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Chapter 1: Univariate statistics

There are three equivalent ways of describing a univari-
ate distribution: the probability distribution function
(pdf, fX), the cumulative distribution function (cdf,
FX) and the characteristic function (φX(ω) = EeiωX)
– there is also the quantile function (F−1

X ), but it does
not usefully generalize to higher dimensions.

A location parameter (mean, median, mode) is defined
by affine equivariance; so are dispersion parameters:
for instance, the standard deviation, the MAD, the in-
terquartile range or the modal dispersion

MDis =
(
d2 ln fX
dx2

∣∣∣∣
x=ModX

)−1

.

The Z-score for a location and a dispersion parameters
is

Z =
X − LocX

DisX
.

The first chapter ends with a taxonomy of univariate
distributions: uniform, gaussian, Cauchy, Student, log-
normal, Gamma (a generalization of the χ2 distribu-
tion, often used as a prior for variance).

Chapter 2: Multivariate statistics

In a multivariate setting, there are still three ways of
representing a distribution: pdf, cdf and characteristic
function. A multivariate distribution can be factored
into 1-dimension distributions (the marginals) and a
“purely joint component” – the copula, defined as the
joint definition of its grades (the grade of a univariate
distribution being its uniformization).

The book fails to give a taxonomy of copulas, but pro-
vides a few examples:

– The copula of a log-normal distribution is a gaussian
copula;

– The Student T copula is not independant;
– The copula between prices and log-prices, or between

ratio-returns and log-returns, is trivial;
– The copula between a call option and its underlying

is trivial.

The copula is invariant under monotonic increasing
transfromations – e.g., replacing a stock by a call op-
tion has no effect.

A location parameter (mean, mode) is characterized by
affine equivariance:

Loc(a+BX) = a+B LocX

for all invertible affine transformations x 7→ a+Bx.

In dimension greater than 1, the median is not a loca-
tion parameter: it depends on a choice of coordinates.

A dispersion matrix is a symetric, positive matrix sat-
isfying the affine equivariance property:

DisSq(a+Bx) = BDisSq(X)B′

for all invertible affine transformations x 7→ a + Bx,
such as the covariance matrix or the modal dispersion:

MDisX = −
(
∂2 ln fX
∂x∂x′

∣∣∣∣
x=ModX

)−1

.

The Z-score is then:

Z =
√

(X − LocX)′(DisSqX)−1(X − LocX).

Any measures of location and dispersion define a fam-
ily of location-dispersion ellipsoids – for non-elliptical
distribution, this information is far from sufficient.
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For a more empirical/non-parametric/procedural ana-
logue of the location-dispersion ellispoid, check the no-
tions of bag plot and half-space depth.

The expected value and the variance are equivariant
with respect to not-necessarily invertible transforma-
tions: you can obtain the location-dispersion ellipsoid
of a portfolio from that of the market.

Higher-order statistics (HOS) can also be defined in
the multidimensional case, but they are tensors; how-
ever, the coskewness and the cokurtosis tensors can
be summarized in one overall index of symetry (for
coskewness) or tail thickness (for kurtosis) – but the
book does not tell us how...

The Schweizer–Wolff measure of dependence of two
(univariate) random variables is the Lp distance be-
tween their copula and the independant copula, nor-
malized to take values in [0, 1]; it is invariant under
monotonic (increasing or decreasing) transformations.

Measures of concordance, such as Kendall’s τ or Spear-
man’s ρ are only invariant under increasing transfor-
mations and take values in [−1, 1]; they change sign
under decreasing transformations; furthermore, being
zero is only a necessary condition for independance.

Correlation mixes marginal and joint features: it is
only an “affine measure of concordance”, it is changed
by monotonic transformations of the marginals: “One
might wonder why correlation is such a popular tool:
(...) for an important class of distributions [elliptical
distributions], the correlation completely defines the
dependance structure.”
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The taxonomy of multivariate distributions includes:
matrix-variate gaussian and T distributions, Wishart
(generalization of the χ2: it is the distribution of
X1X

′
1 + · · ·+XνX

′
ν , where Xi ∼ N(0,Σ) with ν > n).

Elliptical distributions are affine transformations of
spherically symetric distributions, which can be de-
scribed by a single univariate function: X ∼ El(µ,Σ, g)
has density

f(x) = |Σ|−1/2
g

(
(x− µ)′Σ−1(x− µ)

)
where g is a probability density generator : g > 0 and∫∞
0
vN/2−1g(v) dv <∞. For instance:

g(z) ∝ e−z/2 (gaussian)

g(z) ∝ (1 + z)−(1+N)/2 (Cauchy)

g(z) ∝
(
1 +

z

ν

)−(ν+N)/2

(Student)

(Notice that the gaussian pdf has an exponential de-
cay, while the Student or Cauchy pdf have a power law
decay.)

Alternatively, elliptic distributions can be recog-
nized from their characteristic function, φ(ω) =
eiω

′µψ(ω′Σω), for some suitable real-valued function
ψ.

When a stable distribution describes a phenomenon
(log-returns, risk, etc.) at horizon T , the compounded
distribution at horizon 2T , 3T , etc. is still in the
same family. Symetric-alpha-stable (sαs) distributions,
X ∼ SS(α, µ,mΣ), are defined as

φX(ω) = eiω
′µ exp

(
−

∫
RN

|ω′s|αmΣ(s)ds
)

where mΣ is a symmetric measure on the ellipsoid
s′Σ−1s = 1.

Beware, stable distributions are dangerous: they vi-
olate the central limit theorem (they have no second
moment).

When an infinitely divisible distribution describes some
phenomenon at horizon T , you can (under an inde-
pendance assumption) get the distribution at horizons
0 < t < T .

Chapter 3: Market invariants

To model a market, the author suggests to:

– Look for market invariants, i.e., iid random vari-
ables built from market data (if you see the market
as a machine to produce prices from iid noise, the
noise is a market invariant – some people speak of
innovations), recognized by looking (graphically) at
their autocorrelation and comparing their distribu-
tion in the first and last half of the sample; examples
include: log-returns for the equity market, changes
in yield to maturity for the fixed income market,
changes in (ATMF) implied volatility for the options
market;

– Model their distribution;
– Project their distribution to the investment horizon

(e.g., we could use daily data to invest on a monthly
horizon) – this can be done using the characteristic
function and is even easier with additive invariants
(such as log-returns);

– Transform the projected market invariant distribu-
tion into a market price distribution – even if that
transformation is not analytically tractable, one can
easily get the moments of the distribution of prices
– but be sure to keep track of the propagation of
estimation errors.

The quest for market invariants can involve dimension
reduction or variable selection, but this part of the
book is a bit confusing and the author fails to warn
the reader of the dangers of model selection.

Cointegration is mentionned, for the equity and fixed
income markets, but not detailed.

Chapter 4: Estimators

Depending on the amount of information available, you
will prefer shrinkage or bayesian estimates (very little
data), maximum likelihood estimators (MLE) (more
data) or non-parametric estimators (a lot of data).

The quality of an estimator can be measured as its
error (mean square error, MSE), its bias (average dis-
tance to the correct value) and its inefficiency (stan-
dard deviation, i.e., dispersion around its expected
value):

Error2 = Bias2 + Inefficiency2.

One can also consider the loss, i.e., the squared dis-
tance to the correct value (with respect to some
quadratic form) – contrary to the error, the bias or
the inefficiency, this is not a number but a random
variable. One can look at these quantities and dis-
tributions for a family of “stress-test distributions”, to
gauge estimation risk.
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The Glivenko–Cantelli theorem states that the empir-
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ical cumulative distribution function (ecdf) is a con-
sistent estimator of the cdf; this yields the benchmark
(non-parametric) estimator : just replace the cdf in the
definition of the quantity of interest by the ecdf; those
estimators are often a good starting point and can be
improved on (e.g.: sample mean and OLS benchmark
estimators are non-biased, while the variance bench-
mark estimator is).

Kernel estimators are obtained from the benchmark es-
timators by replacing the Dirac masses in the epdf by
gaussian kernels – i.e., we use a smoothed estimator of
the pdf.

MLE relies on the assumption that the distribution
from which the data is drawn is in a very small set of
(known) distributions (sometimes called the stress dis-
tributions): the MLE is the mode of the distribution
of the parameters given the data; it is asymptotically
unbiased, asymptotically gaussian, and asymptotically
attains the Cramer–Rao bound (i.e., it is the best un-
biased estimator – the book assumes you are already
familiar with those notions).

The MLE of the parameters of an elliptic distribution
(with a known probability density generator g) is a
weighted mean and weighted variance; the weights can
be computed (iteratively) using the Mahalanobis dis-
tance and the density generator. The book does not
consider the (semi-parametric) situation of an elliptic
distribution with an unknown probability density gen-
erator. Linear regression or principal components are
still amenable in the case of elliptic distributions.

In the gaussian case, the condition number, i.e., the ra-
tio of the smallest to the largest eigen value, measures
how close to a sphere the cloud of points is: if it is close
to 1, the problem is well-conditionned, if it is close to 0,
it is ill-conditionned.

An estimator is admissible if there does not exist an-
other estimator with a lower error for all the stress-test
distributions. Benchmark estimators or MLE estima-
tors tend not to be admissible: their bias is low but
their inefficiency large (especially when the condition
number is close to one); shrinkage estimators have a
larger bias and often a much smaller inefficiency, re-
sulting in a lower error.

For intance, the sample mean, with gaussian data, in
dimension at least 2, is not admissible: the James–
Stein shrinkage estimator

µ̂Stein = (1− α)µ̂ + αb

α =
1
T

Nλ̄− 2λ1

(µ̂− b)′(µ̂− b)

where T is the number of observations, N the dimen-
sion, λ1 the largest eigenvalue (we do not know it: it
will have to be computed from an estimator of the vari-
ance matrix), λ̄ the average eigen value and b any vec-
tor, is admissible. The prior b can be chosen arbitrarily
(e.g., 0), or using “prior” information, or as the grand
mean

b =
1′µ̂
N

1

or as the volatility-weighted grand-mean (Jorion esti-
mator)

b =
1′Σ̂−1µ̂

1′Σ̂−11
1.

(Strictly speaking, this is not prior information, since
it is extracted from the same data set; but it is much
less volatile.)

Dispersion estimators can be assessed with the Frobe-
nius loss

Loss(σ̂, σ) = tr
(
Σ̂− Σ

)2

.

The sample covariance matric scatters the eigen values
away from λ̄ (this is easily seen when the true eigen val-
ues are all equal: the sample eigen values will be more
dispersed, the largest eigen values will be too large and
the smallest eigen values too small): it sqeezes and
stretches the location-dispersion ellipsoid; the estima-
tion worsens the condition number of the market in-
variants. One can shrink the eigenvalues towards their
mean (Ledoit):

Σ̂s = (1− α)Σ̂ + αĈ

Ĉ =
1
N

N∑
n=1

λ̂n

α = Min

1,
1
T

1
T

∑
t tr(xtx

′
t − Σ̂)2

tr(Σ̂− Ĉ)2


Ledoit shrinkage also works for regression.

Robustness

Here are a few measures of robustness:

– the leave-out-one Jackknife;
– the sensitivity curve (add an observation instead of

removing it; this is a function of the added obser-
vation; in particular, we are interested whether this
function is bounded);

– the influence function (the infinite-sample limit of
the sensitivity curve): generalize your estimator so
that it be a function of a distribution:

Ĝ = G[
∑
t

δ(xt)]

and consider its Gâteaux derivative (or directional
derivative: contrary to the usual (Fréchet) deriva-
tive, we do not require it to be linear, i.e., the deriva-
tive in the direction ~u+~v need not be the sum of the
derivatives in the directions ~u and ~v):

IF(x, f, Ĝ) = lim
ε→0

1
ε

(
Ĝ[(1− ε)f + εδ(x)]− Ĝ[f ]

)
.

For maximum likelihood estimators (MLE), one can
show that

IF(x, f, θ̂) = A
∂ ln fθ
∂θ

∣∣∣∣
θ=θ̂[f ]

A = −

[∫
∂2 ln fθ(x)
∂θ ∂θ′

∣∣∣∣
θ=θ̂[f ]

f(x) dx

]−1

.
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The influence functions of the gaussian MLE of location
and dispersion are not bounded: they are not robust;
for other elliptical distribution, they are.

More generally, M-estimators (or generalized MLE ) are
obtained by modifying the log-likelihood so that the in-
fluence be bounded; M-estimators of location and dis-
persion are actually weighted means and variances.

Outliers

The breakdown point of an estimator is the proportion
of outliers it can sustain while maintaining a bounded
influence function.

The minimum volume ellipsoid (MVE: find the small-
est ellipsoid containing x% of the data, for various val-
ues of x; if there is a jump in the volume, we know there
are outliers and we know how many) and the minimum
covariance determinan (MCD: the minimum value of
the determinant of the samoke cavariance matrix con-
taining x% of the data) have a high breakdown point
and are usually computed in a greedy and approximate,
by discarding the observations one at a time.

Missing data

To compute location and dispersion parameters in pres-
ence of missing values, one can do better than discard-
ing incomplete observations. In dimension 2, if the time
series are complete but have different lengths, there is
an explicit formula (Stambaugh). In the general case,
use the expectation-maximization (EM) algorithm.

Beware: the EM algorithm is not a data imputation
algorithm. Indeed, since the values are replaced by
their expected values, they will have a much lower dis-
persion; in particular, you cannot naively use them to
compute a dispersion parameter (the EM algorithm
explains how to compensate for that in the case of
the variance – some books forget that compensation
in their presentation of the algorithm).

Weighted estimates

Since more recent observations contain less stale infor-
mation, they can be given a linear weight, either with a
moving window or exponential smoothing – to find the
devcay factor, just put it in the log-likelihood formula
for µ̂ and Σ̂ – this is actually consistent with a GARCH
model.

If the location is known to be close to zero (with re-
spect to the dispersion), you can assume it actually is
zero: this is a shrinkage estimator.

One can also estimate location, dispersion or any other
parameter using a pricing model, i.e., choosing the pa-
rameters so that the model-implied price be as close as
possible from the market price.

Chapter 5: Evaluation allocations

The investor’s objective can be expressed in monetary
terms: usually the final wealth or the change in wealth
(when the absolute value of wealth does not matter)
or the difference between the final wealth and a bench-
mark.

Dominance

An allocation α strongly dominates an allocation β if
Ψα > Ψβ a,s, where Ψα is the investor’s objective com-
ing from allocation α (it is a random variable). Strong
dominance (also called zeroth-order dominance) rarely
happens and relies on the join distribution (Ψα,Ψβ).

Weak dominance (or first-order dominance) is defined
as

∀ψ ∈ R FΨα
(ψ) 6 FΨβ

(ψ)
where F is the cumulative distribution function.

pdf cdf

Weak dominance

Equivalently:

∀p ∈ [0, 1] QΨα
(ψ) > QΨβ

(ψ)

where Q is the quantile function.

Second-order stochastic dominance (SSD) is defined as

∀ψ ∈ R E[Ψα − ψ)−] > E[Ψβ − ψ)−],

i.e., for every benchmark ψ, the underperformance of
α is not as bad as that of β. Equivalently:

∀ψ ∈ R I2[fΨα ](ψ) > I2[fΨβ
](ψ)

where

I2[fΨ](ψ) = I[FΨ](ψ) =
∫ ψ

−∞
FΨ(s)ds.

These definitions can be generalized to order-q domi-
nance – but these are not easily interpretable and still
fail to yield a total order.

Satisfaction

Instead of trying to assess the whole distribution of the
investor’s objective Ψα, one can try to summarize an
allocation α into a single number S(α), an index of
satisfaction. We might want it to satisfy some of the
following properties:

– money-equivalence: it should be measured in units
of money;

– sensibility, i.e., consistence with strong dominance;
– consistence with stochastic dominance;
– constancy: if the distribution of the investor’s objec-

tive is concentrated in a single point, Ψα = δψ, then
S(α) = ψ;

– positive homogeneity of degree 1 (the investor’s ob-
jective already is):

∀α ∀λ > 0 S(λα) = λS(α)

in particular, this gives the contribution of each asset
(Euler’s formula):

S(α) =
N∑
n=1

αn
∂S(α)
∂αn
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– translation invariance (translation by a deterministic
allocation): if Ψb = δψb

, then S(α+ b) = S(α) + ψb;
– super-additivity (if you focus on risk and not satis-

faction, you will call this subadditivity):

∀α, β S(α+ β) > S(α) + S(β)

– comonotonic additivity (two allocations α and β are
comonotonic if their objectives are increasing func-
tions of one another, for instance a stock and a call
option on it): if α and β are comonotonic, then
S(α + β) = S(α) + S(β), i.e., the index of satis-
faction is option-proof;

– concavity (results from homogeneity and superaddi-
tivity) , i.e., the index of satisfactionpromotes diver-
sification;

– risk aversion: if Ψb = δψ and EΨα = 0 then
S(b) > S(b+ α).

Examples include:

– the expected value of the objective, S(α) = EΨα;
– the Sharpe ratio

SR(α) =
EΨα

SdΨα

(it is not expressed in monetary units; it is homoge-
neous of degree 0, not 1);

– the certainty-equivalent;
– the value at risk;
– expected shortfall.

Certainty-equivalent

Given a (continuous) increasing utility function u, the
certainty equivalent is

CE(α) = u−1E[u(Ψα)];

this is the value of the investor’s objective of a deter-
ministic investment having the same expected utility
as α – i.e., this is the expected utility expressed in
monetary units thanks to the (inverse of the) utility
function:

– it is only homogeneous for power utility, u(ψ) =
ψ1−1/γ , γ > 1;

– it is not comonotonic additive (except for a linear
utility);

– it is not superadditive (except for a linear utility);
– in general, it is neither nor convex (in particular, the

convexity of the utility function is not linked to the
convexity of the certainty equivalent);

– if the utility is concave, it is risk-averse.

For theoretical purposes, the utility function can be
written

u(ψ) =
∫
g(θ)H(θ)(ψ) dθ, g > 0,

∫
g = 1

where H is the Heaviside function (this generates all
increasing functions) or

u(ψ) =
∫
g(θ) Min(ψ, θ) dθ, g > 0,

∫
g = 1

(which generates all concave functions).

(I do not understand the explanations about the in-
vestor’s subjective probability.)

A utility function is entirely determined (up to a posi-
tive affine transformation) by its Arrow–Pratt absolute
risk aversion,

A(ψ) = −u
′′(ψ)
u′(ψ)

.

The Pearson specification includes the following par-
ticular cases:

– hyperbolic absolute risk aversion (HARA, always
concave):

A(ψ) =
1

γψ + ζ

– exponential utility: u(ψ) = − exp−ψ
ζ

– quadratic utility (beware, it is not sensible for ψ >
ζ):

u(ψ) = ψ − ψ2

2ζ

– power utility: u(ψ) = ψ1−1/γ

– logarithmix utility: u(ψ) = lnψ
– linear utility: u(ψ) = ψ.

The Arrow–Pratt risk aversion also yields approxima-
tions of the certainty equivalent and the risk premium:

CE(α) ≈ EΨα − 1
2A(EΨα) Var Ψα

RP(α) = E[Ψα]− S(α)
= E[Ψα]− CE(α)

≈ 1
2A(EΨα) Var Ψα

In prospect theory, utility functions are S-shaped: con-
cave (risk-averse) for profits and convex (risk-prone)
for losses.

Quantile (VaR)

The value at risk (VaR), defined as

Qc(α) = QΨα(1− c),

is

– not consistent with second-order dominance (the def-
initions of second-order dominance and of the ex-
pected shortfall are very similar);

– consistent with first-order dominance;
– not super-additive: it fails to promote diversity;
– comonotonic additive (it is not fooled by derivatives);
– positive homogeneous;
– neither concave not convex;
– not risk-averse.

The VaR can be computed with: a lot of data, or a
gaussian assumption, or the Cornish-Fisher expansion
(which is an approximation of the quantile function,
but it need not be particularly accurate for the ex-
treme values we are interested in), or extreme value
theory (EVT) (which requires enough data in the tails
– but in the 1% tail, you only have 1% of your data).
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Coherent indices, spectral indices, expected
shortfall

An index of satisfaction is coherent if it is

– consistent with strong dominance;
– positive homogeneous;
– translation invariant;
– superadditive.

This implies money-equivalence and concavity. The
one-sided moments are coherent (but they are not
comonotonic additive).

A coherent index of satisfaction is spectral if it is es-
timable (?) and comonotonic additive. This implies
weak stochastic dominance and risk aversion.

Spectral indices are of the form

Spcφ(α) =
∫ 1

0

φ(p)QΨα(p) dp

where φ, the spectrum, is decreasing, φ(1) = 0 and∫ 1

0
φ = 1.

Chapter 6: Optimizing allocations

Portfolio construction proceeds as follows:

– Define the investor’s objective;
– Define his index of satisfaction;
– Model the market invariants;
– Project the market invariants to the investment hori-

zon;
– Gather other information: legal constraints, trans-

action costs;
– Maximize the investor’s satisfaction – if there are

several indices of satistaction, maximize the first sub-
ject to bounds on the others.

The author details an example with a closed form so-
lution: total wealth, certainty equivalent for the expo-
nential utility, gaussian prices (the certainty equivalent
is then quadratic), linear transaction costs, constraint
on the value at risk.

The classes of optimization problems that can be ef-
ficiently solved include, from the most specific to the
most general:

– Linear programming (LP);
– Quadratic programming (QP);
– Quadratically-constrained linear programming

(QCLP);
– Second-order cone programming (SOCP: the ice

cream constraints);
– Semi-definite programming (SDP);
– Cone programming (up to here, interior point meth-

ods are available);
– Convex programming.

Most of the time, e.g., with value at risk or certainty
equivalent, we are not that lucky: the optimization
problem is not convex. The mean-variance approxima-
tion can make this problem amenable:

– Express the satisfaction as a function of the moments

of the market distribution,

S(α) = H(E[Ψα],CM2(Ψα),CM3(Ψα), . . . )

(this is obtained from a Taylor expansion of the
utility function or the Cornish–Fisher expansion of
the value at risk); the problem is now infinite-
dimensional:

Rn // RN // R
α

� // (E[Ψα],CM2(Ψα), . . . ) � // S(α)

– Assume that the index of satisfaction is well approx-
imated by the first two moments

S(α) ≈ H̃(E[Ψα],CM2(Ψα))

– Since the index of satisfaction is consistent with weak
stochastic dominance, the optimal allocation is on
the efficient frontier

α(v) = Argmax
α∈C

Var Ψα=v

E[Ψα], v > 0

– You now just have to maximize the index of satis-
faction on the efficient frontier.

The approximation of S(α) from the first two moments
is valid in the following cases:

– The market prices Ψα are elliptical (e.g., gaussian),
so that their distribution is entirely determined by
the first two moments (regardless of the index of sat-
isfaction); this is wrong for derivatives and even for
stock prices (it has to be prices, not their logarithms)
– but for short horizons, this is good enough an ap-
proximation;

– The index of satisfaction really depends only on the
first two moments (regardless of the distribution of
the market invariants).

Contrary to what many people believe, the risk aver-
sion parameter λ in E[Ψα]− λVarΨα is not a feature
of the investor and it does not define an index of satis-
faction: its value also depends on the market – in some
extreme cases, it only depends on the market and not
on the investor; choosing it beforehand yields alloca-
tions inconsistent with strong dominance.

The mean-variance approximation is a two-step pro-
cess: first compute the (approximate) efficient frontier,
then maximize the index of satisfaction on this fron-
tier. The one-step mean-variance approximation, i.e.,
fixing the “Lagrange multiplier” λ, is only valid under
very strong assumptions, e.g., gaussian prices and ex-
ponential utility.

The following problems are usually considered equiva-
lent, but this is only the case for affine constraints:

Maximize E[Ψα] such that VarΨα = v

Maximize E[Ψα] such that VarΨα 6 v

Minimize Var Ψα such that E[Ψα] > e.

Chapter 7: Bayesian estimators

Bayesian statistics differs from classical inference in two
regards:
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– we provide some prior information as input;
– the output is not a single number of vector but a

whole distribution – the posterior.

A classical-equivalent estimator is the single number
(or vector) obtained as a location parameter of the pos-
terior distribution – e.g., maximum a posteriori (MAP)
estimators, Bayes–Stein estimators, shrinkage estima-
tors.

For some prior and model distributions (called con-
jugate distributions), the posterior is computable in
closed form; for instance, the normal inverse Wishart
distribution specifies the joint distribution of (µ,Σ) as

µ|Σ ∼ N

(
µ0,

Σ
T0

)
Σ−1 ∼W

(
ν0,

Σ−1
0

ν0

)
and the data is

Xt |µ,Σ ∼ N(µ,Σ).

Similar computations can be performed with factor
models.

The prior distribution (or its location parameter) can
be defined by

– inverting the unconstrained allocation function θ 7→
α(θ) = ArgmaxSθ(α), i.e., finding the θ for which
the market weights maximize the satisfaction index
(the Black–Litterman prior is of this kind) – you
might want to add a few constraints, though;

– a (constrained) maximim likelihood estimator.

Chapter 8: Evaluating allocations under uncer-
tainty

An allocation is not a single set of weights but a func-
tion (a random variable)

available information 7−→ weights.

The cost of randomness is the difference between the
satisfaction of the best portfolio given perfect insight,
i.e., the portfolio with the highest ex-post returns (it
is likely to contain a single security) and the optimal
(diversified) portfolio.

The opportunity cost (OC) is the difference between the
satisfaction of the optimal allocation (assuming perfect
knowledge of the market distribution) and that of the
allocation actually chosen; constraint violations should
be expressed in monetary terms (often in an ad hoc
way).

Cost of randomness and opportunity cost are random
variables.

Prior allocation, i.e., allocation that does not use the
information available, is the analogue of a fixed esti-
mator: it is extremely biased.

Sample-based allocations are not too biased but have a
very scattered opportunity cost (they are inefficient):

the optimal allocation function is very sensitive to its
inputs and leverages estimation error.

Chapter 9: Shrinkage allocation decisions

Bayesian allocation maximizes the expected utility of
the investor’s objective, but the expectation is com-
puted with respect to the posterior distribution; this is
the analogue of a classical-equivalent bayesian estima-
tor and the opportunity costs are less scattered than
with sample-based allocation. Bayesian methods are
non-linear shrinkage methods.

Black–Litterman allocation shrinks, not the market pa-
rameters, but the market distribution, towards the in-
vestor’s prior. The investor provides a random variable
V that depends on the as-yet unknown market invari-
ants X, for instance, V ∼ N(w′X,φ2), where X are
the market returns, w′ a portfolio on which the investor
has a view and φ2 the confidence of this view. Given
a realization v of V and the knowledge of the distri-
bution of V |X, we can compute the Black–Litterman
distribution X |V = v and then the corresponding
Black–Litterman allocation decision. The priorX need
not be the market invariants, but can be an “official”
model. In the gaussian, linear case, the computations
are straightforward.

The Mahalanobis distance between the market expec-
tations µ and the Black–Litterman expectations µBL

follows a χ2 distribution, which can be turned into a
p-value, to spot views in contradiction with the prior.
To identify which view is responsible, just differentiate
this p-value with respect to each view.

Resampled allocation proceeds as follows:

– Estimate the market parameters θ̂ from the data;
– Create nes samples, by parametric bootstrap;
– For each sample q, estimate the market parameters
θq and the corresponding optimal allocation αp;

– Average those optimal allocations.

However, resampled allocation can violate investment
constraints (e.g., the maximum number of securities)
and are difficult to stress-test – see Scherer’s book for
more arguments against it.

Robust allocation replaces point estimates of market
parameters by uncertainty regions: Argmax

α
S(α, θ) be-

comes
Argmax

α
Min
θ∈Θ

S(α, θ).

This depends on the choice (size, shape) of the uncer-
tainty regions; with elliptical uncertainty regions, the
problem is a second order cone program (SOCP).

Since bayesian methods output a whole distribution in-
stead of a single value, robust bayesian allocation uses
the corresponding location-dispersion ellipsoids as un-
certainty sets; the radius of the chosen ellipsoid is the
investor’s avertion to estimation risk. Under gaussian
assumptions, the robust, bayesian, (two-step) mean-
variance framework is amenable to explicit computa-
tions.
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