =
∑
i

βixi + ε

(the left-hand side is “the most predictable linear com-
bination”).
The traditional assumptions of canonical regression are
too restrictive: this article relaxes them and derives the
asymptotic distribution of the coefficients, in order to
design statistical tests.

Forwards and European options on CDO
tranches

J. Hull and Al. White
Journal of credit risk (2007)

Options on CDOs, once the parameters (default prob-
ability, expected recovery rate) have been estimated,
are not that different from vanilla European options.
The article also clearly recalls what CDS and CDO are:
– In a credit default swap (CDS), the buyer makes pe-

riodic payments (quarterly in arrears) until default
or maturity; in case of default (credit rating change,
delayed payment, bankruptcy, etc.), the sellers pays
the notional value times one minus the recovery rate
(and the buyer makes a final accrual payment);

– A collateralized debt obligation (CDO) is a claim on
a portfolio of CDS; the portfolio is cut into tranches
(the order statistics of the CDS);

– iTraxx are CDO tranches on 125 European firms;
– CDX are CDO tranches on 125 US firms.

Modelling asymetric exchange rate dependence
A.J. Patten (2005)

Conditional copulas, i.e., the colula of XY |Z, can be
used to assess how the relation between two variables
depends on a third.

(Instead of considering a copula depending on a
an exogenous variable, one could consider a higher-
dimensional copula – but the exogenous variable likely
plays a very different role.)

The performance of model-based
option trading strategies

B. Eraker
Option pricing models should not be assessed by com-
paring predicted and actual prices but by looking at
the profitability of the corresponding strategy (in effi-
cient markets, these would be equivalent).
The weights in the resulting strategy depend on the
price difference and its sensitivity to estimation errors
– this is an optimization problem.

Improved option pricing using artificial neural
networks and bootstrap methods

P.R. Lajbcygier anf J.T. Connor
International journal of neural systems (1997)
If you are unsatisfied with your option pricing model,
just try to predict its residuals with a neural network,
a bootstrap or a bagging algorithm.

Non-parametric determination of real-time
lag structure between two time series:

the “optimal thermal causal path” method
D. Sornette and A.-X. Zhou

arXiv:cond-mat/0408166

The time-warping algorithm can be generalized in a
fuzzy (Boltzmann) way to make it robust to noise.
The authors apply these results to the study of causal
relations between macroeconomic time series.

On developing a financial prediction system:
pitfalls and possibilities

S. Zemke (2002)
A bullet-point list of machine learning ideas to be ap-
plied to finance.

Model uncertainty and forecasting,
a practitioner point of view

B. Bellone and E. Michaux (2006)
The article examined several ways of tackling model
uncertainty:
– Linear regression bayesian model averaging (BMA),
good in the short term;

– Dynamic factor models (DFA, i.e., regression on the
factors of a factor analysis and their lags), good in
the long term;

– Median BMA (model obtained from the variables
with an inclusion probability beyond 1/2);

– General-to-specific (GETS) algorithm (a stepwise
variable selection, with multiple steps and tests).

The authors use a Scilab econometric toolbox, “Gro-
cer”, developped at the ENSAE.

Article and book summaries by Vincent Zoonekynd 915/1044

http://ssrn.com/abstract=982473
http://ssrn.com/abstract=982473

Momentum, reversal
and the trading behaviors of institutions

R.C. Gutierrez and C.A. Prinsky
Journal of financial markets (2007)

Cumulated residual returns (from a 5-year CAPM
model) can help devise a long-term profitable strategy,
while the other component of the momentum (“relative
momentum”) reverts after one year.
The article builds a long-short portfolio on the signal

α =
cumulated residual returns√

cumulated variance of the residual returns
.

This effect is linked to institutional ownership.

Macroeconomic factors
and Japan’s industry risk

P. Nguyen
Journal of multinational financial management

(2007)
The risk of an industry can be defined as the average
cash flow, weighted by firm size, divided by the (equal-
weighted) volatility of those cash flows.

Analyzing digits for portfolio formation
and index tracking

P.N. Posch and W.A. Kreiner
The Newcomb–Benford law (or first-digit law),

P [X1 = d] = log10

(
1 +

1

d

)
, d ∈ J1, 9K

is already used to detect fraud in tax sheets and com-
pany reports.
The authors put this distribution in a 1-parameter fam-
ily

Pd(λ) ∝ (d+ 1)1−λ − d1−λ

and compute this parameter, the digital-fit factor
(DFF) for the price of the members of an index: it
moves in the opposite direction as the index (the in-
correctly use correlation to assess this – the time series
are integrated).
They then try to use it to design an investment strat-
egy, but their strategy is merely a leverage-increasing
strategy, and they even forget to use their DFF...

A statistical derivation
of the significant-digit law

T.P. Hill
Statistical science (1996)

(Theoretical article on Benford’s Law.)

Synchronizing multivariate
financial time series

F. Audrino and P. Bühlmann (2001)
When combining data from markets in different time
zones, care should be taken: two time series X, Y from

(say) New York and London can be seen as sampled at
two different times, London close and New York close,
with every other value missing. This is a missing value
problem: models can be fitted using the EM algorithm.
The article applies this idea to the CCC-GARCH(1,1)
model.
Alternatively, one can use one data point per day at a
time when both markets are opened.
With weekly data, the problem disappears.

Correlations and volatitilities
of asynchronous data
P. Burns et al. (1998)

Earlier article on the same subject.

Why risk and return are uncorrelated:
a relative status approach

E. Falkenstein (2006)
Expected utility models where utility is a function of
the wealth relative to other market participants predict
there is no risk premium.

Long-term dependence in stock returns
J.T. Barkoulas and C.F. Baum

Long memory (or “fractal dynamics”) can be tested
using:
– Hurst’s rescaled-range (R/S) analysis;
– Lo’s modified R/S analysis;
– Geweke’s spectral regression: in an ARFIMA model,

Φ(L)(1− L)d(Yt − δ) = Θ(L)εt

(1− L)d =
∑
k⩾0

Γ(k − d)
Γ(−d)Γ(k + 1)

Lk

the fractional integration parameter d can be esti-
mated as the opposite of the slope in the regression

ln I(ξ) ∼ ln sin2
ξ

2

where I(ξ) is the periodogram of y at frequency ξ.
Some stocks exhibit long memory, but the effects dis-
appear when they are aggregated into stock indices.

Residual-based tests for fractional
cointegration: a Monte Carlo study

I. Dittmann (1998)
Comparison of many fractional cointegration tests
(Geweke, modified rescaled range, ADF, etc.): prefer
the Phillips–Perron T -test, it is usually more powerful.

Symbolic representation of long time-series
G. Hébrail and B. Huhueney

To plot a very large and somewhat periodic time se-
ries, perform a fast Fourier transform (FFT) to find the

Article and book summaries by Vincent Zoonekynd 916/1044

largest period, cut the time series accordingly, cluster
the chunks with a self-organizing map (SOM) and use
a different icon for each cell.

Dynamic portfolio selection
by augmenting the asset space

M.W. Brandt and P. Santa-Clara
Journal of finance (2006)

You can replace the (difficult) choice of a dynamic
strategy by a static choice of managed portfolios; the
authors use a constant linear combination of “state
variables” and maximize

E
[
(θz)′r − γ

2
(θz)′rr′(θz)

]
where z are the state variables, θ their weights, θz the
weight of the stocks, r the forward returns, γ the risk
aversion.

On default correlation:
a copula function approach

D.X. Li
RiskMetrics (2000)

(Non-gaussian) copulas should be used to model the
joint distribution of time-until-default (some people
use a binary variable indicating a default in the next
year, which is very imprecise) instead of the correlation
(as CreditMetrics does).
This can be used to price credit default swaps or first-
to-default swaps.

Analyzing active investment strategies
M. Ammann et al.

Journal of portfolio management (2006)
Analysis of variance (anova) can help find out which
strategy (“style”) an asset manager is following.

Managing guarantees
M.A.H. Dempster

Journal of portfolio management (2006)
The methods of asset-liability management (ALM),
i.e., dynamic stochastic programming, can be used to
implement guaranteed strategies, thereby competing
with portfolio insurance.
The technical details might be “a challenge even for
sophisticated users”.

Pairs trading: the new generation
S. Hartman et al.

ABN Amro (2006)
A pairs trading strategy can be improved by select-
ing pairs with attractive fundamentals (or even playing
them against pairs with poor fundamentals).

A liquidity-augmented
capital asset pricing model

W. Liu
Journal of financial economics (2006)

The CAPM (capital asset pricing model) overlooked
the liquidity premium.
To account for all the dimensions of liquidity (quantity,
speed, cost, price impact – speed is often forgotten),
the author develops yet another measure:

LMx =

(
nx +

λx
turnoverx

)
21x

Nx

where x = 1, 2, 12 months, nx is the number of zero
daily trading volume in the past x months, Nx is the
number of trading days in the past xmonths, turnoverx
is the sum of the daily turnover (number of shares ex-
changed divided by the number of outstanding shares)
over the past x months, λx is chosen so that

0 <
λx

turnoverx
< 1

for all stocks.

Equity portfolios generated by functions
of ranked market weights

R. Fernholz (Intech, 2000)
Functionnally-generated portfolios have weights of the
form

wi = f(MCapi).

They can be generalized to

wi = f(rank(MCap)i).

Parameters for estimation of entropy to study
price manipulation in stock market

Y.V. Reddy and A. Sebastin
Confusing article presenting various entropy estimators
(approximate entropy, sample entropy) and applying
them to price, time, quantity data.

Portfolio choice with jumps:
a closed form solution

Y. Aït-Sahalia et al. (2006)
By imposing a factor structure on the asset returns,
one can derive a closed form solution to the portfolio
choice problem for Levy returns.
(The article is technical, I have not read the details.)

Forecasting exchange rates:
a robust regression approach

A. Preminger and R. Franck (2005)
Robust regression can also be used to fit autoregressive
models.

Article and book summaries by Vincent Zoonekynd 917/1044

http://ssrn.com/abstract=962329
http://ssrn.com/abstract=962329

The PIN anomaly
around M&A announcements

N. Aktas et al.
Journal of financial markets (2006)

The probability of informed trading (PIN) can be esti-
mated from the following model (add a few indepen-
dence assumptions), via maximum likelihood:
– α: probability of information availability on a given
day;

– δ: probability of a positive price change after an
event;

– µ: rate of arrival of uninformed buyers and sellers;
– ε: rate of arrival of informed traders;
– PIN =

αµ

αµ+ 2ε

Fund manager use of public information:
new evidence on managerial skills

M. Lacperczyk and A. Seru
Journal of finance (2007)

The reliance on public information (RPI), defined as
the R2 of the regression of holdings changes against an-
alyst recommentation changes, is a measure of a port-
folio manager’s lack of skill.

On the use of data envelopment analysis in
assessing local and global performances of

hedge funds
H. Nguyen-Thi-Thanh (2006)

Yet another article on the applications of data envel-
opment analysis (DEA) to hedge fund comparison –
previous ones forgot the fees.

On the relationship between changes in stock
prices and bond yield in the G7 countries:

wavelet analysis
S. Kim and F. In

Journal of international financial markets,
institutions and money (2007)

Wavelet correction analysis (a time series of length N
yields wavelet coefficients that can be arranged in a
pyramid, N/2 coefficient on the first row, N/4 on the
second, etc.; one can then compute the variance (and
covariance, if you have several time series) of each of
these rows) allows the authrs to examine short- and
long-term relations between stock and bind returns:
except in Japan, they are negatively related.

Mean-semivariance behavior: downside risk
and capital asset pricing

J. Estrada
International review of economics and finance

(2007)
The CAPM (capital asset pricing model) can be aug-
mented by a downside risk:

return = α+β·(market returns)+β−·(market returns)−

The authors prefer to replace the beta β by the down-
side beta β−

The fundamentals
of commodity futures returns

G.B. Gorton et al (2007)
Inventories have a non-linear effect on the risk pre-
mium.

Beyond the gaussian copula:
stochastic and local correlation

X. Burtschell et al.
Journal of credit risk (2007)

People still use the 1-factor gaussian copula

Cor(Xi, X) = ρ

i 6= j =⇒ Xi|X ⊥⊥ Xj |X

to price CDO tranches. The authors suggest a stochas-
tic correlation model with a gaussian copula of the form

Cor(Xi, X) = ρi

i 6= j =⇒ Xi|X ⊥⊥ Xj |X
ρi ∈ {0, ρ, 1}

where the ρi are discrete random variables.

Extreme returns from extreme value stocks:
enhancing the value premium

K. Anderson and C. Brooks
Journal of investing (2007)

The relation between the P/E and future returns is not
linear: considering quintiles is not sufficient. The au-
thors use the idiosyncratic P/E, defined as the current
price divided by the earnings over the past 8 years,
corrected for the influence of market, size and sector.

Residual income approach
to equity country selection

S. Desrosiers et al.
Financial analysts journal (2007)

Valuation methods usually applied to companies (P/E,
ERP, etc.) can also be applied to countries.

Dynamic nonmyopic portfolio behavior
T.S. Kim and E. Omberg

Review of financial studies (1996)
In the Kelly principle (see below, Herlemont (2004)),
one can replace growth rate maximization by expected
utility maximization.

Portfolio selection with transaction costs
M.H.A. Davis and A.R. Norman

Mathematics of operations research (1990)
The Kelly strategy, in continuous time, with transac-
tion costs.

Article and book summaries by Vincent Zoonekynd 918/1044

http://ssrn.com/abstract=968052
http://ssrn.com/abstract=968052
http://ssrn.com/abstract=968052
http://ssrn.com/abstract=996930
http://ssrn.com/abstract=996930

Investment performance measurement, risk
tolerance and optimal portfolio choice

M. Musiela and T. Zariphopoulou (2007)
In this and related articles, the second author advo-
cates that utility or other satisfaction measures should
be time-dependent – forward utility, dynamic perfor-
mance, etc.

Revisiting calendar anomalies
in Asian stock markets

using a stochastic dominance approach
H.H. Lean et al.

Journal of multinational financial management
(2006)

First order stochastic dominance for the January ef-
fect has disappeared; weekly and monthly seasonality
is still present (there are statistical tests for stochastic
dominance, such as the Davidson and Duclos test).
Stochastic dominance is a very strong result, but it
captures effects not visible if you only look at the first
two moments.

Mean reversion versus random walk
in G7 stock prices:

evidence from multiple trend break
unit root tests

P.K. Narayan and R. Smyth
Journal of international financial markets,

institutions and money (2007)
Even after accounting for multiple breaks in the trend,
index prices are not stationary.

Inference in inequality
from household survey data

D. Bhattacharya (2006)
Journal of econometrics (2007)

Using the survey design can improve the estimator of
the Gini coefficient.

On the importance of measuring payout yield:
implications for empirical asset pricing

J. Boudoukh et al.
Journal of finance (2007)

Try replacing dividend yield by payout (dividends plus
repurchases) or net payout (dividends plus repurchases
minus issuances) yields.

The impact of constraints on value-added
A non-cynical approach

B. Scherer and X. Xu
Journal of portfolio management (2007)

Confusing article trying to explain how to use Lagrange
multipliers to measure the impact of constraints on the
information rati (the authors have apparently newer
heard about “matrices”, they forget to define the quan-
tities in their formulas, they do not understand the

difference between “term” (an element of a sum) and
“factor” (an element of a product), etc.).

Alternative metrics
S. Zaker

Journal of alternative investments (2007)
Empty article reminding us to provide confidence in-
tervals whenever we compute information ratios (IR).

Building a hedge fund portfolio
with kurtosis and skewness

M. Anson et al.
Journal of alternative investments (2007)

Polynomial goal programming (PGP) solves multi-
objective optimization problems as follows:
– Solve the problem for each objective separately; let
fMax
i be the optimum of the ith objective fi;

– Minimize
∏
(1 + (fMax

i − fi))αi under the same con-
straints; the αi are user-chosen parameters.

The authors prefer PGP to a linear combination of the
objectives – the methods are actually equivalent, under
a monotonic transformation of the objective functions.

An analysis of trade-size clustering
and its relation to stealth trading

G.J. Alexander and M.A. Peterson
Journal of financial economice (2007)

Stealth traders tend to use medium-sized rounded (500,
1000, 5000) transaction in an attempt to disguise their
trades.

Optimizing benchmark-based
portfolios with hedge funds

I. Popova et al.
Journal of alternative investments (2007)

To maximize the expected utility, the probability of
outperforming a benchmark, possible corrected with
the expected shortfall, in a non-gaussian set-up:
– generate N scenarios; the authors model hedge fund
returns as a mixture of two gaussians, designed to fit
the first four moments, corrected for various biases
(survivorship, autocorrelation, etc.);

– optimize; this gives an upper bound on the true op-
timal value;

– estimate the expected utility of the resulting weights
on a new random sample of N scenarios; you get a
lower bound;

– if the confidence interval given by those bound is too
small, increase N .

Shrinking the covariance matrix
D.J. Disatnik and S. Benninga

Journal of portfolio management (2007)
Comparison of several covariance matrix estimators
(sample variance, shrinkage with an optimized shrink-
age coefficient, equal-weighted portfolio of variance es-
timators, diagonal matrix): the shrinkage estimators

Article and book summaries by Vincent Zoonekynd 919/1044

give better risk forecasts for the unconstrained min-
imum variance portfolio but no estimator leads to a
good forecast of the standard deviation of the con-
strained (long-only) minimum variance portfolio.

How do performance measures perform?
Examining precision and stability

G. Hübner
Journal of portfolio managemenr (2007)

Performance or risk measures such as beta, Jensen’s
alpha (the intercept of the regression of the returns
against the market returns), Treynor ratio

GTRi = αiBmarketR/BiR

where ri = αi + BiR + εi, information ratio (IR),
Sortino ratio, Modigliani’s M2 (not defined), Ω can
be compared with:
– the rank correlation;
– the concordance correlation coefficient

ρ =
2σXY

σ2
X + σ2

Y + (µX − µY)2
;

– Cohen’s Kappa, after binning the stocks into winner
and losers for each measure (it estimates the number
of matching pairs not due to chance),

κ = 2
WW+ LL

N
− 1.

The author prefers the Treynor ratio.

Where do alphas come from?
A new measure of the value of active

investment management
A.W. Lo (2007)

Performance is traditionnally measured by ratios,

Sharpe ratio =
E[excess returns]
σ(excess returns)

Treynor ratio =
E[excess returns]

β

Information ratio =
α

σ(noise)

where

excess returns = α+β · (market excess returns)+noise

(for our market-neutral strategies, β = 0, so the Sharpe
ratio and the information coefficient coincide).
The author suggests a decomposition of the expected
portfolio returns into a passive and a non-passive com-

ponents:

E[excess returns] = E

[∑
i

wiri

]
=
∑
i

E [wiri]

=
∑
i

(Cov(wi, ri) + E[wi]E[ri])

=
∑
i

Cov(wi, ri) +
∑
i

E[wi]E[ri]

Active component =
∑
i

Cov(wi, ri)

Passive component =
∑
i

E[wi]E[ri]

Active ratio =
active component

active component+ passive component

Exchange rates and the conversion of
currency-specific risk premia
A. Eisenberg and M. Rudolf

European financial management (2007)
In an economy without arbitrage oportunities, there is
a positive stochastic discount factor (SDF) that prices
all assets

Pi,t = Et

[
MT

Mt
Xi,T

]
where Xi,T is the payoff of asset i and MT /Mt is the
SDF.
In an international setup, there is one SDF for each
currency. In a complete market, the exchange rate can
conveert stochastic discount factors accross currencies
(in incomplete markets, the SDF is not unique).

Hedging by sequential regressions revisited
A. Černý and J. Kallsen (2007)

One can compute a hedging strategy in an incomplete
market in a sequence of 1-period least squares regres-
sions backward in time.

The promise and peril of real options
A. Damodaran

Standard discounted cash flow models assume that the
cash flows are deterministic; they are actually proba-
bilistic and even contain embedded options, which have
to be taken into account to properly value a cash flow
or any corporate decision.
Examples include: the option to delay, expand, aban-
don a project, patents, natural ressources, etc.
The article recalls what an option is.

Article and book summaries by Vincent Zoonekynd 920/1044

http://ssrn.com/abstract=985127
http://ssrn.com/abstract=985127
http://ssrn.com/abstract=985127

Investment under uncertainty
and volatility estimation risk

G. Dotsis et al.
Real option pricing requires an estimate of the volatil-
ity from very few data points, but practitioners often
neglect to compute the resulting confidence interval: it
can be large, and asymetric.

Evolution analysis of large-scale software
systems using design structure matrix

and design rule theory
M.J. LaMantia et al.

Modular software is good: the option (as in “option
pricing” – these are real options) to replace a compo-
nent makes it more valuable – a counter-example being
the “complexity disaster” Windows Vista.
The design structure matrix (DSM) represents depen-
dencies between the modules; once spotted, circular
dependencies can be removed by adding one more mod-
ule.

The effect of shortfall as a risk measure for
portfolios with hedge funds
A. Lucas and a. Siegmann

The choice of the downside risk measure used to opti-
mize a portfolio of hedge funds is important: the ex-
pected shortfall can lower small losses while increasing
the risk of large crashes; quadratic shortfall and semi-
variance do not have this problem.

Variance, volatility swaps
and hedging your equity portfolio

S.E. Satchell
Journal of asset management (2007)

(editorial)
Volatility and variance swaps (whose valuation and
hedging are model-independent in a jump-free world)
seem to provide a hedge against market collapse – as
did portfolio insurance until October 1987.

Volatility filter for index tracking and
long-short market-neutral strategies

J. Miao
Journal of asset management (2007)

Only rebalance your portfolio when the volatility
regime changes.

Portfolio size and diversification
L.R. Irala and P. Patil (2007)

Portfolio diversification benefits become negligible be-
yond 15 stocks – other authors claim it never becomes
negligible.

Nonparametric estimation of state-price
densities implicit in financial asset prices

Y. Ait-Sahalia ans A.W. Lo
Journal of finance (1998)

The state price density (SPD, i.e., the density of the
prices of Arrow–Debreu securities, often called risk-
neutral density) can be computed:
– parametrically, using a model of the underlying asset
price dynamics (e.g., a geometric brownian motion
for the Black–Scholes model);

– parametrically, by imposing the family of the distri-
bution and using actual option prices;

– in a bayseian way (as above, but with a prior).
The authors present a non-parametric estimator of the
risk-neutral density using a kernel regression (some-
times called local regression).

Effects of stochastic interest rates and
volatility on contingent claims

N. Kunitomo and Y.-J. Kim (2005)
Black-Scholes option pricing makes three assumptions:
the log-returns of the underlying are gaussian, the
volatility is constant, the interest rate is constant.
Generalizations often only relax one of those assump-
tions: the authors relax two of them.

Option valuation with conditional
heteroskedasticity and non-normality

P. Christoffersen et al. (2006)
Discrete risk-neutral valuation.

The shape and term structure of the index
option smirk: why multifactor stochastic

volatility models work so well
P. Christoffersen et al. (2007)

Prefer 2-factor stochastic volatility models:

dS = rSdt+
√
V1Sdz1 +

√
V2Sdz2

dV1 = (a1 − b1V1)dt+ σ1
√
V1dz3

dV2 = (a2 − b2V2)dt+ σ2
√
V2dz4

Options prices under arithmetic brownian
motion and their implication for

modern derivatives pricing
Q. Liu (2007)

Risk-neutral option pricing under arithmetic bron-
wnian motion (unrealistic, but a good interview ques-
tion) violates the no-arbitrage principle.

The risk and return characteristics of the
buy-write strategy on the Russel 2000 index

N. Kapadia and E. Szado
Journal of alternative investments (2007)

Article and book summaries by Vincent Zoonekynd 921/1044

http://ssrn.con/abstract=936067
http://ssrn.con/abstract=936067
http://ssrn.con/abstract=988288
http://ssrn.con/abstract=988288
http://ssrn.com/abstract=977763
http://ssrn.com/abstract=959809
http://ssrn.com/abstract=959809
http://ssrn.com/abstract=959809

The buy-write strategy (write a call and buy the un-
derlying) on the S&P500 beats the S&P500 on a risk-
adjusted basis (lower returns but much lower volatil-
ity); for the Russel 2000, it still works with 1-month
at-the-money options.

Commonality in the time-variation of
stock-stock and stock-bind return comovements

R.A. Connolly et al.
Journal of financial markets (2007)

Implied volatility (of equity index options) can help
predict the link between stock and bond returns.

A reduced rank regression approach to
coincident and leading indexes building

G. Cubadda (2005)
To monitor the business cycle, one can build a coinci-
dent index (that changes when a recession occurs) and
a leading index (that changes before a recession starts).
The article uses reduced rank regression (a vector auto-
regressive (VAR) model with a reduced rank restric-
tion) to build those indices from a set of cointegrated
macroeconomic variables.

Do losses linger?
R. Garvey et al.

Journal of portfolio management (2007)
Traders who experienced a loss in the morning are more
risk-seeking in the afternoon: this disposition effect
is in agreement with prospect theory, defined here as
the maximization of an s-shaped “utility”, function of
gains and losses instead of total wealth.

Expected returns
and Markov-switching illiquidity

T.R. Henry and J.T. Scruggs (2007)
When the markets are liquid, the prices are driven by
fundamentals; when the markets become illiquid, trad-
ing volume has a greater impact on prices. The authors
use a 2-state Markov switching model for illiquidity,
returns and volatility to quantify this illiquidity pre-
mium.

The market P/E ratio, earnings trends
and stock return forecasts

R.A. Weigand and R. Irons
Journal of portfolio management (2007)

The relation between P/E and future returns is linear
when P/E ⩾ 20, but not beyond (in the US).

Coming to portfolios near you: investment
ideas you should be paying more attention to

S. Welch
Journal of wealth management (2007)

“Postmodern portfolio theory” uses:

– a downside risk measure;
– minimum acceptable returns (MAR);
– non-gaussian returns.
The article also suggets to separate the strategy into
core (passive) and satellite (absolute returns).

Tilted nonparametric estimation
of volatility functions

P.C.B. Phillips and K.-L. Xu (2007)
In a heteroskedastic regression

Y = m(X) + σ(X)ε

or in a non-linear time-series model

Yi = m(Yi−1) + σ(Yi−1)εi

one can fit the variance σ2 by local polynomials, à la
Nadaraya–Watson.

Global and regional sources of risk in equity
markets: evidence from factor models with

time-varying conditional skewness
A.R. Hashmi and A.S. Tay (2004)

The GARCH model can be generalized with modi-
fied Student innovations (to account for skewness) and
auto-regressive skewness.

Market timing with aggregate and
idiosyncratic stock volatilities

H. Guo and J. Higbee
Journal of portfolio management (2007)

The model

market returns ∼ market variance

is not significant, but if you add idiosyncratic volatility,
it is. This can be used to time the market.

Optimal gearing:
not all long-short portfolios are efficient

S. Johnson et al.
Journal of portfolio management (2007)

Confusing article: the authors, who worship Grinold
and Kahn (for the latter, this is even self-worshiping)
and do not understand the difference between = and
=⇒ , try to prevent the reader from making even worse
confusions.

We don’t quite know what we are talking about
when we are talking about volatility

D. Goldstein and N.N. Taleb
Journal of portfolio management (2007)

Warning about the confusion between mean absolute
deviation (MAD) and standard deviation.

Article and book summaries by Vincent Zoonekynd 922/1044

http://ssrn.com/abstract=983823
http://ssrn.com/abstract=983823
http://ssrn.com/abstract=983823
http://ssrn.com/abstract=970480
http://ssrn.com/abstract=970480

Implied volatility from Asian options
via Monte Carlo methods

C.-O. Ewald et al.
Many people calibrate the volatility surface using Eu-
ropean options and then use it with Asian ones (e.g.,
to compute their vega), oblivious to the dependence of
the volatility surface on the type of option.
The article uses the “logarithm trick”

∂E[h(Xσ)]

∂σ
= E

[
h(Xσ)

log f(Xσ, σ)

dσ

]
(where f(·, σ) is the density of the law of Xσ)
to express the vega of an Asian option as a weighted
expectation of h(Xσ), which can then be computed via
Monte Carlo methods.

Optimizing the retirement portfolio: asset
allocation, annuitization and risk aversion

W.J. Horneff (2006)
Investment advice for retirement is either life annuity
(i.e., the payment of the same sum every year until
death) or phased withdrawal plan (a normal portfolio,
say 60% stock, 40% bond, from which we take a fixed
proportion for consumption every year – the proportion
can also be chosen as 1/T , where T is the maximum or
expected number of remaining years of life).
The article suggests a blend of the two. They do not
seem to mention portfolio insurance.

A multivariate commodity analysis and
applications to risk management

R.H. Börger et al.
Asset (here, commodity futures) returns are not gaus-
sian and can be modeled by a generalized hyperbolic
distribution, the mixture of a gaussian and a general-
ized inverse gaussian:

X = µ+Wγ +
√
WAZ

where Z ∼ N(0k, Ik), W ∼ GIG(λ, χ, ψ), µ, λ ∈ Rd,
Z,A ∈ Rd×k.
This gives better value-at-risk and espected shortfall
estimations.
The m out of n provisional call: an auxiliary

reversed binomial tree approximation
Q. Liu (2006)

A convertible bond (CB) is a bond, with am option to
transform it into a stock.
A hard call is a CB which may be exercised anytime
after (say) the first two years.
A soft-call is a CB which may only be exercised if the
underlying stock closes above a prespecified trigger m
out of n consecutive days.
Even though this is a path-dependent option, it can be
priced with a binomial “tree” (a lattice, really) without
keeping all the path histories in memory.

Composing contracts:

an adventure in financial engineering
S. Peyton Jones et al.

Functional Pearl, ICFP (2000)
Haskell (or any other functional language) can be used
to describe complicated financial contracts (options on
options on…on options, with complicated cash flows) –
the industry lack such a precise notation – and then
to price them (but there are still optimizations to be
made; and one might prefer to use C for the final com-
putations).

Constructive homological algebra
and applications

J. Rubio and F. Sergeraert (2006)
Another unlikely application of functional program-
ming.

Random walks and electric networks
P.G. Doyle and J.L. Snell (1984)

arXiv:math/0001057

Around Polya’s theorem, claiming that random walks
return to the origin in dimension 2 but not beyond –
in other words, wind instruments are possible in our
3-dimensional world but not in Flatland.

The electrical resistance of a graph captures its
commute and cover time A.K. Chandra et al.

(Article on the same subject.)

Random matrix theory and robust covariance
matrix estimation for financial data

G. Frahm and U. Jaekel
arXiv:physics/0503007

The authors “develop” (physicists tend to forget to de-
fine the quantities the use) a robustM -estimator of the
variance matrix, the spectral estimator for which the
largest eigenvalue follows the Marčenko–Pastur distri-
bution, even for a heavy-tailed elliptic random vector.

Stochastic programming models for asset
liability management

R. Kouwenberg and S.A. Zenios (2001)
in Handbook of asset and liability management
Scenario trees for a stochastic program, in an asset li-
ability management (ALM) context, can be generated
with one of the following methods:
– random sampling from the model (you might want
to trim dow the resulting tree, as in importance sam-
pling);

– adjusted random sampling (use antithetic sampling
to fit every odd moment of the underlying distribu-
tion);

– produce returns that match the first few moments of
the distribution (this optimization probmen can be
longer to solve than the final ALM problem).

You should make sure not to introduce arbitrage op-
portunities because of discretization or approximaation

Article and book summaries by Vincent Zoonekynd 923/1044

http://ssrn.com/abstract=958037
http://ssrn.com/abstract=958037
http://ssrn.com/abstract=981127
http://ssrn.com/abstract=981127
http://ssrn.com/abstract=956813
http://ssrn.com/abstract=956813

errors: the no-arbitrage condition can be added as a
linear constraint.
Stochastic programming needs model generation tools
– in particular, there is still no stochastic optimization
language.
ALM can also be tackled with mean-variance optimiza-
tion: just add a “liability” asset with a prescribed
weight.
This chapter also defines a myopic investor: a multi-
period investor who behaves as a 1-period investor, for
instance because of his constant relative risk aversion
(CRRA), if he has a power utility.

Extending algebraic modelling languages
for stochastic programming

P. Valente et al.
It is easier to formulate optimization problems using a
declarative language (AMPL, GAMS, AIMMS, MPL,
to name a few) than with a list of huge matrices.
This article advocates the use of a similar language,
SAMPL, for stochastic programs. It also reviews the
various types of stochastic programs and gives a few ex-
amples (in particular, how to turn a multistage stochas-
tic program into a deterministic one: expand all the
scenarios and add non-anticipatory constraints).
SAMPL is implemented in SPInE (commercial).
Also check SMPS (not an algebraic language).

Efficient tests of stock return predictability
J.Y. Campbell et al.

Journal of financial economics (2006)
When performing statistical tests, do not overlook the
effects of autocorrelation.

Optimal continuous-time hedging
with leptokurtic returns

A. Černý (2005)
When the market is incomplete, perfect hedging is im-
possible and one can resort to utility-based (dynamic)
mean-variance hedging.

Portfolio optimization with stochastic
dominance constraints

D. Dentcheva and A. Ruszczyński (2003)
In a scenario-based optimization, stochastic dominance
constraints are straightforward to express.

(missing title)
The ARMA model can be generalized into a non-linear
ARMA (NARMA)

yn+1 = F (yn, . . . , yn−k, εn, . . . , εn−ℓ) + εn+1

or even a non-linear ARMA with exogenous variables
(NARMAX) model

yn+1 = F (yn, . . . , yn−k, εn, . . . , εn−ℓ, xn, . . . , xn−k)+εn+1.

Universal portfolios
T.M. Cover

Mathematical finance (1991)
Given the history of total returns of a set of stocks xtj ,
one can compute, a posteriori, the best constant-weight
(rebalanced) strategy and try to beat it or at least to
attain the same asymptotic rate of growth, without
peering into the futire but by allowing for changing
weights.
The author suggests, at each time k, to average all the
possible constant-weight strategies b, weighing them
by their past performance Sk(b):

b(1) =

(
1

m
, · · · , 1

m

)
b(k + 1) =

∫
B

bSk(b)db∫
B
Sk(b)db

Sk(b) =
i∏
t=1

b′xt

where B = {b ∈ Rm : b ⩾ 0, b′1 = 1 } is the set of
long-only fully-invested strategies.
This works, simply because the wealth of the strat-
egy is the average wealth of the experts, all of which
have an exponential growth rate, and an average of ex-
ponentials has (under suitable assumptions) the same
asymptotic growth rate as the maximum. Buy-and-
hold strategies are beaten because they are not diver-
sified enough.
For m = 2 stocks, the computations are easy. Using

∫
b1,b2⩾0
b1+b2=1

f(b1, b2)db =

∫ 1

0

f(u, 1− u)du

B(1 + x, 1 + y) =

∫ 1

0

ux(1− u)ydu

one gets

b1(n) =

∑
P1⊔P2=J1,nK

∏
t∈P1

xt1
∏
t∈P2

xt2B(2 + |P1| , 1 + |P2|)∑
P1⊔P2=J1,nK

∏
t∈P1

xt1
∏
t∈P2

xt2B(1 + |P1| , 1 + |P2|)

where P1 t P2 = J1, nK are the partitions of J1, nK in
two parts. The beta function is related to the binomial
coefficients and can be computed in the same way.
In dimension m, the computations are similar, with
a “multivariate beta function” whose computations re-
quire an m-dimensional array. Since the sums have mn

terms, the complexity is O(mn + nm). Last, but not
least, the important terms in those huge sums are very
close to one: numerical instability prevents us from
doing the computations in this way. (Since these are
high-dimensional integrals, monte Carlo methods (im-
portance sampling) might be useful.)

Article and book summaries by Vincent Zoonekynd 924/1044

http://www.stoprog.org/

There are no assumptions for this strategy (this is a
worst-case scenario), but the constant-weight bench-
mark is only optimal if there is no time-dependence in
the data, i.e., if the data are iid.
This is an expanding window strategy: with enough
data, the weights will hardly move – this is not a dy-
namic strategy.

Efficient algorithms for universal portfolios
A. Kalai and S. Vempala

Journal of machine learning research (2002)
The definition of Cover’s universal portfolio is exactly
the Monte Carlo Markov Chain (MCMC) setup:

wuniversal =

∫
wPerformance(w) dw∫
Performance(w) dw .

To prove the convergence of the chain, the authors do
not integrate over the simplex of all portfolios but limit
themselves to those all of whose weights are at least δ0
and they slightly modify the performance function.

Nonparametric kernel-based sequential
investment strategies

L. Györfi et al. (2005)
In contrast with Cover’s approach, the authors con-
sider a stationary and ergodic market: there can be
time-dependency; their benchmark is the log-optimal
portfolio

bn = ArgmaxE
[
log(b′nxn) |x−∞→n−1

]
.

A universal strategy is a strategy that attains the same
(asymptotic) rate of return without knowing the dis-
tribution.
The histogram-based strategy is a performance-
weighted average of elementary strategies or experts;
an expert is the best strategy, over windows of size k,
according to the past history, corresponding to a dis-
cretization ` of the past returns. They consider all
possible window sizes and the discretizations are de-
fined from nested partitions of the space of returns, so
that the size of the cells uniformly converge to zero.
(This is not implementable: most of the cells would be
empty, unless you have a humongous amount of data;
it will converge very slowly.)
The kernel-based strategy replaces the rigid partitions
by a moving window:

b(k,ℓ)(x1→n−1, s) = Argmax
b⩾0
b′1=1

∏
k<i<n

∥xi−k→i−1−s∥⩽c/ℓ

b′xi

where x1→n−1 is the whole history and s = xn−k→n−1
is the recent history.

The general kernel-based strategy is

b(k,ℓ)(x1→n−1, s) = Argmax
b⩾0
b′1=1

∑
i

w
(k,ℓ)
i log b′xi∑
i

w
(k,ℓ)
i

w
(k,ℓ)
i = Kk(` · (xi−k→xi−1

− s))

where Kk is a kernel (on Rkd, where d is the number
of assets), such as Kk = 1∥x∥⩽c.
This is an expanding window strategy; the stationarity
assumption makes it non-robust to structural changes.

Universal portfolios with side information
T.M. Cover

IEEE transactions on information theory
(1996)

In the definition of Cover’s universal portfolio,

wuniversal =

∫
wPerformance(w) dw∫
Performance(w) dw

one can replace the uniform distribution dw by a
Dirichlet(12 , . . . ,

1
2) prior – the worst-case performance

is slightly better and, this being (bayesian) conjugate
distribution, the computations are marginally faster.
Uniform or Dirichlet universal portfolios attain their
worst-case performance for Kelly market sequences,
i.e., when, in each period, all stocks but one go
bankrupt (similar to horse races, where a single horse
wins).
This article also explains how to use side information:
the benchmark no longer has constant weights but the
weights are the function

side information 7−→ weights

that maximizes the total returns on the period. The
corresponding universal weights are

wuniversal(y) =

∫
wPerformance(w|y) dw∫
Performance(w|y) dw

where y is the side information.
Universal portfolios can also be used to combine ex-
perts: if the experts have constant weights, just use
them instead of all the constant reweighted strate-
gies (the integrals become sums); even better, consider
them as new assets, add them to the universe and com-
pute the universal portfolio of this enlarged universe.
The article ends with some details about the exact com-
putation of those portfolios, in the Dirichlet case – this
is still exponential.

Gestion de portefeuille et croissance optimale
D. Herlemont (2004)

http://yats.com/

The Kelly criterion invests the same fraction of your
wealth in a game (e.g., a coin-tossing game where you
receive twice the value of your bet when you win); the
fraction is chosen so as

Article and book summaries by Vincent Zoonekynd 925/1044

http://yats.com/

– to maximize the long-term growth rate 1

t
log

Wt

W0
;

– to maximize the expectation of the logarithmic util-
ity u(W) = logW (log-optimal portfolios are some-
times called Kelly portfolios);

– to maximize the median wealth;
– to minimize the expected time to reach a given
wealth;

– to minimize the entropy (?).
The Kelly criterion can be generalized to any bino-
mial setting (you earn α on tails and β on heads, as in
bracket tracking, i.e., profit taking and stop-loss rules)
or for any distribution of returns.
Here are some more generalizations of the Kelly strat-
egy:
– use power utility: this is the fractional Kelly crite-
rion;

– impose a constraint on the maximum acceptable
drawdown and only reinvest a constant fraction of
the wealth in excess of the drawdown;

– maximize the growth rate of the utility:

lim inf
1

t
E
[
utilityW (t)

]
;

– add transaction costs – but the non-trading intervals
can be very large and the rebalancing frequency very
low (several years);

The Kelly criterion might still work if the asset has a
negative trend: it only requires that E[returns] > 0,
while a positive trend is the more restrictive condition
E[log returns] > 0; the Kelly criterion is a constantly-
rebalanced strategy while the asset alone is a buy-and-
hold strategy.
The drawdown of a Kelly strategy follows a power law
with exponent 2 (under a gaussian assumtion); even
worse, assuming gaussian returns when they are skewed
or have fat tails leads to an excessive leverage and
larger losses.
The Kelly strategy is sometimes referred to as a volatil-
ity pump: for a log-normal process without drift,
the optimal growth is proportional to the variance.
D. Farmer likens this phenomena to tapping energy
from waves or tides.
Cover’s universal portfolios are a non-parametric ana-
logue of the Kelly criterion:
– Cover averages the constant reweighted strategies,
weighing them with their performance;

– Györfi et al. average experts, i.e., non-parametric
functions that use the returns in the past k periods
to produce suggested weights;

– One could also average statistical experts, i.e., para-
metric statistical models (regression, GARCH, etc.)
that map previous returns to weights.

This article (mentions but does not) present a general-
ization of Györfi et al.’s non-parametric experts with-
out a long-only constraint.

Optimal gambling systems for favorable games
L. Breiman (1961)

In a favorable game, the Kelly principle bets each time
the same fraction of the current wealth, chose so as
to maximize the rate or growth or, equivalently, the
expected logarithmic utility.

A new interpretation of information rate
J.L. Kelly (1956)

Kelly’s original, information-theoretic article.

Can we learn to predict the best stock?
A. Borodin et al.

Journal of artificial intelligence research (2004)
The authors add a new strategy to the list of portfolio
selection algorithms:
– exponentiated gradient: greedily choose the best
portfolio for yesterday’s market with a penalty for
moving far from yesterday’s portfolio;

– Cover’s universal portfolio:

b(k + 1) =

∫
B

bPerformancek(b) db∫
B
Performancek(b) db

where db is the prior distribution on the weights, for
instance a uniform or Dirichlet distribution;

– algorithms that predict the best stock, such as the
prediction component of the Lempel-Ziv compres-
sion algorithm.

Choose a window size w, consider the stock log-
returns in the previous two non-overlapping windows
x−1 and x−2 and compute the cross-correlation matrix
Cor(x−2, x−1). If stock i outperformed stock j in the
most recent period and if the log-returns of i in period
−2 are correlated with those of j in period −1, shift
your investment from stock i to stock j by a proportion

claimi→j = 0 unless µ−1(i) > µ−1(j)

and Cor(x−2, x−1)(i, j)

claimi→j = Cor(x−2, x−1)(i, j) > 0

+ |Cor(x−2, x−1)(i, i)−|
+ |Cor(x−2, x−1)(j, j)−|

The strategy is too sensitive to the choice of the win-
dow size w, This can be improved on:
– Consider an equal-weighted average of all those
strategies for w ∈ J2, 50K;

– Instead of applying the strategy on stocks
Anticorw(x1, . . . , xn), apply it on strategies:
Anticorw(Anticor2, . . . ,Anticor50).

I would also try to change “correlation” into “cointe-
gration”.

On the competitive theory and
practice of portfolio selection

A. Borodin et al.
Proceedings of the 4th Latin American

Symposium on Theoretical Informatics (2000)

Article and book summaries by Vincent Zoonekynd 926/1044

After an information-theoretic review of the port-
folio selection problem, the authors present several
prediction-based algorithms:
– the add-beta prediction rule, used to predict the next
element of a binary sequence

P̂ [XT+1] =
β +]{Xi = 0, 1 ⩽ i ⩽ T}

2β + T

can be used to predict the best performing stock - it
is competitive with Cover’s universal portfolio, but
not universal (bad worst-case performance) and the
convergence is likely to be even slower, especially for
large markets (for which a lot of information is dis-
carded);

– Lempel-Ziv trading.
Transaction costs do not affect the theoretical, asymp-
totic results, but on real data, they are a real problem;
you can sometimes have decent results by rebalancing
every month instead of every day, though.

On-line portfolio selection
using multiplicative updates

D.P. Helmbold et al.
Mathematical finance (1998)

One can greedily choose the best portfolio for yester-
day’s market with a penalty for moving far from yes-
terday’s portfolio, according to the entropy distance.
The exact optimization problem

Maximize
wt+1

η log(w′t+1xt)− d(wt+1,wt)

d(u,v) =
∑
i

ui log
ui
vi

would be too long to solve at each step; instead, it is
approximated as

wi,t+1 =

wi,t exp
ηxi,t
w′txt∑

j

wj,t exp
ηxj,t
w′txt

(start with an equal-weighted portfolio). This exponen-
tiated gradient portfolio selection strategy is linear in
time and space and seems to have better small-sample
properties than Cover’s.

Efficient universal portfolios for
past-dependent target classes
J.E. Cross and A.R. Barron

Mathematical finance (2003)
Very technical article explaining how universal portfo-
lios in continuous time, without any stochastic model
(just a couple of regularity assumptions about the
paths), has a formulaic expression computable in
O(m2) where m is the number of stocks.

Multivariate realized stock market volatility
G.H. Bauer and K. Vorkink (2006)

High frequency data allows us to compute the realized
volatility matrix without using a moving, overlapping
window or a statistical model.
Many variance matrix estimators are plagued by the
positive-definiteness condition, which is non-trivial to
impose: the article suggests to estimate the matrix log-
arithm of the variance matrix instead – the matrix ex-
ponential of a real symmetric matrix is positive definite
and every positive definite matrix can be uniquely ob-
tained in this way.

Construction of multivariate copulas
and the compatibility problem

C. Laforge
Examples of bivariate copulas abound but examples of
multivariate copulas are rare, besides the archimedian
copulas

C(x1, . . . , xn) = φ−1(φ(x1), . . . , φ(x2)).

The copula product

C1 ∗ C2(x, y) =

∫ 1

0

∂C1(x, t)

∂t

∂C2(y, t)

∂t
dt

can be generalized to produce a multivariate copula
from n bivariate copulas

C(x1, . . . , xn) =

∫ 1

0

n∏
i=1

∂Ci(xi, t)

∂t
dt

or, in terms of copula densities,

c(x1, . . . , xn) =
∂nC(x1, . . . , xn)

∂x1 · · · ∂xn
=

∫ 1

0

n∏
i=1

c1(xi, t)dt.

For instance, the Gumbel copulas

Ci(x, y) = xyeθi ln x ln y

give rise to an n-parameter copula

C(x1, . . . , xn) =

n∏
i=1

xi(1− θi lnxi)

1−
n∑
i=1

θi lnxi

.

Selecting copulas for risk management
E. Kole et al. (2006)

To choose a copula among gaussian, Student (another
elliptic copula, with more tail dependence and the
strange property that the zero-correlation Student cop-
ula is not independent) and Gumbel (an archimedian
copula (in particular, it is Sn-invariant) with even
more tail dependence), one can use the traditional

Article and book summaries by Vincent Zoonekynd 927/1044

goodness-of-fit tests for distributions, Kolmogorov–
Smirnov and Anderson–Darling (a copula is a distri-
bution on the cube [0, 1]N):

Dmax
KS = Max

t
|F (xt)− F0(xt)|

Davg
KS =

∫
x

|F (x)− F0(x)| dF0(x)

Dmax
AD = Max

t

|F (xt)− F0(xt)|√
F0(xt)(1− F0(xt))

Davg
AD =

∫
x

|F (x)− F0(x)|√
F0(x)(1− F0(x))

dF0(x)

(The tail dependence can be defined as an asymptotic
expansion of the copula in (0, 0) and (1, 1).)

Why use QuantLib?
N.P. Firth (2004)

After recalling what free or open source software is, the
author reviews a few “open source” financial libraries:
Premia (X, Inria, non-free, closed to external contribu-
tions), Financial numerical recipes (C++, GPL, weak
project management), Martingale (C++ and Java,
GPL, weak project management) and Quantlib (C++,
BSD licence, more active mailing list but dominated
by a single company).

Hedging contingent claims with constrained
portfolios and nonlinear wealth dynamics

D. Ebmeyer (2007)
A super-replicationg strategy for a contingent claim is a
strategy whose payoff dominates (i.e., is almost surely
greater than) the contingent claim. The initial wealth
of this strategy is an upper bound on the price of the
contingent claim (one can similarly get lower bounds)
and can be used to hedge the contingent claim.
This article examines what happens when the super-
replicating strategy has to satisfy some constraints
(e.g., short-selling constraints).

Optimal replication of contingent claims under
portfolio constraints

M. Broadie et al.
Article on the same subject.

Extreme observations and non-normality
in ARCH and GARCH
R. Bali and H. Guirguis

International review of economics and finance
(2007)

Traditional GARCH estimators are extremely sensitive
to outliers, which produce biased coefficients and fat-
tailed residuals; this article explains how to correct for
outliers.

Predictive systems:
living with imperfect predictors

L. Pástor and R.F. Stambaugh (2006)
When trying to predict future returns, do not forget
the time dimension: also use the lagged returns and
predictors.
See also: mixed data sampling (MIDAS).

The information content
in implied idiosyncratic volatility

and the cross-section of stock returns:
evidence from the option markets

D. Diavatopoulos et al. (2007)
Realized idiosyncratic risk (after removing market, size
and book-to-market) is a bad predictor of future re-
turns; option-implied idiosyncratic risk is better.

A note on the mean-variance analysis
of self-financing portfolios

Z. Bai et al. (2006)
Beware of optimization as a drop-in replacement for a
statistical procedure: even with large samples, it tends
to create biased estimators.

You don’t have to bother
Newton for implied volatility

M. Li (2006)
Implied volatility can be seen as a special function (like
sine, exponential, Bessel functions, etc.) and computed
in the same way, e.g., with rational approximation.

Stock market return, order flow
and financial market linkages

J.M. Moberg and G. Sucarrat (2007)
Order flow imbalance (OFI) still works in small mar-
kets.

The similarity between
mean-variance and mean-Gini:

testing for equality of Gini correlations
E. Schechtman et al.

Here is one more risk measure one can use instead of
the standard deviation in a portfolio optimization: the
Gini mean difference (GMD) of a random variabe X
is

GMDX = E |X1 −X2|
where X1 and X2 are iid with the law of X.
The article uses

Cov
(
X,FX(X)

)
instead; considers the (non-symetric) Gini matrix
Cov(Xi, FX(Xj)) where Xi and Xj are the returns of
assets i and j and FX is the cumulative distribution of
the pooled returns of all the assets; and derives con-
ditions under which “mean Gini optimization” reduces
to a quadratic program.

Article and book summaries by Vincent Zoonekynd 928/1044

http://ssrn.com/abstract=981016
http://ssrn.com/abstract=981016
http://ssrn.com/abstract=954249
http://ssrn.com/abstract=954249
http://ssrn.com/abstract=954249
http://ssrn.com/abstract=954249
http://ssrn.com/abstract=965649
http://ssrn.com/abstract=965649

Random intersection graphs with tunable
degree distribution and clustering

M. Deijfen and W. Kets (2007)
An intersection graph is a graph whose vertices are
subsets of a set X, with an edge between two subsets
whenever they intersect.
A random intersection graph can be generated as fol-
lows: start with the set of vertices, assign a random
weight (following a law you can choose/tune) to each
vertex, assign a subset to each vertex, whose size is
proportional to the weight, consider the corresponding
intersection graph.
This produces a wide range of random graphs.

Primer on using neural networks
for forecasting market variables

S.A. Hamid (2004)
Neural networks, trained on futures and spot prices,
are better predictors of realized volatility (standard
deviation of the daily log-returns over the next two
months) than implied volatility is.
The article also contains a literature review and a list
of financial applications of neural networks.

The value of transaction cost forecasts:
another source of alpha

A. Coppejans and A. Madhavan
Journal of investment management (2007)

Predicting transaction costs can increase your capac-
ity.

Predicting hedge fund failure:
a comparison of risk measures

H. Park (2005, 2007)
Downside risk is a better predictor of failure than stan-
dard deviation.

Hedge fund investment through piecewise
linear regression and optimization

F. Pan and B. Zeng (2007)
The size of a hedge fund has a non-linear impact on
its return; it can be investigated by a piecewise linear
regression.

Timing ability
in the focus market of hedge funds

Y. Chen
Journal of investment management (2007)

Hedge funds do time the market.

How hedge fund beat the market
C. French and D. Ko

Journal of investment management (2007)
Hedge funds do not time the market.

Hedge fund risk dynamics:
implications for performance appraisal

N.P.B. Bollen and R.E. Whaley
Computing the “alpha” of a strategy (say, a hedge
fund) by removing the linear effect of a set of stan-
dard risk factors (market, book-to-market, size, etc.)
cannot account for non-linearities or structural breaks:
this article uses optimal change point regression to ac-
count for the latter (for the former, just use non-linear
risk factors, as below).

Detecting structural breaks and identifying
risk factors in hedge fund returns:

a bayesian approach
L. Meligkotsidou and I.D. Vrontos

Another article on the same subject.

Can hedge fund returns be replicated?
the linear case

J. Hasanhodzic and A.W. Lo
Journal of investment management (2007)

Linear clones of hedge funds often have inferior perfor-
mance, but they are transparent, scalable and cheaper.

Hedge fund replication strategies:
implications for investors and regulators

W. Fung and D.A. Hsieh (2007)
Hedge fund performance can be replicated, in a lin-
ear way, from a small set of primitive trading strate-
gies (PTS) such as (since these are tradable, they are
sometimes called asset-based style (ABS) factors):
– Call option on the market (to replicate a market
timer);

– Lookback straddles (to replicate trend followers, who
buy at the low and sell at the high: a lookback call
option allows the owner to buy at the lowest price
over the life of the option);

– BAA corporate bonds minus 10-year treasuries (to
replicate fixed income hedge funds);

– “The merger fund” (to replicate a merger arbitrage
strategy – no details given);

– Swap spread (?), yield curve spread (?), mortgage
spread (?);

– US stock market;
– Small minus large stocks (to replicate long-short eq-
uity strategies);

– IFC emerging market index;
– CSFB high yield bond index (to replicate distressed
securities hedge funds).

Will hedge funds regress
towards index-like products

W. Fung and D.A. Hsieh (2007)
Detailed and badly typeset version of the above.

Article and book summaries by Vincent Zoonekynd 929/1044

http://ssrn.com/abstract=962359
http://ssrn.com/abstract=962359
http://ssrn.com/abstract=983209
http://ssrn.com/abstract=983209
http://ssrn.com/abstract=974421
http://ssrn.com/abstract=974421
http://ssrn.com/abstract=937972
http://ssrn.com/abstract=937972
http://ssrn.com/abstract=965425
http://ssrn.com/abstract=965425
http://ssrn.com/abstract=965425

Statistical properties of short term price
trends in high frequency stock market data

P. Sieczka and J.A. Hołyst
arXiv:physics/0703208

High frequency data fails the runs test (unsurprising,
given their long memory): with the amount of data,
one can even study the distribution of the run lengths.

Return predictability, economic profits
and model mis-specification:

how important are the better-specified models?
Y. Han (2007)

Simulations show that having the “right” return predic-
tion model does not allow you to beat a good old VAR
(vector auto-regressive model) – the choice of variables
is important, though.
Furthermore, return sign forecasts, (rather than return
prediction) are more profitable.
This article is a pledge for simple models.

Implied correlation from VaR
J. Cotter and F. Longin (2007)

In a gaussian setup, one can compute the correlation
of two variables X and Y from the value-at-risk (VaR)
at level α of X, Y and xX + yY (i.e., a portfolio of
X and Y with weights x and y): this is the implied
correlation – it depends on the level α, the weights x
and y (and also the frequency of the data).
The article examines the distribution of the implied
correlation (this is just a family of estimators of the
correlation) – beware of the bias.

An empirical study of multi-objective
algorithms for stock ranking

Y.L. Becker et al.
Genetic algorithms can be used to simultaneously op-
timize several goals: put the solutions on separate “is-
lands”, one for each goal, and have some migrate from
time to time.
This is very similar to data envelopment analysis
(DEA) but I do not expect the algorithm to converge
towards a uniquely defined (or meaningful) solution; if
the migration rate is well chosen, it should converge to
a (set of) point(s) on the efficient frontier, not far away
from the optimal solutions of the one-goal problems.
The algorithm is applied to a stock selection prob-
lem with the following goals: information ratio (IR),
information coefficient (IC) and intra-fractile hit rate
(IFHR), i.e., proportion of stocks in the top (resp. bot-
tom) decile that outperform (resp. underperform) the
average.

Portfolio selection using evolutionary
computational techniques

This (author-less) article suggests to replace each re-
turn estimate by three values (say, the median and

the quantiles) and optimizes three goals: maximize the
middle value of the portfolio, minimize the distance
between middle and low, maximize the distance be-
tween middle and high, subject to VaR-like constraints.
The author is oblivious of the dependency between the
stocks; his use of fuzzy logic looks bogus, his use of
genetic algorithms is irrelevant (he combines the three
goals into one).

Stable models
for the distribution of equity capital

R. Fernholz
Intech (2004)

Stochastic portfolio theory can be used to model the
evolution of the distribution of market capitalization
over time.

Diversity and relative arbitrage
in equity markets
R. Fernholz et al.

Intech (2004)
A market is diverse if the weight of its largest stock
satisfies

∃δ > 0 ∀t ∈ [0, T] µ(1)(t) < 1− δ;

it is weakly diverse if

∃δ > 0
1

T

∫ T

0

µ1(t) dt < 1− δ;

it is asymptotically weakly diverse if

∃δ > 0 lim
T→∞

1

T

∫ T

0

µ1(t) dt < 1− δ.

In a weakly diverse market, there are arbitrage opor-
tunities, e.g., invest

p

w1(0)p
+ (p− 1)

in the market and −p in stock 1, where p � 1. The
weights are so large that the strategy is not imple-
mentable; furthermore, there are morket models, such
as the Atlas model (defined in a later article by the
same authors) that are almost diverse but with no ar-
bitrage opportunity.
The article also investigates the consequences on long-
term option pricing.

Relative arbitrage in volatility-stabilized
markets

R. Fernholz and I. Karatzas
Intech (2004)

A more general condition than diversity for the exis-
tence of a relative arbitrage.

Article and book summaries by Vincent Zoonekynd 930/1044

http://ssrn.com/abstract=972783
http://ssrn.com/abstract=972783
http://ssrn.com/abstract=972783
http://ssrn.com/abstract=996080
http://ssrn.com/abstract=996484
http://ssrn.com/abstract=996484
http://ssrn.com/abstract=970486
http://ssrn.com/abstract=970486

Stochastic portfolio theory: an overview
R. Fernolz and I. Karatzas

Intech (2006)
Clear and exhaustive review of stochastic portfolio the-
ory.

Stocks as lotteries: the implications of
probability weighting for security prices

N. Barberis and M. Huang (2007)
Prospect theory differs from expected (concave) utility
theory:
– The utility function is concave over gains and convex
over losses; it has a kink (i.e., left and right deriva-
tives are different) at the origin;

– The investor does not maximize the expected utility
but a weighted utility: the probabilities are trans-
formed (but these are not subjective probabilities,
just decision weights: the investor is perfectly aware
of the objective probabilities); as a result, low prob-
abilities are overweight: the investor wants both lot-
tery and insurance.

Prospect theory is incompatible with first-order dom-
inance, but can be modified into cumulative prospect
theory, which applies the weights to the cumulative
distribution function. Often, one chooses

v(x) =

{
xα if x ⩾ 0

− λ(−x)α if x < 0

for the value function and

w(p) =
pδ

(pδ + (1− p)δ)1/δ

for the weighting function. Psychological studies sug-
gest α = 0.88, λ = 2.25, δ = 0.65.
Under gaussian assumptions (more generally, in the ab-
sence of skewness), cumulative prospect theory is con-
sistent with the CAPM (capital asset pricing model);
however, the weighting function creates mispricing for
assets with skewed returns – but the authors are not
convinced that it can be arbitraged away.
Cumulative prospect theory can explain that assets
with a high idiosyncratic skewness, such as IPOs, pri-
vate equity, distressed stocks, deep out-of-the-money
options, are overpriced and earn a low average return
– this leads to the volatility smile. It also explains why
household portfolios lack diversification.
To test (and use) that positively skewed stocks earn
lower average returns, one would need to forecast fu-
ture skewness: past skewness does not work, but cross-
sectional industry skewness does.

Probability elicitation, scoring rules and
competition among forecasters

K.C. Lichtendahl and R.L. Winkler (2007)
Competitive forecasters tend to report more extreme
probabilities.

A forecasting model for stock market diversity
F. Audrino et al.

Intech (2006)
To predict changes in market diversity and switch be-
tween a capitalization-weighted and a diversity- (or,
better, equal-) weighted portfolio, one can use:
– an AR(1)-GARCH(1,1) model;
– a generalized regime-switching (GRS) model, i.e., a
mixture of AR(1)-GARCH(1,1)’s;

– a generalized tree-structured (GTS) model, i.e., the
analogue of a decision or regression tree whose leaves
contain AR(1)-GARCH(1,1) models.

The predictive variables are:
– 1-month US treasury bill rate;
– 60-month zero-coupon bind rate;
– CPI;
– PPI of finished goods;
– Index of ”help wanted” advertising in newspapers;
– Unemployment;
– Growth rate of industrial production;
– S&P 500 monthly log-returns;
– Large/small × low-/mid-/high-value portfolio re-
turns;

– Market returns minus 1-month treasury bill;
– SMB (large minus small) and HML (high minus low
value) returns;

– Industry portfolios.
They find three regimes, that can be interpreted with
the Fama–French factors.
The diversity timing strategy provides a “signifi-
cant” 17bp increase in annual returns (after transac-
tion costs) when compared with a monthly-rebalanced
equal-weighted strategy.

Tree-structured GARCH models
F. Audrino and P. Bühlmann (2000)

The regression-tree idea can be applied to times series
modeling: put GARCH(1,1) or AR(1)-GARCH(1,1)
models in the leaves.
The authors use S-Plus but do not provide any code.

Estimating and predicting multivariate
volatility thresholds in global stock markets

F. Audrino and F. Trojani (2003)
The tree-structured AR-GARCH model can be applied
to national stock indices, the conditional variables be-
ing local and US market returns. There are usually
three regimes: two driven by local information, one by
US information.

Growth optimal investment strategy efficacy:
an application on long run

Australian equity data
B.F. Hunt

Investment management and financial
innovations (2005)

Article and book summaries by Vincent Zoonekynd 931/1044

The growth optimal portfolio is not diversified: it only
contains 2 or 3 stocks. To increase diversity, one can
regulalize the sample variance matrix as in a ridge re-
gression:

V = Vsample + λI.

Incorporating estimation errors into portfolio
selection: robust portfolio construction

S. Ceria and R.A. Stubbs
Journal of asset management (2006)

Robust optimization usually considers the worst-case
scenario in ellipsoidal or box-shaped uncertainty re-
gions, meaning that all the errors have a negative ef-
fect. This article suggests to consider the subset of
those uncertainty sets where the errors cancel out.

Experiments in robust portfolio optimization
D. Bienstock (2007)

The uncertainty sets used in robust portfolio optimiza-
tion are often boxes or ellipses (some add the further
constraint that the deviations sum up to zero); this
article presents two new shapes for the uncertainty
shares: one using fractiles (just specify how bad the
situation can be in each decile) and another using the
adversarial value-at-risk (AVaR), that uses mixtures to
model the higher correlation during crashes (I am not
sure it is different from the VaR of a mixture).
The article also details how to efficiently implement
those optimizations.

Equity-style timing: a multi-style rotation
model for the Russel large-cap and small-cap

growth and value style indexes
B.G. Arshanapalli

Journal of asset management (2007)
Market timing often uses logistic regression to switch
between two market segments – beyond two, use multi-
nomial regression.

Portfolio choice
beyond the traditional approach

F. Peñaranda (2007)
Not very readable (if you do not already know what
he talks about, you will not understand it) but correct
and fairly complete survey of asset allocation, with all
the formulas you may need. The topics include:
– the portfolio weights as a statistic, whose distribu-
tion can be studied (surprisingly, this was missing
from Meucci’s book);

– the difference between posterior distribution and pre-
dictive distributopm (the posterior distribution is for
the present, the predictive distribution is its projec-
tion to the investment horizon)

– lower partial moments (LPM) are linked to stochas-
tic dominance (no details given) but are more com-
putable and yield a complete order; mean-semi-
variance optimization is a convex problem;

– generalizations of the Sharpe ratio: Sortino ratio
(with the semi-variance), Omega, rate of decay I
(this comes from large deviation theory)

P [returns0→T ⩽ 0] ∼ e−I·T

(but the Sharpe ratio gives a ranking similar to most
alternatives);

– log-utility is indifferent to the investment horizon;
– the Black–Litterman approach can be used to tilt
a long-term strategy (strategic asset allocation or
SAA) towards a short-term view (tactical asset allo-
cation or TAA);

– dynamic asset allocation (with insufficient details)
and the intertemporal CAPM (ICAPM).

The impact of EMU
on the equity cost of capital

G.A. Hardouvelis et al.
Journal of international money and finance

European monetary integration can be modeled as a
time-weighted CAPM

rit = λi,t−1β
market
i rmarket

t + (1− λi,t−1)βlocal
i rlocal

t

λi,t−1 = exp− |γ′iXi,t−1|

where X is a set of predictive variables: country effects
are becoming less important.

Performance and distress indicators
of new public companies

N. Beneda
Journal of asset management (2007)

To choose among IPOs (initial public offerings), use
Ohlsen’s O ratio (a measure of bankrupcy risk, appar-
ently the result of a logistic regression, whose coeffi-
cients were set in stone 30 years ago), the market-to-
book ratio and the market share of the underwriter.

Long-term economic relationships
from cointegration maps

R. Vicente et al. arXiv:physics/0701062

Correlation is a cross-sectional distance, blind to dy-
namic phenomena: it can be replaced by a measure of
cointegration.
The author suggests to estimate the cointegration from
the model

a1x1,t + a2x2,t + b = εt

εt+1 = γεt + ηt

〈εt〉 = 0

〈ε2t 〉 = σ

0 ⩽ γ < 1

Article and book summaries by Vincent Zoonekynd 932/1044

using bayesian computations and physicist’s approxi-
mations:

γ̂ = Argmax log
∫
p(γ|ε)p(ε|x1, x2) dε

p(γ|ε) ∝ 1[0,1](γ)

[
T−1∑
t=1

(εt+1 − γεt)2
]−T−2

2

p(ε|x1, x2) ∝ εt − x1,t sin θ̂ + x2,t cos θ̂

θ̂ = 1
2 arctan

(
2
〈x1x2〉

〈x21〉 − 〈x22〉

)
The estimator γ̂ can be seen as a measure of dissimi-
larity and can be transformed (this can make the plots
more or less readable):

dα(x1, x2) = γ̂α.

The dissimilarity matrix is sometimes modified further
(two times series are similar if they interact with the
other time series in the same way – this idea is also
used in spectral clustering):

Di,j =

√√√√ N∑
k=1

(dα(xi, xk)− dα(xj , xk))2.

Before plotting (this is the heatmap, common with
bioarrays), the rows and columns of the dissimilarity
matrix D can be reordered: a greedy algorithm looks
for a permutation matrix P that minimizes

F (P) = tr(PDP ′W)

where the weight matrix W can be chosen as Wij =
exp(|i− j|σ) (neighbourhood weights) or W = XX ′

for some vector X such that Xi > Xj if i > j (side-by-
side weights): this is the SPIN algorithm.
Finally, one can apply a clustering algorithm such as
SPC (superparamagnetic clustering – I have no idea
what it means).

Information dynamics
and origins of uncertainty

P. Garbaczewski
arXiv:cond-mat/0703147

An uncertainty principle can be expressed in
information-theoretic terms, between S(ρ) and S(ρ̃)
where ρ is a probability density, − ln ρ(x) the surprise
level, S(ρ) = 〈− ln ρ〉 the Shanon entropy and ρ̃ = Fρ
is the Fourier transform of ρ.

Optimal execution of portfolio transactions:
a review

E. Kochieva
Carisma (2007)

The market impact has a long-term component (in-
formation leakage) and a short-term one (liquidity-
demand-related price jumps), which add to the back-
ground price dynamics.

Trade execution is a trade-off between market impact
(which decreases with time) and timing risk (which in-
creases with time); it can be evaluated with respect to
a benchmark such as pre-trade price (the most often
used), VWAP or post-trade price.
The VWAP strategy trades a fixed percentage of the
market value in each period; the optimal trading rate
can be estimated by a quadratic optimization (efficient
trading frontier).
This static strategy can be replaced by a dynamic one,
where the trading rate is a function of the price, or by
a full-fledged stochastic programming approach.

Continuing work on optimal trade execution
D. Bienstock

Carisma (2007)
One can consider a market impact model of the form

pt+1/pt − 1 = α ∗ sizeπ

with a fixed (very small) α and π varying in (0, 1) ac-
cording to a Markov chain. The optimal trade exe-
cution strategy can be obtained by dynamic program-
ming (or approximate dynamic programming). This
strategy is not robust to a misspecification of the
Markov transition probabilities – assuming that π is
constant is preferable.
One can also assume that π is not chosen at random
but by an adversary (under some constraints to keep
it around a certain value π̄; the corresponding optimal
strategy is more robust.
One can also consider what happens when two traders
compete.
Someone also suggested to try with a hidden Markov
model (HMM), i.e., with unknown transition probabil-
ities.

Design of an FX trading system using
adaptive reinforcement learning

M.A.H. Dempster
Carisma (2007)

Recurrent reinforcement learning (RRL), i.e., a recur-
rent 1-layer neural network, can be used to turn returns
time series into a buy/sell/wait order, so as to maxi-
mize a moving-average Sharpe ratio,

EWMA(returns)
EWMA(returns2)

.

This used to work, one decade ago. One can try to
improve the model as follows:
– Do not only consider past returns: add in technical
indicators – actually, this does not add anything:
RRL already extracts all the relevant information;

– Replace the transaction costs parameter by some-
thing larger than the bid-ask spread, so as to favour
trades with larger returns;

– Fix the instability in the neural network weights by
shrinking them;

Article and book summaries by Vincent Zoonekynd 933/1044

– Update the weights twice at each step, i.e., replace
wt = f(xt, wt−1) with wt = f(xt, f(xt, wt−1)).

– Add a risk and performance management layer in
the algorithm, with a stop-loss and a shutdown pro-
cedure (to stop investing when the algorithm be-
comes unstable after a regime switch); the suggested
risk measure takes into account both total loss and
the size of the individual losses (this is similar to
Omega):

Σ =

∑
ri

2
−∑

ri2+
;

– Update the neural network weights at each step,
but do not update the meta-parameters (transaction
cost, trading threshold, etc. – there are five of them)
that often;

The following improvements have not been tested yet:
– Add other information, such as the order flow or the
limit order book;

– Use the algorithm on several currency pairs; gener-
alize the risk control accordingly;

– Apply the algorithm to market making instead of
trading.

Optimal liquidation against
a markovian limit order book

P. Hewlett
Carisma (2007)

This technical talk combined limit order book mod-
els (cf. D. Farmer’s work – I attended one of talks last
month) with dynamic programming to find the optimal
way of executing a trade; some of the tools required are
similar to those used to price American options (?); the
robustness of the resulting strategy could be examined
as in D. Bienstock’s talk.

Automated new content and algorithmic
trading P. Gagner (RavenPack)

Carisma (2007)
They turn news into numbers using a Bayesian spam
filter – unconvincing.

Portfolio optimization
with drawdown constraints

S. Uryasev
Carisma (2007)

Maximum drawdown, average drawdown and condi-
tional drawdown at risk (CDaR) can be expressed us-
ing piecewise linear functions and can therefore be op-
timized with a linear program (scenario-based) solver.
The actual risk measure is not that important.
His company (AOrDa) sells an optimizer and he claims
to run his own money with it, using sample returns
as an alpha (and Monte Carlo simulations to estimate
the risk); surprisingly, he is aware that this momentum
strategy does not perform that well because of reversal
effects.

Applying stochastic programs
to improve investor performance

J.M. Mulvey
Carisma (2007)

The title sounded interesting, but the talk was mostly
empty:
– do not forget to rebalance (equal weights are good);
– look for volatility (or diversity);
– do not forget transaction costs;
– do not forget to diversify your portfolio (using over-
lays, if needed): with enough diversity and volatility,
a momentum strategy can be quite successful.

The stressed difference between dynamic stochastic
control (discretization of the state space, i.e., of the in-
vestor’s decisions) and multi-stage stochastic program
(scenario tree) was not clear. The author suggests to
analyze the result of those optimizations to derive rules
that can then be back-tested.

Theory of acceptability indices
D. Madan

Carisma (2007)
To compare and choose among strategies, one can use
scale-free acceptability indices, such as the Sharpe ratio
and its generalizations: these are functions α(X) of the
distribution of the returns X of the strategy. An ac-
ceptability index is coherent if it satisfies the following
properties:
– convexity: α(X) ⩾ x, α(Y) ⩾ x =⇒ ∀λ ∈
(0, 1)α(λX + (1− λ)Y) ⩾ x

– monotonicity, i.e., compatibility with strong domi-
nance: if X ⩾ Y almost surely, then α(X) ⩾ α(Y);

– scale invariance: ∀λ > 0 α(λX) = α(X)
– continuity: if |Xn| ⩽ 1, α(Xn) ⩾ x andXn converges
to X in probability, then α(X) ⩾ x.

We would also like:
– second order monotonicity;
– arbitrage consistency: if X ⩾ 0 almost surely, then
α(X) =∞

– expectation consistency: if E[X] < 0, then α(X) =
0; if E[X] > 0, then α(X) > 0.

Here are a few examples:
– The Sharpe ratio:

SR(X) =
E[X]

Sd(X)
if E[X] > 0;

it is not monotonic and not arbitrage consistent;
– The gain-loss ratio:

GLR(X) =
E[X+]

E[X−]
− 1 if E[X] > 0;

it is coherent, but small and large losses are consid-
ered equally bad;

– RAROC =
E[X]

VaR(X)

Article and book summaries by Vincent Zoonekynd 934/1044

– The tilt coefficient is the highest risk aversion that
will say “yes” to the strategy (for the exponential
utility):

TC(X) = inf{λ ⩾ 0 : E[Xe−λX] < 0}

– The expected shortfall can be turned into a scale-free
acceptability measure:

AIT(X) =
1

inf{λ ∈ [0, 1] : ESλ(X) ⩾ 0
− 1

where the expected shortfall is

ESλ(X) = E[X |X ⩽ F−1X (λ)]

and F−1X is the quantile function of X.
Actually, coherent acceptability measures can be char-
acterized as follows (this is the same notion of coher-
ence and the same characterization as for the coherent
indices of satisfactions, see A. Meucci’s book, section
5.6): generalize the expected shortfall to

u(X) =

∫ 1

0

ψ′(s)F−1X (s)ds

where ψ : [0, 1] −→ [0, 1]

is concave, non-decreasing, with ψ(0) = 0 and ψ(1) =
1; it can be seen as a deformation to be applied to the
quantile function F−1X before computing the expected
shortfall, equivalently, ψ′ can be seen as weights (for
the expected shortfall, the weight is constant on [0, λ]
and zero on [λ, 1]). To get the index of satisfaction, we
actually need an increasing continuous family (ψx)x⩾0

of such functions ψ, with ψ0(y) = y and ψx → δ0
when x→∞. The corresponding index of satisfaction
is then (this is the same formula as for the expected
shortfall, with x = 1/λ− 1):

AIW(X) = inf{x ⩾ 0 : ux(X) < 0}

For instance (these can be interpreted in terms of order
statistics):
– MinVaR: ψ(y) = 1− (1− y)x+1

– MaxVaR: ψ(y) = y1/(1+x)

– MaxMinVaR: ψ(y) = (1− (1− y)x+1)1/(1+x)

– MinMaxVaR: ψ(y) = 1− (1− y1/(1+x))x+1

Those results were applied to options and hedge funds;
for the latter, the influence of the kurtosis was decom-
posed into peakedness and tailweightedness.

Algorithmic trading of hedge funds
N. Christofides
Carisma (2007)

A complete trading platform can be built as follows:
– Gather the data (some variables as daily, others
monthly)

– Fill in the data, using the EM algorithm (contrary
to what the speaker seems to think, this is not a
data imputation algorithm: using it as such would
lead to biased estimators, especially for dispersion
estimators)

– Build a risk model, using independent component
analysis (ICA) (principal component analysis (PCA)
fails to get rid of cross-kurtosis)

– Model the (daily) time-series behaviour of the inde-
pendent components (more complicated than that of
the inital assets), using neural networks (fitted with
bionomic (?) algorithm) or wavelets

– Discretize the market model into a state transition
graph (STG); merge similar vertices to keep their
number under control (but you can still have millions
of them); make sure there are no arbitrage opportu-
nities (it suffices to check for 1-period opportunities
from each vertex);

– Proceed with dynamic programming (the model is
daily but your investment horizon is longer); you
may want to use a state space relaxation technique to
replace this single large problem into several smaller
ones.

The speaker also mentionned real options, but I still
have no idea what it is.

Long-short portfolio optimization under the
mean-variance-CVaR framework

G. Mitra
Carisma (2007)

Current optimizers are not limited to the variance as
a risk measure: they can use mean absolute deviation
(MAD), semi-variance, lower partial moments, value
at risk (VaR), conditional value at risk (CVaR, also
called expected shortfall (ES) or tail VaR (TVaR)) –
the presenter gives more details as to how this can be
expressed as a linear problem, provided you add more
variables and stick to scenario-based optimization; he
also explains how to write the long-short, leverage and
number-of-assets constraints.
You can also use several risk measures, such as the
variance and the CVaR: the efficient frontier is then
2-dimensional.

Independent component analysis
A. Robinson (APT)

Carisma (2007)
Principal component analysis (PCA) models data as
a linear mixture of gaussian variables; the principal
components are linear combinations (more precisely,
rotations) of the observed variables that maximize the
variance.
Independant component analysis (ICA) models the
data as a linear mixture of independant non-gaussian
variables: the independent components are linear com-
binations of the observed variables that maximize some
measure of non-gaussianity, such as kurtosis or negen-
tropy – a couple of years ago, APT were extremely
careful never to use the “ICA” words when explaining
their product.
Similarly, second-order blind identification (SOBI)
models the data as a linear mixture of autocorrelated

Article and book summaries by Vincent Zoonekynd 935/1044

variables – one could generalize this by considering the
volatility process.
The audience raised a few questions:
– how robust is it?
– can we combine ICA and SOBI?
D. Madan raised a few objections:
– the assumption of a linear mixture of non-gaussian
variables is not valid for financial data: it would
create dependence between the necks, while we
also/mainly observe (and worry about) dependence
in the tails;

– furthermore, the independent components we get are
not independent.

Alpha budgeting
cross-sectional dispersion decomposed

W. Yu and Y.M. Sharaiha
Journal of asset management (2007)

Anova (analysis of variance) can be used to decompose
cross-sectional variance.

Improving returns-based style analysis
Daniel Mostovoy

(Northfield, 2007)
Returns-based style analysis (RBSA) tries to replicate
the returns of a fund, or at least to explain its risk
(for variance decomposition or to use it in a (fund-of-
funds) portfolio optimization), from a handful of as-
sets or spanning indices, in a linear way. The naive
constrained linear regression (constrained because the
weights have to be positive) can be improved:
– you can compute confidence intervals on the weights;
– for hedge funds, you can allow negative weights, add
a cash asset and constrain on the leverage;

– you can allow regime shifts by choosing the estima-
tion period using CUSUM – they have a CUSUM
video on their website;

– plot the residuals against time (everyone should al-
ready be doing that) to spot slow style changes and
use exponential weights to get rid of them; alterna-
tively, use a Kalman particle filter (because of the
constraints, you have to use Monte Carlo Markov
Chain (MCMC) simulations)

– Correct for heteroskedasticity, lest the more volatile
periods be counted more heavily: define the disper-
sion between the spanning indices, at a given date, as
their (cross-sectional) average absolute returns dif-
ference; weigh the observations with the inverse of
the square root of the dispersion;

– Be sure to include volatility-base indices; you can
choose the spanning indices by forward stepwise re-
gression;

– the proxy portfolio will be too diversified: replace it
by its constituents and ask the optimizer to reduce
the number of assets;

– You still cannot capture all the stock-specific risk:
this can be fixed by adding cash and changing the

leverage; you will also have to tweak the systematic
and unsystematic risk aversion parameters (RAP) to
keep the same factor variances; you might also want
to add a “pure stock-specific risk” asset to the risk
model.

However, the more “hedged” the fund, the less it works.

Who should you listen to?
A sector decomposition of surprise stock

returns
G. de Rossi (UBS) Northfield (2007)

A long-short strategy based on analysts’ earnings esti-
mates upgrades and downgrades is profitable in some
sectors but not in others, regardless of the quality of
the forecasts (?). To explain this, one can start with a
discounted cash flow model

Price = E

∑
t⩾1

Dt

1 + r0→t

and try to separate the influence of the numerator (cash
flow news) and the denominator (discount-rate news).
(I am not the best person to talk about discounted cash
flow models: if you want more information, check the
article itself.)
In a nutshell: in your models, use sector-specific
weights.

Alpha scaling revisited Amish Shah
(Northfield, 2007)

The Grinold formula can be derived as follows: let

y :forward returns
g :investment signal (our alpha – or even its components)
ĝ :a realization of g

The ordinary least squares (OLS) estimate of y given
g = ĝ is

ŷ = E[y] + Cov(y, g)Cov(g, g)−1(ĝ − E[g])

= E[y] + Cor(y, g) Sd(y) Sd(g) Sd(g)−2(ĝ − E[g])

= E[y] + Cor(y, g) ∗ Sd(y) ∗ (ĝ − E[g])/ Sd(g)

Where

Cor(y, g) : information coefficient
Sd(y) : volatility

ĝ − E[g]

Sd(g)
: score

This remains valid for time series regressions or cross-
sectionnally (for the whole universe or within sectors).
The Northfield alpha scaling tool processes the client’s
alpha as follows:
– gaussianize it to get a score
– use the cross-sectional Grinold formula:

return forecast = IC× volatility× score

Article and book summaries by Vincent Zoonekynd 936/1044

http://flashvideo.northinfo.com/cusum-700.cfm

The IC is provided by the user (perhaps on a sector ba-
sis); the volatility was not clearly explained (you could
take the volatility from the risk model or compute a
cross-sectional volatility for the whole market or for
each sector).
This talk also mentionned the Black–Litterman frame-
work. J. Sefton explained that this helps alleviate the
“error maximization problem”: the risk factors used in
the risk model are also present in the alpha and the op-
timizer is asked to minimize the former and maximize
the latter – it ends up maximizing the misalignment
between the two.

Portfolio construction
in a regression framework
J. Sefton (formerly UBS)

Northfield (2007)
Mean-variance optimization is often implemented as a
2-step process: first estimate the returns and the vari-
ance, then optimize. This can be replaced by a 1-step
procedure, that goes directly from the data to the port-
folio weights: constrained linear regression.

γ1T = Rw + ε

1′Nw = 1

where

1T = (1 · · · 1)′

1N = (1 · 1)′

R =

r11 · · · r1N
...

...
rT1 · · · rTN

and γ is the risk apetite.
As a bonus, you get all the machinery surrounding
regression: confidence intervals, robust regression, re-
gression diagnostics (leverage, etc.) – the audit trail
from data to weights is easier to follow.
For instance, looking at the leverage over time shows
that, because of the recent drop in volatility, recent ob-
servations have a lower leverage, i.e., a lower influence
on the final weights, than older observations – this is
not what you want.
Other example: the F-test can be used to test the dif-
ference between a portfolio P and an efficient portfolio
Eγ ; it simplifies to

Z(γ) =
IR(Eγ)2 − IR(P)2

1 + IR(P)2

and the “distance” between portfolio P and the effi-
cient frontier can be defined as

Z = Min
γ
Z(γ).

I am not convinced that all the classical regression tools
and formulas remain valid for constrained regression,

though. For confidence intervals, Dan di Bartolomeo
wrote an article, 10 years ago.
The constrained regression can include priors for the
returns and the risk matrix:

γ(1 · · · 110 · · · 0) =

 R
α1 · · · αN

V
1/2

prior

w + ε

Var ε = σ2diag(1, t−10 , t−10)

where t0 is the “weight” (in days) of the prior.

Distinguishing between being unlucky and
unskillful

Dan diBartolomeo (Northfield, 2007)
Alpha or information ratios (IR) are rarely statistically
significant, unless you have several centuries of data –
and increasing the frequency of the data does not help:
not only do the data becaome statistically more com-
plicated (autocorrelation, kurtosis, jumps), but it does
not increase the sample size, i.e., the number of invest-
ment decisions taken. To account for regime switches,
the size of the sample period can be estimated using
the CUSUM method.
Grinold’s fundamental law of active management,

IR = IC
√
breadth

IR = Information Ratio =
α

tracking error
IC = Information coefficient

= Cor(forecast, future returns)
breadth = number of independant bets

makes unreasonable assumptions (no constraints, no
transaction costs) and can be modified as

IR = IC× TC×
√
breadth

where the transfer coefficient TC < 1 measures portfo-
lio construction efficiency.
Using the IR in the first place is not that good an
idea: it only corresponds to a utility function if you
are very, very risk averse – in which case, you should
not approach stocks.
One can measure performance in a cross-sectional way
(the sample size grows quickly) using the effective in-
formation coefficient (EIC, you can also see it as an
ex post transfer coefficient): the correlation between
the implied alpha (i.e., the alpha for which the port-
folio actually held would be optimal) and the realized
returns.
Going the other way round, you can use the EIC to
evaluate a risk model:

excess returns = EIC× dispersion+ residuals
where the dispersion is computed cross-sectionally and
the dispersion of the residuals measures the quality of
the risk model.
Good fund returns can have two causes: either a good
batting average (the proportion of forecasts with the

Article and book summaries by Vincent Zoonekynd 937/1044

correct sign) or a good skew (third moment of the prod-
uct weights * returns), i.e., larger gains than losses
– the skew appears with trend-following strategies or
portfolio insurance.
Someone remarked that those measures did not take
capacity problems into account.

A market impact model that works
Dan diBartolomeo (Northfield, 2007)

Northfield now have a market impact model:

M = A+B ∗X + C ∗X1/2.

Since large trades are extremely rare in the data (they
are split into smaller trades), those model typically do
not predict their impact well – the impact can exceed
100%. To avoid this, they add boundary constraints on
the value of the coefficients, using a worst-case scenario
(a takeover with information leakage). They also over-
weigh large trades (using their dollar value), in order
to have better forecasts for them. Their current model
works well for North America, but not for the UK or
Japan – this may be due to a data problem.
In the Carisma seminar, Dan had more time and gave
more details:
– When estimating the worst-case market impact, they
take the liquidity into account

– Their market impact model has a liquidity exhaus-
tion term

The market efficiency in stock markets
J.S. Yang et al.

arXiv:physics/0701179

Yet another econophysics article. For each asset of
interest (here, indices: S&P 500 and Kospi) plot,
over time (using high-frequency (1-minute) log-returns;
only intraday to avoid discontinuities):
– The tail index;
– The “variance of the autocorrelation”, i.e., the sum

of the (day) 10 first autocorrelations, i.e., the Q-
statistic (used in the Ljung–Box test);

– The scaling property of the standard deviation, i.e.,
µ in σ(∆t) ∼ (∆t)µ.

Discretize the returns and compute:
– Their entropy H(1) =

∑
i−pi ln pi;

– The entropy H(L) of the sequences of L returns, or
rather the marginal entropy H(L)−H(L− 1);

– The statistical complexity (?) of the corresponding
Markov chain (it will be zero if the data is either
regular or completely random).

A valuation-based test of market-timing
W.B. Elliott et al.

Journal of corporate finance (2007)
Whe deciding whether to issue stock or debt, CFOs try
to time the market. To test this hypothesis, one can

compute the correlation between the leverage (debt-
to-equity ratio) and a misvaluation measure, such as
the prite-to-book ratio (P/B) – but the P/B contains
more information than simple over-valuation: growth
opportunities, asymetric information, debt overhang,
etc. Instead, the authors use the residual income model
(RIM) to study the capital structure –CFOs do try to
time the market.

CFA Institute magazine
March-April 2007

It does not make sense for a company not to pay div-
idends – it prevents investors from valuing it, unless
you are satisfied with a null value.
Fat tails, power laws, drawdown can be used as a risk
measure:
– APT models take fat tails into account;
– higher moments can be used in portfolio theory and
lead to a multi-moment efficient frontier;

– The tails are different for market risk (thin) and
credit and operational risk (fat); furthermore, they
are not independent.

The article about the quantitative investment process
(what we are doing) stressed the importance of sector-
dependant, dynamic models; it also mentions funda-
mental indices, such as RAFI (Ressearch Associates
Fundamental Index), which weigh stock using (addi-
tive) variables other than market capitalization.

Fundamental indexation
R.D. Arnott et al.

Financial analysts journal (2005)

Extreme value problems in random matrix
theory and other disordered systems

G. Biroli et al.
arXiv:cond-mat:0702244

There are several variants or generalizations of the cen-
tral limit theorem:
– The asymptotic behaviour of

∑N
i=1 xi is gaussian if

x is L2, stable (if defined) otherwise: only the tails
matter;

– The asymptotic behaviour of MaxNi=1 xi is Weibull
(if X is bounded), Gumbel (if X has thinner than
power law tails) or Fréchet (ifX has power law tails);

– The asymptotic behaviour of

Sq(N) =

N∑
i=1

xqi

depends on µ =
√
2 lnN/qσ and exhibit phase tran-

sition phenomena;
– etc.
The article examines what happens to the Tracy–
Widom distribution (the distribution of the largest
eigenvalue of a symmetric random matrix with gaus-
sian entries) when the entries have power law tails.

Article and book summaries by Vincent Zoonekynd 938/1044

On the distribution of the largest principal
component

I.M. Johnstone (2000)
The largest singular of a random (gaussian) matrix (or
the largest eigenvalue of a Wishart matrix) approaches
the Tracy-Widom distribution, which is computable in
terms of the Painlevé differential equation.
(Random matrix theory (RMT) is just a limit theorem
for matrices, similar to other limit theorems (central
limit, stable distributions, extreme distributions, large
deviations, etc.)

Correlation functions, cluster functions and
spacing distributions for random matrices

C.A. Tracy and H. Widom
arXiv:solv-int/9801004

Exponential weighting and matrix-based
filtering of financial covariance matrices for

portfolio optimization
S. Pafka et al.

arXiv:cond-mat/0402573

Random matrix theory (RMT) noise undressing can
be combined with exponential weighting to account for
heteroskedasticity.

Non-hermitian random matrices
B. Khoruzhenko (2001)

The tools used to study the (non-real) eigenvalues of
non-hermitian matrices are very different.

Records in a changing world
J. Krug

arXiv:cond-mat/0702136

Records (i.e., entries larger than all the previous ones)
in a sequence of iid random variables asymptotically
follow an extreme value theory (EVT) distribution and
the distribution of record times do not depend on the
distribution of the random variables.
One can also consider independant non-iid variables:
– Xn = Max{Y1,n, . . . , YNn,n}, with Yi,j iid, can be
iused to mode sports records where Nn (usually in-
creasing) is the population size;

– Xn = Yn + cn;
– Xn = λnYn.

Random but not so much
A parametrization for the returns and

correlation matrix of financial time series
A.C.R. Martins

arXiv:physics/0701025

Random matrix theory (RMT) can be seen as a sta-
tistical test of H0 : V = 1nn using Spec V̂ , with no
well-defined alternative hypothesis.
One can extend the Marc̆enko–Pastur model by:

– allowing for a more general variance matrix V , e.g.,
one with a handful of non-zero eigenvalues (this is
how RMT is used, to compare H0 : λk = 0 against
H1 : λk 6= 0; but people use results valid for k = 1
for any value of k, and feel free to perform as many
tests as possible);

– allowing for non-stationarity effects (the subject of
the article, but their model is not very clear).

Stock market distributions:
from past to present

S. Drożdż et al.
arXiv:0704.0664

Earlier studies claimed that market fluctuations had
power laws with a scaling index α > 3, regardless of
the horizon. This index now depends on the horizon:
3 for high frequency data (minute), while weekly data
are gaussian.

Mean-variance portfolio analysis under
parameter uncertainty

T. Bodnar and W. Schmid
Going from sample returns to market parameters to
the (minimum variance or tangency) efficient portfolio
to an estimation of the portfolio return and risk are
estimators.

data

��
µ̂, V̂

##F
FF

FF
FF

FF
F

xxqqq
qqq

qqq
qqq

minimum variance
portfolio

��

tangency
portfolio

��
µ̂MV, σ̂

2
MV µ̂T, σ̂

2
T

Under gaussian assumptions, one can compute, in
closed form, the distribution of those estimators, and
perform tests on them.
Note that

E [|µ̂MV|] =∞

E
[∣∣σ̂2

MV
∣∣1/2] =∞.

The minimum variance portfolio is more robust.

SNP: a program for non-parametric time
series analysis

A.R. Gallant and G. Tauchen (1990–2007)
Hermite probability distribution functions (pdf) gener-
alize the gaussian distribution:

h(z) ∝ P (z)2φ(z)

Article and book summaries by Vincent Zoonekynd 939/1044

where P is a polynomial and φ the (multivariate, stan-
dard) gaussian pdf.
Semi-non-parametric distributions are the distribu-
tions of affine transformations of Hermite random vari-
ables.

Conditional properties of hedge funds:
evidence from daily returns

Y. Li and H. Kazemi
European financial management (2007)

Non-parametric GARCH(1,1) (or more genarally SNP
models) can be used to model daily hedge fund returns
and accounts for asymetries.

Investor attention
and time-varying comovements

L. Pend et al.
European financial management (2007)

Comovement can be measures as

stock-specific risk
total risk .

The authors use realized log-volatility from 5-minute
returns and regress stock returns against S&P 500 re-
turns.

A comparative study of portfolio insurance
S. Basak (2001)

Portfolio insurance can be cast into a utility frame-
work: as the wealth approaches the floor, the marginal
utility tends to infinity, e.g., one can use

(wealth− floor)γ
γ

instead of wealthγ/γ.
The article uses continuous-time processes

A shrinkage approach to model uncertainty
and asset allocation

Z. Wang (2003)
To account for model uncertainty, shrink stock returns
and variance towards those implied by the CAPM or
Fama–French model.

Valuation in US commercial real estate
E. Ghysels et al.

European financial management (2007)
Real estate (and real estate investment trusts (REIT))
is very similar to equity: properties (especially com-
mercial properties) can be valued with the discounted
rent model, analogue of the discounted cash flow model;
the cap rate (rent-to-price ratio) is the analogue of the
P/E, etc.

Is coskewness a better measure of risk in the
downside that downside beta?

Evidence in emerging market data
D.U.A. Galagedera and R.D. Brooks

Journal of multinational financial management
(2007)

The various downside betas

βHW =
E [(r − rfree)(rmarket − rfree)−]

E
[
(rmarket − rfree)2−

]
βHR =

E [(r − r̄)(rmarket − r̄market)−]

E
[
(rmarket − r̄market)2−

]
βE =

E [(r − r̄)−(rmarket − r̄market)−]

E
[
(rmarket − r̄market)2−

]

can be generalized into downside skewnesses:

γHW =
E
[
(r − rfree)(rmarket − rfree)

2
−
]

E
[
(rmarket − rfree)3−

]
γHR =

E
[
(r − r̄)(rmarket − r̄market)

2
−
]

E
[
(rmarket − r̄market)3−

]
γE =

E
[
(r − r̄)−(rmarket − r̄market)

2
−
]

E
[
(rmarket − r̄market)3−

]

This is appropriate when the returns distribution is
skewed.

Portfolio selection with higher moments
C.R. Harvey et al.

Traditional portfolio selection has two drawbacks:
– It assumes that the expected utility (the authors con-
fuse utility and expected utility) only depends on the
first two moments;

– It assumes that the market parameters are known,
i.e., that the estimation risk will remain negligible.

To tackle the first problem, one ca:
– consider the expected utility as a function of the first
three moments, leading to a 2-dimensional efficient
frontier;

– replace the variance by an asymetric measure of risk.
To tackle the second problem, one can:
– shrink the market parameters;
– use bayesian estimators of the market parameters
(this is a non-linear shrinkage);

– use robust estimators of the market parameters;
– shrink the “optimal” portfolio (Black–Litterman);
– add constraints on the weights/
The authors use bayesian estimators from a multivari-
ate skew gaussian (the sum of a truncated gaussian
and a (smaller) gaussian, up to affine transformations)
and a higher-dimensional efficient frontier to account
for both skewness and estimation risk.

Article and book summaries by Vincent Zoonekynd 940/1044

Their presentation of utility theory, with their unde-
fined notion of predictive utility (something between
utility and expected utility), is confusing.
As often, there is also some “resampled frontier bash-
ing”.

Robust mean-variance portfolio selection
C. Perret-Gentil and M.P. Victoria-Feser

(2003)
“Robust portfolio construction” refers to two different
notions:
– either a worst-case optimization;
– or a classical mean-variance optimization using ro-
bust estimates of the mean and variance matrices.

This article focuses on the latter and proves that it
suffices to robustify the inputs of the mean-variance
machinery to get a robust mean-variance portfolio.
However,
– it does not work complicated (non-convex) con-
straints – there are similar limitations to the equiv-
alence between robust optimization (first sense) and
bayesian optimization;

– in high dimensions (the article remains in dimension
3), robust variance matrices are not very robust.

Hedging predictions in machine learning
A. Gammerman and V. Vovk (2007)

While statistical prediction procedures can provide
confidence intervals (or, even better, full posterior dis-
tributions, for bayesian statistics), machine learning al-
gorithms only provide a single, naked prediction.
– Find a measure of strangeness, using a machine
learning (ML) algorithm, in an ad hoc way, e.g.:
· absolute value of the residuals in a regression;
· Lagrange multipliers in a support vector machine
(SVM) (it is zero for non-support vectors);
· for the k nearest neighbours,

α =

k∑
j=1

d+ij

k∑
j=1

d−ij

where d+ij (resp. d−ij) is the jth shortest distance
(euclidian or other) between i and the observations
with the same (resp. a different) label (this can be
seen as a “truncated anova”);

– The empirical p-value px,y of an observation (x, y) is
the proportion of observations stranger than it (this
should remind you of bootstrap p-values);

– For regression problems, after choosing a confidence
level ε, the prediction of x is the set

{y ∈ Y : px,y > ε};

– For classification problems,

ŷ = Argmax
y

px,y

credibility(ŷ) = px,ŷ

confidence(ŷ) = 1−Max
y ̸=ŷ

px,y

(this should remind you en entropy-based estimators:
we are looking for the model under which the data
looks as random as possible, i.e., the model that re-
moves as much regularity as possible from the data);
the credibility should be high, unless the training
set is not iid and/or not representative of the data
and/or the new observation is an outliera.

More formally, the measure of strangeness α is called
a non-conformity measure and is just a family of maps
(X × Y)n/Sn −→ R+.
The empirical p-value is an approximate random test:
ideally, it should be a function t : Z∗ −→ [0, 1], where
Z∗ is the set of all finite sequences of integers, such
that for all ε > 0, for all n ∈ N×, for all probability
distribution P on Zn,

P ({z ∈ Zn : t(z) ⩽ ε}) ⩽ ε.

The article mentions ridge regression but seems un-
aware of the fact that this is not a single estimator but
a family of estimators (a regularization path), depend-
ing on the value of the ridge parameter.

The style consistency of hedge funds
R. Gibson and S. Gyger

European financial management (2007)
PAM (partitionning around medoids – this is similar
to k-means clustering but the center of the clusters are
chosen among the observations) can recognize hedge
fund styles as well as principal component analysis
(same R2).
Fuzzy clustering algorithms find the clusters and assign
a membership probability for each observation-cluster
pair. The authors use an entropy-based fuzzy cluster-
ing:
– Entropy-based estimators find the probability dis-
tribution (p1, . . . , pn) that maximizes the entropy
H =

∑
−pi ln pi, subject to all the information avail-

able expressed as constraints.
– The cost of a configuration (i.e., a set of membership

probabilities) is

cost(Y) =
∑
ij

pijd(ri, yj)

where the ri are the observations and the yj the clus-
ter centers. If the cost is known, we can find the
membership probabilities that maximize the entropy
under the constraint above.

– For the cost defined by each hard clustering config-
uration (yes, there are many of them), compute the
entropy-maximizing membership probabilities and

Article and book summaries by Vincent Zoonekynd 941/1044

http://www.clrc.rhul.ac.uk/events/TCJ.pdf

average them all (i.e., you have no prior preference
on the hard clustering configurations).

– Finally, with those membership probabilities, find
the cluster centers by maximum likelihood.

After fuzzy clustering, style consistency of hedge funds
can be measured as mean time consistency (average
(over time) membership probability), consistency devi-
ation (standard deviation of time consistency) or their
ratio (consistency ratio); style consistency does not af-
fect returns.

Calibration risk for exotic options
K. Detlefsen and W.K. Ha̋rdle

Journal of derivatives (2007)
Derivative models have to be calibrated by minimizing
some error function, but the calibration depends on the
choice of this error function, leading to calibration risk
– on top of model risk.
Popular error functions include:
– absolute price difference;
– relative price difference;
– absolute implied volatility difference;
– relative implied volatility difference.
This article compares them for the Heston model

dSt
St

= µdt+
√
VtdW

1
t

dVt = ξ(η − Vt)dt+ θ
√
VtdW

2
t

(well-defined if ξη > θ2/2, but in simulations, negative
variances are truncated to zero) and the Bates model,
which accounts for jumps in the stock prices,

dSt
St

= µdt+
√
VtdW

1
t + dZt

dVt = ξ(η − Vt)dt+ θ
√
VtdW

2
t

Z ∼ Poisson(λ, k)

log(1 + k) ∼ N
(
log(1 + k̄)− δ2

2
, δ2
)
.

The models are calibrated with vanilla options (using
the characteristic function of those models – yet an-
other application of the charcateristic function) and
then used to price exotic options: barrier (un and out
call)

Payoff = 1MaxS<B(ST −K)+

and cliquet

Payoff =

N∑
i=1

Sti − Sti−1

Sti−1

(the cliquet pays the sum of the linear returns; it is
actually more complicated: in each period, the returns
are truncated (above and below), and so is their sum).
The article suggests to calibrate with respect to abso-
lute prices to mitigate model risk – or relative implied
volatilities, if the model has already been chosen.

Hedge fund activism, corporate governance
and firm performance

A. Brav et al.
Some hedge funds can acquire more than 5% of a com-
pany (this has to be filed to the SEC (schedule 13D))
and ask it to change (e.g., sell part of its business, fire
its CEO, accept a takeover). The following variables
can help predict targeted companies:
– size:
· market value;

– value:
· Q =

debt+market value
debt+ book value ;

· book-to-market;
– performance:
· sales growth;
· ROA =

EBITDA
assets ;

– capital structure:
· debt-to-capital;
· new equity issuance;
· dividend yield;
· payout ratio = dividends

net income before
extraordinary items

;

– governance:
· number of Ginex takeover defenses;
· institutional ownership;

– liquidity:
· Amihud illiquidity (daily values, averaged over 1
year):

E

[
0.001 ·

√
price · volume
|returns|

]

· idiosyncratic volatility: monthly standard devia-
tion of the daily returns in excess of the industry
mean.

A breakdown of the valuation effects of
international cross-listing

A. Bris et al.
European financial management (2007)

Cross-listing effects can be explained by:
– market segmentation;
– liquidity;
– bonding (differences in rights);
– signaling.

Acquisitions, overconfident managers
and self-attribution bias

J.A. Doukas and D. Petmezas
European financial management (2007)

Managers with more than 5 acquisitions in the past 3
years are overconfident.

Article and book summaries by Vincent Zoonekynd 942/1044

Do life insurance stocks
provide superior returns?

M. Najand et al.
Journal of asset management (2007)

CAPM-GARCH (i.e., CAPM with GARCH noise) is
better than CAPM.
Managers with more than 5 acquisitions in the past 3
years are overconficent.

Risk and asset allocation
A. Meucci (2006)

Chapter 1: Univariate statistics
There are three equivalent ways of describing a univari-
ate distribution: the probability distribution function
(pdf, fX), the cumulative distribution function (cdf,
FX) and the characteristic function (φX(ω) = EeiωX)
– there is also the quantile function (F−1X), but it does
not usefully generalize to higher dimensions.
A location parameter (mean, median, mode) is defined
by affine equivariance; so are dispersion parameters:
for instance, the standard deviation, the MAD, the in-
terquartile range or the modal dispersion

MDis =
(
d2 ln fX
dx2

∣∣∣∣
x=ModX

)−1
.

The Z-score for a location and a dispersion parameters
is

Z =
X − LocX

DisX .

The first chapter ends with a taxonomy of univariate
distributions: uniform, gaussian, Cauchy, Student, log-
normal, Gamma (a generalization of the χ2 distribu-
tion, often used as a prior for variance).
Chapter 2: Multivariate statistics
In a multivariate setting, there are still three ways of
representing a distribution: pdf, cdf and characteristic
function. A multivariate distribution can be factored
into 1-dimension distributions (the marginals) and a
“purely joint component” – the copula, defined as the
joint definition of its grades (the grade of a univariate
distribution being its uniformization).
The book fails to give a taxonomy of copulas, but pro-
vides a few examples:
– The copula of a log-normal distribution is a gaussian
copula;

– The Student T copula is not independant;
– The copula between prices and log-prices, or between
ratio-returns and log-returns, is trivial;

– The copula between a call option and its underlying
is trivial.

The copula is invariant under monotonic increasing
transfromations – e.g., replacing a stock by a call op-
tion has no effect.
A location parameter (mean, mode) is characterized by

affine equivariance:
Loc(a+BX) = a+B LocX

for all invertible affine transformations x 7→ a+Bx.
In dimension greater than 1, the median is not a loca-
tion parameter: it depends on a choice of coordinates.
A dispersion matrix is a symetric, positive matrix sat-
isfying the affine equivariance property:

DisSq(a+Bx) = BDisSq(X)B′

for all invertible affine transformations x 7→ a + Bx,
such as the covariance matrix or the modal dispersion:

MDisX = −
(
∂2 ln fX
∂x∂x′

∣∣∣∣
x=ModX

)−1
.

The Z-score is then:
Z =

√
(X − LocX)′(DisSqX)−1(X − LocX).

Any measures of location and dispersion define a fam-
ily of location-dispersion ellipsoids – for non-elliptical
distribution, this information is far from sufficient.

 0.05

 0
.1

 0

.1
5

 0
.2

 0.25

 0.3

 0
.3

5

 0.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Isoprobability contour of a log−normal distribution

For a more empirical/non-parametric/procedural ana-
logue of the location-dispersion ellispoid, check the no-
tions of bag plot and half-space depth.
The expected value and the variance are equivariant
with respect to not-necessarily invertible transforma-
tions: you can obtain the location-dispersion ellipsoid
of a portfolio from that of the market.
Higher-order statistics (HOS) can also be defined in the
multidimensional case, but they are tensors; however,
the coskewness and the cokurtosis tensors can be sum-
marized in one overall index of symetry (for coskew-
ness) or tail thickness (for kurtosis) – but the book
does not tell us how...
The Schweizer–Wolff measure of dependence of two
(univariate) random variables is the Lp distance be-
tween their copula and the independant copula, nor-
malized to take values in [0, 1]; it is invariant under
monotonic (increasing or decreasing) transformations.
Measures of concordance, such as Kendall’s τ or Spear-
man’s ρ are only invariant under increasing transfor-
mations and take values in [−1, 1]; they change sign

Article and book summaries by Vincent Zoonekynd 943/1044

under decreasing transformations; furthermore, being
zero is only a necessary condition for independance.
Correlation mixes marginal and joint features: it is
only an “affine measure of concordance”, it is changed
by monotonic transformations of the marginals: “One
might wonder why correlation is such a popular tool:
(...) for an important class of distributions [elliptical
distributions], the correlation completely defines the
dependance structure.”
The taxonomy of multivariate distributions includes:
matrix-variate gaussian and T distributions, Wishart
(generalization of the χ2: it is the distribution of
X1X

′
1 + · · ·+XνX

′
ν , where Xi ∼ N(0,Σ) with ν ⩾ n).

Elliptical distributions are affine transformations of
spherically symetric distributions, which can be de-
scribed by a single univariate function: X ∼ El(µ,Σ, g)
has density

f(x) = |Σ|−1/2 g
(
(x− µ)′Σ−1(x− µ)

)
where g is a probability density generator: g ⩾ 0 and∫∞
0
vN/2−1g(v) dv <∞. For instance:

g(z) ∝ e−z/2 (gaussian)
g(z) ∝ (1 + z)−(1+N)/2 (Cauchy)

g(z) ∝
(
1 +

z

ν

)−(ν+N)/2

(Student)

(Notice that the gaussian pdf has an exponential de-
cay, while the Student or Cauchy pdf have a power law
decay.)
Alternatively, elliptic distributions can be recog-
nized from their characteristic function, φ(ω) =
eiω

′µψ(ω′Σω), for some suitable real-valued function
ψ.
When a stable distribution describes a phenomenon
(log-returns, risk, etc.) at horizon T , the compounded
distribution at horizon 2T , 3T , etc. is still in the
same family. Symetric-alpha-stable (sαs) distributions,
X ∼ SS(α, µ,mΣ), are defined as

φX(ω) = eiω
′µ exp

(
−
∫
RN

|ω′s|αmΣ(s)ds

)
where mΣ is a symmetric measure on the ellipsoid
s′Σ−1s = 1.
Beware, stable distributions are dangerous: they vi-
olate the central limit theorem (they have no second
moment).
When an infinitely divisible distribution describes some
phenomenon at horizon T , you can (under an inde-
pendance assumption) get the distribution at horizons
0 < t < T .
Chapter 3: Market invariants
To model a market, the author suggests to:
– Look for market invariants, i.e., iid random vari-

ables built from market data (if you see the market

as a machine to produce prices from iid noise, the
noise is a market invariant – some people speak of
innovations), recognized by looking (graphically) at
their autocorrelation and comparing their distribu-
tion in the first and last half of the sample; examples
include: log-returns for the equity market, changes
in yield to maturity for the fixed income market,
changes in (ATMF) implied volatility for the options
market;

– Model their distribution;
– Project their distribution to the investment horizon
(e.g., we could use daily data to invest on a monthly
horizon) – this can be done using the characteristic
function and is even easier with additive invariants
(such as log-returns);

– Transform the projected market invariant distribu-
tion into a market price distribution – even if that
transformation is not analytically tractable, one can
easily get the moments of the distribution of prices
– but be sure to keep track of the propagation of
estimation errors.

The quest for market invariants can involve dimension
reduction or variable selection, but this part of the
book is a bit confusing and the author fails to warn
the reader of the dangers of model selection.
Cointegration is mentionned, for the equity and fixed
income markets, but not detailed.
Chapter 4: Estimators
Depending on the amount of information available, you
will prefer shrinkage or bayesian estimates (very little
data), maximum likelihood estimators (MLE) (more
data) or non-parametric estimators (a lot of data).
The quality of an estimator can be measured as its
error (mean square error, MSE), its bias (average dis-
tance to the correct value) and its inefficiency (stan-
dard deviation, i.e., dispersion around its expected
value):

Error2 = Bias2 + Inefficiency2.

One can also consider the loss, i.e., the squared dis-
tance to the correct value (with respect to some
quadratic form) – contrary to the error, the bias or
the inefficiency, this is not a number but a random
variable. One can look at these quantities and distri-
butions for a family of “stress-test distributions”, to
gauge estimation risk.

Article and book summaries by Vincent Zoonekynd 944/1044

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1
.0

0.
0

0.
5

1.
0

Estimator distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
5

1.
0

1.
5

Loss distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Error, inefficiency and bias

Different stress distributions

Er
ro

r2

0.00

0.02

0.04

0.06

0.08 Bias2

Inefficiency2

Estimator of correlation, shrunk towards zero

The Glivenko–Cantelli theorem states that the empir-
ical cumulative distribution function (ecdf) is a con-
sistent estimator of the cdf; this yields the benchmark
(non-parametric) estimator: just replace the cdf in the
definition of the quantity of interest by the ecdf; those
estimators are often a good starting point and can be
improved on (e.g.: sample mean and OLS benchmark
estimators are non-biased, while the variance bench-
mark estimator is).
Kernel estimators are obtained from the benchmark es-
timators by replacing the Dirac masses in the epdf by
gaussian kernels – i.e., we use a smoothed estimator of
the pdf.
MLE relies on the assumption that the distribution
from which the data is drawn is in a very small set of
(known) distributions (sometimes called the stress dis-
tributions): the MLE is the mode of the distribution
of the parameters given the data; it is asymptotically
unbiased, asymptotically gaussian, and asymptotically
attains the Cramer–Rao bound (i.e., it is the best un-
biased estimator – the book assumes you are already
familiar with those notions).
The MLE of the parameters of an elliptic distribution
(with a known probability density generator g) is a
weighted mean and weighted variance; the weights can
be computed (iteratively) using the Mahalanobis dis-
tance and the density generator. The book does not
consider the (semi-parametric) situation of an elliptic
distribution with an unknown probability density gen-
erator. Linear regression or principal components are
still amenable in the case of elliptic distributions.
In the gaussian case, the condition number, i.e., the
ratio of the smallest to the largest eigen value, mea-
sures how close to a sphere the cloud of points is: if it
is close to 1, the problem is well-conditionned, if it is
close to 0, it is ill-conditionned.
An estimator is admissible if there does not exist an-
other estimator with a lower error for all the stress-test
distributions. Benchmark estimators or MLE estima-

tors tend not to be admissible: their bias is low but
their inefficiency large (especially when the condition
number is close to one); shrinkage estimators have a
larger bias and often a much smaller inefficiency, re-
sulting in a lower error.
For intance, the sample mean, with gaussian data, in
dimension at least 2, is not admissible: the James–
Stein shrinkage estimator

µ̂Stein = (1− α)µ̂+ αb

α =
1

T

Nλ̄− 2λ1
(µ̂− b)′(µ̂− b)

where T is the number of observations, N the dimen-
sion, λ1 the largest eigenvalue (we do not know it: it
will have to be computed from an estimator of the vari-
ance matrix), λ̄ the average eigen value and b any vec-
tor, is admissible. The prior b can be chosen arbitrarily
(e.g., 0), or using “prior” information, or as the grand
mean

b =
1′µ̂

N
1

or as the volatility-weighted grand-mean (Jorion esti-
mator)

b =
1′Σ̂−1µ̂

1′Σ̂−11
1.

(Strictly speaking, this is not prior information, since
it is extracted from the same data set; but it is much
less volatile.)
Dispersion estimators can be assessed with the Frobe-
nius loss

Loss(σ̂, σ) = tr
(
Σ̂− Σ

)2
.

The sample covariance matric scatters the eigen values
away from λ̄ (this is easily seen when the true eigen val-
ues are all equal: the sample eigen values will be more
dispersed, the largest eigen values will be too large and
the smallest eigen values too small): it squeezes and
stretches the location-dispersion ellipsoid; the estima-
tion worsens the condition number of the market in-
variants. One can shrink the eigenvalues towards their
mean (Ledoit):

Σ̂s = (1− α)Σ̂ + αĈ

Ĉ =
1

N

N∑
n=1

λ̂n

α = Min

1,
1

T

1

T

∑
t tr(xtx

′
t − Σ̂)2

tr(Σ̂− Ĉ)2

Ledoit shrinkage also works for regression.
Robustness
Here are a few measures of robustness:
– the leave-out-one Jackknife;
– the sensitivity curve (add an observation instead of
removing it; this is a function of the added obser-
vation; in particular, we are interested whether this
function is bounded);

Article and book summaries by Vincent Zoonekynd 945/1044

– the influence function (the infinite-sample limit of
the sensitivity curve): generalize your estimator so
that it be a function of a distribution:

Ĝ = G[
∑
t

δ(xt)]

and consider its Gâteaux derivative (or directional
derivative: contrary to the usual (Fréchet) deriva-
tive, we do not require it to be linear, i.e., the deriva-
tive in the direction ~u+~v need not be the sum of the
derivatives in the directions ~u and ~v):

IF(x, f, Ĝ) = lim
ε→0

1

ε

(
Ĝ[(1− ε)f + εδ(x)]− Ĝ[f]

)
.

For maximum likelihood estimators (MLE), one can
show that

IF(x, f, θ̂) = A
∂ ln fθ
∂θ

∣∣∣∣
θ=θ̂[f]

A = −

[∫
∂2 ln fθ(x)

∂θ ∂θ′

∣∣∣∣
θ=θ̂[f]

f(x) dx

]−1
.

The influence functions of the gaussian MLE of location
and dispersion are not bounded: they are not robust;
for other elliptical distribution, they are.
More generally, M-estimators (or generalized MLE) are
obtained by modifying the log-likelihood so that the in-
fluence be bounded; M-estimators of location and dis-
persion are actually weighted means and variances.
Outliers
The breakdown point of an estimator is the proportion
of outliers it can sustain while maintaining a bounded
influence function.
Theminimum volume ellipsoid (MVE: find the smallest
ellipsoid containing x% of the data, for various values
of x; if there is a jump in the volume, we know there
are outliers and we know how many) and the minimum
covariance determinan (MCD: the minimum value of
the determinant of the sample covariance matrix con-
taining x% of the data) have a high breakdown point
and are usually computed in a greedy and approximate
way, by discarding the observations one at a time.
Missing data
To compute location and dispersion parameters in pres-
ence of missing values, one can do better than dis-
carding incomplete observations. In dimension 2, if
the time series are complete but have different lengths,
there is an explicit formula (Stambaugh). In the gen-
eral case, use the expectation-maximization (EM) algo-
rithm.
Beware: the EM algorithm is not a data imputation
algorithm. Indeed, since the values are replaced by
their expected values, they will have a much lower dis-
persion; in particular, you cannot naively use them to
compute a dispersion parameter (the EM algorithm
explains how to compensate for that in the case of
the variance – some books forget that compensation
in their presentation of the algorithm).

Weighted estimates
Since more recent observations contain less stale infor-
mation, they can be given a linear weight, either with a
moving window or exponential smoothing – to find the
devcay factor, just put it in the log-likelihood formula
for µ̂ and Σ̂ – this is actually consistent with a GARCH
model.
If the location is known to be close to zero (with re-
spect to the dispersion), you can assume it actually is
zero: this is a shrinkage estimator.
One can also estimate location, dispersion or any other
parameter using a pricing model, i.e., choosing the pa-
rameters so that the model-implied price be as close as
possible from the market price.
Chapter 5: Evaluation allocations
The investor’s objective can be expressed in monetary
terms: usually the final wealth or the change in wealth
(when the absolute value of wealth does not matter)
or the difference between the final wealth and a bench-
mark.
Dominance
An allocation α strongly dominates an allocation β if
Ψα ⩾ Ψβ a,s, where Ψα is the investor’s objective com-
ing from allocation α (it is a random variable). Strong
dominance (also called zeroth-order dominance) rarely
happens and relies on the join distribution (Ψα,Ψβ).
Weak dominance (or first-order dominance) is defined
as

∀ψ ∈ R FΨα(ψ) ⩽ FΨβ (ψ)

where F is the cumulative distribution function.

pdf cdf

Weak dominance

Equivalently:

∀p ∈ [0, 1] QΨα(ψ) ⩾ QΨβ (ψ)

where Q is the quantile function.
Second-order stochastic dominance (SSD) is defined as

∀ψ ∈ R E[Ψα − ψ)−] ⩾ E[Ψβ − ψ)−],

i.e., for every benchmark ψ, the underperformance of
α is not as bad as that of β. Equivalently:

∀ψ ∈ R I2[fΨα](ψ) ⩾ I2[fΨβ](ψ)

where

I2[fΨ](ψ) = I[FΨ](ψ) =

∫ ψ

−∞
FΨ(s)ds.

Article and book summaries by Vincent Zoonekynd 946/1044

These definitions can be generalized to order-q domi-
nance – but these are not easily interpretable and still
fail to yield a total order.
Satisfaction
Instead of trying to assess the whole distribution of the
investor’s objective Ψα, one can try to summarize an
allocation α into a single number S(α), an index of
satisfaction. We might want it to satisfy some of the
following properties:
– money-equivalence: it should be measured in units
of money;

– sensibility, i.e., consistence with strong dominance;
– consistence with stochastic dominance;
– constancy: if the distribution of the investor’s objec-
tive is concentrated in a single point, Ψα = δψ, then
S(α) = ψ;

– positive homogeneity of degree 1 (the investor’s ob-
jective already is):

∀α ∀λ > 0 S(λα) = λS(α)

in particular, this gives the contribution of each asset
(Euler’s formula):

S(α) =

N∑
n=1

αn
∂S(α)

∂αn

– translation invariance (translation by a deterministic
allocation): if Ψb = δψb , then S(α+ b) = S(α) + ψb;

– super-additivity (if you focus on risk and not satis-
faction, you will call this subadditivity):

∀α, β S(α+ β) ⩾ S(α) + S(β)

– comonotonic additivity (two allocations α and β are
comonotonic if their objectives are increasing func-
tions of one another, for instance a stock and a call
option on it): if α and β are comonotonic, then
S(α + β) = S(α) + S(β), i.e., the index of satis-
faction is option-proof;

– concavity (results from homogeneity and superaddi-
tivity) , i.e., the index of satisfactionpromotes diver-
sification;

– risk aversion: if Ψb = δψ and EΨα = 0 then
S(b) ⩾ S(b+ α).

Examples include:
– the expected value of the objective, S(α) = EΨα;
– the Sharpe ratio

SR(α) = EΨα
SdΨα

(it is not expressed in monetary units; it is homoge-
neous of degree 0, not 1);

– the certainty-equivalent;
– the value at risk;
– expected shortfall.
Certainty-equivalent
Given a (continuous) increasing utility function u, the
certainty equivalent is

CE(α) = u−1E[u(Ψα)];

this is the value of the investor’s objective of a deter-
ministic investment having the same expected utility
as α – i.e., this is the expected utility expressed in
monetary units thanks to the (inverse of the) utility
function:
– it is only homogeneous for power utility, u(ψ) =
ψ1−1/γ , γ ⩾ 1;

– it is not comonotonic additive (except for a linear
utility);

– it is not superadditive (except for a linear utility);
– in general, it is neither nor convex (in particular, the
convexity of the utility function is not linked to the
convexity of the certainty equivalent);

– if the utility is concave, it is risk-averse.
For theoretical purposes, the utility function can be
written

u(ψ) =

∫
g(θ)H(θ)(ψ) dθ, g ⩾ 0,

∫
g = 1

where H is the Heaviside function (this generates all
increasing functions) or

u(ψ) =

∫
g(θ)Min(ψ, θ) dθ, g ⩾ 0,

∫
g = 1

(which generates all concave functions).
(I do not understand the explanations about the in-
vestor’s subjective probability.)
A utility function is entirely determined (up to a posi-
tive affine transformation) by its Arrow–Pratt absolute
risk aversion,

A(ψ) = −u
′′(ψ)

u′(ψ)
.

The Pearson specification includes the following par-
ticular cases:
– hyperbolic absolute risk aversion (HARA, always
concave):

A(ψ) =
1

γψ + ζ

– exponential utility: u(ψ) = − exp−ψ
ζ

– quadratic utility (beware, it is not sensible for ψ >
ζ):

u(ψ) = ψ − ψ2

2ζ

– power utility: u(ψ) = ψ1−1/γ

– logarithmix utility: u(ψ) = lnψ
– linear utility: u(ψ) = ψ.

The Arrow–Pratt risk aversion also yields approxima-
tions of the certainty equivalent and the risk premium:

CE(α) ≈ EΨα − 1
2A(EΨα)VarΨα

RP(α) = E[Ψα]− S(α)
= E[Ψα]− CE(α)
≈ 1

2A(EΨα)VarΨα

Article and book summaries by Vincent Zoonekynd 947/1044

In prospect theory, utility functions are S-shaped: con-
cave (risk-averse) for profits and convex (risk-prone)
for losses.
Quantile (VaR)
The value at risk (VaR), defined as

Qc(α) = QΨα(1− c),

is
– not consistent with second-order dominance (the def-
initions of second-order dominance and of the ex-
pected shortfall are very similar);

– consistent with first-order dominance;
– not super-additive: it fails to promote diversity;
– comonotonic additive (it is not fooled by deriva-
tives);

– positive homogeneous;
– neither concave not convex;
– not risk-averse.
The VaR can be computed with: a lot of data, or a
gaussian assumption, or the Cornish-Fisher expansion
(which is an approximation of the quantile function,
but it need not be particularly accurate for the ex-
treme values we are interested in), or extreme value
theory (EVT) (which requires enough data in the tails
– but in the 1% tail, you only have 1% of your data).
Coherent indices, spectral indices, expected
shortfall
An index of satisfaction is coherent if it is
– consistent with strong dominance;
– positive homogeneous;
– translation invariant;
– superadditive.
This implies money-equivalence and concavity. The
one-sided moments are coherent (but they are not
comonotonic additive).
A coherent index of satisfaction is spectral if it is es-
timable (?) and comonotonic additive. This implies
weak stochastic dominance and risk aversion.
Spectral indices are of the form

Spcϕ(α) =
∫ 1

0

φ(p)QΨα(p) dp

where φ, the spectrum, is decreasing, φ(1) = 0 and∫ 1

0
φ = 1.

Chapter 6: Optimizing allocations
Portfolio construction proceeds as follows:
– Define the investor’s objective;
– Define his index of satisfaction;
– Model the market invariants;
– Project the market invariants to the investment hori-
zon;

– Gather other information: legal constraints, trans-
action costs;

– Maximize the investor’s satisfaction – if there are

several indices of satistaction, maximize the first
subject to bounds on the others.

The author details an example with a closed form so-
lution: total wealth, certainty equivalent for the expo-
nential utility, gaussian prices (the certainty equivalent
is then quadratic), linear transaction costs, constraint
on the value at risk.
The classes of optimization problems that can be ef-
ficiently solved include, from the most specific to the
most general:
– Linear programming (LP);
– Quadratic programming (QP);
– Quadratically-constrained linear programming
(QCLP);

– Second-order cone programming (SOCP: the ice
cream constraints);

– Semi-definite programming (SDP);
– Cone programming (up to here, interior point meth-
ods are available);

– Convex programming.
Most of the time, e.g., with value at risk or certainty
equivalent, we are not that lucky: the optimization
problem is not convex. The mean-variance approxima-
tion can make this problem amenable:
– Express the satisfaction as a function of the moments
of the market distribution,

S(α) = H(E[Ψα],CM2(Ψα),CM3(Ψα), . . .)

(this is obtained from a Taylor expansion of the
utility function or the Cornish–Fisher expansion of
the value at risk); the problem is now infinite-
dimensional:

Rn // RN // R
α
� // (E[Ψα],CM2(Ψα), . . .)

� // S(α)

– Assume that the index of satisfaction is well approx-
imated by the first two moments

S(α) ≈ H̃(E[Ψα],CM2(Ψα))

– Since the index of satisfaction is consistent with weak
stochastic dominance, the optimal allocation is on
the efficient frontier

α(v) = Argmax
α∈C

VarΨα=v

E[Ψα], v ⩾ 0

– You now just have to maximize the index of satis-
faction on the efficient frontier.

The approximation of S(α) from the first two moments
is valid in the following cases:
– The market prices Ψα are elliptical (e.g., gaussian),
so that their distribution is entirely determined by
the first two moments (regardless of the index of sat-
isfaction); this is wrong for derivatives and even for
stock prices (it has to be prices, not their logarithms)
– but for short horizons, this is good enough an ap-
proximation;

Article and book summaries by Vincent Zoonekynd 948/1044

– The index of satisfaction really depends only on the
first two moments (regardless of the distribution of
the market invariants).

Contrary to what many people believe, the risk aver-
sion parameter λ in E[Ψα]− λVarΨα is not a feature
of the investor and it does not define an index of satis-
faction: its value also depends on the market – in some
extreme cases, it only depends on the market and not
on the investor; choosing it beforehand yields alloca-
tions inconsistent with strong dominance.
The mean-variance approximation is a two-step pro-
cess: first compute the (approximate) efficient frontier,
then maximize the index of satisfaction on this frontier.
The one-step mean-variance approximation, i.e., fixing
the “Lagrange multiplier” λ, is only valid under very
strong assumptions, e.g., gaussian prices and exponen-
tial utility.
The following problems are usually considered equiva-
lent, but this is only the case for affine constraints:

Maximize E[Ψα] such that VarΨα = v

Maximize E[Ψα] such that VarΨα ⩽ v
Minimize VarΨα such that E[Ψα] ⩾ e.

Chapter 7: Bayesian estimators
Bayesian statistics differs from classical inference in
two regards:
– we provide some prior information as input;
– the output is not a single number of vector but a
whole distribution – the posterior.

A classical-equivalent estimator is the single number
(or vector) obtained as a location parameter of the pos-
terior distribution – e.g., maximum a posteriori (MAP)
estimators, Bayes–Stein estimators, shrinkage estima-
tors.
For some prior and model distributions (called con-
jugate distributions), the posterior is computable in
closed form; for instance, the normal inverse Wishart
distribution specifies the joint distribution of (µ,Σ) as

µ|Σ ∼ N
(
µ0,

Σ

T0

)
Σ−1 ∼W

(
ν0,

Σ−10

ν0

)
and the data is

Xt |µ,Σ ∼ N(µ,Σ).

Similar computations can be performed with factor
models.
The prior distribution (or its location parameter) can
be defined by
– inverting the unconstrained allocation function θ 7→
α(θ) = ArgmaxSθ(α), i.e., finding the θ for which
the market weights maximize the satisfaction index
(the Black–Litterman prior is of this kind) – you
might want to add a few constraints, though;

– a (constrained) maximim likelihood estimator.
Chapter 8: Evaluating allocations under uncer-
tainty
An allocation is not a single set of weights but a func-
tion (a random variable)

available information 7−→ weights.

The cost of randomness is the difference between the
satisfaction of the best portfolio given perfect insight,
i.e., the portfolio with the highest ex-post returns (it
is likely to contain a single security) and the optimal
(diversified) portfolio.
The opportunity cost (OC) is the difference between the
satisfaction of the optimal allocation (assuming perfect
knowledge of the market distribution) and that of the
allocation actually chosen; constraint violations should
be expressed in monetary terms (often in an ad hoc
way).
Cost of randomness and opportunity cost are random
variables.
Prior allocation, i.e., allocation that does not use the
information available, is the analogue of a fixed esti-
mator: it is extremely biased.
Sample-based allocations are not too biased but have a
very scattered opportunity cost (they are inefficient):
the optimal allocation function is very sensitive to its
inputs and leverages estimation error.
Chapter 9: Shrinkage allocation decisions
Bayesian allocation maximizes the expected utility of
the investor’s objective, but the expectation is com-
puted with respect to the posterior distribution; this is
the analogue of a classical-equivalent bayesian estima-
tor and the opportunity costs are less scattered than
with sample-based allocation. Bayesian methods are
non-linear shrinkage methods.
Black–Litterman allocation shrinks, not the market pa-
rameters, but the market distribution, towards the in-
vestor’s prior. The investor provides a random variable
V that depends on the as-yet unknown market invari-
antsX, for instance, V ∼ N(w′X,φ2), whereX are the
market returns, w′ a portfolio on which the investor
has a view and φ2 the confidence of this view. Given
a realization v of V and the knowledge of the distri-
bution of V |X, we can compute the Black–Litterman
distribution X |V = v and then the corresponding
Black–Litterman allocation decision. The priorX need
not be the market invariants, but can be an “official”
model. In the gaussian, linear case, the computations
are straightforward.
The Mahalanobis distance between the market expec-
tations µ and the Black–Litterman expectations µBL
follows a χ2 distribution, which can be turned into a
p-value, to spot views in contradiction with the prior.
To identify which view is responsible, just differentiate
this p-value with respect to each view.
Resampled allocation proceeds as follows:

Article and book summaries by Vincent Zoonekynd 949/1044

– Estimate the market parameters θ̂ from the data;
– Create nes samples, by parametric bootstrap;
– For each sample q, estimate the market parameters
θq and the corresponding optimal allocation αp;

– Average those optimal allocations.
However, resampled allocation can violate investment
constraints (e.g., the maximum number of securities)
and are difficult to stress-test – see Scherer’s book for
more arguments against it.
Robust allocation replaces point estimates of market
parameters by uncertainty regions: Argmax

α
S(α, θ) be-

comes
Argmax

α
Min
θ∈Θ

S(α, θ).

This depends on the choice (size, shape) of the uncer-
tainty regions; with elliptical uncertainty regions, the
problem is a second order cone program (SOCP).
Since bayesian methods output a whole distribution in-
stead of a single value, robust bayesian allocation uses
the corresponding location-dispersion ellipsoids as un-
certainty sets; the radius of the chosen ellipsoid is the
investor’s avertion to estimation risk. Under gaussian
assumptions, the robust, bayesian, (two-step) mean-
variance framework is amenable to explicit computa-
tions.

Beyond Black–Litterman:
views on non-normal markets

A. Meucci
Risk (2006)

The Black–Litterman framework can be generalized
to a non-gaussian framework using the copula-opinion
pooling (COP) methodology:
– Choose a prior distribution (e.g., by an equilibrium
argument, as in the traditiional BL framework, or
by backward-looking estimation, or with forward-
looking market-implied values – the prior could be a
company-wide model on which individual managers
would add their views),

V ∼ (fM , FM , φM)

(fM is the probability distribution function (pdf),
FM the cumulative distribution function (cdf), φM
the characteristic function);

– Choose the views V = PM (each row of P is a port-
folio; those portfolios should be independant) and
the (marginal) distribution of each of them,

V̂k ∼ (fV̂k , FV̂k , φV̂k)

– Blend these distributions with those, (fVk , FVk , φVk)
induced by the market (separately for each view):

Ṽk ∼ fṼk = (1− ck)fVk + ckfV̂k

– Compute the joint posterior distribution of the
views, by combining the marginal posterior distri-
bution with the copula induced by the market dis-
tribution;

– Complete P into a basis:(
V
W

)
=

(
P
P⊥

)
M or M =

(
P
P⊥

)−1(
V
W

)
and compute the posteror distribution

M̃ =

(
P
P⊥

)−1(
Ṽ
W

)
.

The computations can be carried out explicitely with
a skewed T prior and uniform views; the result can be
used in an expected shortfall optimization.

Beyond Black–Litterman in practice
A. Meucci

Risk (2006)
The COP approach can be applied even if the prior is
not amenable to computations, by representing it by a
large number (100,000) of Monte Carlo simulations:
– Generate Monte-Carlo samples from the market
prior: M ;

– Turn those samples into marginal view priors: V =
PM ;

– Compute the view posterior distributions, using the
cdf of the investor’s views;

– Compute the market copula;
– Combine the view posterior marginal distributions
with the market copula;

– Compute the market distribution:

M =

(
P
P⊥

)−1(
Ṽ

P⊥M

)
.

Convex vs concave dynamic allocation
A. Meucci (2002)

In a 2-asset world (cash and a stock), the author com-
pares
– a buy-and-hold strategy;
– a call option (or the corresponding replicating port-
folio);

– portfolio insurance (CPPI – the article clearly ex-
plains what it is);

– a power-utility maximizing strategy.
Portfolio insurance and call options yield a very simi-
lar payoff (indeed, the strategies are almost identical),
while the power-utility maximizing strategy has a con-
cave payoff (you would prefer a convex one).
The plots of the payoff of those four strategies are im-
pressive – if you want to promote CPPI or badmouth
portfolio optimization (but the results are specific to
power-utility).

Broadening horizons
A. Meucci

Risk Magazine (2004)
Care should be taken when estimating the market dis-
tribution at a short (1 month) horizon and using it

Article and book summaries by Vincent Zoonekynd 950/1044

at a longer (severa years) one: use the characteristic
function. The article details this switch between log-
arithmic and linear returns in a gaussian world and
applies the results to portfolio optimization.

Robust bayesian allocation
A. Meucci

Robust bayesian allocation yields an efficient frontier
parametrized by 3 parameters: the target variance, the
size of the confidence ellipsoid on the mean, the size of
the confidence ellipsoid on the variance matrix – but
the efficient frontier is actually 1-dimensional, those 3
parameters, mixing market risk and estimation risk,
can be combined in a single parameter.

Bayesian diagnostics for portfolio allocation
F. Corielli and A. Meucci

To decide whether to or how much to rebalance your
portfolio towards the optimal portfolio, do not compare
the composition of the portfolios (this is not robust)
but their utility.
This articles actually compares the investor’s views
and the equilibrium portfolio, in the Black–Litterman
framework, and gauges how far from the equilibrium
one can go; this will be different for each view: check
the derivative of the utility wrt the confidence in each
view.

A common pitfall
in mean-variance asset allocation

A. Meucci
Wilmott (2001)

When using mean-variance asset allocation, investors
often mix linear returns and log-returns: the risk ma-
trix is estimated using log-returns (the variance of the
ratio returns is then:

µratio = exp(µ+ 1
2diagΣ)− 1

Σratio = exp(µ+ 1
2diagΣ)

′(expΣ− 1) exp(µ+ 1
2diagΣ)

but people rarely bother computing it – furthermore,
the mean-variance framework assumes that the ratio
returns follow an elliptical distribution), the forecasted
alphas are ratio returns but are projected to a longer
horizon as if they were log-returns. In the short term,
those mistakes are harmless, but lead to very different
allocations for long-term strategies – the author suspi-
ciously finds that long-term investors should perfer less
volatile assets.

Assessing views
G. Fusai and A. Meucci

Risk (2003)
When using the Black–Litterman framework to blend
a general model (usually, universal equilibrium) with
views, you may want to check how far from the model
those views are: this can be measured with the Ma-
halanobis distance between the model alpha and the

Black–Litterman alpha (they use a RiskMetrics vari-
ance matrix, i.e., an exponentially-weighted sample
non-central variance matrix). The distance can be
brought back to [0, 1] assuming a χ2

N distribution (N is
the number of assets). If the distance is too large and
has to be reduced, you can choose which view to al-
ter by differentiating the distance with respect to the
returns of the views and selecting the view with the
highest derivative.

Pitfalls in linear models for style analysis
F. Coriellu and A. Meucci

Statistical methods and applications (2004)
Debunking bad econometrics (a case study for an
econometrics (OLS) course): it is usually a bad idea
to consider returns and is preferable to use prices and
numbers of shares; some models that are often assumed
linear are actually not linear and should be tackled
with non-linear regression. There is no loss of parsi-
mony: this is simply “the model you had in mind”,
with exactly the same parameters, instead of an ap-
proximation. Using non-linear regression might not be
that good an idea if you want reliable estimates, but is
preferable if you want to compare models.

Anomalies in the foundations
of ridge regression

D.R. Jensen and D.E. Ramirez
arXiv:math.ST/0703551

Many people claim, without proof, that ridge regres-
sion, i.e., replacing the ordinary least squares (OLS)
estimator

β̂ = (X ′X)−1X ′Y

by the biased estimator

β̂ = (X ′X + λI)−1X ′Y

is equivalent to a constrained regression

Minimize (Y −Xβ)′(Y −Xβ)
such that β′β ⩽ c2

or

Minimize (Y −Xβ)′(Y −Xβ)
such that β′β = c2.

This is actually wrong.

Forecasting the CATS benchmark with the
double vector quantization method

G. Simon et al.
arXiv:math.ST/0703143

Double vector quantization (DVQ) can be used to pre-
dict a time series (the data comes from the competition
on artifitial time series (CATS) of the IJCNN 2004 (in-
ternational joint conference on neural networks)):

Article and book summaries by Vincent Zoonekynd 951/1044

http://www.cis.hut.fi/~lendasse/competition/competition.html
http://www.cis.hut.fi/~lendasse/competition/competition.html

– The data is modelled as a non-linear auto-regressive
(NAR) time series whose order is computed from the
correlation dimension

p = 2Dcor + 1

Dcor = lim
r→0

lnC(r)

ln r

C(r) = lim
n→∞

2

n(n− 1)

∑
1⩽t<t′⩽n

1(‖xt − xt′‖ < r);

C(r) is the (normalized) number of points in a hy-
persphere of radius r centered on xt; Dcor can be
estimated by plotting C(r) versus r and looking at
the slope of the curve in the middle of the plot;

– Compute a self-organizing map (SOM – any other
quantization algorithm would do) for the xt =
(xt, . . . , xt−p+1) and another one for the deformation
regressors yt = xt − xt−1;

– Compute the transition probabilities from the cells
of the first map to those of the second; use them to
simulate (do not just take the most probable values)
the missing values.

Measuring financial contagion:
a copula approach

J.C. Rodriguez
Journal of empirical finance (2007)

You can model pairs of exchange rates, around crises,
using switching copulas:
– the marginals are SWARCH (switching ARCH)
models;

– the copula is a mixture of Frank, Clayton and Gum-
bel copulas; the parameters do not depend on the
state variable but the weights do.

The model is compared with a switching Student cop-
ula with SWARCH marginals using the AICC (the AIC
corrected for small sample size; this is better than the
BIC is you are more interested in model selection that
actual forecasts). Tests are then performed on the up-
per (and lower) tail dependence:

λu = lim
u→1

P
[
Y > G−1(u) |X > F−1(u)

]
= lim
u→1

1− 2u+ C(u, u)

1− u
λl = lim

u→0
P
[
Y < G−1(u) |X < F−1(u)

]
= lim
u→0

C(u, u)

u

where F and G are the cdf of X and Y and C their
copula.
Asian currency crises exhibit tail dependance and
asymetry, while latin American ones do not.

Specification and estimation of discrete time
quadratic stochastic volatility models

H. Kawakatsu
Journal of empirical finance (2007)

The log-quadratic stochastic volatility model is:

yt = σtut

lnσ2
t = a0 + a1xt + a2x

2
t

xt+1 = φxt +
√
1− φ2vt+1

(
ut
vt+1

)
∼ N

(
0,

(
1 ρ
ρ 1

))

A closed form approach to the valuation and
hedging of basket and spread options

S. Borovkova et al.
Journal of derivatives (2007)

Option pricing often relies on a log-normal distribution.
When the underlying is a linear combination of assets,
sometimes with negative coefficients (commodity basket
options, e.g., spread options: spark spread (difference
between electrivity and gas price), crack spread (differ-
ence between crude oil and refined products), soybean
crush spread), this no longer works: instead, one can
use a shifted and/or reflected log-normal distribution.

An algorithm for simulating bermudan option
prices on simulated asset prices
B.N. Huge and N. Rom-Poulsen

Journal of derivatives (2007)
How to price options when the underlying (e.g., an al-
ready complicated option) has itself to be priced by
Monte Carlo simulation – in particular, the simulated
prices will be too volatile and this bias should be cor-
rected.

Algebraic statistical models
M. Drton and S. Sullivant

arXiv:math.ST/0703609

An algebraic exponential family is a semi-algrbraic sub-
set (up to diffeomorphism) of a regular exponential
family. It is “well-behaved”: its maximum likelihood
estimators are asymptotically gaussian.
Using semi-algebraic sets, i.e., allowing for inequali-
ties, has applications in phylogenetics with conditional
independance models, e.g., X ⊥⊥ Y |Z ∨ U ⊥⊥ Z.
The article is very abstract: for instance, regular al-
gebraic families are defined in a non-constructive way,
using the Laplace transform.

Transitional densities of diffusion processes:
a new approach to solving

the Fokker–Planck equation
A.S. Hurn et al.

Journal of derivatives (2007)
Numerically computing the transition probability dis-
tribution function (pdf) of a diffusion process via the
Fokker–Planck PDE is tricky: the initial condition is
a Dirac measure. Instead, one can consider the cu-
mulative distribution function (cdf) and numerically
differentiate it.

Article and book summaries by Vincent Zoonekynd 952/1044

The implied volatility term structure
of stock index options

S. Mixon
Journal of empirical finance (2007)(

∂implied volatility
∂maturity

)
ATM

can help predict future im-

plied volatility.

When is inter-transaction time informative?
C. Furfine

Journal of empirical finance (2007)
Faster arriving trades move prices more than slower
ones; the effect is weaker for actively traded stocks;
faster arriving stocks in the same direction are more
informative.

The performance of hedge fund strategies and
the asymetry of return distributions

B. Ding and H.A. Shawky
European financial management

To study hedge funds, do not use returns but resid-
ual returns, i.e., remove the effect of the market, the
Fama–French factors and the square of the market
(the corresponding coefficient of the regression is the
coskewness: that added term yields a higher-moment
CAPM).

Risk measures for hedge funds:
a cross-sectional approach

B. Liang and H. Park
European financial management

To measure risk, prefer expected shortfall (ES) or tail
risk (TR) (i.e., E[(X − X̄)2 |X < VaR]) to value at
risk or semi-variance.
The Cornish-Fisher expansion is preferable to a non-
parametric estimation of ES or TR – the authors do no
consider parametric (extreme value theory, EVT) esti-
mation – the non-parametric approach should become
preferable with more (daily) data.

Hedge fund indices:
reconciling investability and representativity

F. Goltz et al.
European financial management

It is possible to build investable and representative
hedge fund indices (classical HF indices are not in-
vestable).

Sources of contrarian profits
in the Japanese stock market

P.-H. Chou et al.
Journal of empirical finance (2007)

Reversal (with short (1 month) or long (2 years) hori-
zons) works in Japan, because of the lead-lag effect,
i.e., because of cross-correlations between the stock re-
turns.

Industry information diffusion and the
lead-lag effect in stock returns

K. Hou (2007)
The lead-lag effect (past large-firm returns and fu-
ture small-firm returns are related) is an intra-industry
phenomenon, more pronounced in small (size, volume,
market share), less competitive and neglected (analyst
overage, analyst dispersion) industries (institutional
ownership also plays a role).

Portfolio selection with heavy tails
N. Hyung and C.G. de Vries

Journal of empirical finance (2007)
For portfolio construction, first order tail expansions
are not precise enough: they lead to extreme alloca-
tions, with all the weight in the asset with the thinest
tail – in fact, the tail thickness of a portfolio is well
approximated by that of its component with the fatest
tail.
The article derives asymptotic expansions of P (X1 +
X2 > s) assuming that X1 and X2 are independent
and satisfy

P (X > s) = As−α
(
1 +Bs−β + o(s−β)

)
.

Are IPOs really overpriced?
S.X. Zheng

Journal of empirical finance (2007)
Studies claiming that IPOs are overpriced often over-
look their growth potential (omitted variable problem).

Interaction of stock return momentum
with earnings measures

I. Figelman
Financial analysts journal (2007)

Among companies with poor past returns, companies
with high ROE or low quality (accruals) underperform.

Migration
E.F. Fama and K.R. French

Financial analysts journal (2007)
The size premium can be explained by small caps be-
coming large caps and conversely. This remains valid
for the value premium – but these are ex post expla-
nations.

Bayesian learning in financial markets:
testing the relevance of information precision

and price discovery
N. Hautsch and D. Hess

Journal of financial and quantitative analysis
(2007)

Investors are not blind to heteroskedasticity: use a
“quality” factor in your models.

Article and book summaries by Vincent Zoonekynd 953/1044

Small-world MCMC and convergence to
multi-modal distributions: from slow-mixing to

fast mixing
Y. Guan and S.M. Krone

arXiv:math.PR/0703021

To reduce mixing time in an MCMC (Markov Chain
Monte Carlo) simulation on a multimodal space, you
can use, as a proposal distribution, a mixture of a thin-
tailed and a fat-tailed distribution. This can be inter-
preted in graph-theoretic terms as a small-world effect
– some people will also see a Levy process.
The article also contains a theoretical (functional anal-
ysis) presentation of continuous Markov chains.

A generative model for feedback networks
D.R. White et al. (2005)

There are many models of random networks, bit not
is satisfactory. Here is yet another one, that mimicks
kinship or corporate alliances networks:
– Select a node i,

P (i) ∝ degree(i)α

– Select a distance d,

P (d) ∝ dβ

– Generate a search path, from i, of length d, iter-
atively, randomly choosing a neighbour l, without
going through the same node twice,

P (l) ∝ 1 + u(l)γ

where u(l) is the unused degree of l
– If this works (we do find a path), tha we add an edge
between i and the end of the path; otherwise, we add
a new node and link it to i.

Times-series behavior of
share repurchases and dividends

B.S. Lee and O.M. Rui
Journal of financial and quantitative analysis

(2007)
The authors compare two hypotheses to explain the
fall in the number of companies paying dividends and
the rise of buy-backs: either taxes or temporary cash
flows – the latter is more likely.

Giving content to investor sentiment:
the role of media in the stock market

P.C. Tetlock
Journal of Finance (2007)

The author processes a daily Wall Street Jour-
nal editorial over 16 years through a content
analysis software (General Inquirer, non-free, non-
commercial – check http://www.wjh.harward.edu/
~inquirer/inqtabs.txt and http://textanalysis.
info), counting the words in 100 predefined categories;

a principal component analysis (PCA) of the result
yields a pessimism measure.
It predicts volume, volatility, depth, but not returns
– though it is correlated with downwards pressure fol-
lowed by a reversal.

An examination of alternative portfolio
rebalancing strategies applied to sector funds

Journal of asset management (2007)
You should rebalance your portfolio (to make it equal-
weighted), if only to limit the effect of bubbles, but
there are no significant differences between rebalanc-
ing on a trigger or at regular intervals (once a year on
average for a portfolio made of index funds).

Event studies
with a contaminated estimation period

N. Aktas et al.
Journal of corporate finance (2007)

In event studies, the learning period can be contam-
inated, i.e., can already contain events (e.g., if you
are looking for potential M&A bidders). This can be
taken into account with Markov switching models, dis-
tinguishing between high and low periods.
The article also reviews the tests classically used in
event studies.

All events induce variance:
analyzing abnormal returns

when effects vary accross firms
S.E. Harrington and D.G. Shrider

Journal of financial and quantitative analysis
(2007)

Beware of heteroskedasticity in event studies – prefer
robust tests.

A theory for long-memory
in supply and demand

F. Lillo et al. (2005)
The long memory of the sign of trades can be explained
by market clearing and hidden orders.

Statistical mechanics of
liquidity providers and liquidity takers

J.D. Farmer
Barclays Capital (2007)

The market impact is not a “second order effect” as
some claim, but the main price formation mechanism
(buyer-initiated trades raise the price, seller-initiated
ones lower it).
The statistical properties of the price impact can be
examined as follows: plot the price impact (logarithm
of the ratio of prices) aggregated over 2 (resp. 4, 8, 16,
…, 1024) trades versus the corresponding aggregated
signed volume. After rescaling, you get:

Article and book summaries by Vincent Zoonekynd 954/1044

http://www.wjh.harward.edu/~inquirer/inqtabs.txt
http://www.wjh.harward.edu/~inquirer/inqtabs.txt
http://textanalysis.info
http://textanalysis.info

Aggregated signed volume

A
gg

re
ga

te
d

pr
ic

e
im

pa
ct

1
16
512

This shape can be explained by the following model:
– the volume follows a power law: p(v) = 1/vα+1;
– the impact is f(v) = sign v · |v|β

which also gives the slope of the limiting curve:

aggregated returns
aggregated signed ∼ N−κ

where N is the number of aggregated transactions and
κ depends on α and β.
However, this does not give the whole picture: it does
not account for the following two facts:
– the orders that arrive are not iid;
– the volume sign has long-memory: if you plot the
log autocorrelation versus the log of the lag, you
get a line, i.e., the autocorrelation decreases very
slowly: even after two weeks (remember, these are
high-frequency data), autocorrelation is still statisti-
cally significant. (As far as statistical estimation is
concerned, this is bad news: the error of most esti-
mators decrease as 1/N1−H , where H is the Hurst
exponent (expect it to be around 3/4), instead of the
usual 1/

√
N .)

1 2 5 10 20 50 100 200 500

5e
−

04
5e

−
03

5e
−

02
5e

−
01

lag

au
to

co
rr

el
at

io
n

The main cause of this long memory seems to be, not
herding, but the slicing of large trades into smaller
ones: indeed, the autocorrelation of the volume signs
is more persistent if you restrict the data to a single

broker and the long memory disappears if you consider
different brokers.

same broker
everyone
different brokers

Long memory does not contradict market efficiency
thanks to the following (equivalent) phenomena:
– the price impact is temporary and cancels the long
memory;

– there is liquidity imbalance.
One can model the non-iid nature of the orders by as-
suming that:
– large, hidden orders are split into smaller ones;
– large orders follow a power law;
– the market participants know when a large order
starts but not when it stops – because of the power
law, the probability that the next order will be of
the same sign increases with the size of the hidden
trade);

– the market is efficient.
This suffices to show that

impact ∼ logN

where N is the number of chunks (their size is fixed).
This is confirmed by the data – on the other hand, the
hypothesis that order flows are anonymized (market
participants do not know when a hidden trade starts)
do not fit the data.
The life of a hidden order looks like this (the model
also predicts clustered volatility; it can take more than
four transactions for the market participants to realize
that the hidden trade has ended):

Article and book summaries by Vincent Zoonekynd 955/1044

In a nutshell:
– power laws are everywhere
– they can be explained by the slicing of large (hidden)
orders

– the market participants can recognize those hidden
orders, but they do not immediately notice when
they have stopped

– the logarithm law, impact ∼ logN suggests that the
capacity of your strategy could be higher than you
think.

The speaker likens the financial world to an ecosys-
tem, with competition (if A grows bigger then B loses
money; if B grows bigger, then A loses money) and
prey/predator relations (if A grows bigger, then B earns
money; if B grow bigger, then A loses money) – you
can also imagine relations not encountered in wildlife
ecosystems.

The key role of liquidity fluctuations in
determining large price changes

F. Lillo and J. D. Farmer
Fluctuation and noise letters (2005)

In a double continuous auction market, such as the
LSE (London stock exchange) or the NYSE (New York
Stock Exchange), impatient traders send market or-
ders, to be executed immediately, at the best possi-
ble price, while patient investors send limit orders or
quotes, to be executed at a given price, which are stored
in a (publically visible) queue, the limit order book. (At
the begining and the end of the day, there is also an
auction, where everyone sends quotes for 10 minutes,
and they are only matched at the end. And this is only
the on-book market (SETS in London, downstairs mar-
ket in New York): there is an off-book market (SEAQ,
upstars market), where trades are decided bilaterally,
on the phone, and only made public afterwards.)
Large price changes are determined by holes in the or-
der book and can be triggered by small volumes. Not
only the first gap (the closest to the best price) mat-
ters, but also the others – sparse order books call for
large price changes.
(The gap size or the sparsity of the book can be mea-
sured from the tick data we already have.)

There’s more to volatility than volume
L. Guillemot et al. (2005)

Volatility clustering cannot be explained by a change-
of-time either using the volume clock or the number-
of-transactions clock.

An empirical behavioral model of price
formation

S. Mike and J. D. Farmer (2005)
An agent-based model of price formation, comprised of
– An order placement model, using a Student T dis-
tribution with fewer than 2 degrees of freedom;

– A cancellation model, taking order imbalance and
the position wrt the best price

can reproduce the observed distributions of returns and
bid-ask spreads.

International bond market cointegration using
regime switching techniques

A. Davies
Journal of fixed income (2007)

There is cointegration (“integration”) between national
bond markets; the common trend presents structural
changes.

Simple forecasts and paradigm shifts
H. Hong et al.

Journal of finance (2007)
The following agent-base model:
– A and B are two independant AR processes (think

of A as value and B as growth);
– (Log-)dividend payments are given by a linear re-
gression: Dt+1 = At +Bt + noise;

– Investors choose between the two incorrect mod-
els Dt+1 = At + noise and Dt+1 = Bt + noise;
they change their model when the difference in log-
likelohood exceeds a certain threshold (this is the
confidence level of the statistical (LR) test); that
threshold varies from investor to investor;

– The combined behaviour of those investors drives the
prices

explains the stylized facts:
– book-to-market effect;
– volatility and skewness are stochastic.

How to make better choices
K. Douglas and D. Jones

New Scientist 2602, May 2007, p.35–43
This article lists several behavioural biases that could
be applied to bahavioural finance:
– loss aversion
– information overload; to many choices (e.g., in a su-
permarket, when faced with two queues, you have
a 50% chance of chosing the fastest one; with 100
queues, this probability drops to 1%)

Article and book summaries by Vincent Zoonekynd 956/1044

http://www.newscientist.com/channel/being-human/mg19426021.100-life-choices--can-science-help.html

– emotions (anger or disgust are bad, depression is
good)

– confirmation bias
– anchoring effect (i.e., bayesian shrinkage with a
meaningless prior)

– sunk cost
– framing effect (the half full/empty glass)
– social (or peer) pressure.
See also: Intuition, its powers and perils (D.G. My-
ers), The paradox of choice (B. Schwartz), Why choose
this book? (R. Montague), Why smart people make big
money mistakes and how to correct them (G. Belsky
and T. Gilovich).

A tale of two anomalies: the implication of
investor attention for price and

earnings momentum
K. Hou et al. (2007)

This article examines interactions between:
– investor attention (they use the volume as a proxy
for it; one could also use analysts’ coverage): ex-
cessive attention can lead to over-confidence and ex-
plain price momentum while lack of attention could
lead to post earnings announcement drift (PEAD);

– market direction
– price momentum
– earnings momentum (standardized unexpected earn-
ings or SUE).

For instance: price momentum is profitable in up mar-
kets; earnings momentum is profitable in down mar-
kets.

Liquidity aggregation: what institutional
investors need to know

G. Butler
Algorithmic trading (2007)

Presentation of alternative trading systems (ATS), i.e.,
brokers’ internal crossing engines, ATS aggregators and
electronic communication networks (ECN) (network
between the ATS).

Shedding light on Dark liquidity
J. Suryawanshi and J. Fox (2007)

Algorithmic trading (2007)
(Empty article)
More and more shares are crossed outside the displayed
markets (ATS, ECN).

A boosting approach for automated trading
G. Creamer and Y. Freund
Algorithmic trading (2007)

Journal of trading (2007)
The authors implemented the following strategy for
the Penn–Lehman automated trading (PLAT) competi-
tion (a competitor of the university of Michigan’s trad-
ing agent competition (TAC)), that simulates ISLAND,
one of the majors ECNs:

– Using Rmetrics, compute technical indicators over
the past 90 days (they are detailed in an appendix);

– Apply boosting on the trading rules (decision trees)
derived from those indicators;

– Use a constantly rebalanced portfolio (50% cash,
50% long; or 125% cash, 25% short); peek into the
limit order book and add limit orders just beyond
the best ones; only use market orders if this fails.

Stupid data miner tricks:
overfitting the S&P500

D.J. Leinweber
Journal of investing (2007)

Data mining, i.e., the extraction of patterns from large
data sets, can go awry and become data snooping. To
prevent this, the authors suggest to use:
– temporal and cross-sectional out-of-sample;
– a measure of data snooping, such as White’s reality
check;

– random data.
This sounds outdated: no mention of the bootstrap as
an alternative to the in- and out-of-sample splitting;
no mention of sensitivity measures (influence function,
etc.) to measure how dependant on data variations
the results are or robust methods to reduce this depen-
dance; no mention of precedures that can cope with an
excess of predictive variables (shrinkage, support vec-
tor machines (SVM), etc.).

Value and growth, theory and practice
J.S. Brush

Journal of portfolio management (spring 2007)
Value (V) and growth (∆V) are two (negatively cor-
related but) different signals, measuring static and
dynamic value. Growth beats value in the short
term, while value persists for years. Thanks to the
negative correlation, combining them lowers volatil-
ity (plot various blends of value and growth in the
returns×volatility plane).
The author uses the following value factors:
– dividend to price;
– earnings to price;
– cash flow to price;
– expected earnings to price;
– book value to price
and the following growth factors:
– short-term change in earnings-to-price
– long-term change in earnings-to-price
– estimate revisions (number of upwards revisions, mi-
nus number of downwards ones, divided by the total
number of revisions, time-weighted);

– earnings surprises (reported earnings minus consen-
sus predicted earnings, at the time of the last earn-
ings report);

– price momentum.

Article and book summaries by Vincent Zoonekynd 957/1044

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=890875
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=890875
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=890875

Should owners of Nasdaq stocks
fear short-selling?

S.E. Christophe et al.
Journal of portfolio management (spring 2007)
Short selling is not detrimental to stock returns:
– only extreme short selling (over 10%) has a negative
impact on stock returns, but only 5 basis points per
percentage point;

– dealer short-selling has a positive impact on returns:
market makers only short when they receive many
buy orders.

The article did not study the effect of short-selling on
volatility or during a crash.

Analysis of the interest rate sensitivity
of common stocks: empirical equity

duration is a useful measure
F.K. Reilly et al.

Journal of portfolio management (spring 2007)
Equity duration (you might already be familiar with
the notion from fixed income), defined from a regres-
sion

∆price ∼ ∆IR
or

∆price ∼ market returns+∆IR
is very unstable and depends on the industry and the
period (e.g., it changed in 2001).

Clarifications on “Beyond Markowitz”
A.B. Chhabra

Journal of wealth management (summer 2007)
Discussions on what to do with investors who have
several goals, do not understand mean-variance opti-
mality and prefer buckets: WAF (wealth allocation
framework), DWH (discretionary wealth hypothesis)
or HOG (holistic goal optimization).

How to generate random matrices
from the classical compact groups

F. Mezzadri
Notices of the AMS, May 2007

To get a random unitary matrix (since U(N) is a com-
pact group, we use its Haar measure), one could think
of using the Gram–Schmidt orthonormalization – but
it is numerically unstable. Instead, one can use the
QR decomposition, accounting for its non-unicity, as
follows:
– Take a random, gaussian, complex matrix Z (this

probability space is called the Ginibre ensemble);
– Compute the QR decomposition: Z = QR;
– Set Q′ = Q · diag

(
r11
|r11|

, . . . ,
rNN
|rNN |

)
The article gives actual code (in Python, using scipy)
and examples from applications of random matrix
theory (RMT) in quantum mechanics, approximating
infinite-dimensional operators with large matrices.

Enhanced index investing
based on goal programming

L.-C. Wu et al
Journal of portfolio management (2007)

Goal programming can be used to tackle dual-objective
problems, such as active management (i.e., follow the
market and beat it, i.e., have a low tracking error with
the market and high expected returns): just set a goal
for each objective (say, 3% tracking error and 7% re-
turns) and minimize the sum of the distances to those
goals.
The authors fail to see than the objectives should be
expressed in the same (monetary) unit, lest the user
want to tweak the weight given to each.

Robust portfolio optimization:
recent trends and future directions

F.J. Fabozzi et al.
Journal of portfolio management (2007)

The article is an informal presentation of robust opti-
mization – or an advert for the authors’ forthcoming
book.
Robust optimization provides more stable weights and
a better use of the turnover budget than classical mean-
variance optimization.
Robust optimization is only equivalent to shrinkage to-
wards the minimum variance portfolio in some very
special cases (no uncertainty on the variance matrix,
stock variance and estimation variance are propor-
tional, no constraints).
Robust portfolio optimization can also be used to find
a portfolio “statistically equivalent” to the optimal one
that minimizes transaction costs.
Robust portfolio optimization is essentially a worst-
case optimization: zero net alpha adjustment changes
the shape of the uncertainty set to reflect the fact that
estimation errors are not systematically in the wrong
direction.
Robust multi-period problems can surprisingly prove
more tractable than their non-robust analogues.
Robust optimization is not limited to portfolio con-
struction, but also has applications in optimal trading,
optimal hedging, econometric model estimation, model
selection, etc.

Does size matter? Assets under management
a questionable question

G.C. Allen
Journal of portfolio management (2007)

Funds with large AUM (assets under management) are
less risky but have lower returns; the effect is less
marked with large capitalizations.

Article and book summaries by Vincent Zoonekynd 958/1044

Optimal execution for portfolio transitions:
minimizing oportunity cost

M. Kritzman et al.
Journal or portfolio management (2007)

To find the best trade order for a portfolio transition
(i.e., a drastic rebalance), look at the partial deriva-
tive of the tracking error (TE) (the distance between
the current and desired portfolios) and choose trades
that reduce the TE most. (Generally, people use any
order that preserves sector neutrality.) You can also
add market impact, proportional to√

trade size
average daily volume

to the TE.

Measuring portfolio performance
using a modified measure of risk

C. Adcock
Journal of asset management (2007)

The Rubinstein-Leland beta, defined as

βRL =
Cov(r,−(1 + rm)−b)

Cov(rm,−(1 + rm)−b)

(where r are the portfolio ratio-returns, rm the market
ratio-returns, the investor’s utility is U(x) ∝ x1−b/(1−
b) and b can be estimated as b = 1

2 + (E ln(1 + rm) −
log(1+ rf))/σ

2
m) does not seem to add anything to the

CAPM beta: this can be proven for elliptical distribu-
tions, and empirically tested for asymetric ones.

Can robust portfolio optimization help
to build better portfolios?

B. Scherer
Journal of asset management (2007)

Robust optimization is no better than bayesian shrink-
age – it actually is a shrinkage towards the mimimum
variance portfolio, with a difficult-to-interpret-and-
predict coefficient. Furthermore, it decouples model
uncertainty and risk, while they are inseparable.
(“Robust optimization” is actually a misnomer: it
should be called “worst case optimization”.)

Attribution:
Modeling asset characteristics as portfolios

R. Grinold
Journal of portfolio management (2006)

The author explains how to analyze a portfolio using
only covariances between portfolio returns.
Let X be the random variable of stock returns, with
EX = α, VarX = V ; let p be the portfolio weights and
P = p′X its returns. The ideal portfolio has weights
q = λ−1V −1α and returns Q = q′X, where λ is the

risk aversion. One then has:

αP = λCov(P,Q)

IRP =
α

SdP
= λ Sd(Q)Cor(P,Q)

TCP =
IRP
IRQ

= Cor(P,Q)

UQ − UP =
λ

2
Var(Q− P)

(The transfer coefficient (TC) is a measure of imple-
mentation efficiency.)
By decomposing the portfolio weights into several ex-
planatory portfolios (it is up to you to define them),

p =
∑
j

βjpj + ε

(in case of multicolinearity problems, you might want
to use some shrinkage; also not the absence of inter-
cept: if some relevant factors are missing, they will be
spread out over all the terms instead of being put in
the residual portfolio), you can decompose the alpha
(it is linear in p) into contributions for each source.
For an ex post analysis, just replace the alphas by re-
alized returns.
The article suggests a report as follows:
– Portfolio IR: λ SdQCor(P,Q)
– Portfolio risk: SdP
– Portfolio alpha: λCov(P,Q)
– Portfolio TC: Cor(P,Q)
– For each explanatory portfolio:
· Exposure: ψj = βj

SdPj
SdP

· Risk: ψj Cor(Pj , P)?
· TC: Cor(Pj , Q)
· IR SdPTCj
· Contribution: ψj · IR · SdP · TCj

– Residual exposure: Cor(P,E)
– Residual risk: Cor(E,P)2?
– TCresidual: Cor(E,Q)
– Residual alpha: IR · SdP · Cor(P,E) · Cor(E,Q)

Portfolio constraints and the fundamental law
of active management

R. Clarke et al. (2002)
(Another article on the transfer coefficient.)

Maximize the Sharpe ratio
Axioma Advisor Newsletter, March 2007

The problem

Maximize w′α√
w′Qw

such that w′1 = 1

w ⩾ 1

∀i li ⩽ w′si ⩽ ui

Article and book summaries by Vincent Zoonekynd 959/1044

can be replaced by

Minimize w′Qw
such that w′α = ᾱ

w ⩾ 1

∀i τ li ⩽ w′si ⩽ τui

The unknowns are w and τ and the desired weights
are w/τ , but since you do not know ᾱ, you will have
to perform several iterations to fine-tune it. This does
not easily generalize to more complicated constraints
or penalties (transaction costs, etc.)

Database cracking
S. Idreos et al

CIDR 2007
Database optimizations are usually done by means of
indices or partitioning (i.e., prescribing the order in
which the data should be stored on the disk): this
articles suggests that the DBMS should dynamically
reorder the data on disk in order to speed queries up.
This is already implemented in MonetDB, a (mainly)
main-memory column-oriented DBMS, with SQL and
XQuery interfaces.

An anthological review
of research utilizing MontyLingua:

a Python-based end-to-end text processor
M.H.T. Ling

The Python Journal
There are two natural language processing (NLP)
Python libraries: NLTK (targeted at NLP teaching)
and MontyLingua. This article reviews 19 articles us-
ing the latter.

Econometrics
B. Hansen (2000–2007)

There are several differences between econometrics and
mainstream statistics:
– The use of observational data means that one can-
not redo an expetiment after changing something:
causality cannot be inferred;

– Econometricians make as few hypotheses as possi-
ble, in particular, they rarely assume that the dis-
tributions are gaussian (or even known) or that the
variables of interest are independant;

– They do not only want forecasts from their models,
they also want inferences on the parameters of those
models.

One can consider several regression models:
– Linear regression:

y = x′β + e

E[e|x] = 0

– Homoskedastic linear regression:

y = x′β + e

E[e|x] = 0

E[e2|x] = σ2

– Linear projection (we assume that the formula for
the coefficient of the regression is valid at the popu-
lation level and we try to see what we can say from
a sample):

y = x′β + e

E[e|x] = 0

β = E[xx′]−1E[xy]

– Homoskedastic linear projection;
– Gaussian linear regression.
The following estimators coincide:
– Take the formula for the linear projection model and
replace expectations by means (this is called a mo-
ment);

– Minimize ‖y − x′β‖2: this is the ordinary least
squares (OLS or LS) estimator;

– Assume that the predictors x and the noise e are in-
dependant, that the noise is iid gaussianm and max-
imize the likelihood: this is the maximum likelihood
estimator (MLE);

– Assume that (x, y) only take a finite number of val-
ues and compute the corresponding (multinomial)
MLE;

– Maximize the R2 (not mentionned in this book).
In the linear projection model, the LS estimator is
the best linear unbiased estimator (BLUE) and semi-
parametric efficient (i.e., it has the smallest mean
square error (MSE) among the feasible estimators; a
feasible estimator is an estimator that does not use pa-
rameters we do not know, e.g., it cannot use σ).
The regression can be done in two steps:

res(y ∼ x1 + x2) = res(res(y ∼ x2) ∼ res(x1 ∼ x2)).

In case of multicolinearity, i.e., redundant predictive
variables, it will be difficult to disentangle the effects
of the predictors.
To measure the influence of isolated observations, you
can compute their leverage, the leave-out-one (LOO) β̂
and residuals.
The quality of a regression model can be measured by
estimators of ρ2 = 1− σ2/σ2

y:

R2 = 1− σ̂2

σ̂2
y

R2
adj = 1− s2

ŝ2y

Article and book summaries by Vincent Zoonekynd 960/1044

http://www.ssc.wisc.edu/~bhansen/notes/notes.htm

where

σ̂2 = 1
n

∑
ê2i

s2 = 1
n−k

∑
ê2i

σ̂2
y = 1

n

∑
(yi − ȳ)2

ŝ2y = 1
n−1

∑
(yi − ȳ)2

The least squares estimator is consistent: it converges,
in probability, to the true value of the parameter. More
precisely,

√
n(β̂ − β) −→d N(0, V) where

Q = E[xx′]

Ω = E[(xiei)(xiei)
′] = E[xix

′
ie

2
i]

V = Q−1ΩQ−1.

For the homoskedastic projection model, the variance
is V 0 = Q−1σ2.
Since the true value of V is not knowable, we estimate
it:
– Traditional: V̂ 0 = Q̂−1s2;
– Heteroskedasticity-robust covariance matrix:

V̂ = Q̂−1Ω̂Q̂−1;

– MacKinnon–White jackknife estimator:

V̂ ∗ = (n− 1)
∑

(β̂(−i) − β̄)(β̂(−i) − β̄)′;

– Andrew’s cross-validation estimator.
The t-statistic

tn(θ) =
θ̂ − θ
s(θ̂)

,

with θ = h(β) some function of the parameters,

s(θ̂) = n−1/2
√
Ĥ ′βV̂ Ĥβ

Hβ =
∂h

∂β
(β),

converges in distribution to N(0, 1) (it is asymptoti-
cally pivotal, i.e., the limit distribution no longer de-
pends on the parameters) and can be used for (asymp-
totic tests) or (asymptotic) confidence intervals.
The Wald test is a higher-dimensional analogue:

Wn = n(h(β)− θ0)(Ĥ ′βV̂ Ĥβ)
−1(h(β)− θ0)′;

it converges in distribution to χ2
q where q = rankHβ .

The F -test is a special test of the Wald test where one
checks if one or several of the parameters is zero.
With gaussian linear model, one knows the distribu-
tion of the T -statistic and can replace the Wald test by
a more precise likelihood ratio (LR) test – the former
is a first-order approximation of the latter.
The T - and Wald tests do not work well with non-linear
hypotheses – in that case (if you cannot transform the

hypothesis into a linear one), or if the sample is small
prefer Monte Carlo simulations,
OLS is efficient in the projection model (and in the
gaussian one, of course), but not in the linear regression
model. However, the generalized least squares (GLS)
estimator is efficient:

β̃ = (X ′D−1X)−1(X ′D−1y)

D = diag(σ2
1 , . . . , σ

2
n)

σ2
i = σ2(xi) = E[e2i |xi].

If you want a feasible estimator, replace σ2
i by some es-

timator σ̂2
i , e.g., from a skedastic regression σ2

i = α′zi.
GLS is less robust than OLS: only use it if you really,
really need it.
Heteroskedasticity can be tested with a Wald test on
the skedastic regression; the White and Breusch–Pagan
tests actually test for more: second-order indepen-
dance (the zi include the xi, their squares and cross-
products).
I have not read section 5.3 on forecast intervals.
Non-linear least squares estimate a (prescribed) non-
linear expression for the conditional mean, still mini-
mizing the sum of squared errors. Non-linear models
need not be identifiable: e.g., if y = βxγ and β = 0,
then γ is not identified.
Least absolute deviations (LAD) minimizes the sum of
the absolute values of the errors:

θ0 = argmin
θ

E |y − θ| ;

equivalently:

P (y ⩽ θ0) = P (y ⩾ θ0) = 1
2

or
E[sgn(y − θ0)] = 0.

LAD works better when there are many observations
bear the median, i.e., when f(0) is large. This is
the case with many skewed distributions (there are
more observations around the median than around the
mean) and fat-tailed distributions (they are “pointy”).
LAD is a special case of quantile regression, usually
implemented as a linear problem.
To test for non-linearity, just add non-linear functions
of the regressors and perform a Wald test: the RESET
test uses ŷ2, ŷ3, . . . , ŷm and is particularly powerful at
detecting single-index models: y = G(x′β) + e.
Omission of a relevant variable leads to the omitted
variable bias. When the error is conditionally het-
eroskedastic, E[e2i |xi] = σ2, the inclusion of irrele-
vant correlated variables reduces efficiency; without
homoskedasticity, there is no clear rule.
Statistical tests do not help for model selection (they
are not symetric); AIC (an estimator of the Kullback–
Leibler distance) selection is inconsistent (it overfits):
prefer the BIC.

Article and book summaries by Vincent Zoonekynd 961/1044

A statistic can be written as Tn(F) where F is the
(population) distribution function of the data and n
the number of observations. To estimate the cumu-
lative distribution function (cdf) Gn(u, F) = P (Tn ⩾
u |F), the non-parametric bootstrap makes two approx-
imations:
– Use a consistent estimator of the cdf F , such as the
empirical distribution function Fn;

– Use a Monte Carlo simulation to estimate G∗n(u) =
Gn(u, Fn) – in other words, we sample with replace-
ment (to simulate the multinomial distribution Fn)
from the sample.

The bias-corrected bootstrap estimator is θ̂−(¯̂θ∗− θ̂) =
2θ̂ − ¯̂

θ∗ where θ̂ is the value of the estimator T on the
sample, θ̂∗ is the value of T on a bootstrap sample, ¯̂θ∗ is
the average value value of T on the bootstrap samples,
(
¯̂
θ∗ − θ̂) is an estimator of the bias.
Variance estimators are not very useful for the boot-
strap: prefer confidence intervals:
– The oft-used Efron percentile interval, [θ̂ −
q(α/2), θ̂ − q(1− α/2)], where q are the quantiles of
θ̂∗− θ̂, is biased (unless the distribution of symetric)
and should be avoided;

– The percentile interval, [θ̂ − q(1− α/2), θ̂ − q(α/2)],
is preferable;

– The percentile-t interval uses the quantiles of

θ̂∗ − θ̂
s(θ̂∗)

;

– The symetric percentile-t interval uses the quantiles
of ∣∣∣θ̂∗ − θ̂∣∣∣

s(θ̂∗)
;

The convergence of bootstrap estimates is O(n−1/2),
but the n−1/2 term is even and the n−1 term odd:
this can lead to cancellations in certain situations –
notably, the percentile-t interval is in O(n−1) and the
the symetric percentile-t interval is in O(n−3/2).
To bootstrap a regression y = x′β+e, sample the noises
e∗i from the residuals êi and resample the predictors (or
leave the predictors as-is) – but this assumes that pre-
dictors x and noise e are independant.
The wild bootstrap uses a 2-point distribution for each
e∗i so that the first three (conditional) moments of e∗i
coincide with those of êi:

P

[
e∗i =

1±
√
5

2
√
5

]
=

1∓
√
5

2
√
5
.

Empirical likelihood (EL) maximizes the likelihood of
the sample, seen as a multinomial model,

∑
log pi, sub-

ject to
∑
pi = 1 and all the estimating equations you

have. For instance:

Maximize
∑

log pi

such that
∑

pi = 1

y − x′β = 0

The actual optimization requires Lagrange multipliers
and is not straightforward. The EL estimator is asymp-
totically efficient and can be used to perform likelihood
ratio (LR) tests.
The rest of the book is less clear and/or more superfi-
cial.
The presentation of the generalized method of moments
(GMM) (B. Hansen invented it in the 1980s) is by far
the least readable chapter.
An endogeneous model is a model y = z′β + e with
E(ze) 6= 0. For instance:
– You want to estimate β in y = x′β + e but you only

observe the predictor x with noise: z = x+ u (with
OLS, the forecasts of y will be fine, but the estima-
tion of β will be biased);

– There is a feedback in the system you are modeling:

q = β1p+ e1

p = β2q + e2;

naive projection then suffers for the simultaneous
equations bias: β∗1 = (β1 − β2)/2

One solution to the endogeneity problem is to add vari-
ables for which E(xe) = 0 – these are called instrument
variables (IV). The estimation can be done by GMM
or EL.
The presentation of the IV estimator and the indirect
least squares (ILS) is confusing.
In case of homoskedasticity, E(e2i |xi) = σ2, one can use
the two-stage least squares (2SLS) estimator: regress z
on x, then y on ẑ. The 2SLS bias increases with the
number of IV and decreases with sample size.
The time series chapters are too superficial but cover
AR, unit roots, cointegration and Granger causality.
Limited dependant variables (LDV), i.e., binary (logit,
probit; which can be interpreted as a latent vari-
able model), multinomial, integral (Poisson regression),
censored are mentionned, but only estimated with
parametric maximum likelihood, even though semi-
parametric methods are superior.
The Tobit model is the censored regression

yi = (y∗i > 0) ? y∗i : 0

y∗i = x′iβ + ei

ei ∼ N(0, σ2)

The sample selection problem is similar:

yi = x′iβ + ei

T = 1(z′iγ + fi)

Article and book summaries by Vincent Zoonekynd 962/1044

and y is only observed when T = 1. Since E[e |T =
1] = ρλ(z′γ), where ρ = Cov(e, f), λ = E[ε | ε > −x] =
φ(x)/Φ(x), ε ∼ N(0, 1) (λ is called the Mills ratio), it
is natural to estimate β and ρ using

y = x′β + ρλ(z′γ) + u

E[u |T = 1] = 0

where γ is estimate with a probit model – this 2-step
procedure is the Heckit estimator and it has a few ro-
bustness problems.
Only two panel data models are presented:

y ∼ (1 | subject) + x

y ∼ (1 | subject) + lag(y) + x

The quality of a kernel density estimation can be mea-
sured by the bias, the variance, their sum (asymptotic
MSE or AMSE) (but all this depends on the point) or
the integral of that sum (integrated AMSE or AMISE)

Bias(x) = 1
2f
′′(x)h2σ2

K

Var f̂(x) ≈ f(x)R(K)

nh

AMSE(x) = Bias(x) + Var f̂(x)

AMISE(x) =
∫

AMSE(x) dx

where K is the kernel, R(K) =
∫
K2 its roughness

and h the bandwidth. This can be used to choose the
bandwidth.

Bootstrap methods and permutation tests
T. Hersterberg et al.

This is part of the S-Plus documentation but remains
software agnostic. It gives some good advice (use boot-
strap confidence intervals corrected for bias and skew-
ness; permutation tests are not valid if, under the null
hypothesis, the two samples do not have the same
spread and shape), but fails to give any technical de-
tail (you will not know how BCa and tilting confidence
intervals are computed.

Developing time-oriented
database applications in SQL

R.T. Snodgras
Morgan Kaufman (2000)

This is an SQL cookbook for temporal problems. Its
examples are complicated, anti-pedagogic (lots of nu-
meric magic numbers, numeric codes, abbreviations
and cryptic acronyms as column names, only chunks
of the database at a time so as to prevent a global
view of the data, examples intentionally “quite diffi-
cult to decipher”, etc.) and dusty (some references to
Cobol).
There are three temporal types (instants, intervals
and periods (anchored intervals)); three types of times
(user-defined (a normal piece of data), valid time

(time in the real world), transaction time (time in
the database)); three types of statements (current, se-
quenced, non-sequenced). Time in SQL is granular
(i.e., discrete, e.g., with a 1-day or 1-minute precision).
NOW is an unsolved problem in SQL: you can either
use NULL, but this has side effects for comparisons and
clashes with other uses of NULL or use a magic value far
in the future, which, besides its arbitrariness, leads to a
confusion between “until further notice” and “forever”.
A temporal table is a table with start and end
columns. A temporal partition splits this table into
current (the end column contains NOW) and past tables
(this is actually a solution to the NOW problem). A
snapshot table is a slice of a temporal table, at a given
date. A transaction table contains a log of the changes
to a table (similar to a set of patches in a version con-
trol system). You might want to vacuum transaction
tables or even temporal tables, if old data becomes ir-
relevant.
A bitemporal table contains both valid time and trans-
action time: there are two start and two end columns.
A bitemporal table can be partitionned along valid
time, transaction time or both.
Most of the book is devoted to the handling, in SQL,
of temporal or bitemporal tables: sequenced JOIN,

SELECT A.x, B.y, ...
last(A.start, B.start) AS start,
first(A.end, B.end) AS end

FROM A, B
WHERE ...
AND last(...) < first(...);

sequenced EXCEPT, sequenced DISTINCT (trickier: pro-
cedural), sequenced PRIMARY KEY, sequenced UPDATE,
etc. – if in doubt, draw all the possible relative po-
sitions of the intervals and write a huge query full of
UNION or CASE.
Bitemporal tables complicate things, but not as much
as one would fear. Bitemporal diagrams are bidimen-
sional.
The recipe to build a temporal database goes as fol-
lows:
– Build a non-temporal ER (entity-relation) model;
– Add time;
– Convert it into a relational model (no more entities,
only relations);

– Convert it to a physical model (with tables, taking
into account efficiency problems, e.g., temporal par-
titioning).

To deal with time in an application using the database,
choose among:
– Avoid time;
– Write unreadable SQL code;
– Use a middleware to convert SQL/Temporal (a
rarely implemented part of the SQL standard) to
SQL.

Article and book summaries by Vincent Zoonekynd 963/1044

http://www.cs.arizona.edu/people/rts/tdbbook.pdf
http://www.cs.arizona.edu/people/rts/tdbbook.pdf

The book ends with a presentation of SQL/Temporal:
it adds a PERIOD data type,

PERIOD '[2001-01-01 2002-01-01)';

with a few operators (OVERLAPS, PRECEDES, SUCCEEDS,
MEETS, BEGIN, END, LAST, PRIOR, NEXT, P_UNION,
P_INTERSECT, P_EXCEPT, CAST (to change the granu-
larity)), a VALIDTIME keyword to handle temporal ta-
bles

ALTER TABLE T1 ADD VALIDTIME(DATE);
ALTER TABLE T1 ADD
VALIDTIME PRIMARY KEY (x,y);

ALTER TABLE T1 ADD
VALIDTIME UNIQUE (x,y);

ALTER TABLE T1 ADD
VALIDTIME FOREIGN KEY (f) REFERENCES T2;

VALIDTIME SELECT ... FROM ...;
NONSEQUENCED VALIDTIME SELECT ...
WHERE VALIDTIME(T1)
OVERLAPS DATE '2001-01-01';

a TRANSACTIONTIME keyword

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME
SELECT ...

EXPAND and NORMALIZE (for sets of potentially overlap-
ping or abutting periods) operators and a NORMALIZE
ON construct (similar to GROUP BY).
You may note that SQL/Temporal fails to address the
NOW problem.

The statistical bootstrap
and other resampling methods

P. Burns (2007)
A short introduction to the bootstrap.

Dart to the heart
P. Burns (2007)

A advert for random portfolios, comparing them to
benchmarks and peer groups.

Total return strategies
for multi-asset portfolios:

dynamically managing portfolio risk
U. Herold et al.

Journal of portfolio management (2007)
This article review various dynamic asset allocation
(DAA) strategies:
– Portfolio insurance (stop loss, synthetic put, CPPI);
– Rainbow options (best-of-two, best-of-n plus floor);
– Optimization with a constraint on the value at risk
(VaR) or the expected shortfall (ES, CVaR), e.g.,
require that the probability of going below a prede-
termined floor be below 1%.

The VaR-based strategies seem preferable, provided
one controls the turnover.

A Cardan’s discriminant approach
to predicting currency crashes

S.K. Koh, W.M. Fong and F. Chan
Journal of international money and finance

(2007)
The generalized normal (GEN) distribution,

f(u) ∝ exp

(
θ1u+ θ2

u2

2
− u4

4

)
,

allows for bimodality and can be used to model large
jumps. Bimodality can be measured with Cardan’s de-
terminant

CD =
θ21
4
− θ32

27

which can help predict currency crises – both type I
and type II error rates are low.
The same idea could be generalized to any other jump
prediction situation.

Towards reliable efficient frontiers
K. Schöttle and R. Werner

Journal of asset management (2006)
One sould use robust optimization:
– For the portfolio to change slowly with time, when
the inputs are changed;

– For the portfolio to change slowly when changing the
risk target;

– To account for parameter estimation error.
Robust optimization outperforms Michaud’s resampled
portfolio, which outperforms classical mean-variance
optimization.

Incorporating estimation errors into portfolio
selection: robust portfolio construction

S. Ceria and R.A. Stubbs
Journal of asset management (2006)

The list of alternatives to mean-variance portfolio op-
timization:
– James–Stein estimators shrink the expected returns
of each asset to the average expected returns, de-
pending on the volatility of the asset;

– Jorion estimators shrink the expected returns esti-
mate towards the minimum variance portfolio;

– The Black–Litterman model blends views on some
portfolios to implied market returns;

– Michaud’s resampled portfolios are computed as fol-
lows: on bootstrap samples, estimate average re-
turns and variance matrix, compute the optimal
portfolio, average those portfolios;

– Adding constraints might improve (or worsen) the
sensitivity of the portfolio to parameter changes;

– Robust optimization, where we only give the opti-
mizer intervals containing the alpha;

Article and book summaries by Vincent Zoonekynd 964/1044

http://www.burns-stat.com/pages/Tutor/bootstrap_resampling.html
http://www.burns-stat.com/pages/Tutor/bootstrap_resampling.html
http://www.burns-stat.com/pages/Working/dart_to_heart.pdf

the authors add a new one.
One can estimate the error on the expected returns of
the portfolio and maximize this return with a penalty
for the estimation error:

Maximize w′α− λ
∥∥∥Σ1/2w

∥∥∥
st w′Vw ⩽ v

w′1 = 1

w ⩾ 0

where λ is the penalty for the estimatio error, Σ is the
variance matrix of the estimation errors, V is the vari-
ance matrix of the returns, α are the forward returns,
v is the risk target and w are the portfolio weights the
optimizer should find.
This is not a quadratic problem, but a second-order
cone program.

Improving investment performance
for pension plans

J.M. Mulvey et al.
Journal of asset management (2006)

We do not live in a one-period world; traditional risk-
reward mesures such as the Sharpe ratio are not di-
rectly applicable to a multi-period setup; one should
consider multi-period strategies, stochastic program-
ming, etc.

Investing in hedge funds: adding value through
active style allocation decisions

L. Martellini et al. Edhec, SGAM (2005)
The Black–Litterman framework can be generalized to
allow views on higher moments; the optimization can
then use a fourth-order approximation of the utility
function and the (Cornish-Fisher) VaR as a risk mea-
sure.

An analysis of performance measures
using copulae

S. Hwang and M. Salmon (2001)
The following performance measures
– Jensen’s alpha, i.e., the intercept in the regression

of the returns (we always consider the returns minus
the risk-free rate) against the market returns (this is
the alpha in the CAPM);

– The Treynor and Mazuy measure, the intercept and
the quadratic term in a quadratic CAPM,

rt = β1r
market
t + β2(r

market
t)2 + εt

TM = α+ β2E
[
(rmarket
t)2

]

– The higher moment performance measure (?)

HM = µ+ λ1µM + λ2(βP,M − γP,M)

µ = E[rt]
µM = E[rMarket

t]

σ2
M = Var(rMarket

t)

γM =
Cov(rMarket

t , rMarket
t , rMarket

t)

σ4
M

θM =
Cov(rMarket

t , rMarket
t , rMarket

t , rMarket
t)

σ4
M

βP,M =
Cov(rt, rMarket

t)

σ2
M

γP,M =
Cov(rt, rMarket

t , rMarket
t)

σ3
M

λ1 =
γ2MγP,M − θM
γ2M − (θM − 1)

λ2 =
γMσM

γ2M − (θM − 1)

– The positive weighted weighting (PPW) measure (?)
The Sharpe ratio is very different from the others and,
worryingly, for extreme positive values, those perfor-
mance measures are asymptotically independent.
To this end, the article reviews various measures of tail
or asymptotic dependence, around

λ = lim
u→1

P
[
Y > F−1Y (u) |X > F−1X (u)

]
.

To obtain a more reliable measure of performance, one
can use a copula, describing the relation between those
measures, to combine them, yielding the following dis-
tribution (the choice of the copula is left to the reader,
e.g., a gaussian copula to simplify the computations):

f(x|f1, f2) = f1(x)f2(x)c(1− F1(x), 1− F2(x)).

Stock returns and volatility:
pricing the short-run and long-run

components of market risk
T. Adrian and J. Rosenberg (2006)

Volatility can be modeled by a GARCH-like model
where log vt is the sum of two AR(1) processes.

Market reactions to tangible
and intangible information

K. Daniel and S. Titman
Journal of finance (2006)

The intangible return, i.e., the component of the past
returns unexplained by the firm’s past performance,
defined as the residuals of the regression (over 5 years;
the book-value growth is actually corrected for divi-
dend payments)

forward returns ∼ log(B/P) + growth(B)

is negatively related to future returns.

Article and book summaries by Vincent Zoonekynd 965/1044

The article also explains why the B/P helps predict
future returns: it can be written as
log(P/B)now = log(B/P)before+growth(B)−growth(P)
(where growth(x) = log(xnow/xbefore)) and only
growth(B)− growth(P) has a predictive power.

Predicting the time-varying covariance matrix
of electricity forwards

K. Aas and K.F. Kåresen (2003)
The ARCH model can be generalized to describe the
covariance between similar, short-lived, overlapping
time series (forwards).

Trimability and fast optimization
of long-short portfolios

B.I. Jacobs et al.
Financial analysts journal (2006)

The authors explain how to transform most long-short
optimization problems into a long-only problem, suit-
able for long-only optimizers.

Feedback and the success
of irrational investors

D. Hirshleifer et al.
Journal of financial economics (2006)

It is good to be an early irrational investor and bad to
be a late one – provided many share your irrational-
ity. Early irrational investors have private information
about the future order flow of investors with similar
biases. This effect causes prices to follow a random
walk...

A comparison of financial duration models
via density forecasts

L. Bauwens et al. (2000)
Duration data are irregular time series represented
as bidimensional time series, (xn, tn − tn−1), where
xn is the value measured at time tn. Examples in-
clude price or volume in high-frequency financial data.
They exhibit properties similar to those of GARCH
data, such as duration clustering: hence, one can
model them along the same lines by replacing the
(unobserved) volatility by the (observed) duration –
GARCH becomes ACD (autoregressive conditional du-
ration), T-FARCH becomes TACD (threshold ACD),
log-GARCH becomes log-ACD and stochastic volatil-
ity models become SVD (stochastic volatility dura-
tion).
The authors compare those methods using density fore-
casts: prediction methods do not simply provide a fore-
cast value x̂i, but a whole forecast distribution Fi: for
each observation i, you can compute pFi

(xi), where xi
is the actual observation and pFi

is the p-function (cu-
mulative distribution function) of the predictive distri-
bution. If the forecasts are correct, the pFi(xi) should
be uniformly distributed – this can be tested. This
method accounts for models that change over time.

Equity style timing using
support vector regressions

G. Nalbantov et al.
Support vector machines (SVM) can be used to time
growth vs value and large vs small strategies.
The variables used are: value-growth spread, small-
large spread, S&P500 volatility, 12-month forward
S&P500 P/E, 6-month S&P500 momentum, EPS
change over the past year in the S&P500, P/E dif-
ferences between value and growth, P/E differences
between large and small caps, dividend yield differ-
ence between value and growth, dividend yield differ-
ence between large and small caps, yield spread Baa
vs Aaa, 12-month change in the US CPI (consumer
price index), difference between the forward E/P of
the S&P500 and the 10-year T-bond yield, yield spread
between 10-year T-bonds and 3-month T-bills, 10-year
T-bond yield adjusted for the inflation rate, seasonally-
adjusted US industrial production, and a couple more.

Applying financial statement analysis
to forecast earnings growth

and evaluate P/E ratios
S. Li (2003)

If investors buy future earnings, the P/E should be ex-
plained by the earnings (or operating income) growth,
which can be obtained by a big cross-sectional regres-
sion with the variables from the financial statement.
The author suggests to combine this estimate with that
from the analysts.

Essential portfolio theory
J. Mulvey

Rydex investments (2005)
Empty article: it just reminds us that we do not live
in a long-only, equity-and-bonds-only, 1-period, static,
unleveraged world.

You want to diversify risk?
Consider economic derivatives

R. Dubil
Journal of wealth management (2007)

Individual investors should use economic derivatives
(consumer inflation, currencies, real estate prices, gas-
at-the-pump, etc.) to hedge their non-stock assets
(house, purchasing power, etc.).
Contrary to devivatives with a tradable underlying,
economic derivatives are valued with probabilistic in-
surance pricing.

An introduction to
differential geometry in econometrics

P. Marriott and M. Salmon
in Applications of differential geometry

to econometrics, Chapter 1 (CUP, 2000)
A parametric (exponential) family of probability dis-
tributions can be seen as a manifold (generalizations

Article and book summaries by Vincent Zoonekynd 966/1044

http://www.fbe.hku.hk/doc/seminars/multimedia/siyi%20road%20021603.pdf
http://www.fbe.hku.hk/doc/seminars/multimedia/siyi%20road%20021603.pdf
http://www.fbe.hku.hk/doc/seminars/multimedia/siyi%20road%20021603.pdf
http://www2.warwick.ac.uk/fac/soc/wbs/research/wfri/wpaperseries/wp99-16.pdf
http://www2.warwick.ac.uk/fac/soc/wbs/research/wfri/wpaperseries/wp99-16.pdf

to the manifold of “all” distributions are possible, but
infinite-dimensional manifolds pose further theoretical
problems) and statistical properties of distributions,
tests or estimators can be translated into geometric
properties, for instance:
– The score statistic is the length of a certain cotan-
gent vector measured with respect to the metric de-
fined by the expected Fisher information;

– The Kullback–Leibler divergence defines a (non-
metric) connection;

– The curvature of the manifold is linked to informa-
tion loss (on a flat statistical manifold, expected and
observed information coincide).

The authors do not mention the interpretation of ro-
bust estimators as continuous functions on a statistical
manifold.

Region vs industry effects
and volatility transmission
P. Soriano and F. Climent

Financial analysts journal (2006)
This article studies volatility transmission (anova) be-
tween regions, between industries, between regions
within industries, between industries within regions,
and confirms the dominance of region effects over in-
dustry effects.

Common failings:
how corporate defaults are correlated

S.R. Das et al. Journal of finance (2007)
Defaults cluster in time, but this cannot be explained
only by the exposure to common risk factors (the au-
thors develop a test for this): contagion plays a role.

Cluster analysis:
two macro themes dominate Eurozone markets

A. Harmstone
Bear Stearns (2005)

One can cluster stocks (with the PAM algorithm) using
their exposure to risk factors and then use the result-
ing (two) groups as macro themes (depending on the
market conditions, these could be value and growth, or
something entirely different).

Information transmission
across global markets

P. Singh
Bear Stearns (2006)

Uncertainty (volatility) is transmitted both ways be-
tween Asia (Japan, Hong Kong, Taiwan, South Ko-
rea) and the West (US and Europe), while returns are
mainly transmitted from Asia to the West with a sur-
prising 1-day lag. As a result, intra-day US strategies
should use Asian information.

Implied macro returns:
profiting from over-reaction

A. Harmstone
Bear Stearns (2006)

Yet another article advocating the use of cumulated
(time series) residuals.

Multilayer modeling of
a market covariance matrix

R. Staub
Journal of Portfolio management (2006)

Rolling (or weighted rolling) volatility is a bad estimate
of future volatility: prefer GARCH modeling.
One can generalize strict factor models (“risk models”)
in a mutilayer way: estimate the covariance between
asset groups; then, within each group, between the sub-
groups; etc..

Liquidity and stock returns:
evidence from a pure order-driven market

using a new liquidity proxy
B.R. Marshall

International review of financial analysis
(2006)

The weighted order value (WOV) is a new liquidity
proxy: in 30-minute windows, bin the bids (and asks)
with respect to the best one (e.g., 1% from the best,
2%, 5%, 10%, etc.); compute the bid (resp. ask) exe-
cution rate (number or executed orders divided by the
number of orders) in each bin; pool the bids in each bin
to get the bid order value (the sum of the bid prices
times the bid volumes); pool the bins: the weighted
bid value is the sum of the products of the bid order
values and the bid execution rates; the WOV is then
the geometric mean of the bid and ask weighted values.

Sharpening Sharpe Ratios
W. Goetzmann et al. (2004)

Sharpe ratios are amenable to manipulations, with op-
tions (non-linear payoffs), dynamic strategies (that also
modify the distribution of returns: truncate it on the
right and fatten the left tail to move the mean to the
right) or smoothed returns.

Futures trading volume as a determinant of
prices in different momentum phases

A. Hodgson et al.
International review of financial analysis

(2006)
Options trading volume has predictive power on the
short-term (15 minutes) stock price; this effect changes
with the current price trend.

Advanced frequency and time domain filters
for currency portfolio management

C. Dunis and J. Miao
Journal of asset management (2006)

Article and book summaries by Vincent Zoonekynd 967/1044

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=302815

Many FX traders use a combination of several MACDs
(say, 1 and 32 days, 1 and 61 days, 1 and 117 days,
equal-weighted), but this strategy does not perform
well.
Spectral analysis (the periodogram) can help identify
cyclical spells in FX time series (you can try to use it
as a trading strategy, but it will not work).
The article suggests to follow the MACD strategy but
to modify it in cyclical and/or volatile (as measured by
the RiskMetrics model, i.e., an exponentially-weighted
non-central variance) periods, by not trading or trad-
ing in the opposite direction.

On the maximum drawdown
of a brownian motion

M. Magdon-Ismail et al. (2003)
The (asymptotic) expected maximum drawdown
(MDD) of a brownian motion is

X(t) = σW (t) + µt

E[D] =

√
π

2
σ
√
T if µ = 0

E[D] ∼T→∞
σ2

2µ
log T if µ > 0

E[D] ∼T→∞ −µT if µ < 0.

Maximum drawdown
M. Magdon-Ismail et al. (2003)

Risk (October 2004)
Using the previous article, one can study the term
structure of the Calmar or Sterling ratios.

Calmar = returns on [0, T]

MDD on [0, T]

Sterling =
returns on [0, T]

MDD on [0, T]− 10%

The misuse of expected returns
E. Hughson et al.

Financial analysts journal (2006)
Yet another article against ratio returns...
At the very least, if you have to deal with ratio returns,
prefer their median to their mean.

Portfolio selection with parameter and model
uncertainty: a multi-prior approach

L. Garlappi et al.
Review of financial studies (2007)

The article interprets the robust portfolio optimization
framework

Maximize Min
α
w′α− λw′V w

st αmin ⩽ α ⩽ αmax

in a bayesian setting, as a generalization of the Black–
Litterman model, in terms of uncertainty aversion.

Common and country-specific components
in national stock prices

O. Hu
Journal of multinational financial management

(2006)
Market integration can be measured by cointegration
– more precisely, the presence of a single cointegration
relation.
G7 countries are not integrated: diversification bene-
fits still exist.

Testing for multiple regimes in the tail
behavior of emerging currency returns

B. Candelon and S. Straetmans
Journal of international money and finance

(2006)
The tail index of a distribution is the parameter α such
that

∀x > 0 lim
t→∞

1− F (tx)
1− F (t)

= x−α,

i.e., such that the tail of the distribution be a first order
approximation of a Pareto distribution (FPareto(x) =
1− ax−α).
The Hills estimator of the tail index in a sample of size
n is

α̂ =

 1

m

m−1∑
j=0

log
X(n−j)

X(n−m)

−1

where the X(k) are the order statistics and m is chosen
so that m/n be small (the estimator has good asymp-
totic properties for m/n→ 0 and n→∞).
The authors then perform recursive tests for structural
breaks: when you find a break, split the sample in two
and look for new breaks in each chunk.
There are structural breaks in the tail index of emerg-
ing market currency returns.

Are international value premiums driven by
the same set of fundamentals?

A.J. Black et al.
International review of economics and finance

(2007)
Yet another article that gauges the benefits of diversi-
fication (of a value strategy, across G7 countries) using
cointegration: cointegration is present.

Using dynamic programming
to optimally rebalance portfolios

W. Sun et al.
Journal of trading (2006)

Dynamic trading strategies include: periodic rebalanc-
ing, tolerance band rebalancing, no trade zone (identical
to the tolerance band rebalancing, but the band is not
arbitrarily defined and we do not rebalance all the way
to the optimal portfolio but just back into the band).

Article and book summaries by Vincent Zoonekynd 968/1044

http://alumnus.caltech.edu/~amir/mdd-risk.pdf

The authors measure, in USD, the tracking error of a
portfolio as the risk-free return giving the same utility
(certainty equivalent) and use this measure in a dy-
namic program to control rebalancing – this can be
seen as a dynamic equivalent of tolerance band rebal-
ancing. The problem is amenable up to 8 or 9 assets.

Forecasting online auctions
using dynamic models

W. Jank et al.
KDD 2006 Workshop on Data mining

for Business Applications
The authors use functional data analysis (FDA) to
forecast irregular time series (ebay auction prices) tak-
ing into account the influence of opening bid, auction
length and seller’s reputation on the price dynamics
(accelaration, velocity and eventually final price).

Data mining in the real world:
what do we need and what do we have?

F. Fogelman Soulié
KDD 2006 Workshop on Data mining

for Business Applications
Data mining is widely used for CRM (client relation
management), fraud detection, credit scoring, etc. and
extreme data mining, i.e., data mining with databases
beyond 10TB is starting to emerge. It is characterized
by:
– Heterogeneous data;
– poor data quality (outliers, missing data and even
unlabelled data, i.e., “massively missing values”);

– Large volumes (millions of rows, thousands of vari-
ables) that prevent the user from hand-chosing the
variables and calls for data duplication avoidance;

– Fast model calibration (hours; linear in the number
of rows or columns);

– Automated model quality assessment (they use a ro-
bustness indicator,KR, from Vapnik’s structural risk
minimization theory);

– Real-time model application;
– Industrialization (“productionalization”) within the
same project, not as a separate, long project;

– Model control (checks deviations in the data distri-
bution);

– Data export using data mining standards (JDM,
PMML);

– Process control and workflow;
– Exploratory modeling (the end-user needs to under-
stand the model);

– Predictive modeling (the end-user want accurate
forecasts);

– Unskilled users.
The article failed to mention the following:
– Asynchronicity (we might want real-time results
even though some data sources might not be real-
time; bursts of data may delay the delivery of the
results);

– Distributed analysis (the volume and location of the

data, with the requirement that the data should not
be duplicated, will call for the computations to be
run where the data is, possibly in different locations).

The landscape of parallel computing research:
a view from Berkeley

2006
The next big thing in computer science could be dis-
tributed computing: this article enumerates bench-
marks (called “dwarfs”) or challenges for such systems.
Among the potential “next big thing”, one could add,
in no particular order: declarative programming, func-
tional languages, virtualization, virtual machines.
DNA computers, quantum computers are still decades
(or centuries) away, though programming paradigms
are already being developped for those architectures.

Concurrency and Erlang
A. Pang

Another article about distributed programming and
the need for adequate tools – not threads: in the
hands of most programers, they make i = i + 1 non-
deterministic...
On the same subject:
– Some real-time systems already use lock-free pro-
gramming, e.g., the Jack audio server, as explained
in the Linux Audio Conference 2005.

– Software Transactional Memory (STM) is getting
more widely discussed, and is already in the Haskell
libraries.

Robust moving least squares fitting
with sharp features
S. Fleishman et al.
SIGGRAPH 2005

This article applies an outlier detection algorithm (the
forward search algorithm paradigm: start with a small
set of robustly chosen points, progressively add more
points, while monitoring some statistic) for surface
reconstruction, accounting for noise and singularities
(i.e., sharp edges).

Everything you know about
dynamic time warping is wrong

C.A. Ratanamahatana and E. Keogh
SDM 2005

This article disspells a few DTW myths:
– DTW’s ability to deal with sequences of different
lengths is not an advantage (but not a disadvantage
either): you would get the same results after resam-
pling the sequences;

– The 10% constraint on warping paths inherited from
the speech processing community is not too low but
actually much too high for most data mining appli-
cations;

– As a result, DTW is essentially O(n).

Article and book summaries by Vincent Zoonekynd 969/1044

http://labs.accenture.com/kdd2006_workshop/dmba_proceedings.pdf
http://labs.accenture.com/kdd2006_workshop/dmba_proceedings.pdf
http://labs.accenture.com/kdd2006_workshop/
http://labs.accenture.com/kdd2006_workshop/
http://labs.accenture.com/kdd2006_workshop/dmba_proceedings.pdf
http://labs.accenture.com/kdd2006_workshop/dmba_proceedings.pdf
http://labs.accenture.com/kdd2006_workshop/
http://labs.accenture.com/kdd2006_workshop/
http://en.wikipedia.org/wiki/Java_Data_Mining
http://en.wikipedia.org/wiki/PMML
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.algorithm.com.au/talks/concurrency-erlang/
http://lac.zkm.de/2005/papers/letz_et_al.pdf
http://lac.zkm.de/2005/proceedings.shtml
http://lambda-the-ultimate.org/search/node/STM
http://en.wikipedia.org/wiki/Concurrent_Haskell
http://en.wikipedia.org/wiki/Concurrent_Haskell
http://www.sci.utah.edu/~shachar/Publications/rmls.pdf
http://www.sci.utah.edu/~shachar/Publications/rmls.pdf
http://www.cs.brown.edu/~tor/sig2005.html

Portfolio selection in stochastic environments
J. Liu

Review of financial studies (2007)
The dynamic portfolio choice problem can be ex-
pressed as a partial differential equation (Merton,
1971), which does not lead to a general, amenable so-
lution. This article derives an explicit solution in the
case of quadratic returns, generalizing similar results
for Ornstein–Uhlenbeck processes.

Emergent effective collusion in an economy of
perfectly rational competitors

R.K. Standish and S. Keen
arXiv:nlin.AO/0411006

Some agent-based models predict the emergence of mo-
nopolies; irrational agents or delays can help avoid
them.

Portfolio optimization
with drawdown constraints
A. Chekhlov et al. (2003)

In portfolio optimization, one can replace the standard
deviation by other risk measures such as the expected
shortfall (ES, conditional value at risk, CVaR) or the
conditional drawdown at risk (CDaR).

Investor sentiment and
the cross-section of stock returns

M. Baker and J. Wurgler
Journal of finance (2006)

You might want to completely reverse your trading
strategy (usually: large, mature, low-volatility, prof-
itable, dividend-paying, non-distressed, value stocks)
when the investor sentiment is low.
The investor sentiment can be computed from the fol-
lowing (annual) proxies (do not forget to remove the
systematic risk):
– Opposite of the closed-end fund discount (CEFD),
i.e., the average difference between the net asset
value (NAV) of closed-end stock funds shares and
their market prices;

– Detrended NYSE share turnover (or any measure of
liquidity);

– Number of IPOs;
– Average first-day returns on IPOs;
– Equity share in new issues;
– Dividend premium, i.e., difference of the P/B of div-
idend payers and non-payers.

Re-examining the profitability of technical
analysis with White’s reality check

and Hansen’s SPA test
P.H. Hsu and C.M. Kuan (2005)

To avoid data snooping, one can:
– Claim it is not a problem (but it is!);
– Split the data into in- and out-of-sample (but this is
arbitrary and discards part of the data);

– Explicitely test all the models and correct the p-
values accordingly (but when there are too many
tests, the power of the corrected tests drops);

– Use the bootstrap to compute the p-value:
· Build a universe of all trading strategies you might
be interested in;
· Choose a performance measure (White uses the an-
nualized returns, Hansen uses the information ratio
or 0 when it is negative);
· Estimate the distribution of the maximum perfor-
mance on bootstrap samples;
· Compare the performance of your model with the
distribution of the best performing model.

The article applies this methodology to technical anal-
ysis (TA): it works, and works better in less mature
markets.

Data Envelopment Analysis
G.N. Gregoriou and J. Zhu

Journal of portfolio management (2007)
The notion of efficient frontier can be generalized
to higher dimensions: several risk measures or in-
puts (standard deviation, downside deviation, maxi-
mum drawdown), several outputs (returns, proportion
of profitable months, maximum consecutive gain).
If you have enough data points, they provide an ap-
proximation of the efficient frontier (?).
The efficiency (closeness to the efficient frontier) can
be defined as the solution of a linear problem:

Minimize θ such that∑
k

λkxik ⩽ θxik0∑
k

λkyjk ⩾ yjk0∑
k

λk = 1

λk ⩾ 1

i : input
j : output
k : funds
k0 : fund whose efficiency is being computed
xik : input i of fund k
yjk : output j of fund k.

See http://people.brunel.ac.uk/~mastjjb/jeb/
or/dea.html for a picture.

Optimization of the largest US mutual funds
using data envelopment analysis

G.N. Gregoriou
Journal of asset management (2006)

Another article on data envelopment analysis (DEA,
sometimes also called frontier analysis). It defines the

Article and book summaries by Vincent Zoonekynd 970/1044

http://www.arxiv.org/abs/nlin.AO/0411006
http://citeseer.ist.psu.edu/554873.html
http://www-econ.stanford.edu/faculty/workp/swp05003.pdf
http://people.brunel.ac.uk/~mastjjb/jeb/or/dea.html
http://people.brunel.ac.uk/~mastjjb/jeb/or/dea.html

classical efficiency as

CCRk0 = Max

{∑
j µjyjk0∑
i λixik0

st ∀k
∑
j µjyjk∑
i λixik

⩽ 1

}
and the super-efficiency (which is no longer bounded
by 1) as

CCRk0 = Max

{∑
j µjyjk0∑
i λixik0

st ∀k 6= k0

∑
j µjyjk∑
i λixik

⩽ 1

}
.

They also mention the cross-efficiency model, but not
clearly.

Asset allocation for robust portfolios
T. Farrelly

Journal of investing (2006)
This article is a variation on Michaud’s resampled port-
folios:
– Start with your risk model and your alpha; choose
a risk threshold and a “sensitivity to underperfor-
mance” λ;

– Compute N = 500 simulated returns from N(0, V)
(or N(α, V), the article is not clear) and let

rij = return of stock i in situation j
wij = weight of stock i in

the efficient portfolio (r•,j , V)

(the article is not clear here either: there sometimes
seems to be one optimal portfolio per scenario, some-
times one for the set of all scenarios)

– Minimize ∑
ij

|(wij − wi)rij |λ

under the condition that the risk be below the
threshold.

Automatic bayesian model averaging
for linear regression and applications

in bayesian curve fitting
F. Liang et al.

Statistica Sinica 11 (2001) 1005–1029
The article suggests an “automatic prior” for bayesian
model average (BMA) – in situations where it has an
edge on model selection, BMA is sensitive to the prior,
for instance, to the expected number of factors in the
model.
The inclusion probability still has to be provided by
the user; the authors only provide a prior for β and σ
(equations 10 and 11).

Evolutionary Monte Carlo: applications to Cp
model sampling and change point problem

F. Liang and W.H. Wong
Statistica Sinica 10 (2000) 317–342

Check Monte Carlo Strategies in Scientific Computing,
J.S. Liu, Springer Verlag, 2002, for a 1-page summary
of this article.

Are alternatives the next bubble?
J. Loeys and N. Panigirtzoglou

Journal of alternative investment (2006)
One can use high returns, expensive valuation (low risk
premium), speculative acivity (trading volume, credit,
leverage) as a bubble indicator.

Profitability of price momentum strategies:
surprising evidence from
Pacific-Bassin countries

P. Ryan and R. Curtin
Journal of investing (2006)

Momentum does not work in Asia – but have a look at
reversal.

Do asset prices reflect fundamentals?
Freshly squeezed evidence from

the orange juice market
J. Boudoukh et al.

Journal of financial economics (2006)
Example of the misuse of linear regression to study a
non-linear phenomenon.

Mean-variance versus full-scale optimisation:
in- and out-of-sample

T. Adler and M. Kritzman
Journal of asset management (2007)

The authors suggest to replace quadratic utility (or
even power utility: U(x) = xγ/γ, which translates con-
stant relative risk aversion (CRRA)) by kinked utility
(for investors whishing to brech a threshold, e.g., the
minimum level of wealth to maintain a certain stan-
dard of living) or S-shaped utility (to reflect asymetric
risk behaviour).

Ukinked(x) = ln(1 + x) if x ⩾ θ
= 10(x− θ) + ln(1 + θ) if x < θ

US-shaped(x) = −A(θ − x)γ1 if x ⩽ θ
= −B(x− θ)γ2 if x > θ

−0.10 −0.05 0.00 0.05 0.10

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Kinked utility, theta=−5%

Return

U
til

ity

−0.10 −0.05 0.00 0.05 0.10

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

S−shaped utility, theta=−5%, A=B=2.25, gamma1=gamma2=.1

Return

U
til

ity

Article and book summaries by Vincent Zoonekynd 971/1044

Forecasting financial time series
using artificial market models

N. Gupta et al.
arXiv:physics/0506134

Stock market simulations by agent-based models sug-
gest there are pockets of predictability; once one such
pocket is closed, investment strategies trained on pre-
vious data become worthless.
In other words: agent-based market simulations con-
firm the predictability of stock markets and the pres-
ence of structural breaks.

Are you about to handcuff
your information ratio?

R. Staub
Journal of Asset Management (2007)

If you want yet another explanation/application of the
FLAM (fundamental law of active management)...

Alphas with attitude:
revving up your factor model

B. Lau and G. Platt
Macquarie Research Equities (2007)

Yet another article promoting dynamic, IC-based
weights: w = (Var IC)−1 · IC, using an expanding win-
dow and imposing constraints on the weights (0 ⩽ w ⩽
0.5).

Do industries lead stock markets?
H. Hong et al.

Journal of Financial Economics (2007)
One can predict market returns from lagged industry
returns; this is due to the bounded rationality of in-
vestors: they cannot process all the information about
all the stocks immediately when they receive it; the ef-
fect is present in all developped markets; the predicting
power is comparable to that of inflation, default spread
and dividend yield.
Others had already noticed that large or liquid stocks
lead small or illiquid ones.

Noise trader risk:
evidence from the Siamese twins

J.T. Scruggs
Journal of Financial Markets (2007)

Identical stocks on different exchanges do not move in
parallel: up to half the weekly volatility is due to noise
trading.
Thus, arbitrage is limited and the risk of pairs trading
is high.

Behavioral finance: frame-dependant
decision making and factor anomalies

T. Suwabe et al.
Goldman Sachs (2006)

Investors look at their unrealized gains when deciding
to leave a position: this can be exploited by compar-
ing the current price of a stock with its average buying
price

Rt+1 = VtPt + (1− Vt)Rt
where Pt is the price and Vt the turnover.
This is actually a momentum computed with an ex-
ponential moving average of the price (instead of the
lagged price), where the coefficient depends on the vol-
ume.

Profiting from momentum
R. de Souza

Macquarie Research, Equities (2006)
Another article on the same subject, under the name
capital gains overhang.

Alpha repair: a factor competition
approach to stock selection

J.J. Mezrich and J. Feng
Nomura (2007)

To select the factors to put in your model, regard them
as assets, evaluate their long-term (5-year) returns,
their variance matrix, and feed them to your prefered
optimizer to find an optimal “portfolio of 5 factors”
(you can fine-tune the number of factors).

Refinements to the Sharpe ratio:
comparing alternatives for bear markets

H. Scholz
Journal of Asset Management (2007)

Sharpe ratios (excess returns divided by risk) cannot
be used to compare funds when the returns are nega-
tive (they rarely give the right order).
The normalized Sharpe ratio tries to correct this. The
Sharpe ratio can be computed as

ert = excess returns
mert = market excess returns
ert = α+ βmert + εt

SR =
α+ βmer√

β2 + σ(mer)2 + σ(ε)2

The authors simply use 20 years for mer and σ(mer).

Momentum, reversal
and the trading behaviors of institutions

R.C. Gutierrex and C.A. Prinsky
Journal of Financial markets (2007)

Cumulated residual returns (for a 5-year CAPM
model) can help devise a long-term stragegy, while the
other component of the momentum (“relative momen-
tum”) reverts after one year.
More precisely, the article builds a strategy from the
signal :

α =
cumulated residual returns

cumulated variance of the resisuals

Article and book summaries by Vincent Zoonekynd 972/1044

This effect is linked to institutional ownership.

Countries versus industries in emerging
markets: a normative portfolio approach

J. Estrada et al., Journal of investing (2006)
The authors compare dispersion, information ratio
(IR = µ/σ), utility (U = log(1+µ)− 1

2σ
2/(1+µ)2), op-

tion price (an option that allows its owner to swap the
performance of the top (or bottom) quartile with the
median performance) of random country portfolios and
random industry portfolios and conclude that country
effects prevail.

On the use of hypothesis testing and
other problems in financial research

F. Gómez-Bezares et al.
Journal of investing (2006)

The authors notices the following problems:
– Not enough “case studies” – i.e., you should look at
the data;

– Unnecessary mathematical formulation;
– Rarely applicable results: when they become famil-
iar with a method (say, regression), researchers try
to apply it everywhere;

– Bad null hypothesis: it may even overlap with the al-
ternative hypothesis – the use of confidence intervals
besides tests would mitigate the problem.

– Data snooping: be extremely suspicious of “tables of
p-values”;

– Publication bias, i.e., unpublished “tables of p-
values”;

– Errors in the data – you should look at the data and
use robust methods;

– Simplifying hypotheses (no transaction costs, no bid-
ask spread, etc.);

– Insufficient data (sample too small);
– Non-parametric tests – only use them when needed:
their power is much lower;

– Some studies turn qualititive variables into quanti-
tative ones in a rather arbitrary way.

The authors fail to notice the following problems:
– Unnecessary data binning;
– Use of linear or gaussian methods without checking
if it makes sense.

Theory and techniques of Electronic Music
M. Puckette (2007)

A hands-on digital signal processing (DSP) book, cov-
ering, among other things, filters and Fourier analysis.

Divergence of opinion and equity returns
under different states of earnings expectations

J.A. Doukas et al.
Journal of financial markets (2006)

The interaction between analysts estimates and ana-
lysts divergence is non-linear.

Was there a Nasdaq bubble in the late 1990s?
L. Pástor and P. Veronesi

Journal of financial economics (2006)
The Nasdaq bubble can be explained by uncertainty
about future profitability which, by Jensen’s formula,
increases a firm’s value:

Price
Dividends =

1

discrount rate− growth

E[P/D] >
1

discrount rate− E[growth]

Analysts’ selective coverage and subsequent
performance of newly public firms

S. Das et al.
The journal of finance (2006)

Initial public offerings (IPO) followed by many ana-
lysts outperform those followed by fewer analysts over
three years.

Earnings and price momentum
T. Chordia and L. Shivakumar

Journal of financial economics (2006)
The momentum effect can be explained by earnings
surprises.

Decomposing the price-earnings ratio
K. Anderson and C. Brooks

Journal of asset management (2006)
The authors suggest to correct the P/E for sector and
size.

Conditional skewness in asset pricing tests
C.R. Harvey and A. Siddique

Journal of finance (2000)
Systematic skewness commands a risk premium, on av-
erage 3.6% per year; the momentum effect is related to
systematic skewness.

On the aggregation of local risk models for
global risk management

G. Anderson et al. (2005)
To build an integrated risk model, i.e., a risk model
covering several markets, from a model for each mar-
ket and a global model, with the drill-down property,
i.e., such that the restriction of the integrated model
be the local ones, one can write the global risk model
as V = BB′ and replace B by LB where L is to be
determined.
The possible values are L =

⊕
i Θ̃

1/2
i OiΘ

−1/2
i with

Oi ∈ O(ni), the Θi are the diagonal blocks of the global
model and Θ̃i are the desired diagonal blocs – the local
risk models.
Choose the Oi to minimize ‖BB′ − LBB′L′‖2 – or
rather, the distance between the corresponding corre-
lation measures.
This is the double Procrustes problem.

Article and book summaries by Vincent Zoonekynd 973/1044

http://www.crca.ucsd.edu/~msp/techniques/latest/book.pdf

On pricing derivatives in the presence
of auxiliary state variables

J. Lin and P. Ritchken
Journal of derivatives (2006)

The pricing of certain options requires a path-
dependant auxiliary variable (e.g., the volatility when
the underlying follows a GARCH model). This can
be implemented on a lattice (often improperly called
a “binomial (or trinomial) tree”) by storing an array
of values at each node. The article explains that keep-
ing a single value, viz. the expectation of the auxiliary
variable, is actually sufficient, and details the Heath-
Jarrow-Merton (HJM) model.

Using order statistics to estimate confidence
intervals for probabilistic risk measures
K. Dowd, Journal of derivatives (2006)

The α-VaR is the αth quantile: it is an order statistic,
If F is the cumulative distribution function of your ran-
dom variable, the rth order statistic X(r) of a sample
of size n has the cumulative distribution function

Gr,n(x) =

n∑
i=r

(
n

k

)
F (x)i(1− F (x))n−i.

From there, just estimate F from the data you have
(parametrically or not) and estimate the confidence
interval [x1, x2] by solving Gr,n(x1) = 0.05 and
Gr,n(x2) = 0.95.
The author claims that the same approach applies to
the expected shortfall.

The information content
of the FOMC minutes

E. Boukus and J.V. Rosenberg (2006)
Latent semantic analysis (LSA) goes as follows:
– Convert the texts to bags of words, i.e., remove the
stop words, stem the words, forget their order but
not their number;

– Form the term-document matrix X: one row per
term, one column per document, the term frequency
xij is the number of occurrences of term i in doc-
ument j divided by the number of terms in docu-
ment j;

– Compute the singular value decomposition (SVD)
of X: X = USV ′, the columns of U are “virtual
documents” that can be interpreted as the themes of
the corpus.

There are variants for the construction of the term-
document matrix:
– One can forget the number of occurrences;
– One can use global weights, such as TFIDF (term fre-

quency inverse document frequency), which replaces
the term frequency xij by

xij · log
1

yi

where yi if the document frequency, i.e., the num-
ber of documents containing term i divided by the
number of documents.

Order book characteristics
and the volume-volatility relation:

empirical evidence from a limit-order market
R. Næs and J.A. Skjeltorp

Journal of financial markets (2006)
The order book slope influences volume, volatility and
their interactions; it is a proxy for disagreement among
investors.

Subordinated binomial option pricing
C.W. Chang et al.

Journal of financial research (2006)
Binomial trees can easily be generalised to account
for stochastic volatility, by describing the price evo-
lution with successive binomial trials up/down and
trade/non-trade (this is a trinomial tree, the spot price
S becoming uS, S or dS with probabilities gh, 1 − g
and g(1 − h)), corresponding to a time change from
calendar time to operational time.

Individual equity return data from
Thomsom DataStream: handle with care!

O.S. Ince and R.B. Porter
Journal of financial research (2006)

Beware of your data source (CRSP vs TDS): clean be-
fore use.

Momentum: does the database
make a difference?

B. Chakrabarty and C. Trzcinka
Journal of financial research (2006)

Statistical and real profits might or might not coincide,
depending on your data source (CRSP or TAQ).

Downside risk
A. Ang et al. Review of Financial Studies

(2006)
Stocks with a high sensitivity to downside market
movement (β−) have higher returns.
This effect does not (entirely) come from stock with
high coskewness risk having higher returns.
Downside beta can be used as an alpha, but not for
high-volatility stocks.

Transmission of information
accross international equity markets

J. Wongswan
Review of Financial Studies (2006)

Macroeconomic announcements in the US or Japan
have short-lived (30 to 60 minutes) effects on volatility
and volume (not returns) in Korea and Thailand.

Article and book summaries by Vincent Zoonekynd 974/1044

Lehman suite of PCA risk models
J. Ruiz-Mata (2006)

They provide statistical risk models, for Europe, US,
developped Asia and emerging markets, built as fol-
lows:
– Using daily (or weekly, monthly) excess returns over

40 (long-only) to 60 (long-short) days, they perform
a factor analysis with 4 to 8 factors;

– The number of factors is determined by random ma-
trix theory (RMT), i.e., by comparing the distribu-
tion of the eigenvalues with that of the variance ma-
trix of iid gaussian variables (they do not seem to
realize that RMT uses principal component analysis
(PCA), not factor analysis, i.e., it assumes there is
no stock-specific risk: this might bias the methodol-
ogy towards an unduly high number of factors – they
are lucky to have so few); they fail to note that the
number of factors to retain also depends on the size
of the universe: 4 or 5 factors might be necessary if
you have several thousand US stocks, but with just
100, one might be sufficient;

– The training period is determined by computing the
distance between the factor model variance matrix
and the forward sample variance matrix (they do
not use the distance between those matrices, by the
difference between the forecasted risk and the real-
ized risk, for a large number of long-short portfolios
– this is very similar to the definition of a matrix
norm, but we do not need to have time series of
forward returns, one forward return for each stock
suffices).

Is fundamental analysis effective
for growth stocks?

P.S. Mohanram (2003)
This article lists financial variables likely to help pre-
dict future returns for growth stocks. There are classi-
cal fundamental variables:
– ROA
– ROA growth
– Cash flow ROA
– Cash flow − Net income
– Asset turnover (sales / begining-of-period assets)
growth

– Operating margin (gross margin / sales) growth
– Leverage reduction
– Current ratio (?) growth
– Equity issuance in previous year
and growth-specific variables (all sectorwise):
– Earnings stability: 5-year ROA variance
– Growth stability: 5-year sales growth variance
– Earnings growth − Sales growth
– R&D / Begining-of-period assets
– Capital expenditures / Assets
– Advertising / Assets

Price-to-earnings ratio and expected earnings
growth rate in global equity markets

G. Bakshi and A. Chan (2000)
Expected earnings growth rate have a predictive effect
on P/E variations.

Rewriting history
A. Ljungqvist et al. (2006)

Some estimates in the IBES database are anonynized
(when the analysts ask for it). You would expect that:
either all the estimates of an analyst are anonymized,
or only the most recent (so that only his direct clients
have access to the complete information). This article
remarked that past forecasts are also anonymized, es-
pecially bad forecasts, thereby invalidating the use of
the database to rank analysts.

Using Economic and financial information
for stock selection

I. Roko and M. Gilli (2006)
Instead of building a model using linear regression on
a moving window, they use a classification tree.
They do not produce a single tree, but a set of trees (a
bag, a forest), each estimated on a bootstrap sample,
to lower the variance of the predictor – this should be
reminiscent of the set of models produced by bayesian
model averaging.
They do not predict the future returns of the stocks but
just whether they outperform, underperform or remain
neutral – but the method can be generalized to regres-
sion trees (and forests).
They discretize the predictive variables, thereby dis-
carding information: this is a mistake.

Dynamic market intellidex
M. Krause (2006)

The author suggests using an alpha (valuation, senti-
ment, quality, risk) to build a portfolio, by investing in
the top stocks (his portfolio has the same capbin and
sector composition as the market and is equal-weighted
in each sector×capbin).

Investment strategies using options on ETFs
A. Seddik Meziani (2006)

On the use of covered calls (calls written when you own
the underlying, as opposed to naked calls): if you think
the price will drop for a stock you own, you can write a
call: if the price goes up, you just fail to cash on it, if it
goes down, you do not lose anything and even pocket
the option price.
The author also mentions short straddles (write a put
and a call, if you think the price will not move) and
long straddles (buy a call and a put, if you think the
price will move but have no view on its direction).

The other January effect
M.J. Cooper et al.

Journal of Financial Economics (2006)

Article and book summaries by Vincent Zoonekynd 975/1044

The January Effect states that small and low-priced
stocks that lose a lot at the end of the year rebound in
January.
The (completely unrelated) Other January Effect
states that January returns help predict the returns
of the remaining 11 months. The article confirms this
effect, for capitalization-weighted or equal-weighted
portfolios, large or small stocks, value or growth stocks.

Applied Functional Data Analysis
Methods and Case Studies

J.O. Ramsay and B.W. Silverman
Springer Verlag (2002)

One can reliably smooth a function, defined by a noisy
set of points, by expanding it over a basis (e.g., splines
– in case of periodic phenomena, you can also consider
a Fourier expansion) and by adding a penalty: if you
want the kth derivative to be smooth, add a penalty
on the (k+ 2)th derivative. The smoothing parameter
can be estimated by cross-validation.
The principal component analysis (PCA) of smoothed
data is still noisy and not interpretable: functional
PCA (fPCA) solves the problem by putting the
smoothing inside the PCA algorithm – e.g., for the first
component, you maximize a penalized variance. More
precisely, the usual conditions

∀i
∫
ξ2i = 1

∀i 6= j

∫
ξiξj = 0

become

∀i
∫
ξ2i + λ

∫
ξ′′i

2 = 1

∀i 6= j

∫
ξiξj + λ

∫
ξ′′i ξ
′′
j = 0.

Thanks to the use of basis functions, the computations
boil down to linear algebra.
To plot and interpret the principal components, just
plot the mean function plus and minus some multiple
of those components.
The book uses fPCA to study crime careers – but the
same ideas could be applied to parallel plots.
Classical methods (e.g., Linear Discriminant Analysis
(LDA)) can either be applied on the first functional
principal components or “penalized” as PCA was.
A phase-plane plot, i.e., a plot of the acceleration
against the velocity (since you want to use the second
derivative, use a penalty on the fourth), can be inter-
preted in terms of energy and momentum; one should
look for cycles, their radius, their center, changes in
their shape, etc. The book examines a consumption
index phase plane plot.
To expand plane curves (here, bone shapes) over a ba-
sis of functions, one can use landmarks or parametrize
the curves with arc-length.

If the principal components are not directly inter-
pretable, you can perform a varimax rotation: this is
a rotation in the subspace spanned by the first few
principal components that maximizes the variance of
the coordinates (“loadings”); it makes the loadings ei-
ther large or close to zero and therefore eases the in-
terpretation of the components. With the promax ro-
tation, one first performs a varimax rotation, takes the
power 2 or 4 of the loadings, so as to simplify them
further, and looks for an invertible (not necessarily
orthogonal) matrix Q that approximates those load-
ings: Qb ≈ (Rvarimaxb)

2. (In R, check the varimax
and promax functions.) This sounds like a poor man’s
independant component analysis (ICA).
One can use the same ideas to study families of sam-
ple distributions, by smoothing the sample distribution
functions. Those distributions can then be used in, say,
hierarchical models.
The mean curve may fail to exhibit the features of the
individual curves, especially if (as in the example of
human growth) they differ in location – they are aver-
aged out. Before computing the mean, you can align
the functions: this is called registration or (dynamic)
time warping. This accounts for phase changes – but
one can also allow for amplitude changes – this can be
expressed and implemented as an eigenvalue problem.
Registration transforms the set of curves to study into
a set of pairs of curves: the aligned curves and the
warping functions h(t) (or the time deformation func-
tions h(t)− t).
Depending on the data, you may want to register the
functions themselves of their first derivative.
Monotone curve smoothing (e.g., human growth or
time warping functions) can be performed as follows:
instead of looking directly for a smooth increasing func-
tion H, look for the relative acceleration w = H ′′/H ′,
i.e., look for a differential equation H ′′ = wH ′. As
usual, smooth w using a penalty on

∫
|w′′|.

Item Response Theory (IRT) studies answers to abil-
ity tests. The ability curve is a curve in [0, 1]N , where
N is the number of questions, whose kth coordinate
is the probability or correctly answering the kth ques-
tion – we assume that the test allows us to rank the
candidates, i.e., that they are indeed described by a 1-
dimensional subspace, i.e., that the test only measures
one thing –, it goes from 0 (bad candidate) to 1 (ex-
cellent candidate) and wriggles in between depending
on the difficulty and discriminability of the questions.

Article and book summaries by Vincent Zoonekynd 976/1044

ability

lo
g−

od
ds

Easy

ability

lo
g−

od
ds

Difficult

ability

lo
g−

od
ds

Not discriminant

ability

lo
g−

od
ds

Discriminant

The arclength on that curve can be used as a measure θ
of ability.
IRT models the probability of a correct answer to ques-
tion i as a function of the ability θ: logistic regression
measures difficulty and discriminability , but one can
also devise models that account for a non-negligible
probability of right answer at low ability (the candidate
can answer at random). The picture is complicated by
the fact that the ability θ is unknown.
Functional PCA allows more freedom in the modeling
of the success probabilities.
A functional linear model is a continuous analogue of
a regression of a time series versus another, including
lags:

yi(t) = α(t) +

t∑
s=t−k

βs(t)xi(t) + εi(t)

yi(t) = α(t) +

∫ t

t−k
β(s, t)xi(t) ds+ εi(t).

The data can be visualized by a cross-correlation ma-
trix, the model can be fitted after discretization by fi-
nite elements, the fit can be assessed by looking at the
MSE (mean square error) as a function of time.

SSE(t) =
N∑
i=1

(yi(t)− ŷi(t))2

SSM(t) =

N∑
i=1

(yi(t)− ȳi(t))2

R2 = 1−
∫
SSE(t)dt∫
SSM(t)dt

One can characterize a family of functions (here, hand-
written letters) by a differential equation

D3fi = α+ β0fi + β1Dfi + β2D
2fi + εi

which can then be used for supervised classification:
Principal Differential Analysis is a functional analogue
of LDA.
This differential equation can actually be a vector one,
that allows for coupling between the coordinates – es-
pecially when there is no canonical coordinate system
(here, the hand movements of a juggler).

Those differential equations can be seen as a continu-
ous analogue of regression and the coefficients can be
estimated by integrated least squares.

Stock market diversity
R. Fernholz, Intech (2005)

Studying portfolios in a 1-period world can be mislead-
ing: by modeling them as stochastic processes (with
time-varying, i.e., stochastic, weights), one can decom-
pose the portfolio returns into the contribution of its
contituents and the contribution (excess growth rate) of
the volatility and the correlation of those constituents,
accounting for rebalancing and diversification – this is
called stochastic portfolio theory.
The distribution of the capitaliztion in the market
changes over time; one can measure the diversity of
this distribution with the entropy

S =
∑
i

−wi logwi

where wi are the market capitaliztion weights, or with

Dp =

(∑
i

wpi

)1/p

(people suggest p = 0.5 or p = 0.76). Each such diver-
sity measure is canonically associated with a diversity-
weighted portfolio (in our examples, its weights would
be 1/N or (proportional to) w1/p

i).
One can note that when market diversity rises, active
strategies outperform passive ones and conversely.
Diversity measures are linked to the performance of
“size” factors.

Diversity-weighted indexing
R. Fernholz, et al., JPM (1998)

Capitalization-weighted indexes are never rebalanced,
except when stocks enter or leave the index, i.e., stocks
with a historically high or low price are bought or sold
– the opposite of what you should be doing.
Diversity-weighted indexes mitigate this problem: the
weights are proportional to some power, p ∈ [0, 1], of
the market capitalization (e.g., p = 0.76).
The returns of a diversity-weighted portfolio can be
decomposed into a contribution of the variation in the
distribution of the capitalization of the stocks and a
contribution of the changes in stock rankings (“kinetic
differential” – strictly speaking, this component also
accounts for dividend payments and stocks leaving and
entering the index). The former is noisy and mean-
reverting, the latter brings the returns.

Volatility capture as an alpha source
L. Vasquez, SEI (2005)

Rebalancing a portfolio so that its weights remain con-
stant is better than a buy-and-hold strategy.

Article and book summaries by Vincent Zoonekynd 977/1044

“Volatility capture” is also sometimes called compound
growth or diversity-weighted indexing.

Diversification returns and asset contributions
D.G. Booth and E.F. Fama

Financial Analysts Journal (1992)
A portfolio rebalanced so as to keep its weights con-
stant performs better than a non-rebalanced one. More
precisely, the returns of a buy-and-hold strategy are:

∑
i

wi

(∏
t

(1 + rit)− 1

)
≈
∑
i

wi
(
E[ri·]− 1

2 Var[ri·]
)

≈
∑
i

wiri − 1
2

∑
i

wiσii

while those of a rebalanced one are∏
t

(
1 +

∑
i

wirit

)
− 1 ≈ E

[∑
i

wiri·

]

− 1
2 Var

[∑
i

wiri·

]
≈
∑
i

wiri − 1
2

∑
ij

wiwjσij .

The difference between the two is called the excess
growth rate:

1
2

∑
i

wiσii −
∑
ij

wiwjσij

 .

Stochastic portfolio theory
and stock market equilibrium

R. Fernholz and B. Shay
Journal of Finance (1982)

A continuous-time derivation of the excess growth rate.

Model uncertainty and forecasting, a
practitioner point of view

B. Bellone and E. Michaux (2006)
The article compares several model selection proce-
dures:
– Linear regression bayesian model averaging (BMA)
is good, especially for the short term;

– Dynamic factor models (DFA), i.e., regression on the
factors from a factor analysis and their lags, is not
bad, especially for the long term.

The article also examined
– Median BMA (the model obtained from the variables
whose inclusion probability is beyond 1/2);

– The general-to-specific (GETS) algorithm (a step-
wise variable selection, with multiple steps and
tests).

The authors use a Scilab econometric toolbox devel-
opped at the Ensae: “Grocer”.

Portfolio insurance: the extreme value
approach to the CPPI method

P. Bertrand and J.L. Prigent (2001)
The CPPI (constant proportion portfolio insurance)
method is a simplified asset allocation strategy that
tries to guarantee a minimum terminal wealth. The
floor is the present value of the insured terminal value;
the cushion is the difference between the portfolio value
and the floor (it should remain positive). CPPI sug-
gests to invest a fixed proportion (the multiple, e.g.,
10) of the cushion in the risky asset and keep the rest
in the risk-free asset – if the cushion is already large,
10 times the cushion could exceed the portfolio value:
in this case, everything would be invested in the risky
asset.
The article explains how to choose the multiple, using
quantiles.
Options-based portfolio insurance (OBPI) is another
portfolio insurance (PI) method.

Financially-motivated
model performance measures
C. Friedman and S. Sandow
Journal of credit risk (2006)

Classical performance measures (e.g., contingency
table-based measures such as the type I and type II
error rates; rank-based measures (that fail to prop-
erly account for extreme events); calibrated measures
(?); conditional information entropy ratio (CIER) (?),
etc.) do not easily generalize beyond two states and
are not consistent with utility theory. The article sug-
gests to compare the performance of two models with
their Kullback–Leibler distance to the data:

KL(model 1, data)−KL(model 2, data).

Those Kullback–Leibler distances can be expressed in
terms of a utility function, to be chosen – preferably of
the form

U(wealth) = wealth1−κ − 1

1− κ
.

This setup can be robustified and generalized to multi-
state or continuous models.

A heteroskedasticity-consistent
covariance matrix estimator and

a direct test for heteroskedasticity
H. White, Econometrica (1980)

In presence of heteroskedasticity, the coefficients of the
linear model y ∼ x are consistent, but their variance
matrix, usually defined as

1

n

∑
i

σ̂2x′ixi

is not. Instead, one can replace the standard deviation
σ̂ by the residuals ε̂i:

V̂ =
1

n

∑
i

ε̂2ix
′
ixi.

Article and book summaries by Vincent Zoonekynd 978/1044

http://www.scilab.org/
http://dubois.ensae.net/grocer.html

1/N
V. DeMiguel et al. (2005–2006)

If you do not have much data, assign the same frac-
tion of your wealth to each asset in your universe; if
you have more data, use a minimum-variance port-
folio; only if you have huge amounts of data (years
of tick data, centuries of daily data) should you con-
sider mean-variance optimization. In all cases, impos-
ing constraints to your optimization problem is a good
idea.

Towards a new early warning system
of financial crises

M. Bussiere and M. Fratzscher
Journal of international money and finance

(2006)
Early warning systems (EWS) of financial (currency)
crises for emerging market economies (EME) shoud not
consider two states (crisis, non-crisis) but three (pre-
crisis, crisis, post-crisis), to avoid the post-crisis bias.

The january effect
M. Haug and M. Hirschey

Financial Analysts Journal (2006)
The January effect (small capitalizations that experi-
enced large losses the previous year have high returns
in January) is still there.

How profitable is capital structure arbitrage?
F. Yu

Financial Analysts Journal (2006)
If you need an introduction to capital structure arbi-
trage (CSA) and the CreditGrades model...
The conclusion of the article is that CSA is profitable,
unless you “forget” to build a diversified portfolio and
focus on a single company – this is, unsurprisingly, too
risky.

Stock price reaction to public
and private information

C. Vega
Journal of Financial Economics (2006)

We already use the dispersion among the analyst esti-
mates as an investment signal: this article claims that
dispersion in the news (measured by the amplitude of
the subsequent excess returns) is also an important sig-
nal, more important than the number of news items or
the private-information-based trading (PIN).

Is information risk priced for NASDAQ-listed
stocks?

K.P. Fuller et al. (2007)
The PIN (probability of informed trading – they recall
the formula but do not provide any insight) work on
the NYSE but not on the NASDAQ.

The copula-GARCH model
of conditional dependancies:

an international stock market application
E. Jondeau and M. Rockinger

Journal of international money and finance
(2006)

There are several models describing the evolution of
correlation matrices (multivariate GARCH, CCC, etc.)
but they do not fully account for fat tails. The
copula-GARCH model introduced in the article allows
for Student innovations and copulas to capture non-
elliptical distributions and time-varying higher mo-
ments (coskewness, cokurtosis).

Are our FEERs justified?
G. Barisone et al.

Journal of International Money and Finance
(2006)

To gauge whether current exchange rates are at equilib-
rium or if some currencies are too expensive or cheap,
one often uses purchase power parity (PPP) models,
such as The Economist’s Big Mac Index. The fun-
damental equilibrium exchange rate (FEER) method
uses import/export volumes/prices. Contrary to PPP,
the resulting exchange rates are cointegrated with the
actual exchange rates.

Axioma’s alpha factor method
Axioma (2006)

The alpha factor method is a modification of the def-
inition of the risk of a portfolio with respect to a risk
model that tries to account for risk underestimation.
For instance, optimizers can tell you that 0% of the
risk is due to the size factor, which is almost always
wrong. This is due to the “null space of the exposures
matrix” being very large. The alpha factor accounts
for the risk hidden by the closeness to this null space.

risk2 = w′(EV E′ + ff ′ +∆)w

f = σ
Pw

‖Pw‖
P = I −B(B′B)−1B′

(Here, P is the orthogonal projection onto kerB′ and
·−1 is a generalized inverse.)
Hybrid risk models (i.e., risk models with added sta-
tistical factors) are another way of accounting for those
missing phantom factors, but the alpha factor method
is adapted to the portfolio – and since the portfolio
changes during the optimization process, the alpha fac-
tor changes as well.
Their optimizer allows for several benchmarks and can
therefore be used to combine several alpha compo-
nents: first build a pure portfolio for each alpha compo-
nent, with no constraints; then build a portfolio, with
constraints, and control the tracking error to each of
the pure portfolios.

Article and book summaries by Vincent Zoonekynd 979/1044

The earnings quality skew
and long-short investing

J.J. Mezrich and J. Feng, Nomura (2006)
With the alpha used in long-short strategies, e.g., earn-
ings quality, the long and short performance are usu-
ally not synchronized – this can be refered to as an
alpha skew. One can tap into that phenomenon by
optimizing a two-asset portfolio made of a long-vs-
market pair and a market-vs-short pair (requiring that
the weights be positive and that the maximum weight
be 1, or whatever your leverage is). This can be seen
as “shrinking” either the long or the short portfolio
towards the market portfolio. Those dynamic weights
exploit the full variance matrix between the excess long
returns and the excess short returns – this includes, but
is not limited to (as the article claims), their correla-
tion.
The article fails to compare this approach with a full-
blown optimization, over the whole universe: is it more
than a poor man’s optimized portfolio?

Edgeworth binomial trees
M. Rubinstein

Journal of derivatives (1998)
Option pricing need not be confined to the log-gaussian
realm: one can devise “binomial trees” that match pre-
scribed mean, standard deviation, skewness and kurto-
sis and use them to price options.
The Edgeworth expansion of a univariate distribution
is a tractable approximation whose first four moments
match.
This sounds very similar to the Cornish-Fisher value
at risk.

The strategy of professional forecasting
M. Ottaviani et al.

Journal of financial economics (2006)
Analysts can have two goals:
– be the best – they then formulate bold forecasts: if
their forecast is not the best, how wrong they are is
irrelevant, so they try to have as few competitors as
possible;

– be good, most of the time – they then shrink their
forecasts towards the consensus, in order to take as
few risks as possible.

Political relationships, global financing
and corporate transparency:

evidence from Indonesia
C. Leuz et al.

Journal of financial economics (2006)
The authors measure the closeness of a company to the
current president by looking at the returns on the days
presidential health problems were announced.

Divergence of opinion and equity returns
J.A. Doukas et al.

Journal of financial and quantitative analysis
(2006)

Stock returns are positively associated with divergence
of opinion – not negatively as previously thought.

Stock returns, implied volatility innovations
and the asymetric volatility phenomenon

P. Dennis et al.
Journal of financial and quantitative analysis

(2006)
The asymetric volatility phenomenon (AVP) is yet an-
other stylized fact: negative return shocks are followed
by a higher volatility than positive returns.
Actually, those shocks do not affect the idiosyncratic
volatility, but only the systematic one.

Multivariate market association
and its extremes

D. Baur (2006)
Besides the dispersion, i.e., the cross-sectional (target)
standard deviation, one can also consider the upward
or downward dispersion.

A simple framework for time diversification
F.J. Fabozzi et al.

Journal of investing (2006)
The time diversification index (TDI) is

Short-term Sharpe Ratio
Long-term Sharpe ratio

where the (generalized) Sharpe ratio is

Sharpe ratio =
Risk

Expected returns

for some measure of risk (standard deviation, value at
risk, etc.)

Using neural networks to analyze
intermarket relationships

L.B. Mendelsohn
Journal of trading (2006)

The author suggests to look at momentum not only
backwards (previous returns) but also sideways (re-
turns in other markets), for instance using neural net-
works.

Let’s play hide-and-seek: the location and size
of undisclosed limit order volume

S. Bongiovanni et al.
Journal of rrading (2006)

Predicting hidden order volume in high-frequency data
(we do not only use the trades but also the quotes).

Article and book summaries by Vincent Zoonekynd 980/1044

A fresh look at
investment performance evaluation

R.J. Surz
Journal of Portfolio Management (2006)

The author advocates the use of random portfolios.

Are optimizers error maximizers?
M. Kritzman

Journal of Portfolio Management (2006)
Actually, no – the profile (returns, risk, exposures, etc.)
of the correct and incorrect portfolios are very similar.

Smoothly mixing regressions
J. Geweke and M. Keane (2005)

One can extend the mixture of gaussians model by al-
lowing the probabilities to depend (via a probit link)
on covariates.

The information in option volume
for future stock prices

J. Pan and A.M. Poteshman (2006)
An options-based order flow imbalance (OFI): the put-
call volume ratio.

Portfolio optimization
with robust estimates of risk

V. DeMiguel and F.J. Nogales (2006)
Mean-variance portfolios, or even minimum variance
portfolios, are very unstable. One can replace the 2-
step process “estimate the risk model then compute
the mimimum variance portfolio” by a 1-step process
(just put the formula for the variance matrix in the
objective function) and then replace the squares that
appear in the objective function by a robust loss func-
tion (either slowly increasing, such as the Huber func-
tion, leading toM -estimators; or bounded, such as the
biweight function, leading to S-estimators).

Beauty contests and
iterated expectations in asset markets

F. Allen et al.
Review of Financial Studies (2006)

The law of iterated expectations (today’s expectation
of tomorrow’s expectation of the price in two days
equals today’s expectation of this price) holds for ex-
pectations given the public information, for expecta-
tions given the information available to a given in-
vestor, but does not hold for the average expectation
over all investors – and those average expectations play
a central role in establishing future prices.

Estimation of approximate factor models: is it
important to have a large number of variables?

C. Heaton and V. Solo (2006)
Principal Component Analysis (PCA) decomposes a
sample variance matrix as V = EE′ (while factor mod-

els try to write it as V = EE′ + ∆, where ∆ is diag-
onal); this decomposition converges to the population
PCA when T → +∞ with N fixed. This article exam-
ines what happens when T and N both tend to infinity
with the ratio N/T fixed.

Who herds?
D. Bernhardt et al.

Journal of FInancial Economics (2006)
Analysts do not shrink their forecasts towards the con-
sensus – on the contrary. The absolute value of the
forecasts is irrelevant: focus on the forecasted value
relative to the consensus.

A conditional approach to hedge funds
F. Pochon and J. Teïletche

Jounal of Alternative Investments (2006)
Fit a regime-switching model (mixture of gaussians, es-
timated with the EM algorithm) to a chosen core asset
(e.g., the S&P 500 index, if you are interested in eq-
uities) to identify two market regimes: quiet and hec-
tic. You can then compute exposure, correlation, etc.,
contitional on the market regime, i.e., you have two
values for each measure, a quiet and a hectic one. You
can also perform (simulation-based) statictical tests to
check whether the regime makes a difference.

How sub-optimal – if at all –
is goal-based asset allocation?

J.L.P. Brunel
Journal of Wealth Management (2006)

A behavioral (or goal-based) portfolio is a combination
of efficient portfolios, each corresponding to a different
goal, i.e., to a different risk aversion. But a combina-
tion of efficient portfolios need not be efficient – how
inefficient is it? Not much, actually.

Optimization and quantitative
investment management

A. Khodadadi et al.
Journal of Wealth Management (2006)

We need a decent IT infrastructure, with an easy to ac-
cess and maintain database – a data warehouse (DW)
– and an optimizer.

Optimal portfolio allocation
using funds of hedge funds

J.-P. Gueyié et al.
Journal of Wealth Management (2006)

Hedge fund (HF) indices over-estimate their returns,
mainly because of survivor bias – probably 3% per year.
This problem is mitigated by funds of funds (FOF).
The article presents several risk measures, adapted
to hedge funds, and runs portfolio optimizations with
them:
– Standard deviation (one can also consider skewness
and kurtosis, which are not risk measures, but can

Article and book summaries by Vincent Zoonekynd 981/1044

complement the standard deviation to build other
risk measures);

– Expected loss and Ω;
– Semi-variance: E[(X − EX)2|X < EX];
– Target semi-variance: E[(X − X0)

2|X < X0], for
some user-chosen X0, e.g., X0 = 0;

– Maximum drawdown;
– Value-at-Risk (VaR), i.e., a quantile, that

can be computed empirically, empirically with
exponentially-decaying (α = .99) weights, assum-
ing a gaussian distribution, using a Cornish–Fisher
expansion (a kind of Taylor expansion of the quan-
tile function of a distribution, around the gaussian
quantile, that involved excess skewness S, excess
kurtosis K and the corresponding gaussian quan-
tile z)

CFVaR = σ

(
z +

z2 − 1

2
S +

z3 − 3z

24
K

+
2z3 − 5z

36
S2

)
or using extreme value theory (EVT).

To select a portfolio on the efficient frontier for one of
those measures you can use the modified Sharpe ratio

MSR =
Expected returns

Chosen risk measure .

The conclusion of the article is that hedge funds (or
funds of funds) are good, but non-gaussian.

A data-driven optimization heuristic for
downside risk minimization

M. Gilli, Journal of Risk (2005)
This article advocates threshold accepting (TA), a vari-
ant of simulated annealing (replace the probability by
a threshold; select the cooling scheme from the emoiri-
cal distribution of the differences of the objective func-
tion), together with downside risk measures such as
value at risk (VaR), expected shortfall (ES) and Ω).

I1 =

∫ 0

−∞
F (z) dz

I2 =

∫ ∞
0

(1− F (z)) dz

I3 =

∫ ∞
VaR(α)

(1− F (z)) dz

ES(α) = VaR(α) + 1

α
I3

EL = I2 − I1
Ω = I2/I1

Comparing downside risk measures for
heavy-tailed distributions

J. Danielsson (2005)

For random variables with regularly varying tails, i.e.,
their tail can be approximated by a Pareto distribu-
tion, i.e.,

∀x > 0 lim
t→−∞

F (tx)

F (t)
= x−α,

i.e., F (−x) ∼
x→+∞

Ax−α, expected shortfall does not
depend (much) on the tail coefficient A but only on the
tail index α, which is bad news for financial applica-
tions, where the tail index α is the same accross stocks
but where the tail coefficient A varies. Other downside
risk measures (VaR, semi-variance, first lower partial
moment, zeroth lower partial moment) do not have this
problem.

Modeling model uncertainty
A. Onatski and N. Williams (2002)

To account for model uncertainty, say, a regression pre-
ceded by a variable selection procedure, you can:
– Forget about the bias introduced by variable se-
lection and compute prediction intervals; if the
model is more complicated than linear regression,
use bayesian methods to get the distribution of the
estimators;

– Consider the set of models (i.e., selected variables)
containing the chosen model, with suitable weights;

– Use the set of all models.
This article applies those ideas to State Space Models
(SSM) and uses them to make the best decision in the
worst case (minimax).

Mining source code elements for
comprehending object-oriented systems and

evaluationg their maintanability
Y. Kanellopoulos et al.

Clustering source code metrics of Java classes (number
of lines, number of methods, number of public meth-
ods, number of children, tree depth, number of coupled
classes) can help us understand (and assess the main-
tanability of) large software projects.

The problem of disguised missing data
R.K. Pearson (SIGKDD Explirations, 2006)

Beware of missing data; beware of missing data not
labeled as such (outliers or even inliers); look at the
data.

Graph-theoretic scagnostics
L. Wilkinson et al. (2005)

Scatterplot matrices can be insightful, but when you
have dozend or hundreds of variables, the scatterplot
matrix is unreadable: on which cells of this matrix
should we focus? To answer this question, one can de-
vise several measures of “interestingness” or “peculiar-
ity” of a scatterplot: presence of outliers, skinniness,
curvature, skewness, clumpiness, etc.; then, one can
look at the scatterplot of those peculiarity measures
(the variables are the interestingness measures and the

Article and book summaries by Vincent Zoonekynd 982/1044

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.6148&rep=rep1&type=pdf

observations are the cells of the initial, large scatter-
plot matrix, i.e., the pairs of initial variables) and se-
lect, interactively (this is called brushing) the outliers
and look at the corresponding scatterplots.
Those measures are sometines called scagnostics.
Classical scagnostics are parametric and/or do not lend
themselves to large data sets: this article provides
non-parametric, algorithmic, graph-based scagnostics,
suited to situations with 100,000 observations and 100
variables.

After-tax asset allocation
W. Reichenstein (FAJ, 2006)

You learnt not to mix present value (PV) and future
value, and to convert everything to PVs – you should
do the same with taxes, and convert everything into
after-tax value.

Covariance misspecification in asset allocation
S.P. Peterson and J.T. Grier (FAJ, 2006)

Estimates covariance matrices can be “wrong” (biased
and overly noisy) for two reasons:
– Not all the assets have the same history length:
peaople usually truncate the time series to match the
shortest, but this discards information and is subop-
timal: for instance, we lose precision on the variance
of the longer time series;

– Some return series (e.g., real estate, private equity)
are smoothed: their variance will be biased towards
zero.

The article recalls that covariance matrix estimators
allowing for missing values do exist (Stamgaugh vari-
ance) and that unsmoothing methods do exist (Fisher–
Geltner method – actually a special case of ARMA in-
novations) – details are lacking, though.

Gradient maximization: an integrated
return/risk portfolio construction procedure

J.S. Brusk and V.K. Schock (2006)
Portfolio construction is usually a two-step process:
first predict the returns of all the stocks, then build a
portfolio. This can be replaced by a one-step process.
A straightforward (linear) implementation proves more
robust to non-linearities.

Holistic asset allocation for private individuals
G.B. Fowler and V. de Vassal, Journal or

wealth management (2006)
Private investors often allocate their assets to goals
(“retirement”, “charity”, “next generation”, etc.) and
typically partition their total assets into separate buck-
ets for those goals.
It is preferable not to separate things and to state the
client requirement in a single (more complicates) opti-
mization.

Optimal rebalancing strategy
for institutional portfolios

W. Sun et al. (2006)
Dynamic programming-based rebalancing performs
better that scheduled rebalancing or fixed tolerance
band rebalancing – it is adaptive.
The article compares the three strategies with several
utility functions (quadratic, log wealth, power) and ex-
amines their robustness.
Dynamic programming (you should know what it is
before reading this: the article is too technical) is not
amenable to current computers beyond a dozen assets.

Parameter estimation of ARMA models with
GARCH/APARCH errors: an R and SPlus

software implementation
D. Würtz et al. (2006)

If you want to understand how GARCH (or APARCH)
is implemented in R, or if you want want to modify the
code to accomodate other models.

Dynamic forecasting behavior by analysts:
theory and evidence

J. Clarke and A. Subramanian
Journal of financial economics (2006)

Significant underperformers or outperformers are more
likely to issue bolder forecasts.

Stock returns, implied volatility innovations
and the asymetric volatility phenomenon

P. Dennis, S. Mayhew and C. Stivers
Journal of financial and quantitative analysis

(2006)
The relation between stock returns and volatility in-
novations is mainly due to the market; can be refined
by including the market previous returns; the volatil-
ity innovations can be proxied by the implied volatility
innovations.

A portfolio of stocks and volatility
R.T. Daigler and L. Rossi

Journal of Investing (2006)
Volatility (e.g., VIX futures, variance options, swaps)
is negatively correlated with the S&P 500 and should
therefore be included in equity portfolios.
But beware: as investors are getting more familiar
with options, the usefulness of options-based strategies
change – in your simulations, do not assume that the
situation is stationary.

Improving risk-adjusted returns of
fixed-portfolios with VIX-derivatives

G. Dong (2006)
As above.

Article and book summaries by Vincent Zoonekynd 983/1044

http://ssrn.com/abstract=983370
http://ssrn.com/abstract=983370

A tactical implication of predictability:
fighting the FED model

R. Salomons, Journal of Investing (2006)
The FED model, that selects between equity and bonds
by comparing earnings yield and bond yield, is not
valid: it forgets inflation (money illusion) and that the
relation between bonds and equity is not constant over
long stretches of time.
The author suggests to regress earnings yield against
bond yield and a few more variables such as equity
volatility and bond volatility.

useR! 2006 conference
Last week, I attended the 2006 useR! conference: here
is a (long) summary of some of the talks that took
place in Vienna – since there were up to six simultane-
ous talks, I could not attend all of them...
0. General remarks
There were 400 participants, 160 presentations.
Among the people present, approximately 50% were
using Windows (perhaps less: it is very difficult to dis-
tinguish between Windows and Linux), 30% MacOS,
20% Linux (mostly Gnome, to my great surprise).
1. Tutorial: Bayesian statistics and marketing
(Peter Rossi)
The goal of statistical inference is to make probabil-
ity statements from various information sources: the
data, but also prior sources, for instance, “this param-
eter should be positive” or “this parameter should have
reasonable values”. The difference between marketing
and econometrics is that in the latter, those statisti-
cal statements lead to actions – see J. Berger’s book,
Statistical decision theory and bayesian analysis.

Bayesian methods produce the whole posterior distri-
bution of the parameters, from which you can extract
any information – not simply “the most likely value” of
this parameter, as with maximum likelihood (ML) esti-
mators. This is akin to the sampling distribution, i.e.,
the distribution of the estimated (say, ML) parameters
if we had run the experiment millions of times.
Bayes’s theorem simply says that the posterior proba-
bility (or probability density function) is (proportional
to) the product of the prior and the likelihood.
Bayesian statistics can be applied to any kind of model,
e.g., binomial, regression, multiple regressions, probit,
logit, hierarchical, etc.

The beta distribution is a good candidate for parame-
ters in [0, 1]: it can be symetric or skewed, with a large
or narrow peak, or even U-shaped.
The inverted χ2 distribution is often used as a prior for
variances, because it is amenable to computations: it
is said to be conjugate – but in the computer era, there
is no reason to limit ourselves to these.
In the prior distribution, one often has to choose pa-
rameters: these are called hyper-parameters.
Bayesian estimators are often said to be shrinkage es-
timators: they are “between” the prior and the maxi-
mum likelihood estimators (MLE).

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 prior

likelihood
posterior

The larger the sample size, the smaller the influence of
the prior.
Sampling from multivariate distributions can be tricky:
it is often easier to sample from univariate distribu-
tions, i.e., to sample one dimension at a time. The idea
of Gibbs sampling is to replace sampling from (x1, x2)
by sampling from x1|x2 and then x2|x1. This bears a
ressemblance to the EM algorithm – it might even be
exactly the same: for instance, both can be used to fill
in missing data.
If we draw the intermediary steps of a Gibbs sampler
sampling from a bivariate gaussian distribution, only
one coordinate changes at a time and the path is a
staircase one.
When using Gibbs sampling, be sure to check the fol-
lowing:
– the autocorrelation and the cross-correlation
– the time series of the sampled parameters: are they
stationary?

– plot the bayesian estimators versus the ML ones; plot
the bayesian estimators versus the bayesian estima-
tors with a different prior

– run several chains (the sampled time time series are
often called Monte Carlo Markov Chains (MCMC))
and check if they mix (i.e., if they look interchange-
able).

Having the full distribution of the parameters allows
you to extract a lot of information: e.g., you can inves-
tigate the distribution of X1 ·X2 or X1/X2 (with stan-

Article and book summaries by Vincent Zoonekynd 984/1044

dard gaussian distributions, the latter does not even
have moments).
In the bivariate gaussian example, since X1 and X2 are
correlated, successive values of (X1, X2) will be corre-
lated: the samples do not contain as much information
as an independant sample of the same size.
With the probit model,

Z = Xβ + ε

Y = Z > 0 ? 1 : 0

ε ∼ N(0, 1)

(this can be seen as a censored (or truncated) model: Z
is replaced by the intervals (−∞, 0] or (0,+∞) – there
is less information in censored data than in complete
data), bayesian methods provide more information: we
also have the distribution of the latent (or hidden) vari-
able Z – more generally, bayesian methods provide an
estimation of the distribution of the parameters, latent
variables and missing values.
Mixtures of gaussians can be tackled in the same way:
the latent variable is the number of the cluster. But
there, the situation is much worse: a permutation of
the numbering of the components does not change any-
thing – as a result, if there are n components, the like-
lihood has n! modes... Actually, it is not a problem:
the Markov chain will switch the labels from time to
time, but this will have no consequence.
The multinomial probit model (the variable to predict
is not binary but can take n values – say, margarine
brands) is almost intractable with classical methods
but is amenable to bayesian methods. Some care is
needed, though: see the book.
The same goes for the multivariate probit model (the
variable to predict is a subset of those n values – say,
beer brands).
The Metropolis algorithm (an alternative to the Gibbs
sample, that allows you to easily sample from a multi-
variate distribution, and which is preferable when the
variables are too dependant) was not tackled – see the
book.
Finally, the interesting part: panel data and hierarchi-
cal model. Since this is getting more intricate, I prefer
to refer you to the book.
The presenter developped the bayesm package, that
provides, among others, the following functions:
– runireg samples from the posterior distribution of
the parameters of a regression y ∼ x with an inverted
χ2 prior on the variance σ2 and a gaussian prior of
β|σ

– rmultireg samples from the posterior distribution
of the parameters of a family of regressions Y ∼ x
with an inverted Wishart prior on the variance Σ and
a gaussian prior on β|Σ

– rbiNormGiggs samples from a bivariate gaussian, us-
ing a Gibbs sampler

– numEff computes the effective sample size of a time

series, i.e., the size of the series fo independant vari-
ables that would contain the same information. It
tells you how much thinning you should use.

– runiregGibbs: samples from the posterior distribu-
tion of the parameters of a regression y ∼ x with an
inverted χ2 prior on the variance σ2 and a gaussian
prior of β (and not β|σ)

– rbprobitGibbs: samples from the posterior distri-
bution of the parameters of a binary probit regres-
sion y ∼ x with a gaussian prior on β (and σ = 1)

– rnmixGibbs: samples from the posterior distribution
of the parameters of a mixture of gaussians with a
Dirichlet prior on the probabilities of the compo-
nents, a gaussian prior on their means, an invert
Wishart prior on their variance.

– rmnpGibbs: samples from the posterior distribution
of the parameters of a multinomial probit regression
(Beware of the results: they are not intended to be
stationary – consider β/√σ1,1 and Σ/

√
σ1,1 instead)

– createX: ancillary function to create the design ma-
trix given to rmnpGiggs.

– rnmlIndepMetrop: multinomial logit
– rhierBinLogit, etc.: there are also a lot of hierar-
chical models: this is a slippery slope, do not use
them unless you really know what you are doing.

Conclusion
Mixed models are only partial bayesian methods: you
have to provide a prior, but you do not look at the
whole posterior distribution, which might be mislead-
ing if it not gaussian. Given the power of current com-
puters, there is no need for such a restriction: we can
afford a full bayesian method.
There are more general bayesian packages (Bugs,
JAGS), with which you can simulate any kind of
model, but that generality comes at a price: on special
cases, the computations are not as fast as they could
be – by several orders of magnitude...
2. Tutorial: Rmetrics (Diethelm Wurtz)
Rmetrics is a set of R packages for quantitative finance
and econophysics, initially developped for educational
purposes. This tutorial reviewed those packages one at
a time.
The fBasics package helps study the stylized facts of
financial time series.
The fCalendar package is devoted to time manipu-
lations. The notion of time zone (TZ) is replaced by
that of financial center, that encompasses daylight sav-
ing time (DST) rules and holidays (to perform opera-
tions such as “next business day”). This is still im-
perfect: different markets in the same financial cen-
ter have different holidays (e.g., Chicago/Equities and
Chicago/Bonds).
The timeSeries package defines the timeSeries class:
those objects contain one or several time series, having
the same set of timestamps.
The fSeries package provides the garchFit function,
for fit GARCH models and their variants. GARCH

Article and book summaries by Vincent Zoonekynd 985/1044

http://www.amazon.com/gp/product/0387989579/002-2069464-3249660?v=glance&n=283155
http://mathstat.helsinki.fi/openbugs/
http://www-fis.iarc.fr/~martyn/software/jags/
http://www.itp.phys.ethz.ch/econophysics/R/

models are a bit of a problem with statistical software:
for a long time, there has been no benchmark against
which to assess an implementation, yielding very dis-
parate results across systems (Ox is not that good, but
the others, including SPlus and SAS, are much worse).
The fExtreme package is devoted to extreme values. It
contains a set of functions to (visually) study distribu-
tion tails (emdPlot, lilPlot, mePlot, msratioPlot,
qqPlot, recordsPlots, sllnPlots, etc.)
To compute the Value at Risk (VaR) or the Expected
Shortfall (ES) one can try to fit a distribution to the
tail of the data, chosen from the family of limit distri-
bution of tails of distributions: the Generalized Pareto
Distribution (GPD).

pgdriskmeasures(gpdFit(
x,
threshold = .95,
method = c("pwm", "mle", "obre")

))

(Here, obre stands for “optimally biased robust esti-
mator”.)
Extreme Value Theory (EVT) also studies the distri-
bution of the maximum of iid random variables: there
is a limit theorem, similar to the central limit theo-
rem (with max instead of mean) that identifies the limit
distribution as one of the GEV (Generalized Extreme
Values) distribution (of which the Gumbel, Frechet,
Weibul are special cases).
The fCopulae package is devoted to copulas. The im-
plementation is more reliable than that of SPlus (SPlus
seems to use numeric differenciation, which is unsta-
ble in extreme cases; Rmetrics uses formal derivatives,
computed in Maple).
Copulas address the following fallacies.
– Fallacy 1: Marginal distribution and their correla-
tion matrix uniquely determine the joint distribu-
tion.

– Fallacy 2: Var(X1 + X2) is maximal when
Cor(X1, X2) is maximal

– Fallacy 3: Cor(X1, X2) small implies that X1 and
X2 are almost independant.

The fOptions package is the best-known part of Rmet-
rics: all the (equity-based) options, priced by exact for-
mulas (when available), binomial trees, Monte-Carlo
simulations (with antithetic variables, low discrepancy
sequences), PDEs.
The fBonds package is devoted to bonds (but I am not
familiar with bonds).
The fBrowser is an Rcmdr-based GUI that provides
the above functionalities. You can extend it and add
your own menus.
Conclusion: The coverage is impressive, and Rmet-
rics should be considered if we plan to use options or
if/when we start to investigate Econophysics.
You may also want to have a look at the Rmetrics

website (Diethelm also has a company, Finance Online
Gmbh).
3. Recurring topics
The following topics were tackled in several talks.
GUI
Windows users are typically intimidated by the almost
empty starting screen of R and wonder “where is the
GUI?”.
Novice users, who do not want to tamper with the
command line, are probably better off with an Rcmdr-
like interface: indeed several projects build on John
Fox’s Rcmdr (which provides basic statistics) to pro-
vide domain-specific functionalities with a menu-driven
interface: fBrowser in Rmetrics for finance, GEAR for
econometrics, etc.
Programmers also complain about the difficulties of de-
bugging R code and the lack of a VisualStudio-like
IDE (Integrated Development Environment). Note
that SPlus is addressing this concern by providing an
Eclipse-based workbench – there is an Eclipse plug-in
for R, but many features are still missing.
Let us also mention ESS, Texmacs and JGR.
Interactive graphics
Some people claim that the lack of interactive graphics
is one of the major drawbacks of R: they would like to
be able to have several plotting windows, presenting
different views of the same data set, to be able to se-
lect points in one plot and see the corresponding points
highlighted in the others (this is called brushing).
iPlots (built with rJava) provides those facilities, to-
gether with a (portable) GUI, but is still under devel-
opment – it seemed perfectly useable, though.
GGobi can already do all that, but it is a separate ap-
plication (that can talk to R) and it does not provide
user-defined plots.
The rgl package leverages OpenGL (one of the tech-
nologies used by the graphics card found in most com-
puters and needed to play most video games – a large,
untapped source of computational power) to produce
3-dimensional plots, that can be interactively rotated;
but their elements cannot be selected, brushed, etc.
Of course, one can still use Tk widgets (and the
tkrplot package) to produce plots that are automati-
cally updated when the user moves a slider.
e-Learning and collaborative documentation:
Wikis galore
Though the R documentation is often better than that
of other software, it still has a few problems: the man-
ual pages are terse reference manuals, often unsuitable
to begining users; the contributed manuals, that cater
to users with very specific backgrounds, are not up-
dated as timely as R is.
To tackle this problem, some suggested to write col-
laborative documentation, in the spirit of Wikipedia:

Article and book summaries by Vincent Zoonekynd 986/1044

http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://www.unifr.ch/econophysics/
http://www.itp.phys.ethz.ch/econophysics/R/
http://www.itp.phys.ethz.ch/econophysics/R/
http://www.finance.ch/
http://www.finance.ch/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://www.eclipse.org/
http://www.walware.de/goto/statet
http://www.walware.de/goto/statet
http://ess.r-project.org/
http://www.texmacs.org/tmweb/home/welcome.en.html
http://rosuda.org/JGR/
http://www.rosuda.org/iPlots/
http://rosuda.org/rJava/
http://www.ggobi.org/
http://rgl.neoscientists.org/News.html
http://en.wikipedia.org/wiki/OpenGL
http://bioinf.wehi.edu.au/folders/james/index.html

after several months of discussions on the R-SIG-Wiki
mailing list (about which wiki engine to use, how to
have it understand R, which structure the site should
have, etc.), Philippe Grosjean opened the R Wiki as
the conference started, with already some contents (R
tips, the R Tk tutorial, and the first chapter of my
Statistics with R).
Wikis are also used in several e-Learning projects: the
teacher sets up the structure of the site and the stu-
dents fill it in, with the notes they have taken, the sta-
tistical analyses they have carried out, the problems
they have had, how they have solved them, etc.
Some companies (Microsoft, IBM, GM, Dresdner, etc.)
are using a corporate wiki for their intranet and part
of their web site – in particular large companies, when
they want to show that their employees are human,
that their projects are steadily progressing. (If you
want another buzzword for that, you can use the more
general term Web 2.0.)
Frank Harrell suggests to use Wikis for knowledge man-
agement – his web site is a wiki, and has been so for
years. He also encourages us to use Sweave for docu-
ment management.
For more about Wikis, CMS (Content Management
Systems), and web sites in general, check, for instance
GNU/Linux Pratique HS 5 (in French).

Reproducible results
Severeal people advocated the need for reproducible
results, mainly with Sweave, and indeed, most of the
presentations were made with Sweave and Beamer.
Some people (Dirk Eddelbuettel) even suggested to
cryptographically fingerprint the datasets used (do not
do that in the US, though: someone managed to patent
it – you can fingerprint files, but not files containing
data).
Enterprise Business Processes (EBP)
I did not attend all those presentations.
Some explained that R could be used as a component
in a larger process, scheduled in an automated way:
they usually resort to RServe or rJava to access R as a
web service or as a Java class.
Some of those systems exhibited pretty, impressive but
utterly useless (Java) graphical front-ends.
Some explained how to exchange structured data be-
tween R and other systems (for simple data, such as a
data.frame, simply use a CSV file or a database), us-

ing an XML schema (this is sometimes called a DTD)
to store data.frames, lists, lists of lists, etc. They
provide an R package (StatDataML) and a Java class
(JStatDataML) to this end.
(There used to be an XML schema to store and ex-
change statistical models and data between statistical
applications, called PMML, but it was not mentionned
and I do not know it the project is still alive.)
Some explained how to extend XSLT to have it call R
and perform statistical computations on the data being
transformed.
Some explained how to embed R into a web server.
Of course, in this area, the most important thing is
the number of acronyms and buzzwords you can fit in
a single sentence: as an exercise, try to form a sen-
tence using the words XML, XSLT, JAXB, PyXML,
R/Apache, POI, JDBC, Jython, Struts, Hibernate,
YAWL, Ruby on Rail.
Large scale computations
When your computational needs grow, you will want
to run computations in parallel, on several computers,
or several processors on the same machine: these could
be completely different processes, similar processes on
different data, or a single computation that can be split
up into several pieces.
A few packages can facilitate this parallelization: rpvm
(uses PVM), rmpi (uses MPI), snow (to transparently
parallelize parallelizable code) or nws.
The problem of large datasets, that do not fit into
memory, was not tackled – the advice did not change,
use a database to store the data and/or buy more mem-
ory (and use an operating system that can use it).
Unification
There are often several packages on the same subject,
each providing similar but different, complementary
and incompatible capabilities. In several areas, such
as robust statistics (with the robustbase package) or
econometrics (with the GEAR package, that will pro-
vide basic econometric functions and a GUI), people
are starting to unify all this.
Also note the forthcoming book, Applied Econometrics
with R, by C. Kleiber and A. Zeileis.
Real-time data, stream processing
One of the challenges faced by R is the increasing
amount of data to process and the timeliness of that
processing: more and more, we will want real-time re-
sults or plots, that pop up as soon as the data arrive,
that are updated as soon as the data is.
There is some progress in that direction (such as algo-
rithms to compute a moving median, a moving quan-
tile; or frameworks for enterprise processes that en-
compass R), but the path to a real stream-processing
engine will be long.
(I only attended one of those talks, so I do not know

Article and book summaries by Vincent Zoonekynd 987/1044

https://stat.ethz.ch/pipermail/r-sig-wiki/
https://stat.ethz.ch/pipermail/r-sig-wiki/
http://wiki.r-project.org/
http://zoonek2.free.fr/UNIX/48_R/all.html
http://en.wikipedia.org/wiki/Web_2
http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/FrankHarrell
http://www.ci.tuwien.ac.at/~leisch/Sweave/
http://en.wikipedia.org/wiki/Content_management_system
http://en.wikipedia.org/wiki/Content_management_system
http://www.ci.tuwien.ac.at/~leisch/Sweave/
http://latex-beamer.sourceforge.net/
http://rosuda.org/Rserve/
http://rosuda.org/rJava/
http://www.dmg.org/pmml-v3-0.html

if the following was mentionned: it is possible to write
triggers in R for PostgreSQL and thus launch compu-
tations when the data arrive.)
Including R in other software
As non-statisticians progressively want to harness the
power of R, they will want to access it from the soft-
ware they are familiar with, such as spreadsheets or
databases.
It is already possible to access R from Gnumeric (a
spreadsheet) and from PostgreSQL (a database man-
agement system (DBMS)).
(There were also presentations and tutorials about R
and Windows, but I did not attend them: they usu-
ally assume that you are already a proficient Windows
programmer.)
Machine learning
There was a whole session on machine learning, with
emphasis on Support Vector Machines (SVM).
Bayesian networks and neural networks were not for-
gotten, though: an R neural networks toolbox is being
developped, similar to the Matlab one.
Bayesian statistics
Bayesian methods rely on two ideas.
First, before doing an experiment or before looking at
the data, we have some information: it can be, for
instance, a “reasonable” range for the quantities to es-
timate. This information is called the prior.
Second, instead of computing the single “best” value
for the parameters of interest, we want the full sample
distribution of those parameters, i.e., the distribution
of the ”best” parameters that we would observe if we
could repeat the experiment tens of thousands of times:
this is the posterior distribution.
Those methods used to require lengthy simulations,
but the are becoming more and more amenable to com-
modity PCs.
People have long been using Bugs (WinBugs or the su-
posedly portable OpenBugs, or its open source replace-
ment JAGS) to sample from the posterior distribution.
Those software can accomodate any kind of model, but
because of that generality, the computations can take
a lot of time.
For very specific models, the computations can be
greatly sped up: this is what the bayesm and MCMCpack
packages do – MCMCpack also provides you with the
building blocks needed to sample from other models.
Bayesian methods can also be used to compare models,
as a replacement of p-values: check the BayesFactor
and PostProbMod functions in the MCMCpack package.
When using bayesian methods, one should not forget
to perform a few diagnostic tests or plots: this is what
the coda package does.
Robust statistics

A robust statistical method is one that is not sensitive
to outlying data: even if part of the data is outra-
geously wrong, it has little impact on the results.
This is often measured with the breaking point of an
estimator (say, a regression): this is the proportion of
observations you can tamper with without being able
to make the estimator arbitrarily large.
The influence of an observation is the change its incu-
sion or deletion induces in the result.
One can sometimes spot outliers with the Pearson
residuals:

sample density
density according to the model − 1

(a presenter showed this with circular data, where out-
liers are not really “far”...).
The robustbase package is an attempt to unify the
elementary robust methods currently scattered accross
various packages: it will provide robust regression
(lmrob, glmrob), replacements for the Mean Average
Distance (MAD) (Qn, Sn), MCD (Minimum Covari-
ance Determinant) covariance matrix, etc.
One can “robustify” the (linear, gaussian) Kalman fil-
ter by replacing the matrix estimations it uses (mainly
expected values and covariance) by robust equivalents
(median and MCD covariance).
One can robustify Principal Component Analysis
(PCA): this is then called projection pursuit. PCA
finds the direction in which the “dispersion”, as mea-
sured by the variance, is largest; robust PCA replaces
the variance with a robust equivalent.
One can generalize this to other measures of dispersion,
or measures of non-gaussianity (this is called Indepen-
dant Component Analysis (ICA)).
One problem with robust covariance matrices is that
their robustness decreases with size (since projection
pursuit uses 1-dimensional subspaces, it might not be
much of an issue, but for other applications, it is).
There is a mailing list devoted to robust methods in R:
R-SIG-Robust.

Regularization paths
A shrinkage estimator is an estimator somewhere on
the path betwen a prior estimation (very stable, reli-
able, but hardly informative) and an estimator (e.g.,
a MLE estimator: it contains all the information, but
can be extremely noisy).

Article and book summaries by Vincent Zoonekynd 988/1044

http://www.omegahat.org/RGnumeric/
http://www.joeconway.com/plr/
http://www-ccs.ucsd.edu/matlab/pdf_doc/nnet/nnet.pdf
http://www.mrc-bsu.cam.ac.uk/bugs/
http://mathstat.helsinki.fi/openbugs/
http://www-fis.iarc.fr/~martyn/software/jags/

The “best” position on the path can be chosen by 10-
fold cross-validation (CV).
There are variants of this idea:
– Principal component regression is a regression in the

first k principal components (the path is discrete,
indexed by the number of components retained).

– Forward variable selection (here again, the path is
discrete and corresponds to an order on the set of
variables)

– Ridge regression is a regression with an L2 penalty
on the amplitude of the coefficients (if some of the
predictors are correlated, the corresponding coeffi-
cients can be extremely large, with opposite signs:
the penalty tries to avoid this)

– Lasso regression: idem with an L1 penalty
– Forward stagewise regression: instead of completely
adding the variables, as in forward variable selection,
just add a small part of them, say 0.1 ·Xi (the same
variable may be added several times, to increase its
coefficient)

Least angle regression (LARS) is very similar to for-
ward stagewise regression:
– find the variable Xi the most correlated with the

variable to predict Y
– add it in the model, with a small coefficient, and
increase the coefficient until another variable, Xj ,
becomes more correlated with the residuals: then,
progressively change the coefficients of the two vari-
ables, Xi and Xj , until a third variable...

Lasso and forward stagewise regressions are actually
special cases of LARS.
The regularization path of LARS is more stable, less
chaotic than that of the lasso.
The number of degrees of freedom if a LARS regression
is the number of variables that have been included –
with, say, variable selection, it is much more!
There are further generalizations of LARS: elasticnet
(a mixture of L1 and L2 penalties, that tend to select
the variables in groups); glmpath (e.g., for logistic re-
gression); pathseeker (take the top k variables instead
of the best); Cosso (we know, a priori, that the vari-
ables are grouped); svmpath.

R on Windows and MacOSX
Uwe Ligges tried to convince us that using R on Win-
dows, installing packages from source or even writing
you own R packages on Windows was not difficult. He
almost made his point: he only needed one slide to list

the prerequisite software (not mentionning how to in-
stall them and forgetting about the incompatibilities
with other already installed software) and two more
slides to explain how to install a package (targeted at
advanced Windows users: he tells to change environ-
ment variables without reminding us how) – a stark
contrast with similar explanations for a Unix platform
where, if you do not understand, you simply copy and
paste the instructions.
He also noted that using Windows instead of Linux
“only” reduced the speed by 10% – which is even more
impressive if you consider that 64-bit R on Linux no
longer runs slower that 32-bit R on Linux.
However, his talk was followed by a similar talk, by Si-
mon Urbanek, that tried to do the same thing on Mac-
OSX: the differences are amazing (the only instruction
is “do not forget to install R”; R is well integrated with
other MacOSX applications).
After those two talks, it really seems insane to use R
on Windows (or anything else than R, for that matter
– most of the problems are not specific to R).
By the way, most of the developpers of R (“R-core”,
not the people writing the add-on packages, but the
people writing the core of the R system itself) are on
MacOSX...
4. Other topics
ggplot
You might already know that there are four ways to
use Object Oriented Programming (OOP) with R: S3,
S4, R.oo and proto.
Similarly, there is now a third way of producing graph-
ics: after the old graphics (with the plot function),
the lattice graphics (with the xyplot and grid.* func-
tions), there is now ggplot, that implements the ideas
of the book The Grammar of Graphics.

forecast
This Windows-only package fits ARMA models to time
series, but can infer the order by itself.
Time series modelling
Two talks presented methods to automate the fitting of
time series (for instance, with an ARIMA model, you
no longer have to select the order(s) of the model).
Multivariate GARCH models
Some multivariate generalizations of the GARCH
model were presented, such as Constant Conditional

Article and book summaries by Vincent Zoonekynd 989/1044

Correlation (CCC: same equation, with diagonal ma-
trices); Dynamic Conditional Correlation (DCC: idem,
but those matrices are allowed to change over time);
Smooth Transition Conditional Correlation; Extended
Conditional Correlation (ECC: the matrices are no
longer diagonal, but in order to ensure that the vari-
ance matrix is positive definite, you have to add an
infinite number of conditions – people usually replace
these conditions by a single one, but this is too restric-
tive); BEKK.
All the code presented was developped with a 2-
dimensional (or low-dimensional) case in mind.
Particle Filter
A particle filter is very similar to a Kalman filter, but
it neither assumes that the underlying process is linear
nor that the noise is gaussian.
The basic idea is that of an MCMC simulation. In-
stead of performing 10,000 (independant) simulations,
one can try to mix them: at each step, the particles are
simply resampled (it sounds trivial, but it is the only
difference with an MCMC simulation).
They were applying that to currency data.
Markov Decision Process
It looked interesting, it is related to the use of dynamic
programming to build portfolios and rebalance them
over time, in a multi-period world, but they only had
five minutes and I did not understand anything.
They use those ideas to trade currencies.
For more information, google for Markov Decision
Processes (MDP), temporal distance learning, TD-
learning, Q-learning, reinforcement learning.

Calibrating the evidence in experiments
You are probably familiar with my rant against T -
values (stating T -values assumes that your readers are
very familiar with the T distribution and that they
know how the number of degrees of freedom affects
those values and does not extend to other tests, you
should rather use p-values, that simply assume that
your readers understand the uniform distribution on
[0, 1]; the significant level, usually 5%, has a completely
different meaning depending on the size of the sample
and neither you nor your readers know how to inter-
pret it; you can state a difference of BIC instead of a
p-value): that presentation (which I did not attend),
gives more details about the meaning of the significance
level depending on the sample size.

Non-metric clustering
The riffle package provides yet another clustering
algorithm.
Challenges in cluster analysis
This talk highlighted several areas where cluster anal-
ysis is not yet a mature subject: transaction data (i.e.,
clustering subsets, e.g., clustering shopping baskets)
and time series.

Indian commodity markets
To find a consensus price for a commodity, accross a
multitude of local markets, in order to set up a futures
market, they use an adaptively trimmed mean.
Random portfolios
To check if a portfolio manager is a good portfolio man-
ager, one can compare his performance with that of a
“random” portfolio: simply generate permuted portfo-
lios from the actual one.
The problem is that these permuted portfolios breach
all the constraints the portfolio manager has to abide
by. To recover them, one can feed these permuted port-
folios to an optimizer, with no alpha and no variance
matrix – just the constraints.
According to Patrick Burns himself, the resulting port-
folios are not as uniformly distributed as they should
be...
If you do not know his company, he sells an optimizer,
based on genetic algorithms, that can be called from R
(and soon Matlab), and he also does some consulting.
Sparklines
Sparklines are word-like plots, that can be used inside
a sentence or in a table.
The dataset is that of the American Statistical Associ-
ation (ASA) visualization contest.
Barcodeplot and Generalized pairplot
Histograms fail to spot ties in the data: a barcodeplot
is similar to a rugplot, but the other dimension is used
to indicate ties. It can be seen as a alternative to the
boxplot.
This is not unlike the result of the describe function,
in the Hmisc package.

Article and book summaries by Vincent Zoonekynd 990/1044

http://www.cs.ucr.edu/~eamonn/
http://www.burns-stat.com/
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1
http://www.stat.yale.edu/~jay/R/Vienna/Vienna.pdf
http://www.amstat-online.org/sections/graphics/dataexpo/2006.php

The pairs() function in R only accomodates quanti-
tative variables: one can modify it to account for qual-
ititive variables as well, with boxplots or barcode plots
when one variable is qualitative and mosaic plots when
both are.
Linked micromaps of large financial datasets
When displaying information (here, about mortgages
in the UK) on a map, one usually divides it into re-
gions that are coloured according to the average (or
total) value of the variables. This is called a choropleth
map.
But this is misleading: the information conveyed by the
plot can change depending on the colour scheme chosen
(the boundaries between the colours can be chosen at
round values (say, 1, 2, 5, 10, 20, 50, 100, etc.) or at the
quantiles of the variable displayed), on the regions cho-
sen (there is a wealth of different, incompatible, admin-
istrative (or not) decompositions into regions); larger
regions (which tend to have a low density, in our ex-
ample), are over-emphasized; there is no indication of
estimation uncertainty (confidence intervals).
A linked micromap plot is actually a table, with the
maps in the first column, and the variables in the oth-
ers; each row corresponds to four regions, highlighted
in the map, with a dotchart in the remaining columns.
See also: http://www.amstat-online.org/
sections/graphics/newsletter/Volumes/v132.pdf

Impulse response theory (IRT)
(There were several talks about psychometrics.)
Letter-value boxplots
With large datasets, boxplots are not as informative as
they should be: in particular, too many points are un-
duely labeled as “outliers” – such points are supposed
to be examined one by one...
Letter-value plots generalize boxplots, by displaying
the 1/2, 1/4, 1/8, 1/16, etc. fractiles instead of just
the median and the quartile, the zone between two
such fractiles is represented by a box, of decreasing
width (and or changing colour).
Visualization of multivariate functions, sets and
data: denpro
The denpro package helps you visualize high-
dimensional datasets, as a 2-dimensional plot, stressing
its multimodality, its dispersion or its tails.
This looks great, but the presentation was impossible

to understand. The original articles might be easier to
read.
Can R draw graphs?
Grid graphics can now draw X-splines, connect non-
rectangular elements with arrows, clip rectangular re-
gions and (with the grImport package) import vector
graphics (SVG, PDF, PS – you should transform tem
in PostScript first).
Parametric link functions for binary response
models
The logit and probit link functions are not always suf-
ficient: tests exist to check if they reflect the data, and
if they are rejected, we need to look beyond them.
This talk presented the cauchit link function (which is
more tolerant to surprising observations), the Gosset
family (based on tyhe Student T distribution), and the
Pregibon family (or Tukey lambda family).
Those links are implemented in the gld package.
The SPlus package system
If R started as a system “not unlike S” (S in the ances-
tor of SPlus), the situation is now reversed: to survive,
SPlus cannot afford to ignore R.
The next version of SPlus will have a package system
very similar to (and compatible with) that of R.
They also try to keep the lead they have in the user
interface, by providing an “SPLus workbench” based
on Eclipse.
In case you do not know, Eclipse, developped by IBM,
is a Java IDE (Integrated Development Environment),
i.e., a text editor for Java programmers, that can be
extended to accomodate other languages, such as C or
C++. There is already an R Eclipse plugin, but it still
lacks many features.
Statistical principles to live by (Frank Harrell)
Do not overfit the data: use shrinkage, use penalized
likelihood estimators.
Respect continuous variables, do not bin them before
computation.
Use non-parametric methods (not everything is linear).
Account for multiple tests: when performing several
tests, i.e., when you have several p-values, correct those
p-values.
Be honnest with multi-step procedures: you might feel
safe when you perform a gaussianity test and decide on
the path to follow next (e.g., parametric versus non-
parametric tests) depending on the results of this test,
but this is actually a multiple test, whose final p-value
should be corrected – and do not be fooled by the power
of non-parametric tests.
Use effective graphics, routinely.
Graphical EDA (Exploratory Data Analysis)
using half-space depth

Article and book summaries by Vincent Zoonekynd 991/1044

http://www.amstat-online.org/sections/graphics/newsletter/Volumes/v132.pdf
http://www.amstat-online.org/sections/graphics/newsletter/Volumes/v132.pdf
http://www.vwl.uni-mannheim.de/mammen/klemela/
http://www.eclipse.org/

The notion of depth of a point in a cloud of points (min-
imum number of points of the cloud in a half-space
passing through that point) can be used to define bag-
plots, a 2-dimensional generalization of boxplots.
This was the funniest and fastest-paced talk.
Operational Risk management
This talk explained how to use FFT (Fast Fourrier
Transform) to estimate a loss distribution. The data
gathering part of their process required a lot of social
engineering.
Robustness assessment for composite indicators
with R
I did not attend this talk: the author explains how to
build a robust (stock) index for a country or a region
– this can be seen as a robust portfolio.
Capturing non-observed heterogeneity
I did not attend this talk: they cluster discrete time
series, using transition matrices.
Random Recursive partitioning
I did not attend this talk: to assess a clustering al-
gorithm, you can apply it on the initial data and on
resampled data, and check if the results are similar.
Missing data and Partial Least Squares (PLS)
(not attended)
Supervised self-organized maps
(not attended)
Term structure and credit-spread estimation
with R
(not attended)
5.Conclusion
In the forthcoming years, R will face the following chal-
lenges:
– real time data processing
– embeddability in other software (spreadsheets,
databases)

– large scale computations (distributed or not)
To that list, I would like to add:
– relational data (data that do not fit in a single rect-
angular table)

– large datasets
Tackling those changes may require drastic changes to
R, that will trigger incompatibilities with existing code
(the situation could be similar to the switch from Perl 4
to Perl 5, for those of you who lived it).

Game programming gems 6
M. Dickheiser editor (2006)

As the previous ones, this volume contained a few arti-
cles that might be relevant outside game development,
such as: an explaination of the coding and use of float-
ing point numbers; an application of fuzzy inference

systems (FIS) to manage scene complexity; the use
of support vector machines (SVM) on a moving win-
dow to implement short-term memory in NPC (non-
playing characters); a review of scripting languages
(Lua and Python still dominate, but specialized lan-
guages are emerging); unit testing in C++ with Cpp-
Unit; many articles about BSP (binary space parti-
tions) and ABT (adaptive binary trees); parallelism
on multicore machines with OpenMP; fingerprinting;
UDP hole punching (STUN); Python coroutines as mi-
crothreads; MMOG (but there is not enough liquidity
and volatility for a currency manager to step in).
There was also a funny article about “synthesis of real-
istic idle motion for interactive characters” that man-
aged to combine PCA (principal component analy-
sis), Lie algebras, Markov chains amd MST (minimum
spanning tree) clustering.
I failed to understand the GPU (shader) articles,
though.

Enhancing the tree awareness
of a relational DBMS

S. Mayer (2004)
One can store an XML document (or any rooted tree)
in a relational database by storing the preorder and
postorder traversal rank (i.e., the order of the opening,
respectively closing, tags): this is the XPath accelera-
tor coding – you can quickly get the set of preceding,
following, ancestor, descendant nodes (those four op-
erators (there are 13 in the XPath specification) are
called axes).
An XPath expression starts with a (set of) node(s), ap-
plies one of the operators above to get another set of
nodes, etc.
One can speed up the evaluation of an XPath expres-
sion by removing duplicates in those sets of nodes; by
replacing those sets of nodes by a “minimum set” on
which the next operator gives the same result (prun-
ing); by scaning the table one (vertical or horizontal)
slice at a time (partitioning) or even skipping some of
those slices.
This speed up process is called the staircase join, be-
cause the sets of nodes, in the pre-, post-porder plane,
look like a staircase.

Fat tails and asymetry
in financial volatility models

P. Verhoeven and M. McAleer (2003)
Even though GARCH models can account for fat tails,
they rely on the unrealistic assumption that once the
volatility is known, the returns are gaussian. Instead,
one can use the asymetric T-distribution – and the re-
sulting GARCH parameter are more robust to outliers.

Return-based style analysis
with time-varying exposures

L. Swinkels and P.J. van der Sluis (2001)

Article and book summaries by Vincent Zoonekynd 992/1044

The Kalman filter is an advantageous replacement for
“rolling regressions”.

Incorporating trading strategies
in the Black–Litterman framework

F.J. Fabozzi et al. (Journal of trading, 2006)
Yet another introduction to the Black–Litterman
framework.

Portfolio risk forecasting
G. Connor (2007)

(These notes do not refer to the book, but to a series
of lectures drawn from it.)
(1) The portfolio management setting
There is a difference between stock risk and portfolio
risk: a portfolio is a linear combination of stocks, but
it changes over time.
The book does not focus on knightian uncertainty – this
notion is not defined, but it may be what you want if
you seek a behavioral perspective.
The efficient market hypothesis suggests that you sep-
arate the returns as expected returns (that will disap-
pear if you can forecast them and if people know how
you do it) plus a zero-mean, pure risk return (that is
there to stay).
Traditional portfolio optimization is myopic: it maxi-
mizes an investor’s utility over a single period. Multi-
period, intertemporal approaches exist, but are not
tackled in this book.
There are several notions of risk: variance (or rather its
square root, the standard deviation, sometimes refered
to as volatility), value at risk (VaR), expected shortfall
(sometimes called conditional value at risk or CVaR)
or even the full distribution of returns. The book will
mainly focus on variance, the other quantities will ap-
pear as an overlay once the variance has been figured
out.
Optimizers typically assume that the investor’s utility
function has constant absolute risk aversion (CARA):

u(x) = − exp(−λx).

This leads to an optimization problem of the form

Maximize w′r − λw′V w
such that w′1 = 1

where λ is the absolute risk aversion of the investor, w
are the portfolio weights, r are the expected stock re-
turns and V is the variance matrix of the stock returns
You can solve that problem in various ways: either fix
the portfolio returns and find the portfolio that min-
imizes the risk; or fix the risk and find the portfolio
that maximizes the returns. Both computations can
be carried out with Lagrange multipliers (the details
were not given: check Campbel, Lo and MacKinlay,

The econometrics of financial markets) and actually
yield the full efficient frontier.
Using active returns instead of total returns in the op-
timization yield inconsistent results – I do not know
why.
The author stresses that valuation models and risk
models are unrelated (indeed, they answer different
questions) and, invoking Grinold and Kahn, suggested
that the models even be orthogonal. (If you want to
optimize a portfolio, I agree (but including the alpha
components in the risk model is probably harmless,
because you would then provide an alpha to the opti-
mizer) and some people even suggest to rotate the risk
model so that it be orthogonal to the valuation model
used; but if you want to see if your portfolio corre-
sponds to the bets you think you made, to quantify
those bets, to check that there are no other unwanted
bets, it might be better to include the valuation model
in the risk model).
Risk is not additive accross a portfolio, but if you want
that property, you can use marginal contribution to
risk (MCTR) instead. You can define the MCTR of a
stock or of a “tilt” (a portfolio indicating the direction
in which you might want to move your portfolio).
The CAPM is a decomposition of stocks returns into
a market component and residuals (it does not claim
that the residuals are gaussian iid: there is still some
structure in them).

returns = α+ β ·market returns+ residual returns.

This leads to a decomposition of the variance matrix
of the returns into a market-related (scalar) variance
matrix and a residual variance matrix.

V = market variance · ββ′ + residual variance
= σ2ββ′ +∆

To get a risk model, you can simply impose some struc-
ture on that residual variance matrix – e.g., ask that
it be diagonal.
Under this assumption, the market portfolio is mean-
variance efficient.
The CAPM can be seen as a linear regression with
a single predictive variable: you can have several, in-
stead. This is the Arbitrage Pricing Theory (APT –
this sometimes also stands for Advanced Portfolio The-
ory). This leads to the notion of factor model we are
used to.
One can also build factor mimicking portfolios.
The book does mention the interpretation of the APT
in terms of arbitrage – but not clearly.
The CAPM is a 1-period model: you can define an
Intertemporal CAPM (ICAPM, Merton) instead: the
factor exposures (betas) are not time-dependant.
The book also mentions the (admitedly useless) Con-
sumption CAPM (CCAPM, Breeden), but not clearly.

Article and book summaries by Vincent Zoonekynd 993/1044

(2) The structure of Portfolio Risk Forecasting Models
In a portfolio optimization problem, you have to pro-
vide expected returns and a variance matrix: these are
not known precisely. One can decompose the utility
to be maximized into a sum, the actual utility and a
term resulting of the error on the expected returns and
the variance matrix. When maximizing the utility, you
are actually maximizing both terms – and it might be
easier, faster to maximize the second one – this is the
error maximization problem.
This chapter presents several (mainly bayesian) meth-
ods to mitigate that problem.
To tackle the effects of the estimation error on the ex-
pected returns, you can shrink those estimates towards
more conservative ones:
– Jorion suggest a Bayes-Stein prior, i.e., the mean of
the forecast returns as a prior (all the stocks have
the same prior return), with variance equal to the
sample variance of those forecasts

– Black and Litterman suggest using the alphas (ex-
pected returns) implied by the CAPM, i.e., those
for which the market is efficient.

– Grinold suggests something complicated that is ac-
tually a special case of the Black-Litterman prior

You can take the same ideas to mitigate the effects of
the error in the estimation of the variance matrix, by
shrinking it to a more conservative prior, such as:
– a diagonal matrix
– a constant correlation matrix
– the variance matrix of a 1-factor (CAPM) model
– the variance matrix of a multi-factor (APT) model
Actually, it might be better and simpler to shrink it
completely and to stay with the prior.
To mitigate the effects of estimation errors in a portfo-
lio optimization, one can also add position limits – this
can actually be reformulated as a shrinkage estimator.
Resampling to estimate the distribution of the alphas
and the variance matrix can also help mitigate the
problem: without position limits, it does not improve
anything, but with position limits, we get a biased es-
timator that “might” be helpful. (The lecturer failed
to mention that this bias can tell you to buy stock with
a known null or even negative return.)
This chapter also stressed the difference between arith-
metic returns and log-returns.
(1bis) Each lecture was followed by a discussion:
– The risk aversion parameter is not knowable
– Some people want the risk model to be orthogonal
to the valuation model; other the former to contain
the latter.

– The CAPM does not provide a decent risk model
– The market is not efficient: it is cap-weighted. (?)
(2bis) After the second lecture, there was a small dis-
cussion on the relative merits of
– Cross-sectional risk models (start with the factor ex-

posures use regression to get the factor returns: the
residual variance, assumed to be diagonal, need not
be so)

– Times series risk models (start with the factor re-
turns and use regression to find the exposures: the
residual variance is closer to being diagonal, but the
number of parameters to estimate is larger, yielding
higher estimation errors)

– Hybrid risk models (more about this in a forthcom-
ing lecture)

(3) Industry and country risk
In short: there are very strong country effects, even
in western Europe, and they are more important in
smaller countries.
When people did not have stock-level data, they were
using contry index returns and country weights.
The model is typically written

returns ∼ 1 + industry+ pure_country
where the intercept is the market returns, and the pure
country returns are orthogonal (uncorrelated) to the
industry returns, and estimated as a random coeffi-
cient model (or mixed model): this means that the co-
efficients of the regression (the exposures of the stocks
to the country or industry effects) are considered as
random (gaussian) variables. Most mixed models prac-
titionners will focus on the mean of those random vari-
ables: we shall focus on their variance.
Estimating this covariance matrix can be tricky – and
his confusing explanations do not help.
To account for the differing volatility of the stocks
(heteroskedasticity), one can use a weighted regres-
sion: either using “feasable weighted least squares”
(this sounds like iteratively reweighted least squares:
first set the stock variances to the same value, fit the
model, estimate those variances, use the to get another
fit, iterate) or using root-capitalization weighted re-
gression (but this introduces a bias, especially in con-
centrated markets).
You can test for the significance of the country (or in-
dustry) returns by performing monthly T- and F-tests
and looking whether they are significant “overall”. (He
does not seem to know anything about multiple tests
and the corresponding p-value adjustments – or about
p-values in the first place.)
This generalizes to industry and country weights, in-
stead of boolean exposures, either by asking analysts
to come up with those exposures for each stock, or by
regressing the stock returns against the country and
industry returns obtained on a first run using boolean
exposures – but expect the results to be noisy.
This lecture was followed by a few comments by James
Sefton (UBS):
– Is the cross-sectionnal method the best? It allows
one to have time-varying betas – but here, they are
set to 0 and 1... Iterative time series/cross-sectionnal
approaches may be worth considering.

Article and book summaries by Vincent Zoonekynd 994/1044

– Is the country effect really strong? Doesn’t it stem
from the inclusion of a few (small and) very differ-
ent countries? There is a difference between the two
questions:
Q1: Is a country index affected by its industry com-
position?
Q2: Is a given stock more sensitive its country or its
industry?
Academics are interested in Q1, practitionners in Q2.

The lingering importance of countries may be linked to
the very slow disappearance of the home bias.
(4) Statistical factor models
(4a) Structure of statistical factor models
The model underlying statistical factor models can be
written as

returns = α+Bf + ε

or, since we are interested in B (exposures, betas), f
(factor returns) and the variance matrix of the returns,

Variance(Returns) = BB′ +Variance(ε).

(With my usual notations: V = EE′ +∆.)
Here, we want to estimate both B and f (in the pre-
vious chapter, we had B (boolean exposures, or ex-
posures given by analysts) and we wanted the factor
returns f ; in macro factor models, we have the factor
returns f and we want the stock exposures B): there
is some indeterminacy – one can multiply B by any
invertible matrix.
Statistical models do not impose any prior judgement
about which factors are relevant.
Statistical models do not require complicated data: the
returns suffice.
One can define several more or less complicated models
by imposing restrictions on the variance of epsilon:
– In a noiseless factor model, it is set to zero
– In a scalar factor model, it is scalar (diagonal with
always the same value on the diagonal)

– In a strict factor model, it is diagonal
– In an approximate factor model, I do not know (it
was not defined rigorously). Examples include block-
diagonal matrices (say, one block for each subindus-
try (*)), or matrices whose non-diagonal elements
decrease as they get far away from the diagonal –
more generally, matrices with a lot of zeroes or a lot
of small elements

(*) This suggests another way of finding clusters of
stocks, to be interpreted as industries or sectors:
– Compute the variance-covariance matrix of the stock
returns;

– Remove the effects of a few factors (either statistical
factors or factors you can interpret);

– try to write the matrix as a block-diagonal one
(hint: try correspondance analysis to reorder the
rows/columns).

(4b) Estimation of variance matrices

The first step is to estimate the sample variance ma-
trix. If there are no missing values, if there all the
stocks have the same history length, it is easy to do.
Otherwise, one can use the EM algorithm to fill in the
missing early values.
The EM (Expectation-Maximization) goes as follows:
from some data (X,Y), with Y missing, you want to
estimate some parameter theta. You can just iterate
through the following two steps:
– E-step: compute the distribution (not the expected
value) of the missing observations given the esti-
mated parameters

– M-step: estimate the parameters given the distribu-
tion of the missing observations

One may want to reduce the amount of data (with
fewer stocks, the estimates should be less noisy): this
can be done by grouping the stocks (say, by replacing
them by subindustry portfolios) or (this is mainly a
historical curiosity) by sampling the universe.
On the other hand, one may want to increase the num-
ber of dates: this can be done by extending the period
in the past (but things have changed since the 19th
century) or by using higher frequency data: weekly or
daily instead of monthly.
With “high” frequency data, you have to adjust for
stale prices: simply replace the sample variance of the
returns at time t by

Cov(rt, rt) + Cov(rt, rt−1) + Cov(rt−1, rt)

+ Cov(rt, rt−2) + Cov(rt−2, rt)

+ · · ·

(If there are no stale prices, the added terms have a
zero expectation.) Otherwise, the variance estimator
is biased.
The Solnik diversification curve (of a universe of stocks
at a given date) plots the sample variance of a random,
equi-weighted portfolio as a function of the number of
stocks in the portfolio. (Actually, its computation is
straightforward and does not require any simulation.)
It can be generalized to capital-weighted portfolios.
(4c) Small-n methods (few stocks)
Principal Component Analysis (PCA) can be used for
the noiseless factor model (zero stock-specific variance
– all but the first few eigenvalues are zero) or the scalar
factor model (all the stocks have the same specific vari-
ance – all but the first few eigenvalues are equal).
For a strict factor model, V = EE′ +∆, just consider
∆−1/2V∆−1/2 = ∆−1/2EE′∆−1/2+I, which is a scalar
model. Since you do not know ∆, start with an initial
estimation of E (noiseless model), estimate ∆, then E,
then ∆, then E, etc. – this is the Joreskog algorithm.
You can test the fit of the model with Likelihood ratio
tests or with R2.
(4d) Large-n methods (many stocks, approximate fac-
tor model)

Article and book summaries by Vincent Zoonekynd 995/1044

Asymptotic Principal Components (APC) (?), i.e.,
eigenvectors of 1

nR
′R (we were previously considering

1
nRR

′), directly provide the factor returns.
As before, the EM-algorithm can be used to fill in the
missing values.
Estimating the number of factors to retain by look-
ing for a sharp drop in the eigenvalues is not reliable.
You may have more success with the variance ratios or
penalized likelihood (AIC, BIC).
(4e) Hybrid factor models
In a hybrid factor model, one first uses interpretable
factors and then refines the residual variance matrix
using statistical factors.
The discussion by TimWilding (EMA) mentionned the
following points:
– The importance of Maximum Likelihood (ML) esti-
mators

– Independant Component Analysis (ICA)
– The distinction between large-n and small-n meth-

ods is historical and irrelevant
– Even though G. Connor does not like statistical mod-
els, some factors are not knowable (Tim mentionned
behavioral factors, Ruppert mentionned restructur-
ing in Japan)

Jason MacQueen recalled that there is no “right” an-
swer – only more or less useful ones.
Though the words Random Matrix Theory (RMT)
were never uttered during the lectures, the “Asymp-
totic Principal Components” (APC) are extremely sim-
ilar: RMT studies the distribution of all the eigen val-
ues of a random matrix while APC studies the distri-
bution of the largest eigenvalue of a random matrix –
since the idea is to discard the smallest eigenvalues, it
is equivalent.
(5) The Macroeconomy and Security Market Returns
Macro-economic risk models are risk models whose fac-
tors are macro-economic time series, such as oil price,
interest rate, unemployment, GDP, etc.)
Macro-economic factors need to be “detrended” before
use. You can use AR models, Hansen-Rodrick models
(?) or a Kalman filter to remove the predictability bias
from the time series and get the innovations time se-
ries. For historical studies, you can also use an “AR”
model that also includes the forward values of the time
series – this introduces a look-ahead bias, but allows
you to remove the predictibility bias.
The sensitivity to those macroeconomic variables is
very different in a bull or bear market: you can com-
pute two sensitivies, a bull one and a bear one.
You can build mimicking portfolios, whose returns
replicate those of a macro-economic factor – but they
are often illiquid and have a high turnover.
Discussion (Ed Fishwick, Merrill Lynch):
– Macroeconomic factors are important (we speak of

them all the time), but they are not reliably used in
quantitative risk models – they contain information,
but it is hard to extract.

– Macroeconomic factors yield time-varying betas:
jumps in prices (e.g., after earnings announcements)
can lead to jumps in exposures.

– If you check the proportion of variance explained by
macro-economic factors or by other risk model fac-
tors, you realize that they explain very little.

– Conclusion: macroeconomic factors contain relevant
information, that cannot easily (linearly) be ex-
tracted.

Q&A: The useful variables depend on the investment
horizon (in the short term, you have all the variables
you are used to, in the long term, mainly the yield
remains). For macro-economic factors, that horizon
would be three months rather than one.
(6) Corporate Characteristics and Security Market Re-
turns
In a statistical risk model, you have to estimate both
the factor returns and the stock exposures to those
factors. In a macro-economic (or cross-sectional) risk
model, you know the factor returns and you compute
the stock exposures (using cross-sectional regressions).
In a characteristic (or time-series) risk model, you
know the stock exposures and you compute the factor
returns (using Fama-MacBeth regression).
Here are a few factors for equities: industry, country,
size, value, momentum, volatility, liquidity, yield, in-
dex membership, ROE or ROE, leverage, currency sen-
sitivity.
Here are a few factors for fixed income: ... (I might
have missed a few ones), McCauley duration (?), twist
factor (?), butterfly factor (?), convexity, options.
The factor returns can be computed by a regression
or by portfolio sorting (or quintile spreads): the re-
turns of a portfolio long the top quintile and short
the bottom. Contrary to the mimicking portfolios of
macro-economic factors, those portfolios are actually
investible.
One can lower the number of parameters to be esti-
mated in a risk model by requiring that the specific
risk be a linear combination of the factors – you just
have to estimate the coefficients of this linear combi-
nation, instead of each individual specific risk.
Discussion (Ian Paczek):
– The way you choose to tackle outliers (e.g., wind-
sorization) has an effect on the estimation – that
will end up biased or wrong.

– Question: can we get a daily risk model by tweaking
a monthly one with an estimate of the daily volatil-
ity? (see chapter 13)

– When a physicist wants to use a signal at some
frequency, it samples it at a higher frequency
(the Nyquist frequency, explained somewhere in
most computer music books, for instance http:
//www-crca.ucsd.edu/~msp/techniques/latest/

Article and book summaries by Vincent Zoonekynd 996/1044

http://www-crca.ucsd.edu/~msp/techniques/latest/book.pdf
http://www-crca.ucsd.edu/~msp/techniques/latest/book.pdf
http://www-crca.ucsd.edu/~msp/techniques/latest/book.pdf

book.pdf). Why don’t we do the same thing in
finance?

– Dummy (boolean) variables may not be a good idea:
some companies work accross several industries.

Q&A:
– In a time-series model, the estimation errors in the
exposures should diversify away when the number
of stocks grows; in a cross-sectional model, they will
stay.

– Momentum, as a risk factor, can be problematic, be-
cause of its time series properties (its computation
involves a moving average) and it is only relevant for
short-term forecasts.

– Risk model factors do have a predictive power in the
long term, but it gets eaten by the increased kurtosis.

(7) Measuring and hedging foreign exchange risk
(7a) Foreign exchange risk
Currencies are very different from other classes of as-
sets: they are symetric (e.g., the returns of USD/EUR
are the opposite of those of EUR/USD – this does not
sound like a compelling argument: you can be long or
short a stock), they tend to have fatter tails, and they
are more volatile.
The speaker stresses the drawbacks of ratio returns ver-
sus log-returns – but since we eventually want portfolio
returns, he decides to stick to ratio returns.
If you like formulas, here are a few (with log-returns,
they are exact, with ratio-returns, they are approxima-
tions, valid as long as the returns remain small – this
is called the approximate linear model):

XEUR/USD : exchange rate
FEUR/USD : forward exchange rate

rEUR : returns in EUR of an investment in EUR
rUSD : corresponding return in USD

rUSD
Hedged : returns of the corresponding hedged

investment
rEUR/USD : currency returns

rf : risk-free return

(1)rUSD = rEUR + rEUR/USD

(2)X/F = −rEUR/USD + (rUSD
f − rEUR

f)

(3)rUSD
Hedged = rEUR + (rUSD

f − rEUR
f)

(3′)rUSD
Hedged − rUSD

f = rEUR − rEUR
f

(4)rUSD = (rEUR + (rUSD
f − rEUR

f))

+ (rUSD/EUR − (rUSD
f − rEUR

f))

(The second term in the second equation is called the
carry.) The third equation can be read as: you can
eliminate currency risk, but you have to pay the inter-
est cost of hedging; the fourth equation says that the
excess returns are the same.

(7b) Currency hedging
To estimate the risk of a (non-hedged, international)
portfolio, one can decompose it into hedged equities
and currencies and compute the corresponding vari-
ance matrix: the diagonal blocks are the equity vari-
ance and the currency variance matrices, and the off-
diagonal block is the covariance between those two as-
set classes.
The simplest currency hedging strategy consists in buy-
ing exactly the amount of currency forwards to balance
the value of your equities: this is the unit hedge.
If the covariance matrix between equities and curren-
cies is non-zero, the unit hedge is not the minimum
variance hedging strategy – the problem is that this
matrix is difficult to estimate, especially if the returns
distributions have fat tails.
The use of ratio-returns instead of log-returns leads to
an under-hedging bias, that can easily be corrected.
Those hedges are valid for a 1-year horizon, but can be
divided by 10 on a longer (8-year) horizon.
(7c) Macroeconomic influences on currency returns
In the short term (up to 1 year), macro-economic vari-
ables cannot predict exchange rates, even if you cheat
and use the future values of those variables – but in
the longer horizon (4 years), it works better.
Exchange rates have some undesirable properties, such
as the consequences of central banks interventions and
currency crises (including endogenous crises, triggered
by herding behaviours and leading to contagion).
Discussion (David Buckle, Merrill Lynch):
– He recalls a few formulas, and adds formula (4) to
the list

– Benchmark providers do not hedge the currency re-
turns but a forecast of it – but they fail to disclose
how they compute this forecast.

– The minumum variance hedge is h∗ = −β
– The mean-variance hedge is

λ−1
E[currency]
Var[currency] − β.

This is very sensitive to currency expectation: a vari-
ance of 0.2 standard deviations yields a 100% change
in the hedge factor – what was believed to be hedged
is not.

– The “compounding effect”, i.e., the consequence of
the choice of ratio-returns instead of log-returns, can
be written as
E[currency log-returns] = 0

E[currency returns] = 12 ·Var[currency returns]
– (There was also a remark about change of numeraire,
with a couple of formulas, but it was not very clear.)

– Currency overlay is a good idea
– Some people advocate latent hedge: the correlation
of the returns of european stocks with the USD/EUR
exchange rate should be −1: if this is the case,
you do not have to hedge international portfolios –

Article and book summaries by Vincent Zoonekynd 997/1044

but, surprisingly, you should hedge domestic port-
folios... If you believe that there is no correlation,
you should hedge international portfolios, but not
domestic ones. The truth is somewhere in between.

(8) Integrated risk models (“drill-down risk models”)
There might be some integration (i.e., the distinctions
between countries might be disappearing) for valuation
models, but not for risk models, even in Europe. Some
people saw an integration trend until 2000, but it was
mainly due to the bubble. Here are several ways to
build a world model, accounting for this segmentation.
(8a) Build local models and assume they are indepen-
dant, i.e., the global covariance matrix is block diago-
nal – this assumption is unrealistic.
(8b) Build local models and also build a global model
– both models may be fine, but they fail to match...
(8c) To ensure that drill-down consistency, build a sec-
ond order factor model with:
– a world market factor
– country factors
– global industry factors
– local industry factors, asked to sum up to zero
– global style factors
– local style factors, asked to sum up to zero
(8d) An orthogonal double Procrustes model is build as
follows:
– compute the local models
– consider the space of global (non-parsimonious)
models that specialize to the local model

– project the data onto that space to get the global
model

Remark: I would personnally add in some penalty to
have a more parsimonious global model.
Discussion (Ely Klepfish, UBS):
– Are there links between the orthogonal double
Procrustes problem and group representatitons of
SO(n)?

– Do these models significantly differ from segmented
model? (This question is worth asking: there are
only theoretical results about this...)

Questions from the audience:
1. Can we do that with statistical models?
2. How does this compare with the Barra approach?
3. Even though there is a lot of segmentation, it is

not enough to stick to country models.
(9) Dynamic volatilities and correlations
Traditional risk models try to estimate the variance
matrix of the past returns, naively assuming that it
will remain valid in the near future. Instead, one can
model the dynamics of this variance matrix and fore-
cast its next value.
For a single asset, one can use a GARCH model (the
news impact curve, i.e., the plot of the change in stan-
dard deviation versus the previous returns can help vi-

sualize the amount of information it brings), or its vari-
ants (but they assume that the frequency is fixed) or
a stochastic volatility model (that does not make that
assumption but whose estimation is only amenable to
simulations).
The realized variance, i.e., the integrated volatility on
a time interval, can be seen as a model-free filter and
could prove more useful than GARCH or SV models;
even without intra-day data, the (under-used) high-low
range is a good realized variance estimator.
The presentation of multivariate volatility models was
confusing: in a nutshell, you start with a VAR model
for the variance matrices (for n assets, there are n4 pa-
rameters to estimate) and you try to reduce the number
of parameters.
Examples of such models:
– Bollerslev’s Constant Correlation (CCor) model;
– Engle’s Dynamic Conditional Correlation (DDC)

model;
– Dynamic factor volatility models (a factor risk model,
with GARCH factors).

Downside correlation, i.e., the increase in correla-
tion when the market drops or simply becomes more
volatile, is a problem.
The dispersion (i.e., the cross-sectional standard devi-
ation of the returns) changes with time.
Questions from the audience:
– High frequency data introduce fat tails, auto-
correlation, covariances, etc.: is it really worth using
them?

– Daily data (especially index data) are mainly used to
rescale the variance matrix produced by risk models.

– Realized variance depends on the time interval – it
should be proportional to it, but it is not.

Discussion (Dan diBartolomeo, Northfield):
– There are two kinds of innovations in the time series
modeled by GARCH or SV models: announcements
(we know the date beforehand but not the contents)
and shocks (actual surprises). GARCH models can-
not model announcements: they assume that the
volatility has a trend, while the volatility will de-
crease before an announcement and increase after.

– Daily high-low ranges can be used to adjust variance
matrices

– Beware when using dynamic factor models: the full
variance matrix may be “strange” – you might need
to add some constraints to get a sensible result.

– There are also non-parametric measures of correla-
tion, such as Kendall’s tau.

– For more on dispersion, see the Northfield seminar,
last month.

(10) Return Densities
(11) Liquidity and Credit Risk For credit risk, check
Credit risk: pricing, measurement, and management,
D. Duffie and K.J. Singleton, 2003.

Article and book summaries by Vincent Zoonekynd 998/1044

(12) Long-short portfolios
(13) Long-horizon risk forecasting (five years and be-
yond)
The risk is supposed to be proportional to the square
root of the time interval. The variance ratio statistic,

Variance on T periods
T ·Variance on 1 period ,

measures the deviance from this rule (it is negative in
the short term and the long term, positive in-between).
Returns are more volatile than company fundamentals:
this excess volatility leads to mean reversion.
In the long term, variance is not really dynamic: we
can forget chapter 9 (but see the multiple component
Engle-Ng model (?)).
In the long term, we can no longer use ratio-returns:
but luckily log-returns have almost the portfolio prop-
erty.
Systems-based risk forecasting suggests to predict, not
only the returns, but also the fundamental values
(earnings, sales, GDP, etc.) that drive them, for in-
stance with a VAR model – see Strategic Asset Alloca-
tion, Campbell and Viceira.
In the long term, macro-economic factors become im-
portant, differing currencies are no longer a source of
risk but a hedge, and active returns disappears.
Risk forecasting cannot be separated from portfolio
planning: rebalancing makes the portfolio risk non-
linear and path-dependant.
Asset-liability management (?) is problematic, but be-
yond the book.
Discussion (David Miles, Morgan Stanley):
– Bonds are a good example of mean reversion: in the
UK, they have been issued since the 17th century.

– Shouldn’t we take care of rare events (world wars,
1929, 9/11, etc.)? See Rare Events and the Equity
Premium, R.J. Barro, 2005. From a practical point
of view, modeling rare events would be counterpro-
ductive.

(14) Portfolio risk forecast evaluation
This is important: you should assess your risk model
before actually using it.

Fuzzy logic toolbox handbook
Matlab

The idea of Fuzzy Inference Systems (FIS) is to replace
boolean values by continuously varying values – think
“probabilities”.
This can be generalized to boolean operators (and be-
comes min, or becomes max, not(x) becomes 1-x) and
deduction rules (then becomes min). Note that there
might be incoherences in the rules – it is not a problem.
You can tune the fuzzy inference system by changing

the membership functions (or even the boolean opera-
tors).
As with bayesian methods, the result is a probability
distribution, not a single number.
So far, it looks like bayesian networks, with a very
simple, fixed network structure, and no learning capa-
bilities.
Actually, you do not have to provide the set of rules:
you can simply take you data, cluster it, and ask the
computer to write a rule for each cluster. This is called
Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
This looks very similar to nearest-neighbour methods
– and, if you impose some parsimony, it can be seen as
a machine-learning analogue of Generalized Additive
Models (GAM, mgcv package in R).
Fuzzy C-means clustering is a generalization of the k-
means clustering algorithm where cluster membership
is fuzzy – i.e., is a probability. (In R, it is implemented
in the fanny or cmeans functions.)
For a different application of FIS, to control the level
of detail in video games, as the number of objects in a
scene increases, check A fuzzy-control approach to man-
aging scene complexity, in Game programming gems 6
(2006).

Maximum drawdowns of hedge funds
with serial correlation

B.T. Hayes (Journal of alternative
investments, 2006)

Value at Risk (VaR) understates potential losses for
less liquid and autocorrelated assets (e.g., hedge funds):
instead, replace the returns by themaximum drawdown
at risk (MDaR).
Its estimation is hampered by the short history of
hedge funds, thereby calling for an extreme value the-
ory of drawdowns.
This article suggests a (Markov chain, discrete) model
(options people would call that a “tree” model) that
accounts for autocorrelation buut not for skewness and
fat tails: the probability of an up or down movement
depends on the direction of the previous movement.
This leads to explicit formulas – auto-regressive models
only seem amenable to simulations.

The importance of being value
F. Bourguignon and M. de Jong (Journal of

portfolio management, 2005) J. Karvanen
(2005)

Value (here, the price-to-book-value ratio (P/B)) can
be decomposed into long-term P/B and current devia-
tion from this long-term P/B; only the deviation leads
to outperformance.

Price momentum and
investor sentiment by sector

Article and book summaries by Vincent Zoonekynd 999/1044

http://www.economics.harvard.edu/faculty/barro/papers/equity%20premium%2004-29.pdf
http://www.economics.harvard.edu/faculty/barro/papers/equity%20premium%2004-29.pdf

Y. Ishikawa (Nomura, 2006)
Stock-wise momentum does not work in Japan, but
sector-wise momentum does.

Order imbalance and stock returns
H. Tamura and Y. Shimizu (Nomura, 2006)

The predictive power of the Order Flow Imbalance
(OFI) is enhanced if you restrict yourself to the stocks
with an auto-correlated OFI.

Estimation of quantile mixtures via
L-moments and trimmed L-moments

J. Karvanen (2005)
The method of moments (equating sample moments
to theoretical moments to estimate the parameters of
your model) may look appealing (for instance, it allows
you to dispense with gaussianity assumptions), but mo-
ments have a high variance (especially with small sam-
ples), are very sensitive to outliers – and need not even
be defined for fat-tailed distributions. L-moments are
defined using the order statistics: Xk:n is the kth ele-
ment of a sample of n observations from your distribu-
tion and

L1 = E[X1:1]

L2 = 1
2E[X2:2 −X1:2]

L3 = 1
3E[X3:3 − 2X2:3 +X1:3]

L4 = 1
4E[X4:4 − 3X3:4 + 3X2:4 −X1:4].

Similarly, one can define trimmed L-moments (or TL-
moments) by replacing Xk:n by Xk:n+2t for some value
of t: they can be defined even for fat-tailed distribu-
tions with no mean. L-moments and LT-moments can
be computed from the quantile function of the distri-
bution.
The article advocates the use of gaussian-polynomial
or Cauchy-polynomial quantile mixture distributions,
i.e., distributions whose quantile function is a sum of
a gaussian or Cauchy quantile function and a polyno-
mial: their parameters can easily be computed from
the L- or LT-moments.
The articles ends with a case study: skew Student,
gaussian-polynomial and Cauchy polynomial quantile
mixture dsitributions fit financial data (stock returns)
equally well.

Biologically inspired algorithms
for financial modelling

A. Brabazon and M. O’Neil (2005)
Multi-layer perceptrons (MLP) can be seen as para-
metric non-linear regressions, the number of layers in-
dicating how deep the function calls can be nested.
The functions you are combining can be linear (this is
just linear regression), sigmoidal (S-shaped) or radial
(bell-shaped).
Self-Organizing Maps (SOM, aka Kohonen maps) are
a completely unrelated algorithm, sharing the same bi-
ological analogy (hence it is a Neural Network (NN)),

that can be used to find clusters in a data set – intu-
itively, it tries to cluster data while retaining informa-
tion about the closeness of the observations by throw-
ing a 2-dimensional net on the cloud of points.
Evolutionary algorithms (EA) take a population of po-
tential solutions and mutate and merge them. Genetic
Algorithms (GA) encode those potential solutions as
binary strings; Genetic Programming (GP) encodes
them as trees (a mathematical formula, a computer
program, can be represented as a tree); Grammatical
Evolution (GE) is a way of implementing a GP by en-
coding the tree as a binary string (the grammar is fixed
and can include domain knowledge, but you can also
evolve it: these are “GE by GE” or GE2). (If you
are not familiar with BNF grammars, you can have a
look at the Parse::RecDescent Perl module – there are
similar modules for Python.)
One can combine Evolutionary Algorithms and Neural
Nets, e.g., to find which weights of the neural net are
non-zero (MLP-GA) – this yields a more parsimonious
model, less likely to overfit the data.
Differential Evolution (DE) is an evolutionary algo-
rithm that explores the values of continuous param-
eters, where a new candidate xnew is obtained from
three individuals xi, xj , xk, as

xnew = xi + λ(xk − xj).

Particle Swarm Optimization (PSO) is similar to DE
and maintains a population of potential solutions, each
being subject to three influences: inertia, attraction to
the best solution found so far by the particle, attraction
to the best solution found so far by the swarm.
Ant Colony Optimization (ACO) is a path-finding al-
gorithm (but many combinatorial problems can be ex-
pressed in terms of the Traveling Salesman Problem
(TSP), which is a path finding problem, so the algo-
rithm is more general than it seems) that lets ants ex-
plore the various paths and mark the most promising
path fragments by pheromones.
Ants can also be used as a classification tool (Ant-
Inspired Classification Algorithms): put the objects to
classify in 2-dimensional grid and have the ants move
around and pick an object if there is no “similar” (for
some distance) object nearby (say, in the last N cells
visited) and drop it if there is (with some probability).
This is very similar to SOM. Sadly, they conclude that
ant classification does not outperform Linear Discrim-
inant Analysis (LDA).
An Artificial Immune System (AIS) takes a model at
random and rejects it if it does not work sufficiently
well, until it reaches the desired number of models.
This can be seen as a “Monte Carlo model selection” or
as an EA with neither mutations nor mating, i.e., with
no evolution (some variants, such as the “clonal expan-
sion and selection algorithms” do allow for mutations,
though), followed by crude model averaging. AIS are
often used in asymetric situations, e.g., to detect bad
companies: healthy companies are homogeneous, but

Article and book summaries by Vincent Zoonekynd 1000/1044

http://www.perl.com/pub/a/2001/06/13/recdecent.html

companies can be sick in many ways – they are some-
times called Negative Selection Algorithms (NSA).
To cluster a large number of observations (think:
points in a 2-dimensional space) you coould divide the
space into a grid and cluster the non-empty cells (in
high dimensions, the grid would be sparse); Artificial
Immune Networks (AiNet) oproceed along a similar
idea: take each observation as a center of a cluster,
discard similar observations, link each remaining ob-
servation to its closest neighbours.
The second part of the book details ten case studies
(equities, currencies, intraday trading, corporate fail-
ure prediction, bond classification) and gives potential
inputs, fitness functions and post-processing ideas.
Here are a few performance measures, to be used as
fitness functions:
– Mean Square Error (MSE, aka RMS or Root Mean
Square);

– R2, AIC, BIC;
– Information Ratio (IR) or Sharpe ratio: returns /
risk;

– Rank correlation (aka Information Coefficient or IC);
– Stirling ratio and its variants
return / drawdown
return − drawdown
return / drawdown × win ratio
return / (1 + max(2%, drawdown)).

To examine a strategy, you can have a look at:
– the number of trades;
– the proportion of profitable trades;
– the average profit per trade;
– the average profit per profitable trade;
– the average loss per losing trade;
– the profit factor (ratio of the previous two averages);
– the p-value of a test for the positivity of the profits;
– descriptive statistics of the returns per trade;
– Sharpe ratio, Stirling ratio;
– maximum drawdown.
The model found by the algorithm should pass the in-
tuition test: it should be understandable and meaning-
ful. For neural networks, this might be difficult – but
you can compute the contribution of an input variable
(the sum of the absolute values of the weights between
that input and the hidden layer, divided by the sum
of the absolute values of all the weights to the hidden
layer). Neural network with only a handful of non-zero
weights (e.g., MLP-GA) are easier to interpret.
The book does not mention bayesian networks, that
are very similar to neural nets, but much easier to in-
terpret.
The post-processing of the models can include:
– gating, i.e., inferring the “market regime” and using

one of several models accordingly;
– soft gating, a market-regime-dependant mixture of
models;

– stacking (averaging) of several models.

Here are some of the technical variables one may want
to include:
– Moving Averages (MA);
– MACD (MA Convergence Divergence) oscillators
(an oscillator is a mean-reverting signal, that sug-
gests an action should be taken when it crosses its
mean – here, when it corsses zero), i.e., differences
of MA with different window sizes;

– Momentum;
– Trading range breakout: take an action if the price
move beyond its n-day maximum or minimum;
Bollinger bands are a variant of this idea, with stan-
dard deviations instead of extrema;

– %K = (close − low)/(high − low), where high and
low are taken on an n-day window;

– %D is a moving average of %K;
– Relative Strength Indicator (RSI): R/(R+ S) where
R is the average of the positive returns and S the
average of the losses (people usually write it as
100− 100/(1 +R/S));

– Volume (which is a measure of volatility and can be
used as a volatility parameter in GARCH-like mod-
els);

– Ease of Movement (OEM) – their definition has a
unit problem.

You can also add in market sentiment indicators:
– indices;
– number of advancing/declining securities;
– number of stocks reaching a new high/low;
– short-interest ratio (?);
– volume of options traded;
– put options/call options;
– VIX (a volatility index).

Clusterv tutorial
G. Valentini (2005)

To assess the reliability of a clustering, this R pack-
age perturbs the initial data set by projecting it onto a
smaller-dimensional subspace, while trying to preserve
the distances – this is designed to work in very high
dimension, typically a few thousands.

Efficient computation of the skyline cube
Y. Yuan (VLDB 2005)

The skyline cube is the set of skylines for all the possi-
ble set of dimensions – since the number of subspaces
for which we want the skyline is huge, this calls for
algorithms that can iteratively build the skylines.
Sometimes, you are not interested in the whole cube,
but only in the cells above a certain threshold: the
corresponding sparse cube is called an iceberg.

Catching the best views of skyline:
a semantic approach based on decisive

subspaces
J. Pei at al. (VLDB 2005)

Article and book summaries by Vincent Zoonekynd 1001/1044

Databases contain more and more complex data (typ-
ically, graphs) and one may want algorithms tailored
to one’s specific needs (hence the need to be able to
program close to the data, in the DBMS).
This article focuses on the skyline problem, i.e., the
query of objects that minimize two (or more) attributes
(say, distance from the beach and price, if the database
contains information about hotels) – this can be seen
as a combinatorial efficient frontier problem, the prob-
lem of finding the set of Pareto-optimal objects, the set
of maximal objects (this is a partial order relation).
The articles finds all the subspaces (sets of dimensions)
for which a given object is on the skyline.

Bridging the gap between OLAP and SQL
J.-P. Dittrich at al. (VLDB 2005)

An OLAP system is an interface to a database that
performs aggregation in as many dimensions as de-
sired (in R, it would simply mean writing things like
tapply(x, list(a,b), sum)): if the data is repre-
sented as a hypercube, the OLAP layer computes and
displays all its margins. Things can get more compli-
cated by the fact that the factors used to aggregate
can be nested (e.g., sector, industry group, industry,
subindustry; year, month, day) or may overlap (e.g.,
year, month, week, day; or, for each year, “compute
the moving average over the past three years”) – some
of this is in the SQL-99 standard, but they awkwardly
try to force the cube margins into a 2-dimensional table
and end up using NULLs with two different semantics.
Furthermore, the OLAP engine should represent ex-
tracts of the cube margins in a 2-dimensional format (a
pivot table in Excel-speak) and the user should be able
to interactively select dimensions to add (drill down)
or remove (roll up) – ideally without having to ask the
DBMS to recompute everything.
In spite of this rather clear presentation , the authors
do not seem to understand what a cube is, they seem
to be unable to think in more than two dimensions –
a syndrome of excessive spreadsheet usage. As many,
they do not seem to know that the relational model
does provide user-defined types (called “relational do-
mains”) and can thus accomodate “cubic” data – cur-
rent SQL RDMBS do need to be reworked, though.

Heuristique pour l’optimisation difficile,
les algorithmes de colonies de fourmis

J. Dréo et al. (2003, Eyrolles)
Ant colony algorithms are used to solve colbinatorial
problems that can be expresses as a path-finding prob-
lem in a graph – this is more general than it seems:
many problems can be reformulated as a Traveling
Salesman Problem (TSP). The idea is to ask the ants
to find a path and to “reinforce” the components of
the best paths found so far, by leaving pheromones on
them. New ants will choose their path depending on
those pheromones. The algorithm can be refined by
taking into account the attractivity of the path com-

ponents, pheromone evaporation, by allowing the ants
to disregard pheromones to increase diversification.

An introduction to econophysics,
Correlations and complexity in finance

R.N. Mantegna and H.E. Stanley (2000)
From the central limit theorem, the Gaussian distri-
bution can be seen as an “attractor” in the space of
probability distribution functions; but its bassin of at-
traction does not cover the whole space and it is not
the only attractor: the other attractors are called sta-
ble distributions – this is the generalized central limit
theorem.
Such stable distributions, e.g., the Cauchy distribution,
often have no characteristic scale: the bassin of attrac-
tion of the stable distributions contain the distributions
with power-law tails.
You can refine the cartography of the space of probabil-
ity distributions by considering the infinitely divisible
random processes, i.e., distributions of random vari-
ables that can be written as sums of n iid random vari-
ables, for all n: Poisson, Gamma or stable distributions
are infinitely divisible, while uniform distributions are
not.
All those properties can be investigated through the
Fourier transform.
The authors present and compare several definitions of
returns and suggest to stick to log-returns.
You may want to study your data with respect to dif-
ferent time scales: physical time; physical time minus
nights, week-ends and holidays; number of transac-
tions; volume.
The autocorrelation function R (physicists would call
that a two-point function, as opposed to higher order
statistics or n-point functions) and the power spectrum
S contain the same information and can be used to
measure the memory of a time series. The process has
short memory if

∫∞
0
R is finite, e.g., if S(f) ∼ 1/f2

– one can then define an (ad hoc) characteristic time
scale. It has long memory if that integral is infinite,
e.g., if S(f) ∼ 1/f – this can be approximated by a
process with many time scales. Note that this integral
can be indefinite.
To that regard, financial time series exhibit an unusual
behaviour: though the returns have a short memory,
the volatility (roughly speaking, the squared returns)
have a long memory – higher-order statistics are rele-
vant.
One can try to account for the fat tails of returns by
modeling them as stable distributions, T distributions,
mixtures of gaussians, truncated stable stable distribu-
tions.
For small values, stock returns are well modeled by
a stable (non-gaussian) distribution; for larger values,
the tails are too thin for the stable distribution but too
fat for a gaussian one.

Article and book summaries by Vincent Zoonekynd 1002/1044

GARCH processes (with gaussian innovations) are fat-
tailed (you can even compute the kurtosis, if you want),
they fit stock returns much better than gaussian or sta-
ble distributions and they have non-trivial higher order
statistics.
The book devotes a chapter to the similarities between
stock prices and turbulence phenomena in fluid me-
chanics – only to conclude there are none.
The distribution of the correlation of stock returns
changes over time and gets closer to zero. They men-
tion random matrix theory, with neither details nor
results.
You may want to check the cross-correlations (after a
lag): there is some information, larger capitalizations
tend to move ahead of smaller ones.
A correlation matrix can be interrpeted in terms of
distances which, in turn, can be represented as a Min-
imum Spanning Tree (MST – if you want to look cul-
tivated, you can speak of ultrametric distance) or a
dendogram; you can do this on your whole universe or
on the stocks in your portfolio. They fail to see that
dendograms are badly affected by fat tails and are far
from stable.

 United Kingdom

Ireland

France

Belgium

Italy

Denmark

Finland

Greece

Germany
Portugal

Spain

Netherlands

Austria

Switzerland

Sweden

Norway
United Kingdom

Ireland

France

Belgium

Italy

Denmark

Finland

Greece

Germany
Portugal

Spain

Netherlands

Austria

Switzerland

Sweden

Norway

The book ends with an indroduction to options: first
on an idealized market, then on a real one, that com-
plicates the picture (discontinuous stock returns, un-
known and changing volatility, discrete time, trans-
action costs, round lots, non-gaussian distributions):
replicating portfolio and perfect hedging strategy do
not exist.
Among the interesting plots:
– Probability distribution function with a vertical log-
scale, to assess the fatness of the tails;

– Autocorrelation function with a log-scale on both
axes;

– Spectral density with a log-scale on both axes;
– Probability distribution function of the stock returns
over time (3-dimensional graph);

– Probability of returning to the origin after n steps,
with a log-scale on both axes;

– Histogram of the correlation matrix of the stock re-
turns, over time.

Quantitative stock selection in Japan and the
United States: some past and current issues

J.B. Guerard (2006)
The author computes Information Coefficients (ICs)
for a dozen yearly, quarterly, monthly factors.
They perform a robust (biweight) “latent root regres-
sion”: robust to account for the outliers, “latent root”
to account for multicolinearity (“latent root” seems to
be a weird synonym of “eigenvalue” – I do not know
how “latent root regression” relates to PCR (Principal
Component Regression), PLS (Partial Least Squares)
or ridge regression).

Bayesian clustering of many ARCH models
L. Bauwens and J.V.K. Rombouts

Instead of fitting a GARCH model to each time series
in you sample, you can try to fit your data as a mixture
of GARCH models. As usual with mixtures, you can
fit them with bayesian methods (MCMC: Monte Carlo
Markov Chains).
This can be seen as a clustering method or as a poor
man’s mixed GARCH model.

Multiple alpha sources and active management
E.H. Sorensen at al. (2004)

This article builds on very unpedagogical foundations:
Grinold and Kahn’s book.
They try to devise “optimal” (in the sense that they
maximize the rank correlation with the forward returns
– this is a form of robust regression, albeit not a very
academic one) weights to combine two factors using
their ICs – forgetting that the ICs are relevant for non-
gaussian data while they assume theirs are gaussian.
In a later article, the same authors claim that this arti-
cle claims (or even “proves”) that the optimal weights
are

w = (Var IC)−1 · IC.

Temporal data and the relational model
C.J. Date et al. (2003)

The relational model can handle temporal data: just
define an “interval” type and a few operators to han-
dle them – optimizing the queries is a non-trivial and
non-tackled implementation problem.
“Time point” types are granular: they come with
“next” and “previous” operators, e.g., “date with daily
granularity”, “date with monthly granularity”, “date
with business day granularity”, etc.
PACK and UNPACK operators, that merge overlap-
ping/abutting intervals and that split intervals into
unions of 1-point intervals, are handy to write queries
or constraints – e.g., primary key constraints.
Other operators can be readily generalized: unpack ev-
erything, apply the operator, pack the results. A few
intricacies arise, because in higher dimensions, i.e., if

Article and book summaries by Vincent Zoonekynd 1003/1044

you have several interval columns, the packed form is
not unique.
A semi-temporal (or current) table is a table with a
SINCE column.
A historical table is a table with a DURING column.
The book suggests to avoid a NOW special value (its se-
mantic would be changing...) and to avoid using the
end-of-time timestamp for open-ended intervals (in-
deed, that would mean putting incorrect values in the
database): instead, use two sets of tables, one for his-
torical data (with a DURING column) another for cur-
rent data (with a SINCE column) – but updating the
tables (since it may involve moving data from one set
of table to another) or writing the constraints becomes
inordinately complex.
Bitemporality is briefly mentionned: “The database
is not the database. The log is the database. The
database is merely an optimized access path to the
most recent version of the log.”
The book uses the vocabulary of the relational model
(“relation” instead of “contents of a table”, “relvar” in-
stead of “table”, “attribute” instead of “column”, “tu-
ple” instead of “row”) and the examples use the Tuto-
rial D language (recalled in the introduction).
There is an annotated bibliography.

Needles, Haystacks and hidden factors
G. Miller (2006)

In a risk model, statistical factors can be used to com-
plement fundamental factors and help mitigate portfo-
lio risk under-estimation.
(The article distinguishes between three kinds of fac-
tors: fundamental factors, whose exposures are esti-
mated by hand and whose returns are computed from
the exposures; macroeconomic factors, whose returns
are known and whose exposures are computed from the
returns; and statistical factors.)

Independant variable selection: application of
independant component analysis

to forecasting a stock index
A. Cichocki et al. (2005)

The article generalizes PCR (Principal Component
Regression) by replacing PCA (Principal Component
Analysis) by ICA (Independant Compoment Analysis)
– ICA is used for source separation in acoustics and to
build some statistical risk models (perhaps APT).
The authors also add a bit of neural networks, because
it is trendy – but they apparently fail to understand
what ICA is...

Introduction to modern portfolio optimization
B. Scherer and D. Martin (2005)

Chapter 1 introduces linear and quadratic optimiza-
tion – but assumes you already know about scenario
optimization or the Black–Litterman model.

Quadratic optimization, aka mean-variance optimiza-
tion orMarkowitz optimization ormodern portfolio the-
ory goes as follows: you have n (jointly) gaussian ran-
dom variables X = (X1, . . . , Xn), you know their mean
α = E[X], their variance matrix V = VarX (that ma-
trix is also called a risk model) and you want to find
a linear combination w1X1 + · · ·+ wnXn = w′X (i.e.,
a portfolio) with w1 + · · · + wn = w′1 = 1 under the
condition that Varw′X be below some threshold (the
risk constraint the client asks you not to breach), i.e.,

Maximize w′α
such that w′1 = 1

w′Vw ⩽ threshold

There are variants where the risk constraint is turned
into a soft constraint, depending on the risk aversion
parameter λ.

Maximize w′α− 1
2λw′Vw

such that w′1 = 1

Caveats:
– If two assets are correlated, the optimizer will not
manage to distinguish them and the weights will vary
a lot (but the sum of their weights will be better de-
fined): this is the same problem as multicolinearity
in regression.

– The estimation of α and V can have an impact on
the optimal portfolio (nowhere in the book do they
use a risk model: always the sample variance matrix,
or a “robust variance matrix”).

If you have enough data, you can dispense with the
gaussian assumption and use a scenario-based opti-
mization. For instance, let S be a matrix whose rows
are realization of the random variable X; to test for
arbitrage situations, one could solve

Minimize w′1
such that Sw ⩾ 0

The first line is the money you invest (ideally, none)
and the second is the requirement that the payoff be
positive in all the realizations.
This first chapter also presents (or, rather, assumes
that you already know) the Black–Litterman model
and remarks that adding constraints to a quadratic op-
timization problem so that the solution looks better is
equivalent to imposing a view – but a very strict one.
Chapter 2 presents the syntax of Simple, the “lan-
guage” used to describe the optimization problems (ac-
tually, it is plain S+, with a lot of placeholders, as
in template-intensive numerical C++). It is a general
optimizer: linear, quadratic, MIP (Mixed Integer Pro-
gramming), convex, non-convex; the examples given
range from Maximum Likelihood Estimators (MLE) to
multistage stochastic programming to problems with
CDS. The chapter also presents semi-quadratic, CRRA
and other utility functions – but without a proper back-
ground in utility theory, this is not readily understand-
able.

Article and book summaries by Vincent Zoonekynd 1004/1044

Chapter 3 enumerates the extensions one can make to
mean-variance optimization: constraints on the MCTR
(Marginal Contribution to Risk), tracking a bench-
mark, tracking several benchmarks, using several risk
models, using several risk measures, imposing lower
bounds on weights, imposing bounds on the number of
assets, including transaction costs, etc.
The more constraints you add, the weirder the efficient
frontier and the more irregular the portfolio composi-
tion: a slight change in the acceptable risk threshold
can yield drastic changes in the optimal portfolio com-
position – constraints actually chisel more edges on the
simplex on the boundary of which the optimal portolios
lie...
Chapter 4 focuses on resampled portfolios, i.e., portfo-
lios optimal for resampled values of α̂ and V̂ ; similarly,
a resampled Sharpe portfolio is the Sharpe portfolio for
resampled values of α̂ and V̂ .
That notion provides a good argument against the
long-only constraint: if you take many resampled
Sharpe portfolios and average them, you get the true
Sharpe portfolio; but with a long-only constraint, you
do not – constrained optimal portfolios are biased...
Not bad enough? If one of your assets has zero ex-
pected returns (say, a lottery ticket), the long-only
constraint will, on average, suggest that you buy it.
This chapter also suggests the use of the Mahalanobis
distance (they almost clearly recall what it is)

dMahalanobis(w1,w2) = (w1 −w2)
′V −1(w1,w2)

to compare portfolios. Some people also advocate the
use of the tracking error distance,

dTE(w1,w2) = (w1 −w2)
′V (w1,w2).

You can use them to design a statistical test to com-
pare portfolios – but that test turns out not to have
any power.
The chapter confusingly ends with a compendium of
problems with resampled portfolios and/or the long-
only constraint (mainly, they tend to invest in every
stock) and advocates the use of robust methods.
Actually, resampling can prevent the adverse effects
of the long-only constraint: construct resampled port-
folios without the constraint and discard the stocks
whose weight is not positive often enough – i.e., is not
significantly positive.
Resampling, aka bootstrap, can also give you an idea of
the distribution of Sharpe or Sortino ratios – and dou-
ble bootstrap (they try to explain what it is) can help
lower the bias.
Chapter 5 addresses non-gaussianity, starting with sce-
nario optimization and expected utility; they mention
copulas but do not use them; finally they suggest re-
placing variance by MAD (Mean Absolute Deviation),
semi-variance or CVaR (Conditional Value at Risk, aka
Expected Shortfall or ES). The chapter closes on an ap-
plication of scenario optimization and CVaR to CDOs.

Chapter 6, devoted to robust statistics, is the gist of
the book. The most straightforward robust methods
are the trimmed ones (trimmed mean, trimmed regres-
sion (LTS), estimation of the volatility of a time se-
ries where you discard the observations beyond 2.5σ,
etc.). Where least squares methods minimize the sum
of squared residuals,

∑
i r

2
i , anM -estimator minimizes∑

i ρ(ri), for some function ρ. This is equivalent to a
weighted regression.

−2 −1 0 1 2
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0

M−estimator: rho

residual

rh
o

−2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

M−estimator: weights

x

w
ei

gh
t

The robust Mahalanobis distance between rt (the re-
turns of the stocks on a given day) and its historic
(robust) mean can help spot hectic times.
When computing a historical variance, all the series
need not have the same length: it is possible to com-
pute a maximum-likelihood estimator of the variance
matrix and the means that do not discard the infor-
mation available (Stambaugh method); this method, in
turn, can be robustified (they just give a recipe, with
no theoretical foundation).
The book also presents “robust portfolio optimization”,
i.e., portfolio optimization with a robust variance ma-
trix: if the robust efficient frontier and the classical
one coincide, use the classical one; if they differ, inves-
tigate.
In these “robust portfolio optimizations”, we are con-
cerned by the fat tails of the distribution of returns –
and to solve the problem, we end up cutting those tails.
To estimate the returns, i.e., the center of the distri-
bution, this is legitimate, but to compute the variance
matrix, i.e., the dispersion, this is dubious...
This chapter ends with an original section on influence
functions. The empirical influence function or finite-
sample influence function of a family of estimators θ̂n
(e.g., θ̂n could be the mean of n numbers) is

EIF(x, θ̂,x) = (n+ 1)
(
θ̂n+1(x,x)− θ̂n(x)

)
,

i.e., it is the change in the estimator θ̂n(x) brought by
a new observation x – the n+1 coefficient is a normal-
izing coefficient, ensuring that, under mild conditions,
the large-sample limit exists.

Error in huber(a)$s: $ operator not defined
for this S4 class

Article and book summaries by Vincent Zoonekynd 1005/1044

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Mean

E
IF

(x
, m

ea
n)

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Median

E
IF

(x
, m

ed
ia

n)

−3 −2 −1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Trimmed mean (10%)

E
IF

(x
, m

ea
n,

 tr
im

=
.1

0)

−3 −2 −1 0 1 2 3

0
1

2
3

Standard deviation

E
IF

(x
, s

d)

−3 −2 −1 0 1 2 3

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

MAD (Mean Average Distance)

E
IF

(x
, m

ad
)

In a portfolio optimization setup, one can compute the
influence of an asset (i.e., the pair risk-return) on the
risk of the optimal portfolio, ist expected return, its
Sharpe ratio, its weights – since there are two dimen-
sions, the plot is actually a contour plot.
Chapter 7 is an unreadable introduction to bayesian
statistics and Monte Carlo Markov Chain (MCMC)
simulations. They insist on the importance of Com-
position sampling but fail to clearly explain that no-
tion. The book ends on the Black-Litterman model,
including a few interesting remarks on its generaliza-
tion (use of a non-gaussian prior) and applications (to
get an idea of the distribution of the Sharpe ratio) and
the Bayes–Stein estimator, which they fail to clearly
explain.
If you remember something from this book, it could
be:
– Use robust estimators, i.e., discard the most extreme

observations – especially if your computations as-
sume the data are gaussian;

– The influence function;
– The (robust) distance between today’s return and
the historical average to find “hectic times”;

– The plot of the composition of a portfolio as a func-
tion of the risk (you might already be used to a sim-
ilar plot with respect to time).

Quantitative strategy: global model portfolio
A. Tsai, Bear Stearns (2004)

They model stock returns as ARIMA processes, with

the parameters estimated for each stock, with the AIC,
on a 30-month moving window; they claim that on
a large, diversified universe (MSCI World), with a
monthly rebalancing, with a 15% stop-loss, with a
crude optimization (only consider the top 7% stock and
minimize the risk, regardless of the returns) it works –
with an 85% turnover.
If most of the stocks are AR(1), this is an exponential
momentum factor whose length is stock-dependant.
Their model captures short-term momentum but fails
to spot longer-term reversal.

Separating the winners from the losers
A. Hartman et al., ABN-Amro (2003)

The article builds an adaptive model to predict future
stock returns, as follows:
– Take 60 factors, compute their returns (how?), com-
pute their robust correlation matrix, cluster them;

– In each group, select a factor with a high IC (In-
formation Coefficient, i.e., rank correlation with the
forward returns) and a high mean(IC)/sd(IC);

– Model the monthly ICs of each factor as AR(1) pro-
cesses, independently;

– These AR(1) forecasts of the ICs are too noisy:
shrink them towards their historical mean (use the
explained variance of the AR(1) model and the es-
timated variance on the estimator of the historical
mean);

– Combine the factors using the following weights:

w = (Var IC)−1 · IC.

Neural networks in business: techniques and
applications for the operations researcher

K.A. Smith and J.N.D. Gupta (2000)
A review articles on the history of neural networks, the
families of neural networks (multi-layer feed-forward
with back-propagation learning rule, Hopfield networks
(for quadratic programming), Kohonen maps) and
their applications.

Surrogate time series
T. Schreiber and A. Schmitz (1999)

A more detailed (but less readable) article about sur-
rogate time series, stressing what you can and cannot
test with them – and how powerful or powerless those
tests are:
– For the ARMA surrogate data, they allow for the
series to be transformed in order to be gaussian;

– For the Fourrier Transform-based surrogate, they use
an iterative process to compensate for some of the
artifacts of the naive approach.

The non-linearity tests they suggest relie on a non-
linearity measure, such as:
– The third-order statistic, E[(Xn − Xn−τ)

3], that
measures the asymetry of a time series under time
reversal;

Article and book summaries by Vincent Zoonekynd 1006/1044

– the RMS (Root Mean Square) error of a locally con-
stant (k nearest neighbour) predictor;

– Coarse-grained redundancies (?);
– Symbolic methods (?);
– False nearest neighbour (?);
– Unstable Periodic Orbits (UPO) (?);
The appendix of the article discusses an implementa-
tion of those ideas: Tisean – you should also have a
look at the tseriesChaos package, in R.

Detecting nonlinearity in data
with long coherence times

J. Theiler et al (1992)
Bootstrap is not as straightforward for time series as
it is for other types of data. In this context, resampled
time series are often called surrogate data. Here are a
few ideas:
– Bootstrap as with other kinds of data – but this as-
sumes that the observations are independant and de-
stroys any causality information;

– Cut the time series in chunks and reshuffle them –
this is not as bad, but it creates structural breaks in
the series;

– Fit an ARMAmodel to your data, reshuffle or resam-
ple the residuals and reconstruct the ARMA series;

– Idem, but sample the new residuals from a gaussian
(or whatever) distribution;

– Compute the Fourrier transform of your series, keep
the amplitude, replace the phase by random data
and take the inverse Fourrier transform.

The result, however, may be quite different from the
initial time series, e.g., for the following reasons:
– The signal is periodic and there is not an integral
number of periods in the window used for the Four-
rier transform;

– Changing the phase at the main frequency of the sig-
nal and/or at its harmonics can have strange effects;

– The time series is not stationary;
– The time series is non-linear (surrogate data are of-
ten used to test for non-linearity, but one should be
aware of these and other artifacts).

The S2 tree: an index structure for
subsequence matching of spatial objects

H. Wang and C.-S. Perng
To index sequences of points (“trails” as used, e.g., for
subsequence matching in time series databases), one
can combine ideas from sequence indexing (suffix trees)
and spatial data indexing (R∗-trees), as follows: build
and R∗-tree with the points in your trail or the MBR
(Minimum Bounding Rectangles) covering them and
add the links you would have in a suffix tree.

Efficient time series subsequence matching
using duality in constructing windows

Y.-S. Moon et al. (2000)
This article refines the previous: instead of sliding a

window on the data sequences, one can cut them into
chunks; one then has to slide a window on the query
sequence, instead of cutting it into chunks.

Fast subsequence matching
in time-series databases

C. Faloutsos et al.
To look for subsequences in a time series database, pre-
process it as follows:
– move a sliding window (of the same length as the
query series, or smaller) in the data series;

– For each position of the sliding window, compute
a DTF (Discrete Fourrier Transform) or any other
distance-preserving transform;

– Retain the first k coordinates: you get a trail in a
k-dimensional space;

– Since the trail contains too many points to store
them all, cover the trail with rectangles (MBR, Min-
imum Bounding Rectangles);

– Store those rectangles in an R∗-tree: it is a data
structure to store or index geometric objects that
allows you to efficiently look for objects that inter-
sect a given query object (it is used by some spatial
databases).

Forecasting transaction rates:
the autoregressive conditional duration model

R.F. Engle and J.R. Russell (1994)
Autoregressive Conditional Duration (ACD) models
are models of irregular time series, very similar to
GARCH, with the variance replaced by the duration
(i.e., the time between two values) – so similar that
one may use GARCH software to fit those. It can also
be seen as a State Space Model (but a non-gaussian
one: durations are waiting times). The model can be
generalized to accomodate for discrete increments.

A portfolio diversification index
A.M. Rudin and J.S. Morgan

Journal of Portfolio Management, 2006
To check if the risks in your portfolio are well diversi-
fied, you can:
– Look at the variance matrix of the returns of the as-
sets in your portfolio (but you need a good pair of
eyes for this: the matrix is huge);

– Cluster the stocks in your portfolio and count the
number of clusters (but this is somewhat arbitrary).

This article suggests to count the number of “indepen-
dant factors” in your portfolio, as follows:
– Perform a Principal Component Analysis (PCA) on
the variance matrix of the stock returns, to get those
“independant factors”;

– Compute the weights wk of each factor k in your
portfolio;

– Count the number of factors, as follows:

PDI = 2
∑
k

kwk − 1,

Article and book summaries by Vincent Zoonekynd 1007/1044

(if there is a single factor, i.e., if w = (1, 0, · · ·),
then PDI = 1; (if there are n factors and w =
(1/n, · · · , 1/n, 0, · · ·), then PDI = n).

To check if your portfolio is diversified as it should, you
can compare its PDI with that of random portfolios of
the same size, on the same universe.
Stepwise portfolio construction using the marginal PDI
does not significantly change the returns but lowers the
volatility – when compared to random portfolio con-
struction.

Risk management for hedge funds:
introduction and overview

A. W. Lo
VaR (Value at Risk) is not a good risk measure:
– It is not sub-additive, i.e., the VaR of a more diver-
sified portfolio need not be lower;

– It does not provide a decomposition of the risk into
different risk sources;

– VaR is a static measure: it does not account fo events
(e.g., crashes), time-varying risks or dynamic trading
strategies; it is computed unconditionally;

– VaR is difficult to estimate: if you choose Extreme
Value Theory, you use very few data points; if
you assume the distributions are gaussian, you are
plainly wrong.

If you have to choose a hedge fund, do not be im-
pressed by their positive returns: it does not mean
that hedge fund returns tend to be positive, but sim-
ply that hedge funds with negative returns disappear
(survivorship bias).
To show the problems of risk measurement, the article
presents an unscrupulous but impressive trading strat-
egy: short deep out-of-the-money put options.
To introduce events (crashes, “phase locking”), con-
sider two risk models, one for normal days, another for
event days. You can then use conditional measures of
risk,

Risk[portfolio | normal day]
Risk[portfolio | event]

To account for non-linearities, do not compute sensi-
tivities (β), but sensitivities (β+, β−) to positive and
negative values of the factor you are interested in (e.g.,
S&P 500) and test for their equality.
You can use Ljung & Box’s Q statistic (or rather its
p-value) to measure the illiquidity of a fund.

Time series analysis and prediction using
recurrent gated experts

C. Gilde (1996)
Neural networks can be extended to accomodate time
series, by reusing the previous value of a node, e.g.,
with a recurrent architecture.
This document adds that feedback capability to gated
experts.

Stock market pattern recognition
with neural networks

D. Vengerov (1997)
The gated experts look at different time scales.

Gated experts for classification
of financial time series

D. Vengerov (1997)
To forecast future stock prices, use a Markov mixture
of neural networks:
– The markovian structure recognizes the regime;
– The neural networks fit the data.

Stock market prediction using
artificial neural networks

B. Egeli, M. Ozturan, B. Badur
One can forecast future stock returns (or an emerging
market index returns) with a
– MLP (MultiLayer Perceptron) – the neural net ev-
eryone knows;

– or a GFF (Generalized Feed Forward net) – in which
the signal can jump one or several layers.

The input variables are: the previous value of the in-
dex (yes, a single value), the USD exchange rate, the
day of the week. They forget to mention the number of
neurons in the hidden layer – probably as many as in-
put variables – and just focus on the number of hidden
layers.
It works best with a single hidden layer and GFF net-
works.

21 nonlinear ways to beat the market
G.T. Albanis and R.A. Batchelor

Presentation of several Machine Learning (ML) algo-
rithms,
– LDA (Linear Discriminant Analysis);
– PNN (Probabilistic Neural Network);
– RRI (Ripper Rule Induction algorithm);
– LVQ (Learning Vector Quantization);
– OC1 (Oblique Classifier)
and suggests to combine them with some voting
scheme.

Dynamic detection of change points
in long time series

N. Chopin,
Annals of the Institute of Statistical

Mathematics (2006)
This article tries to account for the fact that GARCH
models poorly fit long time series, suggesting that the
model does not remain the same over time, by looking
for abrupt model changes.
This can be done with MCMC simulations (remember
that MCMC simulations may be used whenever you

Article and book summaries by Vincent Zoonekynd 1008/1044

have an algorithmic description of the process produc-
ing the data, with a reasonable number of parameters),
but the algorithm will be slow (quadratic) and the con-
vergence poor.
Instead, one can use a “particle filter”. The differences
with MCMC are twofold:

• instead of generating several times series one af-
ter the other, one generates them at the same
time;

• For each instant, we compute the likelihood of
each time series, and their probability of survival
to the next step is proportional to this probability
(this should remind you of genetic algorithms).

The discrete nature of the abrupt model changes hinder
the algorithm: the rest of the article explains how to
circumvent this problem – the article could have been
titled “Speeding up MCMC simulations in the presence
of discrete variables”.

Random portfolios
for evaluating trading strategies

P. Burns (2006)
Traditional means of testing an investment strategy are
very basic: rank correlations (called “information co-
efficients”) or return spreads (difference between the
returns of the first and the last quintile of our signal
or “alpha”).
But they forget half the story: how the strategy will
actually be implemented. Instead of those crude mea-
sures, one can compare
– your strategy, i.e., the transactions suggested by

your alpha when fed to an optimizer;
– the strategy obtained by feeding a random signal
(with the same statistical properties as your signal
– do not forget the autocorrelation) to an optimizer
(with the same constraints and the same risk model);

– a random investment strategy (with the same con-
straints: turnover, maximum and minimum weights,
etc.).

Repeat this for hundreds of random signals (I would
even suggest 10,000) to get an idea of how you sig-
nal fares. Feel free to change the initial portfolio (you
might want to draw it “at random”, but this would
have to be defined).
You may want to draw the following plots, either in
back-tests or to monitor a strategy in real time:

1. cumulated returns of your portfolio over time, to-
gether with the fractiles of the cumulated returns
of the random portfolios;

2. the p-value of the Stouffer test (?) over time;
3. final wealth of your strategy versus that of a ran-

dom strategy, for the same initial portfolio.
You can also use those ideas to assess the influence of
constraints, to compare risk models – or to compare
optimizers.

Copulas and coherence:
portfolio analysis in a non-normal world

K. Dowd
The Journal of Portfolio management (2005)

They remark that correlation might not be a very
good measure of the dependance between stock returns
and suggest the use of copulas instead. As an illus-
tration, they consider a two-stock portfolio: in their
example, correlation-based methods vastly underesti-
mate the risk. The problem, is that this is a simulated
example, very far away from a gaussian setup: are de-
pendances between real returns that extreme?
Another untackled question is the estimation of the
copulas with a large number of stocks. In a correlation-
based framework, this estimation is unreliable and we
have to make further assumptions on the structure of
the variance-covariance matrix, e.g., that it only de-
pends on a handful of factors: this is a risk model. One
would therefore have to build our own copula-based
risk model. This is an ambitious undertaking.

Optimal trading strategies
and supply/demand dynamics

A. Obizhaeva and J. Wang (2005)
Classical models to study trading strategies,
– We want to buy X shares of company rhat
– We do it at times 0, τ , 2τ ,…,Nτ
– the price evolves as Pn+1 = Pn + λxn + un where
un ∼ N(0, σ2τ)

– We want to minimize the transaction costs
E[
∑
Pnxn] or the risk-adjsuted transaction costs

E[
∑
Pnxn] + αVar[

∑
Pnxn],

whose solution is xi = X/(N + 1), are overly simpli-
fied. For instance, in the continuous limit, they can no
longer distinguish between the strategies: the transac-
tion costs are strategy-independant.
The article provides a richer model, based on the Limit
Order Book (LOB).

Portfolios from Sorts
R. Almgren and N. Chriss (2005)

This article develops a theoretical framework to define
and compute an “optimal” portfolio from ordinal in-
formation (“this stock will outperform this one”, etc.),
e.g., from an ordering of the stocks. In a nutshell, they
look for the portfolio that performs best in the worst
situation that respects the ranking.
Surprisingly, this boils down to imposing a predefined
distribution on the returns – but not a gaussian one.
This can easily be generalized to any partial order (e.g.,
a total order in each sector but no information about
one sector outperforming another) or any set of linear
equations (i.e., portfolios outperforming other portfo-
lios).
This article is a simplification (a special case) of Op-
timal Portfolios from Ordering Information (2004), by

Article and book summaries by Vincent Zoonekynd 1009/1044

the same authors.

Barra factor returns and macro indicators
M. Furukawa and H. Tamura, Nomura (2005)

Application of the previous article to the Barra JPE3
factors:
– momentum (contrarian);
– value (especially when the yen is weak);
– interest-rate sensitivity (industrial production and
topix decline, strong yen);

– leverage (rising long-term interest rate and topix);
– size (contrarian, rising topix).

The impact of the macroeconomic
environment on global factor effectiveness

H. Tamura and K. Iro, Nomura (2002)
One expects factors to efficiently forecast future re-
turns at some times and poorly at others, depending
on the “macroeconomic environment”.
One can define the macroeconomic environment as fol-
lows:
– select a few macroeconomic variables (interest rates,
stock market indices, exchange rates);

– apply a low-pass filter (there is an example on my
web page; they seem to forget the boundary prob-
lems);

– check when the resulting signal is up or down.
One can define the returns of a factor as follows: use
the (normalized) factor values as the active alpha in a
mean-variance optimization; impose that the resulting
portfolio be neutral wrt the other factors – actually,
their description is rather vague: they could be using
a Black-Litterman model.
One can then study the effects of the macroeconomic
environment on the factor returns: this effect is im-
portant in the US and for the valuation factors (P/E,
P/B, P/DPS, P/Sales). The most important macro-
economic factors are the long-term interest rate and
the stock-market indices.
The results can be represented graphically in the
returns×risk plane, with a point (mean risk and re-
turn) and two arrows (mean risk and return in the up
and down phases) for each factor.

Out-of-core tensor approximation of
multidimensional matrices of visual data

H. Wang et al. (Siggraph 2005)
A generalization of PCA that acts on matrices (or
higher-dimensional arrays) instead of vectors, based
on multilinear (aka tensor) algebra. This is used in
computer graphics, to compress Bidirectional Texture
Functions (BTF, i.e., a texture is not given as a single
image, but as a series of images that depend on the
viewing and illumination directions). Applications in
finance could revolve around volatility surfaces.

Genetic algorithms with collective sharing for
robust optimization in financial applications

O.V. Pictet et al. (1996)
One can use genetic algorithms to design trading algo-
rithms, as above: combine arithmetic operations, sign,
<, ifelse and exponential moving average to produce
a result in {−1, 0,+1}. They are careful to “normal-
ize” the data and modify the division in order to avoid
divisions by zero.
To stay away from non-representative peaks in the log-
likelihood landscape, one can reduce the fitness in a
region depending on the number of individuals in this
region. This notion of “region” can be defined with
gaussian kernels (but one has to choose the width of
those kernels) or by applying the k-means clustering
algorithm.

Genetic programming with syntactic
restrictions applied to financial volatility

forecasting
G. Zumbach et al. (2001)

Genetic programming can be used to perform model
selection among a (huge) set of non-linear regression
models, as follows:
– represent each model as a tree (the syntax tree of
the corresponding formula);

– define a few mutation operators (node substitution,
subtree mutation, root splicing, node insertion, node
deletion);

– define a cross-over mechanism (given two trees, se-
lect a node in each and interchange the correspond-
ing subtrees).

The article suggests:
– Do not use genetic programming to estimate the con-
stants in the model, use more classical (and faster)
algorithms;

– Use typed trees to preserve the symetry in the func-
tion to be estimated;

– Fine-tune the mutation probabilities (they apply the
genetic algorithm on simulated data with various val-
ues for the mutation and cross-over probabilities and
select the best – with yet another genetic algorithm);

– Penalize the score of a given model by its “complex-
ity” (which they define).

They then apply those ideas to FX data to forecast
volatility (using simple arithmetic functions, absolute
value, square and exponential moving averages).

The misbehaviour of markets
A Fractal View of Risk, Ruin and Reward

B. Mandelbrot (2004)
Besides providing a bird’s eye view of the history of
finance, the author advocates three ideas.
1. Financial data exhibit fat tails, that follow a power
law; this can be measured by the corresponding expo-
nent, α.

Article and book summaries by Vincent Zoonekynd 1010/1044

http://en.wikipedia.org/wiki/Tensor_decomposition

2. Financial data exhibit long memory, or long-range
dependance; this can be measured by the Hurst expo-
nent, H. The interactions between those two effects
can be measured by the R/S statistic.
3. Financial data look as though they were produced
from a “shuffled” fractal process, with time distorsions
– but the book fails to give any detail as to the shape
of those “time distorsions”.

The geometry of crashes: a measure of the
dynamics of stock market crises

T. Araújo and F. Louçã
arxiv:physics/0506137

During a crash, all the assets become correlated: this
can be seen on the correlation matrix (estimated on a
3-week window) e.g., by comparing its first eigenvalues
with those of “random” data. The article suggests a
measure of that difference,

S =

6∑
i=1

λi − µi
µi

where the λi are the actual eigenvalues and the µi those
of “random” data.
There are a few problems, though:
– The article forgets to define “random”;
– Between the correlation matrix computation and
the eigenvalues computation, the authors perform a
(useless, if linear) MultiDimensional Scaling (MDS);

– It can only be used in retrospect, to conclude “this
was not just an impression, there really was a crash”.

C++ design patterns and derivatives pricing
M. Joshi, CUP (2004)

This book has a very good but undeserved reputation
(but again, its competitors might be even worse). It
explains how to price derivatives, using Monte Carlo
methods, in C++, with as many design patterns as
possible.
Without any picture.
The author also explains how to circumvent some of
the intricacies of C++ (as Meyer’s Effective C++, but
more untidy) or some of its implementations (the only
comment in the code is “...should be in namespace std
but aren’t in VCPP6”) – at times, it even looks like
an advocacy for interpreted languages (where you can
write a Monte Carlo sampler in one line instead of one
page) or functionnal languages (where a function can
accept another function as argument).

A new method to estimate the noise in
financial correlation matrices

T. Guhr and B. Hälber
arXiv:cond-math/0206577

Yet another correlation cleaning procedure: if the
returns are the sum of sector-specific returns and

stock-specific returns, the correlation matrix is block-
diagonal. The power mapping of the sample correlation
matrix,

cij ← sign(cij) · cqij ,

for a well-chosen (well, hand-chosen) value of q (this
is merely a shrinkage of the correlation coefficients to-
wards +1 or −1) provides a matrix that looks like the
sample correlation matrix on a much larger time scale
(two distinct peaks) and can thus be used instead.
Note that the authors used simulated data: I have tried
it with real data (500 stocks, 300 days) – to no avail.

Financial applications of Random Matrix
Theory: old laces and new pieces

M. Potters et al., arXiv:physics/0507111
Other correlation cleaning ideas:
– Shrink all the eigenvalues of the correlation matrix
towards zero;

– Idem, but shrink more the small eigenvalues than
the large ones.

Cluster analysis for portfolio optimization
V. Tola et al., arXiv:physics/0507006

The article presents three ways of filtering a correlation
matrix to be used to build a portfolio:
– convert the correlation matrix into a distance ma-
trix, perform an average linkage hierarchical cluster-
ing, measure the distance along the resulting tree,
convert the (ultrametric) distance back to a correla-
tion matrix;

– Idem with simple linkage;
– Random Matrix Theory (RMT, i.e., PCA-based fil-
tering).

The average linkage performs better.

Parametric portfolio policies:
Exploiting characteristics in the
cross-section of equity returns

M.W. Brandt et al. (2004)
Quantitative investors do not forecast the returns of
each and every stock: instead, they devise a formula
that will predict those returns from the characteristics
(financial ratios, etc.) of the stocks; then they find the
optimal portfolio for those returns. It is a two-step
process.
Instead of predicting the stock returns, we can directly
devise a formula to find the portfolio weights and tune
this formula to optimize some “utility function”.
It you are used to classical portfolio construction, this
looks a bit weird: the utility function you are used to
requires the expected stock returns and the variance-
covariance matrix of those returns. The article sug-
gests a utility function (called the Constant Relative
Risk Aversion (CRRA) function) that only depends on

Article and book summaries by Vincent Zoonekynd 1011/1044

the portfolio returns – a function of a single variable.

Utility =
(1 + return)1−γ

1− γ

You would expect the utility to depend on the portfolio
expected return but also on its risk; you would expect
the utility of a risky portfolio to be lower than that of
a less risky one with the same expected return – but
the formula only depends on the return – why?
The trick is that it indeed depends on the returns, not
the expected return: we do not maximize

utility(E[return], . . .)

but
E[utility(return, . . .)].

The advantages over the classical paradigm are that:
– This is a dynamic utility function;
– The approach is not limited to the first two moments
of the returns: it can also account for asymetries or
fat tails in return distributions.

A step-by-step guide to the
Black–Litterman model

T.M. Idzorek (2002)
Classical Mean-Variance optimization poses a few
problems:
– The optimal portfolios tend to only contain a couple
of stocks – they are not diversified;

– The optimal portfolios are corners (vertices) in a sim-
plex: if we slightly change the inputs, we might jump
to another corner – the portfolio is over-sensitive to
the inputs;

– For the optimizer, the most important information
often lies in the tiny differences between forecasts for
similar assets, and it will amplify those differences,
even if they are not significant, even if they are mere
estimation errors.

The implied returns (or implied alphas) of the market
portfolio are the expected returns for which the market
portfolio is optimal: they are the expected returns α
such that the market portfolio weights w maximizes
the utility α′w − 1

2λw
′Vw, where V is the variance-

covariance matrix of the stock returns and λ the risk
aversion, i.e., the α such that w = (λV)−1α, i.e.,
α = λVw.
The risk aversion coefficient λ can be estimated as

λ ≈ risk premium (i.e., expected excess return)
market excess return variance .

(Do not ask me why.)
The Black–Litterman model will combine those im-
plied returns with a few views on the returns of a few
stocks or portfolios. We need not provide expected re-
turns for all the stocks (that would be error-prone) and
we can simply provide the returns of portfolios instead

of individual stocks (it is easier) – forecasting the re-
turns of a few portfolios instead of those of hundreds
of stocks is sometimes called mixed optimization.
The Black–Litterman model relies on bayesian statis-
tics: we have a prior belief (the returns will be gaus-
sianly distributed, with mean the implied alphas and
variance matrix V), we have some new information (or
views: that the portfolios we can predict will have the
returns ν we forecast, with a certain (diagonal) vari-
ance matrix Ω), and we combine all that.
Here is the classical set-up for bayesian statistics:
– We are interested in some parameter λ defining the
distribution of a random variable, say X ∼ Exp(λ);

– We have some prior knowledge about λ: it is sampled
from a known distribution, the prior distribution, say
λ ∼ LogN(0, 106);

– We have some new information, usually a sample
from the random variable X, say X1, . . . , Xn;

– We compute the distribution of the parameter λ
given the new information X, i.e., λ|X – this is the
posterior distribution.

This can be seen as an extension of Maximum Likeli-
hood Estimation (MLE), whose prior contains no in-
formation at all, and whose result is the mode of the
posterior distribution instead of the whole distribution
itself.
If you want formulas for the probability distribution
functions, this is the Bayes formula:

Prior: f(λ)

Posterior: f(λ|X) =
f(X|λ)f(λ)∫
f(X|µ)f(µ) dµ

.

If you do not like probability distribution functions and
prefer discrete probabilities, replace f by P :

P (λ|X) =
P (X|λ)P (λ)∑
µ

P (X|µ)P (µ)
.

But the Black–Litterman model does not follow those
lines – it merely reuses the same ideas, “prior”, “new
information” and “posterior”:
– Prior: the forward returns r should look as though
they were sampled from a gaussian distribution, with
mean the implied alpha α, with variance matrix τV ,
a scaled-down version of the variance matrix V of
the stock returns provided by the risk model. Set-
ting τ = 0 would mean that we believe that the re-
turns will exactly coincide with the implied alphas;
some people suggest τ = 0.3, others τ = 1, others
τ = 0.01.

– New information: the returns Pr of the portfolios
we can predict should look like they were sampled
from a gaussian distribution with mean our view ν
and variance Ω – a user-supplied matrix, usually di-
agonal to simplify things.

Article and book summaries by Vincent Zoonekynd 1012/1044

– Posterior: we try to somehow combine the prior
and the new information. Algorithmically, one could
proceed as follows:
· sample the portfolio returns Pr from their dis-
tribution N(ν,Ω);
· sample the stock returns conditionnally to the
portfolio returns, i.e., from N(α, τV)|Pr;
· iterate and take the average.

Alternatively, you can compute the distribution of
N(α, τV)|Pr (with the Bayes formula) (?)

−2 logLik = (x− α)′(τV)−1(x− α)+
(Px− ν)′Ω−1(Px− ν) + constant

and compute the Maximum Likelihood estimator.
Equivalently, one can solve the following “GLS sys-
tem”

r = α with variance τV
Pr = ν with variance Ω.

This yields

r = [(τV)−1 + P ′Ω−1P]−1[(τV)−1α+ P ′Ω−1ν].

In this framework, the user has still too many param-
eters to specify: the views ν (this is the only one we
want to provide the algorithm with), Ω (it says how
confident we are in our view, but it is rather tricky to
set) and τ . The article provides a simple and intuitive
means of setting up those parameters. Well, actually,
only Ω/τ appears in the formulas, so you can set τ = 1
and only specify Ω.
Their recipe is as follows. For each view k (they con-
sider only one view at a time):
– Compute the returns rk,100% with Ω = 0 (100% cer-

tainty);
– Compute the corresponding unconstrained weights
wk,100% = (λV)−1rk,100%;

– Adjust the weights according to the confidence level
Ck for the kth view (Ck = 0 for 0% confidence, 1 for
100%),

wk = wmarket + Ck(wk,100% − wmarket);

– Imagine that wk comes from the Black–Litterman
formula, for some value of ωk: find the correspond-
ing value of ωk, in the Least Squares sense.

Then, put all the ωk in the diagonal matrix Ω and ap-
ply the Black–Litterman formula.

Analysis of longitudinal data
P.J. Diggle et al. (2002)

Chapter 1 contrasts cross-sectionnal data (a single ob-
servation for each subject) and longitudinal data (sev-
eral observations for each subject, usually across time):
different methods are needed to account for the lack of
independence of the observations for a given subject
and to avoid the ecological fallacy.
Here are three ways of dealing with longitudinal data:

– Marginal analysis: you look for the mean and the
variance (at each point in time) over all the subjects;

– Random effect models: you have a model for each
subject, E[Yij |βi] = x′ij , and the model parameters
βi are themselves iid random variables;

– Transition models: you have a model for
E[Yij |Yi,j−1, Yi,j−2, . . .].

I have not read the second chapter, Design considera-
tions, that deals with power and sample size.
Chapter 3 suggests a few plots to explore longitudinal
data:
– The variable to predict vs time, you can highlight
some subjects (selected at random or not: e.g., the
lowest final value – or any other fractile); you may
want to add a lowess curve;

– The variable to predict vs one of the predictive vari-
ables, again with a non-parametric curve estimation;

– The variable to predict vs its lags, as a pairs plot; the
Auto-Correlation Function (ACF) – for irregularly-
spaced and/or non-stationnary data, replace the
ACF by a variogram – for binary data, replace the
variagram by a lorelogram (LOR stands for Log-
Odds Ratio).

Chapters 4 and 5, Generalized Least Squares (GLS)
and parametric models for the variance-covariance ma-
trix, present three correlation structures: the uniform
correlation model, Cor(Xi, Xj) = ρ if i 6= j (equiv-
alent to a subject-specific intercept), the exponential
one (the equivalent of an AR(1) model for irregu-
larly spaced data: ρ(u) = e−ϕu) and the gaussian one
(ρ(u) = e−ϕu

2); an alternative approach is to perform
a regression for each subject and then look at the dis-
tribution of the estimated coefficients – or, more rigor-
ously, a random effects model.
GLS are simply weighted least squares, with weight
matrix equal to the inverse of the variance matrix. One
could use Maximum Likelihood (MLE) to estimate this
variance matrix, but the results are biased: Restricted
Maximum Likelihood (REML) gives better results (in
short: with MLE, you estimate the regression coeffi-
cients β and the variance matrix V , but the estima-
tors β̂ and V̂ are not independent; with REML, you
transform the problem into estimatinh β and another
matrix H, so that β̂ and Ĥ be independent and that
Ĥ do not depend on β). For best results, estimate the
variance matrix with as saturated a model as possible
(e.g., if no predictive variable is time-dependant, add a
separate parameter for the mean response at each time
with each treatment). The estimates de β, the confi-
dence intervals and the tests remain valid even if the
variance matrix is mis-specified.
When estimating the error, you can decompose it as
a sum of three terms: the random (subject-specific)
effects, the serial correlation, and the measurement
(residual) error.
Chapter 6 explains how Anova (Analysis of Variance)
provides a simple but unsatisfactory means of studying
longitudinal data:

Article and book summaries by Vincent Zoonekynd 1013/1044

– With cross-sectionnal anova, i.e., one anova for each
time, you do not know how to combine the results
(if they all agree and say there is something slightly
significant, how do we combine them? how do we
account for the correlation of the data in strength-
ening the significance of the result?) nor how to spot
time-dependant effects (e.g., the slope);

– The idea of derived variables is to replace the ob-
servations for one subject by a single or a few num-
bers (say, the mean, the average rate of change, the
parameters of a meaningful non-linear model) and
perform an anova with this derived variable – but
with several derived variables, you run into the same
problems as before.

– Repeated measures anova, i.e., a mixed model of
the form y ∼ treatment + treatment : time +
(treatment|subject), completely forgets the time or-
dering of the data.

Chapter 7 presents the main models used to fit longi-
tudinal data:
– Marginal models, i.e., GLS: you specify the structure
of the variance and of the correlations of the random
variables;

– Random effects models;
– Transition models: you can model discrete data as
a Markov chain whose transition probabilities follow
logistic models.

Visual Explorations in Finance with
Self-Organizing Maps

G. Deboeck and T. Kohonen Eds., 1998
A Self-Organizing Map (SOM) or Kohonen map is a hy-
brid between the k-means algorithm and multidimen-
sionnal scaling (it provides a clustering and a graphical
representation of the proximity of the clusters), imple-
mented via a “neural network” (a “non-linear, multi-
layered, parallel regression technique” – if you already
know about neural nets, bad luck, it has nothing to do
with it: it stems from the same biological analogy, but
it is a completely different species of neurons).
Intuitively, it takes a net and tries to cover the data
with it.
The algorithm goes as follows: each node of the net
corresponds to a cluster center; assign them to initial
values (e.g., random values); for each observation, find
the closest cluster center, drag it and its neighbours
towards the observation (this is the difference with the
k-means algorithm); iterate until convergence.
You will remark that SOM can handle missing values
(however, for the observations with too many missing
values, it might be wiser to remove them to compute
the map and see afterwards where they belong).
You can also use SOM for forecasting purposes, in a
semi-supervised way: use only the predictive variables
to select the winning neuron, use all the variables to
update the weights.
To speed up the building of the map and avoid insta-

bility problems with “large” (beyond 3× 3) maps, you
can start with a small map and later refine it – this is
a hierarchical SOM.
A few ideas to display the map:
– Use a hexagonal grid with a neuron on every other
tile; the other cells indicate if the nearby neurons are
close (white) or not (black); this highlights frontiers
between different regions of the map and/or areas of
different densities;

– The U-matrix is similar, with a neuron on each tile
and varying colours between the tiles;

– Colour the tiles according to the similarity of their
neurons with their neighbours (aka iso-contours);

– Colour the tiles according to the number of observa-
tions they contain;

– The Sammon projection of the net, to see shriveled
regions of the map;

– Atlas (or component map): colour the map according
to one of the input variables (you get one picture for
each variable, hence the name “atlas”); this can help
interpret the regions of the map;

– Of course, it might be useful to display summary
statistics for each cluster;

– Colour the map according to the quantization er-
ror (the distance between the observations and their
neurons);

– Colour the map according to the sensitivity to
changes in a component;

– The synaptic weight map indicates, for each neuron,
which variable provides the greatest effect;

– Colour the tiles according to the curvature;
– You can imagine other ways of colouring the map:
for instance, fit a circular (1-dimensional) SOM to
the neurons and assign them rainbow colours;

– Parallel plot of the observations, with a different
colour for each cluster.

Do not forget to estimate the quality of the map:
– its quantization error;
– its stability (try again with resampled data, without
the outliers, with different parameters, etc.)

SOM are not only nice plots to look at:
– You can display the evolution of a subject (company)
on the map (as the maps are not stable, you should
reuse the same map);

– Given a new observation, you can highlight the clos-
est neuron – or neurons;

– You can use a SOM for asset allocation: either in-
vest in a single cluster, or invest equally in all the
clusters, or assign weights to the clusters according
to some other variables.

Some advice:
– Choose a rectangular hexagonal map: square maps
are less stable; funny shapes (torus, Klein bottle) are
only relevant if you know the data has this structure;

– Choose the number of neurons: either slightly less
than the number of observations, if you want a com-
pact map, or up to ten times the number of obser-

Article and book summaries by Vincent Zoonekynd 1014/1044

vations, if you want a more detailed map;
– Carefully choose the variables; you might want to
discard some of them or even perform a Principal
Component Analysis (PCA) and retain the first di-
mensions;

– Carefully transform the variables, e.g.:
· apply a logarithm or sigmoidal transform;
· normalize them: x 7−→ x− µ

σ
;

· range-normalize them: x 7−→ x−Min

range ;
· histogram-normalize them (this is a bad idea: it
erases the clusters);
· Transform unordered qualitative variables into
binary variables;

– Initialize the algorithm with PCA (only start with
random data when you want to show that the map
can self-organize – it works, but it is not optimal).

The book does not tackle variants of SOM:
– DEC (Dynamically Expanding Method);
– LSM (Learning Subspace Method);
– ASSOM (Adaptive Subspace SOM);
– FASSOM (Feedback-controlled ASSOM);
– Supervised SOM;
– LVQ-SOM (Linear Vector Quantization SOM).
The book provides examples in the following domains:
Mutual funds, Firm failures, Russian banks, Emerging
countries, Stocks, Real estate, Consumer preferences,
Texts. You need not buy it: most of it is available on
http://www.dokus.com/PDF-files/.
In R, have a look at som in package som, SOM in package
class and shardsplot in package klaR.

Estimating the number of data clusters
via the gap statistic

T. Hastie, R. Tibshirani and G. Walther (2000)
One can estimate the quality of a clustering with the
within cluster dispersion, defined as the average dis-
tance between two points in the same cluster (weighted
so that all the clusters have the same prevalence),

W = log
∑

r∈Clusters

1

2 |r|
∑
a,b∈r

d(a, b).

One can compare this number with that obtained from
random data (uniformly distributed in a box aligned
with the principal components).
The following algorithm suggests the number of clus-
ters:
– Perform the clustering assuming k = 1, 2, 3,… clus-

ters and compute the within cluster dispersion Wk;
– Do the same thing with random data and compute
the average dispersion W̄k and its standard devia-
tion sk;

– Define the gap as Gapk = W̄k −Wk;
– Retain the smallest k such that

Gapk ⩾ Gapk+1 − sk+1.

Depending on the situation, the Gap statistic performs
similarly or better than the Silouette method.

Non parametric maximum likelihood
estimation of features in spatial point
processes using Voronoi tessalations

D. Allard
To denoise a spatial point process, one can model it as
a mixture of two uniform variables, one on the whole
space (the noise), one on a subset A of it. The partial
log-likelihood (“partial” means that we have cheated:
we need one more parameter, the probability of be-
ing in A, but we replace it by its maximum likelihood
estimator) is

−n log n+M log
M

a
+ (n−M) log

n−M
1− a

where
– n is the total number of points;
– M is the number of points in A;
– a is the volume of A.
The subset A is sought as a union of tiles from the
Voronoi tessellation – actually, the union of the m
smallest tiles, where the integer m is to be determined.

r

Nearest neighbor clutter removal for
estimating features in spatial point processes

S. Byers and A.E. Raftery
To remove noise from a cloud of points:
– For each point, compute the distance to its kth
nearest neighbour (the histogram of those distances
should be bimodal);

– Model those points as a mixture of two Poisson pro-
cesses, with different densities; estimate the model
parameters with the EM algorithm (the model does
not assume any shape);

– Label the points as “noise” or “not noise”.
The performance is close to that of the mclust algo-
rithm, which is more computationnally intensive, and
it works surprisingly well in high dimensions.
The idea can also be used to remove outliers.

Article and book summaries by Vincent Zoonekynd 1015/1044

http://www.dokus.com/PDF-files/

In R, this is implemented as the NNclean function, in
the prabclus package.

MCLUST: Software for model-based
clustering, density estimation and

discriminant analysis
C. Fraley and A.E. Raftery (2003)

Documentation of the mclust R package, that imple-
ments the EM model-based clustering algorithm – and
its extensions to discriminant analysis and density es-
timation.

library(mclust)
r <- clustBIC(x)
plot(r) # BIC
s <- summary(r,x)
pairs(x, col=s$classification)

Sepal.Length

2.
0

2.
5

3.
0

3.
5

4.
0

4.5 5.5 6.5 7.5

0.
5

1.
0

1.
5

2.
0

2.
5

2.0 2.5 3.0 3.5 4.0

Sepal.Width

Petal.Length

1 2 3 4 5 6 7

0.5 1.0 1.5 2.0 2.5

4.
5

5.
5

6.
5

7.
5

1
2

3
4

5
6

7

Petal.Width

coordProj(x,
z=s$z, # Probabilities
mu=s$mu, # Cluster centers
sigma=s$sigma, # Cluster shapes
what="classification")

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Length

S
ep

al
.W

id
th

Model-based clustering discriminant analysis
and density estimation

C. Fraley and A.E. Raftery

Journal of the American Mathematical
Association (2002)

The EM clustering algorithm can also be used in den-
sity estimation and discriminant analysis (the article
has a lot of figures).
For high-dimensional data, new problems occur: the
number of parameters (in the variance-covariance ma-
trices) to estimate soars and calls for dimension reduc-
tion techniques (Principal Component Analysis (which
may obscure the situation), Principal Curves, wavelets,
Multidimensional Scaling (MDS)) or for extensions of
the algorithms that directly deal with distance matri-
ces.

Chameleon: a hierarchical clustering
algorithm using dynamic modeling

G. Karypis et al.
Chameleon is a graph-theoretic clustering algorithm
that takes into account the fact that clusters can have
different densities and distinguishes clusters touching
by a single point or a whole facet:
– replace the data by its k-nearest neighbour (sparse)
graph, whose edges are weighted by the similarity of
the vertices;

– find initial subclusters with the edge-cut algorithm;
– Merge the clusters whose Relative Interconnectiv-
ity (RI) and Relative Closeness (RC) are above a
(user-specified) threshold, or according to the prod-
uct RI · RCα (for a user-specified α).

The relative interconnectivity or closeness is defined
from the absolute and internal interconnectivity (AI,
II) and closeness (AC, IC), as follows.

AI(A,B) =
∑
a∈A
b∈B

(a,b)∈Graph

w(a, b)

II(A) = Min
C is a

cut of A

∑
a,b∈A

(a,b)∈Graph

w(a, b)

RI(A,B) =
AI(A,B)

1
2

(
II(A) + II(B)

)
AC(A,B) = Mean

a∈A
b∈B

(a,b)∈Graph

w(a, b)

IC(A) = Mean
a,b∈A

(a,b)∈Graph

w(a, b)

RC(A,B) =
|A ∪B| ·AC(A,B)

|A| · IC(A) + |B| · IC(B)

How many clusters?
Which clustering method?

Answers via model-based cluster analysis
C. Fraley and A.E. Raftery

The k-means clustering algorithm assumes that the
clusters are symetric and have the same size – hierar-
chical clustering algorithms similarly misbehave when
confronted with clusters of varying shape, orientation

Article and book summaries by Vincent Zoonekynd 1016/1044

or size. The EM (Expectation-Maximization) algo-
rithm finds the clusters by modeling the data as a mix-
ture of gaussians, with potentially different variance-
covariance matrices. The BIC (Bayesian Information
Criterion) can help you choose the number of clusters
and the variance-covariance matrix.
You can extend the algorithm to deal with noise:
– estimate the noise, by denoising the data (nearest
neighbour method, Voronoi tessellations method);

– estimate the clusters, by a hierarchical classification
of the denoised data;

– use the EM algorithm to fit the data as a mixture
of gaussians (clusters) and a Poisson process (for the
noise), initializing it with the previous two steps.

CURE: an efficient clustering algorithm
for large databases

S. Guha et al.
The Birch algorithm clusters large databases as follows:
first replace dense regions by points (and discard less
dense regions), then cluster those points.
The CURE (Clustering Using REpresentatives) algo-
rithm is a variant of the k-means algorithm that does
not use a single centroid for each cluster but several
representatives: this allows for non-spherical clusters.
You can adapt it to large databases by running the
algorithm on a (random) sample of the data.
The article also briefly mentions other clustering algo-
rithms for large databases: Clarans, R∗-tree, DbScan.

Determining the number of clusters/segments
in hierarchical clustering/segmentation

algorithms
S. Salvador and P. Chan

There are four main categories of clustering algorithms:
– partitionning (aka iterative relocation, e.g., k-

means)
– hierarchical (bottom-up or top-down);
– density-based (e.g., EM (Expectation Maximiza-
tion);

– grid-based (e.g., SOM (Self-Organizing Map, aka
Kohonen maps)).

Segmentation algorithms are related to clustering al-
gorithms: they try to approximate a time series as
a piece-wise linear function (PLR, Piece-wise Linear
Representation); the main categories of clustering al-
gorithms are:
– sliding window (grow a segment until the error ex-
ceeds a threshold, then start a new one);

– top-down (recursively split the entire series until the
chunks can be approximated by segments);

– bottom-up (start with length-2 segments, merge the
closest pair, iterate).

The number of clusters (resp. segments) can be
guessed by:
– cross-validation;

– penalized likelihood:
· MML (Minimul Message Length);
· MDL (Minimum Description Length);
· BIC (Bayes Information Criterion), AIC (Akaike
Information Criterion);
· SIC (Subspace Information Criterion);

– permutation tests (for segmentation: shuffle the time
series);

– resampling;
– finding the maximum of a curve representing the
quality of the cluster:
· gap statistic;
· prediction strength;

– finding the knee of the error curve.
The L-method finds the knee of an error curve by fit-
ting it as a 2-segment broken line (to get more stable
results, take a subset of the data so that there be as
many points on each side th the knee; if the curve (or
the time series) is too noisy, first smooth it by a moving
maximum over a length 2 window).
Note that this does not work of there are only 1 or 2
clusters.

Algorithms of maximum likelihood data
clustering with applications

L. Giada and M. Marsili
arXiv:cond-mat/0204202

To cluster a cloud of points, the authors consider the
following model: take n points at random, take k clus-
ter centers at random, assign each point to a cluster
at random, drag each point towards its cluster center.
The likelohood is∑

s : ns>1

log
ns
cs

+ (ns − 1) log
n2s − ns
n2s − cs

where
– s is the cluster number;
– ns is the number of points in cluster s;
– cs =

∑
i,j∈s

〈x1, xj〉
‖xi‖ ‖xj‖

.

Contrary to most methods, you do not have to specify
the number of clusters. You can try to find the con-
figuration with the best likelihood by the usual means
(steepest descent, simulated annealing), which is quite
time-consuming. The article suggests a faster (less pre-
cise) hierarchical algorithm: start with N 1-element
clusters, merge two clusters so as to maximize the like-
lihood, iterate until there is a single N-element cluster,
retain the clustering with the best likelihood.
The hierarchical clusterings they get in their two ex-
amples are very different: with financial data, single
stocks are repeatedly added to already formed clusters,
while with biological data, larger clusters are merged.

Data clustering and noise undressing
of correlation matrices

M. Marsili, arXiv:cond-mat/0003241

Article and book summaries by Vincent Zoonekynd 1017/1044

A correlation matrix estimated on a sample (and not
on the whole population or from the probability distri-
bution of the random variables) is “dressed in noise”,
i.e., not equal to the theoretical one. To see if there is
something behind this noise, one can compare the spec-
trum (i.e., the eigenvalues, sorted from the largest to
the smallest) of the correlation matrix with that of the
correlation matrix of a sample of uncorrelated gaussian
random variables (this is called Random Matrix The-
ory (RMT) – if your distributions are not gaussian,
just resample each vector independently) or that com-
ing from a given model. The proposed model is hidden
behind an overly specialized phisics’s vocabulary: take
n points at random, take k cluster centers at random,
assign each point to a cluster at random, drag each
point towards its cluster center.

Noise dressing
of financial correlation matrices

L. Laloux et al.
arXiv:cond-mat/9810255

Marginal Contribution to Risk
for GICS industries in Aegis 3.4

Barra (2004)
To compute and balance the risk of a portfolio of
stocks, we use the variance-covariance matrix of the
stock returns. As this matrix is huge, we do not esti-
mate each of its coefficients: instead, we assume that
the covariances are due to several “factors”; we esti-
mate the variance-covariance matrix of those factors,
we estimate the exposure of each stock to those factors
(this means: we perform a regression of the returns of
stock i against the “factor returns”, the exposures are
the coefficients estimated by this regression), we esti-
mate the residual variance of each stock returns and
we put everything in a nice formula,

V = e′ve+∆,

where V is the variance matrix of the stock returns,
e is the exposures matrix, v is the variance matrix of
the factor returns, ∆ is the (diagonal) matrix of the
residual (aka stock-specific, sytematic) variance.
If w are the weights of a portfolio (as a fraction of
the market value of the portfolio), then the risk (aka
volatility, standard deviation) of this portfolio is

Risk(w) =
√

w′Vw.

The Marginal Contribution To Risk (MCTR) of a
stock i is

MCTRi =
∂Risk
∂wi

=
(Vw)i
Risk(w)

.

Similarly, the contribution of a sector (seen as a port-
folio) s to the risk of a portfolio w is the directionnal

derivative

MCTR(w, s) = lim
ε→0

Risk(w + εs)− Risk(w)

ε

=
s′Vw

Risk(w)
.

(You can do the computations yourself: this stems from
the Taylor expansion of Risk(w + εs).)
But how do we turn a sector into a portfolio? We could
take each stock in this sector, with a weight equal to
one; we could also weigh them by the market capital-
ization. Alternatively, if we do not have a single sector
but a partition of the universe into several sectors, we
can try to build a portfolio with unit exposure to the
sector we are interested in and zero exposure to the
others. This can be done as follows. Let f be the ma-
trix of exposures to your sectors (one row per stock,
one column per sector, 1 if the stock is in the sector,
0 otherwise) and δj the desired exposure for the sector
portfolio (1 in position j and 0 elsewhere). We want a
row vector sj such that sjf = δj : it is not unique, but
the pseudo inverse of f gives one: sj = (f ′f)−1f ′δj .
Actually, these are not the formulas mentionned in the
article: for a reason I do not understand, they first
compute the contribution of their factors to the port-
folio risk and then “translate” (yes, they use that word
– weird for something that is actually a matrix multi-
plication) them to the (pseudo-inverse) sector portfolio.
They do not seem to realize that they have forgot-
ten the stock-specific risk in the process. It might
be correct if your sector decomposition is coarser than
their factor decomposition, but otherwise, it is plainly
wrong.
Incidentally, they also forget to suggest what to do with
missing values – stocks whose sector is unknown – I
suggest to set their exposures to zero.
Finally, they forget to stress the absence of a formula
to compute the risk from the contributions to risk –
which should not be called “contributions”, after all:∑

j∈sectors
(w′f)jMCTR(w, sj) 6= Risk(w).

Japanese Equity Model
Barra (1999)

Risk can be decomposed into:
– specific risk, associated with individual securities
(unless you are a stock-picker, you try to avoid it);

– common risk factor, associated with industries and
other factors (these correspond to the bets we make);

– systematic risk, associated with the market (you can-
not avoid it – well, with cash, futures or with no
long-only constraint, you can).

The Capital Asset Pricing Model (CAPM) is a no-
intercept linear regression of the (excess) returns of a
stock against the (excess) returns of the market; the

Article and book summaries by Vincent Zoonekynd 1018/1044

coefficient is called the beta of the stock or its exposure
to the market.
Multi-Factor Models (MFM) are linear regressions of
the (excess) returns of a stock against various “factors”
(industry, market excess return, oil price, temperature,
etc. – you have to choose your own factors).
Arbitrage Pricing Theory (APT) is the use of MFM
to estimate the variance-covariance matrix of the stock
returns – more generally, a risk model is a means of
estimating a variance matrix.
There are several types of active investment strategies:
market timing (sell before the market goes down, buy
before it goes up); sector emphasis, stock selection.
Risk models can be used to create a portfolio, to an-
alyze one (check that the risk is where the manager
claims it is), or to attribute its performance to the var-
rious factors.
This document does not stress the difference between
the Barra way of estimating a risk model and others:
you always have

returns of stock i =
∑

k∈Factors
βi,krk,

but
– Barra estimates the exposures βi,k of stock i to factor
k and computes the factor returns rk;

– Northfield estimates the factor returns and computes
the exposures;

– APT estimates the factor returns from the first eigen
vectors of the variance-covariance matrix and com-
putes the exposures (this is called a statistical risk
model: you then have to interpret the various factors
– it is also linked to Principal Component Analysis
(PCA) and Random Matrix Theory (RMT));

– USB uses a hybrid approach: they start with the
factor returns, use them to estimate the exposures,
use the exposures to estimate the factor returns, and
so on, until convergence.

The document ends with a rather comprehensive glos-
sary.

MNP: R package for fitting the multinomial
probit model

K. Imai and D.A. van Dyk, Journal of
Statistical Software (2005)

The multinomial probit model models a qualitative
variable Y , with values 1, 2,…,n as follows:
W1,W2, . . . ,Wn are (unobserved, latent) gaussian
variables, of unknown mean and variance,
Y = ArgmaxWi

This package fits the model with an MCMC. Before
interpreting the results, the article asks us to use the
coda package to look at the Gelman–Rubin conver-
gence statistic (numerically and graphically), to look
at the time series of the sampled parameters, to look
at the distribution of those parameters.

The appendix also explains how to set-up a “local li-
brary directory”.

BugXLA: Bayes for the Common Man
P. Woodward, Journal of Statistical Software

(2005)
This is an Excel interface to WinBugs – but they seem
to completely forget the convergence problem...

Calling the lp_solve linear program software
from R, SPlus and Excel

S.E. Buttrey, Journal of Statistical Software
(2005)

There is another, faster, more reliable R package
for linear and mixed integer programming (MIP),
lpSolve; it relies on the free (LGPL) lp_solve library.
The article insists on the Excel interface and the fact
that it yields the right result, contrary to Excel.

...
?.?. ? et al. (????)

This article explains how to perform a “regression with
time-varying parameters”. The main difference with
my current implementation is:
– They assume the parameters are AR(1) processes, I
assume they are random walks.

There are other, minor differences:
– They take sensible initial values for the estimation
of the coefficients, I take 0;

– They give the p-value of a Likelihood Ratio (LR) test
to check if the parameters are indeed varying (but to
compute it, they have to know the ”number of de-
grees of freedom” of the model with time-dependant
parameters – I am not sure how they estimate it);

– Their Kalman filter seems to be univariate;
– They forget to check that their data look gaussian,
that the residuals look gaussian and iid.

Random matrix approach to
cross-correlations in financial data

V. Plerou et al., Phys.Rev.E 65 066126 (2002)
Another article on the same subject:
– The bulk of eigenvalues is consistent with RMT
(they look at the distribution of eigenvalues, at the
distance between two adjacent eigenvalues (nearest
neighbour spacing), at the next nearest neighbour
spacing – and another quantity I do not understand);

– There are no significant negative correlations;
– The largest eigenvalue represents the market;
– The next eigenvalue represents the logarithm of the
capitalization;

– The next eigenvalues represent sectors (they pro-
vide a formula to estimate the number of significant
stocks in a normalized eigenvector: the inverse of the
sum of the fourth power of the coordinates);

– The smallest, non-significant eigenvectors corre-
spond to correlated pairs;

Article and book summaries by Vincent Zoonekynd 1019/1044

– Eigenvectors with large eigenvalue are stable over
time (for this, they compute the overlap matrix,
whose (i, j) element is the scalar product of the ith
eigenvector at time t with the jth eigenvector at time
t + T ; discarding the smallest eigenvalues, i.e., us-
ing a (statistical) risk model to optimize a portfolio
yields more reliable risk and returns forecasts.

Shortcomings in advise versus the art and
science of investing in hedge funds

G. Susinno, 2005
Risk models are ways of reliably estimating variance-
covariance matrices. Statistical risk models proceed as
follows: compute the variance-covariance matrix, diag-
onalize it and zero out the lowest eigen values. Random
matrix theory tells us how many eigen vectors to retain:
compute the variance matrix obtained after shuffling
each time series, repeat several times to get an idea of
the distribution of the eigen values.
To visualize this correlation matrix, turn it into a dis-
tance matrix and draw the Minimum Spanning Tree
(MST) – when distance analysis and clustering fail to
bring any insight on the data, MST often prove en-
lightening and can highlight the structure of the data.
(The author tries hard to impress the reader by us-
ing the words “ultrametric distance” – an ultrametric
distance is just a distance measured on a tree.)
The author falls into (at least) two traps. First, even
though he stresses the non-gaussianity of the data, the
lack of power (he does not seem to know that word)
of gaussianity tests, he uses the eigen value distri-
butions for gaussian random matrices, instead of the
permutation-based tests. Second, the permutation-
based tests assume that in the initial time series, con-
secutive observations were independent – a suspicious
assumption.

Risk premia on european sectors
K. Reimer and H. Berster, Commerzbank,

april 2005
One can also use the Residual Income Model (RIM) to
compute the

risk premium = k − risk-free interest rate.

EROS (Expected Returns on Stocks)
K. Reimer and H. Berster, Commerzbank,

april 2005
They have 3 ideas:

• Use the Residual Income Model (RIM) to com-
pute the “market expectation of returns” k, re-
mark that it has a very high rank correlation with
future returns (IC, Information Coefficient) and
use it to optimize a benchmark;

• Compute a value measure, as a forcefully normal-
ized expected divident yield over the next 5 years,
corrected to account for the end of the fiscal year;

• Similarly compute a growth measure, as the an-
nual earnings growth; Use those two measures to
interpret the portfolio.

This “forceful normalization” has a drawback: it allows
you to compare indidual stocks or sectors to the whole
market, but does not give you any information for the
market as a whole – its growth and its value are, by
definition, zero.
The succinctly recall how the Residual Income Model
(RIM) works:

• If the risk-free interest rate is high, investors will
only invest in companies with a higher prospec-
tive return: the price of the companies will de-
pend on the current risk-free interest rate – more
precisely, it will depend on the current “inter-
ested rate” or desired return, k, for investments
providing a similar risk profile.

• The price of a given company will also depend on
its Return on Equity (RoE).

The RIM sums this up:

Fair Value = BV0 +

∞∑
t=0

BVt−1
RoEt − k
(1 + k)t

where

BVn = Book Value in n years
RoEn = Return on Equity in n years

The difference RoE− k is called abnormal earnings or
residual income.
Of course, one has to provide a mode for the evolu-
tion of the book value BVn and the returns on equity
RoEn – the article does not give any detail and simply
mentions a “three-stage model using IBES consensus
forecasts”.
We know neither the fair value nor the desires return k,
but if we replace the fair value by the current market
price, we get a market estimation of the desired return
k.

Longitudinal and Panel Data: Analysis and
Applications for the Social Sciences,

E.W. Frees, Cambridge University Press, 2002
Chapter 1 presents and motivates the subject, longitu-
dinal data: it is a mixture of regression and time series
analysis:

• Instead of studying a single time series, we study
several at the same time; i.e., we have several
realizations of a stochastic process.

Article and book summaries by Vincent Zoonekynd 1020/1044

• We investigate a relation y = α+ β1x1 + β2x2 +
noise that evolves with time: α, β1, β2 may
change with time. This could suggest a 2-step
procedure: for each t, estimate the coefficients
α(t), β1(t), β2(t); then study the resulting time
series. Longitudinal data analysis is a similar
but reliable, 1-step procedure. The noise is of-
ten called subject-specific dynamic pattern.

Chapter 2 lists the plots used to investigate longitudi-
nal data:

• density estimation (histogram, etc.) of each vari-
able and evolution with time (violin plot, lattice
plot);

• y ∼ xi for the whole period and its evolution
over time (in a lattice plot or as paths on a single
plot);

• Time series of each variable for each subject (or
group of subjects);

• Added variable plots, discarding the effects of
time yi(t)− ȳi ∼ xi(t)− x̄i, of the other variables
lm(y+x2+x3)$res ~ lm(x1~x2+x3)$res, or of
both

the possible temporal covariance matrices (indepen-
dent, AR(1), AR(T)) and lists a few tests: e.g., you
no longer test the influence of an observation (as with
the Cook distance, in classical regression) but that of
a whole subject on the regression results.
Chapter 3 motivates random effects and mixed effects
models: the observations are grouped (various subjects
(stocks) are studied over time, thus we have several
observations per subject) but the subjects do not rep-
resent the whole population: we want to take into ac-
count the variations between subjects and to be able
to extend the results to the whole population – to this
end, we provide a model for the subject-dependant pa-
rameters. Those parameters (aka nuisance parameters
or random effects), are themselves random variables,
e.g.,

yi,t = αi + βxi,t + εi,t

αi ∼ N(µ, σ)

ε ∼ N(0, 1)

Random effects can be computed as a Generalized
Least Squares (GLS: like Ordinary Least Squares
(OLS), but the noises can be correlated and/or het-
eroskedastic) problem (but you have to know the
variances of the parameters: estimate them as you
can). Restricted Maximum Likelihood (REML) pro-
vides better, less biased results than ML – but for tests,
only use ML.
Chapter 4 stresses the difference between estimators
(of the fixed effects) and predictors (of the random ef-
fects); predictors are actually bayesian Maximum Like-
lihood estimators, because we have a prior distribution
for them – or, at least, a model for that distribution.

Chapter 5 generalizes the previous models to (multi-
level) hierarchical models; they are still estimated as
a single GLS problem, with a more parsimonious co-
variance structure. One should beware of the tests of
hierarchical models: the usual ones are no longer valid,
especially tests about the covariance.
Predictive variables in a regression can either be
stochastic (i.e., random variables) or deterministic
(e.g., fixed by the experimentor). Chapter 6, very tech-
nical, details the properties those stochastic predictive
variables should have for a mixed model estimation to
be valid. Problems appear, for instance, when you in-
clude the lagged variables to predict as a predictor or
when the predictors are autoregressive.
Chapter 7 lists a few dangers of panel data models:

• If the model is too complicated, different ele-
ments of the model can lead to similar effects,
making the model unidentifyable;

• You should account for (or beware of) ommitted
variables (subject-dependant, sector-dependant,
time-dependant);

• You should account for missing data (discarding
missing observations or imputing them can lead
to suboptimal results).

Chapter 8 tackles dynamic models: if you want to use
your model to forecast future values, spotting changes
in the model is pivotal. Dynamic changes can be in-
cluded in the model in several ways:

• add the time as a predictive variable (this works
fine if its effects are linear);

• use the discrete derivatives of the variables;

• Allow for serial correlations (AR(1), etc.) in the
noise;

• Allow for time-varying parameters;

• Include the lagged variable to predict as a pre-
dictor;

• adapt the Kalman filter.

The authors details the Kalman filter example (with
the CAPM), unfortunately hiding the ideas behind
complicated formulas. The important thing to note
is that you should not proceed in two steps, first
computing cross-sectionnal regression, then applying
a Kalman filter on the coefficients, but instead adapt
the Kalman filter to the model.
Chapter 9 focuses on logistic regression (i.e., predict-
ing binary variables): here, for technical reasons, we
need to replace the Maximum Likelihood Estimation
(MLE) by conditional MLE. This chapter also suc-
cinctly presents the Generalized Method of Moments
(GMM), aka Generalized Estimating Equations (GEE)
– if you do not want to estimate the random effects but
just their first two moments.

Article and book summaries by Vincent Zoonekynd 1021/1044

Chapter 10 presents the General Linear Model (GLM)
and delves into the details of the GMM/GEE method
(forgetting to state the ideas and instead giving equa-
tion after equation). I still have not understood what it
is. As an example, they apply the Conditionnal MLE
to the Poisson regression.
Chapter 11 tackles the case of a qualitative variable to
predict, which can be treated as a multinomial regres-
sion problem or as a Markov chain one. In the middle
of this chapter, they also mention the generalized Ex-
treme Value Distribution (EVD) – but I do not know
why. The slides do not mention survival models, but
they appear in the book.

Mixed-Effects Models in S and S-Plus
J.C. Pinheiro and D.M. Bates

Springer Verlag, 2000
This is the official documentation of the R nlme pack-
age, that deals with mixed data, such as:

• Grouped data: several observations of one (or
several) variable(s) for each subject, the subjects
being partionioned into groups (and the groups
can themselves form groups of groups);

• Longitudinal data: one (or several) variable(s)
observed several times for each subject, at differ-
ent points in time;

• Panel data: idem, but the observation times are
the same for each subject, so that you can put
the data in tables, one subject per row, one date
per column;

• Repeated measures: several observations for each
subject;

• Blocked design: several experiments (“experi-
ment factor”) on several subjects (“block fac-
tor”);

• Split-splot design: idem;

• Multilevel data: each subject is in a group, each
group is in a group of groups, etc.

These models could be written as:
y ~ x | subject/group
y ~ time | subject
y ~ 1 | subject
y ~ experiment | subject
y ~ 1 | subject/group

Chapter 1 is an overview of mixed models. When facing
a new data set, you often assume that the observations
are independent. But this is not always the case: in
particular when you have several observations for each
“subject” (a stock, in finance, a patient, in medicine),
the observations for a given subject will be correlated.
The same problem occurs if the subjects form several
groups: the observations in a given group will be cor-
related.

One solution is to consider that the parameters to be
estimated depend on the subjects, e.g. (this is a fixed
effects model),

yit = αi + βxit + noiseit
Estimate: β, α1, α2, . . . , Var[noise].

Alternatively, we can consider that the αi are not pa-
rameters but random variables, following iid gaussian
distributions (this is a mixed effects model):

yit = αi + βxit + noiseit
Estimate: β, E[α], Var[α], Var[noise].

This is often preferable because there are fewer param-
eters and we can meaningfully extrapolate to subjects
that were not included in the study.
This is a partly bayesian point of view: we have a prior
on α (but not on β, and we take a Maximum Likelihood
Estimator, which is very unbayesian).
Chapter 2 presents the underlying theory. In the fol-
lowing expression,

yi = [Xi|Zi]
[
β
bi

]
+ εi

bi ∼ N(0,Ψ)

εi ∼ N(0, V)

yi, Xi, Zi are known and we want to estimate β, Ψ
and V . The coefficient β is said to be a fixed effect
while bi is a random effect – the word “effect” means
“estimated parameter”.
This can be done by Maximum Likelihood (ML),

Likelihood(variance structure, parameters | data),

which produces biased estimates, or with Restricted
Maximum Likelihood (REML): the restricted likeli-
hood is the likelihood with the parameters integrated
out; we use it to estimate the variance structure, and
then, we plug this back into the likelihood to estimate
the parameters.
From a computational point of view, one can first
use the EM (Expectation–Maximization) method, that
considers the random effects as unobserved (missing)
variables (it goes very fast to the neighbourhood of the
optimum, but then converges very slowly) and then the
good old Newton–Raphson method (it converges fast
when it starts close to the optimum).
The parameters are asymptotically gaussian, so one
can use AIC, BIC and Likelihood Ratio (LR) tests (but
you had better only use them to compare two models
if the fixed effects are the same).
Chapter 3 presents the R functions to explore grouped
data, fit mixed models and assess those models. For
instance,
lme(y~x, random= ~ 1 | subject/group)

fits a model in which the slope is a fixed effect, the
intercept is a random effect that depends on the two
variables subject and group. If we wanted both the

Article and book summaries by Vincent Zoonekynd 1022/1044

slope and the intercept to be random, we would have
typed (remember that when you write a model, the
intercept is always implicitely included: we need not
mention it)
lme(y~x, random= ~ x | subject/group)

or
lme(y~x, random=list(subject=~x, group=~x))

If you want your data to be easily plotted, with
functions from the lattice library, you can store
them in a groupedData object, that contains the
data (as a data frame), a display formula (e.g.,
y~time|subject)), “outer factors” (i.e., groups of sub-
jects, e.g., outer=~sex or outer=~Variety*Year) and
“inner factors” (i.e., other qualitative predictive vari-
ables, e.g., inner=~Treatment).
You might also want to investigate the func-
tions gsummary, intervals, augPred, plot.lme,
summary.lme, VarCorr, lmList, simulate.lme,
balancedGrouped.
Chapter 4 suggests a model building strategy:

1. Fit a usual regression without taking the subject
variable into account; look at the residuals in
each subject (with a boxplot): it they are sig-
nificantly different, this might warrant a mixed
effects model with the subject variable. but we
still do not know which effects should be fixed
and which should be random.

2. Fit a regression for each subject, with the lmList
function; look which coefficients vary a lot be-
tween subjects, with the plot(intervals(...))
function: they will be your random effects; you
may also want to look at the pairplots of the es-
timated coefficients, to get an idea of the covari-
ance structure Ψ of the random effects.

3. Fit the model and examine it: boxplot of the
residuals for each subject (to see outlying sub-
jects), residuals vs fitted value (to check if there
is a difference between groups: if so, add this
new grouping variable), quantile-quantile plots
of the residuals; also remember to check for het-
eroskedasticity and correlation problems.

4. Do not only look at the residuals: similarly, look
at the random effects: quantile-quantile plot,
pairplot (to see if you should add a coarser group-
ing variable, as above; and also to check if your
assumptions about the covariance matrix were
not unreasonable).

Chapter 5 explains how the covariance of the random
effects (the Ψ matrix) can be specified. There is first
the correlation structure among the random effects
(investigated with the pair plots mentionned earlier).
If you do not specify anything, the computer assumes
that the covariance matrix has no remarkable prop-
erty. If they are independent:

random=list(subject=pdDiag(~x1+x2+x3))
Other examples:

pdIdent(~ x1+x2+x3)
pdDiag(~ Variety-1)
pdCompSymm(~ Variety-1)
pdBlocked(list(~1, ~x1+x2+x3-1))
pdBlocked(list(pdIdent(~1), pdIdent(~ Variety-1))

You should also tackle heteroskedasticity (the V ma-
trix); e.g., if the variance of the noise depends on the
group variable, you can say
weights=varIdent(form= ~ 1 | group)

But the general situation is more complicated: to sim-
plify it, we decompose the noise variance matrix V into
a variance component (a diagonal matrix, that will ac-
count for heteroskedasticity in the noise term) and a
correlation component (a positive definite matrix with
1s on the diagonal, that will account for the lack of
independence of the noise term), and we specify them
separately.
Here are a few examples, to be given to the lme func-
tion as a weights argument.
The variance increases linearly with age:
varFixed(form= ~age)

The variance is constant in each group:
verbvarIdent(form = 1|group)
The variance increases linearly with the fitted values:
varPower(fixed=.5)

The variance increases linearly with the fitted values
for one group only:
varPower(form= ~fitted(.) | Sex,

fixed=list(Male=.5, Female=0))
There are other functions: varExp, varConstPower,
varComb.
And now, the correlation structures, to be fed to the
lme function as a correlation argument.
Compound symetry: two observations for the same
subject have a 0.3 correlation.
corCompSymm(value=0.3, form=~1 |Subject)

A general correlation matrix:
corSymm(form = ~ 1 |Subject)

An AR(1) correlation structure (by default, the order
is that in which the observations appear – see also the
ACF function):
corAR1(0.8, form = ~ 1 | Subject)

A continuous AR(1) correlation structure (the coeffi-
cient will be positive):
corCAR1(0.8, form = ~ time | Subject)

An ARMA correlation structure:
corARMA(c(.8, .4), p=1, q=1,

form= ~ 1 | Subject)
There are also spatial correlation structures (see also
the plot(variogram(...))) function:
corExp(1, form = ~ x + y)
corGauss(...)
corLin(...)
corRatio(...)
corSphere(...)

This chapter also presents the gls function (General-
ized Least Squares), to fit (non-mixed) heteroskedastic
linear models – because the correlation structure and

Article and book summaries by Vincent Zoonekynd 1023/1044

the heteroskedasticity can have the same effects and
therefore specifying both can lead to unidentifiability.
People often wonder how to tackle heteroskedasticity
in R: this is one solution.
Part 2 (I have not carefully read it) tackles non-linear
models: you should use them when you know the mech-
anism producing the data (this is often the case in
chemistry) or when the data has natural properties,
such as an asymptote. Otherwise, stick to linear mod-
els – with splines or local regression, if needed.
One limitation of the nlme package is the fact that,
if we have several grouping variables, they have to be
nested – but you can imagine mixed models in which
they are not.
Another limitation is that it does not include General-
ized Linear Models (GLM) such as logistic or Poisson
regression: for those, you might want to have a look at
glmmML in the glmmML package for GLM with a random
intercept; GLMM in the lme4 package for mixed GLM
via REML; glmmPQL in the MASS package (idem); gee
in the gee package.
The under-hyped lme4 package contains other inter-
esting functions, such as the lmer function (a revised
version of the lme function), that allows for nested and
crossed random factors. The syntax for the mixed ef-
fects is the “natural” one:
y ~ (x1 | g1) + (x2 | g2)

Incorporating estimation errors into portfolio
selection: robust portfolio construction

S. Ceria, R.A. Stubbs, 2005
Modern Portfolio Theory (MPT) works as follows: es-
timate the returns and the volatility of each stock,
then try to find the combination of stocks (“portfolio”)
with the highest return among those whose volatility
is within the limits imposed by your clients.

Maximize αTw
Subject to wTQw ⩽ v

where α are the predicted returns, Q is the covari-
ance matrix of the predicted returns, v is the maximum
volatility allowed, w is the portfolio composition (to be
found).
This is a quadratic optimization problem: the set of
feasable solutions is convex, with sharp edges (sharp
because of the linear constraints we do not mention)
and the best solution will be on one of its vertices.
When we slightly change the inputs, the solution may
switch from one vertex to another.
Several solutions to overcome the imprecision of re-
turns forecasts have been proposed:

• shrink them towards the average expected return
(James–Stein);

• shrink them towards that of the minimum vari-
ance portfolio (Jorion);

• Adopt a bayesian approach (Black–Litterman);

• Increase the risk-aversion parameter (Horst);

• Resample (Michaud) – if you have time and no
non-convex constraints, such as a limit on the
portfolio size or a minimum investment per as-
set.

The idea of robust optimization is:

Maximize Min
{
αTw, α ∈ B(ᾱ, r)

}
Subject to wTQw ⩽ v

where ᾱ are the return forecasts,

B(ᾱ, r) =
{
α : (α− ᾱ)TΣ−1(α− ᾱ) ⩽ r2

}
is an ellipsoid, centered on ᾱ, containing the actual for-
ward returns and α are the worst-case returns in this
ellipsoid. The magic is that one can actually compute
that minimum:

MinαTw = ᾱTw − r‖Σ−1w‖.

We thus have a new convex optimization problem –
but it is no longer quadratic: we need either a general
convex optimization algorithm or a “symetric second
order cone optimizer”.
This was the general idea, but it still has to be refined.
Two problems are:

• We are too conservative, we have assumed that
the errors were always in the worst direction;

• This approach only works for long-only portfo-
lios.

We can introduce a “bayesian prior” (they claim they
do not like bayesian methods, but it is what they are
doing) as a new constraint, stating that the upward and
downword errors should cancel each other (but you can
refine this, to account for the larger number of overes-
timated returns and for the volatility).

Axioma, the future of risk analysis,
rebalancing and trading analytics

D. Cashion (2005)
Mean-Variance Optimization (MVO) consists in tak-
ing a set of assets, with their predicted returns and
estimated volatility and building the portfolios with a
given volatility, the maximum expected return, satis-
fying a set of constraints (e.g., long-only, at most 2% in
each stock, etc.). The problem is that the computer as-
sumnes that the predicted returns are accurate while
they are not: if we change them a bit, the resulting
portfolios can drastically change. The reason is that
the possible weights of the various assets in the port-
folio form a convex set, with sharp vertices, and the
result portfolio is on one of those vertices: when we
change the inputs, either we stay on the same vertex,
or we switch to another one.

Article and book summaries by Vincent Zoonekynd 1024/1044

Instead, Axioma incorporate uncertainty in the inputs,
they replace exact values by intervals (ellipses, actu-
ally) of possible values; this amounts to bevel the ver-
tices of our convex set.
They also add discrete heuristic algorithms for rules
such as “maximum number of holdings” or “minimum
holding”. if-then-else rules, etc.

The generalized dynamic factor model:
representation theory

M. Forni and M. Lippi
Here are a few ideas to study panel data:

• Consider the time series one at a time – but this
will not account for the correlation between the
time series;

• Use a VAR model – but this will only work if you
have few subjects: we have thousands of them;

• In the dynamic factor analytic model, aka in-
dex model, there are (latent) orthogonal variables
f1(t), . . . , fn(t) and, for each subject, the variable
studied is a linear combination of those factors
plus an idiosyncratic component (aka subject-
specific dynamic pattern), orthogonal to the fac-
tors and pairwise orthogonal among them,

xi(t) = β1
i f1(t) + · · ·+ βni fn(t) + εi(t)

• You can also add in the lagged factors;

• Finally, you can remove the requirement that the
idiosyncratic factors be pairwise orthogonal to
account for, e.g., shock propagation.

This last model is the generalized dynamic factor
model.
But how do yo estimate the coefficients of the model?
Well, you do not. However, a preceding article, by the
same author, explained how to infer the number n of
factors and this articles states that the common com-
ponent xi(t) − εi(t) is the projection of the signal on
the first n “dynamic principal components” – but I have
not understood what it meant.
TODO: Explain “dynamic Principal Component”.

Linear regression with errors in both variables:
a proper bayesian approach

T.P. Minka, 1999
Linear regression focuses oin the relation between (say)
two variables, e.g., y = α+βx+noise: we assume that
there is a simple, deterministic relation between x and
y and that y is observed with errors. But what if x is
also measured with errors? You can:

• Forget about those errors if you just want to pre-
dict y from the imprecisely measured x;

• Try more symetric methods, such as Principal
Component Analysis (PCA): it gives you some
insight as tp the relation between x and y, put
focuses on the joint distribution p(x, y), not the
conditional distribution p(y|x) – do not use it for
predictions;

• Account for those errors with an EIS (Error In
Variables) regression: we have a relation y0 =
α+ βx0 but we can only measure y = y0 + noise
and x = x0 + noise and we want to find α and β
– we do not want to make forecasts, just to study
the mechanisms behind the data.

The article presents three EIS estimators:

• TLS (Total Least Squares): write the likelihood
(which depends on α, β and x0), replace x0 with
its most probable value and find α and β by the
values that maximize the likelihood;

• Maximum Likelihood (ML): integrate x0 out of
the likelihood and maximize this marginal likeli-
hood;

• Posterior Mean: the posterior distribution tends
to be bimodal: the ML estimator is not stable;
we replace it by the expectation of the posterior
distribution of (α, β).

Liquidity and autocorrelations in individual
stock returns, D. Avramov et al., 2005

When an investor wants to buy or sell a large amount
of a given stock, the price will rise or drop for a short
moment and then revert to normal. Seemingly prof-
itable contrarian trading strategies can stem from this
phenomenon. To check wether they are profitable, the
article combines

• Past returns;

• Illiquidity (defined as

|returns|
traded value

or as the average ask/bid spread);

• Turnover

to define their strategy, equally weighted or “relative
strength”-weighted (more weight on the stocks whose
recent returns were high) and estimates the transaction
costs (in three ways, but the only detailed one is the
ask/bid spread). In the end, the strategy is not prof-
itable, the Efficient Market Hypothesis is not violated.
In other words: “non-informed trading is accompanied
with high trading volume, informed trading is accom-
panied with low trading volume” – “changes accompa-
nied with high volume revert”, “changes accompanied
with low volume need not revert”.

Article and book summaries by Vincent Zoonekynd 1025/1044

Panel data models for stock returns:
the importance of industries

R. Bauer et al, LIFE, 2003
In finance, to study a factor, i.e., a variable suspected
of providing some insight into future returns, one usu-
ally uses the non-parametric (“non-parametric means
that it does not rely on statistical assumptions that one
could forget to check – it is fool-proof) portfolio method:
build five portfolios, each containing the stocks in one
quintile of the variable and monitor their returns. This
can be generalized to two factors – but not more: be-
yond that, many fractiles would be empty...
Instead, in order to include more variables, people
have tried regression (often forgetting that there are
assumptions to be checked, at least graphically, be-
fore performing the analysis, and forgetting to assess
the quality of the results, e.g., with diagnostic plots).
But financial data is inherently bidimensional, i.e., the
variables we play with do not form vectors but rather
2-dimensional arrays, one stock per row, one date per
column. One can forget this 2-dimensional structure
and compute the usual (“Ordinaly Least Squares” or
OLS) regression. But by doing so we discard some of
the information available.
Instead, we can slice the data and consider one date
(column) at a time, compute the regression coefficients
for each date (people say “cross-sectionnally”) and take
the mean of those regression coefficients: this is the
Fama-McBeth regression; it takes into account the un-
balancedness of the data.
But this suggests that the quality (variance) of the es-
timation of the regression coefficients is the same for
each date – this need not be the case. We can estimate
this variance and take it into account by computing
a weighted average of the coefficients (the weight of a
given coefficient at a given date is the inverse of its
estimated standard deviation): this is called weighted
regression or weighted least squares.
But we still have a problem: we assume that these
regression coefficients are constant over time – this
is surely wrong. To take this effect into account, we
must leave the realm of DIY statistics and enter that
of mixed models. We can then consider regressions of
the form

return = α+ β · factor+ noise

where the regression coefficients α and β may them-
selves depend on other data, say:

α ∼ stock+ industry× time
β ∼ industry

noise variance ∼ time.

This is the example detailed in the article (with two
differences: they have a dozen factors instead of one
and they assume that the variance is constant), but
you may change it as you want.
The numerical estimation of the parameters of those
mixed models used to be very intricate (that is why

some people still use “Fama-McBeth regression” or
“weighted least squares”) but, luckily, R can now do
that for us.
The article also remarks that statistical tests with a
5% confidence level are useless in this context, because
the huge volume of data leads to very small p-values.
Instead, they use the Schwartz Information Criterion
(SIC). We already mentionned this problem when we
studied Bayesian Model Averaging (BMA) – we had
used the Bayesian Information Criterion (BIC), aka
Schwartz Bayesian Criterion (SBC).

VWAP reversion
S. Usui, Nomura, 2004

They propose the following (intraday) investment
strategy:

• If index � 15-minute VWAP � 60-minute
VWAP, then long the index;

• If index � 15-minute VWAP � 60-minute
VWAP, then short the index.

where VWAP is the volume-weighted average price – it
is a replacement of the moving average, better-suited
for intra-day data. This is just a refinement of the
strategy:

• If price � Moving Average, then buy;

• If price � Moving Average, then sell.

that relies on the belief that the price is mean-reverting
– the refinement selects periods when the price has a
significant upward (respectively downward) trend, vis-
ible both on the 15-minute VWAP and the 60-minute
VWAP.
They motivate this strategy by a linear relation be-
tween (price − 15-minute VWAP) and (15-minute
VWAP − 60-minute VWAP). Here, of course, regres-
sion is a bad idea: first the data are not normal (they
are fat-tailed), second, regression is asymetric (you try
to predict one variable from the other) while the strat-
egy is symetric (if you want a plot, draw the first princi-
pal component, if you want a test, a simple correlation
test would do).
They try to tune their strategy by modifying the
thresholds above which those inequalities trigger the
trades, but:

• They do not tune the time parameters (15 min-
utes and 60 minutes);

• Their tuning is not adaptive.

Article and book summaries by Vincent Zoonekynd 1026/1044

Trading Securities Using Trailing Stops
P.W. Glynn and D.L. Iglehart,

Management Science, 41:6 (1995)
To avoid losses, one can sell whenever the price (of a
stock you have bought) goes to far away (say, $5) be-
low the previous maximum. The article investigates,
from a theoretic point of view, the time you hold the
asset, the return, the “best” limit to choose – under
the unrealistic assumption that the price follows a ran-
dom walk with a constant linear trend, oblivious of the
fact that those stop-loss rules are designed to get rid of
stocks that do not follow our model or to spot a change
in the model.

High frequency data filtering
T.N. Falkenberry, TickData Inc. (2002)

High-frequency data may be unclean, even more so
than traditional data because the sheer volume of data
prevents their efficient automatic (or manual) detec-
tion.
The “errors” can be: isolated bad ticks, bad ticks in
succession or real outliers (to be retained, otherwise
we would build a model on data with an unrealistically
low volatility).
The errors may be obvious at some scale but not at
larger scale.
To automatically detect some of those errors, you may
remark that:

• The tick frequency depends on the capitalization
and on the volume;

• The tick frequency depends on the time of the
day and the capitalization (constant accorss the
day for small-caps, constant accross the day ex-
cept for an opening peak for mid-caps, U-shaped
for big-caps).

The filter they provide takes into account: those
different tick frequency profiles, changing volatility,
overnight gaps.
They do not give any detail, but the filter could look
like:

• Compute a MA and a moving standard devia-
tion; start anew every morning to accommodate
overnight gaps; if the standard deviation is too
low, set it to 2 ticks;

• If a point is more than 3 standard deviations from
the moving average, tag it as a bad tick; you may
want to change the threshold;

• If the last tick was a bad tick and you would like
the current tick to be a bad tick as well, don’t,
and reinitialize the moving average and the mov-
ing volatility; you may want to modify this rule
to accomodate repeated bad ticks (they would be
equal);

• Replace bad ticks with ticks with the same vol-
ume and the preceding price.

Predicting Returns with Financial Ratios
J. Lewellen, 2003

To test if a factor x has a predictive power on the re-
turns r, one usually uses Ordinary Least Squares (OLS,
aka “classical regression”), even if the method’s hy-
potheses are not satisfied. But the model is often:

rn = α+ βxn + εn

xn+1 = φ+ ρxn + ηn

Cor(ε, η) = γ.

With just the first two equations and independent
noises, OLS regression and tests give correct answers,
but with the last equation, the results are biased to-
wards predictability.
The article, oblivious of other methods, such as Maxi-
mum Likelihood Estimators (MLE), tries to force OLS
into that framework and derive reliable tests.

Natural SelectionTM: Matching strategies to
assets

Evolutionary Finance Ltd, June 2003
They present an investment strategy design software,
based on “patented” genetic algorithms (it seems to
be a UK company: software patents are illegal in Eu-
rope...), that proceeds as follows.

• Take a set of possible investment strategies, each
yielding a “buy/sell” signal (they give an exten-
sive list of such signals);

• Combine those strategies to find the “best mixed
strategy” at a given time, for a given universe,
for a given horizon;

• Given the history of those “best” strategies, try
to predict the next best strategy.

There are a few problems:

• They do not explain how to combine strategies –
this is the heart of the algorithm.

• Using the previous best investment strategy to
predict the next best one means that you dis-
card all the information about strategies almost
as good as the best – the actual best strategy
is sample-dependant, you surely do not want to
discard all the information contained in the near-
best strategies.

• They do not explain how they use genetic algo-
rithms in the second step, to predict the next best
strategy; one could use straightforward bayesian
methods or a Markov chain: is there more than
that?

Article and book summaries by Vincent Zoonekynd 1027/1044

Momentum Morons
Evolutionary Finance Ltd, Biweekly report,

June 2003
Backtesting a strategy often suffers from a serious bias:
it selects a strategy adapted to the backtest period, not
to the present or to the future. The author advocates
methods able to detect regime shifts – such as their
evolutionary models.

Detecting a currency’s dominance or
dependance using foreign exchange network

trees
M. McDonald et al. arXiv:cond-mat/0412411

This article applies “distance analysis” fo financial
data. There are a few differences fromn the classical,
idealistic situation you might be used to.

• Oftentimes, distance analysis simply does not
work. In order to actually see something, you
can compute and plot the Minimum Spanning
Tree (MST) of the data. This is actually a crude,
1-dimensional form of “local distance analysis” –
if you want more about this, have a look at the
isomap algorithm.

• There are more missing data than usual. The
distances are computed from a correlation ma-
trix (there are several ways of doing so, e.g.,
d =

√
1− cor or d =

√
1− |cor|). When you

compute a correlation matrix, you have to re-
move all the observations (here, the dates) for
which at least one value is missing – it you just
remove the pairs for which one value is missing,
you might not get a positive definite matrix.

• As the data are exchange rates, both USD/EUR
and EUR/USD are present: with the chosen dis-
tance, the two points will be very far apart.

• The fact that the product of the exhange rates of
any three currencies, say USD/EUR, EUR/JPY,
JPY/USD, is 1 imposes some structure on the
tree. To see if this structure dominates or if the
resulting tree contains more information, they
suggest to resample one (only one) of the cur-
rencies and to compare the two trees.

• They also check, visually, that the relations be-
tween the various exchange rate returns are lin-
ear.

• They check if lagged correlations contain some in-
formation: for hourly exchange rate data, there
is none. If there were, we would depict the cor-
responding relations by a directed graph.

• They also investigate the sability of the tree over
time (by looking at the edges that remain).

Statistical Computing: an Introduction to
Data Analysis using S-Plus

M.J. Crawley, John Wiley and Sons, 2002
I did not read the book but just three extra “chapters”
available on the Web (http://www.bio.ic.ac.uk/
research/mjcraw/statcomp/chapters.html). The
first one is about gamma regression, i.e., linear re-
gression with (non normal) gamma-distributed noise:
you use it when the relation looks linear but the noise
is asymetric – however, the motivation and example
they give could be dealt with a simple transformation
(1/y~1/x) – quite confusing.
The second chapter, about Generalized Additive Mod-
els (GAM) was superficial but fine.
The third chapter was the most confusing: they state
that PCA and Factor Analysis are different but give
the same interpretation (why, then, are the results dif-
ferent? Which method should we choose in which sit-
uation?); they mix up supervised learning (in discrim-
inant analysis we know the classes beforehand we do
not try to find if there are classes, how many there are
or how to interpret them, as the author sometimes (but
not always) seems to think) and unsipervised learning.
Neither buy nor even read that book!

Global Financial Data Products
M. Bulsing and A. Scowcroft

UBS Investment Research, April 2002
A badly written article (the abstract is too long, con-
tains too many technical terms; there is no distinc-
tion between the data that come from the data sources
and the data that has been computed from the data
sources; etc. – the preceding article used marginal
notes to improve readability: this was a good idea)
that tries to explain what can go wrong when you han-
dle financial data:

• multiple data sources, with multiple conventions;

• data cascades (you take data from one source,
perform some computations, combine the result
with another data source, perform some more
computations, etc.);

• mis-aligned data: “monthly data” can be “data
at the end of the month”, “data at mid-month”,
“data smoothed across the month” – further-
more, corporate events might occur within the
month;

• Market capitalization requires the “number of
shares”, which fluctuates daily (because of op-
tions, for instance): data sources update this
more or less continuously;

• Currency problems (not read);

• Models: as data providers, they try to add some
value to the data they provide, by performing
some computations, based on models; they must

Article and book summaries by Vincent Zoonekynd 1028/1044

arXiv:cond-mat/0412411
http://www.bio.ic.ac.uk/research/mjcraw/statcomp/chapters.html
http://www.bio.ic.ac.uk/research/mjcraw/statcomp/chapters.html

include enough variables in those models but not
too many.

They favour a model with:

• the market return

• a factor (“yield”), for which they provide several
formulas, each corresponding to a given “style” –
they state the problems posed by each factor);

• the sector;

• the region (considering the country would lead to
too many classes).

They do not mention the problem of missing data, of
outliers, of errors and sanity checks, of unsatisfied nor-
mality or linearity assumptions in their regressions.

Active Return is Ambiguous
M. Partridge at al.

UBS Investment Research, August 2003
There are several definitions of “active return” (i.e.,
“difference” between the return of your portfolio and
that of a benchmark), but the most widely used have
a few problems:

• They are not transitive: if they say that portfolio
A is better that portfolio B and that portfolio B
is better than portfolio C, they need not say that
portfolio A is better than portfolio C;

• The can be incoherent and state that portfolio A
is better than portfolio B and that portfolio B is
better than portfolio A;

• They do not give the same result if you use
monthly or daily data: they can say that port-
folio A is better that portfolio B if you look at
monthly historical prices and the opposite if you
look at daily prices (these are fixed portfolios,
not investment strategies: the portfolios are not
rebalanced).

The definitions are as follows (active return, index dif-

ference, compounded return, log-return, index ratio):

αactive(A−B) =
∑
t

(
At+1

At
− Bt+1

Bt

)
αdiff.(A−B) =

∏
t

At+1

At
−
∏
t

Bt+1

Bt

=
Aend
Abegin

− Bend
Bbegin

αcomp.(A−B) =
∏
t

(
1 +

At+1

At
−
∏
t

Bt+1

Bt

)

αlog(A−B) =
∑
t

log
At+1

At
−
∑
t

log
Bt+1

Bt

= log

(
Aend
Abegin

/
Bend
Bbegin

)
αratio(A−B) =

(∏
t

At+1

At

)
/

(
Bt+1

Bt

)
− 1

=
Aend
Abegin

/
Bend
Bbegin

The log returns or the index ratio have no problems
(except, of course, being non-additive accross portfo-
lios), and should be used instead of the others. The
article pairs the pathologies and the indices (table 10
page 19).
The conclusion could be: if you want to add returns
month after month, choose the log-returns (but do not
add the log-returns of individual stocks to hope to get
that of a portfolio), if you want to “add” the returns
of stocks to get that of a portfolio, use the active re-
turns (but never add them month after month). If you
hesitate, choose the log-returns.

Wavelet compression, determinism
and time series forecasting

I. Kaplan, 2003
The author presents a new way of assessing the nois-
iness (or volatility) of a time series: the percentage
of compression (say, on a 64-element moving window)
obtained by lossless wavelet compression.
Let us first recall what wavelet compression is. We
start with a time series and we want to approximate
it with a “simpler” function (yes, it sounds like regres-
sion). We first try to approximate it by a constant (a
horizontal line); then, we take the residuals, cut them
into two parts (the first half of the series and the last
half) and try to approximate each part by a constant.
And we iterate.
At each step, instead of approximating the data with a
horizontal line, we can use a more complicated function
(a line, a single sine wave – there are other less clas-
sical functions, called wavelets, with better theoretical
properties).
This can be interpreted as: at each scale, a good fore-
cast of xn is 1

2 (xn−1 + xn+1).

Article and book summaries by Vincent Zoonekynd 1029/1044

The idea of lossless compression is to start with an
integer-valued time series, allow only integer coeffi-
cients and retain all the coefficients.
One can measure the “complexity” or the “compress-
ibility” by counting the number of bits in the resulting
set of integer coefficients (the binary code of an inte-
ger n requires dlog2 ne bits). Low values means low
noise and high predictability.
Remark: lossy compression removes the low-amplitude
noise and thus cannot estimate the overall amount of
noise.
Remark: the author notes that the compressibil-
ity is reliably approximated by the number of bits
of the first difference, which is easier to compute
(sum(log(diff(x))/log(2)), in R).

Signal processing for everyone
G. Strang (2001)

There are three kinds of Fourier transforms:

• The Fourier series expansion, that turns a (peri-
odic) function into a sequence of coefficients;

• The Fourier transform, that turns a function (in
L2) into another function;

• The Discrete Fourier Transform (DFT), that
turns a discrete signal (a sampled function, a se-
quence) into a periodic function (a function on
the circle S1),

(xn)n∈Z 7−→ X(ω) =
∑
n

xne
−inω.

The sampled signal and its DFT contain the same in-
formation, they are just two different ways of looking
at the same data; when we look at the sampled signal,
we say that we are in the time domain, when we look
at its DFT, we are in the frequency domain.
In the real world, you never study a continuous signal:
you sample it at discrete points and study the result-
ing sequence – hence our interest in the DFT. But we
might lose information if the sampling frequency is too
low: for instance, the following sampled signal

x

co
s(

x)

could come from one of the following continuous signals

x

co
s(

x)

x

co
s(

x)

this is called aliasing. We usually assume that the sig-
nal has no components with a frequency higher than
half the sampling rate (or, equivalently, that we sample
at a frequency higher than twice the highest frequency
in the signal – this is called the Nyquist frequency: any-
thing above that is lost by the sampling).
It would be nice if we could recover the signal from
its samples, if we could interpolate it – under the as-
sumption that the signal has no component of fre-
quency higher than the sampling frequency, this is
reasonable. One would expect a formula of the form
x(t) =

∑
angn(t) where the an are coefficients com-

puted in a complicated way from the sampled function
and the gn are functions – actually, things are even
simpler: the coefficients in Shannon’s formula are the
sampled values themselves,

x(t) =
∑
n

x(nT) · sinc t− nT
T/π

where sinc is the sine cardinal function,

sinc t =
sin t

t
.

A filter is a way of transforming a sampled signal into
another sampled signal. To study a filter, one first
applies it to simple signals such as: a constant, a lin-
ear function, an impulse, an alternating sequence or a
pure sinusoidal signal xn(ω) = einω. The filters may
(or not) have the following properties: linear, time-
invariant, of finite length, low-pass (the low frequen-
cies are (mostly) preserved, the high-frequencies are
(mostly) discarded), high-pass, causal (they do not
peer into the future), they can preserve constant sig-
nals, linear signals, etc.
Linear Time-Invariant (LTI) filters are linear filters
that do not change the frequency of pure sine waves,
i.e., xω 7−→ H(ω)xω, i.e., a sine wave is only changed
in its amplitude and phase, i.e., the filter is diagonal-
izable in the basis of pure sine waves. The function
H : S1 −→ C that describes the changes in amplitude
and phase is called the frequency response.
We can now examine a few filters. First, the Moving
Average (MA) is a lowpass filter,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w

|H
(w

)|

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
3

−
2

−
1

0
1

2
3

w

A
rg

 H
(w

)

Article and book summaries by Vincent Zoonekynd 1030/1044

the Moving Difference is a high-pass filter,

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w

|H
(w

)|

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
3

−
2

−
1

0
1

2
3

w

A
rg

 H
(w

)
A linear filter can be seen as a convolution; in the fre-
quency domain (recall that it means that we replace
the sampled signal by its Discrete Fourier Transform),
this becomes a multiplication – multiplication by the
frequency response H(ω).
The article then becomes more complex and explains
how to build filters. Ideally, we would like to have fil-
ters that look like

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w

|H
(w

)|

but this is impossible with finite-length filters: the best
filter we can design will show ripples around the transi-
tion band, either very high but localized ripples (Gibbs
phenomenon) or (better), ripples of the same moderate
amplitude everywhere (equiripple fiilter, Remez algo-
rithm).
The last part (two thirds) of the article focuses on
wavelet transforms, that can be implemented as a filter
bank.

high-pass //

signal
11ccccccc
--[[[[[[[[high-pass //

low-pass
11cccccc
--[[[[[[
low-pass //

The signal is divided into high and low frequencies, the
low frequencies are divided into…(we do not divide the
high frequencies further: they contain mainly noise –
uninteresting information – but we could: we would
get wavelet packets).

Bayesian model selection in social research
A.E. Raftery (1995)

(This is the article accompanying the bicreg code – a
very good and readable introduction to bayesian meth-
ods.)
Bayseian testing has the following advantages:

• It works with large samples. In classical hypoth-
esis testing, the choice of the significance, α, is
based on empirical remarks for samples of 30 to
100 observations that suggest α = 0.01 to 0.05;

but what if our sample is larger? We should de-
crease α (we never do), but how do we balance
significance and power?

• It is simpler: instead of having to consider two
numbers, sigificance (α) and power (β, which is
often forgotten), we only have one (the Bayes fac-
tor).

• It allows multiple tests, e.g., for model selec-
tion; with p-values, we have to transform the p-
values, using the Bonferroni correction (designed
by someone who assumed the observations were
independent and who did not understand the no-
tion of percentage but well-suited for people with
a 4-operation (no “power” operation) calculator)
or the Sidak one (that assumes that the observa-
tions could be independent): this is pretty awk-
ward.

• It handles model uncertainty, we do not have to
choose a single best model if none stands out.

• It can compare non-nested models.

• It is symetric: the answer of classical hypothe-
sis testing is either “we reject H0” or “we do not
reject H0 yet”; the answer of bayesian hypoth-
esis testing is “there is weak/strong/very strong
evidence for H”.

The main problem with hypothesis testing is the choice
of the prior distributions. However it only contributes
as O(1/n) of the final result: for large samples, it is
not important.
We can compare two models with:

P (Model1|data)
P (Model2|data)

=
P (data|Model1)
P (data|Model2)

× P (Model1)
P (Model2)

i.e.,

posterior odds = Bayes factor B12 × prior odds.

They also detail (with heuristic non-mathematical ar-
guments) the BIC approximation:

logP (data|model) = maximum likelihood−d
2
log n+O(1)

where d is the number of parameters in the model and
n the number of observations. This yields

2 logB12 ≡ χ2
LRT,12 − df12 log n

where χ2
LRT,12 is the likelihood ratio test statistic (aka

deviance, it is the difference of the loglikelihoods of the
models) and df12 = d1 − d2.
Actually, we have two definitions of BIC, that only dif-
fer by an additive constant:

BIC = χ2
LRT with the saturated model − d log n

BIC′ = χ2
LRT with the null (empty) model − d log n

Article and book summaries by Vincent Zoonekynd 1031/1044

Here are a few rules of thumb to interpret the Bayes
factor or the BIC difference:
BIC difference Bayes factor Evidence

2–6 3–20 positive
6–10 20–150 strong
> 10 > 150 very strong

One can convert BIC differences into p-value thresh-
olds, but this depends on the sample size (e.g., strong
evidence: n = 20, α = 0.05; n = 100, α = 0.01;
n = 10000, α = 0.001 – they give a complete table).
The article also details Occam’s window for model
selection (strong version: retain the data-supported
and parsimonious models; symetric version: retain the
data-supported models – the symetric variant performs
better).
The bayesian (i.e., BIC-based) approach may also be
useful when we want to select one best model: it works
better (out-of-sample) than p-values or stepwise regres-
sion.
The conclusion mentions the model uncertainty prob-
lem and BMA – which surpasses bootstrap (bagging).
I have not read the comments after the article.
While reading articles about bayesian methods, you
may stumble upon the following vocabulary.

• Non-informative prior: When choosing the prior
distribution, we sometimes want to include as lit-
tle information as possible in it (because we do
not have this information). We may choose, for
instance, a Cauchy distribution with a large dis-
persion parameter.

• Improper prior: Sometimes, we would even like
to choose a “uniform distribution on R”: this is
not a probability distribution, but it may work.
A non-L1 “density” function is called an im-
proper prior. (Actually, it does not work that
well: prefer a proper prior.)

• Conjugate prior: The conjugate family of priors
is a family of probability distribution functions
for which the computations are tractable – this
depends on the problem at hand, more precisely
on the likelihood function – if you do not do the
computations by hand, forget about this notion.

Stock return predictability: a bayesian model
selection perspective

K.J.M. Cremers
The author tackle the variable selection problem (for
a 15-variable regression model of stock returns) with a
bayesian approach.
Contrary to other articles that dismiss the issue of
choosing the prior distributions by taking a “diffuse”
one, this article examines

• the interpretation of those prior distributions, as

the inverstor’s belief (or not) in the predictability
of the returns;

• the effects of these prior distributions on the re-
sults: there are no major qualitative differences,
in both the skeptic and confident case, the pos-
terior distribution suggests the returns are pre-
dictable from half a dozen variables.

They also performed out-of-sample tests: choosing the
best model brings no reliable forecast, while a Bayesian
Model Average (BAM) has a very small predictive
power.
This could be improved by removing some restrictions
(normality, linearity, parameter stability) and intro-
ducing lagged variables.

Choosing factors in a multifactor asset pricing
model: a bayesian approach
J. Ericsson and S. Karlsson

Bayesian modeling goes as follows: you have a model
whose parameters you want to “estimate”; you start
with an a priori distribution of the parameters; you
use the data to compute the a posteriori distribution
of the parameters given the data. You can have several
different models if you choose an a priori probability
for each of them. The differences with the frequentist
approach are:

• You have (and use) an a priori distribution on
the parameters and/or models (if you do not have
this informationm you may cheat and use a dif-
fuse prior);

• The result is not an estimation of the parame-
ters (that would be a single number) but the dis-
tribution of these parameters – the classical es-
timates may be obteined from this distribution,
by taking the expectation (unbiased estimator)
or the mode (Maximum Likelihood Estimator) –
but the whole distribution provides more infor-
mation.

This article is less badly written than the preceeding.
They consider the variable selection problem in the lin-
ear regression of a stock return (or the returns of N
stocks) with respect to several economic variables and
several benchmark returns. The bayesian approach
(with diffuse priors) gives a probability for each of these
models. The interesting point is not (as the authors
claim) the ability to choose the best model, but the
ability to detect model uncertainty: indeed, the prob-
ability of the best model can be pretty low. I can see
several causes to that model uncertainty:

• Some of the models are very similar or, at least,
give similar predictions, and we do not have
enough data to distinguish between them (this
is the theoretical foundation of Bayesian Model
Averaging);

Article and book summaries by Vincent Zoonekynd 1032/1044

• The best models are different but wrong, by the
same amount (this is reality).

The article also details the 15 factors used in the study.

Thick Modeling
C.W.J. Granger and Y. Jeon

Extremely confusing article whose authors may not be
as competent as they ought to be:

• In their “portfolio example”, they do not say
where the data is, where the model is, which
parameters are estimated. Actually, they con-
sider several stocks, each known by the time se-
ries of its returns (this is the data). They as-
sume that the returns are normal and indepen-
dent and that their covariance structure is simple
and can be described by three parameters (this
is the model). They also define the quantity of
interest: the composition of the optimal portfolio
one can build with these stocks.
But their confusion goes further: this is not
Bayesian Model Averaging (we would need sev-
eral models) but a classical bayesian method: we
have an a priori distribution of the model param-
eters, we use the data to compute their a poste-
riori distribution and then the a posteriori distri-
bution of the quantity of interest.

• They confuse “noise” (what appears in a model)
and “residuals” (what appears at the end of a re-
gression – the residuals are an estimation of the
noise.

• They seem to think that Maximum Likelihood
can be used to compare models: you only use
it when facing a single model (or for tests, with
nested models).

• They suggest to perform Bayesian Model averag-
ing with an equally-weighted trimmed-mean, as
if they had never heard of MCMC.

FlexMix: a general framework
for finite mixture models

and latent class regression in R
F. Leisch (JSS 2004)

The EM (Expectation Maximization) algorithm is used
to fit models with missing data, such as finite mixture
models (for instance z~x*y, where only x and y are
known and z is qualitative). It works as follows:

• Choose an a priori estimate of the model param-
eters;

• (E-step) Replace themissing values by their ex-
pected values, assuming that the model parame-
ters are correct;

• (M-step) Estimate the parameters by MLE
(Maximum Likelihood Estimation), assuming
that the missing values have the value inferred
at the previous step;

• (E-step) ...

• (M-step) ...

• etc.

There are already some R packages to do that:

• mclust (for mixtures of gaussians);

• fpc (for mixtures of regressions);

• mmlcr (for mixtures of latent-class regression).

FlexMix encompasses the general linear models (Pois-
son regression, etc.) and is more configurable : you can
provide your own model and write your own M-step.

iPlots
S. Urbanek and M. Theus (DSC 2003)

Interactive graphics should provide colour brushing and
linked highlighting: the authors provide a framework to
do so, for simple graphics (histograms, barcharts, scat-
terplots), implemented with SJava (but the user need
not know anything about Java). It might be easier to
use than GGobi (and prettier), but it lacks its multi-
dimensional capabilities.

Synergy, issue 3, 2000
The Coil Contest is the European equivalent of the
KDD Contest (but the KDD Contest is still alive). The
conclusions of that issue are that for real-world prob-
lems, they suggest to try different algorithms (“look
beyond your pet algorithm”) and to use a rigorous
methodology (you can afford a crappy algorithm, but
not a crappy methodology).
This issue also contains an article about wavelets, fo-
cusing on the combination of wavelets and “soft” al-
gorithms (fuzzy logic, neural networks, genetic algo-
rithms).
Do not expect to learn anything reading this – they
provide interesting real-life examples, though – even
one with high-frequency financial data.

Using Perl for Statistics: Data Processing and
Statistical Computing

G. Baiocchi (JSS, 2004)
This long and detailed article presents Perl as a glue
language for statistics, navigating between remote data
(web), statistical libraries (R, various Perl modules)
and presentation tools (LATEX), performing tasks such
as data retrieval, transformation, validation and recod-
ing. They suggest using Windows (why?) and Emacs
(or SciTE, which also exists under Windows).

Article and book summaries by Vincent Zoonekynd 1033/1044

They list and assess the quality of various Perl statis-
tical modules: reproductibility, reliability, benchmark-
ing – the main problem is the Random Number Gen-
erator (RNG): avoid the default one and prefer MT or
TT800.
They also mention matrix handling modules, PDL (a
Perl package allowing one to manipulate matrices as
easily as if they were scalars – like Matlab or R –,
whose large graphical capabilities are not mentionned)
and even Win32::OLE (to talk to the R DCOM server).
As many people claim to be a Perl guru after just a few
hours, as the articles covers a lot of subjects, one could
have feared that the author does not master some of
them – this is not the case. It seems to be a good
presentation of Perl, aimed at statisticians.

Kernlab – an S4 package for kernel methods in
R

A. Karatzoglou et al. (JSS, 2004)
There are three R packages dealing with kernel meth-
ods: e1071 (which uses libsvm), klaR (which uses
SVMlight) and kernlab, with which you can add new
kernels in R (with no need to dive into C or C++ code)
and new algorithms (though many are already imple-
mented).
The article starts by recalling the notion of S4 classes
(with S3 objects, the class is merely an attribute, only
used for method dispatching; with S4 classes, all ob-
jects of a given class have the same “slots” and methods
are attached to the class – but if you just want to use
S4 classes, the main difference is that $ became @) and
namespaces. It then lists the kernels and algorithms:

• SVM regression, classification (with 2 or more
classes, but also with just one class: “novelty de-
tection” or “outlier detection”);

• Relevance Vector Machine (a bayesian, weighted
SVM regression);

• “Gaussian processes” (?);

• A Google-type ranking algorithm based on a net-
work constructed with the kernel distance;

• kernel PCA, kernel CCA, clustering based on a
kernel PCA.

The package also provides an interior point quadratic
optimizer (most optimization algorithms (e.g., the sim-
plex algorithm) examine the boundary of a convex sub-
set of a high-dimensional space, because we know that
the solution is on this boundary; but in high dimen-
sion, the boundary is huge and some algorithms are
trying to take a “shortcut” through the convex: they
are called “interior point” algorithms).

Wavelets in Statistics: a review
A. Antoniadis (1997)

This document is rather old and assumes that the
reader is familiar with the theory behind wavelets
(Besov spaces, etc.). Yet, the conclusion was enlighten-
ing, presenting “recent or future” developments (with
no details):

• Non-paramnetric tests;

• Regression with irregularly spaced points (“lift-
ing scheme”: one can define wavelets adapted to
the sample points), non gaussian noise;

• Jump detection;

• Wavelet packets.

State Space Modeling in Macroeconomics and
Finance using S+FinMetrics

E. Zivot at al. (2002)
This is the documentation of the SsfPack part of
S+FinMetrics, containing a lot of examples (Recur-
sive Least Squares (RLS), CUSUM test (the cumula-
tive sum of the residuals should have zero mean and a
variance proportional to time; we can plot those cumu-
lative sums of residuals and the confidence intervals),
ARMA), with code – but it is rather useless if you do
not have S-Plus and S+FinMetrics.

Searching for alpha, the importance of
revenues and cash flow estimate revisions in

stock selection
J. Gadaut et al. (Citigroup, 2004)

Analysts can provide us with a few estimations for each
stock:

• estimated earnings (very commonly used);

• estimated revenue;

• estimated cash flow.

The changes in those estimates (“revisions”) can help
us select outperforming stocks. Actually, it suffices to
look at the breadth, i.e., the number of revisions. This
strategy works better with the cash flow, continental
Europe and low-capitalization values, but is is sector-
dependant.
New accounting standards changes are likely to in-
crease the earnings estimates volatility and hence its
usefulness; the other estimates may help.

Option Pricing under Model and Parameter
Uncertainty using Predictive Densities

F.O. Bunnin et al. (2000)
This article (which I have not read) gives another ex-
ample of Bayesian Model Averaging (BAM).
The theoretical price of an option is the expectation
of its discounted payoff. To perform this computation,
we assume that:

Article and book summaries by Vincent Zoonekynd 1034/1044

• We know the model describing the price of the
underlying (usually the Black–Scholes model,
which is known to be wrong);

• We know that the model parameters are con-
stant (this is precisely the reason why the Black–
Scholes model is wrong: the parameters are not
constant (“clustered volatility”));

• We know those parameters (while different esti-
mations of the volatility, such as the implied or
the historical volatility, give different results).

With BAM, we can simultaneously consider several
models (with constant or stochastic volatility) and take
into account the uncertainty on the parameters; as a
result, we get a distribution of theoretical prices.

Bayesian Model Averaging: A Tutorial
J.A. Hoeting et al. (1999)

This article is a more comprehensive, detailed presen-
tation of Bayesian Model Averaging (BMA) and its al-
gorithms.
Here are a few means of averaging over the set of all
models:

• Do not consider all the models but just the “best”
and those close to it (a slightly different variable
selection, a different error structure, etc.).

• Occam’s window suggests not to consider all
the models but only the parsimonious and data-
supported ones, i.e., the models M ∈ M such
that

– pr(M |Obs) > (1− ε) Max
N∈M

pr(N |Obs)

– there is no smaller model N M that bet-
ter fits the data, i.e., such that pr(N |Obs) >
pr(M |Obs).

Those models are enumerated by a Branch and
Bound (B&B) algorithm (for small, simple prob-
lems).

• For larger problems, one can use the Markov
Chain Monte Carlo (MCMC) algorithm to sam-
ple from the set of all models – this is called
Markov Chain Monte Carlo Model Composition
(MCMCMC or MC3).

• Orthogonalized model mixing (?).

The integrals (the posterior probability of the models)
can be computed by

• explicit formulas for some (simple) classes of
models;

• approximations (Laplace method);

• replacing pr(y|M,Obs) by pr(y|M, θ̂MLE,Obs).

One may remark that these ideas allow us to compare
completely unrelated models. If a model is embed-
ded in the other, we can use a Likelihood Ratio (LR)
test or the AIC, if not we can use the BIC approx-
imation. Here, we have other approximations (actu-
ally, the Laplace approximation often coincides with
the BIC one).
For linear regression, the choice of a model comprises:

• choice of variables;

• transformations: Box–Cox, ACE (Alternating
Conditionnal Expectation: a family of non para-
metric transformations), broken lines (ACE often
yields broken lines);

• outliers, using a model of the form y = bx + ε
where ε is a mixture of N(0, σ2) with proba-
bility 1 − p and N(0,K2σ2) with probability p,
with p the proportion of outliers and K � 1 the
variance-inflation parameter.

They also detail survival analysis and graphical mod-
els.
But how do we fix the prior model probabilities? One
can set

pr(M) =
∏
j

πδj (1− π)δj

where π is the probability of including a variable (with
π < 1

2 , we put a penalty on larger models) and
δ ∈ {0, 1} denotes the presence or absence of variable
j in model M . Another solution is to ask an expert of
the domain to forge “imaginary data”.
There are other approaches to model averaging:

• Bootstrap both the data and the model selection
(the results are poorer than those of BMA);

• “Minimax Multiple Shrinkage Stein Estima-
tor” (?);

• Bagging;

• Stacking (?);

• Boosting (weighted bagging).

The article concludes with two very detailed real-life
examples and is followed by a few comments.

Article and book summaries by Vincent Zoonekynd 1035/1044

Methodology for Bayesian Model Averaging:
an Update

J.A. Hoeting (2002)
When performing a regression (or any other statistical
analysis), we are confronted to the choice of a model
(e.g., the choice of a few variables to use as predictive
variables, among dozens of variables). Oftentimes, the
data do not suggest a single best model. To overcome
that model uncertainty, one can do the computation
(e.g., we may want to compute a forecast) for each
model, compute the “probability of each model given
the data”, and average over the models.
More formally, let

M ∈M : the models
Obs : the observed data
y : the parameter to be estimated,

or the variable to be predicted
pr(M) : prior probability of model M

pr(θ|M) : prior distribution of parameter θ in model M

pr(y|Obs) =
∑
M∈M

pr(y|Obs,M) · pr(M |Obs) (1)

pr(M |Obs = pr(Obs|M) · pr(M)∑
N∈M

pr(Obs|N) · pr(N)
(2)

pr(Obs|M) =

∫
θ∈Θ

pr(Obs|M, θ) dθ. (3)

To use such an approach, one has to overcome some
problems:

• How to choose the prior probabilities?

• How to compute the integrals?

• How to deal with the large number of models?

For the first point, I have no clue; for the second, one
uses ad hoc, model-dependent approximations; for the
third, one uses Monte Carlo Markov Chains (MCMC)
to sample in the set of models.
BMA can be applied, for instance, to the following sets
of models:

• Linear models, with a different choice of vari-
ables, a different choice of transformations, a dif-
ferent selection of outliers;

• Non-parametric regression models;

• Spacial models (but I do not know anything
about spacial models...);

• Generalized Linear Models (GLM);

• Graphical models;

• Classification trees (this is very similar to bag-
ging);

• Survival analysis.

The article mentions a few S-Plus packages to per-
form BMA (apparently, they do not work under R
in a straightforward way (they use undocumented
internal S-Plus functions) and they have not been
ported to R); a more comprehensive list is on the
BMA home page, http://www.research.att.com/
~volinsky/bma.html.
To sum up, the advantages of BMA are:

• Takes model uncertainty into account (if there is
no model uncertainty, it is useless; it is more use-
ful when there are many variables, many useless
variables and multicolinearity problems);

• Better forecasts;

• Less over-optimistic confidence intervals (more
classical model selection precedures use the same
data twice: first to select the model, then to es-
timate the quantities of interest).

Time Series in Finance:
the array database approach

D. Shasha
A time series database should have the following de-
sireable properties:

• Handling of regular time series, with missing val-
ues;

• Converting a time series to a given frequency,
taking its type into account (for level time series,
just take the latest value; for flow time series,
take the sum since the last timestamp), in both
directions (lower frequency: sampling, higher fre-
quency: interpolation) – this also includes turn-
ing an irregular tinme series into a regular one;

• Perform basic computations (cummulative sum,
moving average, correlation, regression, acf, etc.)
and user-defined ones;

• Sequences are first-class objects, i.e., you can
play with them as easily as if they were numbers;

• Bitemporality: each event has two timestamps,
the time at which it is valid and the time at which
it was entered into the database; in other words,
the databse keeps track of how the errors were
corrected. Thus, when backtesting (i.e., when
doing tests with historical data), we can use ei-
ther the “historical data we should have had at
the time, had the database been error-free and
up-to-date” or the “historical data we actually
had at the time, including the errors and the de-
lays” – the former could in fact assume that we
had the information before everyone else, which
is not very realistic...

Article and book summaries by Vincent Zoonekynd 1036/1044

http://www.research.att.com/~volinsky/bma.html
http://www.research.att.com/~volinsky/bma.html

They detail several systems: FAME (Forecasting,
Analysis and ModEling), S-Plus, SAS and KSQL (K
is an array language – it makes me think of stored pro-
cedures in R under PostgreSQL).
The document also presents many concrete and de-
tailed use cases; it ends with a large (but perhaps a bit
outdated) bibliography on sequence similarity, subse-
quence matching, pattern matching.

Evanesce Implementation in S-Plus
FinMetrics Module

Insightful Corp., 2002
Copulas are a mean of describing the dependance rela-
tion between two random variables (X,Y) abstracting
the peculiarities of the distribution of X and Y – we
only focus on the dependance relation. The idea is to
transform X and Y so that their distribution be uni-
form in [0, 1]. A copula is the joint distribution of the
transformed variables.
This document lists more than a dozen copulas. Let
us mention the simplest ones.

• Gaussian copulas (obtained when (X,Y) is gaus-
sian, with correlation ρ);

• Mixture-of-gaussians copulas;

• Extreme value copulas: this is a max-stable fam-
ily of copula; they verify

∀u, v C(ut, vt) = C(u, v)t;

the Gumbel copula

C(u, v) = exp−
(
(− log u)δ + (− log v)δ

)1/δ
is one of them;

• Archimedean copulas,

C(u, v) = φ−1 (φ(u) + φ(v))

for some function φ – this reduces the study to
functions of a simgle variable. The Gumbel cop-
ula is archimedean.

They only present the notion of copulas for pairs of
variables: actually, it can be generalized in higher di-
mensions. This is especially easy for families of copulas
defined by a function of a single variable such as the
archimedean copulas:

C(u1, . . . , un) = φ−1 (φ(u1) + · · ·+ φ(un)) .

You might also want to read Taken to the limit:
simple and not so simple loan loss distribution,
P.G. Schönbucher, http://www.wilmott.com/pdfs/
040404_schon.pdf.

Orla, a data flow programming system
for very large time series

G. Zumbach and A. Trapletti
(Olsen & Associates)

Flow programming languages (see Advanced Program-
ming Language Design, by R. A. Finkel, for a descrip-
tion of the main families of programming languages
and their characteristic features) are quite rare outside
eletronics. The authors have developped a framework
based on the flow programming paradigm to process
time series. Their data is stored in a “time series data
base” (aka temporal database) that can be queried in a
very simple way, close to:

SELECT FX(USD,*)
BETWEEN 2004-01-01 AND now;

(actually, it does not look like SQL, but it is as straight-
forward – they call that syntax SQDADL (Sequencial
Data Description Language).

Iterative Incremental Clustering
of Time Series

J. Lin et al.
Clustering algorithms such as k-means (that tries to
finsd spherical clusters) or EM (that tries to find el-
liptical clusters – more precisely, it is a model-based
clustering algorithm that assumes the data is a mix-
ture of (say) gaussians – in R, it is implemented in the
mclust module) require a good first estimate of the
cluster centers, that is progressively refined.
Instead of considering the whole data set right away
(it may have a lot of variables), one may perform a
clustering on the first coefficients of the Haar wavelet
transform; then on the coefficients of levels 1 and 2,
using the preceding results as initial estimates; etc.
The results are better that with a “batch” algorithm
(we are less likely to find in a local extremum) – and
it is faster.

To vary or not to vary?
Weights, breaks, factors and sampling
frequencies in predictive return models

R. Masih (Goldman Sachs, 2004)
Factors vary with time. They suggest two ways of ac-
comodating those changes.
First, you can take the same factor at several frequen-
cies (daily, weekly, monthly) and use all of them in the
same regression (MIDAS: MIxed DAta Sampling).
Second, you can take several simple models (linear
regression with a simgle predictive variable, for all
the possible variables) and combine the models, with
“bayesian methods” (they are very vague about those).
They also speak of “breaks”, but I know neither how
they find them nor how they use them.

Article and book summaries by Vincent Zoonekynd 1037/1044

http://www.wilmott.com/pdfs/040404_schon.pdf
http://www.wilmott.com/pdfs/040404_schon.pdf

Quantitative Portfolio Strategy
Peculiarity of the Japanese Stock Market

T. Suwabe (Goldman Sachs, 2004)
Investor sentiment, defined as

NIS =
Buy volume− Sell volume

Total volume ,

estimated with intraday data, is correlated with future
return.
Incidentally, they also define the notion of “factor re-
turn” (the coefficients of a factor, in a regression, when
you do the same regression at various times); remark
that they are autocorrelated in Europe and the US but
not in Japan or in Asia; remark that Japanese returns
have a negative autocorrelation that tends quickly to
zero while the NIS has positive autocorrelation and
tends slowly to zero.

Wavelets, Approximation and
Statistical Applications
W. Härdle et al., 1997

The following figure represents a wavelet transform:
the curve in the first plot is the signal to be described;
the rectangles (or vertical segments) represent the coef-
ficients; the lower left part tells us that in the left part
of the interval, high frequencies dominate; the top right
part tells us that in the right part of the interval, low
frequencies dominate.

0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

y

Standard transform Daub cmpct on least asymm N=10
Translate

R
es

ol
ut

io
n

Le
ve

l

9
8

7
6

5
4

3
2

1
0

0 128 256 384 512

This is very similar to the decomposition of periodic
functions into Fourier series, but we have one more
dimension: the frequency spectrum is replace by a
frequency-location plot (an other advantage is that
there is almost no Gibbs effect – very convenient when
the signals are not periodic or stationnary...)
The general idea is the following: find an orthonor-
mal basis of L2 whose elements can be interpreted in
terms of “location” and “frequency”. For example (this
is called the Haar basis):

V0

W0

W1

This gives a decomposition

L2 = V0 ⊕
⊕
j

Wj

where V0 is generated by the father wavelet φ and its
translations and the Wj are generated by the mother
wavelet ψ, its translations and rescalings.

φ = father wavelet

ψ = mother wavelet

The choice of the basis depends on the applications:
will you be dealing with smooth (C∞) functions? con-
tinuous but non-differentiable functions, with a fractal
nature? functions with jumps? The convergence speed
of the Wavelet decomposition will depend on the ade-
quacy of the basis and the data studied.
More technically, the construction of a basis goes as
follows.

1. Choose a father wavelet φ.

2. Set φjk(x) = 2j/2φ(2jx−k), for j ∈ N and k ∈ Z
– this is f translated by k and shrinked j times.

3. Set Vj = Vect {φjk, k ∈ Z} and check that:

Article and book summaries by Vincent Zoonekynd 1038/1044

4. (φ0k)k∈Z is an orthonormal system (a Hilbert ba-
sis of V0;

5. ∀j ∈ Z Vj ⊂ Vj+1;

6.
⋃
j⩾0 Vj = L2.

7. Then, set Wj = Vj+1 	 Vj so that L2 = V0 ⊕⊕
j⩾0Wj .

We then want to find a mother wavelet ψ ∈ W0

such that if we set

8. ψjk(x) = 2j/2ψ(2jx− k),

9. then (ψjk)k∈Z is a basis of Wj .

10. Then (finally), we have a basis of L2:

· · · φ0,−2 φ0,−1 φ0,0 φ0,1 φ0,2 · · ·
· · · φ1,−2 φ1,−1 φ1,0 φ1,1 φ1,2 · · ·
· · · φ2,−2 φ2,−1 φ2,0 φ2,1 φ2,2 · · ·

...

When conditions 4, 5 and 6 are satisfied, we say that
we have found a MultiResolution Analysis (MRA).
For the forgetful reader, they recall some basic facts
about Fourier Analysis – if we just want to use
wavelets, we do not need it: it is used to check that
the abovementioned properties are satisfied, when you
build your own wavelet basis.
The book then gives a first construction of wavelet
bases, from a Riesz basis (it is not that hard, but we
do not really need to know what it is): we get the
Battle–Lemarié father wavelets.
Apart from the first one (the Haar father wavelet), they
are not compactly supported.
The book then goes on to the Daubechies’s construc-
tion of wavelet bases (based on Fourier analysis). This
time:

• father and mother wavelets have a compact sup-
port;

• the first moment of the father wavelet are van-
ishing.

−1 0 1 2

−
0.

5
0.

0
0.

5
1.

0

Wavelet Picture (Enhanced)

Daub cmpct on least asymm N=10
x

ps
i

Let us list the main (families of) wavelet bases men-
tionned in the book:

• Haar;

• Battle–Lemarié;

• Daubechies;

• Coiflets (the father wavelet has vanishing mo-
ments);

• Symlets (more symetric than the Daubechies
wavelets).

(There are two technical chapters on Sobolev and
Besov spaces, which I have not read.)
Let us now mention some statistical applications of
wavelets:

• Approximation of possibly irregular functions
and surfaces (there is a reduced Gibbs phe-
nomenon, but you can circumvent it by using
translation-invariant wavelets.)

• Smoothing.

• Density estimation: just try to estimate the den-
sity as a linear combination of wavelets, then re-
move/threshold the wavelets whose coefficients
are too small (usually, the threshold is chosen as
0.4 to 0.8 times the maximum coefficient; we also
use block thresholding: we do not remove simgle
coefficients but whole blocks of coefficients). For
instance, density estimation of financial returns:
we can clearly see the fat tails. Kerlel methods do
not perform that well, unless they use adaptive
bandwidth.

• Regression: this is very similar, we try to find
a function f (linear combination of wavelets, we
threshold the smaller coefficients) such that

∀i yi = f(xi) + noise.

If xi = i/n with n = 2k for some k ∈ Z, it works
out of the box otherwise, you have to scale and
bin the data.

• Gaussian White Noise Estimation: find a func-
tion f such that

dY (t) = f(t) dt+ εdW (t) t ∈ [0, 1].

• Jump detection.

• Time series.

• Diffusion Models (?).

• Image compression, indexing, reconstruction,
etc.

Problems:

Article and book summaries by Vincent Zoonekynd 1039/1044

• The authors do not seem to know the symbols ∀
and ∃ – they systematically omit them, hoping
that the reader will pick the right one;

• The book is rather old and therefore does not
mention recent developments – it is good as an
introduction to the subject, but should be com-
plemented by other documents.

For more about wavelets, check http://www.wavelet.
org/ and its tutorials.

Computational Methods for Time Series
G. Kitagawa, T. Higuchi, S. Sato

Linear State Space Models (SSM) are used to model
non-stationnary time series; but when the series have
jumps, outliers or involve non-gaussian distributions,
we can turn to non-linear state space models:

xn ∼ Qn(·|xn−1)
yn ∼ Rn(·|xn).

The extended Kalman filter used in this context is only
an approximation (a Taylor series, in fact) and it still
assumes that the distributions are gaussian. If we do
not want this approximation or if our distributions are
really non gaussian, we can use the exact formulas:

p(xn|yn−1) =
∫
p(xn|xn−1)p(xn−1|yn−1) dxn−1

p(xn|yn) =
p(yn|xn)p(xn|yn−1)∫
p(yn|xn)p(xn|yn−1)

.

We have integrals when we go from n to n + 1, but
actually, we want to go from 1 to N + 1 – we have in-
tegrals of integrals of... of integrals: all in all, we have
to integrate over a high-dimensional space. We resort
to Monte Carlo integration. This is called a Parti-
cle Kalman Filter (the idea is similar to that of using
Monte Carlo simulations to price exotic options).
We usually estimate the model parameters by Maxi-
mum Likelihood (MLE), but this assumes that those
parameters are constant – often, this is not a reason-
able assumption. To solve this problem, we can aug-
ment the model by adding the parameters to the list of
hidden variables: this is called a Self-Organizing SSM.
The articles also explains how the computations can
be parallelized, how the particles can be exchanged be-
tween the different runs (cross-over).

Pattern Recognition of Time Series
Using Wavelets
E. A. Maharaj

The wavelets coefficients of time series can be used to
estimate the “difference” (the distance) between two
time series. One can devise a test to check if the coeffi-
cients of two series are significantly different: compute

(wavelet coefficients of the first series)2
(coefficients of the other)2

and compare it with the distribution obtained by ran-
domly swapping the coefficients of the two series (they
did the test with 256 and 1024 coefficients). One could
use the resulting p-value to compute a distance between
time series.
Personnal remarks:

• One might use that to cluster time series (into
sectors, industries, countries, etc. – the interpre-
tation will be left to more economically-inclined
people).

• The coefficients may be similar but with delays
(one could replace the distance between x and y
by the minimum distance between delayed ver-
sions of x and delayed versions of y).

• Those delays can vary with time (a few days in
normal market situations, much less in a crash –
here, I should tell more about time warp distance
and dynamic programming – the idea is the fol-
lowing: compute a time-warp distance for each
level of the wavelets decomposition, then com-
bine these distances).

Random and Changing Coefficient Models
G.C. Chow, Handook of Econometrics (1984),

volume 2, chapter 21,
A survey article, with too many formulas to be enlight-
ening. A section presents various tests on those models
(such as “are the coefficients random or constant?”).

The Kalman Foundations of
Adaptive Least Squares

J.H. McCulloch, 2004
The model underlying a regression looks like

y = βx+ noise.

But in a financial context, the observations are ordered
(x1, y1), (x2, y2), . . . , (xn, yn) and the coefficient β may
(slowly) change with time. The model is then

β = random walk
yt = βtxt + noise.

This is a State Space Model, but a non-linear one.

βt+1 = βt + noise (hidden)
xt = noise (observed)
yt = βtxt + noise (observed)

It is called a Random Coefficient Model (there are
variants where β is stationnary) and the correspond-
ing non-linear Kalman filter is called Adaptive Least
Squares (ALS). This is a generalization of the Recur-
sive Least Squares alluded to above.
The article is full of formulas and thus not very read-
able.
Here are some simpler alternatives to ALS:

Article and book summaries by Vincent Zoonekynd 1040/1044

http://www.wavelet.org/
http://www.wavelet.org/

• Local Regression, i.e., for each point we do a
weighted regression with a null weight for future
observations (because we do not know them yet)
and an exponentially decreasing weight for past
observations; the difference with ALS is that we
have to choose the rate of decrease of the weights.

• A broken-line regression (it sounds appealing, es-
pecially if we look at real data, but unfortunately
it is not robust at all).

What Investors Can Learn
from a Very Alternative Market

R.N. Kahn, Financial Analysts Journal 60 5,
p. 17–21.

The article stresses the “importance of rigorous scien-
tific analysis to successful investing”.
“Investors (or baseball team managers) are irrational
in systematic and predictable ways:

• social interaction (herding);

• heuristic simplification (generalization from per-
sonnal experience, extrapolating from recent
events);

• self-deception (attributing positive outcomes to
one’s skill and negative outcomes to bad luck).”

The low liquidity of the baseball market makes the re-
sulting inefficiencies easier to spot and exploit.
(These ideas are presented and developed in the book
Moneyball, by M. Lewis (2003).)

Statistical Algorithms for Models
in State Space using SsfPack 2.2

S.J. Koopman, N. Shephard, J.A. Doornik
Econometrics Journal (1999) 2, p. 113–166

This article presents SsfPack, an Ox library for State
Space Model estimations (Ox is a C-like language for
matrix and time-series analysis, commercial, closed-
source and Windows-only – there is a limited Linux
version, available only to academic users). The SPlus
module “FinMetrics” uses SsfPack.
The article contains a lot of examples and has a dis-
tinctive bayesian flavor.
The first part presents various time series models that
may be expressed in state-space form: ARMA, struc-
tured model with seasonal and cycle components(

xt+1

yt+1

)
=

(
cos θ sin θ
− sin θ cos θ

)(
xt
yt

)
+ noise,

regression models (recursive least squares – we want to
find β such that yt = βxt + noise: take a first, ran-
dom, estimation α̂0 of β, consider the first observation
(x1, y1), refine the estimate α̂1, consider the second
observation, etc.), non-parametric cubic spline models
(not read).

The second part presents the implemented algorithms:
simulation, Kalman filter, smoother (in a filter, you
only use the information available up to time t to pre-
dict the hidden variable at time t, in a smoother, you
use all the information, even that posterior to the pre-
diction), a posteriori sampler (I think – it was not that
clear), likelihood computation

−nN
2

log(2π)− 1

2

(
log |Ft|+ v′tF

−1
t vt

)
(where n is the number of observations, N the number
of observed variables, |·| the determinant, vt the resid-
uals, Ft the variance of the residuals) – there is also a
“concentrated or profile log-likelihood”.

“We’re going to be a 90% Linux shop by 2006”
Linux Journal 127, November 2004, p. 48-50

These words are from Morgan Stanley.

Scientific Visialization with PoVRay
Linux Journal 127, November 2004, p. 62-67

PoVRay is a ray tracer, i.e., a program to draw 3D
scenes from a textual description. It can draw isosur-
faces, i.e., surfaces of the form f(x, y, z) = k, where
f is specified by an equation or a binary df3 file (8-
bit by default, but a patch extends this to 32-bit data
and another patch to HDF files, that contain several
functions). It is being used for meteorogogical data.

Maximum likelihood estimation of
mean-reverting processes

J.C.G. Franco
MLE of a mean-reverting Ornstein-Uhlenbeck process
(OU is a continuous analogue of an AR(1) time se-
ries, the MR version is used to model exchange rates
or the price of products with a fixed cost of produc-
tion) requires either maximizing a function of 3 vari-
ables or solving a (non-linear) system of 3 equations.
This article mixes these two approaches and reduces
the problem to that of maximizing a function of a sin-
gle variable.

Swingtum – A Computational Theory of
Fractal Dynamic Swings and Physical Cycles
of Stock Market in a Quantum Price-Time

Space
H. Pan

The market reacts to 4 types of fluctuations:

• dynamic swings (they have a fractal nature, have
multilevel trends, as Elliott waves for instance);

• physical cycles (year, month, week);

• abrupt momentum (news impact, chart pat-
terns);

• random walk (the rest, what we cannot predict);

Nothing really concrete:

Article and book summaries by Vincent Zoonekynd 1041/1044

• If the prices depend on several “forces”, then the
price variation is the “sum” of these “forces” (he
takes into account a stock “mass” , i.e., inertia);

• The prices are piecewise log-periodic,

p ∼ sin log t,

i.e., the rise is steeper that the fall (or conversely)
and the waves start and end at random instants;

• Hilbert transforms are important (I have no idea
why).

• “Multidimensionnal embedding” (yes, these
words are mentionned without any further ex-
plaination).

Yet, if we remove all the nonsense from this gibberish,
the article suggest to do exactly what we are doing:
look at the data, all the data, cluster it (empirically or
not, your clustering may/should be hierarchical) and
try to find a model (using the rationnal and irrational
beliefs investors are actually using, because their ac-
tions depend on that and the market responds to those
actions).

Bubbles, Crashes and Intermittency
in Agent-Based Market Models
I. Giardina and J.-P. Bouchaud

arXiv:cond-mat/0206222
A very readable article on the same subject. They
present a simplified model of financial markets:

• There are only two assets, a stock and a bond
(risk-free asset).

• Each agent has a predefined set of strategies.
He looks at the last m returns, compares them
with the risk-free returns, obtains a history bi-
nary vector of length m; a strategy is a func-
tion {0, 1}m −→ {buy, sell} (chartists do that).
The strategies are chosen at random with a bias,
P (“polarization”) towards “trend-following” or
“contrarian” strategies.

• There is also a “do nothing” strategy”.

• If the prices become too high or too low, the
agents revert to fundamental analysis.

• If an agent decides to invest, he only invests a
fraction g of his assets.

• Each strategy is rated with the number of
“successes” it would have yielded in the past
(weighted moving average).

• The prices depend on the number of actors will-
ing to buy/sell and on the market stiffness λ.

The consequences:

• The system has three states: oscillating (bubbles
and crashes), intermittent (irregular bubbles and
crashes) and stable.

• Only two parameters are important: polarization
P and g/λ.

• There are multiscale fluctuations (even though
the model is not multiscale).

• There is volatility clustering and long-term de-
pendance.

• A Tobin tax of a few basis points would have
no effect; A Tobin tax of a few percents have a
stabilizing effect.

Evolution Management in a Complex
Adaptative System

D.M.D. Smith, 2003
Detailed version of the preceeding article – still unread-
able but less empty.

Evolution Management in a Complex
Adaptative System: Engineering the Future

D.M.D. Smith and N.F. Johnson
arXiv:cond-mat/0409036

The article alluded to by the New Scientist article: un-
readable and empty.

Forecasting Stock Markets
New Scientist, 25th September 2004, p. 16

Presentation of agent-based models of stock markets:
they have the same properties as the actual stock mar-
kets (not new); furthermore, one can easily control
those markets (this is new). It could have applications
beyond finance (meteorology, pollution, terraforming,
etc.)

A Joint Review of Technical and Quantitative
Analysis of Financial Markets Towards a

Unified Science of Intelligent Finance
H. Pan

This article starts by a presentation of fundamental
analysis, technical analysis and quantitative analysis
of financial markets.
Fundamental analysis is the study of the accounting
variables tied to a given asset: the sources are irregu-
lar, not always reliable, the data are published with a
certain time lag, the accounting rules differ from coun-
try to country (which prevents comparison). Yet, au-
tomatic news monitoring could provide some insight (I
would like to hear more about the applications of NLP
(Natural Language Processing) in finance: is it really
used?).
Technical analysis is the study of the price and volume
times series and the quest of signs in those series.
The Dow theory of trends states that:

Article and book summaries by Vincent Zoonekynd 1042/1044

• There are three time scales (year, month, week);

• At each scale, the trends have 3 phases: accumu-
lation (knowledgeable investors buy/sell), pub-
lic participation (knowledgeable investors wait,
the public buys/sells), distribution phase (knowl-
edgeable investors sell/buy).

The Elliott thory of waves states that a trend (which
can be observed at various scales) looks like that:
(insert a picture)
The ratios of the price differences are believed to be Fi-
bonacci numbers or k/2n (this is an irrational belief).
The Gann theory of cycles and angles represents those
waves in a 2-dimensional space, price×time: if can be
analysed statically (one looks at the densest regions) or
dinamically (given the current region, which is the next
most probable region? – this is a Markov chain). Mar-
keting people, undeterred by the perspective of falling
in the “abuse of science” trap exemplified by the Sokal
affair, see an analogy between “price-time” and “space-
time”, and between the movements between the price-
time space and the electrons jumping between energy
levels – it may impress clients, though.
A technical analyst typically chooses a minimal set of
technical indicators:

• A market-mode indicator, indicating if the mar-
ket is in a trend or in a cycle, such as the “MESA
filter” (but we do not know what it is);

• A trend indicator (a moving average);

• A cycle indicator, such as RSI or Sinewave (again,
I do not know what it is);

• A volatility indicator, such as the 2σ Bollinger
bands;

• A market breadth indicator (again, I do not un-
derstand).

A technical analysts also tries to spot chart patterns,
at various time scales.
Quantitative finance has pointed out the following
facts:

• The distribution of returns is not normal, it has
fat tails, it sometimes looks stable (the Levy sta-
ble distributions are a family of distributions such
that if X1, . . . , Xn are iid and follow one of those,
then so does their sum X1 + · · ·+Xn – the most
prominent examples are the normal and Cauchy
distributions) (but this is contradicted by the
facts that the second moment is finite, or the
fact that the extreme value distribution follows
a power law); the longer the time scale, the more
normal the distribution looks;

• Clustered volatility, i.e., heteroscedasticity of re-
turns, can be accounted for by GARCH models;

• Stock prices have a fractal structure;

• Crashes can be modelled as phase transitions;

• Multiagent game models such as the Minority
Game or the Santa Fe Institute Stock Market
Model can explain some of these characteristics
of the distribution of returns.

The Swing Market Hypothesis states that the mar-
kets are sometimes efficients, sometimes not; in each
of these modes, they can have several regimes. There
are 4 types of fluctuations:

• dynamic swings (fractals, i.e., multilevel trends,
i.e., Elliott waves, with “power laws” and “log-
periodicity”);

• physical cycles (year, month, week);

• abrupt momentum (news impact, chart pat-
terns);

• random walks.

The good and the bad of value investing:
applying a bayesian approach

to develop enhancement models
R. Bird

“Value investing” means finding stocks that are mis-
valued by the market: if they are overvalued, we sell
them, if they are undervalued, we buy them. Various
ratios try to identify them: the article chose the book
to market, but any other would do.
The problem is that among those value stocks, most
will remain over- or under-valued – they were not real
value stocks, their price was that high or that low for
good reasons, the variables/methods we used to select
them were too coarse to identify those reasons.
One can use logistic regression with respect to various
fundamental variables to spot them – they do not take
all the available variables but only those (less than 30)
that were deemed important, according to previous ar-
ticles. But there are still too many variables to have a
reliable model. A simple approach would be to try to
select “the best” (or, at least, “a good”) model, both
simple and giving good predictions.
Instead, as we are not interested in the interpretation
of the model but mainly in its prediction, we can con-
sider several good models and compute their “average
forecast” – this is called bagging.
Here, they take all the models and use the MCMC al-
gorithm to average them – but this requires that we
affect a score to each model: the article does not tell
us how it is computed (actually, they are “just” using
Bayesian Model Averaging).
(Here, I should recall what “MCMC” means...)
The conclusions of the article are:

• the model changes with time;

Article and book summaries by Vincent Zoonekynd 1043/1044

• the model depends on the country (this is not sur-
prising, because the accounting rules, and hence
the variables, depend on the country).

Profitability, Earnings and Book Value
in Equity Valuation: A Geometric View

and Empirical Evidence
P. Chen and G. Zhang

The article compares the model presented in the pre-
vious article with actual data. In short,

value ∼ Book Value ∗ f(earnings),

where f is convex, increasing.

Accounting Information, Capital Investment
Decisions and Equity Valuation:

Theory and empirical Implications
G. Zhang

One may model the evolution of a company as follows:

Cash flow ct = κtst−1

Operating Efficiency κt = random walk
Assets st = γst−1 + it

Stock depreciation γ

Invertment it

Value Vt =
∑
s>t

PV E[net cash flow]

=
∑
s>t

PV E[ct − it]

Here, it is not specified: it depends on investment de-
cisions. To simplify the model, they limit the choices
to:

• stop investing;

• invest such that the value of the stocks st remains
constant;

• invest more (with a growth factor G).

The actual investment decision is then the one that
maximizes the value. After playing with the formulas,
it becomes

Vt = expected value if we maintain the activities
+ price of the option to stop operations at t+ 1

+ price of the option to expand the operations

and later, a function of the book value and the earn-
ings. The article examines the convexity of the for-
mula:

• V is convex;

• For steady-state companies, the value only de-
pends on the earnings, not on the book value.

The PB-ROE Valuation Model Revisited
J.W. Wilcox anf T.K. Philips, 2004

The P/B ROE valuation model is just another valua-
tion model (as the DDM, Discounted Dividend Model).
In short:

log(P/B) = α+ βROE.

They estimate α and β with a classical regression. The
fact that The P/B is above (respectively under) its pre-
dictive value does not necessarily mean that it is over-
valued (respectively undervalued): other factors could
account for the discrepancy.

Article and book summaries by Vincent Zoonekynd 1044/1044

