
Estimation of value at risk using Johnson’s
SU -normal distribution

P. Choi (2001)

Value at risk (VaR) estimation can be univariate (you
only have the returns of a portfolio) or multivariate
(you know the returns of the constituents of your port-
folio, i.e., you want to estimate a quantile of

∑
i witrit,

where r and perhaps also w is a random variable); it
can be conditional (e.g., conditional heteroskedasticity,
but you could also have models with conditional third
or fourth moments; the article also mentions exponen-
tial smoothing (RiskMetrics), which is a special case
of IGARCH) or unconditional (extreme value theory
(EVT)).

The article studies VaR estimation in a GARCH model
with SU -normal innovations.

A random variable Y is SU -normal if it is of the form

Y = sinh(λ+ θX)

where θ > 0 and X is standard gaussian. Those distri-
butions can be skewed and have fat tails.

Who needs hedge funds?
A copula-based approach

to hedge fund return replication

H.M. Kat and H.P. Palaro (2005)

Hedge fund replication usually tries to mimic the dis-
tribution of the returns of a hedge fund, but hedge
funds are often used as an overlay to an already exist-
ing portfolio: the authors suggest to also replicate the
dependency between the hedge fund and the existing
portfolio, as follows.

– Infer the joint distribution of the hedge fund and
the existing portfolio using copulas (gaussian, Stu-
dent, Gumbel, Cook-Johnson (aka Clayton), Frank,
symmetrised Joe-Clayton (SJC)) and marginal dis-
tributions (gaussian, Student, Johnson SU );

– Among all the payoff functions, find the cheapest
that produces this distribution (this is Dybvig’s pay-
off distribution pricing model (PDPM) generalized
to a 2-dimensional payoff distribution); it suffices
to consider path-independent payoff function (any
payoff distribution generated by a path-dependent
payoff function can also be generated by a path-
independent payoff funcion); if the Sharpe ratio of
the underlying asset is high enough and the corre-
lation with the investor’s portfolio low enough, the
payoff function will be non-decreasing;

– Price and find a replicating strategy for this payoff
function.
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Reinforcement learning: a survey
L.P. Kaelbling et al.

Journal of artificial intelligence research (1996)

In reinforcement learning, the agent has to make
choices and receives some feedback on those choices.
Contrary to supervised learning, he is not told which
action would have been the best; furthermore, the con-
sequences of an action need not be immediate.

The agent typically tries to maximize one of the follow-
ing quantities (they do not lead to the same optimal
policies):

– N -step optimal control

E

[
N∑

t=n+1

rt

]
, n ∈ J0, NK

– N -step receding horizon control

E

[
n+N∑
t=n+1

rt

]

– Infinite-horizon discounted model

E

[ ∞∑
t=1

γtrt

]

– average reward model (this one does not penalize for
long learning times)

lim
N→∞

E

[
1
N

N∑
t=1

rt

]

Asymptotic convergence results are useless: a fast con-
vergence to a near-optimal solution is better than a
sluggish convergence to the optimal.

Algorithms have to make a trade-off between explo-
ration (of the possible choices and their consequences)
and exploitation.

Dynamic programming can be used to maximize those
performance measures.

With a 1-step, immediate-reward model, one can use
greedy strategies, Boltzman exploration or interval-
based techniques (for each action, store the number of
trials and the number of successes and compute a con-
fidence interval on the probability of success). These
algorithms can be adapted to multi-step, immediate-
reward problems.

Markov decision processes (MDP) can be used to model
delayed reward. If the decision process were known (we
do assume that the states and transition probabilities
are known, though), we could compute the value of
each state for the discounted model and, from there,
the optimal policy.

Value iteration estimates the value of each node and
derives a strategy (since a strategy is a finite object, it
converges in a finite number of steps); policy iteration
directly estimates the policy.

But we do not know the model.

The adaptive heuristic critic algorithm is similar to pol-
icy iteration, but the value function is computed itera-
tively, from the TD(0) algorithm:

V (s)← V (s) + α(r + γV (s′)− V (s))

where r is the reward, s the current state, s′ the next
state. The TD(λ) algorithm also updates states that
were recently visited.

The Q-learning algorithm (if you do not know which al-
gorithm to implement, use this one) estimates Q(s, a),
the expected discounted reinforcement of taking action
a while in state s, with the TD(0) or TD(λ) algorithm,
with a decreasing α. You must first explore the states
(but the algorithm is robust) and, after convergence,
you can act greedily.

Other algorithms (certainty equivalence, Dyna, priori-
tized sweeping learn the model at the same time as the
optimal policy: they make a better use of the data and
converge faster.

In case of very large state spaces, you can aggre-
gate some states and solve a coarser problem (multi-
grid methods, state aggregation); you can also replace
the mappings (transition probabilities, value functions,
policies, etc.) by a simpler representation obtained by
supervised learning.There are other generalization al-
gorithms.

Design of an FX trading system using
adaptive reinforcement learning

M.A.H. Dempster
Carisma (2007)

Recurrent reinforcement learning (RRL), i.e., a recur-
rent 1-layer neural network, can be used to turn returns
time series into a buy/sell/wait order, so as to maxi-
mize a moving-average Sharpe ratio,

EWMA(returns)
EWMA(returns2)

.

This used to work, one decade ago. One can try to
improve the model as follows:

– Do not only consider past returns: add in techni-
cal indicators – actually, this does not add anything:
RRL already extracts all the relevant information;

– Replace the transaction costs parameter by some-
thing larger than the bid-ask spread, so as to favour
trades with larger returns;

– Fix the instability in the neural network weights by
shrinking them;

– Update the weights twice at each step, i.e., replace
wt = f(xt, wt−1) with wt = f(xt, f(xt, wt−1)).

– Add a risk and performance management layer in
the algorithm, with a stop-loss and a shutdown pro-
cedure (to stop investing when the algorithm be-
comes unstable after a regime switch); the suggested
risk measure takes into account both total loss and
the size of the individual losses (this is similar to
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Omega):

Σ =
∑
ri

2
−∑

ri2+
;

– Update the neural network weights at each step,
but do not update the meta-parameters (transaction
cost, trading threshold, etc. – there are five of them)
that often;

The following improvements have not been tested yet:

– Add other information, such as the order flow or the
limit order book;

– Use the algorithm on several currency pairs; gener-
alize the risk control accordingly;

– Apply the algorithm to market making instead of
trading.

Computer science and game theory
J.Y. Halpern

arXiv:cs/0703148

Complexity plays a role in game theory:

– Agents can have bounded rationality, i.e., have lim-
ited computational power (e.g., they can be finite
automata); this can lead to cooperation in the pris-
oner’s dilemma;

– Many problems about Nash equilibrium are NP-
hard;

– One cannot design a non-dictatorial voting scheme
immune to manipulation by voters, but this manipu-
lation can be made computationnally unreasonable;
there are similar problems in combinatorial auctions
(auctions where you can bet on bundles of objects;
but pricing 2N objects is too long);

– Agent-based games (e.g., Byzantine agreement are
very similar to distributed computing, networking
protocols, fault-tolerance, mediator-less cryptogra-
phy.

This (concise) article also mentions random graphs,
bayesian and Markov networks, reinforcement learning.
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Forecasting with many predictors
J.H. Stock and M.W. Watson (2005)

Handbook of economic forecasting

The authors review several classes of forecasting al-
gorithms: forecast combination (without any discus-
sion of bagging or boosting), bayesian model averaging
(BMA, rarely used, but better than an equal-weighted
combination of predictors), empirical Bayes methods
(the prior is not a prior, it comes from the data) and
dynamic factor models (no mention of biased estima-
tors or regularization paths).

In a dynamic factor model (DFM), unobserved AR fac-
tors f and their lags explain the observed variables Xit:

ft + Γ1ft−1 + · · ·+ Γkft−k = ηt

Xit = λi0ft + · · ·+ λi`ft−` + ut

while a (static) factor model would be

Xit = λift + uit.

Dynamic factor models can be reformulated as static
factor models and estimated by maximum likelihood;
there are also principal-component-analysis-based ap-
proximations.

The article interprets this model in terms of the spectral
density matrix without bothering to define it.

Dynamic principal component analysis (PCA) is simi-
lar; the corresponding latent variables can be obtained
by performing a PCA dimension reduction on the spec-
tral density.

Principal components at work: the empirical
analysis of monetary policy with large datasets

C.A. Favero et al. (2002)

Comparison of two estimators of dynamic factor
models, based on static (time-domain) and dynamic
(frequency-domain) PCA (principal component analy-
sis): the performance is similar, but dynamic PCA is
more parsimonious.
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Moment problems
via semi-definite programming:

applications in probability and finance
P. Popescu and D. Bertsimas (2000)

The Markov, Chebychev, Chernoff inequalities provide
bounds on some probabilities P [X ∈ Ω] given some mo-
ments or joint moments of arbitrary random variables.
More generally, one can try to solve the following op-
timization problem:

Max{E[φ(X)] : ∀i E[fi(X)] = qi, X : Ω −→ Rm }

For instance, in finance, one can look for bounds on the
price of an option given the moments of the underly-
ing and/or other option prices (we only have to assume
that the option price is the expected discounted payoff
under the risk-neutral measure; we do not know any-
thing about that measure except that it is a probability
measure).

The feasibility of that optimization problem can be ex-
pressed in terms of positive semi-definitiveness – e.g., in
a multi-dimensional context, the second centered mo-
ment (the variance matrix) should be positive semi-
definite.

In the dual problem (under reasonable conditions,
there is a strong duality theorem), the expectation dis-
appears but we have an inifite number of constraints:

Minimize y′q
such that ∀x ∈ Ω y′f(X) > φ(x).

Fortunately, those constraints can often be expressed
as semi-definite constraints and the problem can be
solved.

In higher dimensions, beyond the second moment, the
problem of finding optimal bounds is NP-hard.

This is a review article: there are more detailed publi-
cations by the same authors.

Applications of
second order cone programming

M.S. Lobo et al. (1998)

Many optimization problems can be recast as sec-
ond order cone programs (SOCP): quadratically-
constrained quadratic programs (QCQP), optimization
problems in which the objective is a sum or max of
norms; FIR (finite impulse response) filter design, ro-
bust linear programming, robust least squares, robust
portfolio optimization.

Interior-point methods adapted to SOCP are faster
than those adapted to the more general semidefinite
programs (SDP).

Second-order cone programming
F. Alizadeh and D. Goldfarb (2002)

More detailed article on the same subject.

Second order cone programming approaches
for handling missing and uncertain data

P.K. Shivaswamy et al.
Journal of machine learning research (2006)

In the support vector machine (SVM) binary classifi-
cation optimization problem

Minimize 1
2 ‖z‖

2 + C
∑
i

ξi

such that ∀i yi(〈w, xi〉+ b) > 1− ξi
∀i ξi > 0

uncertainty can be introduced by transforming the con-
straints into

P
[
yi(〈w, xi〉+ b) > 1− ξi

]
> 1− κi.

The Chebychev inequality gives a worst-case bound on
this probability, provided you know the first two mo-
ments of x.

This can be generalized to classification into more than
two groups and to regression.

Incorporating estimation errors into portfolio
selection: robust portfolio construction

S. Ceria and R.A. Stubbs
Journal of asset management (2006)

The the list of alternatives to mean-variance portfolio
optimization:

– James–Stein estimators shrink the expected returns
of each asset to the average expected returns, de-
pending on the volatility of the asset;

– Jorion estimators shrink the expected returns esti-
mate towards the minimum variance portfolio;

– The Black–Litterman model blends views on some
portfolios to implied market returns;

– Michaud’s resampled portfolios are computed as fol-
lows: on bootstrap samples, estimate average returns
and variance matrix, compute the optimal portfolio,
average those portfolios;

– Adding constraints might improve (or worsen) the
sensitivity of the portfolio to parameter changes;

– Robust optimization, where we only give the opti-
mizer intervals containing the alpha;

the authors add a new one.

One can estimate the error on the expected returns of
the portfolio and maximize this return with a penalty
for the estimation error:

Maximize w′α− λ
∥∥∥Σ1/2w

∥∥∥
st w′Vw 6 v

w′1 = 1
w > 0

where λ is the penalty for the estimatio error, Σ is the
variance matrix of the estimation errors, V is the vari-
ance matrix of the returns, α are the forward returns,
v is the risk target and w are the portfolio weights the
optimizer should find.
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This is not a quadratic problem, but a second-order
cone program.

Stochastic programming models for asset
liability management

R. Kouwenberg and S.A. Zenios (2001)
in Handbook of asset and liability management

Scenario trees for a stochastic program, in an asset li-
ability management (ALM) context, can be generated
with one of the following methods:

– random sampling from the model (you might want
to trim dow the resulting tree, as in importance sam-
pling);

– adjusted random sampling (use antithetic sampling
to fit every odd moment of the underlying distribu-
tion);

– produce returns that match the first few moments of
the distribution (this optimization probmen can be
longer to solve than the final ALM problem).

You should make sure not to introduce arbitrage op-
portunities because of discretization or approximaation
errors: the no-arbitrage condition can be added as a
linear constraint.

Stochastic programming needs model generation tools
– in particular, there is still no stochastic optimization
language.

ALM can also be tackled with mean-variance opti-
mization: just add a “liability” asset with a prescribed
weight.

This chapter also defines a myopic investor: a multi-
period investor who behaves as a 1-period investor, for
instance because of his constant relative risk aversion
(CRRA), if he has a power utility.

Improving investment performance
for pension plans

J.M. Mulvey et al.
Journal of asset management (2006)

We do not live in a one-period world; traditional risk-
reward mesures such as the Sharpe ratio are not di-
rectly applicable to a multi-period setup; one should
consider multi-period strategies, stochastic program-
ming, etc.

Managing guarantees
M.A.H. Dempster

Journal of portfolio management (2006)

The methods of asset-liability management (ALM),
i.e., dynamic stochastic programming, can be used to
implement guaranteed strategies, thereby competing
with portfolio insurance.

The technical details of the article might be “a chal-
lenge even for sophisticated users”.

Extending algebraic modelling languages
for stochastic programming

P. Valente et al.

It is easier to formulate optimization problems using a
declarative language (AMPL, GAMS, AIMMS, MPL,
to name a few) than with a list of huge matrices.

This article advocates the use of a similar language,
SAMPL, for stochastic programs. It also reviews the
various types of stochastic programs and gives a few ex-
amples (in particular, how to turn a multistage stochas-
tic program into a deterministic one: expand all the
scenarios and add non-anticipatory constraints).

SAMPL is implemented in SPInE (commercial).

Also check SMPS (not an algebraic language).

Composing contracts:
an adventure in financial engineering

S. Peyton Jones et al.
Functional Pearl, ICFP (2000)

Haskell (or any other functional language) can be used
to describe complicated financial contracts (options on
options on. . . on options, with complicated cash flows)
– the industry lack such a precise notation – and then
to price them (but there are still optimizations to be
made; and one might prefer to use C for the final com-
putations).

Caml trading: experiences in functional
programming on Wall Street

T. Minsky
The monad reader (2007)

Benefits of functional languages in finance.

Constructive homological algebra
and applications

J. Rubio and F. Sergeraert (2006)

Another unlikely application of functional program-
ming.
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Data Envelopment Analysis
G.N. Gregoriou and J. Zhu

Journal of portfolio management (2007)

The notion of efficient frontier can be generalized
to higher dimensions: several risk measures or in-
puts (standard deviation, downside deviation, maxi-
mum drawdown), several outputs (returns, proportion
of profitable months, maximum consecutive gain).

If you have enough data points, they provide an ap-
proximation of the efficient frontier (?).

The efficiency (closeness to the efficient frontier) can
be defined as the solution of a linear problem:

Minimize θ such that∑
k

λkxik 6 θxik0∑
k

λkyjk > yjk0∑
k

λk = 1

λk > 1
i : input
j : output
k : funds
k0 : fund whose efficiency is being computed
xik : input i of fund k

yjk : output j of fund k.

See http://people.brunel.ac.uk/~mastjjb/jeb/
or/dea.html for a picture.

Optimization of the largest US mutual funds
using data envelopment analysis

G.N. Gregoriou
Journal of asset management (2006)

Another article on data envelopment analysis (DEA,
sometimes also called frontier analysis). It defines the

classical efficiency as

CCRk0 = Max
{∑

j µjyjk0∑
i λixik0

st ∀k
∑
j µjyjk∑
i λixik

6 1
}

and the super-efficiency (which is no longer bounded
by 1) as

CCRk0 = Max
{∑

j µjyjk0∑
i λixik0

st ∀k 6= k0

∑
j µjyjk∑
i λixik

6 1
}
.

They also mention the cross-efficiency model, but not
clearly.

On the use of data envelopment analysis in
assessing local and global performances of

hedge funds
H. Nguyen-Thi-Thanh (2006)

Yet another article on the applications of data envel-
opment analysis (DEA) to hedge fund comparison –
previous ones forgot the fees.

An empirical study of multi-objective
algorithms for stock ranking

Y.L. Becker et al.

Genetic algorithms can be used to simultaneously op-
timize several goals: put the solutions on separate “is-
lands”, one for each goal, and have some migrate from
time to time.

This is very similar to data envelopment analysis
(DEA) but I do not expect the algorithm to converge
towards a uniquely defined (or meaningful) solution; if
the migration rate is well chosen, it should converge to
a (set of) point(s) on the efficient frontier, not far away
from the optimal solutions of the one-goal problems.

The algorithm is applied to a stock selection prob-
lem with the following goals: information ratio (IR),
information coefficient (IC) and intra-fractile hit rate
(IFHR), i.e., proportion of stocks in the top (resp. bot-
tom) decile that outperform (resp. underperform) the
average.
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Equilibrium underdiversification
and the preference for skewness

T. Mitton and K. Vorkink
Review of financial studies (2007)

Preference for skewness, i.e., maximization of

E[X]− 1
2τ

VarX +
1

3φ
SkewX,

as with “Lotto investors”, explains underdiversified
portfolios.

Do losses linger?
R. Garvey et al.

Journal of portfolio management (2007)

Traders who experienced a loss in the morning are more
risk-seeking in the afternoon: this disposition effect is
in agreement with prospect theory, defined here as the
maximization of an s-shaped“utility”, function of gains
and losses instead of total wealth.

Stocks as lotteries: the implications of
probability weighting for security prices

N. Barberis and M. Huang (2007)

Prospect theory differs from expected (concave) utility
theory:

– The utility function is concave over gains and convex
over losses; it has a kink (i.e., left and right deriva-
tives are different) at the origin;

– The investor does not maximize the expected utility
but a weighted utility: the probabilities are trans-
formed (but these are not subjective probabilities,
just decision weights: the investor is perfectly aware
of the objective probabilities); as a result, low prob-
abilities are overweight: the investor wants both lot-
tery and insurance.

Prospect theory is incompatible with first-order dom-
inance, but can be modified into cumulative prospect

theory, which applies the weights to the cumulative dis-
tribution function. Often, one chooses

v(x) =

{
xα if x > 0
− λ(−x)α if x < 0

for the value function and

w(p) =
pδ

(pδ + (1− p)δ)1/δ

for the weighting function. Psychological studies sug-
gest α = 0.88, λ = 2.25, δ = 0.65.

Under gaussian assumptions (more generally, in the ab-
sence of skewness), cumulative prospect theory is con-
sistent with the CAPM (capital asset pricing model);
however, the weighting function creates mispricing for
assets with skewed returns – but the authors are not
convinced that it can be arbitraged away.

Cumulative prospect theory can explain that assets
with a high idiosyncratic skewness, such as IPOs, pri-
vate equity, distressed stocks, deep out-of-the-money
options, are overpriced and earn a low average return
– this leads to the volatility smile. It also explains why
household portfolios lack diversification.

To test (and use) that positively skewed stocks earn
lower average returns, one would need to forecast fu-
ture skewness: past skewness does not work, but cross-
sectional industry skewness does.

Downside consumption risk
and expected returns

V. Polkovnichenko (2006)

Yet another article showing that investors are averse
to dowside risk: with rank-dependent expected utility
(RDEU), utility is weighted by decision weights which
are transformations of the cumulative objective prob-
abilities of ranked events – cumulative prospect theory
is a special case of RDEU.
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The promise and peril of real options
A. Damodaran

Standard discounted cash flow models assume that the
cash flows are deterministic; they are actually proba-
bilistic and even contain embedded options, which have
to be taken into account to properly value a cash flow
or any corporate decision.

Examples include: the option to delay, expand, aban-
don a project, patents, natural ressources, etc.

The article recalls what an option is.

Evolution analysis of large-scale software
systems using design structure matrix

and design rule theory
M.J. LaMantia et al.

Modular software is good: the option (as in “option
pricing” – these are real options) to replace a compo-
nent makes it more valuable – a counter-example being
the “complexity disaster” Windows Vista.

The design structure matrix (DSM) represents depen-
dencies between the modules; once spotted, circular
dependencies can be removed by adding one more mod-
ule.
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